
Chapter 3

Functional linear regression models for scalar

responses on remote sensing data: an application

to Oceanography

Nihan Acar-Denizli, Pedro Delicado, Gülay Başarır and Isabel Caballero

Abstract Remote Sensing (RS) data obtained from satellites are a type of spectral
data which consist of reflectance values recorded at different wavelengths. This type
of data can be considered as a functional data due to the continous structure of the
spectrum. The aim of this study is to propose Functional Linear Regression Models
(FLRMs) to analyze the turbidity in the coastal zone of Guadalquivir estuary from
satellite data. With this aim different types of FLRMs for scalar response have been
used to predict the amount of Total Suspended Solids (TSS) on RS data and their
results have been compared.

3.1 Introduction

Functional Data Analysis (FDA) concerns with the data sets measured on a continuum
such as a dense time interval, space or a spectrum. The data gathered from Remote
Sensing (RS) sensors via transmission of electromagnetic energy is also a kind of
spectral data. RS data are collected from the earth’s surface in terms of reflectance
values recorded at different number of wavelengths. They inform us in a fast and
economical way about the environment. Therefore, they are used in many fields such
as land-use mapping, agriculture, forestry and oceanography to make predictions
[2, 3, 5, 11]. In oceanography, RS data are used to estimate ocean characteristic
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parameters such as Sea Surface Temperature (SST), Chlorophyll-a content (Chl-a)
and Total Suspended Solids (TSS) [2, 3]. Recently, FDA gain importance in analyzing
remote sensing sensor data sets [1, 4]. Although, there are many applications of
multivariate analysis techniques on RS data in oceanography [2, 3, 10, 11], there are
few studies that use FDA approach in this field [9].

The importance of this study is to propose FLRMs alternative to classical statistical
methods to predict TSS parameter from RS curves at different time periods. In
previous studies, mostly regression models with a combination of different band
values or the band values which are most correlated to TSS measurements have
been used to predict TSS parameter [2, 3]. FLRMs allows us to use the information
recorded at all the bands rather than selecting single band or taking combination of
the bands. In this study, the Remote sensing reflectance (Rrs) values, recorded in a
spectrum that consists of eight different bands have been considered as functional
predictors and TSS content, that are measured from collected in-situ samples have
been taken, as scalar response vector. In order to determine the best prediction model
several FLRMs for scalar responses have been constructed and their performances
have been compared with the performance of classical statistical methods used
in the literature. A 10 year data set has been constituted by matching the in-situ
measurements with the satellite data recorded between the years 2002-2011. The
work exhibits an approach of how to conduct analysis for processing and interpreting
large-scale volume of heterogeneous data to improve the present knowledge as an
essential piece of the future Big Earth Observation Data monitoring systems.

3.2 Methods

The general form of a functional scalar response model can be expressed by

Y =
∫

T
χ(t)β (t)dt + ε, (3.1)

where Y indicates the scalar response vector, ε is the error term, χ(t) and β (t) define
respectively the functional predictor and the parameter function that are defined on a
continuous interval T .

To solve this problem, different techniques based on basis functions, eigenfunc-
tions or nonparametric smoothing have been proposed to assess an interpretable
estimate of the parameter function [6, 5, 22]. In this study we will focus on two
different approaches. The first approach is to use B-Spline basis expansions to define
the functional predictor and the model parameter function. The latter approach is
based on dimension reduction method functional principal components analysis so
that it is named as Functional Principal Components Regression (FPCR). The idea
of FPCR is to predict scalar response vector Y on the functional predictors that are
expanded in terms of the eigenfunctions of the empirical covariance operator which
form an orthonormal basis in L2(T ) [12, 6].
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The main problem here is to determine the number of basis functions or compo-
nents that will be used to expand data. In this study, Cross Validation (CV) criterion
is preferred to choose the optimal number of basis functions. The estimates of the
models are found by minimizing the Sum of Square Errors (SSE) as in the classical
linear regression problem.

To compare the predictive performance of the mentioned models, an Adjusted ver-
sion of Mean Error of Prediction (AMEP) based on Leave-One-Out Cross Validation
(LOOCV) has been defined by the equation (3.2).

AMEP =
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ−i)2 . (3.2)

The term ȳ−i in this equation indicates the mean after removing the ith observation
from the data set.

3.3 Data

The data set consists of two parts. The in-situ data set is composed of TSS concen-
trations measured from the collected samples and the satellite data set is composed
of the Remote sensing reflectance (Rrs) values recorded by MEdium Resolution
Imaging Spectrometer (MERIS), one of the main instruments on board the European
Space Agency (ESA)’s Envisat platform between the years 2002-2011. The data set
has been constituted by matching the filtered satellite data with the in-situ considering
the coordinate and the time that the sample has been collected. The coordinates have
been matched considering the exact pixels that the sample is collected and the time
difference between in-situ and satellite data has been constrained up to 1.5 hours.

3.3.1 In-Situ Data

The in-situ data consist of the records of TSS concentration which are obtained from
the samples collected by the station of Junta de Andalucı́a and by the cruises of
Reserva and Fluctuaciones in the Guadalquivir estuary. The surface samples taken
into analysis were collected with a rosette sampler (5 m below water surface) with a
distance from coast from 1km to 25 km offshore.

The samples were collected during different time periods. The sampling carried
out by Junta de Andalucı́a covers the period between April 2008 and May 2011
where the samples of Reserva and Fluctuaciones were collected within the periods
July 2002 - September 2004 and May 2005 - May 2007 respectively. Each sample is
collected by one of the campaigns from a determined coordinate. The coordinate of
the station Junta de Andalucı́a was fixed with the lattitude 36.78◦ N and longitude
6.37◦ W where the coordinates of the stations Reserva and Fluctuaciones were
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chosen according to the campaign planning. The amount of TSS concentration in
each sample has been measured according to the protocols mentioned in [3].

3.3.2 Satellite Data

The study area corresponds to the coastal region of the Gulf of Cadiz in the southwest
coast of the Iberian Peninsula (35.5◦ − 37.5◦ N latitude and 1◦ − 10◦ W longi-
tude). The satellite data included within the Region Of Interest (ROI) was down-
loaded from the Ocean Colour Website (http://oceancolor.gsfc.nasa.gov) in hdf
format. SeaDAS image analysis software (SeaWifs Data Analysis System, version 6,
http://seadas.gsfc.nasa.gov/) and the interface VMware Workstation 12 Player
(https://www.vmware.com/) were used to convert data from hdf format to ascii
format. The RS data set consists of Level-2 Remote Sensing Reflectance (Rrs) (sr−1)
recorded at eight different wavelengths (413 nm, 443 nm, 490 nm, 510 nm, 560
nm, 620 nm, 665 nm, 681 nm) with 300 m full spatial resolution between the years
2002-2011. The data has been passed through a quality control process corresponding
to the L2 flags given in [3] to remove the suspicious and low-quality data points. This
filtering process is done by using MATLAB 7.12.0-R2011a software. Considering
that the resolution of images is 300 m, the data set consists of 740× 3330 pixel
images which is equivalent to have 2464200 element vectors for each wavelength.

Statistical validation of satellite-derived products is an essential issue to verify the
accuracy provided by the sensor. In this work, data match ups were made by matching
the coordinates of Rrs values with the coordinates of the field measurements. Careful
consideration of scales is critical when comparing remotely-sensed data with in
situ observations, particularly because of the large spatio-temporal heterogeneity of
estuarine and coastal water properties influencing those measurements [8]. In this
sense, time difference between satellite overpasses and in situ sampling was reduced
by a filter of < 1.5 hours from acquisition, thus preventing temporal biases to further
evaluate the results of each data set; notwithstanding less number of match-up for
validation purposes are available. If we use a wider time window of 4 or 5 hours,
we get a major number of match-ups but more variability is encountered with the
inconvenience of greater discrepancies between in-situ and RS observations.

3.4 Results

As a result of matching in a time window of 1.5 hour, totally 31 observations are
obtained. 5 of them have been excluded from the analysis due to the measurement
errors, 6 of them have been removed due to missing values at some wavelengths
and 2 of them have not been included into the analysis due to their outlyingness.
The analysis have been conducted on 18 observations: 8 observations from Junta
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Fig. 3.1: The Rrs curves.

de Andalucı́a station, 7 observations from Reserva cruise and 3 observations from
Fluctuaciones cruise.

The Rrs values at eight different wavelengths have been converted to a functional
data object as given in Figure 3.1. Firstly, FLRM with B-Spline approach has been
used to predict the TSS parameter. In this case, both the functional predictor and the
functional parameter estimate has been smoothed by using B-Spline basis functions.
The optimal number of basis functions has been chosen as 5 by the CV criterion [6].

The number of components that will be included in FPCR has been chosen based
on their variability. The first 5 components for which the cumulative variance exceeds
95% have been taken into analysis.

The results of FLRMs have been compared with the results of classical approaches
in the literature. As offered by [3], exponential regression models have been con-
structed between TSS and the Rrs values at the band most correlated with the response.
The most correlated bands were found as 665 nm (r=0.65) and 681 nm (r=0.66).
Therefore, two different single band exponential regression models have been used.

All the functional and exponential regression models were found significant (p
< 0.05). The coefficient of determination (R2), Standard Error (Std. Err.) and AMEP
values based on LOOCV of the related models are given in Table 3.1.

Regarding R2 values, FLRMs explain higher amount of variability of the response
comparing to exponential regression models.
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Table 3.1: R2, Std. Err. and AMEP values of the models

Models R2 Std. Err. AMEP

FLRM with B-Spline Basis 0.78 0.32 0.42

FPCR with the first 5 components 0.82 0.30 0.71
Exponential Regression with 665 nm 0.42 0.46 0.71
Exponential Regression with 681 nm 0.43 0.45 0.70

Among all the models, FLRM using 5 number of B-Spline basis functions has
predicted TSS parameter better since the AMEP value of this model is the lowest.
Although the AMEP value of FPCR with 5 components is not that low, we see that
the predictive performance of the model is as good as the exponential regression
models.

3.5 Conclusions

In this study, the performance of FLRMs to predict TSS on RS data has been
compared to single band exponential regression models. The data set has been
constituted under spatio-temporal filtering by matching exact coordinates in the time
window of 1.5 hour difference. Although, the limited number of wavelengths and
observations, it is seen that the FLRMs on RS data predict TSS content better than the
classical exponential regression models offered in the literature. The best prediction
model has been found as FLRM with B-Spline basis approach using 5 basis functions.
To conclude, FLRMs estimate the TSS content in Guadalquivir estuary better than
other classical approaches that have been used earlier in RS community.

There are several ways to explore in order to improve the prediction ability of
the considered models. First, Figure 3.1 suggests the existence of two clusters of
curves (well differentiated by Rrs values at wavelengths larger than or equal to 550
nm). These clusters may correspond to clear or low turbid to turbid water conditions
in each scene. Then a dummy variable indicating if a day is considered clear or
turbid could be included in the regression models. More observations with different
concentrations of TSS will be required to have reliable estimations. Second, the
studied observations present (as many environmental data) spatial and temporal
dependence (observations from the same boat trip have been taken in close times and
close sites). To take into account these dependence in the regression models could
lead to more accurate predictions.
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