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Abstract Manufacturers are facing an ever-increasing demand for customized
products on the one hand and environmentally friendly products on the other. This
situation affects both the product and the process life cycles. To guide
decision-making across these life cycles, the performance of today’s manufacturing
systems is monitored by collecting and analyzing large volumes of data, primarily
from the shop floor. A new research field, Data Mining, can uncover insights
hidden in that data. However, insights alone may not always result in actionable
recommendations. Simulation models are frequently used to test and evaluate the
performance impacts of various decisions under different operating conditions. As
the number of possible operating conditions increases, so does the complexity and
difficulty to understand and assess those impacts. This chapter describes a
decision-making methodology that combines data mining and simulation. Data
mining develops associations between system and performance to derive scenarios
for simulation inputs. Thereafter, simulation is used in conjunction with opti-
mization is to produce actionable recommendations. We demonstrate the method-
ology with an example of a machine shop where the concern is to optimize energy
consumption and production time. Implementing this methodology requires inter-
face standards. As such, this chapter also discusses candidate standards and gaps in
those standards for information representation, model composition, and system
integration.
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1 Introduction

In 2014, the United States manufacturing industry produced $2.1 trillion worth of
goods and supported 12.3 million jobs [1]. While these figures are impressive, there
has been a declining trend in manufacturing’s share of the Gross Domestic Product
(GDP). The reasons for this decline include increasing global competition, sus-
tainability concerns, and uncertainties in the cost and supply of materials [2].

Traditionally, cost, quality, productivity, and throughput are the major consid-
erations when selecting materials, manufacturing processes or developing produc-
tion plans. However, environmental sustainability is now considered to be the
fourth such consideration. Even though it may negatively impact the other three,
sustainability is deemed critical for an organization to succeed in today’s markets.

To better understand and predict those impacts, a type of manufacturing systems,
called smart manufacturing systems (SMS), is being proposed. SMS are charac-
terized by the wide availability of data that can shed light on those impacts and
predictions. This data is expected to improve real-time system planning and
operational decision-making. But this can be achieved only if context and meaning
can be deduced from it. Data collected by smart sensors, radio frequency identifi-
cation (RFID), and wireless communications, is described by volume, velocity,
variety, veracity, validity, volatility, and value—the so-called 7 Vs of big data [3].
Figure 1 from United Nations Economic Commission for Europe (UNECE) [4]
shows the recent past, current, and projected “explosion” of business data.
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Gröger et al. [5] identifies two types of collected data: process data and opera-
tional data. Process data is made up of execution data, which includes flow-oriented
machine and production-events data recorded by the Manufacturing Execution
System (MES). Operational data mainly encompasses Computer-Aided Design
(CAD), Computer-Aided Process Planning (CAPP), and Enterprise Resource
Planning (ERP) data. These data are interrelated and influenced by many factors
including hidden patterns, correlations, associations, and trends. It is our view that
uncovering these factors can contribute to the decision-making process consider-
ably. The conventional approaches have inherent limitations for deriving actionable
recommendations based on the process data and operational data [6]. Thus, a new
methodology is needed.

In this chapter, we describe such a methodology combining simulation, data
mining, and optimization specifically for utilizing the large amount of process and
production data. This methodology is demonstrated with a case study of a
machining process where environmental impacts and production time are the per-
formance measures. The objective is to choose the process sequence, production
plan, manufacturing resources, and parameter settings that optimize both above-
mentioned measures during production operation.

Traditionally, simulation has been used to investigate the performance of
manufacturing systems under a predefined set of scenarios. Better et al. [7] observe,
however, that in a system with a high degree of complexity and uncertainty, (1) it is
not always obvious which parameters and variables to focus on to improve per-
formance nor (2) is it evident to what extent these variables should be changed for
optimal operation. Brady and Yellig [8] also observe that in complex simulation
systems of real-world problems, it is challenging to determine a set of input vari-
ables and their values to obtain optimal output. One major reason is that data
contains intricate dependencies, which must be determined before generating the
input to simulation models. Techniques and methods are needed to discover such
dependencies before performing simulation analysis. In summary, the main con-
tribution of this chapter is the novel methodology that integrates data mining,
simulation, and optimization techniques for more effective model parameter iden-
tification, simulation input preparation, and actionable recommendation derivation.

In our proposed methodology, data-mining is used to develop high-level asso-
ciation rules among various kinds of data, including performance data. The outputs
from using those rules are used as inputs to the simulation model. Simulation
optimization then determines the best process and operational parameter settings to
obtain actionable recommendations for decision makers and operators. We believe
that the combined effect of data mining, simulation, and optimization can improve
manufacturing decision making in face of big data and system complexity.

We use a case of a small machine shop with two performance objectives:
minimize production time and resource—material, energy, and water—usage dur-
ing the machining processes. Each part design has a different process plan. Some
machines can perform more than one process. However, the sequencing of parts
through the shop depends on the users’ objectives. The choice of a machine for a
given process will produce different impacts on both performance objectives.
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The chapter is structured as follows: Section 2 provides a background to data
mining with a focus on the unsupervised learning techniques: association and
clustering. Section 3 overviews simulation modeling for manufacturing applica-
tions. Section 4 reviews simulation optimization methods and techniques as they
are currently applied to decision-making in manufacturing. Section 5 illustrates the
integration of data mining, simulation, and optimization. Section 6 presents the
proposed methodology and the strengths of a combined-methods approach. Sec-
tion 7 presents a case study demonstrating how energy and production time can be
optimized in a machine shop based on the methodology. Section 8 presents a
summary and discussion of how the methodology can be implemented highlighting
integration needs.

2 Background to Data Mining

This section provides a background to data mining techniques in manufacturing
particularly association and clustering that are relevant to the work of this chapter.

2.1 Data Mining Techniques

Data mining is the process of discovering knowledge hidden in large amount of
data [9]. The data being mined is typically observed data—as opposed to experi-
mental data—so the data mining techniques employed have no influence on the
data-collection methods. In Agard and Kusiak [10], for example, the authors show
how to mine data stored in ERP, previous schedules, and MES to gain knowledge
about the best choice of manufacturing processes based on defined design
characteristics.

Data mining techniques draw from several disciplines including statistics,
visualization, information retrieval, neural networks, pattern recognition, spatial
data analysis, image databases, signal processing, probabilistic graph theory, and
inductive logic programming. Data mining can in general be distinguished into two
groups: descriptive and predictive. Descriptive techniques describe events from data
and factors that are responsible for them. Predictive techniques attempt to predict
the behavior of new data sets. Both techniques use the same general approach
which is to (1) identify data fields and types and (2) specify the data as discrete or
continuous.

Our current focus is on predictive data mining. Predictive data mining types
include supervised learning, unsupervised learning, and semi-supervised learning
[11]. With supervised learning, output variables are known or predetermined and
the purpose of a learning algorithm is to develop a function that maps output
variables to the inputs. Output variables corresponding to any given inputs can then
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be predicted using the learned function. Semi- supervised learning problems have
only some of the data associated with output variables.

Unsupervised learning is where none of the input data is associated with prior
defined responses, called data labels. The objective for unsupervised learning is to
model the underlying structure or distribution in the data in order to learn more
about or discover any patterns in the data. In other words, the intent of unsupervised
learning is to understand hidden data concepts where the data labels are not known
beforehand.

The case study described in this chapter involves predicting the best operational
performance of a manufacturing system based on collected data, from which the
best parameters are determined. Therefore, we investigate a case of unsupervised
learning. Unsupervised learning techniques include clustering and association rule
data mining [11]. We further discuss association and clustering as follows.

2.1.1 Association

Association techniques (1) discover relationships among large volumes of data and
(2) represent those relationships as rules that “describe” the data. Discovery is based
on the probability of co-occurrence of items in a collection of a large data set. The
relationships between co-occurring items are expressed as association rules. Con-
ceptually, an association rule indicates that the occurrence of certain items in a
transaction would imply the occurrence of other specific items in the same trans-
action [12]. In other words, there is a supposed phenomenon within the system that
makes these two types of items to concurrently occur.

The aim of association data mining is not to try to understand the underlying
phenomenon. Rather, the association learning process attempts to determine the
relating association rules. The idea of mining association rules originates from the
market analysis where rules such as “a customer who buys products A and B also
buys product C with probability p.” In theory, given enough manufacturing data,
such rules could be derived, rules that help explain the relationship between the
values of the input data and the values of output data representing system perfor-
mance. These rules could be of the type “if parts are sequenced such that process A
is performed before process B, then there is an increase in the total energy con-
sumed per part with probability p.” Our focus then is on understanding the rela-
tionship between input and output variables (performance data)—that is, the rules—
as well as the ranges that these variables can take. Algorithms for association rules
learning concentrate on obtaining statistically significant patterns, and deriving
rules from those patterns [13]. This is done by finding the frequency of concurrence
of items from a transaction dataset and generating association rules based on user
specified minimum confidence.

For example, one rule might say “that if we pick any product at random and find
out that it was processed according to a given processing sequence through the
factory floor, we can be confident, quantified by a percentage, that its production
time is larger than average.”
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Association rules derived from data should be reliable. The measures of rules
obtained include support and confidence of a rule. Support is a proportion of items
in the data that contain a given set of items that occur together. Confidence is an
indicator of how often a rule has been found to be true.

The main challenge of association rule induction is that there are so many
possible rules. For example, the large product range of a typical job shop results in
several classes of product designs, materials, and processing requirements. The
rules cannot be processed by inspecting each one in turn. Therefore, efficient
algorithms are needed to restrict the search space and check only a subset of all
rules, but if possible, without missing important rules. One such algorithm is the
Apriori algorithm [14], which is the algorithm used in the work of this chapter.

2.1.2 Clustering

Clustering is the process of identifying a finite set of categories, called clusters, that
“describe” the data. Clustering techniques segment large data sets into smaller
homogeneous subsets that can be easily managed, separately modelled, and ana-
lyzed [15]. Clusters are formed such that objects in the same cluster are more
similar to each other than objects in different clusters.

Clusters correspond to hidden patterns in the data. Clusters can overlap or be at
multi-level dimensions such that a data point can belong to more than one cluster.
A clustering algorithm creates clusters by identifying points closest to the center of
a cluster and expanding outwards up to a certain threshold when a new cluster
needs to be formed. The process continues until all data points are assigned to a
cluster [11].

In manufacturing applications, Kerdprasop [16] used clustering techniques to
determine patterns and relationships in multidimensional data to indicate a potential
poor yield in high volume production environments. Another potential application
is determining relationships that can help differentiate categories of parts that can be
processed by similar machines. The features of such parts are used to form a cluster
and are useful in developing cell manufacturing systems through “group
technology.”

3 Modeling and Simulation for Manufacturing
Applications

A simulation is a computerized model of a real, or a proposed, system. Users can
conduct experiments with such a model to better understand the likely behavior of
that system for a given set of conditions and scenarios [17]. Because of the dynamic
nature of manufacturing operations, most simulation models are stochastic.
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Law and Kelton [18] summarize the benefits of modeling and simulating
manufacturing systems. First, they help identify and quantify the equipment and
personnel. Second, they can predict the probability distributions associated with
performance. Third, they can be used to evaluate operational procedures. Fourth,
they can take into consideration of stochastic behavior of the system.

Objectives and types of simulation models needed may differ within each life
cycle phase of a manufacturing system. Table 1 shows typical objectives and
simulation types in various phases of a system life cycle. A review of 317 simu-
lation papers by Negahban et al. [19] shows three major research topic areas:
simulation language development, manufacturing system design, and manufactur-
ing system operation. For manufacturing system operations, simulation helps users
understand, assess, and evaluate the operation so that the ‘best’ configurations that
result in ‘optimum’ performance can be determined.

Manufacturing simulation has been widely used for determining policies or rules
to be employed in specific operational situations [20]. But, for a long time, its
application to real-time control was limited by computational capacity, system
reconfiguration time, data, and optimization issues. These days, a number of
technologies is helping to overcome those limitations. Those technologies include
high-speed computation, communication, integration technologies, standards, and
automated data collection and processing [21, 22]. Simulation models can be
updated with data to provide capacity to foresee the impact of new orders, equip-
ment failures, and changes in operations.

Simulation can also be used for generating and filling gaps in missing data for
analysis by other methods. Shao et al. [23] demonstrate how simulation could be
used to generate data to help evaluate the performance of data-analytics applica-
tions. For this approach to be effective in real applications, however, data-
generating models require improved verification and validation methods.

One of the major activities of simulation projects is input-data preparation.
Previous research efforts have attempted to address this issue. For example, Skoogh
et al. [22] demonstrates a Generic Data Management Tool (GDM—Tool) for data
extraction, conversion, cleaning, and distribution fitting. The GDM—Tool enables
data reuse, thereby, reducing needed time for carrying out simulation projects.

Table 1 Simulation application in different stages of manufacturing system life cycle

Phase Objective Model type

Planning Production volume, factory
requirements

System dynamics, control theory

Basic
design

Department layout options,
throughput analysis, aggregate
analysis

System dynamics, discrete event
simulation, agent based simulation

Detailed
design

Layout, equipment specification,
production management options

Discrete event simulation, agent
based simulation

Setup and
optimization

Production validation Discrete event simulation
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However, finding optimal parameters and settings from a large volume and variety
of streaming data, as addressed by this chapter, cannot be carried out using the
GDM-Tool.

The common approach for simulation-based decision-making is to prepare and
run a number of scenarios and select the one with best outcome, as shown in Fig. 2.
However, this approach is very difficult for a complex system with several inputs,
particularly if model execution time is long. In addition, the quality of the answer
obtained largely depends on the skill of the analyst who selects and defines the
scenarios.

Identifying the “best solution” requires an optimization process, which is mostly
the maximization or minimization of the expected value of the objective function of
a problem [24]. Brady and Bowden [25] proposed two approaches for integrating
simulation and optimization. The first is to construct an external optimization
framework around the simulation model. The second is the internal approach, to
investigate the relationship between input variables based on the dynamics of their
interaction within the simulation model. This chapter uses the first approach. The
importance of optimization has led simulation vendors to include optimization
modules as part of their tools.

4 Simulation Optimization

Simulation optimization is the search for specific values or settings of controllable
input parameters to a simulation such that a target objective is achieved [26]. This
objective depends on simulation input. The procedure for optimization is to define a
set of decision variables and optimize (i.e., maximize or minimize) the designated
performance subject to constraints and bounds on range of the decision variables.
Azadivar [24] formulated one form of the simulation optimization as:

Maximize or minimizeð Þ fðXÞ=E zðXÞ½ �
subject to gðXÞ=E rðXÞ½ � ≤ 0
and hðXÞ≤ 0.

where z and r are random vectors representing several responses of the simulation
model for a given X, a multi-dimensional vector of decision variables. The func-
tions f and g are the unknown expected values of these vectors, which can only be

Simulation 
model

System
performance

System
inputs

Fig. 2 The conceptual
relationship between inputs
and outputs of a simulation
model
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estimated by observations on z and r. That means that the objective function
(objective functions, in case of a multi-criteria problem) and/or constraints, are
responses that can only be evaluated by simulation. The variable h is a vector of
deterministic constraints on the decision variables.

The specific optimization algorithms used often depends on the type of simu-
lation method. Because running a simulation model requires significant computa-
tions, efficient optimization algorithms are crucial. Some of the optimization
methods that are applicable to different simulation types are overviewed by Amaran
[26]. Carson and Maria [27] categorize simulation optimization methods into gra-
dient based search methods, stochastic optimization, response surface methodology,
heuristic methods, A-teams, and statistical methods. Fu et al. [28] reviews the state
of practice for simulation optimization.

Table 2 shows a sample of commonly used simulation-based optimization tools.
Researchers also often develop custom-made optimization tools based on simula-
tion software for particular situations. Phatak et al. [29] introduce an example of an
in-house optimization tool for manufacturing problems based on the particle swam
optimization algorithm.

Unlike mathematical-programming formulations of optimization problems, there
is no way of telling whether an optimum has been reached using simulation-based
formulations. The optimization packages, such as those shown in Table 2, seek
improved system performance by changing settings of system parameters. Conse-
quently, these packages develop a solution incrementally by building upon earlier
solutions to obtain a better one. The packages do this by proposing new simulation
inputs, executing the simulation, and evaluating the performance iteratively [7].
Figure 3 illustrates this procedure.

Table 2 Optimization search strategies for selected simulation tools

Optimization package Search strategy
(optimization method)

Simulation software

SimRunner Evolutionary, genetic
algorithms

ProModel

OptQuest Scatter search, tabu search,
neural networks

Arena, Quest, FlexSim, Micro Saint
Sharp, Simio, etc.

AutoStat Evolutionary, genetic
algorithms

AutoMod

Optimiz Neural networks Simul8
Optimizer Simulated annealing, Tabu

search
Witness

ExtendSim
evolutionary
optimizer

Evolutionary ExtendSim
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5 Integrating Data Mining with Simulation
and Optimization

Embedding an optimization module into simulation tools, as described in Sect. 4,
provides actionable solutions. However, determining the set of inputs that optimize
system performance is challenging because of the large volume of data, and number
of possible input parameters and their interactions. Although tools such as the input
data management to simulation have been developed from previous research [22],
they do not address the data challenges discussed in the previous section. We propose
using data mining as a technique to help obtain simulation scenarios through asso-
ciation of collected data with system performance. Remondino et al. [30] described
two ways of combining data mining with simulation. The first, called micro-level
modeling, is where data mining is applied on historical data to (1) develop the
appropriate scenarios and (2) tune scenario-based simulation input parameters.

The second, called macro-level modeling, is where data mining analyzes sim-
ulation output data to (1) reveal patterns describing system behavior and (2) de-
velop ways to use those patterns to aid decision-making [31, 32].

Our proposed methodology is based on micro-level modeling the first approach.
Figure 4 shows the high-level components and their interactions. Two features are
combined with the classical simulation modeling and analysis: data-mining and
optimization. This approach is suitable for both static and dynamic data.

Simulation 
model

Optimization 
engine

Scenarios System performance

New system 
input

Solution 

Fig. 3 Process of getting a solution using simulation-based optimization

Simulation 
model

Optimization 
engine

Data

System performance Solution 

New system input

Data mining 
tools

Variables,
parameters

Fig. 4 Data mining integrated approach to simulation optimization
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6 A Methodology for Manufacturing System Optimization

Based on the review and discussion of Sects. 1 and 2, we conclude that (1) mod-
eling and simulation tools cannot directly use streaming data, and (2) further
analysis is needed to obtain actionable recommendations from the patterns and rules
obtained by data mining. Therefore, a methodology combining different methods is
needed. Operational steps for this methodology illustrated in Fig. 5 are next
described.

In summary, the user first formulates the problem by specifying the scope,
high-level performance objectives, indicators, and metrics. This is followed by
acquiring domain knowledge and developing a conceptual model to understand
model requirements, activities, and processes. The next step is to collect data and
apply data mining techniques on the data. The final steps are simulation modeling

Collect 
raw data

Formulate problem

Acquire domain 
knowledge 

Design conceptual  model 

Perform data 
analy cs

Derive ac onable 
recommenda ons

Perform what-if analysis 
and op miza on against 

the simula on  model

Real world

Build simula on and 
op miza on models

Data and 
distribu on   

input

Performance metrics

Ac ons
Problems

Fig. 5 Illustration of methodology steps
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and optimizations. Detailed description of these steps follows in the next
paragraphs.

Formulate the problem: This is the definition of the goal and scope of the
project. The target plant, work cell, machine, manufacturing operations, or pro-
cesses are specified at this step. The goal might be, for example, to minimize energy
consumption for a foundry shop or to maximize throughput of a machine
shop. Relevant resources, operational details, constraints, products, activities, and
data collection points are also identified.

Acquire domain knowledge: This is the step to acquire domain knowledge for
executing the project. Domain knowledge includes a thorough understanding of the
manufacturing processes and system, indicators, metrics, and performance objec-
tives and goals. In addition, knowledge about software (data mining, simulation,
and optimization), data collection, communication, and storage are also required.

Design a conceptual model: This is the step to construct a high-level concep-
tualization of the problem so that the system can be better understood and modeled
in detail. The model should provide the right level of abstraction to maintain the
focus on the objectives and understand the problem before initiating the modeling
and analysis. When designing a conceptual model, the following typical questions
need to be answered to help modelers abstract the problem and plan the detailed
modeling (1) What are the components (systems/processes) that need to be mod-
eled? (2) What are the inputs and outputs of each component? (3) What are the
relationships between components? (4) What are the indicators and metrics? and
(5) What are the data requirements for the metrics? The conceptual models also help
identify requirements for data collection. There are a number of available con-
ceptual modeling methods and techniques including workflow modeling, workforce
modeling, object role modeling, and system modeling. A system modeling lan-
guage such as SysML [33] would well be used for the conceptual model to rep-
resent requirements for analysis and decision making.

Collect data: Manufacturing data is mainly collected through the use of sensors,
bar codes, vision systems, meters, lasers, white light scanners, and RFID. Data
collected is mainly process execution data, i.e., machine and production events
recorded by the MES. From machine tools, for example, this data may include
machine name and type, process, processing time, idle time, loading time, energy
consumption, machine setting, tool, changeover time, and tear down time.
MTConnect is a standard that can be used for data collection [34]. For data storage,
Structured Query Language (SQL) is one of the means of managing data. A data
model should be developed for efficient management.

Perform data mining: There are a variety of data-mining techniques and tools
available. They are based on the methods reviewed in Sect. 2.1. The choice of a
technique depends on the particular problem. If we use association rule learning, the
applicable tools include Weka, R-programming, Orange, Knime, NLTK, ARMiner,
arules, and Tanagra.

92 D. Kibira and G. Shao



Mathematically, the performance indicator, y, e.g., energy, can be represented as
a function:

y= x,wð Þ,

where x= x1, x2, x3, . . . , xdð ÞT denotes the set of system parameters that are associated
with the amount of energy used and w denotes the weight of the parameters.
In the work presented in this chapter, y is known and the task of data mining is to
determine the system parameters x.

Perform simulation modeling and optimization: The system is represented by
a simulation model. Many simulation tools are supplied with optimization modules
(as shown in Table 2). Typically, these tools automatically execute multiple runs
and systematically compare the results of a current run with past runs to decide on a
new set of input values until the optimum is gradually approached. Core manu-
facturing simulation data (CMSD) standard can be used for representing the input
data for the simulation modeling [35].

Derive actionable recommendations: The final step is to derive actionable
recommendations by interpreting and translating the output from the optimization
process. The users also need to check if the recommended actions conflict with
existing knowledge about the system and resolve this conflict if necessary. As
Fig. 5 shows, the system performance can be monitored while data is continuously
collected so that a new set of decisions can be made when needed.

7 Case Study: Minimizing Energy Consumption
and Production Time in Machining Operations

Machining is one of the major manufacturing processes in the metal industry. The
process inputs, removal processes, and waste byproducts have a large potential
environmental impact. Currently, the relationships among them and their impacts
on the environmental have not been fully investigated. As a result, methods for
determining control inputs that optimize production objectives have not been fully
developed [36]. This section describes how the proposed methodology was applied
to a case study that uses data from a machining process for decision making. This
case is a first step for understanding and implementing the proposed methodology.

Many machined parts are produced in job shops. The case under study is based
on a machining job shop that was used in the research work reported in Kibira et al.
[36], and Hatim et al. [37] for simultaneously optimizing process plans and pro-
duction plans. In this investigation, we use a different part design. The shop consists
of the following machine tools: a turning lathe, a milling machine, a drill press, and
a boring machine. When orders are received and batched, it can be decided to focus
on any or all of these performance objectives (1) minimize costs (e.g., labor, cutting
tool, and energy), (2) minimize resource usage (e.g., material, energy, and water),
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and (3) maximize production. Figure 6 is a conceptual view of work flow through
the machine shop.

Each production batch, or each part in the batch, can potentially have its own
process plan because the user can choose different sets of machine and tools to
produce a given design feature on a part. We propose three approaches for the
sequencing of part-feature production: a predefined, a partially defined, and an
unspecified process plan. In the predefined case, each process has a pre-determined
machine and cutting tool, determined to optimize a given performance objective
such as minimum energy use. In an unspecified case, a machine is selected for
processing by a part according to a priority rule such as always choose the machine
with minimum number of parts waiting. The partially defined case is a combination
of these two. Either of these choices results in a different process plan and hence
different energy consumption, production time, and cost. Process and performance
data is collected for each batch as it passes through the machine shop. Both types of
data depend on resources used for each process within the process plan.

Formulate the problem: The scope and focus is on a machine shop and target
product is a grinding head shell, shown in Fig. 7. The manufacturing processes for
this part are facing, grooving, threading, spot drilling, and drilling. The objective is
to select a sequencing plan, a machine tool, and cutting tools for each process so as
to minimize energy consumption and production time.

Acquire domain knowledge: The following expert knowledge was acquired
before beginning to model the machine shop operations including production
resources, machining processes, energy consumption in machining, machining
time, production planning and sequencing in job shop environment, costs of
manufacturing processes, performance indicators and metrics, and performance
data. Take production resources as an example. Table 3 shows the manufacturing
processes to produce a grinding head shell and the machine tools available in the
machine shop. These are Computer Numerical Control (CNC) lathe, three-axis
vertical milling, press-upright drill, and mills-horizontal boring machine. For each
machining operation, one or more cutting tools can be chosen to meet the required
specification. Table 4 shows tool types available for each machine. Cutting tools

Order
arrival Lathe Mill Drill press Boring 

machine

T1,T2,T3 T4,T5,T6 T7,T8 T9

Manufacturing system
Part output

Feature
sequence

Tool types

Production 
time

Energy 
usage

Fig. 6 Conceptual view of inputs and impacts of the machining shop
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Fig. 7 Grinding head shell

Table 3 Resource
information for
manufacturing the grinding
head shell

Process Machine

Facing Three—axis CNC Lathe
Three—axis vertical milling machine

Grooving Three—axis CNC Lathe
Three—axis vertical milling machine

Threading Three—axis CNC Lathe
Spot drill Three—axis CNC Lathe

Drill press
Drill Three—axis CNC Lathe

Drill press
Boring mills-horizontal boring

Table 4 Tool types for use by each machine tool

Machine Tool type Tool description

Three—axis CNC Lathe T1 Single-point tipped tool
T2 Form turning
T3 Drill

Three—axis vertical milling machine T4 Slot milling
T5 Mill cutter
T6 Form milling

Drill press T7 Center drill
T8 Reamer

Boring mills-horizontal boring T9 Boring tool
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are as follows: turning (single-point tipped tool, form turning, drill), milling (slot
milling, mill cutter, form milling), drilling (center drill, reamer), and boring (boring
tool). When a machine may perform a particular operation, each type of tool would
perform it differently, which potentially results in different production time and
energy use.

Design conceptual model: The conceptual model shown in Fig. 8 is a schematic
representation of the problem, activity sequences, and information flow. It includes
product design, feature sequence, process selection, machines and tools require-
ments, and performance indicators that drive the above selections. The part design
describes design information, including the features’ forms, shapes complexities,
dimensions, tolerances, and surface conditions. Alternative networks that describe
features’ processing precedence during fabrication are described. Next, a set of
processes to manufacture a part is determined according to the part’s functionalities
and design requirements. The combinations of machines and tools that satisfy the
design and process requirements are designated. Performance indicators determine
the actions that give the machine shop the best chance to meet those objectives.

Model data collection: Based on domain knowledge acquired and the con-
ceptual model developed, mathematical expressions from published literature are
used to calculate energy consumption and processing time of the processes [38–44].
The processes in question are turning, milling, and drilling. A matrix of process and
prospective machine, and cutting tool to carry out the processing is used to
determine the production time and the energy consumed. Three examples are
provided to show the expressions employed.

The time to perform a turning operation is given by Tm = πDL
vf ,

the time for a drilling process is given by

Tm =
πDcðd+0.5Dctanð90− θ

2ÞÞ
vf

,

and, the energy consumed by a plain milling operation is given by

E=CzazDb
cf

udevTm.

for one specific case used in the model

E=
68.2azD− 0.86

c f 0.72d0.86v
6120

Tm

where

D, L workpiece diameter and length,
v, f, d cutting speed, feed rate, and depth of cut,
Tm machining time,
Dc diameter of the milling cutter or the drill diameter,
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z No. of teeth in milling cutter or no. of flutes in a tap,
θ drill point angle,
Cz constant of the milling operation,
a milling width,
b, e, u constants that are determined empirically. These are tabulated for different

types of machines and tools.

Part Design

Defines

Predefined 
feature 

sequence

Partially defined 
feature

sequence

Undefined 
feature

sequence

Features’ Processing Precedence

Measures:
Sustainability measures (Energy consumption)
Productivity indicators (Production time)

Processes

Machine

Tool

Require 

Generates

Require 

Require 

Production

Fig. 8 A conceptual model
representing the production
process and information flow
to a part design
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The values for some of these expressions are known constants. The others are
random variables, which have been fitted with probability distributions to simulate
their real—world variability. Only the energy consumed during processing can be
generated using such mathematical expressions. The same applies to production
time. The data set becomes (1) Machine that performs a process, (2) Tool type,
(3) Sequencing plan, (4) Energy consumption, and (5) Production time. The
machine cutting parameters (cutting speed, feed rate, and depth of cut) are set at
constant values. The energy consumed differs for the sequencing plans because of
difference in volume of material removed by a process for each plan.

Data analytics: Each line in the data obtained forms a transaction where
“transaction” data = {Sequencing plan, Operation, Machine tool, Tool, Energy
consumed, Production time}. Data mining is performed to determine the various
relationships between the range of parameters and how those relationships impact
system performance. Those relationships are represented as association rules.
Determining the association rules was carried out using open source software
developed for academic and research purposes named Tanagra [45].

Tanagra performs exploratory data analysis, statistical learning, and machine
learning. It is suitable for both supervised and unsupervised learning. It uses a
number of algorithms and approaches that employ techniques such as clustering,
factorial analysis, parametric and nonparametric statistics, association rule, and
feature selection and construction algorithms are implemented by Tanagra. We use
the Apriori algorithm, which uses a “bottom up” approach and frequent subsets are
extended—one item at a time—and tested against the data. The inputs to Apriori are
the sequencing plan, machine tool, cutting tool type, energy consumption, and
production time.

The outputs are the relationships between various factors expressed in the form
of rules. Each rule has antecedents and consequents. Antecedents are the left hand
side of a rule, implying that these are the factors and their values that are respon-
sible for the results on the right hand side, also called consequents. As such, we are
interested in antecedents that result in production time and energy consumption on
the right hand side as consequents.

While energy consumption is generated as quantitative data, it was transformed
into discrete variables using simple thresholds as the basis for the discrete classifi-
cations (“low,” “medium,” and “high”). Within the Apriori algorithm, the user can
select minimum support, to prune candidate rules by specifying a minimum lower
bound for the support measure of resulting association rules. Likewise, the confidence
(described in introduction section), is also set. The cardinal is the number of con-
curring items (itemsets) used in computation. The values chosen are: minimum
support is set at 0.16, confidence at 0.6, and minimum cardinal of itemsets is set at 4.

98 D. Kibira and G. Shao



A sample of the derived rules for the demonstration is shown below:

Feature sequence = undefined= >Energy=High

Feature sequence = predefined= >Energy=High

Operation =Spot Drill = >Energy=Low

Operation =Facing = >Energy=High

Machine=M2= >Energy=High

Machine=M1= >Energy=Medium

Operation =Drill = >Energy =High

Operation =Threading= >Energy=medium

Operation =Grinding&&Tool =T2= >Energy=High

Machine=M3&&Tool =T7= >Energy=Low

The rules show that feature sequencing, operation, machine, and tool are relevant
to energy consumption. These factors are included in the simulation model, which
generates the performance data. The association rules show relationships between
input factors and performance data and they are incorporated into a DES model
described.

Simulation and simulation-based optimization: The layout ofmachines and other
details of the system operation were used to develop the DES model using Arena
simulation software [17]. The model incorporates intermediate products,
work-in-progress, raw materials, lubrication, energy, and operational disturbances.
MainArenamodules in the simulationmodel include part arrival, data requirements for
the process, part routing to various machines, part exit, and statistics generation. The
manufacturing processes are represented as events, parts as entities, buffers as queues,
parts and processes specification data as attributes, and collected data as variables.

The first section of the simulation model deals with part arrival and process data
assignment. A part is assigned with information such as design features’ dimensions,
operation list, and operation orders. The process sequence for the parts can be either of
the three options described above. Based on this, the part is then sent to the second
section of the model where its operations are decided from the operation matrix
developed according to Table 3. A number of combinations of feature-
process-machine-tool assignments are implemented in the model. Once an opera-
tion is completed, the routing of the part will be decided according to the assigned
feature sequencing plan.

Optimization is performed using the OptQuest optimization package supplied by
OpTek [46]. It is provided as an option extra with the Arena simulation tool. In
OptQuest, resources, such as machine, material, control variables, attributes, con-
straints, and objective are specified. The user also controls the possible ranges of
input variables and set-up inputs for OptQuest. OptQuest uses heuristics known as
Tabu search, integer programming, neural networks, and scatter search for seeking
within the control (input) space to converge towards the optimal solution.
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The results from different scenarios are shown in Table 5. The table also displays
the resulting impacts from various system inputs.

Note that the energy consumption as well as production times differ for the same
resource set in each plan because of the different sequences in which the design
features of the part are produced. Inter-arrival time between successive batch
arrivals is set at a constant 120 min. Each batch consists of 15 parts. Data is
collected and stored in database.

Determine actionable recommendations: This section discusses the results of
various simulation runs from which actionable recommendations are made. Table 5
shows the resources available for each operation. The users can recognize the best
process plan, or plans, that minimizes energy consumption and production time (see
Table 6. The resource column shows available machine tools for a process; while the
indicator columns show the resulting impacts. The table shows the tool-tip energy
while the production time displays only the processing time on the machines. The
minimum energy consumption is obtained by selecting resources R1R3R4R6R6.

System users will probably select the partially defined or undefined feature
sequencing plans since they have lower energy consumption than the fully prede-
fined sequencing case. At the same time, this sequencing plan would also result in
minimum production time for the minimization of energy objective. We note,
however, that if the minimum time objective is the one that had originally been set
before the table was derived, the production sequence and resource set would have
probably been different.

Table 5 Resulting shop performance due to selected resource combinations

Feature sequence plan Operation Resource, Ri Machining
energy (kWh)

Production
time (h)

Predefined feature
sequence plan

Facing R1 =M1−T1 9.676 0.28681
R2 =M2−T5 16.961 0.02414

Grooving R3 =M2−T4 16.961 0.02414
Threading R4 =M1−T2 2.902 0.08604
Spot drill R6 =M1−T3 2.580 0.07648

R7 =M3−T7 6.484 0.47006
Drill R6 =M1−T3 6.451 0.19120

R9 =M3−T8 16.562 1.20068
Partially defined feature
sequence plan

Facing R2 =M1−T1 8.790 0.22207
Grooving R3 =M1−T1 1.758 0.04441

Threading R4 =M1−T2 2.637 0.06662
Spot drill R6 =M1−T3 2.344 0.05921
Drill R6 =M1−T3 5.860 0.14804

Undefined feature
sequence plan

Facing R2 =M1−T1 8.790 0.22207
Grooving R3 =M1−T1 1.758 0.04441
Threading R4 =M1−T2 2.637 0.06662
Spot drill R6 =M1−T3 2.344 0.05921
Drill R6 =M1−T3 5.860 0.148047
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8 Summary, Discussion, and Future Work

Manufacturing industries today collect large volumes of data. Conventional data
analysis methods cannot effectively transform this data into knowledge for decision
support. Neither can simulation models be applied directly using this data. New
approaches are, therefore, needed. This chapter presents a methodology that inte-
grates different methods: data mining, simulation, and optimization for
decision-making. This new idea provides the analyst and decision makers with the
ability to pinpoint crucial data and prepare model parameters and input data that more
effectively help improve performance analysis through simulation optimization. Data
mining is first applied to the system data, simulation performs “what-if” analysis for
the candidate scenarios, and optimization determines the resource sets, the production
plans, and the process plans to optimize a given performance objective. The principal
advantage of this methodology over existing approaches is to enable identifying and
focusing only on relevant or crucial parameters within collected data. It also helps to
reduce the search space for simulation model inputs and optimization by identifying
the range of data that significantly affect user-defined system performance.

A case study of a machine shop has been used to demonstrate the methodology.
In the case study, we showed how to determine a set of resources and feature
sequencing plan that results in minimum tooltip energy during processing. The
required prior knowledge can be made available to guide a product specification at
the design stage. Similar approaches can be followed for a different objective such
as minimum processing time or cost. Data mining to optimize system performance
as demonstrated is the first step in developing models for eventually predicting
system performance for any part design, machine shop resources, and desired
production time.

Table 6 Summary of process plans for different feature sequence when minimizing energy
consumption

Feature sequence plan Process
plan PPj

Facing Grooving Threading Spot drill Drill

Predefined feature
sequence plan

PP1 R1 R3 R4 R6 R6

PP2 R1 R3 R4 R7 R6

PP3 R1 R3 R4 R6 R8

PP4 R1 R3 R4 R7 R8

PP5 R2 R3 R4 R6 R6

PP6 R2 R3 R4 R7 R6

PP7 R2 R3 R4 R6 R8

PP8 R2 R3 R4 R7 R8

Partially-defined
feature sequence plan

PP1 R1 R1 R4 R6 R6

Undefined feature
sequence plan

PP1 R1 R1 R4 R6 R6
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The methodology involves data collection, model composition, model execu-
tion, and result analysis. In practice these activities would be carried out using
different tools and models that need to be integrated using standardized interfaces.
Therefore, a set of standards are required for the following purposes (1) data col-
lection, (2) data representation, (3) model composition, and (4) system integration.
Candidate standards include MTConnect [47] (data collection), CMSD [48] (data
representation), Unified Modeling Language (UML) (model composition), and
ISA-95 [49] or Open Application Group’s Integration Specification (OAGIS)
(system integration) [50]. These are briefed next.

MTConnect standard facilitates the organized retrieval of process information
from numerically controlled machine tools through continuous data logging. It
provides a mechanism for system monitoring, process, and optimization with
respect to energy and resources. This standard needs to be extended to collect other
data besides CNC machine tools. The CMSD is a standard for integrating simu-
lation applications with other manufacturing applications. CMSD uses a neutral
data format to facilitate exchanging both simulation input and output data across
supply chain partners. Among CMSD goals are supporting the construction of
manufacturing simulators and the testing and evaluation of manufacturing software.
More standardization efforts are needed especially for data collection. Currently,
data collected is still limited to machine tool data.

For model conceptual design and composition, UML is a standard language for
specifying, visualizing, constructing, and documenting the artifacts of software systems.
An example of a diagramming method based on the UML is SysML, which supports
management of system requirements along with the system development and operation.

The ISA-95 standard defines interfaces between enterprise and shop floor
activities while OAGIS establishes integration scenarios for a set of applications
including ERP, production scheduling, MES, and capacity analysis. However,
OAGIS and ISA-95 were not intended to provide interfaces with simulation sys-
tems nor with each other.

Future work includes the definition and description of a framework for data
collection and interface for input to data mining and simulation tools; investigation
of data mining standards for the methodology; the requirements analysis for
extension of existing standards for interfacing between tools for data mining,
simulation, optimization, and manufacturing system monitoring; and conducting
industrial size case studies.
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