
Chapter 9

On the Geometric Brownian Motion assumption

for financial time series

Enea G. Bongiorno, Aldo Goia and Philippe Vieu

Abstract The Geometric Brownian Motion type process is commonly used to de-
scribe stock price movements and is basic for many option pricing models. In this
paper a new methodology for recognizing Brownian functionals is applied to finan-
cial datasets in order to evaluate the compatibility between real financial data and the
above modeling assumption. The method rests on using the volumetric term which
appears in the factorization of the small–ball probability of a random curve.

9.1 Introduction

Modeling stock prices represents an important task in finance since this is the starting
point for evaluating derivatives and other contracts, which have these prices as
underlying. The most famous approach, dating back to Black and Scholes [1], states
that the dynamic of prices behaves as a Geometric Brownian motion (GBM), with
constant coefficients of drift and volatility. In the time, many variants have succeeded
(see [5] for a review): in general, in such literature, it is common to assume that the
prices follow a GBM, with drift and volatility which evolve during the time.

The problem to verify the compatibility of observed data with the GBM assump-
tion is still an open problem: only indirect empirical evidences have been provided to
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support that modeling (for instance, by testing marginal Gaussianity, serial correlation
of increments, and so on; see among many others, [7] and [8]).

In [2] a new approach to explore the nature of functional data has been introduced
and discussed: starting from the possibility to factorize the small–ball probability of
a random curve in a spatial factor and a volumetric one, the authors use this latter
as the leading term to characterize the nature of the underlying process which has
generated the observed curves.

The aim of this paper is to apply such new methodology to financial time series
in order to verify the compatibility with the GBM assumption: after introducing in
Section 9.2 the notation and summarize some important steps of the methodology
introduced in [2], in Section 9.3 an application to real datasets is provided and the
main results are illustrated.

9.2 Recognizing some Brownian functionals

Consider a random element X defined on a suitable probability space and mapping
in L 2

[0,1], the space of square integrable functions on [0,1], equipped with its natural

inner product 〈g,h〉 = ∫ 1
0 g(t)h(t)dt, and the induced norm ‖g‖2 = 〈g,g〉, g,h ∈

L 2
[0,1]. In order to characterize the probability distribution of X , it is useful to known

the behaviour of the small-ball probability of X , that is P(‖X − x‖< ε), as ε tends
to zero. The results on this topic available in the literature concern essentially some
special classes of Gaussian processes and are presented in the form

P(‖X − x‖< ε)∼ ψ (x)φ (ε) as ε → 0,

where ψ (x) is a positive constant depending on x, which plays the role of the surro-
gate density of X , and φ (ε) representing the volumetric term independent on x. For
some processes, the latter can be asymptotically approximated by εα exp

(−γε−β ),
with α , β and γ non–negative constants; in particular, it is known that when X is a
Brownian bridge process, α = 0, γ = 1/8 and β = 2 (see [6]).

Suppose now to dispose of a sample {Xi, i = 1, . . . ,n} of i.i.d. copies of X , from
which one can obtain an estimate φ̂ (ε) of φ (ε). The comparison of φ̂ (ε) and φ (ε)
by a suitable dissimilarity measure allows to evaluate the parameters involved, as the
ones which minimize that dissimilarity. This idea has been developed in [2] where
the goodness of the approach is shown by a simulations study.

In particular, if one assumes that the sample comes from a Brownian bridge, once
φ̂ (ε) is computed for ε ∈ E , a suitable subset of R+, it is possible to estimate β as
the minimizer β̂ of the centered cosine dissimilarity (ccd) between log φ̂ (ε) and ε−β

over E , where the ccd between g and h is defined by 1−〈g�,h�〉(‖g�‖‖h�‖)−1, with
g� = g− ∫

g(t)dt and all integrals are computed on E . If β̂ is close to 2, then this
represents an empirical evidence in favour of the correctness of assumption that the
process is a Brownian bridge, whereas if β̂ is far from 2, there is not compatibility
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with that specification. To have an idea about the variability of β̂ , one can refer to
confidence intervals estimated, by means of Monte Carlo approach, in [2] for various
sample sizes.

The latter approach can be extended directly to other Gaussian processes which
are functionals of the Browian bridge (as, for instance, the Wiener process and the
Geometric Brownian Motion): in fact, it is enough to apply a suitable tranformation
to the data to obtain a Brownian bridge.

9.3 Analysis of financial time series

In this Section we apply the methodology illustrated above to some time series of
stock prices, in order to evaluate the compatibility of the data with the assumption
that the ones come from a Geometric Brownian Motion.

To do this, we concentrate our attention on four well known financial indexes,
used as underlying for a lot of derivatives, futures and other contracts: Dow Jones
Industrial Average, NASDAQ composite, NIKKEI 225 and S&P 500.

Time series consist in daily closing prices from 12 March 1985 to 1 December
2016 for Dow Jones, from 5 June 1984 to 1 December 2016 for NIKKEI index, and
from 13 April 1977 to 1 December 2016 for NASDAQ and S&P 500 indexes. Hence,
overall we have 8 thousand daily prices for Dow Jones and NIKKEI indexes, and 10
thousand for NASDAQ and S&P 500. The plots of these time series are reported in
Figure 9.1.

9.3.1 Modeling

Denote by S (t) the price of a stock observed at time t. From the time series{
S (t j) , j = 1, . . . ,N

}
it is possible to build a sample of n discretized functional

data Xi by dividing the interval T = [t1, tN ] in n disjoint intervals Ti with constant
width τ (positive and integer, so that N = nτ) and cutting the whole trajectory as
follows:

Xi (t j) = S ((i−1)τ + t j) t j ∈ [0,τ) , i = 1, . . . ,n.

Accordingly with the financial literature (see e.g. [3], [5]) we assume that the under-
lying continuous process, from which data come, follows the GBM model:

Xi (t) = Xi (0)exp
{(

μi − 1
2

σ2
i

)
t +σiW (t)

}
t ∈ [0,τ)

where μi and σi are the specific drift term and the specific volatility rate of the period
Ti and W (t) is a Wiener process. In this way, we take into account the fact that
volatility rate vary with time over T , but can be considered constant over suitable
subintervals.
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Fig. 9.1: Time series of daily prices of Dow Jones (left, top), NASDAQ (right, top),
NIKKEI (left, bottom) and S&P 500 (rigth, bottom) indexes.

Since
W (t) =

[
log(Xi (t)/Xi (0))−

(
μi −σ2

i /2
)

t
]
/σi (9.1)

and W (t)− tW (τ) is a Brownian Bridge, the methodology illustrated in Section 9.2
applies to verify the compatibility of data with the assumption.

9.3.2 Estimates and main results

The first step to operationalize the methodology is to cut the time series in order
to obtain the samples of functional data: we decided to divide the whole intervals
in subintervals of d days each one, with d = 25,50,80,100 in order to evaluate the
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Table 9.1: Estimated values of β for the the different stock prices indexes varying d.
Into brackets the sample size.

d Dow Jones NASDAQ NIKKEI S&P 500
100 2.18 [159] 1.62 [199] 2.16 [159] 2.14 [199]
80 2.24 [199] 1.68 [249] 2.24 [199] 2.22 [249]
50 2.20 [160] 1.80 [200] 2.14 [160] 2.24 [200]
25 2.16 [320] 1.88 [400] 2.08 [320] 2.12 [400]

results with respect to the cutting criterion. In this way we should obtain samples of
n = 10000/d curves for NASDAQ and S&P 500 and of n = 8000/d curves for Dow
Jones and NIKKEI. Since, the larger d is, the smaller n is, for d = 100,80 we add to
the sample some curves built with the same cutting criterion but with starting point
shifted by d/2 ahead. In this way we guarantee more accurate estimations.

For each sample the terms μi and σi are estimated from each curve by using the
maximum likelihood estimates as follows:

μ̂i =
1
d

d

∑
j=1

Xi (t j) and σ̂2
i =

1
d

d

∑
j=1

(Xi (t j)− μ̂i)
2 .

These values are used to transform the samples by means of (9.1). To the sake of
illustration, the samples of curves when d = 80 are drawn in Figure 9.2.

For each case (varying d and the stock index), the volumetric part φ (ε) is esti-
mated using the k–NN approach in [4]: here we used the box kernel (see Corollary
5.2 in [4]), and the number of neighbours equals the integer part of n/2. Finally,
by means of the method described in Section 9.2, we get estimates of β which are
reported in Table 9.1.

It is worth to noticing that β̂ is strictly positive: we can deduce that the log–
volumetric part log(φ) is proportional to ε−β . Moreover, all the values are quite close
to 2, that corresponds to the most of the Brownian functionals, and the smaller the
length d of Ti is, the closer β̂ is to 2; this turns out to be coherent with the literature:
the BGM can be used as a model for stock prices whenever the observation window
is short enough to assume that drift and volatility terms are constant over that period.
Indeed, if one has high–frequency data instead of daily ones (for instance observed
at each 5 minutes), the effect of non–constant drift and volatility would be further
relaxed and β̂ is very closed to 2. This is shown empirically in [2].
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Fig. 9.2: The samples of functional data, derived from original time series, for stock
prices Dow Jones (left, top), NASDAQ (rigth, top), NIKKEI (left, bottom) and S&P
500 (right, bottom) indexes, when d = 80.
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