
Chapter 19

Two-sample tests for multivariate functional

data

Qing Jiang, Simos G. Meintanis and Lixing Zhu

Abstract We consider two–sample tests for functional data with observations which
may be uni– or multi–dimensional. The new methods are formulated as L2–type
criteria based on empirical characteristic functions and are convenient from the
computational point of view.
Keywords: Functional data, Empirical characteristic function, Two–sample problem

19.1 Introduction

Suppose that we observe data X1i j and X2i j arising from two different groups. For
each fixed i, X1i j, is viewed as realization of a curve x1i(t) observed at distinct time
points t1i j, j = 1, ...,m1i, and we index the curves by i = 1, ...,n1, for the first group.
Likewise suppose that X2i j is realization of a curve x2i(t), observed at times t2i j,
j = 1, ...,m2i, and indexed by i = 1, ...,n2, for the second group. The observation
times t1i j, t2i j are assumed to belong to some closed bounded interval T, and we often
take T= [0,1]. Although we work under the assumption of independence between
groups, we allow for noise in the observations. Specifically we consider the model

X1i j = x1i(t1i j)+ ε1i j, X2i j = x2i(t2i j)+ ε2i j, (19.1)
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where x11(t), ...,x1n1(t), are independent and identically distributed as x1(t), and
independent of the the errors ε1(t), for t ∈ T, and likewise x21(t), ...,x2n2(t) are
iid as x2(t), and independent of ε2(t). The errors are also assumed to be mutually
independent with zero means. We wish to test the null hypothesis

H0 : x1(t)
d
= x2(t), for each t ∈ T, (19.2)

where d
= stands for equality in law.

Earlier works for the two–sample problem with functional data include testing for
common location ([6, 5, 16]), and for common covariance matrix ([11, 8]), while [1]
considers the more general problem of testing for common principal components.
The framework of the current paper though is much in the spirit of [4] where the two–
sample problem was first studied in its full generality of the null hypothesis (19.2);
see also [12]. However we deviate from this paper by proposing procedures which
instead of the empirical distribution function, utilize the empirical characteristic
function (ECF). Apart from other favorable features which will become apparent
along the paper, note that ECF–based procedures for scalar data are readily extended
to multidimensional observations which is not always true if one employs classical
procedures based on the empirical distribution function.

19.2 Test Statistics

19.2.1 Univariate case

Our approach for testing the null hypothesis H0 in (19.2) will be based on the fact
that H0 is tantamount to the identity

ϕx1(t)(u) = ϕx2(t)(u), ∀ u ∈ R, and each t ∈ T, (19.3)

and vice versa. Here, as well as elsewhere below, ϕz(t)(u) := E(eιuz(t)), (ι =
√−1),

will denote the characteristic function (CF) of the stochastic quantity z(t). Based on
this fact, [10] and [9] develop two–sample testing procedures for multivariate data.
Here we follow this approach and in line with [4], we assume that the curves x1i(t)
and x2i(t) may be recovered following non–parametric techniques and write x̂1i(t)
and x̂2i(t) for the resulting curve estimators. Consider the corresponding ECFs

ϕ̂1t(u) =
1
n1

n1

∑
i=1

eιux̂1i(t), ϕ̂2t(u) =
1
n2

n2

∑
i=1

eιux̂2i(t), (19.4)

computed from x̂11(t), ..., x̂1n1(t) and x̂21(t), ..., x̂2n2(t), respectively. Then in view of
(19.3) we suggest the test statistic
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Dw =
∫
T

∫
R

δt(u)w(u)dudt, (19.5)

where
δt(u) = |ϕ̂1t(u)− ϕ̂2t(u)|2 , (19.6)

and w > 0 denotes a weight function satisfying
∫
R

w(u)du < ∞.

19.2.2 Multivariate case

The latent curves xk(t) = (χk1(t), ...,χkp(t))′, k = 1,2, may also be multidimensional.
This is a new area where functional data are observed over time t, but realizations are
complex geometrical structures in dimension p > 1; see [3], [7], and [2], for recent
contributions on statistical techniques for multivariate functional data. Following the
lines of the previous section for testing the null hypothesis (19.2) we will consider
a criterion analogous to that in (19.5). However, in order to avoid nonparametric
estimation which is problematic in high dimension we will have to modify our
assumptions regarding model (19.1). Specifically we adopt the model

X1i(t) = x1i(t)+ ε1i(t), X2i(t) = x2i(t)+ ε2i(t), (19.7)

and we assume that observations are collected over time t := t j, j = 1, ...,m, for both
groups, with m being large, i.e., we have a common sampling design between the two
groups which is dense. Moreover we assume that sampling noise is equidistributed
between the two groups, ε1(t)

d
= ε2(t), with a common CF that never vanishes. Under

these assumptions and using the Fourier identities ϕXk(t)(u) = ϕxk(t)(u)ϕεk(t)(u), k =
1,2, resulting from model (19.7), we conclude that the null hypothesis H0 in (19.2)
holds if and only if

ϕX1(t)(u) = ϕX2(t)(u), ∀ u ∈ R
p, and each t ∈ T. (19.8)

In view of this fact we propose the test statistic

ΔW =
∫
Rp

δ (u)W (u)du, (19.9)

with W : Rp �→ (0,∞) and satisfying
∫
Rp W (u)du < ∞, where

δ (u) =
1
m

m

∑
j=1

∣∣φ1 j(u)−φ2 j(u)
∣∣2 , (19.10)

with

φ1 j(u) =
1
n1

n1

∑
i=1

eιu′X1i j , φ2 j(u) =
1
n2

n2

∑
i=1

eιu′X2i j , (19.11)
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being the ECFs computed directly from the observed data Xk1 j, ...,Xknk j, and which
correspond to the CFs ϕX1(u) and ϕX2(u), respectively, considered at fixed time
points t j, for each j = 1, ...,m.

19.3 Computations and Interpretations

19.3.1 Univariate case

Our procedures enjoy the advantage of computational simplicity. To see this we first
proceed from (19.6) and by using simple algebra and trigonometric identities we get

δt(u) =
1
n2

1

n1

∑
i,�=1

cos(u(x̂1i(t)− x̂1�(t)))+
1
n2

2

n2

∑
i,�=1

cos(u(x̂2i(t)− x̂2�(t)))

− 2
n1n2

n1

∑
i=1

n2

∑
�=1

cos(u(x̂1i(t)− x̂2�(t))) (19.12)

Then by making use of the previous equation in (19.5) we conclude that the test
statistic can be written as

Dw =
1
n2

1

n1

∑
i,�=1

Iw,T(x̂1i, x̂1�)+
1
n2

1

n2

∑
i,�=1

Iw,T(x̂2i, x̂2�)− 2
n1n2

n1

∑
i=1

n2

∑
�=1

Iw,T(x̂1i, x̂2�)

(19.13)
where

Iw,T(z1,z2) =
∫
T

∫
R

cos(u(z1(t)− z2(t)))w(u)dudt. (19.14)

The weight function w(·) in (19.14) may be chosen in a way that avoids numerical
integration in the inner integral

∫
cos(u(z))w(u)du but for further details on this

we refer to the next subsection. Then again having computed
∫

cos(u(z))w(u)du :=
g(z(t)), say, one also has to compute the outer integral

∫
g(z(t))dt, over T. However

even in the simplest case of local linear smoothers[4], the closed form obtained for
x̂ki(t) is quite complicated and therefore one needs to resort to numerical integration.
Despite this, integration in closed bounded domains is a well studied numerical
problem and there exist several routines available for this purpose. Hence we do
not expect any complications to be associated with this part of our procedure. For
simplicity we take T= [0,1]

The choice for the weight function w(·) is usually based upon computational
considerations. In fact if w(·) integrates to one (perhaps after some scaling) and
satisfies w(−u) = w(u) then the inner integral in (19.14) can be interpreted as the CF
of a symmetric around zero random variable having density w(·). In this connection
w(·) can be chosen as the density of any such distribution. Typically we consider
a fixed family of weight functions, say w := wγ indexed by a parameter γ > 0. For
instance a weight function wγ(u) which is proportional to e−γu2

, corresponds to the
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Gaussian density, but for computational purposes any density with a simple CF will
do. In fact, one might wonder whether there is a weight function which is optimal
in some sense. The issue is still open but based on earlier results it appears that the
issue of the choice of the weight function is similar to the corresponding problem of
choosing a kernel and a bandwidth in nonparametric estimation: the asymptotics of
the test are qualitatively invariant with respect to wγ . Moreover most weight functions
(kernels) render similar finite–sample behavior of the resulting test statistic, which is
very competitive compared to classical procedures based on the empirical distribution
function. Nevertheless there is some sensitivity of the ECF–tests with respect to the
“bandwidth” parameter γ ; see [10] and [9]. This is a highly technical problem that has
been tackled only under the restrictive scenario of testing goodness–of–fit for a given
parametric distribution, and even then a good choice of γ depends on the direction
away from the null hypothesis; see [15]. Thus in our context the approach to the
weight function is in some sense pragmatic: we use the Gaussian weight function
which has become a standard, and investigate the behavior of the criterion over a grid
of values of the weight parameter γ . However in our Monte Carlo study, alternative
weight functions will also be tried.

19.3.2 Multivariate case

We proceed from (19.10) and by using (19.12) we obtain

δ (u) =
1
m

m

∑
j=1

δ j(u), (19.15)

where

δ j(u) =
1
n2

1

n1

∑
i,�=1

cos(u′(X1i j −X1� j))+
1
n2

2

n2

∑
i,�=1

cos(u′(X2i j −X2� j))

− 2
n1n2

n1

∑
i=1

n2

∑
�=1

cos(u′(X1i j −X2� j)) (19.16)

Consequently the test statistic can be written as

ΔW =
1
m

m

∑
j=1

( 1
n2

1

n1

∑
i,�=1

IW (X1i j −X1� j)+
1
n2

1

n2

∑
i,�=1

IW (X2i j −X2� j)

− 2
n1n2

n1

∑
i=1

n2

∑
�=1

IW (X1i j −X2� j)
)

(19.17)

where
IW (x) =

∫
Rp

cos(u′x)W (u)du. (19.18)
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As already mentioned, the weight function W (·) in (19.18) may be chosen in a way
that avoids numerical integration, which is problematic in higher dimension. To see
this recall that the CF of any spherical random variable Z is given by ϕZ(u) =Ψ(‖u‖),
for some, family specific, scalar functionΨ(·), where ‖u‖ denotes the usual Euclidean
norm. Hence if fZ(z) denotes the density corresponding to ϕZ(u) we have∫

Rp
cos(u′z) fZ(z)dz =Ψ(‖u‖).

The last equation implies that if fZ(·) is used as weight function W (·) in (19.18),
then the resulting test statistic, say ΔΨ , reduces to

ΔΨ =
1
m

m

∑
j=1

( 1
n2

1

n1

∑
i,�=1

Ψ(‖X1i j −X1� j‖)+ 1
n2

1

n2

∑
i,�=1

Ψ(‖X2i j −X2� j‖)

− 2
n1n2

n1

∑
i=1

n2

∑
�=1

Ψ(‖X1i j −X2� j‖)
)
. (19.19)

The test criterion in (19.19) is further advanced by considering specific families of
spherically symmetric distributions with a simple CF. Such a family of distributions
is the family of spherical stable distributions with Ψ(u) = e−uα

, where 0 < α ≤ 2,
stands for the characteristic exponent. Interesting special cases of spherical stable
distributions are the multivariate Cauchy and normal distributions corresponding
to α = 1 and α = 2, respectively. Other convenient choices are the multivariate
Laplace distribution with Ψ(u) = (1+u2)−1 and some special cases of the family of
multivariate Kotz–type distributions.

We will elaborate here on the case of the spherical stable distribution as weight
function in (19.18). Note that if this function is used in (19.19), it yields the test
criterion

Δα =
1
m

m

∑
j=1

( 1
n2

1

n1

∑
i,�=1

e−‖X1i j−X1� j‖α
+

1
n2

2

n2

∑
i,�=1

e−‖X2i j−X2� j‖α

− 2
n1n2

n1

∑
i=1

n2

∑
�=1

e−‖X1i j−X2� j‖α
)
. (19.20)

Interestingly there is a connection between (19.20) and another two–sample test
statistic in the literature. To see this let Z follow a spherical stable distribution with
characteristic exponent α and choose the density of the random variable Z/γ1/α as
weight function in (19.17)–(19.18), for some γ > 0. To get a formula for the resulting

criterion recall that the CF of the last random variable is given by e−
‖u‖α

γ which yields
a test statistic, say Δ̃α,γ , analogous to the criterion in (19.20) but with ‖ · ‖α being
replace by ‖ · ‖α/γ throughout eqn. (19.20). Now if we take a two–term expansion
e−‖x‖α/γ = 1−‖x‖α/γ +o(γ−1), γ → ∞, in the new test statistic Δ̃α,γ , this will lead
after some algebra to
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lim
γ→∞

γΔ̃α,γ =
1
m

m

∑
j=1

( 2
n1n2

n1

∑
i=1

n2

∑
�=1

‖X1i j −X2� j‖α − 1
n2

1

n1

∑
i,�=1

‖X1i j −X1� j‖α

− 1
n2

2

n2

∑
i,�=1

‖X2i j −X2� j‖α
)
. (19.21)

The criterion in the r.h.s. of (19.21) is the so–called energy statistic of [13] adapted
to the functional context. We mention in this connection that energy statistics have
gained considerable popularity lately as they have been employed not just for two–
sample testing but also for testing for independence as well as in nonparametric
analysis of variance. The reader is referred to the review of [14] for more information
on energy statistics.

19.4 Resampling procedures

The null distribution of the test statistics considered depends, among other things,
on the underlying stochastic properties of the random variables x1(t) and x2(t)
involved. In order to deal with this issue we apply appropriate resampling procedures
for computing critical points and actually carrying out the tests. To this end, let
D =D(ξ1, ...,ξn) be a generic notation for a test statistic which depends on a sample
of size n of observations ξ j, 1 ≤ j ≤ n. Clearly in our case n = n1 + n2. We will
apply the permutation procedure whereby we randomly generate a permutation
b = {b1, ...,bn} of {1, ...,n}, and compute the test statistic Db = D(ξb1 , ...,ξbn). The
procedure is repeated a number of times b = 1, ...,B, and the critical point of the test
of size α is determined as the corresponding (1−α) quantile D((1−α)B) of the values
Db, b = 1, ...,B. The null hypothesis is then rejected if D > D((1−α)B).

Suppose that data Xk1 j, . . . ,Xknk j are observed at fixed time points t j, for each j =
1, . . . ,m. For univariate data, the critical point of the test statistic in (19.5) is computed
as in [4], i.e., by permuting {x̂11, ..., x̂1n1 , x̂21, ..., x̂2n2}. In turn with multivariate data,
permutations for the criterion in (19.9) are performed on {X11 j, ..., X1n1 j, X21 j, ...,
X2n2 j}, for each j = 1, ...,m.

In the univariate case, we generate data {(tki j,xki(tki j)) : j}nk
i=1,k = 1,2, mainly as

in [4]. For completeness we describe the data as follows: the sampling design for the
curves is assumed balanced (m1i = m2i = m),∀i, and regular. Specifically, suppose
that tki·,k = 1,2, i = 1, . . . ,nk are discrete uniform fixed time points on [0,1]. It is
assumed that x1i(t) = ∑15

k=1 e−k/2Nk1iψk(t) and

x2i(t) =
15

∑
k=1

e−k/2Nk21iψk(t)+δ
15

∑
k=1

k−2Nk22iψ∗
k (t)

where Nk1i,Nk21i,Nk22i are i.i.d. standard normal variables, δ ≥ 0 controls the
deviation from the null hypothesis (δ = 0 under H0). Here ψ1(t) ≡ 1,∀t and
ψk(t) =

√
2sin{(k−1)πt} are orthonormal basis functions. Also
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ψ∗
k (t) =

⎧⎪⎨⎪⎩
1 if k = 1√

2sin{(k−1)π(2t −1)} if k is odd and k > 1√
2cos{(k−1)π(2t −1)} if k is even

are orhonormal basis functions. Two scenarios are considered: i) m = 20 points
per curve, and ii) m = 100 points per curve. Figure 19.1 (without sampling noise)
illustrates the ECF test results for significance level a = 0.05. The simulation results
are based on 500 samples, and the critical values of the test are obtained from 1000
permutation samples.

Figure 19.1 illustrates that the level is well respected under the null hypothesis and
the power increases for larger values of m,n and δ in two conditions. The number
of observations per curve, m, has limited impact on the power and the conclusion
is consistent with [4]. However, compared with their results, the empirical power
of the ECF test increases at a faster rate than the CVM test of [4]. This should not
be surprising, as we do not need to estimate all basis functions by smoothing the
data when observations are without noise or sampling noise is equidistributed. When
observations are without noise, we can directly estimate the test statistic Δα in (19.20).
Also the Fourier identities makes it consistent to transform the null hypothesis (19.2)
to equation (19.8) when sampling noise is equidistributed.

19.5 Conclusion

We suggest a new procedure for testing the two–sample null hypothesis with func-
tional data. The procedure is an adaptation to the functional– data set up of earlier
methods for the same problem with perfectly observed i.i.d. data. Here we present
only the main ideas of the new methods and a small Monte Carlo study. A detailed
study of the asymptotic as well as the finite–sample behavior of the methods is
currently under investigation and will be reported elsewhere.
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