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Abstract In this chapter, the combined use of optimization and simulation in the
design of a distribution network for hazardous materials in the northern region of
Mexico City is assessed. A mathematical programming model was developed to
allow for fuel dispatch truck allocation, minimizing the total distribution cost.
Heuristics were used to solve the model and different simulation scenarios were
applied to do what-if analysis to be able to decide on different managerial situations.
Reviewing simulation and optimization results, an appropriate estimate of the fuel
quantity to order (EOQ), the best type of truck to carry out the supply, as well as the
ordering schedule that minimizes the associated costs of distribution and inventory,
is provided. This real-life Mexican case study shows how a combined
optimization-simulation approach, specifically taking advantage of heuristic
methods to diminish computing time, can provide a practical, efficient and flexible
tool for optimization assessment in operational research.

1 Introduction

Fuel supply has been studied since 1959 when Dantzig and Ramser publish The
Truck Dispatching Problem, assessing the optimization of the routing of vehicles
transporting gasoline from a terminal to different service stations. Since then, a
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variety of bibliographical material on optimization and simulation of fuel supply has
been published, most of them on optimization of the distribution from production
sites to refineries, as well as from refineries to mayor storage terminals, mostly by
pipelines.

For fuel distribution from a minor deposit or distribution terminal, as Dantzig
and Ramser, most of the authors consider trucks that can dispatch part of its load at
different service stations. However, due to ruling standards, in México only trucks
without compartments and with only one valve are allowed, changing the nature of
the fuel distribution problem.

A Mexican company that distributes gasoline in the north of Mexico City using
C3 type trucks [63] having a 20 (exactly 20.108) m3 capacity, wants to know if the
inclusion of T3-S3 and T3-S2-R4 type trucks [63] with capacities of 45 (46.149) m3

and 60 (61.504) m3 respectively, will minimize the distribution costs given a
constant demand. The previous problem corresponds to a Designing Distribution
Networks (DDN) problem, where the main goal is to distribute the fuel in the
cheapest possible way. Figure 1 represents the problem graphically.

This chapter is organized in the following way: Sect. 2 addresses the theoretical
background on designing distribution networks for hazardous materials and
inventory optimization and management, Sect. 3 presents the used methodology
and Sect. 4 shows the observed results, including data collection, determination of
the distribution costs and model formulation and results.

The goal of this study is to optimize the distribution network of a hazardous
material for a company that operates in the north of Mexico City, allowing the use

Fig. 1 Representation of the study problem
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of a heterogeneous fleet, through a mathematical programming model and
simulation.

As specific objectives, the following can be mentioned:

• Collection of information on and statistical analysis of the present state of the
fuel supply system in the Azcapotzalco territorial delegation.

• Estimation of fuel demands and distribution costs for the service stations in the
Azcapotzalco region.

• Construction of a mathematical programming model to be able to obtain a good
solution for fuel ordering quantity, periodicity and the type of truck to be used,
considering the collected and estimated information in the previous steps.

• Selection and simulation of different scenarios representing possible critical
situations.

• Evaluation of the proposed scenarios by determining the corresponding per-
formance measures, to be able to define possible improvements that can be
implemented in the fuel supply system.

2 Theoretical Background

The optimization of vehicle routing and scheduling problems has been studied
extensively in specialized literature. This kind of problems aim at establishing the
best possible way to distribute products and goods from an origin node to a destiny
node, considering changes in the network structure, satisfying the customer
demands and minimizing the total costs. This cost is usually expressed in terms of
transport costs, inventory costs, opportunity costs, investment, and location-
allocation costs.

2.1 Designing Distribution Networks

The models for designing distribution networks are composed of several
sub-problems to be optimized. The main ones are: location, allocation, routing, and
inventory; different models result when variables are static or dynamic, determin-
istic or stochastic, discrete or continuous, among others.

The design of the distribution network considers different types of decisions, as
for example the location of the elements of the network, fleet dispatching, client and
provider assignment, inventory and routing management [8]. Each of these deci-
sions can be optimized independently or jointly. For example, the vehicle routing
problem (VRP) combines the decisions of selecting the best route and client
assignment with homogeneous or heterogeneous fleet [15, 31, 49]. The location
routing problem (LRP) combines the decision of locating and assigning clients to
distribution terminals [35, 45, 90].
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Min et al. [57] present the origin and evolution of LRP problems, including
different mathematical formulations; they present different LRP classifications
based on the number of deposits to locate, demand variations, vehicle number and
capacities, distance between nodes, time restrictions or the form of the objective
function. Routing and locating models for real-life problems are reported by several
authors; see for example [1, 5, 6, 9, 10, 12, 14, 24, 29, 30, 33, 38, 44, 50, 52–54, 56,
60, 62, 67, 69, 72, 73, 75, 87–89].

Problems studying inventory control and vehicle routing jointly are known as
inventory routing problems or IRP [23, 35, 42, 45, 90]. IRP problems are closely
related to vendor managed inventory (VMI) problems, having the following
characteristics: inventory levels are monitored by the vendor, which decides order
quantity and moment, and if shortage of stock is allowed.

At present, models have been developed that consider at the same time decisions
on localization, routing and inventories [1, 13]. However, the high complexity
involved in solving the complete problem with a sole algorithm originated the
formulation of models that solve the problem in stages, in order to find a good
solution in the smallest possible computer time. These methodologies involve exact
or heuristic algorithms to solve the required decisions. For example, this is the case
in the study presented by Flisberg et al. [27] where an exact solution algorithm is
proposed to obtain vehicle flows whereas the TABU search method is used in a
second step to find optimal routes towards the clients. The use of matheuristics for
solving different types of vehicle routing problems, making use of mathematical
programming models in a heuristic framework, is assessed in the interesting review
presented by Archetti and Speranza [3].

Different kinds of transportation networks include direct shipping, milk runs,
crossdocking and tailored networks [18]. The direct shipping network delivers
products from suppliers to their customers and is the one used in this study.

2.2 Models for Designing Distribution Networks
for Hazardous Materials (DDNHM)

Since the publication of The Truck Dispatching Problem [22], several studies have
been published on the optimization and simulation of fuel supply; see for example
[77] or [58].

According to Winkler [91], the fuel distribution process consists of three steps.
The first step includes the distribution from the extraction and/or production plant to
the storage terminal, the second step corresponds to the transport of the fuel from
the storage terminal to the retail customers (in this case the service stations), while
the third and last step corresponds to the distribution to the final client, being cars
and/or trucks in this case.

The project presented in this study focuses on fuel distribution in the second
stage, that is, from the storage terminals to the retail customers, service stations or
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petrol stations. In this stage, distribution is carried out by fixed-capacity trucks, as
specified in corresponding regulations.

The work of Çetinkaya et al. [16] shows that fuel truck dispatch policies for
stock replacement can be carried out regarding two metrics, based on quantity or
time. Results showed that truck dispatch based on required quantity provides higher
savings in transport costs. In this study, truck dispatching is thus planned based on
quantity and using the EOQ inventory model.

Chopra [17] considers the parameters associated with the designing of the dis-
tribution network to be directly related to the customer’s necessities and the costs
needed to implement the network. The first of them include the response time, the
variety and availability of offered products, post-sales services, etc. The latter
involve the holding costs, transport costs, costs of physical installations and the
associated cost of the information system used.

The study by Flisberg et al. [27], mentioned before, presents a truck dispatching
problem where daily routes of woodworking trucks deliver to a combination of
clients using heterogeneous fleet and taking multiple planning horizons trough
mathematical programming and TABU search.

An analysis of literature in the field shows that one of the heuristic algorithms
more frequently used to solve the optimization of distribution networks is GRASP
(see for example [26, 70]) in combination with mathematical programming. Table 1

Table 1 Most relevant studies for the optimization of distribution networks

Title Author Model

A bi-objective GRASP algorithm for distribution of oil
products by pipeline networks

Sousa et al.
[83]

GRASP

A GRASP heuristic for the mixed Chinese postman
problem

Corberán et al.
[20]

GRASP

A heuristic for minimizing inventory and transportation
costs of a multi–item inventory–routing system

Sombat [81] EOQ, GRASP,
IRP

A reactive GRASP and path relinking for a combined
production–distribution problem

Boudia et al.
[11]

GRASP

Heuristics for the bi-objective path dissimilarity
problem

Martí et al. [55] GRASP

Model and algorithm for an inventory Shen et al. [78] GRASP, IRP
The vehicle routing problem with conflicts Hamdi-Dhaoui

et al. [36]
GRASP,
VRPC, ILS,
ELS

GRASP with path relinking for the two-echelon vehicle
routing problem

Crainic et al.
[21]

VRP, GRASP

A GRASP for real-life inventory routing Problem:
application to bulk gas distribution

Dubedout et al.
[25]

GRASP, IRP

A GRASP ELS for the vehicle routing problem with
basic three-dimensional loading constraints

Lacomme et al.
[48]

VRP, GRASP

GRASP with VLSN for an inventory-routing problem Sombat [82] GRASP, IRP,
VLSN, EOQ
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shows the most relevant studies that optimize the DDM for different products,
specifically hazardous materials.

In this study, the GRASP heuristic was initially explored as the solution method
for the optimization model; however, due to the specific nature of the problem
where ordering quantity is limited by the used storage tank sizes, feasible solutions
are only very small proportion of all possible solutions. As unfeasible solutions
increase drastically when the size of the problem increases, the GRASP heuristic
would not be time efficient in this study. Still, it was considered the basis of a
problem tailored heuristic.

2.3 DDNHM Model Construction

As presented by Chopra [17], the basic components of a DDN model are:

• Localization of the network elements
• Inventory management
• Fleet design
• Vehicle routing

Reyes et al. [71] propose the development of a distribution network in three
phases: diagnostics of the distribution system, design of the logistic network and
implementation of the network. Each of these phases includes a series of steps, as
shown in Table 2.

Table 2 Procedure to construct a distribution network

Phases Steps

PHASE I: Diagnosis of the
distribution system

Step 1: Inventory of the existing equipment
Step 2: Obtaining information on the current organization
of the distribution system
Step 3: Graphical description and map analysis of the
territory of the study object
Step 4: Description of the existing route
Step 5: Feasibility study
Step 6: Temporal analysis of the distribution system
Step 7: Analysis of the demand by segment and customers
Step 8: Cost analysis

PHASE II: Design of the logistic
network

Step 9: Description of the proposed route
Step 10: Analysis of the feasibility of the design
Step 11: Development of the information system

PHASE III: Implementation of
the network

Step 12: Implementation of the new logistic network
Step 13: Measurement and analysis
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2.4 Inventory Management and Optimization

Inventory management is defined as the inventory planning and control carried out
to meet competitive priorities of the organization [47]. Taha [85] states that the
inventory problem consists of keeping in stock just enough articles to satisfy
fluctuations of the demand, based on an inventory policy that answers the question
of how much and when to order.

Different models have been presented for the optimization of inventories,
including models based on dynamic programming [4], linear programming models
[41], non-linear programming models [76] and geometric models [46]. Dynamic
programming of inventories is based on the minimization of production, retention or
holding costs [28]. The Wagner-Whitin algorithm is a classical dynamic program-
ming model that minimizes the fixed ordering and linear procurement and holding
costs, over a finite horizon, providing good results [37]. Non-linear programming
models to mathematically optimize inventories are proposed by [2, 43, 46, 76].
These models look for the optimal ordering quantity by optimizing the EOQ model.

To know the behaviour of the demand it is necessary to analyse it statistically
and know if it is deterministic or stochastic [92]; a suitable criterion is the variation
coefficient (VC) introduced by Silver and Peterson [80]. The VC is determined by
Eq. (1), where σ is the standard deviation and μ the mean value of the demand.

CV =
σ
μ

ð1Þ

If its value is below or equal to 0.2, the data has a low dispersion with respect to
the mean value, indicating that the demand can be considered to be deterministic. In
the opposite case, it is stochastic. For stochastic demands, a goodness-of-fit test
must be carried out to determine the corresponding type of distribution [2].

Taha [85] distinguishes four types of cost related to inventory problems, being
the acquisition cost, preparation or ordering cost, retention or holding cost and the
stockout cost (see Table 3).

Table 3 Types of inventory costs

Cost type Definition

Acquisition
cost

Unitary price of an inventory product

Ordering
cost

Fixed charge due to placing an order, regardless of the ordered quantity

Holding cost Costs due to having a certain level of existence during a specific time-period;
these include the opportunity cost of the inverted money, the storing cost
(rental fees, heating, illumination, refrigeration, security etc.), depreciations,
taxes, insurance fees, deterioration and obsolescence [59]

Stockout
cost

Penalty incurred when the company runs out of a product of the inventory. It
includes the loss of income, production disruptions, transaction costs to
replace inventory and loss of customer’s goodwill
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Different methods of inventory replenishment exist; their application depends on
the used inventory model, as the demand is the leading factor for replenishment.
Examples of procurement systems are given by the Wilson equation (EOQ), the
Wagner-Within dynamic programming procedure and the Silver-Meal heuristic, being
the EOQ model one of the most extendedly used, as it can be adapted for both deter-
ministic and stochastic demands [4, 79]. In this study, the EOQmodel will be applied.

2.5 Simulation

An optimization model is useful to establish the best possible way to distribute
products and goods from an origin node to a destiny node; however, in real-life
situations observed parameters and or variables change constantly, in which case
the proposed schedule must be adjusted. A simulation analysis that compares two
different possible scenarios is a cost-efficient and cheap way to decide for one of
two future options before these changes take place.

Simulation is the process of reproducing the features, appearance and behaviour
of a real system. It is based on three ideas: (1) Imitate, with a mathematical model, a
real situation, (2) Study the model’s operative characteristics and the system’s
expected properties making analogies within the simulation model; and (3) Make
conclusions and take actions in the system based on the results obtained in the
model [37].

Simulation studies are developed in three research levels: descriptive, explora-
tory and explanatory. Different authors apply the methodology proposed by Law
[51], consisting of the steps shown in Fig. 2; see for example [19]. After formu-
lating and planning the study, the data is collected and the model can be con-
structed. If the model is shown to be valid for the study system, it is implemented in
a computer program and should be verified. Experimentation is done for different
scenarios of interest; finally, output data is analysed and interpreted.

Fig. 2 Simulation methodology, adapted from Law [51]
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3 Methodology

The problem addressed in this study is a Design Distribution Network problem
where the optimized variables are inventory level, optimal ordering quantity, fleet
size and vehicle quantity, as well as order scheduling, corresponding the latter to
fleet dispatching or management; a one year planning horizon is used.

Specialized literature describes problems that optimize the previous concepts as
inventory routing problems with fleet dispatching. This study presents a special
case where each vehicle coming from the storage terminal visits only one client
(service station), as the distributed fuel cannot be discharged into fragmented bat-
ches due to legal regulations. Reducing the fuel discharge to only one service
station by vehicle, the problems seems to be simplified considerably; however, even
this special case remains to have an important combinatorial of solutions and
therefore stays highly complex.

In the presented case study, both service stations and distribution terminal
pertain to the same company, so no out of stocks are considered. Supplied quan-
tities are governed by the vehicle size and required filling level, causing small
residuals to exist for technical reasons at the end of the year. These residuals will
always be smaller than the truck capacity and are assumed to be transferred without
any problem to the next planning horizon. In consequence, demand and supply are
assumed constant and always satisfied. According to the information above, this
study designs a distribution network with the lowest possible operational costs
considering constant fuel demand without stock disruption, heterogeneous fleet,
continuous inventory review policy, and fixed capacity of vehicles and storage
tanks.

To solve the problem, a methodology of nine steps was used, including the
tailored heuristic solution algorithm and mathematical programming.

Step 1: At first, a data collection was carried out to obtain existing sales
information for the three fuel types considered in the study. Information
was found for two service stations; consistency of data was analysed.
Storage tank size was obtained for all service stations. Missing infor-
mation was estimated.

Step 2: The behaviour of the demand was analysed for the existing information,
including variability, normality and distribution parameters.

Step 3: Based on the previous information, demand estimation was done for the
rest of the service stations in the study region, considering demographic
information and service station characteristics.

Step 4: Distribution costs were determined, including holding costs, variable
and fixed transport costs and ordering costs.

Step 5: A mathematical programming model was developed to describe the
truck assignment problem in the study problem.

Step 6: The state space was downsized before solving the model heuristically, so
that only feasible solutions would be analysed. Truck combinations were
restricted to the existing storage tank sizes in each service station. This,
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in fact, is an optimization step in the solving process, as solution are
found in a more efficient and quick way.

Step 7: Programming of the linear programming model and its heuristic solution
algorithm in R.

Step 8: Determination of specific simulation scenarios representing possible
critical situations, used to compare different management policies for
truck assignment in the fuel distribution.

Step 9: Determination of cost performance measures to evaluate the proposed
scenarios and definition of possible improvements to be implemented in
the fuel supply system.

Figure 3 represents the study methodology graphically.

Fig. 3 Study methodology
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4 Case Study

4.1 Description of the Problem

In the México City greater area four fuel Distribution Terminals (DT) can be found,
being three of them located in Mexico City and the fourth one in the State of
Mexico (EDOMEX), from where three types of fuel (gasoline A, gasoline B and
Diesel) are distributed towards 371 service stations (SS) [64] in one of the 16
political delegations and some municipalities in the EDOMEX state.

In a pilot phase, this study was carried out in the Azcapotzalco political dele-
gation, located in the northern part of Mexico City (Fig. 4). This delegation has
approximately 400 000 inhabitants and one of the DT is located in this area,
supplying 18 service stations. Each of the service stations has implemented an
inventory review and control system that provides a forecasting method and a
weekly ordering schedule into maintain an appropriate service level for fuel con-
sumers, both people and industries.

At present, the Azcapotzalco distribution terminal is using a homogeneous fleet
with a 20 m3 capacity to provision periodically fuel to each of the service stations.
The company wants to know if total costs can be minimized when using a
heterogeneous fleet and optimizing the supply frequency for the different service
stations.

Fig. 4 Study area. Adapted from: http://www.mapa-mexico.com/Mapa_Ubicacion_
Azcapotzalco_Mexico_DF.htm
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4.2 Data Collection

4.2.1 Monthly Sales Information

Monthly sales information was available from January 2014 until October 2015 for
service stations SS1 and SS6; this information is presented in Table 4.

As can be seen in Table 4, SS6 sells about double the quantity of fuel for each of
the three fuel types. In both service stations, the most sold fuel is gasoline A, which
determines about 53% of the total sales. This information is consistent with
information reported by INEGI [39] from where it can be determined that average
sales per service station for the same period in the Mexican republic were
respectively 271.26, 61.27 and 332.54 for gasoline A, gasoline B and diesel. The
specific quantity sold in each service station depends on its size and correspond-
ingly on the number of hoses installed for each type of fuel.

In service station SS6 two values were missing for the diesel sales; a simple
average of the two closest values was used to estimate these missing values.

Table 4 Monthly sales for SS1 and SS6, January 2014–October 2015

SS1 SS6
Gasoline A
(m3/month)

Gasoline B
(m3/month)

Diesel
(m3/month)

Gasoline A
(m3/month)

Gasoline B
(m3/month)

Diesel
(m3/month)

Jan 2014 333.16 50.86 210.46 663.25 102.92 427.79
Feb 2014 314.15 52.85 203.07 618.09 96.85 430.44
Mar 2014 339.81 55.73 242.77 679.91 110.69 516.37
Apr 2014 319.84 51.15 213.92 622.61 104.36 454.36
May 2014 344.65 57.20 232.58 687.75 104.36 490.70
Jun 2014 324.78 53.33 228.97 648.80 106.42 NA
Jul 2014 322.36 54.64 240.94 635.28 105.56 502.76
Aug 2014 332.63 59.46 212.36 662.18 112.38 469.20
Sep 2014 325.78 56.52 216.90 652.32 107.25 456.31

Oct 2014 339.96 61.07 232.38 679.04 113.79 504.48
Nov 2014 318.11 57.96 213.37 632.71 104.01 450.75
Dec 2014 318.61 63.26 208.06 666.96 119.38 418.25
Jan 2015 306.74 56.88 190.22 636.68 117.50 434.75
Feb 2015 299.33 54.56 181.12 597.82 106.95 429.72
Mar 2015 329.73 62.70 201.74 650.40 123.67 471.84
Apr 2015 305.77 60.82 181.87 586.13 118.42 495.90
May 2015 325.38 65.44 199.77 621.87 125.79 501.20
Jun 2015 325.12 65.03 191.08 614.57 121.96 488.31
Jul 2015 332.40 65.26 198.83 629.44 129.38 506.51
Aug 2015 322.23 69.93 177.31 625.63 137.74 479.99
Sep 2015 331.59 67.29 147.94 637.38 147.12 494.85
Oct 2015 357.04 74.91 192.00 678.59 151.80 NA
Average 325.87 59.86 205.35 642.15 116.74 471.22
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4.2.2 Behaviour of the Demand

The service stations are franchises of the same company that owns the fuel supplier
(DT), so they are supposed never to run out of stock. In consequence, the monthly
demand for both stations SS1 and SS6 are matched to the monthly sales presented
in Table 4.

Similar behaviour is observed for fuel demand at different service stations,
despite differences in quantities sold (Fig. 5). Of the three fuel types, only gasoline
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Fig. 5 Behaviour of the
demand. a Gasoline A,
b gasoline B, c diesel. January
2014–October 2015
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B is presenting a marked trend in both service stations (Fig. 5b). This was cor-
roborated determining the corresponding linear regression models and hypothesis
tests to verify if the slope is statistically significant. Calculations in R show slope
and p-values as presented in Table 5.

As can be expected from graphical results presented in Fig. 5b, gasoline B
demand has a statistically significant positive slope in both service stations, while
diesel has a statistically significant negative slope or slight level change in service
station SS6. To carry out normality tests, the corresponding tendency was removed,
presenting the following averages and standard deviations (Table 6).

Analysis of the demand behaviour was carried out through the determination of
the variation coefficient (VC), as defined in Eq. (1). Variation coefficients between
0.041 or 4.1% and 0.073 or 7.3% (0.12 or 12% for non-corrected values) were
observed for the three types of fuel in SS1 and SS6; all values were below 0.2 so,
although slight level changes and/or trends were observed, the demand can be
considered deterministic.

Finally, normality was tested with the Jaque-Bera statistic adjusted to small
samples; corresponding p-values and conclusions for each of the demand series are
presented in Table 7.

Table 5 Slope and p-value for the hypothesis tests on slope significance

Series Slope p-value

SS1 Gasoline A 0.041 0.928
Gasoline B 0.863 4.85e-08
Diesel −2.570 0.0001

SS6 Gasoline A −1.281 0.169
Gasoline B 1.964 9.63e-08
Diesel 1.265 0.224

Table 6 Corrected averages and standard deviations for fuel demand, SS1 and SS6

Gasoline A Gasoline B Diesel
Average SD CV Average SD CV Average SD CV

SS1 325.87 13.26 0.041 50.86 2.96 0.058 226.09 16.11 0.071
SS6 642.16 27.37 0.043 95.92 7.04 0.073 473.12 30.37 0.064

Table 7 Jaque-Bera normality test results for fuel demand in SS1 and SS6

Series p-value Conclusion

SS1 Gasoline A 0.778 Insufficient evidence to reject normality
Gasoline B 0.395 Insufficient evidence to reject normality
Diesel 0.5705 Insufficient evidence to reject normality

SS6 Gasoline A 0.7468 Insufficient evidence to reject normality
Gasoline B 0.0327 Normality is rejected at a 5% level

Diesel 0.05386 Insufficient evidence to reject normality
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All series can be considered to have a normal distribution, unless gasoline B in
SS6, for which the hypothesis test was rejected at a 5% significance level. However,
even for this type of gasoline, normality is accepted at a 3% level.

4.2.3 Demand Estimation

As the first step in the determination of the demand for the other 16 SS, Voronoi
diagrams [34, 40] were implemented to delimit the areas to be supplied [65] for
each of the service stations; they capture information on the proximity of a set of
points P decomposing the plane in convex polygonal regions. AutoCAD tools were
used to define these areas, whereas INEGI [39] information was used to obtain the
corresponding number of inhabitants. Land use classification of the service stations
was obtained from SEDUVI [74].

Figure 6 represents respectively the political divisions in Azcapotzalco (a) and
the corresponding Voronoi polygons (b). The red dots indicate the location of the
service stations.

Table 8 shows the resulting Voronoi area for each service station, as well as the
corresponding number of inhabitants and land use type.

The Voronoi diagram method supposes that customers will get their fuel sup-
plies in the establishment closest to their domicile. However, as an important
difference exists in inhabitants registered in residential and industrial areas, the
number of inhabitants resulted not to be a suitable measure to determine the
demand; using it as a proportionality coefficient to estimate the demand in each SS,
industrial areas would have an artificially low demand as a low number of inhab-
itants can be expected. On the other hand, land use analysis indicates that both SS
where information exists are located in areas classified as mixed residential.

An additional proportionality coefficient was needed, so SS1 and SS6 demands
were compared regarding the number of hoses installed for each type of fuel; the
results are presented in Table 9. The standard deviations for gasolines A and B can
be considered statistically equivalent in both service stations, being mean demand
per hose slightly lower for gasoline A in SS1 with respect to SS6. The demand of
gasoline B per hose can be considered statistically equivalent in both stations. The
standard deviation for the diesel demand is almost two times higher in SS1 with
regard to ES6, while the mean diesel demand per hose is also higher in SS1. This
higher variability in diesel demand can be explained by the proximity of ES6 to the
industrial areas, where a more constant diesel demand is expected. The previous
analysis shows differences in the demand per hose in both service stations; how-
ever, values are of the same order of magnitude, so the number of hoses for each
type of gasoline installed in the service station in combination with the information
presented in Table 9 will be used to estimate demands in the other 16 service
stations.

The number of serving hoses for each type of gasoline and service station was
obtained from information provided by PROFECO [68], visual inspection in a field
visit and/or photographical analysis in Google Street View [32]; the results are
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Fig. 6 Azcapotzalco political delegation. a Political divisions and b corresponding Voronoi
polygons
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presented in Table 10. Values equal to 0 correspond to service stations that do not
sell the corresponding gasoline.

Multiplying the average demand per hose (Table 9) by the number of hoses
(Table 10) for each type of gasoline and service station, the estimated demand can
be found (Table 11). The demand of SS2 calls the attention; it is considerably
higher than the demand in the other service stations due to its location in the biggest
industrial area of Azcapotzalco.

Table 8 Voronoi area, number of inhabitants and land use type for each service station

Service station Voronoi area Nr of inhabitants Land use

SS 1 1.88 11534 Mixed residential
SS 2 1.18 1598 Industrial
SS 3 1.399 10501 Residential
SS 4 1.435 14856 Mixed residential
SS 5 2.068 29838 Residential
SS 6 1.469 348 Mixed residential
SS 7 0.536 6302 Mixed residential
SS 8 1.975 2650 Residential/commercial
SS 9 2.262 429 Industrial
SS 10 1.322 18603 Industrial
SS 11 1.987 16248 Residential
SS 12 2.1 36381 Residential
SS 13 1.017 25008 Mixed residential
SS 14 2.12 14190 Residential
SS 15 1.42 30845 Residential
SS 16 1.145 16257 Residential
SS 17 1.164 10796 Industrial
SS 18 0.881 3800 Industrial

Table 9 Number of hoses and corresponding demands (l/hose) for SS1 and SS6

Gasoline A Gasoline B Diesel

SS1 Number of hoses 6 6 2
Average demand (l/hose) 54.06 9.86 102.99
Standard deviation (l/hose) 2.21 1.06 11.43

SS6 Number of hoses 11 11 5
Demand (l/hose) 58.22 10.46 94.24
Standard deviation (l/hose) 2.49 1.32 6.25

Average estimated demand (l/hose) 56.14 10.16 98.62
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Table 10 Number of hoses
for each type of gasoline and
service station

Service station Gasoline A Gasoline B Diesel

SS 1 6 6 2
SS 2 16 16 18
SS 3 8 8 0
SS 4 13 13 0
SS 5 8 8 0
SS 6 11 11 5
SS 7 10 10 0
SS 8 12 12 4
SS 9 16 16 0
SS 10 8 8 3
SS 11 8 6 2
SS 12 16 12 4

SS 13 12 12 3
SS 14 8 8 0
SS 15 16 16 0
SS 16 12 12 7
SS 17 12 8 4
SS 18 8 8 8

Table 11 Estimated demand
for each type of gasoline and
service station

Service station Gasoline A
(m3)

Gasoline B
(m3)

Diesel
(m3)

SS 1 324.39 59.14 205.98
SS 2 898.27 162.54 1,775.13
SS 3 449.14 81.27 0
SS 4 729.85 132.07 0
SS 5 449.14 81.27 0
SS 6 640.42 115.07 471.22
SS 7 561.42 101.59 0
SS 8 673.71 121.91 394.47
SS 9 898.27 162.54 0
SS 10 449.14 81.27 295.86
SS 11 449.14 60.95 197.24
SS 12 898.27 121.91 394.47
SS 13 673.71 121.91 295.86
SS 14 449.14 81.27 0
SS 15 898.27 162.54 0
SS 16 673.71 121.91 690.33
SS 17 673.71 81.27 394.47
SS 18 449.14 81.27 788.95
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4.2.4 Storage Tank Size

As the ordering quantity for each gasoline type and service station depends on the
size of the storage deposit, deposit sizes were obtained for the 18 service stations in
study. Table 12 presents the corresponding information. Values indicating (*) cor-
respond to estimated values, considering the estimated demand. Values of 0 indi-
cate the station does not sell diesel.

Note that the presented values correspond to the tank size, but not to the max-
imum tank capacity. Due to security regulations, fuel volume in the storage tank
should be maximum 90% of its nominal capacity. All storage tanks have an overfill
valve installed [61, 66].

4.3 Determination of the Distribution Costs

The costs that must be considered in the distribution network include holding costs,
transport costs and ordering costs.

Table 12 Storage tank size for each type of gasoline and service station

Service station Gasoline A (m3) Gasoline B (m3) Diesel (m3)

SS 1 50 40 40
SS 2 80 50 120(*)

SS 3 40 40 0
SS 4 120 60 0
SS 5 50 50 0
SS 6 80 40 40
SS 7 80 60 0
SS 8 100 100 60(*)

SS 9 100 100 0
SS 10 50 40 0
SS 11 60 60 60
SS 12 50 40 40
SS 13 100 100 60(*)

SS 14 100 100 0
SS 15 160 80 0
SS 16 200 80 60
SS 17 100 50 60(*)

SS 18 100 50 60(*)
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4.3.1 Holding Costs

Benitez [7] considers among the holding costs rates for physical storage, return on
capital detained in stock, insurance, transport, manipulation and distribution of
material and finally obsolescence of the material in stock. Tawfik and Chauvel [86]
consider holding costs are generally between 14 and 36% of the mean valuation of
the stocked products. In the case of fuel service stations, the material is discharged
directly in the storage tanks, so no intern transport costs must be considered. On the
other hand, the obsolescence concept is not applicable in fuel supply. Accordingly,
in this study the holding cost, Chik , is considered as a 20% rate of the cost required
to acquire the average monthly demand, being the latter half the ordered demand.
Considering a purchase cost, Cpi , of 10 MXN/l, the holding cost for fuel i in service
station k is:

Chik =20% ⋅Cpi ⋅
Qik

2
∀ i, k ð2Þ

where

Chik Holding cost for fuel i in SS k, MXN/month
Cpi Purchase cost for fuel i, MXN/m3

Qik Demanded quantity of fuel i in SS k in each order, m3

4.3.2 Transport Costs

Transport costs include fixed and variable components. Variable components are
directly proportional to the distance between origin and destiny, in addition to
taking into account the type of merchandise transported and its weight and volume.
These costs change depending on the road type, and if the transport is long range or
short range. Fixed costs include purchase costs of the fleet, salaries, driving
licenses, insurance, installations for maintenance workshops and parking lots, taxes
and recovery of financial capital. Information provided in a report presented to the
Ministerio de Transportes y Telecomunicaciones in Chile [84] suggest that fixed
costs are about 125% of the fuel cost. No specific information was found for
Mexico; as an approximation, the average obtained in the above transport report
will be used in this analysis.

Considering that each fuel truck is supplying only one service station in a
round-trip, variable fuel costs per trip were determined for three types of trucks j,
having capacities of respectively 20, 45 and 60 m3, as follows:

Cvijk =
2dk
Rj ⋅ ηj

⋅ cD ∀ i, j, k ð3Þ
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where

Cvijk Variable transport cost for fuel i, truck type j and SS k, MXN/order
dk Distance between the DT and SS k, km
Rj Fuel consumption rate of truck type j, km/l
ηj Performance efficiency of truck type j, %
cD Required fuel cost for the trip, MXN/l

Table 13 shows the specifications considered for each of the transporting units.
The trucks run on diesel; for the diesel cost, a value of 13.77 MXN/l was used
(diesel cost in México in August 2016).

For the fixed transport costs, average values of distance, fuel consumption,
efficiency and trip number were considered for each service station, in accordance
with the demand obtained in Table 11 and the tank capacity of the service station
(Table 12), resulting in:

Cfk =1.25
2dk
Rj ⋅ ηj

n ⋅ cD =1.25
2 5ð Þ

2.42ð Þ 0.7ð Þ 623 ⋅ cD =63300 MXN ̸year ð4Þ

The average number of trips per year, n, was determined including information
on required trips for the three fuel types sold in each of the service stations. The
amount determined by Eq. (5) is for the whole service station and has to be divided
by the number of trips carried out per year in each service station, nk , to obtain the
fixed cost per trip; nk depends on the obtained supply schedule.

Considering both fixed and variable transport costs, the total transport cost can
be determined thus by:

cT =Cfk + ∑
3

j=1
nijk ⋅Cvijk =

63300
nk

+ ∑
3

j=1
nijk ⋅

2dk
Rj ⋅ ηj

⋅CD ð5Þ

where nijk is the number of trips carried out per order for fuel i, truck type j and SSk.

Table 13 Data sheet for the 20, 45 and 60 m3 capacity used by the transporting company

Truck type

Specifications 20 m3 45 m3 60 m3

Truck type 3C T3-R2 T3-S2-R4
Minimum fuel consumption
rate (km/l)

3.66 ND ND

Real fuel consumption rate
(km/l)

2.95 2.48 1.83

Performance efficiency (%) 0.8 0.65 0.65
Model Freighliner M2 35k Freighliner

Columbia
Freighliner
Columbia

Motor type MBE4000 de 12.8L
EPA 04

Cummins ISX Cummins ISX

Size of the fuel deposit (l) 189 270 271
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4.3.3 Ordering Costs

Concepts used for the determination of the ordering cost include the salary of the
personnel that intervene in the ordering process and fixed costs as electricity,
telephone, computer use, security clothing and equipment, wheel shims for the tank
truck, fire extinguishers and measuring equipment to check the fuel quality.

Regarding the personnel cost, two people are considered to have to be present at
the time of discharging, including the person in charge of the service station during
the first part of the fuel discharge. A salary of 10 000 MXN/month is considered for
the employee, while the station manager has a higher salary but must only be
present part of the time. The charge and/or discharge of a 20 m3 tank truck takes
between 30 and 45 min, but time must be added for operations like connection and
disconnection of the discharge hoses, security revisions of equipment, quality
measuring of the material to discharge, leading to an estimate of 1 h for the
complete operation [63]. Considering a finite truck fleet, transport times to and from
the DT and recharging times, a maximum of 4 trips per day is considered. In
addition to the discharging personnel, a secretary with a monthly salary of 10 000
MXN is considered to dedicate 1 h of her time to each order. Considering 6 weekly
working days per week or 25 per month, and 8 daily working hours, a salary of 50
MXN per hour and a total salary cost of 150 MNX per emitted and supplied order.

Fixed ordering costs apportioned per order are assumed to ascend to the same
amount, giving a total of 300 MNX per order emitted and per service station.

4.4 Mathematical Optimization Model

4.4.1 Model Formulation

Defining the indexes, decision variables and employed parameters, a mathematical
model can be developed which can be used for the determination of a good solution
for the ordering quantity in each service station, in addition to the type of truck that
minimizes the objective function. The model is based on mixed integer program-
ming, with linear restrictions but a non-linear objective function.

In addition to the previously defined variables (see Sect. 4.3), the following
indices, variables and parameters are used in the model (Table 14):

Table 14 Indexes and additional variables and parameters used in the model

Indexes Model parameters and decision variables

i Fuel type (i = 1, 2, 3) Cj Truck capacity for truck j [m3]
j Truck type (j = 1, 2, 3) Oik Number of orders for fuel i in SS k

k Service station (SS) number (k = 1, 2,
…, 18)

Dik Yearly demand for fuel type i in SS
k [m3]

Sik Storage tank size for fuel type i in SS
k [m3]
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The objective function minimizes total distribution costs. It is a function of the
ordered quantity Qik for fuel i and service station k, which corresponds in each case
to the sum of the number of ordered trucks of each type j multiplied by the capacity
of the truck, Cj (Eq. 6). Note the factor of 0.9, which indicates that the fuel vessel
should be filled to approximately 90% of its rated capacity; this restriction is
imposed by corresponding safety regulations (see for example [61]) to avoid
accidents due to overload and/or fuel leaks.

Qik = ∑
3

j=1
nijk ⋅ 0.9 ⋅Cj ∀ i, k ð6Þ

The distribution costs Cik for fuel i and service station k (Eq. 7) are calculated as
the sum of holding costs and transport costs as defined by Eqs. (2) and (5). The
transport cost in Eq. (5) was determined considering the number of fuel trucks nijk
in one order, so it must be multiplied by the number or orders for that fuel and
service station.

Cik =20% ⋅Cpi ⋅
Qik

2
+Oik ⋅ Cfk ∑

3

j=1
nijk ⋅Cvijk

 !
∀ i, k ð7Þ

To obtain the total cost (Eq. 8), the above costs are summarized for the three fuel
types in each service station k and this quantity is increased with the ordering cost.
If the total cost is to be minimized, orders for the different fuel types in a specific
service station should be concurrent. Assuming concurrency, the number of orders
for service station k in an annual planning horizon equals the order number of the
most frequently ordered fuel. The latter depends on both the demand and storage
capacities of the fuels.

CT = ∑
18

k=1
Cok ⋅ max

∀i
½Oik�+ ∑

3

j=1
Cijk

 !
∀ i, k ð8Þ

The constraints of the model are the following:

• Each truck only supplies one service station in each trip.
• Security constraint: fuel trucks must not be overloaded; they are assumed to be

charged at 90%. This restriction is considered in the formulation of the ordered
quantity (Eq. 6).

• A single order is considered for any combination of truck and fuel types arriving
at a service station on a specific day.

• The demand is always satisfied; only a remnant smaller that the ordering
quantity can exist and will be transferred to the next planning horizon. As
mentioned before, this is a direct consequence of the specific restrictions in
loading capacity in fuel transport and containers vessels. For each iteration, the
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number of orders corresponds to the demand divided by the ordered quantity
and the following restrictions must be fulfilled:

Oik =
Dik

Qik
∀ i, k ð9Þ

• An unlimited fleet is considered.
• Capacity constraint: the total ordered quantity for fuel i and service station k for

all types of truck in each order cannot exceed the capacity of the corresponding
storage tank:

Qik ≤ Sik ∀ i, k ð10Þ

The tank is assumed to be at its minimum level at the time of ordering.
• No negativity constraint: all physical quantities should be positive.

Finally, the optimization model was implemented in the R programming lan-
guage, being the leading open-source tool in data analysis. Its main advantages are
that it is platform independent, open-source, free and very flexible and straight-
forward to use. It can handle big amounts of data due to its power and efficient
calculations. In addition, R allows integration with other languages as C/C++, Java
or Phyton and has packages allowing to integrate the optimization model within a
user-friendly interface.

4.4.2 Proposed Solution

Greedy randomized adaptive search procedure (GRASP) is a metaheuristic tech-
nique for combinatory optimization. The technique consists of an iterative process,
where each iteration is composed of two stages: in the first stage, a feasible solution
is constructed, while the second stage consists of a local search in the neighbour-
hood of the previous solution [70].

The proposed model is highly combinatorial; considering the maximum storage
tank capacity of the fuel involved in the problem (200 m3), a maximum of 66
different truck combinations can be found for each fuel type and service station,
giving a total of 1.8 × 1098 combinations. Only a very small amount of them
correspond to feasible truck combinations, as a certain combination cannot deliver
more fuel than is possible to receive in the storage tank.

Instead of determining the objective function for all possible combinations and
discarding those that violate the storage capacity restriction, the number of feasible
truck delivery combinations is determined for each storage tank size. As, due to
security reasons, fuel vessels should be loaded at a maximum of 90% and only fixed
storage tanks exist (see Table 16), in this study the 45 m3 truck is assumed to be
loaded with a maximum of 40 m3 of fuel to simplify calculations. As an example of
how feasible combinations were determined, Table 15 presents all possible
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combinations to deliver a maximum of 80 m3. This amount can be supplied with
two 45 m3 trucks, one 20 m3 and one 60 m3 truck, two 20 m3 trucks and one 45 m3

truck or, finally, four 20 m3 trucks. However, since the storage tank must not
necessarily be filled completely, there exist other combinations where the total
quantity supplied is less than 80 m3. For this example, there are a total of 10
feasible combinations.

The number of feasible combinations in this problem for commercial storage
tanks in Mexico are given in Table 16.

Selecting only feasible delivery combinations, the solution space was reduced to
5.75 × 1038, which is only a fraction of the original problem search space.

To obtain a solution, at each iteration a feasible delivery combination was
randomly selected for each type of fuel and service station. For this combination,
total distribution costs are determined. If the solution obtained is better than the best
one from previous iterations, it is stored as the best solution. If not, it is discarded.
The algorithm stops at a fixed number of iterations, or when the solutions are not
improving at a given number of iterations.

Table 15 Feasible combinations for a 80 m3 storage tank

Combination Number of
20 m3 trucks

Number of
45 m3 trucks

Number of
60 m3 trucks

Total quantity
delivered (m3)

1 1 0 0 20
2 0 1 0 40
3 2 0 0 40
4 0 0 1 60
5 1 1 1 60
6 3 0 0 60
7 0 2 0 80
8 1 0 1 80
9 2 1 0 80
10 4 0 0 80

Table 16 Number of feasible
combinations for the storage
tanks used in the problem

Storage tank size (m3) Number of feasible combinations

40 3
50 3
60 6
80 10
100 15
120 22
160 40
200 66

Optimization and Simulation of Fuel Distribution … 273



4.5 Simulation

To show how simulation can be used as a tool to assess managerial decisions, we
analysed if it is convenient to consider a heterogeneous fleet to deliver the fuel
orders, instead of the current homogeneous fleet. A planning horizon of one year
was considered.

4.5.1 Scenario Definition

To be able to analyse if the inclusion of tank trucks with a higher capacity (45 and
60 m3 respectively), will minimize total distribution costs, the model was set up for
two situations:

• If the present scheme of homogeneous fleet is considered (only 20 m3 trucks),
the 54 storage tanks in the 18 service stations will be supplied only with these
trucks. As the maximum storage size is 200 m3, maximum ten feasible truck
combinations exist. For instance, the 80 m3 storage tanks can be supplied with
one, two, three or four 20 m3 trucks (combinations 1, 3, 6 or 10 in Table 15). If
the supply in all fifty four storage tanks is considered at the same time, a total of
2.2 × 1022 feasible combinations exist.

• When 45 and 60 m3 trucks are included, 5.75 × 1038 feasible combinations
exist, as explained in Sect. 4.4.2.

Simulation conditions:

• Considering the parameters included in the model (for example, unlimited
number of trucks and drivers) for the present study, the distribution cost at a
certain service station does not depend on information at other service stations.
For this reason, the optimization of the above scenarios can be carried out at
each service station independently to increase the algorithm’s efficiency. The
independency between service stations can be lost, of course, if more infor-
mation becomes available in a later stage and for example resources are shared
between them.

• A total of 100 000 iterations per simulation and 10 repetitions were carried out
for each scenario. Running time was about 25 s in a MacBookPro 2 GHz for
each run. Analysis of the repetitions suggested that 100 000 iterations was
enough to come to a good solution.

4.5.2 Experiments and Discussion

Solving the model for the first scenario where only 20 m3 trucks are programmed, a
minimum total distribution cost of 1 980 076 MXN was obtained.
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The model was rerun for the scenario that considers a heterogeneous fleet (20, 45
and 60 m3). For this case, a minimum distribution cost of 1 733 585 MXN was
found, showing an improvement of minimum 12.4% with respect to the current
costs. Since up to now no optimization rules have been applied, the current dis-
tribution costs can still be higher than the 1 980 076 MXN obtained in the simu-
lation scenario. In other words, the inclusion of tank trucks with more capacity
seems to decrease distribution costs considerably.

The best truck allocation scheme found by the model is presented in Table 17.
The proposed allocation scheme shows preference towards trucks with a higher

capacity, which is consistent with the conclusion that the use of a heterogeneous
fleet can cut distribution costs.

The corresponding ordered quantity, the number of orders in the yearly planning
horizon and the order frequency (in days) can be found in the Table 18.

If the company is not willing to buy trucks with other capacities on a short term
(vehicles can be substituted for example only when their useful life is over), the
proposed model can still be used to optimize the fuel distribution with the current
homogeneous fleet, as this study showed the following:

• Transport costs seem to be an important portion of the total distribution cost.
This is suggested by the fact that bigger trucks are preferred.

Table 17 Truck allocation scheme proposed by the model

SS 20 m3 trucks 45 m3 trucks 60 m3 trucks

Gasoline
A

Gasoline
B

Diesel Gasoline
A

Gasoline
B

Diesel Gasoline
A

Gasoline
B

Diesel

1 0 0 0 1 1 1 0 0 0

2 0 0 0 0 1 0 1 0 2

3 0 0 0 1 1 0 0 0 0

4 0 1 0 3 1 0 0 0 0

5 0 0 0 1 1 0 0 0 0

6 0 0 0 2 1 1 0 0 0

7 0 0 0 2 0 0 0 1 0

8 0 0 0 1 1 0 1 1 1

9 0 0 0 1 1 0 1 1 0

10 0 0 1 1 1 0 0 0 0

11 0 0 0 0 0 0 1 1 1

12 0 0 0 1 1 1 0 0 0

13 0 0 0 1 1 0 1 1 1

14 0 0 0 1 2 0 1 0 0

15 2 0 0 0 2 0 2 0 0

16 0 0 0 0 2 0 3 0 1

17 0 0 0 1 1 0 1 0 1

18 0 0 0 1 1 0 1 0 1
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• For the same reason, it can be cheaper to supply bigger and less frequent orders;
obviously, considering the maximum capacity of the storage tank for each type
of fuel. As mentioned before, in this study an unlimited existing homogeneous
fleet is considered. Restrictions in the number of available trucks can change the
outcome of the model.

• The fuel with the highest demand (in most cases gasoline A) seems to govern
the ordering scheme, suggesting that it is possible to make the planning in stages
and adjust the reordering schedule of the less requested gasolines based on the
optimal ordering schedule for gasoline A. More simulation runs should be
carried out to revise this assumption.

In conclusion, the proposed scenario of including trucks of different capacity
showed to be less costly than the current situation in which a homogeneous fleet is
used; the tool presented in this study can be used for the optimization of the
allocation and delivery scheme with the current fleet or when other vehicles with
different capacity are included, as well as for different “what-if?” questions raised
by the management of the company.

Table 18 Ordered quantity, number of orders and order frequency proposed by the model

SS Ordered quantity (m3) Annual orders Order frequency (days)

Gasoline
A

Gasoline
B

Diesel Gasoline
A

Gasoline
B

Diesel Gasoline
A

Gasoline
B

Diesel

1 36 36 36 110 20 70 3.3 18.3 5.2

2 54 36 108 203 55 200 1.8 6.6 1.8

3 36 36 0 152 28 0 2.4 13.0 –

4 108 54 0 83 30 0 4.4 12.2 –

5 36 36 0 152 28 0 2.4 13.0 –

6 72 36 36 109 39 160 3.3 9.4 2.3

7 72 54 0 95 23 0 3.8 15.9 –

8 90 90 54 92 17 89 4.0 21.5 4.1

9 90 90 0 122 22 0 3.0 16.6 –

10 36 36 18 152 28 200 2.4 13.0 1.8

11 54 54 54 102 14 45 3.6 26.1 8.1

12 36 36 36 304 42 134 1.2 8.7 2.7

13 90 90 54 92 17 67 4.0 21.5 5.4

14 90 72 0 61 14 0 6.0 26.1 –

15 144 72 0 76 28 0 4.8 13.0 –

16 162 72 54 51 21 156 7.2 17.4 2.3

17 90 36 54 92 28 89 4.0 13.0 4.1

18 90 36 54 61 28 178 6.0 13.0 2.1
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5 Conclusions

The methodology applied in this chapter corresponds to a mathematical program-
ming model with a tailored heuristic solution, originally based on the GRASP
algorithm, to optimize total distribution costs in a fuel distribution network. The
model provides estimates of the fuel quantity to order, the best type of truck to carry
out the supply, as well as the ordering schedule that minimizes the associated costs
of distribution and inventory. Subsequent simulation of several scenarios related to
critical situations provides a cheap, flexible and quick way to assess different
managerial decisions.

Scenarios that were analysed include the selection of a homogeneous versus a
heterogeneous fleet. The current homogeneous fleet was not proven to be the most
cost-effective option. In addition, the model is an interesting tool to learn more
about the posed supply problem, as for example the preference of supplying bigger
quantities on a less frequent basis.

With the present model, what-if analysis can easily be carried out on questions as
for example:

• What if the fuel company decides to construct a new service station?
• What if the fleet is limited? In which case should new trucks be purchased?
• What if in the future more companies (and thus different fuel terminals in the

same region) start to operate?
• Is a bigger storage tank needed for some fuels?
• In the last months of 2016, the price of diesel increased by approximately 25%

due to political and economic instability in Mexico. Does this affect the optimal
selection of the fleet? If this raise in diesel cost would persist, would the pre-
vious conclusions remain valid?

The flexibility of R to program this kind of optimization model makes it very
easy to include more advanced features or extend the problem to a larger spatial
scale. Programming in R gives very fast answers, so it should not be a problem to
consider, among other, more service stations, political divisions, truck types or cost
concepts. Even unexpected situations such as traffic problems due to major main-
tenance or construction roadworks in a heavily congested city such as Mexico can
be evaluated, for example by considering an “equivalent distance” for detours in the
determination of variable transport costs. With these relatively simple adaptations,
the nature of “what if?” questions which can be posed is very extensive.

As several variables, such as demand or fuel price, are stochastic in nature,
future investigations may include determining the corresponding behaviour with a
probability density function; in this case, the quantity to be ordered will be deter-
mined based on these probability functions and it may be necessary to change the
solution strategy. More efficient solution strategies can be considered in the future
to find a solution more quickly in these complex situations.

Finally, it should be noted that, due to the specific nature of the problem studied
in this chapter, an existing heuristic was not necessarily the best option to find a
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quick and good solution. Although today there are very powerful mathematical
tools and computers to solve an operational research problem without worrying too
much about the required computing resources, common sense indicates that the
very nature of optimization and engineering prefers to apply simpler strategies,
based on previous knowledge of the problem, if they achieve a less intensive use of
resources.
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