
Chapter 14

Parameter estimation of the functional linear

model with scalar response with responses

missing at random

Manuel Febrero-Bande, Pedro Galeano and Wenceslao González-Manteiga

Abstract This contribution considers estimation of the parameters of the functional
linear model with scalar response when some of the responses are missing at random.
We consider two different estimation methods of the functional slope of the model
and analyze their characteristics. Simulations and the analysis of a real data example
provides some insight into the behavior of both estimation procedures.

14.1 Introduction

The functional linear model with scalar response is one of the most widely studied
model in the literature on functional data analysis. The model establishes a linear
relationship between a real response variable and a functional predictor variable.
There exist several estimators of the functional slope of the model being the method
based on functional principal components the most popular approach. The idea
behind this method is that of expanding the functional predictor as well as the
functional slope of the model in terms of the eigenfunctions linked to the largest
eigenvalues of the functional predictor covariance operator, that allows the response
to be written as a finite linear combination of the functional principal components
scores. The associated coefficients are then estimated by least squares.
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Several papers have analyzed the properties of the functional principal components
estimation method including [1, 2, 3, 4, 7, 9, 5], among others. See also [6], for a
recent overview on the topic.

This contribution considers the case in which some of the responses are missing
at random. This case has been little studied in the literature. [10] investigated the
asymptotic properties of a kernel type estimator of the regression operator when
there are responses missing at random, while [5] considered an imputation method
of the missing responses. Here, we propose two estimators of the functional slope
of the model. The first one is simplified estimator that only considers the complete
pairs of observations. The second one is an imputed estimator that takes into account
both the complete pairs and pairs completed with imputed responses.

The rest of this contribution is structured as follows. Section 14.2 presents the
functional linear model with scalar response and the estimation method based on the
functional principal components approach. Section 14.3 considers the problem of
estimating the parameters of the model when there are responses that are missing at
random and presents the two estimators that we propose of the functional slope of
the model. Properties of the estimators, simulations and the analysis of real data are
presented somewhere else.

14.2 The functional linear model with scalar response

Let L2 (T ), the separable Hilbertian space of squared integrable functions defined on
the closed interval T = [a,b]⊂ R. Let χ be a functional random variable valued in
L2 (T ) and let χ (t) be the value of χ at any point t ∈ T . We assume, for simplicity,
that the functional random variable χ has zero mean function and a covariance
operator Γ such that:

Γ (η) = E [(χ ⊗χ)(η)] = E [〈χ,η〉χ]

for any η ∈ L2 (T ), where,

〈χ,η〉=
∫

T
χ (t)η (t)dt

is the usual inner product in L2 (T ). We also assume that E
[
‖χ‖2

]
< ∞, where

‖·‖ denotes the usual norm in L2 (T ). Consequently, Γ has a sequence of non-
negative eigenvalues, denoted by a1 > a2 > · · ·> 0, such that ∑∞

k=1 ak <∞, associated
with a sequence of orthonormal eigenfunctions, denoted by ψ1,ψ2, . . ., such that
Γ (ψk) = akψk, for k = 1,2, . . .

The functional linear model with scalar response relates a real random variable y,
defined on the same probability space that χ , with mean 0 and variance σ2

y , with χ
as follows:

y = 〈χ,β 〉+ e =
∫

T
χ (t)β (t)dt + e, (14.1)
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where β ∈ L2 (T ) is the functional slope of the model, and e is a real random variable
with mean 0, finite variance σ2

e , and uncorrelated with χ . In other words, we assume
that the mean and variance of y conditional on χ are given by Eχ [y] = 〈χ,β 〉 and
Varχ [y] = σ2

e , respectively.
As mentioned in the introduction, the functional principal components estimation

method is the most popular approach to estimate the functional slope β of the model
in (14.1). This is because the functional principal components allows the functional
linear model to be more easily written. The functional principal components scores,
given by sk = 〈χ,ψk〉, for k = 1,2 . . ., are uncorrelated univariate random variables
with mean 0 and variance ak that allows the Karhunen-Loève expansion of the
functional random variable χ to be written as follows:

χ =
∞

∑
k=1

skψk. (14.2)

Similarly, the functional slope β can be also written in terms of the eigenfunctions
ψ1,ψ2, . . . as:

β =
∞

∑
k=1

bkψk, (14.3)

where bk = 〈β ,ψk〉, for k = 1,2 . . . are constant coefficients. Now, (14.2) and (14.3)
allows the functional linear model with scalar response to be written as:

y =
∞

∑
k=1

bksk + e,

which shows that the coefficients bk can be written as:

bk =
Cov [y,sk]

ak
, (14.4)

for k = 1,2 . . . where Cov [y,sk] = E [ysk] is the covariance between the real response
y and the k-th functional principal component score sk.

Assume now that we are given a random sample of independent pairs, given
by {(χi,yi) , i = 1, . . . ,n}, drawn from the random pair (χ,y). Then, the functional
slope β in the model (14.1) can be estimated with the functional principal component
estimation method as follows. Let χC = {χ1, . . . ,χn} and yC = {y1, . . . ,yn} be the
complete sequences of predictors and responses, respectively. Then, the sample
covariance operator of the complete sample χC, that converts any function η ∈ L2 (T )
into another function in L2 (T ) given by:

Γ̂χC (η) =
1
n

n

∑
i=1

〈χi,η〉χi,

is an estimate of the covariance operator of χ , Γ . The sample covariance operator
Γ̂χC also has a sequence of non-negative eigenvalues, denoted by â1,C ≥ â2,C ≥ ·· · ,
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such that âk,C = 0, for k > n, and a set of orthonormal eigenfunctions, denoted
by ψ̂1,C, ψ̂2,C, . . ., such that Γ̂χC

(
ψ̂k,C
)
= âk,Cψ̂k,C, for k = 1,2, . . . Additionally, the

k-th sample functional principal component score of χi, i = 1, . . . ,n, based on the
complete sample χC, is given by ŝi,k,C =

〈
χi, ψ̂k,C

〉
, for k = 1,2, . . . The set of sample

functional scores ŝ1,k,C, . . . , ŝn,k,C has sample mean 0 and sample variance âk,C. Now,
the functional principal components estimate of the functional slope β is given by:

β̂kC ,C =
kC

∑
k=1

b̂k,Cψ̂k,C, (14.5)

where b̂k,C is an estimate of the coefficient bk in (14.4) given by:

b̂k,C =

⎧⎨⎩ 1
nâk,C

n
∑

i=1
yiŝi,k,C for k = 1, . . . ,kC

0 for k = kC +1, . . .

and kC is a certain threshold such that âkC ,C > 0. Consequently, given a new value
χ , say χn+1, the prediction of the corresponding response under the model (14.1),
denoted by yn+1, is given by:

ŷn+1,kC ,C =
〈

χn+1, β̂kC ,C

〉
.

See [9], [7] and [6], for finite sample properties of the slope estimate (14.5).

14.3 Estimation and prediction with responses missing at

random

Assume now the situation in which we are given a random sample of independent
triplets {(χi,yi,ri) , i = 1, . . . ,n} drawn from the random triplet (χ,y,r), where r is
a Bernoulli variable that acts as an indicator of the missing responses. Thus, for
i = 1, . . . ,n, ri = 1, if yi is observed, and ri = 0, if yi is missing. Specifically, we
assume a missing at random (MAR) mechanism, i.e.:

Pr(r = 1|y,χ) = Pr(r = 1|χ) = p(χ) ,

where p(χ) is an unknown function operator of χ . As a consequence, the response y
and the binary variable r are independent given the predictor χ .

Now, the goal is to estimate the functional slope β in (14.1) using the sample
{(χi,yi,ri) , i = 1, . . . ,n}. For that, let rC = (r1, . . . ,rn)

′ be the complete sequence of
missing indicators. Two different estimates are introduced next based on the missing
indicators rC.

The first estimate is the simplified functional principal component estimate, that
uses only the complete pairs, i.e., those pairs with ri = 1, for i = 1, . . . ,n. Then, let
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IS = {i : ri = 1, i = 1, . . . ,n}, i.e., the indices of the complete pairs and let nS = #IS,
i.e., the number of observed complete pairs. Additionally, let χS = {χi : i ∈ IS}
and yS = {yi : i ∈ IS}, i.e., the sequences of predictors and responses, respectively,
corresponding to the complete pairs. Then, the sample covariance operator of χS,
that converts any function η ∈ L2 (T ) into another function in L2 (T ) given by:

Γ̂χS (η) =
1
nS

n

∑
i=1

ri 〈χi,η〉χi =
1
nS

∑
i∈IS

〈χi,η〉χi,

is an estimate of Γ . As in the complete case developed in Section 14.2, Γ̂χS has a
sequence of non-negative eigenvalues, denoted by â1,S ≥ â2,S ≥ ·· · , such that âk,S = 0,
for k > nS, and a set of orthonormal eigenfunctions, denoted by ψ̂1,S, ψ̂2,S, . . ., such
that Γ̂χS

(
ψ̂k,S
)
= âk,Sψ̂k,S, for k = 1,2, . . . Additionally, the k-th sample functional

principal component score for χi, i ∈ IS, based on the simplified sample χS, is given
by ŝi,k,S =

〈
χi, ψ̂k,S

〉
, for k = 1,2, . . . The set of sample functional components scores{

ŝi,k,S : i ∈ IS
}

have sample mean 0 and sample variance âk,S. Now, the simplified
functional component estimate of the functional slope β is given by:

β̂kS,S =
kS

∑
k=1

b̂k,Sψ̂k,S, (14.6)

where b̂k,S is an estimate of the coefficient bk in (14.4) given by:

b̂k,S =

{ 1
nSâk,S

∑
i∈IS

yiŝi,k,S for k = 1, . . . ,kS

0 for k = kS +1, . . .

and kS is a certain threshold such that âkS,S > 0. Prediction of the response yn+1
corresponding to a new predictor χn+1 under the model (14.1), is given by:

ŷn+1,kS,S =
〈

χn+1, β̂kS,S

〉
.

The second estimate is the imputed functional principal component estimate,
that uses both the complete pairs and the pairs obtained after imputing the missing
responses with the estimate (14.6). Then, let II = {i : ri = 0, i = 1, . . . ,n}, i.e., the
indices of the pairs with missing responses and let nI = #II , i.e., the number of pairs
with missing responses. Additionally, let χI = {χi : i ∈ II} and yI = {yi : i ∈ II}, i.e.,
the sequences of predictors and responses, respectively, corresponding to the pairs
with missing responses. Therefore, imputation of the missing responses using the
simplified estimate β̂kS,S in (14.6) can be done as follows:

ŷi,I =
〈

χi, β̂kS,S

〉
,

for i ∈ II . Now, given the set of pairs {(χi,yi,I) , i = 1, . . . ,n} where:
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yi,I = riyi +(1− ri) ŷi,I ,

for i= 1, . . . ,n, the imputed functional principal component estimate of the functional
slope β is given by:

β̂kI ,I =
kI

∑
k=1

b̂k,Iψ̂k,C, (14.7)

where b̂k,I is an estimate of the coefficient bk in (14.4) given by:

b̂k,I =

⎧⎨⎩ 1
nâk,C

n
∑

i=1
yi,I ŝi,k,C for k = 1, . . . ,kI

0 for k = kI +1, . . .

and kI is a certain threshold such that âkI ,C > 0. Two important comments are in order.
First, β̂kI ,I depends on the eigenfunctions and eigenvalues of the sample covariance
operator Γ̂χC based on the complete set of predictors χC. Second, the threshold kI in
(14.7) does not necessarily coincides with the threshold kS in (14.6). Prediction of
the response yn+1 corresponding to a new predictor χn+1 under the model (14.1), is
given by:

ŷn+1,kI ,I =
〈

χn+1, β̂kI ,I

〉
.
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