
Chapter 7

An asymptotic factorization of the Small–Ball

Probability: theory and estimates

Jean-Baptiste Aubin, Enea G. Bongiorno and Aldo Goia

Abstract This work reviews recent results on an asymptotic factorization of the
Small–Ball Probability of a L 2

[0,1]–valued process, as the radius of the ball tends
to zero. This factorization involves a volumetric term, a pseudo–density for the
probability law of the process, and a correction factor. Estimators of the latter two
factors are introduced and some of their theoretical properties considered.

7.1 Introduction

Since the seminal works of [9, 14], functional data analysis continues to massively
attract the attention of researchers as proven by the recent monograph [5], special
issues [8, 11] and activities [4] on the topic. In this framework, the Small–Ball
Probality (SmBP) theory has been playing (and still now plays) an important role. It
refers to the study of the asymptotic behaviour of P(X ∈ B(x,ε)) as ε vanishes, where
X is a random element taking its values in some topological space and B(x,ε) denotes
a suitable ball in such topology. From a theoretical point of view, researchers have
mainly focused on different Gaussian processes and in providing the convergence
rate (refer to the small tails probability theory; see [12, 13] and references therein). In
functional regression, SmBP is a technical instrument used to express the convergence
rate of estimators (see [9]). Recently, in the context of L 2

[0,1]–valued random elements,
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the SmBP has been used to derive a concept of surrogate density and to introduce
some non–parametric estimators for it (see [3, 6]). In particular, in [3] it has been
shown that, for a fixed number d and as the radius ε of the ball tends to zero, the
SmBP is asymptotically proportional to (a) the joint density of the first d principal
components (PCs) evaluated at the center of the ball, (b) the volume of the d–
dimensional ball with radius ε , and (c) a correction factor weighting the use of a
truncated version of the process expansion. Under suitable assumptions on the decay
rate of the eigenvalues of the covariance operator of the process, it has been shown
that the correction factor in (c) tends to 1 as the number of considered dimension
increases (see [3]). This fact provides a clear advantage in modelling the SmBP since
justifies the use of the lonely term (a) as a surrogate density of the process.

In this work, after recalling in Section 7.2 the theoretical conditions that lead to
the mentioned factorization, we illustrate in Section 7.3 how to estimate the terms
(a) and (c) providing asymptotic properties. The model advantages and potential
applications are discussed in the last Section 7.4.

7.2 Framework and Notations

Let (Ω ,F ,P) be a probability space and L 2
[0,1] be the Hilbert space of square inte-

grable real functions on [0,1] endowed with the inner product 〈g,h〉= ∫ 1
0 g(t)h(t)dt

and the induced norm ‖g‖2 = 〈g,g〉. A Random Curve (RC) X is a measurable
map defined on (Ω ,F ) taking values in (L 2

[0,1],B), where B denotes the Borel
sigma–algebra induced by ‖ · ‖. Suppose E‖X‖2 <+∞ and denote by

μX = {E [X (t)] , t ∈ [0,1]} , and Σ [·] = E [〈X −μX , ·〉(X −μX )]

its mean function and covariance operator respectively. Consider the Karhunen–
Loève expansion of X : denoting by

{
λ j,ξ j

}∞
j=1 the decreasing to zero sequence of

positive eigenvalues and their associated orthonormal eigenfunctions of Σ , it holds

X (t) = μX (t)+
∞

∑
j=1

θ jξ j (t) , 0 ≤ t ≤ 1, (7.1)

where θ j =
〈
X −μX ,ξ j

〉
are the so–called principal components (PCs) of X satisfy-

ing
E [θ j] = 0, Var (θ j) = λ j, E

[
θ jθ j′

]
= 0, j �= j′.

From now on and without loss of generality, suppose that μX = 0. Moreover, assume
that

(A-1) the first d PCs θθθ = (θ1, . . . ,θd)
′ admit a strictly positive joint probability density

fd ;
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(A-2) there exists a strictly positive constant C such that x2
j ≤Cλ j for any j ≥ 1, with

x j = 〈x,ξ j〉;
(A-3) fd is sufficiently smooth (differentiable p times) and there exists a strictly positive

constant C for which, for any d ∈ N

sup
i, j∈{1,...,d}

√
λiλ j

∣∣∣∣∂ 2 fd(ϑϑϑ)

∂ϑi∂ϑ j

∣∣∣∣≤C fd(x1, . . . ,xd), for any ϑϑϑ ∈ D,

where D =
{

ϑϑϑ ∈ R
d : ∑ j≤d (ϑ j − x j)

2 ≤ ρ2
}

for some ρ ≥ ε;

Now, consider the small ball probability of the process X defined by

ϕ (x,ε) = P(‖X − x‖< ε) , for ε > 0.

In [3], authors have proven that, for a given d ∈ N and under assumptions (A-1),. . . ,
(A-3),

ϕ(x,ε)∼ fd(x1, . . . ,xd)
εdπd/2

Γ (d/2+1)
C(x,ε,d), as ε → 0, (7.2)

where

C(x,ε,d) = E

[
(1−Sd)

d/2 1I{Sd≤1}
]
,

Sd = S(x,ε,d) =
1
ε2 ∑

j≥d+1
(θ j − x j)

2,

and 1IA is the indicator function of the event A. Roughly speaking, (7.2) means that,
for a given positive integer d and as ε → 0, the SmBP ϕ(x,ε) behaves as the usual
first order approximation of the SmBP in a d–dimensional space (i.e. the probability
density function of the first d PCs evaluated at (x1, . . . ,xd) times the volume of the
d–dimensional ball of radius ε) up to the scale factor C(x,ε,d) that balances the use
of a truncated version of the process expansion (7.1).

To fully split the dependence on x and ε in factorization (7.2), the following
assumption can be considered:

(A-4) The eigenvalues {λ j} j∈N decay hyper–exponentially, that is d ∑ j≥d+1 λ j =
o(λd), as d → ∞.

Under (A-1),. . . ,(A-4), it can be proven that, as d tends to infinity and for a
suitable choice of ε = ε(d),{

C(x,ε,d)→ 1,
ϕ(x,ε)∼ fd(x1, . . . ,xd)

εdπd/2

Γ (d/2+1) ,
(7.3)

see [3]. A practical choice for ε is
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ε2(d) =

√
dλd

∞

∑
j=d+1

λ j. (7.4)

To take advantage of the above factorizations, in the next section some estimators
for fd and C are introduced and their basic properties stated. Further discussions and
applications are discussed in the last section.

7.3 Estimates

Consider (X1, . . . ,Xn) a sample of RCs distributed as X , Xn and Σ̂n the empirical
versions of μX and Σ from which it is possible to estimate the empirical eigensystem
{λ̂ j, ξ̂ j} j∈N and {θ̂i, j = 〈Xi,ξ j〉} j∈N the estimated scores associated to Xi for any
i = 1, . . . ,n. It is known that such estimators are consistent; see, for instance, [5].

For what concerns the surrogate density fd , for a fixed d, let us introduce the
kernel density estimate:

f̂d,n

(
Π̂dx

)
= f̂n (x) =

1
n

n

∑
i=1

KHn

(∥∥∥Π̂d (Xi − x)
∥∥∥) (7.5)

where KHn (u) = det(Hn)
−1/2 K(H−1/2

n u), K is a kernel function, Hn is a symmet-
ric semi-definite positive d × d matrix and Π̂d denotes the projector onto the d–
dimensional space spanned by {ξ̂ j}d

j=1. Under regularity assumptions on fd and on
the kernel K, if one takes Hn = hnI with hn → 0 and nhd

n/ logn → ∞ as n → ∞, the
following result has been proven in [3].

Proposition 7.1. Take the optimal bandwidth c1n−1/(2p+d) ≤ hn ≤ c2n−1/(2p+d) and
p > max{2,3d/2}. Thus

E[( fd (x)− f̂n (x))2] = O
(

n−2p/(2p+d)
)
,

as n goes to infinity and uniformly in R
d.

Regarding the corrective factor C(x,ε,d) an estimator is provided by the empirical
one:

Ĉn,d = Ĉn(x, ε̂,d) =
1
n

n

∑
i=1

(
1− Ŝi(x, ε̂,d)

)d/2
1I{Ŝi(x,ε̂,d)≤1},

with Ŝi(x, ε̂,d) = ε̂−2 ∑ j≥d+1

(
θ̂i, j − x̂ j

)2
, θ̂i, j = 〈Xi, ξ̂ j〉, x̂ j = 〈x, ξ̂ j〉 and where ε̂ is

the empirical version of (7.4). Asymptotics on such estimator have been provided in
[1] and collected in the following proposition.

Proposition 7.2. As n tends to infinity, ε̂2 and Ĉn,d are consistent estimator in the
L1[Ω ,F ,P;R] metric. Moreover,

√
n(Ĉn,d −C) is asymptotically normal distributed.
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7.4 Conclusions

This work collects some theoretical results concerning the factorization of the SmBP.
These clarify those conditions under which it is possible to separate by means of
distinct factors the spatial and volumetric components. The asymptotic (7.3) provides
a modelling advantage: for d large enough, it justifies the use of factorized version of
the SmBP since the corrective factor C(x,ε,d) will be close to 1.
On the one hand, such approximation yields fd a surrogate density of the process
whose estimation can be tackled in a non–parametric manner (see [3, 6]) or para-
metrically (see [10] in the Gaussian mixture case). In [2], the estimate (7.5) is the
starting point to build a pseudo–density oriented clustering algorithm where clusters
are identified by the largest connected upper–surfaces containing only one mode.
This technique was applied to different real datasets.
On the other hand, the convergence to 1 of C(x,ε,d) holds theoretically only for
d → ∞. From the practical point of view, when d is fixed and in order to assess the
goodness of fd as a surrogate density, it is useful to evaluate how close to 1 is this
correction factor C. This qualitatively suggests the dimension d to be used in practice
(see [1]).
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