Pyramid Algorithm Framework for Real-Time
Image Effects in Game Engines

Adria Arbués Sangiiesa!, Andreea-Daniela Ene!, Nicolai Krogh Jgrgensen!,

Christian Aagaard Larsen', Daniel Michelsanti'®™) | and Martin Kraus?

! School of Information and Communication Technology, Aalborg University,
Selma Lagerlgfs Vej 300, 9220 Aalborg @st, Denmark
{aarbue15 ,aenelb,njargel2,calal0,dmiche 15}@student .aau.dk
2 Department of Architecture, Design, and Media Technology, Aalborg University,
Rendsburggade 14, 9000 Aalborg, Denmark
martin@create.aau.dk

Abstract. Pyramid methods are useful for certain image processing
techniques due to their linear time complexity. Implementing them using
compute shaders provides a basis for rendering image effects with reduced
impact on performance compared to conventional methods. Although
pyramid methods are used in the game industry, they are not easily
accessible to all developers because many game engines do not include
built-in support. We present a framework for a popular game engine
that allows users to take advantage of pyramid methods for developing
image effects. In order to evaluate the performance and to demonstrate
the framework, a few image effects were implemented. These effects were
compared to built-in effects of the same game engine. The results showed
that the built-in image effects performed slightly better. The performance
of our framework could potentially be improved through optimisation,
mainly on the GPU.

Keywords: Pyramid methods - Image effects - Depth of field - Blur -
Bloom - Game engine + Texture lookup - Compute shader

1 Introduction

Pyramid methods have many applications within the image processing field.
These methods are named pyramidal because they are based on the construction
of a scale space of filtered levels of different resolutions of an image. From this
pyramid structure, image effects can be generated through the use of filters and
other image-based computations.

This paper is focused on creating a framework that allows users to develop
image effects based on pyramid methods. The framework is implemented in the
popular game engine Unity [1], but could ideally be implemented in any game
engine that supports rendering to textures. Unity provides its own built-in image
effects which are generally based on convolution methods using regular shaders.
These are compared with the implemented image effects in terms of visual quality
and performance.
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

A.L. Brooks and E. Brooks (Eds.): ArtsIT/DLI 2016, LNICST 196, pp. 289-296, 2017.
DOI: 10.1007/978-3-319-55834-9_34

290 A. Arbués Sangiiesa et al.

We opted for using the free version of Unity because it is a widely used game
engine that supplies functionality, which made the implementation and use of
the framework easier to manage. Moreover, render to texture was recently added
to the free version of the engine (Unity 5.0) enabling the users of this version to
use pyramidal image effects. However, currently there is no built-in support for
pyramid methods using render to texture functionality, which is the motivation
behind implementing the framework.

In order to evaluate the performance of the framework, some image effects
have been implemented: blur, depth-of-field, and bloom. The performance was
evaluated by comparing the visual quality of the effects to the built-in image
effects of Unity. This comparison is a subjective assessment based on side-by-
side comparisons. At the same time, the effects were compared in terms of metrics
such as memory, GPU, and CPU usage.

This paper has the following structure: in Sect.2 the state of the art is
detailed, explaining various pyramid algorithms that have been proposed in the
past; then, in Sect. 3, the framework is explained, and in Sect. 4 several image
effects are illustrated. Later on, in Sect. 5, the results are shown, and, after that,
they are discussed in Sect. 6. Finally, conclusions are drawn and future work is
suggested in Sects. 7 and 8.

2 Previous Work

The pyramid algorithm was proposed by Burt [2] who also showed its advanta-
geous complexity compared to the Fast Fourier Transform (FFT) techniques for
blurring. For this reason, pyramid images were used in many computer graphics
applications. An example is the work of Kraus and Stengert [3] who applied
GPU-based pyramid methods for blurring in their algorithm for depth-of-field
rendering.

+
|
|
|
-
]
]
]
.
\
|
]
-
]
]
|
.
'
"
|
|
|
—m—m =
1
]
]
"
|
|
]
2 4
1
]
|
‘
'
+
|
|
|
-+
]
]
]
"
|
|
]
]
]
|
i
'

"
il
|
‘
-
|
I}
l}
.
|
‘
|
-
I}
I}
I}
.
'
"
|
|
‘

Fig. 1. The dotted lines represent the boundaries of the coarse level pixels, while the
grey ones represent the boundaries of the fine level pixels. The grey dots represent the
center of the pixels in the current level, while the black ones represent the positions
of the bilinear texture lookups for analysis (a, b and ¢) and synthesis (d). (a) 2x 2
analysis box filter using a single bilinear texture lookup. (b) 4 x 4 analysis box filter
averaging the results of four bilinear texture lookups. (c) Biquadratic B-spline analysis
filter averaging the results of four bilinear texture lookups. (d) Biquadratic B-spline
synthesis filter using four bilinear lookups.

Pyramid Algorithm Framework in Game Engines 291

Image blurring with pyramidal methods consists of two steps: analysis and
synthesis. In the first one, a pyramid is generated by iteratively downsampling
the filtered image by a factor of two in each dimension. In the second step, a level
of the analysis pyramid is chosen, based on the desired blur width, and the image
is upsampled through a synthesis filter until reaching the original dimensions.

As illustrated by Kraus and Stengert [4], many pyramid filters based on
bilinear interpolation may be used for both analysis and synthesis. Although the
users of our framework may implement their own filters, we decided to provide
three different analysis filters (2 x 2 box filter, 4 x 4 box filter, and biquadratic
B-spline) and one synthesis filter (biquadratic B-spline). Figure 1 shows how the
mentioned filters are implemented through bilinear texture lookups.

3 Framework

The implemented framework aims at supporting developers in creating pyramid-
based image effects. The framework is intended for experienced and advanced
users of Unity3D with the assumption that users have some level of shader pro-
gramming experience. At the same time, the framework supplies a few ready-to-
go image effects in order to demonstrate its use as well as to help less experienced
programmers.

As mentioned, the framework uses compute shaders to perform all the image
processing and to produce the image effects.

The implemented framework takes over a lot of the management required to
instantiate and maintain frame buffer objects, implemented as render textures
in Unity. These textures are ARGB32 textures when running Unity in gamma
space; in linear space they are floating point textures because of color quantisa-
tion issues due to gamma correction and these are, of course, more expensive.
Moreover, the framework provides access to methods that analyse and synthesise
an image. Each image is sampled to a new texture with the nearest power of two
(PoT) resolution and stored in a list. The general procedure of the framework is
shown in Fig. 2.

Creating an instance of the framework exposes all the functionality of it
to the image effect the developer wants to create. This step also generates the

Convert the input image to Generate an analysis
» the nearest lower/higher P pyramid from the
PoT resolution image input image

Create an instance of
the framework

Convert the desired image from a Compute one or more synthesis
pyramid back into a non-PoT < pyramids from different levels of the
resolution image analysis pyramid

Fig. 2. Steps performed by the framework.

292 A. Arbués Sangiiesa et al.

analysis pyramid based on the constructor that is used to generate the instance.
The analysis pyramid is generated by taking an image in native resolution and
downsampling it into a new texture with the nearest lower PoT resolution or
copying it into a higher PoT resolution, depending on user preferences. The
image is offset from the edge of the PoT texture and clamped to the edge by
copying the edge pixels. This texture is then analysed using one of the analysis
kernels described in Sect. 2.

Once the analysis pyramid has been computed, the users can generate one
or more synthesis pyramids depending on their need. These pyramids can be
generated through different constructors specifying source and, optionally, target
levels or resolutions. The pyramid is generated using the specified synthesis filter
described in Sect. 2. At this point, users can implement their desired image effects
using the provided pyramids and once completed, the image will be converted
back to a native resolution image.

The idea behind the framework is that it stores the pyramids allowing users
access from anywhere in any script by name or resolution. Simultaneously, it
ensures that the users are not able to generate duplicate pyramids. The frame-
work consists of one class which handles the creation of all the textures needed
for the pyramids as well as the dispatching of the compute shader. The compute
shader then handles the transfer of pixel data between textures and the compu-
tation of effects. Another important feature of the framework is that it supports
custom kernel creation, meaning that users are able to specify a kernel of the
size they desire.

4 Applications of the Framework

The following sections present the three image effects provided with our frame-
work, namely blur, depth of field, and bloom (Fig. 3).
4.1 Blur

The blur effect is meant to obscure details in an image by averaging pixels over a
larger area. Using pyramids, the blur effect can be obtained by applying analysis

© (d)

Fig. 3. The three image effects implemented using the framework, compared with the
original image (a): blur (b), depth of field (¢), and bloom (d).

Pyramid Algorithm Framework in Game Engines 293

and synthesis steps to an image. The results may change based on the number of
levels of the generated pyramid and the kernels used to analyse and synthesise.

Our framework not only allows three different analysis filters and one synthe-
sis filter (see Sect.2 for details), but it also supplies support for custom kernels
as mentioned in Sect. 3.

4.2 Depth of Field

Depth of field is defined as the difference between the nearest and the farthest
planes between which pixels in an image appear sharp. Generally, pixels are
considered sharp when they are in a position where the circle of confusion is not
distinguishable from a point. Further explanations can be found in the work of
Demers [5].

Using the framework described in Sect.3 a simulation of depth of field was
implemented. It is important to point out that this effect is not a physically
accurate implementation of depth of field, but rather an approximation that
exposes simple attributes which allow for modification of the effect.

The effect was implemented using the Reverse-Mapped Z-Buffer approach [5]
by generating an analysis pyramid, with the framework, and using this to derive
different amounts of blur. Each level of blur was derived by synthesising from
lower levels of the analysis pyramid. In our effect, three blur widths were used.

From these three levels of blur, as well as the depth texture, depth of field
was simulated based on the specified parameters of the effect (see Fig.4). For
each pixel in the image, its depth is looked up in the depth texture. Based on the
depth, the pixel color is linearly interpolated from two textures. This happens
for all pixels where the depth is within the A regions. In Fig. 4 this interpolation
is expressed through the grey gradient. The rest of the image is copied either
from the original image (in focus) or the maximum blur texture.

4.3 Bloom

Bloom is an effect generated by producing fringes of light extending from bright
areas of an image. It produces an imaging artifact also seen in real world cameras,
where bright light bleeds to nearby areas on a film.

ddod

Fig. 4. Parameters of the implemented depth of field effect. FD: distance from camera
to focus plane; FS: distance from focus plane to start of blur; A: distance over which
the blur will gradually increase; FCP: far clipping plane.

294 A. Arbués Sangiiesa et al.

Implementing this effect using the framework, as previously described, is
achieved by taking the source texture and locating all the bright areas. They
are located by taking the average value of the three color channels for each pixel
and checking whether it is above a user-specified threshold. In this case the pixel
is copied to a bloom texture, otherwise it is set to black. The bloom texture is
then sampled to a lower PoT texture and synthesised based on the desired bloom
strength. This synthesised texture is then combined with the source texture using
the following formula:

s=1—(1—2)(1—y)

where x, y, and z represent a pixel of the original image, of the blurred image
after bright colors extraction, and of the resulting image respectively.

5 Results

The framework and its effects were tested on a Lenovo Y-50 laptop with a Nvidia
GeForce 860 m graphics card and an Intel Core i7 4710HQ 2.5 GHz processor with
16 GB of RAM running in full HD resolution (1920 x 1080) in gamma space.

All the results are gathered over 1000 frames while skipping the first 60 frames
as these could potentially cause anomalies in the performance. From this, the
average time used per frame can be calculated as well as the processing time of
the framework. The image effects are also compared to the built-in counterparts
in terms of visual quality through side-by-side comparisons.

In Fig.5, the average processing time and the average frame time of the
results are displayed, along with the memory usage of the framework and of the
built-in effects in Unity.

To clarify, Only Blit is the Unity scene running with just a texture being
blitted to the screen and this is logged to see what the basic cost of the scene
is. Framework is the framework running without applying any image effect but
simply computing one analysis pyramid and one synthesis pyramid. The rest are
the built-in image effects of Unity compared to the image effects implemented
with our pyramid framework.

Performance of the Framework (ms) VRAM Usage (MB)
Only Blit (0,01 9,697 Only Blit 299
Framework 0,238 11,186 F ork 326
Unity Blur 0,073 10,415 Unity Blur 309
Pyramid Blur 0245]12,498 Pyramid Blur 350
Unity DOF {0,043 113,909 Unity DOF 299
Pyramid DOF 0,274]17,988 Pyramid DOF 395
Unity Bloom |0,076 10,197 Unity Bloom 301
Pyramid Bloom 0,242 13,888 Pyramid Bloom 351

Fig. 5. Graphs showing the performance of the framework (left) and the total video
memory usage on the graphics card when running the image effects. For the graph on
the left, the dark grey bars represent the average CPU time in milliseconds as a part
of the average frame time (light grey bars).

Pyramid Algorithm Framework in Game Engines 295

Looking at the average frame time from only blitting to running the frame-
work (downsampling to 32 x 32 pixels), it can be seen that the basic cost of
the framework is around 1.5ms. For each of the image effect comparisons the
framework performs slightly slower, where the biggest difference is in the bloom
effect where the framework had the relatively worst performance. For the aver-
age processing time, the framework is fairly consistent; note that the depth of
field effect is slower due to the creation of more synthesis lists.

Regarding the video memory usage, it can be seen that while the built-in
effects barely use any additional memory, the framework footprint is directly
tied to the amount of textures needed for each effect, as well as how many times
the source texture is analysed and synthesised. Again, the depth of field effect
is the most expensive effect, also due to the additional textures created.

Visually, the implemented image effects look relatively similar to the built-in
image effects. However, as the procedure is different from one another (i.e. the
built-in effects have more adjustable parameters), there are visible differences,
especially in the bloom image effect.

6 Discussion

As the built-in effects of Unity are heavily optimised for the engine, we did not
expect the image effects implemented with our framework to outperform them.
This also proved to be the case as displayed in Fig.5 where every effect was
slower both on the CPU and the GPU. However, the current framework has
room for improvement as it is a work in progress.

Although results are averaged over 1000 frames, they have some inaccuracy
due to how Unity handles multithreading. Running two tests in a row could
produce significantly different results, especially for the processing time, whereas
average frame time generally stayed the same. The test would have to be iterated
multiple times in order to get more accurate results. However, for the purpose of
doing this initial testing of the framework, the collected results give an adequate
representation of the performance.

Figure5 shows, that the framework uses significantly more processing time
than the built-in Unity effects due to the generation of the pyramids. However,
when comparing this to the average frame time, it is an insignificant contribution
to the overall performance cost. This in turn tells that the main performance
bottleneck is the GPU implementation.

As it has been established that the framework’s CPU cost is not a major fac-
tor of the performance, it would most likely be possible to optimise the framework
by moving some logic and calculations from the GPU to the CPU side wherever
possible.

As expected, the video memory usage of the framework is higher compared
to the built-in effects. This is due to the use of multiple textures of different
resolutions for the analysis and synthesis pyramids.

296 A. Arbués Sangiiesa et al.

7 Conclusions

A pyramid algorithm framework capable of performing real-time image effects
by using compute shaders in Unity has been developed. The framework is imple-
mented based on previous work within the field and has functionality to support
implementation of custom kernels. We showed how the framework performs by
implementing certain image effects and compare them to their built-in counter-
part in Unity. The performance was slightly worse than the built-in effects, an
expected result considering that the framework is a work in progress.

8 Future Work

The performance of the framework could be improved in various ways. As men-
tioned earlier, the performance bottleneck is the GPU. The compute shader used
by the framework applies many logic operations, such as branching logic, which
could potentially lower the performance quite significantly. To avoid this, some
of the kernels used in the computer shader would have to be split into separate
kernels and dispatched appropriately from the CPU.

Moreover, the framework should supply some support for creating textures
in order to make texture generation easier for the users. Currently, textures are
made manually for each image effect. When implementing multiple image effects,
some memory usage could be avoided by handling the textures in the framework
instead of each image effect separately.

References

1. Unity Manual. http://docs.unity3d.com/Manual/UnityManualRestructured.html.
Accessed Sept 2015

2. Burt, P.J.: Fast filter transform for image processing. Comput. Graph. Image
Process. 16(1), 20-51 (1981)

3. Kraus, M., Strengert, M.: Depth-of-field rendering by pyramidal image processing.
In: Computer Graphics Forum, vol. 26. No. 3. Blackwell Publishing Ltd. (2007)

4. Kraus, M., Strengert, M.: Pyramid filters based on bilinear interpolation. In:
GRAPP (GM/R), pp. 21-28 (2007)

5. Demers, J.: Depth of field: a survey of techniques. In: GPU Gems: Program-
ming Techniques, Tips, and Tricks for Real-time Graphics, Chap. 23, pp. 375-390.
Addison-Wesley Professional (2004)

http://docs.unity3d.com/Manual/UnityManualRestructured.html

	Pyramid Algorithm Framework for Real-Time Image Effects in Game Engines
	1 Introduction
	2 Previous Work
	3 Framework
	4 Applications of the Framework
	4.1 Blur
	4.2 Depth of Field
	4.3 Bloom

	5 Results
	6 Discussion
	7 Conclusions
	8 Future Work
	References

