
Chapter 18

Essentials of backward nested descriptors

inference

Stephan F. Huckemann and Benjamin Eltzner

Abstract Principal component analysis (PCA) is a popular device for dimension
reduction and their asymptotics are well known. In particular, principal components
through the mean span the data with decreasing residual variance, as the dimension
increases, or, equivalently maximize projected variance, as the dimensions decrease,
and these spans are nested in a backward and forward fashion – all due to Pythago-
ras Theorem. For non-Euclidean data with no Pythagorian variance decomposition
available, it is not obvious what should take the place of PCA and how asymptotic
results generalize. For spaces with high symmetry, for instance for spheres, back-
ward nested sphere analysis has been successfully introduced. For spaces with less
symmetry, recently, nested barycentric subspaces have been proposed. In this short
contribution we sketch how to arrive at asymptotic results for sequences of random
nested subspaces.

18.1 Introduction

From the early days of statistics of non-Euclidean data, Procrustes analysis proposed
by [3] for shape data as a generalization of PCA, has been a successful device of
choice. In essence, data are mapped to a tangent space of a Fréchet mean and PCA is
performed in that tangent space. Notably, in that setting, not only the PCs but also the
base point of the tangent space is random. Because all tangent spaces are the same
in a Euclidean space, this complication is non-existent for asymptotics of classical
PCA, derived by [1, 10, 9] and others.

Beyond lacking a general asymptotic theory, one may view this and similar
methods (e.g. [2]) also as non-satisfactory, because these tangent space PCs neither
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minimize residual variance nor maximize projected variance with respect to an
invariant distance. To this end geodesic PCs that are geodesics minimizing intrinsic
residual variance have been considered by [6, 5]. These are non-nested in the sense
that the intrinsic mean μ is in general not located on the first PC, cf. [6]. From a
dimension reduction viewpoint, however, nestedness appears as a desirable feature,
where one seeks a sequence of subspaces {p j}m

j=0 of the data space Q, where each
subspace approximates the data best, in a certain sense, over a family of admissible
subspaces, that is nested.

{μ}= p0 ⊂ p1 ⊂ . . .⊂ pm = Q . (18.1)

On a sphere, if all the subspaces are small subspheres, this is realized by principal
nested sphere (PNS) analysis by [7]. For general spaces, if each subspace is a
barycentric center of an nested sequence of points, this is realized by barycentric
subspaces (BS) by [8].

In the following we formulate a general setup for (18.1) and state asymptotic
results from which inferential bootstrap procedures can be derived, as detailed in [4].
In particular we have shown that the geometric assumptions below are satisfied for
PNS and for the intrinsic mean on a first principal component geodesic, cf. [4, 6, 5].
It is still an open problem, to explore under which conditions these assumptions hold
also for barycentric subspaces.

18.2 Setup

In the following, smooth refers to existing continuous 2nd order derivatives.
For a topological space Q we say that a continuous function d : Q×Q → [0,∞)

is a loss function if d(q,q′) = 0 if and only if q = q′. We say that a set A ⊂ Q is
d-bounded if supa,a′∈A d(a,a′)< ∞. Moreover, we say that B ⊂ Q is d-Heine Borel
if all closed d-bounded subsets of B are compact.

Definition 18.1. A separable topological space Q, called the data space, admits
backward nested families of descriptors (BNFDs) if

1. there is a collection Pj ( j = 0, . . . ,m) of topological separable spaces with loss
functions d j : Pj ×Pj → [0,∞);

2. Pm = {Q};
3. every p ∈ Pj ( j = 1, . . . ,m) is itself a topological space and gives rise to a

topological space /0 �= Sp ⊂ Pj−1 which comes with a continuous map

ρp : p×Sp → [0,∞) ;

4. for every pair p ∈ Pj ( j = 1, . . . ,m) and s ∈ Sp there is a measurable map called
projection

πp,s : p → s .
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For j ∈ {1, . . . ,m} and k ∈ {1, . . . , j} call a family

f = {p j, . . . , p j−k}, with pl−1 ∈ Spl , l = j− k+1, . . . , j

a backward nested family of descriptors (BNFD) from Pj to Pj−k. The space of all
BNFDs from Pj to Pj−k is given by

Tj,k =
{

f = {p j−l}k
l=0 : pl−1 ∈ Spl , l = j− k+1, . . . , j

}
⊆

k

∏
l=0

Pj−l .

For k ∈ {1, . . . ,m}, given a BNFD f = {pm−l}k
l=0 set

π f = πpm−k+1,pm−k ◦ . . .◦πpm,pm−1 : pm → pm−k

which projects along each descriptor. For another BNFD f ′ = {p′ j−l}k
l=0 ∈ Tj,k set

d j( f , f ′) =

√√√√ k

∑
l=0

d j(p j−l , p′ j−l)2 .

In case of PNS, the nested projection π f is illustrated in Figure 18.1 (a).

Definition 18.2. Random elements X1, . . . ,Xn
i.i.d.∼ X on a data space Q admitting

BNFDs give rise to backward nested population and sample means (abbreviated as
BN means)

{E f j
: j = m, . . . ,0}, {E f j

n
n : j = m, . . . ,0}

recursively defined via Em = {Q}= Em
n , i.e. pm = Q = pm

n and

E f j−1
= argmins∈Sp j

E[ρp j(π f j ◦X ,s)2], f j = {pk}m
k= j

E f j−1
n

n = argmins∈S
p j
n

n

∑
i=1

ρp j
n
(π f j

n
◦Xi,s)2, f j

n = {pk
n}m

k= j .

where p j ∈ E f j
and p j

n ∈ E f j
n is a measurable choice for j = 1, . . . ,m.

We say that a BNFD f = {pk}m
k=0 gives unique BN population means if E f j

=
{p j} with f j = {pk}m

k= j for all j = 0, . . . ,m.

Each of the E f j−1
and E f j−1

n
n is also called a generalized Fréchet mean.

Note that by definition there is only one pm = Q ∈ Pm. For this reason, for
notational simplicity, we ignore it from now on and begin all BNFDs with pm−1 and
consider thus the corresponding Tm−1,k.

Definition 18.3 (Factoring Charts). Let j ∈ {0, . . . ,m− 1},k ∈ {1, . . . , j}. If Tj,k

and P j−k carry smooth manifold structures near f ′ = (p′ j, . . . , p′ j−k) ∈ Tj,k and
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p′ j−k ∈P j−k, respectively, with open W ⊂ Tj,k, U ⊂P j−k such that f ′ ∈W , p′ j−k ∈U ,
and with local charts

ψ : W → R
dim(W ), f = (p j, . . . , p j−k) �→ η = (θ ,ξ ), φ : U → R

dim(U), p j−k �→ θ

we say that the chart ψ factors, if with the projections

πP j−k
: Tj,k → P j−k, f �→ p j−k, πR

dim(U)
: Rdim(W ) → R

dim(U), (θ ,ξ ) �→ θ

we have

φ ◦πP j−k |W = πR
dim(U) |ψ(W ) ◦ψ .

18.3 Assumptions

For the following assumptions suppose that j ∈ {1, . . . ,m−1}.

Assumption 18.1 For a random element X in Q, assume that E[ρp j(π f ◦X ,s)2]< ∞
for all BNFDs f ending at p j, s ∈ Sp j .

In order to measure a difference between s ∈ Sp and s′ ∈ Sp′ for p, p′ ∈ Pj define
the orthogonal projection of s ∈ Sp onto Sp′ as

Ss
p′ = argmin

s′∈Sp′
d j−1(s,s′) .

In case of PNS this is illustrated in Figure 18.1 (a).

Assumption 18.2 For every s ∈ Sp there is δ > 0 such that

|Ss
p′ |= 1

whenever p, p′ ∈ Pj with d j(p, p′)< δ .

For s ∈ Sp and p, p′ ∈ Pj sufficiently close let sp′ ∈ Ss
p′ be the unique element.

Note that in general

(sp′)p �= s .

In the following assumption, however, we will require that they will uniformly not
differ too much if p is close to p′. Also, we require that sp′ and s be close.

Assumption 18.3 For ε > 0 there is δ > 0 such that

d j−1(sp′ ,s)< ε and d j−1
(
(sp′)p,s

)
< ε ∀s ∈ Sp

whenever p, p′ ∈ Pj with d j(p, p′)< δ .
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(a) Nested projection (b) Projection of descriptors

Fig. 18.1: PNS illustration. Left: Projection of X (filled diamond) in Q = S
2 onto

small circle p and further onto s (filled circle). Right: Projection sp′ (on the top
circle) onto Sp′ (which is p′ in this case) of s (on the lower circle) on Sp (which is p
in this case).

We will also require the following assumption, which, in conjunction with As-
sumption 18.3, is a consequence of the triangle inequality, if d j−1 is a metric.

Assumption 18.4 Suppose that d j(pn, p)→ 0 and d j−1(sn,s)→ 0 with p, pn ∈ Pj
and s ∈ Sp,sn ∈ Spn . Then also

d j−1(sn,spn)→ 0

Moreover, we require uniformity and coercivity in the following senses.

Assumption 18.5 For all ε > 0 there are δ1,δ2 > 0 such that∣∣∣ρp
(
π f (q),s

)−ρp′
(
π f ′(q),s

′)∣∣∣< ε ∀q ∈ Q

for all BNFDs f , f ′ ∈ Tm−1,m− j−1 ending in p, p′ ∈Pj, respectively, with d( f , f ′)< δ1
and s ∈ Sp,s′ ∈ Sp′ with d j−1(s,s′)< δ2.

Assumption 18.6 If pn, p ∈ Pj and sn ∈ Spn ,s ∈ Sp with d j−1(sn,s)→ ∞, then for
every C > 0 we have that

ρpn(π fnq,sn)→ ∞

for every q ∈ Q with ρp(π f q,s)<C and BNFDs f , fn ∈ Tm−1,m− j−1 ending at p, pn
respectively.

Remark 18.4 Due to continuity, Assumptions 18.1 and 18.5 hold if Q is compact
and Assumption 18.6 if each Pj is compact.
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Again, let j ∈ {1, . . . ,m−1}.

Assumption 18.7 Assume that Tm−1,m− j carries a smooth manifold structure near
the unique BN population mean f ′ j−1 = (p′m−1, . . . , p′ j−1) such that there is an open
set W ⊂ Tm−1,m− j , f ′ j−1 ∈W and a local chart

ψ : W → R
dim(U), f j−1 = (pm−1, . . . , p j−1) �→ η .

Further, assume that for every l = j, . . . ,m the mapping

η �→ f l−1 �→ ρpl (π f l ◦X , pl−1)2 := τ l(η ,X)

has first and second derivatives, such that for all l = j, . . . ,m,

Cov
[
gradη τ l(η ′,X)

]
, and E

[
Hess η τ l(η ′,X)

]
exist and are in expectation continuous near η ′, i.e. for δ → 0 we have

E

[
sup

‖η−η ′‖<δ

∥∥∥gradη τ l(η ,X)−gradη τ l(η ′,X)
∥∥∥] → 0 ,

E

[
sup

‖η−η ′‖<δ

∥∥∥Hess η τ l(η ,X)−Hess η τ l(η ′,X)
∥∥∥] → 0 .

Finally, assume that the vectors E
[
gradη τ j+1(η ′,X)

]
, . . . ,E

[
gradη τm(η ′,X)

]
are

linearly independent.

18.4 Asymptotic Theorems

The proofs of the two asymptotic theorems can be found in [4].

Theorem 18.8. Let k ∈ {0, . . . ,m−1} and consider random data X1, . . . ,Xn
iid∼ X on a

data space Q admitting BN descriptor families from Pm to Pk, unique BN population

means {pm, . . . , pk} and BN sample means {E f m
n

n , . . . ,E f k
n

n } due to a measurable

selection p j
n ∈ E f j

n
n giving rise to BNFDs f j

n = {pl
n}m

l= j , j = k, . . . ,m. If Assumptions

18.1 – 18.6 are valid for all j = k, . . . ,m− 1, and every ∪∞
n=1E f j

n
n is a.s. d j-Heine

Borel ( j = k, . . . ,m) then {E f m
n

n , . . . ,E f k
n

n } converges a.s. to {pm, . . . , pk} in the sense
that ∃Ω ′ ⊂ Ω measurable with P(Ω ′) = 1 such that for all j = k, . . . ,m, ε > 0 and
ω ∈ Ω ′, ∃N = N(ε,ω) with

∞⋃
r=n

E f j
r

r ⊂ {p ∈ Pj : d j(p j, p)≤ ε} ∀n ≥ N, ω ∈ Ω ′ . (18.2)
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Remark 18.5 In fact, for the proof we require that the “distances” d j vanish on the
diagonal d j(p, p) = 0 for all p ∈ Pj; they need not be definite, i.e. it is not necessary
that d j(p, p′) = 0 ⇒ p = p′.

Moreover, note that the d j-Heine Borel property holds trivially in case of unique
sample descriptors.

Theorem 18.9. Let j ∈ {1, . . . ,m− 1} and consider random data X1, . . . ,Xn
iid∼ X

on a data space Q admitting BNFDs from Pm−1 to Pj−1, a unique BN population

mean f ′ j−1 = {p′m−1, . . . , p′ j−1} and BN sample means {E f m−1
n

n , . . . ,E f j−1
n

n } due to

a measurable selection pl
n ∈ E f l

n
n , f j−1

n = {pm−1
n , . . . , p j−1

n }, l = j−1, . . . ,m−1.

(i) Assuming that Assumption 18.7 hold as well as (18.2) for all j ∈ { j−1, . . . ,m−
1}, we have that

√
nHψ

(
ψ−1( f j−1

n )−ψ−1( f ′ j−1
)
)→ N (0,Bψ)

with a chart ψ as specified in Assumption 18.7 as well as

Hψ = E

[
Hess η τ j(η ′,X)+

m

∑
l= j+1

λ l Hess η τ l(η ′,X)

]
and

Bψ = Cov

[
gradη τ j(η ′,X)+

m

∑
l= j+1

λ l gradη τ l(η ′,X)

]
,

with the notation from Assumption 18.7 where λ j+1, . . .λ m ∈R are suitable such
that

gradη E
[
τ j(η ,X)

]
+

m

∑
l= j+1

λ l gradη E
[
τ l(η ,X)

]
vanishes at η = η ′.

(ii) If additionally Hψ > 0, then f j−1
n satisfies a Gaussian

√
n-CLT

√
n
(
ψ−1( f j−1

n )−ψ−1( f ′ j−1
)
)→ N (0,Σψ), Σψ = H−1

ψ Bψ H−1
ψ .

(iii) If additionally the chart ψ factors as in Definition 18.3, then also p j−1
n satisfies

a Gaussian
√

n-CLT

√
n
(
φ−1(p j−1

n )−φ−1(p′ j−1
)
)→ N (0,Σφ ), Σφ =

(
Σψ ik

)dim(Pj−1)

i,k=1

with the notation of Definition 18.3.
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