
Chapter 11

Permutation tests in the two-sample problem for

functional data

Alejandra Cabaña, Ana M. Estrada, Jairo Peña and Adolfo J. Quiroz

Abstract We propose two kind of permutation tests for the two sample problem for
functional data. One is based on nearest neighbours and the other based on functional
depths.

11.1 Introduction

Let X1(t), · · · , Xm(t) denote an i.i.d. sample of real valued curves defined on some
interval J. Let L (X) be the common probability law of these curves. Likewise, let
Y1(t), · · · ,Yn(t), be another i.i.d. sample of curves, independent of the X sample and
also defined on J, with probability law L (Y ).

We want to test the null hypothesis, H0 : L (X) = L (Y ) against the general
alternative L (X) �= L (Y ).

We discuss three different permutation tests: a functional Schilling test, Wilcoxon
type test, and another test based on depths, that uses meta analysis ideas to assess
significance. We compare their performance with the classical test by Kokoszka and
Horváth, based on the principal components of the pooled covariance operator of the
two samples in a simulated experiment and with real data.
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11.2 Schilling’s type test

This is an adaption to functional data of the k -nearest neighbours multivariate
two-sample test of Schilling’s tests based on nearest neighbors [10].

Let N = m+n and Z1, . . . ,ZN be the combined sample obtained by concatenating
the X and Y samples.

Define the indicator function Ii(r) = 1 if Zi and its r-nn belong to the same sample
and else, Ii(r) = 0. Nearest neighbours are based on L2 distance, and with probability
1 the are uniquely defined. In case of ties, we would decide at random.

In practice, if the functions have been registered in a common grid, say 0 = t0 <
t1 < .. . tL = T , a reasonable approximation to the distance between functions Zi and
Z j is

di, j =
L

∑
l=1

Δl(Zi(tl)−Z j(tl))2, whereΔl = tl − tl−1

If the grid used is equally spaced, Δl can be omitted and the curves can be treated as
points in RL in order to compute faster the k-nearest-neighbours. When no common
grid is available, represent the functions in the joint sample in terms of local polyno-
mials, or some other basis functions, and the k-nearest-neighbours are identified by a
quadratic algorithm (in the joint sample size N).

Define the statistic:

TN,k =
1

Nk

N

∑
i=1

k

∑
r=1

Ii(r)

Under H0 we expect TN,k to be small.
Observe that the expected value ETN,k = e Ii(r) =

m(m−1)+n(n−1)
N(N−1) while the vari-

ance depends on the amount of pairs of points that are mutual neighbours and the
amount of pairs that share a common neighbour.

Under the null hypothesis of equal distribution of {Xm(t)} and {Yn(t)}, permuta-
tions on the labelling of the Zi do not alter the distribution of TN,k and hence can be
computed with a standard permutation procedure.

Algorithm

1. For the concatenation of the samples Z, keeping the natural ordering, compute
the m×n matrix of distances between its elements.

2. Assume the number of neighbours is fixed to k. Build a N × k matrix that in the
i-th row contains the indices of the k nearest elements to the curve Zi.

3. In order to compute the statistic it is enough to count how many of the indices in
each of the first m rows are equal or less than m, (i.e. are originally X) and how
many of the indices corresponding to m+1, . . . ,N are greater than m.

4. Obtain the distribution of TN,k using the permutation procedure.
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11.3 Depths-based tests

Another way of approaching the functional data analysis is introducing the notion of
depth, that is related to a generalisation of the concept of ordering for functional data.
The idea is to assign an order to each element of the sample related to its centrality
within the whole set.

There are many measures of depth, and there is no agreement about their advan-
tages. We will concentrate on the Fraiman-Muñiz depth [2].

Consider first a univariate sample U1, ...,Un and U(1), ...,U(n) be the corresponding
order statistics. Assuming there are no ties, the natural depth of Ui is said to be
Dn(Ui) =

1
2 −

∣∣∣ 1
2 −

(
j
n − 1

2n

)∣∣∣. This notion of depth assigns minimal and equal depth
to the two extreme values of the sample, maximum to the innermost point(s) and
changes linearly with the position the datum occupies in the sample.

For the case of functional data, consider the sample X={Xi(t)} defined in a
common interval J. For each t we can compute the natural depth, Dn(Xi(t)), and then
the depth for each Xi(t) is:

I(Xi,X) =
∫

J
Dn(Xi(t))dt,

where, in practice, the integral is replaced by a sum over t for the time grid.
A Wilcoxon test based on this ordering is a natural option, and has been suggested

by López-Pintado and Romo in [6], [7] based on their band-depth. Observe that for
univariate samples, the Wilcoxon test statistic defined in terms of Fraiman-Muñiz
depth corresponds to Ansay-Bradley’s statistic, and hence is suitable for detecting
differences in dispersion between the samples.

11.3.1 Meta-analysis based tests

Let X = {X1, . . . , Xm} denote the functional X sample and Y = {Y1, . . . ,Yn} the
functional Y sample. For each Xi ∈ X , we consider its depth with respect to the
Y sample with the curve Xi added. We denote this depth I(Xi,Y ∪{Xi}). This is a
measure of how outlying the curve Xi is with respect to the Y sample. If “many” of
the Xi turn out to be outlying with respect to Y , that would be evidence against the
null hypothesis of equality of distributions. Similarly we can measure how outlying
is each curve Yj with respect to the X-sample, X , by computing I(Yj,X ∪{Yj}).
The first question is how to combine the values of I(Xi,Y ∪{Xi}), for all i ≤ m, in a
single number that combines the information in all these depths. For this purpose,
we rely in an idea coming from Meta-Analysis.

To the depth I(Xi,Y ∪{Xi}) we associate an empirical p-value, Let pi be an
empirical p-value related to the centrality of the variable Yi on the sample X ,
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p̂∗ =
∑m

j=1 I (D(Xj|X)≤ D(Y∗|X))

m+1

{
pi = p̂i if p̂i �= 0
pi =

1
m+1 if p̂i = 0

Under H0 (ignoring ties), each pi is uniformly distributed in {1/m,2/m, . . . ,1}, but
they are not independent.

For symmetry, we consider as well the qi p-values related to the centrality of the
variable Xi on the sample Y .

q̂∗ =
∑n

j=1 I (D(Yj|Y )≤ D(X∗|Y ))
n+1

{
qi = q̂i if q̂i �= 0
qi =

1
n+1 if q̂i = 0

Observe that when H0 does not hold, the depth of a curve in a family where it
does not belong will be very low, and so would be its associated p-value. In that case
the corresponding statistic will be very big.

Consider, as described in [4],

SY =
m

∑
i=1

− ln(pi) SX =
n

∑
i=1

− ln(qi)

We want to associate a p-value to the pair (SX ,SY ).

MA1: Meta-Analysis method 1

When the two samples display a difference in “scale”, most, of the curves of the (say)
X sample, turn out to be central with respect to the Y sample and SX will not show a
significant value. In such a situation, typically, several curves of the Y sample will
turn out to be clearly outlying respect to the X sample, and the maximum will reach
a significant value.

We propose the use of S = max{SX ,SY} as test statistic, and the use of a permuta-
tion procedure to obtain its distribution.

MA2: Meta-Analysis method 2

Better empirical performance is obtained using following result:

Lemma 1 combining p-values Let pX (pY ) denote the p-value of SX (SY ), under the
null permutation distribution, as obtained from procedure p-value if all subsets of
size m were used (instead of just a sample of size B) and assuming the null hypothesis.
Then

1. Pr(pX ≤ t)≤ t for any t ∈ (0,1), and the same holds for pY .
2. Pr(2min(pX , pY )≤ t)≤ t for any t ∈ (0,1).
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Proof. The null permutation distribution of SX is a discrete distribution that can not
be assumed uniform on its range (some values of SX can appear more frequently
than others when subsets are chosen at random). This is why part (i) of the Lemma is
not obvious. Let F denote the null permutation c.d.f. of SX and let SX ,obs denote the
observed value of SX . Recall that large values of SX are considered significant. Then,
clearly, pX = 1−F(S−X ,obs) and, for t ∈ (0,1),

Pr(pX ≤ t) = Pr(F(S−X ,obs)≥ 1− t) = ∑
{s:F(s)>1−t}

Pr(SX = s)≤ t,

by definition of F .
Since pX and pY are not independent, to prove (ii) we can use (i) together with

the usual union bound:

Pr(min(pX , pY )≤ t/2)≤ Pr(pX ≤ t/2)+Pr(pY ≤ t/2)≤ t/2+ t/2 = t.

Part (2) of the Lemma tells us that an appropriate p-value for 2min(pX , pY ) is the
observed value of this statistic itself.

Thus, our second way of getting a p-value from SX and SY is the following:
Compute, approximately, pX and pY for SX and SY , respectively, using the permuta-
tion procedure and use 2min(pX , pY ) as p-value.

11.4 Empirical comparison of powers and real data applications

In order to fix a standard, we have also computed the empirical power for Horvàth
and Kokoszka’s test for equality of mean functions. The null hypothesis is rejected
for large values of the the statistic

Um,n =
mn

m+n

∫ (
X̂m(t)− Ŷn(t)

)2 dt

Under some regularity conditions, the asymptotic distribution of X̂m(t)− Ŷn(t) is a
Gaussian process Γ whose covariance can be approximated by the pooled covariance
operator of the two samples, hence, the distribution of Um,n can be approximated by
the first d terms in the Karhunen-Loève expansion of

∫ 1
0 Γ 2(s)ds ≈ ∑d

i=1 λiN2
i , λi are

the (ordered) eigenvalues of the pooled covariance estimator, and Ni are i.i.d. N(0,1).

11.4.1 A simulation experiment

We have simulated samples of functional data as realisations from a geometric Brow-
nian motion process f (t) = X0 exp

{
rt − tσ2

2 +σwt

}
where r and σ are, respectively,
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the trend (drift) and volatility coefficients, wt is a standard Wiener process and X0 is
the initial value.

We have tested H0 : L (X) = L (Y ), against L (X) �= L (Y ) where X was
simulated with r = 1,σ = 1,X0 = 0 and Y is any of the ‘contaminated’ samples with
only one of the parameters variying at a time.

From Figure 11.1, we see that Wilcoxon’s statistic performs very well against
volatility variations but fails noticeably for the other alternatives considered in the
experiment. On the other hand, Horvàth and Kokoszka’s test (HK), being a test
conceived for changes in the mean, shows the best performance against changes in
the drift parameter, while its power numbers against changes in the origin (initial
level) are good too. But HK results ineffective in picking the volatility changes.

The Meta Analysis methods have a power similar to HK against changes in the
origin, while their power, although reasonable, is inferior to HK’s when it comes to
changes in drift. On the other hand, both Meta Analysis procedures display excellent
power against the volatility alternatives, where HK fails. Schilling’s statistic (with
k = 5 and K = 10), shows very good power against all the alternatives considered in
our experiment. Overall, Schilling’s statistic displays the best performance in terms
of power among the methods evaluated.

11.4.2 NO2 Contamination in Barcelona

We have hourly measurements of nitrogen dioxide (a known pollutant formed in most
combustion processes using air as the oxidant) in four neighbourhoods in Barcelona,
namely Eixample, Palau Reial, Poblenou and Sants. The measurements were taken
along the years 2014 and 2015 in automatic monitoring stations1

We have split the data sets into working days (≈220 curves) and non-working
days (≈120 curves), each year.

There are many questions of interest, for instance, to assess whether the level
of pollutants significantly different during working and non-working days, or if the
levels of NO2 changed from one year to the next in each of the neighbourhoods, or
comparing the pollution levels among the different neighbourhoods. We include here
the results of one of these many comparisons.

All tests show evidence of differences between working and non-working days
in all four neigbourhoods, with Wilcoxon and Schilling-10 showing the strongest
evidence of differences. Figure 11.2 shows the levels of contaminants in the neigh-
bourhood of Sants in the years 2014 and 2015. The tests show that the level of
pollutants did not change noticeably on non-working days, but significant changes
are found from one year to the next on working days, with the Wilcoxon and Schilling
procedures being the ones that find stronger evidence of change.

1 available from http:// dtes.gencat.cat/icqa.
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Fig. 11.1: Empirical power of the tests against changes of origen, drift and volatility
in Geometric Brownian motion data; level α = 5%.
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Fig. 11.2: NO2 leves on working days (1st row) and non-working days (2nd row) in
Sants, 2014-2015
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