Chapter 2
Robust fusion methods for Big Data

Catherine Aaron, Alejandro Cholaquidis, Ricardo Fraiman and Badih Ghattas

Abstract We address one of the important problems in Big Data, namely how to
combine estimators from different subsamples by robust fusion procedures, when we
are unable to deal with the whole sample.

2.1 Introduction

Big Data covers a large list of different problems, see for instance [10, 11], and
references therein. We address one of them, namely how to combine, using robust
techniques, estimators obtained from different subsamples in the case where we are
unable to deal with the whole sample. In what follows we will refer to this as Robust
Fusion Methods (RFM).

To fix ideas, we start by describing one of the simplest problems in this area
as a toy example. Suppose we are interested in the median of a huge set of iid
random variables {Xj,...,X,} with common density f, and we split the sample into
m subsamples of length /, n = ml. We calculate the median of each subsample and
obtain m random variables Y1, ...,Y,,. Then we take the median of the set Y7,...,Y,,,
i.e. we consider the well known median of medians. It is clear that it does not coincide
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with the median of the whole original sample {Xj,...,X,}, but it will be close. What
else could we say about this estimator regarding efficiency and robustness?

The estimator is nothing but the median of m iid random variables but now with a
different distribution given by the distribution of the median of / random variables
with density fy. Suppose for simplicity that / = 2k + 1. Then, the density of the
random variables Y; is given by

gr(y) = Wa(r)ku ~ Fe @) A 0). @1

In particular, if fy is uniform on (0, 1), (2.1) is given by

2k+1)!
hy (y) = ((k,)z)tk(lf))kl[o,l](t)v (2.2)
a Beta(k+1,k+1) distribution.
On the other hand, we have that asymptotically, for a sample of size n the empirical
median 6 = med(X,,...,X,) behaves as a normal distribution centred at the true

median 6 with variance ————, while the median of medians behaves asymptotically

4nfx(0)
as a normal distribution centred at 6, the median of the median distribution, and

with variance m. For the uniform case, both are centred at 1/2, fx(0.5) =1

and gy (0.5) = (1/2)%%(2k+1)!/(k!)?, so we can explicitly calculate the relative
efficiency.

In Section 2.2 we generalize this idea and study the breakdown point, efficiency,
and computational time of the robust fusion method. In Section 2.3 we tackle, as a
particular case, the robust estimation of the covariance operator and show, in Section
2.3.3, the performance throughout a simulation study.

2.2 A general setup for RFM.

In this short note we present briefly a general framework for RFM methods for several
multivariate and functional data problems. We illustrate our procedure considering
only the problem of robust covariance operator estimation, based on a new simple
robust estimator. Our approach is to consider RFM methods based on data depth
functions. The idea is quite simple: given a statistical problem, (such as multivariate
location, covariance operators, linear regression, principal components, among many
others), we first split the sample into subsamples. For each subsample we calculate
a robust estimator for the statistical problem considered. We will use them all to
obtain an RFM estimator that is more accurate. More precisely, the RFM estimator is
defined as the deepest point (with respect to the appropriate norm associated to the
problem) among all the estimators obtained from the subsamples. Since we need to
be able to calculate depths for large sample sizes and eventually high dimensional
and infinite dimensional data, we will consider the spatial median corresponding to
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X —x
dG=)
where P is a probability in some Banach space (E, || -||) and x € E, introduced by
[2], formulated (in a different way) by [9], and extended to a very general setup by
[1]. We want to address the consistency, efficiency, robustness and computational
time properties of the RFM proposals.

To be more precise, the general algorithm is as follows. a) We observe Xi,...X,
iid random elements in a metric space E (for instance E = R%), b) we split the sample
into subsamples {X1,... Xi}, {X;41,--- X}, AX(m—1)1415 - - - Xim } Withn =ml, c)
we solve our statistical problem on each subsample with a robust procedure (for
example, estimate a parameter 6 on each subsample, obtaining 0;,...,8,,), d) we

maximizing the spatial depth function

D(x,P)=1- ‘ , (2.3)

take the fusion of the results at each subsample, (for instance 6 can be the deepest
point among 0y, ...,6,,.

2.2.1 Breakdown point

Breakdown point for the RFM. Following [4] we consider the finite-sample break-
down point.

Definition 2.1. Let 6, = ,(x) be an estimate of 6 defined for samples x = {x1,...
,Xn }. Let us assume that 6 takes values in ©® C R (it can be ® = RY). Let 2, be
the set of all data sets y of size n having n — p elements in common with x:

Zp=A{y:card(y) =n, card(xNy) =n—p},

then & (6,,x) = ”7*, where p* = max{p > 0: 6,(y) is bounded and also bounded
away from 0@ Vy € Z),}.

Let us consider, for n = ml, the random walk S,, with S§o =0, and S; = By +...+B;
for j=1,...,n, B; being iid Bernoulli(p) for i = 1,...,n, where a one represents
the presence of an outlier, while a zero represents no presence of an outlier. Then to
compute the breakdown point for the median of medians, we need to count how many
times the sequence {S;,S2 —Sj,...S, —S,_;} is larger than k (recall that [ = 2k + 1).
Let us define, Uy, , :=card{1 < j<m:Sj — S < k}/m, since the median has
breakdown point 0.5 the fusion will break down if U, ,, is greater than 0.5.

This will also be true if we take the median of any robust estimate with breakdown
point equal to 0.5 calculated at each subsample.

To have a glance at the breakdown point, we performed 5000 replicates of the
vector S3p000 and calculated the percentage of times the estimator breaks down for
p =0.45,0.49,0.495 and 0.499. The results are in the following table.
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Table 2.1: Percentage of estimator breakdowns for 5000 replications and different
values of m for n = 30000; p is the proportion of outliers

[m [p = 0.45]p = 0.49]p = 0.495][p = 0.499)

5 0 0.0020 | 0.0820 0.3892
10 0 0.0088 | 0.1564 0.5352
30 0 0.0052 | 0.1426 0.5186
50 0 0.0080 | 0.1598 0.5412
100 0 0.0192 | 0.2162 0.6084
150 0 0.0278 | 0.2728 0.6780

Since the number Y of outliers in the subsamples of length / follows a Binomial
distribution, Binom(/, p), as a direct application of Theorem 1 in [8] we can bound
the probability, g = P(Y > 1/2), of breakdown.

2.2.2 Efficiency of Fusion of M-estimators

In this section we will obtain the asymptotic variance of the RFM method, for
the special case of M-estimators. Recall that M-estimators can be defined (see
Section 3.2 in [6]) by the implicit functional equation [ y(x,7 (F))F(dx) =0, where
y(x;0) = (d/d0)p(x;0), for some function p. The estimator 7, is given by the
empirical version of T, based on a sample 2, = {Xi,...,X,}. It is well known
that \/n(T,, — T(F)) is asymptotically normal with mean 0, variance 62, and can
be calculated in general as the integral of the square of the influence function. The

2
asymptotic efficiency of 7, is defined as Eff(7,) = %, where 67, is the asymptotic
variance of the maximum likelihood estimator. Then, the asymptotic variance of a
M-estimator built from a sample T,}7 ..., T,Y of p M-estimators of T can be calculated
easily.

2.2.3 Computational time

We want to calculate the computational time of our robust fusion method for a
sample 2, = {Xj,...,X,} iid of X, where we have split 2, into m subsamples of
length /, then apply a robust estimator to every subsample of length /, and fuse them
by taking the deepest point among the m subsamples. If we denote by compRE(/)
the computational time required to calculate the robust estimator based on every
subsample of length /, and compDeph(m) the computational time required to compute
the deepest robust estimator based on the m estimators, then the computational time
of our robust fusion method is mx compRE(/)+compDeph(m).
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2.3 Robust Fusion for covariance operator

The estimation of the covariance operator of a stochastic process is a very important
topic that helps to understand the fluctuations of the random element, as well as to
derive the principal functional components from its spectrum. Several robust and
non-robust estimators have been proposed, see for instance [1], and the references
therein. In order to perform RFM, we introduce a computationally simple robust
estimator to apply to each of the m subsamples, that can be performed using parallel
computing. It is based on the notion of impartial trimming applied on the Hilbert—
Schmidt space, where covariance operators are defined. The RFM estimator is the
deepest point among the m estimators corresponding to each subsample, where the
norm in (2.3) is given by (2.4) below.

2.3.1 A resistant estimate of the covariance operator

Let E = LZ(T), where T is a finite interval in R, and X,X},...X,,... iid random
elements taking values in (E,#(E)), where %(E) stands for the Borel c-algebra
on E. Assume that E(X(¢)?) < o for all t € T, and [, [, p(s,t)dsdt < o, so the
covariance function is well defined and given by p(s,7) = E((X(¢) — u(#))(X(s) —
u(s)), where E(X(r)) = u(e).

For notational simplicity we assume that p(¢) = 0,Vs € T. Under these condi-
tions, the covariance operator, given by So(f) = E((X, f)X), is diagonalizable, with
nonnegative eigenvalues A; such that }'; 7Li2 < oo, Moreover Sy belongs to the Hilbert—
Schmidt space HS(E,E) of linear operators with square norm and inner product
given by

1S|17s = Z IS(ex)|I* < oo, (S1,82)5 Z Si(ex),S2(ex)), (2.4)
k=1 =1

respectively, where {e; : k > 1} is any orthonormal basis of E, and S,51,52 €
HS(E,E).In partlcular 1S0]|? = ¥, A7, where A; are the eigenvalues of Sp. Given
an iid sample X1, ...,X,, define the Hllbert—Schmidt operators of rank one,

Wi:E—E, Wi(f)=(X,/)X(), i=1,...n.

Let ¢; = X;/[|X;|. Then, Wi(¢:) = [|Xi[[*¢: =: nip. X

The standard estimator of Sy is just the average of these operators, i.e. S, =
l | Wi, which is a consistent estimator of So by the Law of Large Numbers in
the space HS(E,E). Our proposal is to consider an impartial trimmed estimate as a
resistant estimator. The notion of impartial trimming was introduced in [5], while
the functional data setting was considered in [3], from were it can be obtained the
asymptotic theory for our setting. In order to perform the algorithm we will derive an
exact formula for the matrix distances |W; —W;|, 1 <i < j<n.
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Lemma 1 We have that

diy = Wi =Willhs = 1XI* + 1] =20, X))* for1<i<j<n. (25)

2.3.2 The impartial trimmed mean estimator

Following [3], we define the impartial trimmed covariance operator estimator, which
is calculated by the following algorithm.

Given the sample X (¢),...,X,(¢) (which we have assumed with mean zero for
notational simplicity) and 0 < & < 1, we provide a simple algorithm to calculate
an approximate impartial trimmed mean estimator of the covariance operator of the
process So: E = E, So(f)(r) =E({X, f)X(¢)), that will be strongly consistent.

STEP 1: Calculate d;; = |W; — Wj||gs, 1 <i < j <n,using Lemma 1.

STEP 2: Let r = [ (1 — a)n| + 1. For each i = 1,...n, consider the set of indices
I; C {1,...,n} corresponding to the r nearest neighbours of W; among {Wj,...W,},

dV <. . <d".

and the order statistic of the vector (dj1,...,d,), d;

STEP 3: Let y = argmin{d\",...,d\"}.

STEP 4: The impartial trimmed mean estimator of Sy is given by § = the aver-
age of the m nearest neighbours of W, among {Wj,...,W,}, i.e the average of the
observations in /y.

This estimator corresponds to estimating p(s,?) by p(s,7) = %):jgij ($)X;(t).
Observe that Steps 1 and 2 of the algorithm can be performed using parallel comput-
ing.

2.3.3 Simulation results for the covariance operator

Simulations were done using a PC Intel core 17-3770 CPU, 8GO of RAM using 64
bit version of Winl10, and R software ver. 3.3.0.

We vary the sample size n within the set {0.1e6, 1¢6,5¢6, 10e6} and the number
of subsamples m € {100,500, 1000, 10000}. The proportion of outliers was fixed to
p = 13% and p = 15%. We replicate each simulation case K = 5 times and report a
mean average of the results over these replicates.

We report the average time in seconds necessary for both a global estimate
(time0, over the whole sample), and timel the estimate obtained by fusion (including
computing the estimates over subsamples and aggregating them by fusion).

We compare the classical estimator (Cov), the mean of the classical estimators
obtained from the subsamples (AvCov), the Fusion estimate of the classical estimator
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(Cov.RFM), the global robust estimate (CovRob), the robust fusion estimate RFM,
and the average of the robust estimates from the subsamples AvRob.

To generate the data, we have used a simplified version of the simulation model
used in [7]:

10 10
X(t)=u()+v2 Y Avaysin(2mke) + V2 Y vibycos(2mke)
k=1 k=1

where vy = (%)k ,Ax = k=3, and a; and by, are random standard Gaussian independent
observations. The central observations were generated using ((¢) = 0 whereas for
the outliers we took pt(z) = 2 — 8sin(7r). For t we used an equally spaced grid of
T =20 points in [0, 1].
The covariance operator of this process was computed for the comparisons:
Cov(s,t) = Y.}9 Ay (s)Ax(t) + Bi(s)By(t), where Ay(t) = /24 sin(2mke) and
A(t) = V2 cos(2mkt).
The results are shown in the following two tables for two proportions of outliers,
p=0.15and p=0.2.

Table 2.2: Covariance operator estimator in presence of outliers. Using the classical
and robust estimators over the entire sample, and aggregating by average or fusion of
m subsamples estimates. p = 0.15, T=20

n m time0 timel Cov AvCov Cov.RFM CovRob AvRob RFM
0.05 20 55318.2024.3 243 24.7 5.16 521 5.52
0.05 50 543 7.81243 243 24.9 5.20 524 5.60
0.05 100 528 4.79243 243 25.2 520 5.17 5.58
0.05 1000 459 19.40 24.3 24.3 27.0 5.13 5.54 6.58
0.10 20 2300 69.00 24.2 24.2 24.4 5.14 522 543
0.10 50 2300 28.1024.2 242 24.6 504 5.09 5.13
0.10 100 2290 15.2024.2 24.2 25.0 506 5.15 543
0.10 1000 1850 21.60 24.3 24.2 26.1 521 5.35 6.13
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Table 2.3: Covariance operator estimator in the presence of outliers. Using classical
and robust estimators over the entire sample, and aggregating by average or fusion of
m subsamples estimates. p = 0.2, T=20

n m time0 timel Cov AvCov Cov.RFM CovRob AvRob RFM
0.05 20 57217.9030.5 30.5 309 0.879 396 1.45
0.05 50 649 7.8830.5 30.5 31.3 0876 7.34 2.10
0.05 100 633 4.61 30.5 30.5 31.6 0.839 8.86 2.43
0.05 1000 478 19.50 30.5 30.5 323 0.864 13.10 7.08
0.10 20 1970 69.10 30.4 30.4 30.6 0914 3.83 1.36
0.10 50 2030 28.10 30.4 304 31.1 0921 432 1.55
0.10 100 2020 15.10 30.4 30.4 31.3 0.840 8.44 2.35
0.10 1000 1840 21.60 30.4 30.4 329 0961 12.10 5.20

If the proportion of outliers is moderate p = 15%, the average of the robust
estimators still behaves well, better than RFM, but if we increase the proportion of
outliers to p = 0.2, RFM clearly outperforms all the other estimators.
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