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Foreword

Simulation allows to reproduce complex behaviors of existing real-world and
hypothetical future systems as well as to carry out experiments on virtual envi-
ronments to improve understanding, to develop new concepts, and to test tech-
nologies in a cost-effective way and safe environment.

Experience gained in the last years indicates that the extensive use of simulation
constitutes an invaluable methodology to cope with most critical scenarios and
threats, and it is evident that the future will introduce further challenges.

These scenarios typically need to be studied by using the theory of complex
systems, characterized by many highly correlated elements, strongly not linear
components and emergent behavior. In order to succeed in these scenarios, it
becomes necessary to develop new solutions (i.e., technologies, systems, new
doctrines, operational plans, etc.). These innovative solutions require to be
immersed within the specific operational scenario which means to be able to
conduct detailed experimentation in realistic conditions. Obviously, the adoption of
a comprehensive approach stresses even more these aspects and creates additional
challenges for being able to acquire such experience. It results evident that this
knowledge should be available in advance to support decision process; therefore,
simulation is probably the only suitable approach and the critical technology for
succeeding in this area.

This means that in order to anticipate innovation and transformation, it is nec-
essary to simulate the new solution within virtual environments. Therefore, the new
challenging scenarios and the innovative solutions introduce the necessity to create,
maintain, and extend knowledge and experience.

Indeed, simulation is a science to study real world based on facts learned through
experiments and observations carried out on a virtual environment. The concept is
quite revolutionary, providing the opportunity to conduct “a priori” experimentation
to know a real-system behavior even before it is realized or put in place. Obviously,
models and simulators are able to reproduce real systems just based on approxi-
mations that should be regulated based on the specific nature of their specific
purpose; sometimes, very simple models could be effective, while in other cases
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Big Data is required. In any case, M&S (modeling and simulation) potential is very
impressive even if it is still subjected to limitations in terms of fidelity, usability,
and maintainability as well as of the Simuland: the representation of the real system
under analysis based on our knowledge, assumptions, hypotheses, and available
data, as it was defined by John McLeod, founder of the Society for Modeling and
Simulation International (SCS).

After more than 50 years, these concepts are still valid and M&S represents a
strategic asset further reinforced by data abundance and enabling technologies as
well by advances in methodologies and techniques. Indeed, simulation science
enables scientific and quantitative analysis and operational exercises within syn-
thetic environments reproducing real scenarios, future challenges, new solutions,
and systems.

So, it is evident that M&S is a cornerstone in modern optimization of complex
systems, especially when facing cases with many entities and interactions, high
degrees of stochasticity and complex behaviors.

The present volume addresses this topic and presents cases, where it becomes
clear how M&S could serve optimization in addressing very challenging environ-
ments from public transportations to retail and from mechatronic systems to
decision-making.

The introduction of new tools and techniques is very important to guarantee a
strategic advantage in designing, engineering, managing, and operating modern
systems, and this book presents them in application to real problems providing clear
understanding of their potential, guidelines for their reuse as well as proofs their
validation. This is exactly how the scientific method was defined when it was
introduced over four centuries ago that requires to be able to test, experiment and to
repeat experiences in order to check their validity; in this sense, this book brings a
value for the reader for being able to acquire capabilities and to understand how to
put them at work.

Simulation is a continuous evolving world, and new techniques and methods
continuously emerge to get benefits of upcoming developments and to face
emerging challenges; based on this consideration is easy to understand how
developing and presenting case studies is critical community. This is very important
for young researchers because it allows them to develop new skills and also to
being aware of experiences and real developments to direct their future researches
and projects. Therefore, the contents proposed in this book are also very useful for
experienced simulationists to further extend their knowledge with reliable data,
references, and case studies.

Each day real world situations are the result of more and more interconnected
fields areas, and the resulting complex systems are characterized by a impressive
number of variables, high uncertainty, and challenging dynamics and behaviors; as
soon as we are able to develop reliable models of a system, we are used to discover
that we need to develop new ones to address a more extended case where additional
precision or comprehensive approach are required to address the new needs of users
and decision makers. This is a loop but also a great opportunity for simulation
considering its flexibility and capabilities. However, it requires to develop real

viii Foreword



transdisciplinary capacities among researches and scientists as well as to develop
the user community in being able to use and trust simulation science; this book
presents, defends, and promotes advances in simulation science applied to opti-
mization and related tools and techniques.

In my opinion, such achievement is not surprising knowing since very long time
the authors and their enthusiasm and capabilities in developing scientific researches
coupled to real cases; personally I consider this the most proper approach to
research, keeping it strictly connected with development to create solutions to the
most challenging problems, that usually are the real one: industry, social life, and
transportations are environments able to propose big problems, and simulation is an
elegant solution to face and solve them. I really appreciated the opportunity to
provide them with few of my thoughts for this valuable contribution to simulation
advances.

Agostino G. Bruzzone
President of the Simulation Team and of International

Master Program in Industrial Plant Engineering
and Technologies of the University of Genoa
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A Conceptual Framework for Assessing
Congestion and Its Impacts

Jennie Lioris, Alexander Kurzhanskiy and Pravin Varaiya

Abstract In urban areas, intersections are the main constraints on road capacity

while traffic flows do not necessarily directly conform to the speed-flow relation-

ship. It is rather the signal timing and the interplay between the clearing rate of each

intersection which determines the formation and duration of congestion. Junctions

often differ in their design and throughput. General conclusions on the relationship

between vehicle speed and traffic flows on a junction link are rarely possible. Well-

adapted models are required for a comprehensive study of the behaviour of each

intersection as well for the interactions between junctions. This chapter assesses

the potential benefits of adaptive traffic plans for improved network management

strategies, under varying traffic conditions. Queueing analysis in association with

advanced simulation techniques reveal congestion mitigation actions when the pre-

timed actuation plan is replaced by the max-pressure feedback control. The case of

unpredicted local demand fluctuation is studied, where uncontrolled congestion is

progressively propagated to the entire network under the open-loop policy. Travel-

time variability is measured under both plans and within all traffic schemes while

frequency of stop-and-go actions are also encountered. Reliability of predictable trip

durations is a major factor to be considered when ensuring “on time” arrivals and

the related costs when the time is converted into benefits.

Keywords Traffic responsive signal ⋅ Adaptive control ⋅ Pre-timed control ⋅Max-

pressure practical policy ⋅ Discrete event simulation ⋅ Performance evaluation ⋅
Queueing network model
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1 Introduction

In contrast to freeways, urban traffic is distinguished by the existence of junctions

and/or roundabouts involving conflicting traffic streams and thus interrupting vehicle

flows. Intersections play a major role in determining the quality and volume of traffic

in arterial networks by arbitrating conflicting movements in order to allow users to

share the same road space sequentially.

Traffic control and signal coordination contribute to improve travel conditions by

reducing frequent vehicle stops and queue lengths. More precisely, signal coordina-

tion may contribute to an optimised use of the current infrastructure, by establishing

platoon type vehicle departures.

Automobile dependent cities often associated with large traffic volumes, tend to

imply poor road performance especially when varying travel schemes occur forcing

the related transportation structure towards heavy traffic or even congestion states.

Moreover, spatial complexity is characterised by even more complex journeys diffi-

cult to be predicted and consequently controlled. Activity changes influence spatial

distribution and consequently complex travel patterns are manifested and congestion

is possible.

Classical congestion management policies maximise the ability of urban areas

to deal with current and expected demand. Such flow-based management policies,

associate capacities to road links expressed in flow and density. Under that scope,

network performance is increased when higher density and flows are reached.

Alternatively, cost-congestion approaches involve an “economically optimal”

traffic level for each road and tend to measure the congestion cost incurring when

traffic exceeds the “optimum” levels by taking into consideration the related road

demand and supply.

Many traditional traffic managements aiming to increase road capacity and thus

to mitigate congestion impacts by improving traffic operations while others seek

to involve road infrastructure and/or to shift roadway demand to public transporta-

tion. Although such approaches are suited for particular congestion types such as

bottlenecks they can deliver long-lasting results when they are paired with other

policies controlling the newly created capacity. Non-recurrent congestion caused by

unplanned events influencing the system behaviour which frequently becomes unpre-

dictable, and may cause extreme congestion conditions and/or become system-wide.

A vehicle breakdown may create bottlenecks, prohibiting transit in a part of road or

obliging other vehicles to deviate and thus varying demand patterns may be caused.

Similar effects can occur from other events such as crashes, bad weather, work zones

etc.

Congestion influences both travel times (indicators concerning mostly policy

makers) and the reliability of the predicted travel conditions (indicators interesting

to road users). There is no single congestion metric which is appropriate for all pur-

poses. Consequently, quantitative and qualitative metrics should be provided when

measuring congestion such as queue lengths and related duration, variance of travel

times etc.
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This work explores the effectiveness of the currently available road infrastructure

management under open and close loop signal plans within various traffic contexts.

The outline of this paper is as follows:

Section 2 introduces the problem to resolve while it describes the two princi-

pal control categories determining traffic signals: the open loop policy defined by

the Fixed-time control and the feedback Max-Pressure and Max-Pressure practi-

cal plans. Section 3 presents the adopted mathematical approach for studying the

traffic control problem while it briefly introduces the principal notions of Discrete

event systems (DES) and suggests various methods for the study of DES. Section 4

discusses appropriate metrics for performance appraisal, according to the needs of

the study. Section 5 presents the case study (network, associated demand and other

data) and develops the notion of stability. Section 6 proceeds to the performance

appraisal of the two control categories and verifies the expected system stability

under both Fixed-Time and Max-Pressure plans. Section 7 compares Fixed-Time and

Max-Pressure control policies in terms of queue lengths and the related probabili-

ties, average total travel times, delay measurements etc. Section 8 studies the network

behaviour under demand variation while Sect. 9 is devoted to the system reaction

when a non-recurrent congestion occurs for a limited period at a particular intersec-

tion. Section 10 reveals the simulation advantages, where a detailed analysis allows a

complete reconstruction of the simulated scenario. Consequently, any system obser-

vation can be deeply examined and consequently justified. An illustrative example

is discussed.

2 Traffic Control: Problem Statement and Timing Plans

This section presents the dealing problem in order to understand the insights resulting

from the framework on traffic management as discussed in the next sections. More-

over, an open loop control scheme and versions of Max-Pressure feedback algorithm

are briefly introduced. A much more extensive study as well all theoretical proper-

ties of Max-Pressure control are presented in [1] where stability guarantees are also

provided.

2.1 Problem Formulation

Let us consider an intersection n. A phase (i, j) indicates a permitted movement from

an incoming link i of node n towards an outgoing link j. A stage Un indicates a set of

simultaneously compatible phases of node n and is represented by a binary matrix

such that:
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Un(i, j) =

{
1, if phase (i, j) is actuated

0, otherwise

The set of all considered intersection stages is denoted by  . For simplicity, the

optimisation horizon is divided into intervals or cycles of fixed width, each one com-

prised of T time periods. Let L < T denote the idle time, that is the time period during

which no phase is actuated and occurring within two different stage switches. This

time corresponds to amber lights, pedestrian movements etc. Hence, the total avail-

able actuation period per cycle is T − L. If q(t) is the array of all queue lengths at time

t then the system state X(t) is defined by X(t) = q(t). A stabilising time plan main-

tains the mean queue length bounded. At time t a stabilising stage u(t) = U, with

U ∈  and a cycle proportion 𝜆u have to be defined such that

∑
u∈

𝜆uT + L = T .

2.2 Signal Plans

2.2.1 Fixed Time Policy (FT)

A pre-timed or fixed time control is a pre-calculated periodic sequence,

𝜆 = {𝜆U ≥ 0, U ∈  }, actuating each stage u(t) = U, U ∈  during a fixed time

period 𝜆UT and such that

∑
U
𝜆U = 1 − L∕T within every cycle. The involved cycle

proportions {𝜆U} are the major parameters to be defined. Let d be the average

demand vector, R the turn probability matrix, f = [I − R′ ]−1d the average flow vec-

tor, S the saturation flow rate matrix and R(l,m)fl the average required rate of turns to

satisfy the demand. The FT timing 𝜆 accommodates the demand when the following

equalities are satisfied∑
l,m

𝜆iC(l,m)Ui(l,m) > R(l,m)fl and ∀l,m (1)

∑
i
𝜆i = 1 − L∕T , with 𝜆i > 0 and ∀l,m (2)

In [1] is discussed how Eq. (1) is sufficient for the system stability. As (1) shows, in

order to design a stable FT scheme, the knowledge of the demand vector d, the turn-

ing probability matrix R and the saturation flow rates C are required. When (1) can

be satisfied infinitely many 𝜆 are feasible. An “optimum” vector 𝜆 can be obtained

when maximising the minimum excess capacity

min
l,m

∑
i
𝜆iC(l,m)Ui(l,m) − R(l,m)fl. (3)
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2.2.2 Offsets

The term offset defines the time relationship, expressed in either seconds or as a per-

cent of the cycle length, between coordinated phases at subsequent traffic signals.

The offset is dependent on the offset reference point, which is defined as that point

within a cycle in which the local controller’s offset is measured relative to the master

clock. The master clock is the background timing mechanism within the controller

logic to which each controller is referenced during coordinated operations. This point

in time (midnight in some controllers, user defined in others) is used to establish com-

mon reference points between every intersection. Each signalized intersection will

therefore have an offset point referenced to the master clock and thus each will have a

relative offset to each other. It is through this association that the coordinated phase is

aligned between intersections to create a relationship for synchronized movements.

Remark In the following, for the purpose of simplification, the term FT is employed

for defining the Fixed-Time Offset Policy (FT-Offs).

2.2.3 Max-Pressure and Adaptive Max-Pressure Plans (MP-AMP)

Max-Pressure is a feedback control policy selecting a stage to actuate as a func-

tion of the upstream and downstream queue lengths related to the intersection. Two

remarkable properties distinguish this version of MP:

∙ no knowledge of average demand is necessary

∙ Max-Pressure is stable whenever the demand can be stabilised

At any time, the MP control selects the stage U∗
involving the max gain w, that

is

U∗(q)(t) = argmax{w(q(t),U),U ∈  }, MP stage (4)

with

w(q(t),U) =
∑
(l,m)

𝜍(l,m)(t)S◦U(l,m)(t) (5)

where if r(m,p) denotes the probability of queue q(m,p) to be selected when a vehicle

is located on link m, then

𝜍(l,m)(t) =

⎧⎪⎪⎨⎪⎪⎩

q(l,m)(t) −
∑

p∈(m)
r(m,p)q(m,p)(t),

if q(l,m)(t) > 0,
0, otherwise.

(6)

A priori, the MP policy does not require any computation actuation duration since

it will automatically select the stage requiring green time. More precisely, supposing
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that too little green time is allocated to the currently employed MP stage. Since the

control is going to be revised before the end of the actuation duration of the present

MP stage, the feedback policy will determine the stage requiring green time for the

next period. Thus, if the current stage still requires actuation, MP control will extend

its actuation by selecting it for the next period. On the other hand, if large actuation

durations are considered, then it is probable that within the new control revision a

different MP stage will be decided. At any decision moment, the MP stage depends

on the actual intersection state. As discussed in [1] if there exists a stabilising FT

control then MP algorithm will also stabilise the system. Moreover, if matrix R can

be consistently estimated it may be employed in (4) without affecting the stability

property.

Let a(l, i)(t) denote the vehicle arrivals at time t associated with phase (l, i), where

(l, i) is a possible turn from link. The estimated turn ratio value r̂(l,m) of phase (l,m),
can be computed as follows

r̂(l,m) =

∑
t
a(l,m)(t)∑

k

∑
t
a(l, k)(t)

(7)

Employing relation (7) in Eq. (5), the adaptive Max-Pressure stage is defined.

2.2.4 Max-Pressure Practical Control (MP-Pract)

Aiming at limiting frequent stage switches, the previously presented MP scheme is

parametrised and the Max-Pressure Practical algorithm is introduced. Thus, the MP

stage is evaluated as frequently as desired but the new taken decision is applied only

if it exerts significantly larger pressure

max
U

w(U, q(t)) ≥ (1 + 𝜂)w(U∗
, q(t)). (8)

Parameter 𝜂 is related to the desired degree of stage switches.

3 Towards a Realistic Model: DES Versus Traditional
Approaches

3.1 Discrete event formalism

From a formal point of view Discrete Event Systems (DES) are complex dynamic

systems whose state variables can take both discrete and continuous values but the

state space is discrete or at least it contains several discrete variables. However, the

state transition mechanism is event driven, that is changes on the system state are
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due to the occurrence of asynchronous events in contrast with Continuous Vari-

able Dynamic Systems (CVDS) where the state space is continuous and time step is

driving all state transitions. Thus, traditional modelling through differential or partial

differential equations is not anymore appropriate for studying DES. Furthermore, the

notion of time interferes when appraising the system performance. More precisely,

responses to questions such as the time spent by a system on a particular state or

how fast a system can reach a given state, at what time a particular event will occur
etc. are often required in a DES study.

The traffic control problem introduced in Sect. 2 falls into the category of DES.

Obviously asynchronous, random behaviour is involved (transport demand, vehicle

arrival at intersections, incidences, etc.). Moreover, frequent synchronisation fea-

tures are taking place. For example, multiple constraints have to be satisfied for a

vehicle to cross an intersection. Concurrence and parallelism actions are also com-

mon. Since only compatible movements may be simultaneously actuated the pres-

ence of traffic lights excludes all vehicles to cross intersections at the same time.

3.2 Formalising DES

As previously discussed, in CVDS systems since time derivatives can naturally be

defined, differential equation based-models can be used for describing the system

dynamics, where the state equation and the initial conditions are stated in the form

of

.

x(t) = f (x(t), u(t), t), x(t0) = x0 (9)

Since DES based dynamic systems are event-driven, the notion of time is not an

independent variable. Hereafter, some usual approaches for the study of DES are

briefly presented.

3.2.1 Discrete Event Simulations

Broadly speaking, the system evolution is virtually reproduced according to the mod-

elled conceptual framework. The notion of time is frequently involved and “future”

events are stored in an event pile until all necessary conditions are satisfied for their

realisation. No analytical problem formalisation exists between entries and exits

(observations) and consequently detailed statistical analysis plays an important role

to the system comprehension. Any kind of methodological statistical tool can be

associated and this approach can only be limited by the complexity of the program

modelling and the implementation duration.
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3.2.2 Perturbation Analysis (PA)

This approach related to optimisation can be considered as a technique for computing

the sensitivity of involved variables regarding some parameters. A nominal trajectory

is required (obtained for example by simulation) and trajectory modifications are

obtained by variations of the considered parameter. A type of stochastic gradient
can be obtained (by finite differences) which may be used in optimisation the related

iterative algorithm.

3.2.3 Petri Nets (P/T Nets)

A Petri net is a graphical mathematical language employed for distributed systems,

specifically for describing synchronisation and concurrent phenomena. Temporal

P/T nets allow to take into consideration performance evaluation aspects and form

concise and efficacious means for the study of dynamic systems. However, when

the related system complexity is increased an hierarchical approach is highly recom-

mended.

3.2.4 Dynamic Algebraic Models: Diode Algebra

When considering a quantitative aspect, certain DES class systems can be described

by mathematical models similar to the ones utilised by the Optimal Control Theory.

Nevertheless, concurrent behaviour arbitrated for example by priority and schedul-

ing policies should be excluded in order to limit synchronisation phenomena.

3.3 Why Simulations?

When dealing with stabilising traffic signal plans, substantiated responses should be

provided to a pattern of issues such as:

∙ which set of simultaneously compatible movements should be actuated at a given

time?

∙ which green duration should be allocated to the selected set of movements?

∙ how delays of queued vehicles can be controlled?

∙ when adaptive controllers, how frequent the decision related to the selection of

the actuated stage should be defined? Etc.

A model and all the resources of control theory are necessary in order to predict

the system performances. Obviously, we are handling a quite complex spatiotempo-

ral decision making problem for which it is almost impossible to write a mathemati-

cal model precisely describing its evolution. So what could the answers be and how

do we know if the correct ones are being confronted?
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Gaining direct experience on a trial and error basis would imply raised “risks”

especially when poor decision making. A reliable simulation tool could accurately

provide deep comprehension when exploring the many aspects of the manifested sys-

tem behaviour according to the applied strategy, reproducing precisely all stochastic

and unforeseen features frequently presented in road networks. Moreover simula-

tion is the only way to reproduce various scenarios with a single factor modified at

each implementation. This is a fundamental property when searching optimal traffic

policies.

3.4 Addressing Traffic Control Decisions

The employed approach for the study of traffic signal coordination involves a two

a level decision problem. The dimensioning part accounts for multiple components

referring to:

∙ the network model (topology, link characteristics, turn pockets, probability laws

defining mean travel times, etc.)

∙ demand model (geometry and intensity, diversions etc.)

∙ vehicle routing (Origin-Destination (OD) matrix, trajectory paths, turning proba-

bilities etc.)

∙ operating mode determining the desired control policy to be employed

∙ initial state of the system, etc.

The real time management stands for all the control algorithms ruling the system.

Thus, for each decision type a whole set of different controls can be modelled and

evaluated. Consequently, optimisation of this part quantifying the derived benefits

of the selected policy for each decision category is required.

Let us consider the case of the decision related to an optimal selection of the con-

trol defining intersection timing plans. Urban Traffic Control is a method for coordi-

nating traffic signals by employing timing plans loaded on a central computer. These

schemes are using the same cycle after cycle and the green splits on each approach

remain unchanged. This method is frequently employed in Town Centre locations

and on ring roads aiming to ensure that the linking from one junction to the next

remains constant throughout the day. However, if no traffic was being detected on an

approach then, depending on the plan, it can be possible to skip a stage and move to

the next stage early to reinforce a busier approach. Different schemes of Urban Traffic

Control, such as offset transitioning algorithms for coordinating traffic signals while

improving early return to green phenomena can be conceived and tried in order to

appraise the policy results within its ability to improve the network behaviour under

various traffic patterns.

When adaptive (distributed) traffic control strategies need to be modelled, per-

formed and optimised a deep understanding of the network behaviour within the

same traffic context is required.
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Furthermore, centralised versus decentralised policies can be compared as well

combinations of signal plans applied to specific road regions can be considered.

Additionally, involving multiple traffic conditions such as varying road access, tem-

porary incidents limiting or prohibiting vehicle movements, demand fluctuations etc.

the impact of the integrated strategy to the scope and scale of the involved challenge

can be quantified. Measuring the relationship between the related control effective-

ness and implied costs of each strategy could provide the required robust benefit-cost
assessments in order to ensure that the advantages of the strategy plan justify the

related costs and preserve an adequate network performance.

For all the previously referred cases the dimensioning part remains fixed while

different control schemes are applied. Thus, each signal policy performance can be

quantified under an identical traffic environment. If the control behaviour under vary-

ing traffic conditions needs to be evaluated, then for a given configuration of the real
time management various traffic contexts within the dimensioning part can be con-

sidered (demand variation, different types of congestion etc.).

4 Performance Measurement and Observation Bias

Congestion measurement has a crucial impact on the congestion management and

can be carried out for several levels and various purposes. Popular congestion metrics

are based on speed, road access, delay, costs etc. Each such measure will raise a dif-

ferent congestion statement and may imply a completely different policy approach.

At a micro level road decision makers require metrics addressing operational issues

on network links such as average speed versus rated speed, traffic density versus

traffic capacity, speed/flow relationships on network links etc. Thus, by detecting

bottlenecks specific link performance can be compared to overall network perfor-

mance. Even though, these measures are difficult to aggregate and do not directly

express road users needs. On the other hand, measuring speeds on specific links

is not necessarily a representative indicator for a deep understanding especially in

dense arterials where congestion and consequently delays are generated by intersec-

tions and specific road access points. Measuring delays is important for an effica-

cious road control, where issues of how large vehicle volumes impact travel times,

are required. Moreover, drivers are concerned by trip-based metrics. There are not

necessarily better congestion metrics than others. However, it may exists a better

matching between the selected indicators and the desired outcomes. Thus, a conges-

tion metric should be selected not simply because it is available but mostly because

it contributes to quantify a specific purpose.

Furthermore, several techniques are available for measuring congestion from raw

data. Point detection using loops, video detection, radars, etc. Vehicle-based detec-

tions employing probe-vehicles, cell phones, satellite information etc. Independently

from the information means, what traffic managers observe and what indicators are

communicated should be one thing. The risk of bias is mostly implied when it comes

to interpret and consequently quantify what one sees without considering accuracy
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measurements. In this study, indicators based on average travel times (trips or specific

links) and delays are going to be considered for measuring the network performance

within each traffic context.

5 From Theory to Application

5.1 Study Area

The operating region is a section of the Huntington-Colorado arterial near the I-210

freeway in Los-Angeles. The network as depicted in Fig. 1 is viewed as a directed

graph comprised of a set of 16 signalised intersections, 76 links of which 22 are

entry links and 24 are exit ones while 179 different turn movements are possible. All

events take place at nodes while vehicles travel on edges. With each internal network

link, a random travel time is associated based on the mean value of the related free

flow speed. However, the realised vehicle travel time depends upon the current state

of the link.

5.2 Demand: Intensity and Geometry

Vehicles enter the network at entry links in a Poisson stream with specified demand

rates. The elapsed time between successive arrivals at link i follows an exponen-

tial law of parameter 𝜆i. Moreover, vehicles join exit or internal links according

to turning probabilities. Distinct vehicle queues are associated with any entry or

internal link according to the number of possible movements from the related link.
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Vehicles join the queue corresponding to the desired turn. At any time, a control

policy operates a stage for a duration of time. The operation of a movement causes

the corresponding queue to be served. The service rate, called the saturation flow

rate, is pre-specified and depends on the geometry of the intersection. When a non-

empty queue is served vehicles move towards the downstream queue and join it by

the completion of the realised travel time. Each link has a fixed finite storage limit

depending on the link geometry. When the downstream link reaches its max vehicle

storage limit, the upstream queue is blocked even if the control permits the move-

ment.

5.3 System Stability

Consider d the vector of demand rates such that

dl =

{
> 0 if l entry link

= 0, otherwise.

and R(l,m) the probability of a vehicle located at link l to turn towards link m, with

R = {R(l,m)}. The vector of mean link flow values f = { fl} satisfies the conserva-

tion law f = R′f + d, where R′
denotes the transpose of R. Thus, f = [I − R′]−1d and

R(l,m)fl is the mean rate of turns from link l towards link m. A timing policy able to

accommodate demand d and consequently maintains vehicle queues stable operates

phase (l,m) at a rate at least equal to R(l,m)fl in which case the following condition

holds true

sup
T

T−1
∑
l,m

T∑
t=1

𝐄q(l,m)(t) < ∞ (10)

where 𝐄 denotes the expectation.

Although stability is a necessary condition to be ensured when defining traffic

control plans, effectiveness is also required. Metrics such as average queue length,

mean value and variance of the total travel time of the realised trajectories including

delays etc. should be provided. From this perspective, predictability and reliability of

the trip duration can be measured and delivered to both road users and traffic decision

makers. Proactive traffic management, involving traffic information, pre-trip guid-

ance, coordinated signal schemes, incidence management schemes can contribute to

improved traffic conditions, reducing the risk of unstable traffic zones.
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6 Managing Traffic Demand

6.1 Stability Under Pre-timed Policy

A Fixed-Time plan 𝜆 = {𝜆(n)} where n is the intersection index is obtained by solv-

ing the LP problem maximising the excess capacity as defined in (3) under con-

straints (2). The considered demand vector d generating 14,344 vehicles per hour is

feasible for (2). The expected stability is verified as depicted in Fig. 2 where the sum

of all the network queues

∑
l,m

q(l,m)(t) remains bounded for any value of t during

the 3 h simulation duration. The average queue length values 189 and is indicated in

Fig. 2 by the red dashed line.

6.2 Stability Under MP Schemes

Figure 3 depicts the network behaviour when MP policies define the timing plans

and in which the number of control revision varies between four and ten times per

cycle. In the same plot the average length of all the sum of all the network queues

is also indicated. As expected the network is stable for any MP version. Moreover,

one observes that the queue length is inversely proportional to the number of control

decisions per cycle, theoretical property discussed in [1]. Thus, as the frequency of

control decisions is increased the average queue size decreases. The average total

network queue value is 147 when four control revisions per cycle while this number

Fig. 2 Sum of all queues under pre-timed plan
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Fig. 3 Sum of all network queues under MP: 4–6–8–10 cycle revisions

becomes equal to 104 under six control decision updates in order to fall down to

eighty one and seventy when eight and ten control updates.

6.3 Stability Under MP-Pract Plans

Changing stages incurs loss time due to the red clearance period applied between the

two consecutive stage switches. Instead different versions of the MP-pract control

policy are going to be employed for three different values of the 𝜂 parameter.

Hence, Fig. 4 illustrates the evolution of the sum of the network queues when the

control is revised four (red curve), six (cyan plot), eight (purple plot) and ten times

(yellow curve) per cycle. However, the new taken decision is applied under the MP-

pract criterion for a value of parameter 𝜂 equal to 0.2. The average queue length of

the entire network values 149, 104, 81, 70 for a control frequency examination of 4,

6, 8 and 10 times per cycle, respectively.

Fig. 4 Sum of all network queues under MP-pract, 𝜂 = 0.2: 4–6–8–10 cycle revisions
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Fig. 5 Sum of all network queues under MP-pract, 𝜂 = 0.4: 4–6–8–10 cycle revisions

Fig. 6 Sum of all network queues under MP-pract, 𝜂 = 1.2: 4–6–8–10 cycle revisions

Figure 5 depicts the network evolution when traffic signals are obtained by the

previously presented MP-pract schemes when parameter 𝜂 values 0.4. The average

length of the sum of the queues values 149, 104, 82 and 71 when four, six, eight and

ten control revisions.

Similarly, Fig. 6 represents the sum of all the queues when MP-pract signals rule

the network and parameter 𝜂 = 1.2. The mean measured size of the sum of all the

network queues now becomes equal to 150, 106, 84 and 72 under four, six, eight and

ten stage revisions per cycle.

Obviously, for each version of MP-pract timing plans, regarding the number of

signal revisions and the value of parameter 𝜂, the network remains always stable,

although the number of signal switches is now reduced. Additionally, the average size

of the sum of all the network queues remains practically unchanged for the different

values of parameter 𝜂. Thus, when the MP-pract stage is revised eight times per

cycle, the average queue length values 81 when 𝜂 = 0.2 while this value becomes
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Table 1 Number of stage switches: MP-MP-pract

Node ID

10001

No Eval.

per period

No Eval.

MP

No Eval.

MPract

𝜂 : 0.4

No switches

MPract

𝜂 : 1.2

No switches

MP

No switches

MPract

𝜂 : 0.4

No switches

MPract

𝜂 : 1.2
2 480 480 480 240 240 239

4 956 944 916 475 463 434

6 1422 1395 1346 699 669 619

8 1877 1810 1738 914 846 772

10 2314 2211 2108 1111 1006 901

10002

2 360 360 360 180 180 180

4 708 711 701 347 350 340

6 1033 1021 1022 491 480 481

8 1309 1303 1311 586 580 588

10 1537 1537 1544 632 632 639

82 for 𝜂 = 0.4 (reduced number of stage switches) and finally it is equal to 84 when

𝜂 = 1.2 (even fewer stage changes are now implied).

Table 1 presents the number of control evaluations and the associated number

of stage changes when MP and MP-pract policies for three values of parameter 𝜂.

Hence, when intersection 101 is governed by MP signals where the control is revised

four times per cycle, 956 stage evaluations are involved while this number equals to

944 and 916 for MP-pract schemes with 𝜂 equal to 0.4 and 1.2. The related number

of stage switches is 475 under MP plans and it is reduced to 463 and 434 when MP-

pract and 𝜂 = 0.4, 1.2 respectively. However, when ten control revisions per cycle

are considered, 2314 and 2108 evaluations are required under MP and MP-pract

with 𝜂 = 1.2, respectively. In this case, the number of stage changes under MP is

1111 while it is equal to 901 with MP-pract which is strictly inferior to 956 control

evaluations which are required when MP with four stage revisions per cycle.

7 Appraising FT Policy Versus MP and MPract Plans

7.1 Probability of the Queue Size

The sum of all the network queues is considered for which the most probable val-

ues are going to be compared according to different timing schemes. Figure 7 gives

the probability of each potential queue length when Pre-timed and MP plans with

four, six, eight and ten control revisions per cycle are considered. Although all
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Fig. 7 Probability queue length: FT and MP 4, 6, 8, 10

signal schemes accommodate the demand ensuring the network stability, MP poli-

cies (sorted increasing order: MP10, MP8, MP6, MP4) involve the smallest values

for the sum of all the network queues with the higher probability. Thus, under MP10

signals, a total queue length value equal to 70 is the most probable one while this

value becomes 190 for the FT policy. These results are in accord with Figs. 2 and 3

representing the evolution of the sum of all the network queues under FT and MP

controls.

Figure 8 illustrates the probability of each possible value for the sum of all the net-

work queues under FT and MPract plans (𝜂 = 0.4). One may observe similar results

as in the case of MP control. Frequent revisions of the feedback policy imply smaller

queue sizes all associated with increased probability values, even though the new

decided plan is not applied within every control evaluation.

Fig. 8 Probability total queue length: FT and MPract 4, 6, 8, 10
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Table 2 Mean travel time—FT and MP

Entry-exit link ATT (s) ATT ATT ATT ATT

FT MP4 MP6 MP8 MP10

(137, 173) 566.3 478.6 495.4 459.8 459.6

(137, 175) 569.4 558.1 459.4 439.9 433.9

(174, 140) 510.5 587.9 482.9 440.4 421.5

7.2 Average Travel Time (ATT)

The total travel durations between entry and exits links are studied. Table 2 depicts

the average value of the mean travel time between three entry and exit network links.

These durations are computed for the FT and MP policies. For most movements,

the feedback plans imply reduced travel durations. For the case of MP4 and phase

(174, 140), the average travel time 587.9 s exceeds the related one under FT mostly

because travel times are stochastic for the associated implementation.

7.3 Total Delay Measurement

Considering a vehicle trajectory, that is a sequence of internal links crossed by a

vehicle between the selected entry and exit link, delays are measured. In this model

a trajectory delay expresses how long cars which followed the corresponding trajec-

tory, were facing red lights and consequently were unable to move. The associated

delay distribution is computed and the CDF function is considered. Figure 9 depicts

the CDF delay function, for the MPract (purple curve) and FT (green plot) policies.

Obviously, MPract control reduces delays almost four times more regarding the

pre-timed plan.

7.4 Measuring Queue Delays

Hereafter, delays on distinct queues are going to be studied. Link 114 (incoming at

node 106, Huntington area) is considered. Two controlled phases are associated with

link 114: (114, 117) and (114, 145). The evolution of the cumulative delay values for

each one of the associated queues is represented in Figs. 10 and 11 under FT and

MPract signal plans. MPract policy implies decreased delay values for movement

(114, 145) in comparison with the pre-timed plan. In contrast, FT control reduces

delays for q(114, 117). This is mostly due to the geometry of intersection 106.
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Fig. 9 CDF trajectory delays: MPract (purple), FT-Offset (green)

Fig. 10 Cumulative delay: phase (114, 117)

Fig. 11 Cumulative delay: phase (114, 145)
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Fig. 12 Evolution q(114, 117), FT Offs-MPract 8

More precisely, three concurrent stages exist at node 106. Stage 1 actuating

movements (114, 145) and (217, 162). Stage 2 actuating movements (114, 117) and

(217, 214). Stage 3 actuating movements (146, 145) and (163, 162).
At any decision time MPract selects to actuate the stage exerting the higher pres-

sure. Links 145 and 162 are exit ones and consequently no queues are associated with

these links. According to Eq. (5) the pressure exerted by stages 1 and 3 is only deter-

mined by the lengths of the related queues. However, links 117 and 214 are internal

ones and consequently vehicle queues exist on these links. Hence, when comput-

ing the pressure exerted by stage 2, the size of the downstream queues are taken into

consideration. These queues according to their current length may reduce the exerted

pressure of stage 2 in order to control the state of internal link 117 by limiting new

vehicle arrivals when an “important” number of cars already is located on this link.

Consequently, stage 1 (as well stage 3) receive more green time regarding stage 2.

Figures 12 and 13 depict the evolution of queues q(114, 117) and q(114, 145)
under FT and MPract. Observation of Fig. 12 shows that temporarily q(114, 117)
takes higher values under MPract than with FT signals. However, a MPract signal

associated with more frequent control revisions (at least occasionally) potentially

could improve this phenomenon.

Tables 3 and 4 summarise the mean time spent by vehicles in four queues and

the average vehicle sojourn time in all queues when FT and MPract plans, respec-

tively. According to Table 4, the network presents a more refined behaviour under

MPract. Thus, vehicles located on link 164 and wishing to turn towards link 120
faced an average delay of 49.89 s under MPract timing plans while this value was

equal to 79.72 under the pre-timed signals. Nevertheless, when examining indepen-

dent movements, phase (170, 173) implies reduced delays when it is associated with

a FT timing plan. The justification of this assessment is that two few vehicles located

on link 170 wish to move towards link 173. Consequently, q(170, 173) maintains low

values. Similarly for phase (174, 233) which is simultaneously actuated with phase
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Fig. 13 Evolution q(114, 145), FT Offs-MPract 8

Table 3 Mean time spent by vehicles in distinct queues

Incoming link Outgoing link Mean veh. sojourn

time (s)

Mean veh. sojourn

time (s)

MPract FT Offset

164 120 49.96 79.72

167 228 12.16 51.32

117 120 10.72 33.35

170 173 78.46 49.61

Table 4 Average mean time spent by vehicles in all queues

Average mean vehicle sojourn

time in queues

MPract (s) FT Offset (s)

12.05 22.32

(170, 173). Thus, the only stage actuating movements (174, 233) and (170, 173) is

not frequently selected. Associating a different weight to these phases would lead to

reduced delay values.

8 Network Behaviour Under Demand Variation

Regarding congestion, various more or less sophisticated definitions can be formu-

lated incorporating traffic engineering constraints, policy maker decisions or eco-

nomics aspects etc. but what remains common is that congestion is caused by traffic

but also impacts that same traffic. Many definitions focusing on the proximate con-

gestion causes, that is increased demand related to the road capacity, imply another
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important question: why the traffic volume covers the road infrastructure at that par-

ticular location and time? Well-justified responses to such inquiries are not evident to

be provided. Neither demand not road capacity can be considered as “fixed” values.

Important traffic demand variations occur at different times within a day, at differ-

ent days of a week and at different seasons of a year. Furthermore, fluctuations in

traffic demand are subjected to recreational trips, incidents, special events, vehicle

diversions from other congested segments etc.

In this section, local demand fluctuations are going to be considered and the net-

work reaction is going to be examined under the pre-timed and feedback policies

previously introduced. More precisely, let d1 be the initial demand vector whose the

ith coordinate indicates the demand intensity at the ith entry link of the network.

Suppose that 𝜆
1

is the vector of the pre-timed actuation durations accommodating

demand d1. Thus, {𝜆1, d1} denotes a stabilising FT plan for the demand d1. Let d2
denote the demand vector such that

d2(k) =
⎧⎪⎨⎪⎩

d1(k), if link k is not an entry link

at node 101
≠ d1(k), otherwise.

In other words, d2 represents the new demand after the variation of the demand

intensity at node 101. Suppose that for 3 h a demand intensity equal to d1 is applied to

the network, (period [0, 10800)), which is followed by a demand level equal to d2, for

the next 3 h, (period [10800, 21600)) while the employed pre-calculated values of the

FT plan remain unchanged during the entire period [0, 21600). Figure 14 illustrates

Fig. 14 Network evolution under varying demand: Sum of network queues: {𝜆1, d1} → {𝜆1, d2}
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Fig. 15 Evolution of q(137, 154) under demand d2: applied policy {𝜆1, d2}

the implied network behaviour during the 6 h. Obviously, while the FT signals are

associated with demand d1, that is during the first 3 h, the network remains stable as

the orange plot shows. Nevertheless, when demand becomes d2 the pre-timed plan

𝜆

1
cannot maintain the network stability (cyan curve).

Suppose now, that 𝜆
′ (101) is a new stabilising pre-timed signal plan computed

for the intersection 101 where the demand variation occurs and denote the new FT

control vector as 𝜆2. Thus,

𝜆2(i) =

{
𝜆

1(i), if node i ≠ 101
𝜆

′ (101), otherwise.
(11)

One of the most unstable movements at node 101 during the demand variation

and under policy 𝜆

1
is the one corresponding to queue q(137, 154). Figure 15 rep-

resents the evolution of phase (137, 154) under {𝜆1, d2}. However, when FT policy

{𝜆2, d2} is considered, queue q(137, 154) becomes stable (as all other movements at

intersection 101). Figure 16 reveals the stability of q(137, 154) when pre-timed actu-

ations defined by 𝜆

′ (101) are applied to node 101. Similar results hold true for all

the other queues associated with this node. However, the network behaviour remains

unstable under control {𝜆2, d2} as Fig. 17 illustrates (purple curve).

More precisely, Fig. 17 depicts the evolution of the sum of all the network queues

before and during the demand variation when the initial and 𝜆2 FT plans are employed

respectively on each one of the two periods. Hence, during period [0, 10800) demand

d1 is considered and the stabilising pre-timed plan {𝜆1, d1} is applied. The network

behaviour during this period is depicted by the orange plot. As expected the plan

𝜆

1
accommodates demand d1. However, when the demand becomes d2 and the new
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Fig. 16 Evolution of q(137, 154) under demand d2: applied policy {𝜆2, d2}

Fig. 17 Network evolution under varying demand: Sum of network queues: {𝜆1, d1} → {𝜆2, d2}

actuation durations as defined by vector 𝜆2 are applied the network becomes unsta-

ble, (dark purple curve), although this control stabilises the new demand level at

intersection 101. Indeed, this is an expected result. Since demand on entry links

related to node 101 are modified, the outgoing vehicle flows from this intersection

will also be different now. Consequently, the vehicle arrivals at the internal network
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Fig. 18 Evolution q(108, 136) under varying demand: {𝜆1, d1} → {𝜆2, d2}

Fig. 19 Evolution q(154, 102) under varying demand: {𝜆1, d1} → {𝜆2, d2}

links will also vary. Obviously, the actuation durations defined by vector 𝜆
1

for any

node different to node 101 cannot accommodate the new demand (see also Eq. (11)).

In fact, Figs. 18 and 19 depict the behaviour of phases (108, 136) (movement asso-

ciated with intersection 103) and (154, 102) (movement associated with intersection

116) under the demand variation. Hence, while during the first 3 h (demand intensity
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Fig. 20 Network evolution under varying demand: {𝜆1, d1} → {𝜆2, d2}

is of d1) the related queues are stable (orange curve in both figures), when demand

level becomes d2 the queues start to become unstable (red plot).

New actuation durations are computed for each intersection of the network, when

demand d2 is applied and let 𝜆
2

be the new stabilising pre-timed control. Figure 20

represents the evolution of the sum of all the network queues when demands d1 and

d2 are employed associated with signals defined by vectors 𝜆
1

and 𝜆

2
. Obviously, the

network remains stable during the 6 h although the sum of the queues is increased

when the applied demand is of intensity equal to d2 as depicted by the pink plot.

Figure 21 depicts the evolution of movement (154, 102) when demand d2 is

employed in association with pre-timed actuation durations provided by vector 𝜆
2
.

In comparison with Fig. 19, a stabilising behaviour is now clearly implied.

Similarly Fig. 22 illustrates the evolution of phase (108,136) under demand d2 and

FT signals given by 𝜆

2
. Even if the queue presents occasionally increased values, it

then clears and a stable behaviour is implied (see also Fig. 18)

Suppose now that by the time the demand varies a Max-Pressure control defines

the signal timings. Figure 23 represents the network evolution during the 6 h. Obvi-

ously, a stabilising behaviour is continuously maintained. Moreover, when MP sig-

nals rule the network (brown plot) the sum of the network queues is lower than when

a stabilising pre-timed plan is applied (see purple plot of Fig. 20).

Figures 24 and 25 depict the evolution of queues q(154, 102) and q(108, 136)
under demand d2 and MP policy. Clearly, these movements are not only stable but

in addition to that, the related queues take smaller values under MP signals in com-

parison with the queue values under the stabilising FT plans (see Figs. 21 and 22).
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Fig. 21 Evolution q(154, 102) under varying demand: {𝜆2, d2}

Fig. 22 Evolution q(108, 136) under varying demand: {𝜆2, d2}

Figure 26 proposes a macroscopic point of view in order to capture the aggregate

behaviour of the arterial network for approximatively 30 min, when demand d2 is

associated with MP plans. Hence, cumulative external arrivals are depicted in green,
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Fig. 23 Network evolution under varying demand: {𝜆1, d1} → {MP, d2}

Fig. 24 Evolution q(154, 102) under varying demand: {MP, d2}

departures in blue and internal arrivals in red. The three curves almost coincide,

indicating that the number of vehicles entering the network is almost the same as the

number of exiting vehicles, presenting the network stability.
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Fig. 25 Evolution q(108, 136) under varying demand: {MP, d2}

Fig. 26 Macroscopic network behaviour: cumulative entries-exits, internal arrivals

9 Managing Non-recurrent Congestion

9.1 Arterial Management Under Traffic Disturbance

This section considers the network behaviour when the accessibility of an intersec-

tion becomes prohibited or partially inaccessible for a limited duration. In particular,

a partial disturbance of 1 h (3600 s) is going to be considered prohibiting the major-

ity of vehicles to cross node 103. The manifested network reaction is going to be

studied when FT and MP signal plans control the intersections. More precisely, time

period [0, 10800) is considered where from t = 1000 s to t = 4600 s most vehicle

departures are dramatically reduced from node 103.
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Fig. 27 Network evolution when non-recurrent congestion: FT versus MP

Figure 27 illustrates the network behaviour under two policy patterns:

1. during period [0, 10800) the same FT plan is employed

2. from [0, 4600) FT plan is applied followed by MP policy

Before the traffic disturbance at intersection 103 the network was under a stable state

as the red curve of Fig. 27 depicts. By the time vehicle departures are reduced from

node 103 the network becomes unstable as the increasing sum of all the network

queues implies (blue curve). The cyan plot illustrates the network evolution dur-

ing the decongestion period under MP plan while the green one corresponds to the

pre-timed control. Obviously, MP signalise stabilise the network much faster while

maintain smaller queue lengths.

9.2 Congestion: Location and Extend

The impact of the traffic perturbation at intersection 103 to the neighbour nodes is

examined. In particular, distinct queues at nodes 103 and 102 are considered and their

behaviour during the perturbation time is analysed. The selected phases of which the

evolution is studied are: (103, 108), (138, 140) and (105, 103).
Movements (103, 108) and (138, 140) require ability to cross intersection 103

in association with available space on link 108 (for phase (103, 108)). Movement

(105, 103) discharges vehicles towards node 103 and for that the currently available

vehicle capacity of link 103 interferes. Entry links 138 and 105 are associated with

infinite vehicle storage capacity and consequently all queues on these links may reach

any value. However, on internal link 103 at most 55 vehicles can be simultaneously

located.

Examination of q(138, 140) during the disturbance period as depicted in Fig. 28

shows an unstable behaviour under FT plan. This phase is prioritised under MP
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Fig. 28 Evolution q(138, 140) during traffic perturbation: FT versus MP

Fig. 29 Evolution q(103, 108) during traffic perturbation: FT versus MP

signals regarding other concurrent phases, since link 140 is an exit link and no queues

are considered on this link (see also Eqs. (4) and (5) in MP definition).

Let us now examine phase (103, 108). Two different turns are possible from link

103, one towards link 104 and another towards link 108 (phase (103, 104) forms

a right turn and consequently is an uncontrolled movement). At any time the total

number of vehicles on link 103 cannot exceed the value of 55. Figure 29 implies a

saturated state of link 103 during the perturbation period under both plans. The size

of q(103, 108) oscillates at around 52. Due to the perturbation, the number of vehicle

departures from this link is decreased during the considered time period. Moreover,

within the current context MP actuates less often this phase since the concurrent

turn (138, 140) is prioritised (entry link has an important demand and sends vehicles

to no congested exit links). By the time some space becomes available on link 103
vehicles from upstream queues are joining this link.

Vehicles appearing at entry link 105 can either turn towards link 103 (lower

demand) or select to head towards link 254 (most probable selection). As depicted

in Fig. 30 in spite the reduced demand associated with turn (105, 103) this phase is
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Fig. 30 Evolution q(105, 103) during traffic perturbation: FT versus MP

Fig. 31 Delay evolution q(103, 108): FT versus MP

unstable under the pre-timed plan (cyan curve). However, this movement remains

stable when MP actuation signals are applied, maintaining low queue values (green

plot). To this effect, important role is also played by the fact that since MP policy

takes into consideration the current state of both the ingoing and outgoing links an

optimised coordination of the movements is implied while that is necessarily the

case of FT policy.

Delays are studied for movements at node 103. In particular, the time during

which vehicles were queued as a function of their arrival time will be measured for

the contradictory phases (138, 140) and (103, 108). Figure 31 illustrates the delay

values associated with queue q(103, 108) under two scenarios. For both cases, a pre-

timed plan is applied from the beginning of the simulation to the end of the perturba-

tion time, that is during period [0, 4000). The sequence of red-cyan curve illustrates

this situation. The difference between the two scenarios concern the control applied

just by the end of the disturbance. The yellow curve indicates the delays met by

vehicles when they joined (q103, 108) during period [4000, 10800) when FT plans

and the green plot illustrates the same metric but under MP signals. Obviously, MP
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Fig. 32 Delay evolution q(138, 140): FT versus MP

increases delays for q(103, 108). One would wonder if that observation is reasonable

and what the justification for such a behaviour would be. Two stages are associ-

ated with intersection 103. Stage 1 simultaneously actuates movements (103, 108)
and (208, 203). Similarly stage 2 actuates phases (138, 140) and (139, 104). Internal

links 103 and 208 are of finite vehicle storage capacity equal to 55 and 45 respec-

tively while entry links 138 and 139 may reach any value. As previously discussed,

q(138, 140) becomes unstable during the disturbance period and under FT control,

reaching values greater than 700 (see Fig. 28). The MP policy applied just after the

end of the disturbance, will meet the queue length indicated by the blue plot of

Fig. 28. The exerted pressure by stage 2 actuating this movement is much higher

regarding the one of stage 1 since q(138, 140) had higher values at t = 4000 s and

heads vehicles towards exit link 140. Consequently stage 2 will be frequently actu-

ated by MP policy until a stable situation will be attained. Thus, movement (103, 108)
belonging to stage 1 will receive less green for t greater to 4000 s and thus delays

associated with this phase will be increased regarding the ones of the FT plan which

periodically actuates q(103, 108). Furthermore, Fig. 32 represents the delays asso-

ciated with phase (138, 140) for both FT and MP timing plans. Clearly, delays are

lower under MP plans and the queue stability is now obtained much faster regarding

the case of pre-timed plans (cyan curve corresponding to FT remains higher than the

purple one associated with MP).

10 Simulation Technique: Addressing Scenario
Reconstruction

10.1 Analysing Observations

As argued in Sect. 3 a DES approach is considered for the current study, aiming at

optimal traffic management, in association with intense discrete event
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simulations. Through the simulation model, the involved performance and bene-

fits of each employed strategy are quantified while the event-driven approach accu-

rately represents the real system behaviour in a stochastic environment. Moreover,

the nondeterminism of DES where transitional choices are made either by the sys-

tem itself or by a well-defined mechanism represents the asynchronous and ran-

dom behaviour of multiple schemes frequently interfering in road traffic structures.

For the current study a made-to-measure decision tool is developed, named PointQ,

involving parameters that describe the network (number of lanes in each link and

its vehicle storage capacity etc.), demands and saturation flow rates for each move-

ment (obtained as default values from the Highway Capacity Manual (Transporta-

tion Research Board (2000)), since direct measurements are not available) and signal

timing plans obtained from the local traffic agency. One of PointQ advantages con-

sists in its accuracy while minimal input information is required in order to run any

strategy. Each observation is recorded within a database and hence the entire sim-

ulated scenario can be accurately reproduced. One of the major advantages of this

aspect consists in examining whether an observation result is justified or is due to

simulation errors and so on. Hereafter, a representative example is discussed.

Let us consider the realised trips of vehicles entering the network from entry link

174 and leaving it from exit link 237 and measure the average journey duration when

pre-timed and MP signal plans are employed.

Table 5 illustrates the average realised travel time under FT and MP signals with

4, 6, 8 and 10 control revisions per cycle, while no demand variation or other traf-

fic incident causing non-recurrent congestion occurs. One observes that the average

travel time under MP controls with 4 (MP4) control revisions per cycle is of 678.6 s

while the corresponding time with MP8 plans equals to 693 s. These findings con-

tradict previous conclusions on the length of the sum of all the network queues and

the related probabilities, discussed in Sects. 7 and 6.

All experiments of Table 5 employ the same demand (level and geometry), sat-

uration flow rates and phase actuation plans as the ones utilised for obtaining the

results of Table 2 (indicating average travel times of other vehicle journeys) as well

plots of Figs. 3 and 8 representing the evolution of the sum of all the network queues

under MP versions and the associated queue probability. In particular Figs. 3 and 8

verify theoretical results implying that the frequent the control decision is updated

the smaller values the total network queue length reaches. Since the demand and sat-

uration flow rates are unchanged the average trip duration should also decrease by

the time the number of MP control revisions is increased.

Table 5 Mean travel time—MP versions

Entry-exit link ATT (s) ATT ATT ATT

MP4 MP6 MP8 MP10

(174, 234) 678.6 499.4 693 459.8
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Consequently, one would wonder of the coherency of these results and the relia-

bility of the decision tool.

10.2 MP8 Increases ATT. Reasonable Conclusion?

Would it be reasonable to state that MP signals associated with eight stage revisions

per cycle involve larger trip durations?

∙ Observation of the evolution of the sum of all network queues under MP8 policy,

as depicted in Fig. 3, implies smaller queue lengths than the related ones under

MP4 and MP8 plans.

∙ Similarly, the probability of the queue size decreases as the number of MP control

revisions increases, as illustrated in Fig. 8.

Hence, could one conclude that a computation error or a PointQ bug has occurred

and consequently that is the reason for which the average travel time under MP8 is

increased regarding the one of MP4, for trips between entry link 174 and exit link

234?

Before proceeding to any assessment let’s make use of all the simulator advan-

tages and proceed to the computation of the delays associated with these trips.

Table 6 resumes the related total trip delays for MP4, MP6, MP8 and MP10. Obvi-

ously delays are reduced as the number of control revisions increases. This results

ensures that no computational or programming error is involved.

But then what reasonable justification could be given for the increased travel times

under MP8?

10.3 Microscopic Analysis

A microscopic analysis seems necessary in order to examine in detail the simulation

context involved with trips from entry link 174 towards exit link 234.

During the employed implementation, stochastic travel times are associated with

each link (based on the mean free flow speed and depending upon the current link

state) following shifted Log-Normal distributions (the shift ensures a non zero travel

duration). A detailed analysis of the travel time of vehicles which entered the network

from link 174 and exited at link 237 is proceeded for the MP6 and MP8 signal plans.

Table 6 Average of the mean sojourn time of vehicles in queues for MP versions

Average mean sojourn

Time of vehicles

in queues

MP4 MP6 MP8 MP10

(s) 4276.2 3006.1 2345.6 2009.3
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Fig. 33 Travel time—MP6: three trips from entry link 174 towards exit link 234

Fig. 34 Travel time—MP6: three trips from entry link 174 towards exit link 234

The micro statistical analysis implies that three vehicles entered the network from

link 174 and exited it at link 237.

Figure 33 represents the realised travel time, for each one of the three vehicles

and for each crossed link, for the implementation corresponding to MP6 traffic plans,

(red, blue and green curves). Moreover, in the same figure is also depicted the related

mean travel time for each one of the considered links, based on the free flow speed

(orange plot). Clearly, for all vehicles and for each travelled link, the realised travel

time is close to the one indicated by the considered mean travel value.

Figure 34 illustrates similar results as Fig. 33 but when MP8 signal plans gov-

ern each intersection node. Manifestly, the vehicle of id 6063 traveled too slowly

link 4 (blue plot). That vehicle consumed approximatively 600 more seconds when

traveling link 4, than the mean travel time indicated. A deeper examination implied

that a higher value of travel time was provided by the probability law defining link

travel times but still this value could be accepted according to the corresponding

variance and standard deviation values. As a conclusion, one should consider large
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simulation durations associated with series of simulations for stochastic models

involving a multitude of possibilities for each considered approach. Thus, in the case

of road traffic networks where fore example various trip possibilities exist, when a

particular demand is low, concluding from a series of simulations will limit similar

effects. However, a detailed analysis will show whether a particular system behaviour

is due to different sorts of errors or it can be reasonably justified.

11 Discussion

Various approaches tackling optimal road management exist, each one based on

different concepts and assumptions. Moreover, when addressing congestion and its

impacts there is rarely a uniform conceptual framework appraising the suggested

management, due to the variety and scope of the goals involved. Nevertheless,

according to the manner in which congestion is evaluated and analysed, including

the employed methodological tools and the related assumptions, important policy

consequences are involved. Furthermore, the peak-spreading describing how urban

congestion is spread, has become a fact, in the sense that the period during which

traffic is very dense is largely extended. Likewise, many urban regions experience

degraded travel conditions and consequently travel times predictability are reliability

are also reduced.

This study suggests a framework related to a next traffic generation management,

where signal plans decisions are determined in real depending upon the present state

of the related intersection. No demand knowledge is required, the involved decen-

tralised aspect of the control easies decision making while the computational and

implementation cost are drastically reduced. The so called Max-Pressure algorithm,

provides theoretical stability guarantees for the network, based on queue measure-

ments and turning ratios. The Max-Pressure Adaptive version estimates the turning

probabilities (since this information cannot always be available) while the network

equilibrium remains ensured. In order to reduce frequent signal switches, the Max-

Pressure Practical algorithm is presented and appraised regarding Max-Pressure,

illustrating how similar network performance can be obtained within reduced costs

(time lost, signal changes etc.). Various versions of the feedback policies are consid-

ered depending upon the frequency of the control revision and compared with the

pre-timed control for the same network, demand and vehicle routing under regular

traffic conditions. Higher network performance is clearly obtained when intersec-

tions are governed by the closed loop timing plans. Performance metrics based on

queue lengths, average travel times, trip durations and delays are mostly measured.

Different traffic patterns are modelled within the purpose to derive the benefits of

each signal policy plans.

In particular, the stabilising pre-timed actuation durations 𝜆
1

corresponding to a

given demand level d1 cannot accommodate the new demand intensity d2 occurred

after a slight fluctuation on the demand intensity associated with a single intersec-

tion. Likewise, a saturated node can quickly give rise to queues whose upstream
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propagation can swamp local roads and intersections. As a consequence, multiple

intersections become congested and a new computation of the actuation durations

associated with each network node, 𝜆
2

where 𝜆
2
≠ 𝜆

1
, is revealed necessary in order

to maintain the network stability under pre-timed signal timings. Nevertheless, the

Max-Pressure actuation stages are automatically adapted to the new demand scheme

and accordingly all network queues are stable avoiding any intersection saturation.

A non-recurrent congestion pattern is modelled occurring during a limited period

of time. Thus, during half an hour most vehicle departures are prohibited from a

particular intersection. The network effects are studied and the congestion impacts

are measured according to both policies: Fixed Time versus Max-Pressure plans.

Analysis assessing congestion, reveals how the feedback signals mitigate congestion

expansion while allow for a faster network decongestion when the traffic conditions

return back to the normal state. Max-Pressure control, prioritises movements requir-

ing more actuation duration at the current decision time and thus re-establishes the

network state within the best possible conditions.

A discrete event approach is considered for the study of the related traffic control

problem associated with discrete event simulations in order to obtain knowledge of

the system behaviour under the employed strategy. Deep statistical analysis of the

recorded observations, allow a precise and detailed reconstruction of the simulated

scenario revealing all the schemes through which the considered implementation

passed. A representative example suggesting a methodology for examining whether

the induced metrics can be justified or should considered as absurd ones, is devel-

oped. As a result, all the obtained statistical indicators can be examined, verified and

validated since well-founded justifications can be provided any time that is neces-

sary. Since the reflected results are enhanced reliable conclusions can be provided to

any system enquiries.

Estimation of the queue size is aimed to be measured and employed within a short

future in order to contribute to a realistic application able to be employed within a

real time traffic control. In the USA more than 90% of the controllers are pre-timed

ones, consequently the benefits of MP and MP-Pract policies worth to be explored.
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since the city size makes it insoluble and citizens prefer to use private transportation
instead of the public transport network because it offers a poor coverage and a lack
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1 Introduction

“Adding highway lanes to deal with traffic congestion is like loosening your belt to cure
obesity.”

Lewis Mumford. The Roaring Traffic’s Boom.

Mexico City is divided by 16 geo-political sectors (see Fig. 1) where each sector
has its own government authority. The majority of the Mexican population is urban
(78% of total population lives in cities) as in the United States and Brazil (see
Table 1). Like many countries around the globe, urban population in Mexico is

Fig. 1 Mexico City sectors, reproduced from http://mapamexicodf360.com.mx/carte/image/es/
mapa-delegaciones-mexico.jpg
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growing at higher rates compared to the total population, making Mexican cities
local engines for national growth [60].

Varela [60] emphasizes that as competitiveness and growth in Mexican cities are
increasingly compromised by congestion, air quality problems, and increased travel
times; city officials not only face the challenge of accommodating a growing urban
population but also sustaining a constant provision of basic urban services (e.g.
clean water, health, job opportunities, transportation, and education). Varela [60]
adds that unfortunately, periods of high growth without effective planning and
increasing motorization, have pushed Mexican cities towards a “3D” urban growth
model: distant, disperse, and disconnected. It is important to note that the 3D model
is a direct result of national policies subsidizing housing projects in the outskirts of
urban agglomerations, managing urban and rural land poorly, and prioritizing
car-oriented solutions for transportation. In consequence, over the past 30 years
Mexico City’s population has doubled and its size has increased seven-fold and
nowadays it is considered the most populated metropolitan area in the western
hemisphere. Table 2 shows some socio-economic KPI’s of Mexico City from 2008

Table 1 Urbanization and economic growth, adapted from [58]

Brazil China India Mexico United
States

Global

Population (billions) 0.5 1.3 1.2 0.1 0.3 7.1
Annual growth rate of population 0.83% 0.46% 1.28% 1.07% 0.9% 1.01%
Urban population 87% 47% 30% 78% 82% 50%
Change on annual level of
urbanization (2010–2015)

1.10% 2.30% 2.40% 1.20% 1.20% 1.85%

GDP per capita (in U.S. Dollars) 12,000 9,100 3,900 15,300 49,800 12,400
GDP growth rate per capita (annual
percent in 2011)

1.80% 8.00% 4.90% 2.70% 1.00% –

Table 2 Socio-economic KPI’s of Mexico City, adapted from [14]

Administrative organization The metropolitan area of Mexico is composed of 16
Delegations in the Federal District, 58 municipalities in State
of Mexico, and 1 Municipality in State of Hidalgo

Population (2008) Federal District: 8.8 million
Metropolitan area (Federal District and State of Mexico): 19.2
million

Area (2010) Federal District: 1,487 km2

Metropolitan area: 7,180 km2 (40.1% of which is urbanized)
Population density (2010) Federal District: 5,958 people/km2

Metropolitan area: 6,671 people/km2

Annual population growth
rate (2005–2010)

Federal District: 1.49%
Metropolitan area: 3.96%

GDP and growth (2011) 163.6 billion USD (17% of the national GDP, Federal District
only) Annual GDP growth (2008–2011): 4%

Unemployment rate (2011) 6.5%
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to 2011. Floater et al. [26] Believe that one alternative to the 3D model is the 3C
urban growth model: compact, connected and coordinated. In this direction, it is
mandatory that a study about urban mobility needs to consider a variety of aspects
such as the urban development, the land use, the environmental conditions, the
weather, the security, and the social welfare.

Mobility in Mexico City is also a huge problem since the city size makes it
insoluble. Mexico City presents the highest congestion level on the road network,
causing more than 90% extra travel time for citizens during busy hours. The traffic
congestion affects directly on the quality of life, however citizens prefer to use
private transportation instead of the public transport network because it offers a
poor coverage and a lack of modal transfer centers. Table 3 (at the end of the
chapter) shows the mobility KPI’ for Mexico City during 2001, 2007 and 2010.

In the last years, an increasing amount of literature has been devoted to modeling
public transportation networks as complex networks [8, 9, 20, 63]. Interesting
contributions are found in the literature. For instance, In [61] authors used complex
network concepts to analyze statistical properties of urban public transport networks
in several major cities of the world. Cheung et al. [20] analyzed the air trans-
portation network in the U.S. Recently Háznagy et al. [33] analyzed the urban
public transportation systems of five Hungarian cities performing a comprehensive
network analysis of the systems with the main goal of identifying significant
similarities and differences of the transportation networks of these cities. Háznagy
et al. [33] considered directed and weighted links, where the weights represented
the capacities of the vehicles (bus, tram, trolleybus) in the morning peak hours.
Reggiani et al. [51] Establishes that the following questions need to be answered
with respect to transport networks as complex networks:

(a) Is a complex network a necessary condition for the emergence or presence of
transport resilience and vulnerability?

(b) Several indicators of resilience and vulnerability co-exist; are these differences
related to specific fields of transportation research?

(c) Can connectivity or accessibility be considered as a unifying framework for
understanding and interpreting—in the transport literature—the concepts of
resilience and vulnerability?

In this direction, connectivity as the ability to create and maintain a connection
between two or more points in a spatial system is one of the essential elements that
characterize complex networks. Given the relevance of the connectivity pattern in
complex networks, it may seem plausible that complex networks—and connectivity
—are a sine qua non for the development of resilience and reduce vulnerability in
transportation systems. More recent studies show how the topological properties of
a network can offer useful insights into the way a transport network is structured
and into the question of which are the most critical nodes (hubs). In this case,
resilience and vulnerability conditions associated with such hubs can then affect the
resilience/vulnerability of the whole network.
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Table 3 Mobility KPI’s for Mexico City during 2001, 2007 and 2010, adapted from [15]

Total trips per day (2007) 48.8 million (Metropolitan area) and 32.0 million
(Federal District)

Daily trips per person (2007) 2.5 (Metropolitan area) and 3.6 (Federal District)
Trips and modal share in the Federal
District (2007)

Mode Trips %
Total

%Public
transport

Non
motorized

8,600,000 26.9%

Private
vehicles

4,800,000 15.0%

Microbuses 9,448,800 29.5% 50.8%
Metro 4,984,800 15.6% 26.8%
Autobuses 1,878,600 5.9% 10.1%
Taxis 1,041,600 3.3% 5.6%
Metrobus 762,600 2.4% 4.1%
Trolley
(RTP)

204,600 0.6% 1.1%

Suburban
train

167,400 0.5% 0.9%

Light train 111,600 0.3% 0.6%
Total 32,000,000 100.0% 58.1%

Road network (2007) 10,200 km (91% local roads)
Total vehicles (Federal District,
2001)

Cars 4,460,386
Taxis 225,302
Motorcycle 11,920
Microbuses 20,459
Buses 8,240

Combis 3,519
Metrobus–articulated buses 322
Metrobus–regular buses 54
Metrobus–biarticulated buses 27
Totals 4,730,228

Road safety (2010) Total number of accidents 14,729
Number of deaths 1,026
Involved vehicle in deaths 3.5% Microbus

81.0% Car
5.6% Truck

Involved victim in deaths 14.0%
Motorcycle
driver
52.0% Pedestrian
20.0% Car driver
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Additionally, Lin and Ban [42] presented the current state of topological
research on transportation systems under a complex network framework, as well as
the efforts and challenges that have been made in the last decade.

In this chapter, we propose to model and simulate the public transportation
network in Mexico City from the complex network perspective to asses’ network
structural vulnerability and resilience, considering mobility and accessibility
aspects. We consider that a research about the public transportation network in
Mexico City should be conducted at different levels. The first one can be done
considering the networks as a whole, while the second one should take into account
the relationship between geo-political sectors and the third one should analyze each
geo-political sector individually. For the purpose of this study, we consider the
public transportation network in Mexico City as a whole. In addition, we take into
account the lack of connections in the multimodal public transportation network to
make some tests based on networks algorithms.

This chapter is divided into five main sections. In Sect. 2, the urban transport
infrastructure is analysed considering the planning process and sustainability cri-
teria. In Sect. 3, the complex network modeling and simulation of the Mexico
City’s public transportation network is carried out. The complex network topology
of the Mexico City’s public transportation network is characterized in Sect. 4. The
concluding remarks are drawn in Sect. 5.

Note: Due to the use of the nomenclature of both network theory and graph
theory, some authors cited in this chapter use terms such as nodes and vertices to
refer to the same, as well as arcs and edges.

2 Urban Transport Infrastructure

Nowadays one of the biggest problems in cities is the transportation system and its
infrastructure. There has been a lost of studies and research in recent decades trying
to find solutions. In general, there is an economic impact when countries make an
investment in this sector. Most of the studies on transportation infrastructure, in
particular, focus on its impact on economic growth. In the past two decades, the
analytical literature has grown enormously with studies carried out using different
theoretical approaches, such as a production function (or cost) and growth
regressions, as well as different variants of these models (using different data,
methods and methodologies). The majority of these studies have found that
transportation infrastructure has a positive effect on output, productivity or eco-
nomic growth rate [16]. For instance, Aschauer [3] in his empirical study provided
substantial evidence that public transport is an important determinant of economic
performance. Another example is the study of Alminas et al. [1], who found that
transport in general has contributed to growth in the Baltic region.

Another study on the Spanish plan to extend roads and railways that connect
Spain with other countries concludes that these have a positive impact in terms of
Gross Domestic Product [2]. In a study of the railroad in the United States, it was
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mentioned that many economists believe that the project costs exceed the benefits
[6]. However, the traditional model of cost-benefit assessment does not include the
impact of development projects [23].

In these studies focused on growth, we see there is a bias towards economic
rather than social goals. That is why it is important to emphasize the impact of
transport infrastructure on development and not just growth. Transport infrastruc-
ture has to deal with accessibility, mobility and traffic mainly, but if we want to
establish a sustainable public transport, is important to consider factors as, econ-
omy, land use, trips, environment and social welfare. According to The City of
Calgary [57] we divide the urban transport infrastructure as follows:

• Transportation Planning
• Transportation Optimization
• Transportation Simulation

Transportation planning covers many different aspects and is an essential part of
the socio-economic system. According to Levy [41], “Most regional transport
planners employ what is called the rational model of planning. The model considers
planning as a logical and technical process that uses the analysis of quantitative data
to decide how to best invest resources in new and existing transport infrastructure.”

Phases for Transportation Planning
There are three phases: The first, preanalysis, considers what problems and

issues the region faces and what goals and objectives it can set to help address those
issues. The second phase is technical analysis. The process involves the develop-
ment of the models that are going to be used later. The post-analysis phase involves
plan evaluation, program, implementation and monitoring of the results, [35].

Transportation planning involves the following steps:

• Monitoring existing conditions;
• Forecasting future population and employment growth, including assessing

projected land uses in the region and identifying major growth corridors;
• Identifying current and projected future transportation problems and needs and

analyzing, through detailed planning studies, various transportation improve-
ment strategies to address those needs;

• Developing long-range plans and short-range programs of alternative capital
improvement and operational strategies for moving people and goods;

• Estimating the impact of recommended future improvements to the trans-
portation system on environmental issues, including air quality; and

• The development of a financial plan to ensure sufficient income to cover the
costs of implementing strategies.

In order to consider these aspects is important to study them into an urban
infrastructure scope [25].
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Urban Infrastructure
Urban infrastructure, a human creation, is designed and directed by architects,

civil engineers, urban planners among others. These professionals design, develop
and implement projects (involved with the structural organization of cities and
companies) for the proper operation of important sectors of society. When gov-
ernments are responsible for construction, maintenance, operation and costs, the
term “urban infrastructure” is a synonym for public works. Road infrastructure is
the set of facilities and equipment used for roads, including road networks, parking
spaces, traffic lights, stop signs laybys, drainage systems, bridges and sidewalks.
Urban infrastructure includes transportation infrastructure, which in turn, can be
divided into three categories: land, sea, and air, they can be found in the following
modalities:

The problem in the case of Mexico City is the fragmented government that
makes more difficult to implement strategies for plans. This is shown in next Fig. 2.

“Such institutional and operational fragmentation has significant implications
especially for users. In Buenavista—an area of Mexico City where three modes of
transport converge—travelers must walk up to 1.5 km to transfer from one mode to
another. About 150,000 people use this disconnected transport hub everyday”

2.1 Transportation Analysis

Manage and plan the services of cities entails a lot of work and participation of experts
in different areas. Such is the case of transport that currently represents a challenge for

Fig. 2 Governance system for public transport in Mexico City, from [60]
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researchers from different areas. There are three measures used for transportation
analysis: traffic, mobility and accessibility [43]. As is observed in Fig. 3, the aspects
taken into account to compare the three measures are definition of transportation, unit
of measure, modes considered, assumptions concerning what benefits consumers,
consideration of land use and favored transport improvement strategies (Fig. 4).

Fig. 3 Modal connection in
Buenavista, adapted from [60]

Fig. 4 Comparing transportation measurements, reproduced from [43]
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Litman [43] defines these three measures as follows:

Traffic Definition
Traffic refers to vehicle movement. This perspective assumes that “travel” means

vehicle travel and “trip” means vehicle-trip. It assumes that the primary way to
improve transportation system quality is to increased vehicle mileage and speed.

Mobility Definition
Mobility refers to the movement of people or goods. It assumes that “travel”

means person- or ton-miles, “trip” means person- or freight-vehicle trip. It assumes
that any increase in travel mileage or speed benefits society.

Accessibility Definition
Accessibility (or just access) refers to the ability to reach desired goods, services,

activities and destinations (collectively called opportunities). Access is the ultimate
goal of most transportation, except a small portion of travel in which movement is
an end in itself (jogging, horseback riding, pleasure drives), with no destination.
This perspective assumes that there may be many ways of improving transportation,
including improved mobility, improved land use accessibility (which reduce the
distance between destinations), or improved mobility substitutes such as telecom-
munications or delivery services.”

For transportation analysis it is important to consider diverse measures that are
used for it, and according to the selected method, different results are obtained. In
this chapter we use three different measures in order of importance according to the
level of analysis in three levels; macro, mezzo and micro as it will be explained
below. It is important to note that sustainability and quality of life of the inhabitants
are priority for any proposal or alternative arises.

2.2 Sustainable Urban Transport Infrastructure

According to HABITAT [31] mean by sustainable mobility the following:
Sustainable Urban Mobility: The goal of all transportation is to create universal

access to safe, clean and affordable transport for all that in turn may provide access
to opportunities, services, goods and amenities. Accessibility and sustainable
mobility is to do with the quality and efficiency of reaching destinations whose
distances are reduced rather than the hardware associated with transport. Accord-
ingly, sustainable urban mobility is determined by the degree to which the city as a
whole is accessible to all its residents, including the poor, the elderly, the young,
people with disabilities, women and children. Moreover quality of life and sus-
tainability corresponds to [30]:

In its original definition, sustainable development focuses on “meeting the needs
of the present without compromising the ability of future generations to meet their
own needs” [45]. The fulfillment of needs is not only a precondition for sustainable
development but also for individual well-being and thus for a high quality of life.
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Quality of life is most commonly defined as consisting of two parts, the objective
(the resources and capabilities that are given for a person) and the subjective (the
well-being of a person).

There are some sustainable and environmental friendly transport indicators
recommended [46] as reported by the European Environmental Agency (EEA) in
Copenhagen suggests that appropriate environmental indicators should be able to
respond to the following simple questions: what is actually happening of envi-
ronmental change? is it related to (significant) policy goals? is progress possibly
measurable? moreover, how does overarching welfare development influenced?
important criteria to select suitable indicators that are both descriptive, able to
measure performance as well as progress, are thus that they are:

• Policy relevant, consisting of parameters that actually might be influenced by
policy and administration;

• Accessible for measuring and comparison—over time or in space; in goals
versus results;

• Representative and valid¸ covering a broad scope of the environmental problems
at stake;

• Reliable and, based on accessible data, of high quality with regular updating;
• Simplified, able to manage and reduce complex relationships;
• Informative in order to promote an improved policy performance and broader

understanding of the environment transport relationships.

Drawing on well-established international indicator sets on environment and
transport, ideal and possible (accessible) indicators are discussed, and an indicator
for environmentally friendly urban transport is suggested, divided in five main
areas: driving forces, transport factors, environmental factors, urban and societal
impacts from transport, urban planning, policies and measures (Fig. 5).

Societal driving forc-

Transport behavior 
and infrastructure - 
magnitude and modes

Urban planning, poli-
cies and

Climate and urban en-
vironmental change- 

emissions and land take 

Urban impacts -welfare, 
distributional and urban 

vitalization effects 

Fig. 5 Indicators for urban transport, environment and climate. From [46]
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Other authors offer a slight different view about indicators as Paz et al. [49] that
points out: Numerous studies have established different measures to quantify sus-
tainability [64]. According to Bell and Morse [7], sustainability primarily is mea-
sured by means of three components: (i) time scale, (ii) spatial scale, and
(iii) system quality. The time and spatial scale corresponds to the analysis period
and the geographical region of interest, respectively. On the other hand, system
quality corresponds to the quantification of the overall system performance or state.
In order to quantify system quality, Sustainability Indicators (SIs) have been
developed in a diverse range of fields, including biology and the life sciences,
hydrology, and transportation.

It is clear that a truly sustainable state for a system requires all the relevant
interdependent subsystems/sectors and components, at levels so that the con-
sumption of and the impact on the natural and economic resources do not deplete
nor destroy those resources. Hence, the assessment of a system state requires a
holistic analysis in order to consider all the relevant sectors and impacts. [49].

As Paz et al. [49] say the analysis should be holistic, and we agree with it, just
the approach is different since they propose a study of a system of systems and use
fuzzy logic for qualitative indicators.

2.3 The Public Transport Network in Mexico City Context

Mexico City like all other cities has very specific features as the subsoil conditions,
and the geographical location; as it is a seismic zone and is filmed by mountains, has
two nearby volcanoes and was a lake 1500 years ago. So everything with regard to
infrastructure, urban development and air as quality water have to be considered in a
study on mobility. The following maps show aspects such as subsoil, environmental
pollution and transport networks that exist today, without considering the private
public transport networks. This information is important since a sustainable urban
development has to consider all the variables that affect the city growing.

Seismic zones are shown in the Fig. 6.
These zones were defined in order to regulate buildings construction, [4].

According to the Building Regulations for the Federal District and its Technical
Standards Complementary pair Design and Construction of Foundations (2004),
Mexico City is divided from the geotechnical point of view in three zones as can be
observed in the map, and defined as follows:

(a) Zone I. Lomas, formed by rocks or soil generally firm that were deposited
outside the lacustrine environment, but where there may be superficially or
interleaved, sandy deposits loose state or relatively soft cohesive. In this area,
the presence of voids is common in rocks, caves and excavated soil to exploit
sand mines and tunnels filled not controlled;

(b) Zone II. Transition, in which deep deposits are 20 meters deep, or less, and
which it consists predominantly sandy and sandy silt layers interspersed with
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layers lacustrine clay; the thickness thereof varies between a few tens of cen-
timeters and meters;

(c) Zone III. Lacustrine, composed of powerful deposits of highly compressible
clay, separated by layers with different sandy silt or clay content. These layers
are generally fairly sandy compact to very compact and variable thickness from
centimeters to several meters.

Lacustrine deposits usually they covered superficially by alluvial soils, dried
materials and artificial fillers; the thickness of this set can be greater than 50 m.

Geotechnical anomalies within the lake area. Auvinet [4].
The lake area is far from having uniform characteristics. In this area there are

sites easily where the subsoil has identifiable characteristics. It stresses in particular
the existence in the historic center of prehispanic thick fillings. Many farms have on
the other hand a complex loading history under colonial buildings; some of them
have now disappeared, amending substantially the behaviour of the subsoil under
the weight of buildings and seismic conditions.

A similar situation occurs along traces of old roads or albarradones, in areas of
channels that were filled and places of ancient human settlements established in all
islands or partially artificial lakes within the former, known as tlateles (Tlatelolco,

Fig. 6 Seismic zones in Mexico City. Source http://www.eluniversaldf.mx/home/especial-en-
que-zonas-se-sienten-mas-los-sismos.html
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Tlahuac, Iztacalco, etc.), without forgetting the chinampas areas. The presence of
these abnormalities, often undetected by designers, has been the source of problems
of inappropriate behaviour of foundations and damage structural in buildings. The
authors of this article are currently working on a micro zoning to bring the risks that
may arise locally to build in a certain place and define recommendations to mitigate
its consequences.

Other study about flooding was done by the DEVELOP teams in Wise, Virginia,
and Saltillo, Mexico, and researches investigated the physical, social and
socio-economic aspects of flooding in Mexico City. The project discerned areas
most susceptible to flooding and of higher risk based on socio-economic charac-
teristics. The team partnered with CONAGUA (Comisión Nacional del Agua),
ITESM (Instituto Tecnológico de Estudios Superiores de Monterrey), and
CAALCA (Centro del Agua para América Latina y el Caribe) to assist with deci-
sions and policy making. Next figure shows the result (Fig. 7).

Fig. 7 Social vulnerability
scores. Source http://
earthzine.org/category/
develop-virtual-poster-
session/page/29/
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Puente [50] states that, a methodology for assessing urban vulnerability rests on
two premises: (1) the material conditions of a city are good indicators of vulner-
ability; (2) the main components of vulnerability can be mapped at the scale of
urban neighborhoods. Based on them last step consists on creating a matrix that
displays the appropriate indicators (factors) on one axis and the areal units of
analysis on the other axe.

For the purposes of this chapter, we just mention some of them.
Another important factor is air pollution in Mexico City, “Environmental pol-

lution is an increasingly serious problem in third world cities. Pollution arises from
both fixed and mobile sources. Industrial facilities in the mega-cities of developing
countries have rarely been subject to policies of pollution control. Equally impor-
tant is pollution generated by urban transportation systems, especially those that

Fig. 8 Metro and Metrobus networks. From http://www.juliotoledo.com/mapas%20juliotoledo
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depend on motor vehicles. In recent years, local authorities have been obliged to put
up with crawling traffic, many frequent traffic jams, and other forms of vehicular
paralysis. The supposed advantages of flexibility and speed that were associated
with motor vehicles are rapidly disappearing. None the less, these cities must live
with the permanent costs of neighborhood social disruption and increased pedes-
trian hazards that have followed in the wake of motorization. Similar problems of
overuse and under management have also affected water resources. Lack of treat-
ment facilities has led to the contamination of streams where wastes are deposited
and of the associated aquifers [50].”

As observed from Figs. 8, 9, 10 and 11, public transportation network of Mexico
City is constituted by other networks.

Fig. 9 Electric bus network
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Fig. 10 Eco bus line 1. Source http://modulom1.blogspot.mx/2014/12/servicio-ecobus.html

Fig. 11 Eco bus line 2. Source http://modulom1.blogspot.mx/2014/12/servicio-ecobus.html
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3 Complex Network Analysis of the Mexico City’s Public
Transportation Network

The analysis of different complex systems is made much easier with the use of
networks. Whenever the system can be represented as a network or graph with
nodes and arcs, simple algorithms can be used to solve problems inherent to the
network. Nodes can represent cities, production centers, intersections of streets, etc.
Arcs relate these nodes, these can have a direction or not, capacity limits or also
different items or characteristics, in that sense the study of such networks has been
done in a multimodal way. In the last few years some authors have opted to change
the analysis of a multimodal network to a multilayer network as we will see later. In
our case that is about the public passenger transport network in Mexico City,
correspond to a multimodal network and composed of networks considering the
mode of transport. Moreover, it is a widely known fact that the problems facing this
network are huge as well as the complexity of the network itself. According to
graph theory, the basic representation of the structure of the complex network can
be generalized by the directed (or undirected) graph

G= ⟨V ,E⟩ ð1Þ

where V describes set of nodes (vertices) and E describes set of arcs (edges) that
compose the network. LetW = (wij) be the adjacency matrix associated to the graph
G, so that the edge eij has weight wij. A direct graph is defined by differentiating the
direction of edges. In contrast, an undirected graph take does not take into account
the direction of edges. The weight of edges represents the importance of edges in
the network.

Public transportation networks are complex networks whose structure is irreg-
ular, distributed, and dynamically evolving in time [5, 13, 17, 54]. On the one hand,
as explain Thai et al. [56] the study of structural properties of the underlying
network may be very important in the understanding of the functions of a complex
systems as well as to quantify the strategic importance of a set of nodes in order to
preserve the best functioning of the network as a whole.

The study of the dynamical properties of a complex network is important in
understanding the network complexity. As discussed by Criado and Romance [21],
complex network analysis focuses on statistical graph measures, and simulation,
using a statistical approach to asses network structural vulnerability by measuring
the fraction of the vertices or links to be remove before a complete disconnection
happens in the network in order to study complex networks. Criado and Romance
[21] add that under the perspective of structural vulnerability, two kinds of damages
can be considered on error and attack tolerance in complex networks: the removal
of randomly chosen vertices (error tolerance) and the removal of deliberately
chosen vertices (attack tolerance).
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In this section, we model and simulate the public transportation network in
Mexico City from the complex network perspective to asses network structural
vulnerability and resilience, considering mobility and accessibility aspects.

To model the Mexico City’s public transportation network as a complex network
and evaluate their empirical characteristics we used Gephi, and open source soft-
ware for the visual exploration of complex networks developed since 2008.

Gephi was created by Mathieu Bastian, Sebastien Heymann, and Mathieu Jac-
omy, and extended by Eduardo Ramos Ibañez, Cezary Bartosiak, Julian Bilcke,
Patrick McSweeney, André Panisson, Jeremy Subtil, Helder Suzuki, Martin Skurla,
and Antonio Patriarca from Web Atlas. It is suitable for the analysis of all kind of
complex networks. For the purpose of this study, we consider the public trans-
portation network in Mexico City as a whole taking into account the trolebus,
metro, metro-bus, ecobus, tren ligero and suburbano transportation systems.

It is important to note that the original configuration of public transport networks
from the network analysis was L-space, also referred as the space of stops or space
of stations, in which stops or stations are vertices. In this way, two vertices are
connected on an arbitrary route [42, 53]. In this study, we built a complex network
where a node represents a station from the public transportation networks in Mexico
whereas a directed arc represents the physical connection between two stations. The
weight of an arc represents the physical linear distance between two stations. The
complex network consists of 923 nodes and 1203 arcs. The layouts included in
Gephi are algorithms that position the nodes in the 2-D or 3-D graphic space. The
patterns created, based on the different layouts, emphasis the properties of the
structure of networks. For instance, using the force-algorithms the connected nodes
tend to be closer, while disconnected nodes tend to be further [38].

The force directed layout optimizes Martin et al. [44]:

min
x, ..., xn1

∑
i

∑
j
ðwijdðxi, xjÞ2Þ+Dxi

 !
, ð2Þ

where xi are positions of nodes, wij are arcs weights and Dxi is the density of edges
near xi.Where Dxi denotes the density of the points x1, …, xn near xi. The sum in (2)
contains both an attractive and a repulsive term. The attractive term
∑j ðwijdðxi, xjÞ2Þ attempts to draw together nodes, which have strong relations via
wij. The repulsive term Dxi attempts to push nodes into areas of the plane that are
sparsely populated. The minimization in (2) is a difficult nonlinear problem. For
that reason, we use a greedy optimization procedure based on simulated annealing
Martin et al. [44]. The procedure is greedy in that we update the position of each
vertex by optimizing the inner sum∑j ðwijdðxi, xjÞ2Þ+Dxi while fixing the positions
of the other nodes.

In order to select the pertinent layout in Gephi software (that means random,
force atlas, Fruchterman and Reingold [28], Noverlap, OpenOrd, Hu [34]); it is
important to take into account the capability of the algorithm to handle the given
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data (nodes and arcs), the user time constraint, and the structural network properties
to analyze.

For our simulation, we have used Force Atlas, Fruchterman and Reingold [28],
and Hu [34] algorithms. As Dey and Roy [24] due to Force Atlas algorithm uses
different techniques such as degree-dependent repulsive force, Barnes Hut simu-
lation, and adaptive temperatures for their simulation process.

In this direction, Dey and Roy [24] add that the main idea of simulation is that
the nodes repulse and the arcs attract. The network layout using Force Atlas
algorithm is shown in Fig. 12a.

Fruchterman and Reingold [28] propose to model a continuous network
depending on even distribution of the nodes, making arc lengths uniform and
reflects inherent symmetry. The network layout using [28] algorithm is shown in
Fig. 12b.

Cherven [19] notes that the OpenOrd algorithm helps to generate network graphs
very fast, and is best suited to very large networks that operate at a very high rate of
speed while providing a medium degree of accuracy.

Fig. 12 Mexico City’s public transportation complex network simulation using a Force Atlas,
b Fruchterman Reingold, c OpenOrd, and d Yifan Hu algorithms
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The importance of using OpenOrd algorithm is because it uses edge-cutting,
average-link clustering, multilevel graph coarsening, and a parallel implementation
of a force directed method based on simulated annealing Martin et al. [44]. An
advantage of this algorithm over Fruchterman and Reingold [28] one is that for
large graphs is the running time, Fruchterman and Reingold [28] is O(n2) in the
number of nodes n, The running time can be improved using a grid based density
calculation, and by employing a multilevel approach Martin et al. [44].

The goal of OpenOrd is to draw G in two dimensions. Let xi = (xi,1, xi,2) denote
the position of vi in the plane. OpenOrd draws G by attempting to solve Eq. (2).

All nodes are initially placed at the origin, and the update is repeated for each
node in the graph to complete one iteration of the optimization. The iterations are
controlled via a simulated annealing type schedule, which consists of five different
phases: liquid, expansion, cool-down, crunch, and simmer Martin et al. [44].

During each stage of the annealing schedule, authors vary several parameters of
the optimization: temperature, attraction, and damping. These parameters control
how far nodes are allowed to move. At each step of the algorithm, they compute
two possible node moves. The first possible move is always a random jump, whose
distance is determined by the temperature. The second possible move is analytically
calculated (known as a barrier jump22). This move is computed as the weighted
centroid of the neighbors of the vertex. The damping multiplier determines how far
towards this centroid the vertex is allowed to move and the attraction factor weights
the resulting energy to determine the desirability of such a move. Of these two
possible moves, we choose the move which results in the lowest inner sum energy
∑j ðwijdðxi, xjÞ2Þ+Dxi (Part of Eq. 2).

OpenOrd uses simulated annealing to solve the problem of Eq. (2). The network
layout using OpenOrd algorithm is shown in Fig. 12c.

As Cherven [19] states, Fruchterman and Reingold [28] algorithm produces
faster results compared to other force-directed methods by focusing on attraction
and repulsion at the neighborhood (rather than the entire network) level. The net-
work layout using Yifan Hu algorithm is shown in Fig. 12d.

3.1 Statistical Graph Measures of the Mexico City’s Public
Transportation Complex Network

According to complex networks framework is necessary to have some measures as
centrality ones, in order to answer the question “What is the most important or
central node in a given network?” Centrality measures (defined below) are the most
basic and frequently used methods for analysis of complex networks Tarapata [56].

Based on this, here is a list of some statistical graph measures from Eq. (3) to
Eq. (9) to evaluate the empirical characteristics of the Mexico City’s public
transportation complex network mostly based on Dey and Roy [24] and Tarapata
[55].
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Mean Degree
Degree ki is defined as the number of links connected to the node. The mean degree
represents the average degree of all nodes in a network.

⟨k⟩= ∑
N

i=1
ki ̸N ð3Þ

where Vj j=N the average degree calculated was 2.607 (Fig. 13).

Connectivity and Accessibility
According to Rodrigue et al. [52], accessibility is defined as the measure of the
capacity of a location to be reached by, or to reach different locations therefore, the
capacity and the structure of transport infrastructure are key elements in the
determination of accessibility. Following Rodrigue et al. [52], two spatial categories
are applicable to accessibility problems: topological accessibility and contiguous
accessibility. In the first case, it is related to measuring accessibility in a system of
nodes and paths, for instance a transportation network, assuming that accessibility
is a measurable attribute significant only to specific elements of the transportation
system. In the second case, the measure of accessibility is carried out over a surface,
being a measurable attribute of every location, as space is considered in a con-
tiguous manner.

Rodrigue et al. [52] adds that the most basic measure of accessibility involves
network connectivity through the degree node. As shown in Table 4, the nodes
Bellas Artes and Aquiles Serdan of the Mexico City’s public transportation com-
plex network are the most connected. These nodes are subway stations from line 2
and 7. Based on the average degree calculated, and considering the Mexico City’s

Fig. 13 Mexico City’s distribution degree for complex public transport network
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Table 4 Most connected nodes of the Mexico City’s public complex transportation network

Station Transport
type

Transport
line

Degree Weighted
degree

Bellas Artes STC metro 2 10 5892
Aquiles Serdan STC metro 7 10 6721
Balderas STC metro 1 8 4437
Miguel Angel de
Quevedo

STC metro 3 8 5573

Oceania STC metro 5 8 6017
Av. Copilco Trolebus K1 8 4876
Centro Bancomer Ecobus 34B 8 5068
Luis Barragan Ecobus 34B 8 5068
Juan Ogorman Ecobus 34B 8 5068
Enrique del Moral Ecobus 34B 8 5068
Sams 1 Ecobus 34B 8 5068
Office Depot Ecobus 34B 8 5068
Tacubaya STC metro 1 7 6724
La Raza STC metro 3 7 5752
Salto del Agua STC metro 1 6 3043
Cuahutemoc STC metro 1 6 3426
Sevilla STC metro 1 6 3370
Chapultepec STC metro 1 6 3698
Hidalgo STC metro 2 6 3387
Chabacano STC metro 2 6 5433
Jamaica STC metro 4 6 4602
Juarez STC metro 3 6 3444
Centro medico STC metro 3 6 5117
Mixcoac STC metro 7 6 4106
San Juan de Letran STC metro 8 6 3316
Doctores STC metro 8 6 3893
Lazaro Cardenas STC metro 9 6 4627
Centro Scop Metro bus 2 6 3650

San Lazaro Metro bus 4 6 4088
Dr. Aceves Trolebus A 6 2960
Calz. De los Misterios Trolebus G 6 2582
Salonica Trolebus G 6 2728
Deportivo 18 de marzo STC metro 3 5 3927
Zapata STC metro 3 5 2967
Politecnico STC metro 5 5 2124
Garibaldi STC metro 8 5 2495
Insurgentes Sur STC metro 12 5 2717
Deportivo 18 de marzo Metro bus 1 5 2586

(continued)
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public transportation complex network as a whole, this degree was 2.607, that
means this kind of network has a low accessibility.

Weighted Degree Distribution
Considering that the weight of an edge represents the physical linear distance
between two stations, we calculate the average weighted degree.

The weighted degree of a node is like the degree. It’s based on the number of
edge for a node, but ponderated by the weight of each edge. It’s doing the sum of
the weight of the edges.

For example, a node with 4 edges that weight 1 (1 + 1+1 + 1 = 4) is equivalent
to:

a node with 2 edges that weight 2 (2 + 2 = 4) or
a node with 2 edges that weight 1 and 1 edge that weight 2 (1 + 1+2 = 4) or
a node with 1 edge that weight 4 etc.…

In the Mexico City case and based on the Table 4, the weighted degree is
1539.835 (see Fig. 14).

Table 4 (continued)

Station Transport
type

Transport
line

Degree Weighted
degree

Patriotismo Trolebus D 5 1985
Insurgentes Trolebus D 5 1595
20 de Noviembre Trolebus D 5 1595
Division del Norte Trolebus D 5 1595

Fig. 14 Mexico City’s public complex transportation network weighted degree distribution

66 I. Flores De La Mota and A. Huerta-Barrientos



Betweenness Centrality
A node is central if it structurally lies between many other nodes, in the sense that it
is transversed by many of the shortest paths connecting pairs of nodes. The
betweenness centrality is defined as follows.

bci= ∑
l∈V

∑
k≠ l∈V

pl, i, k
pl, k

ð4Þ

where pl, i, k count of the shortest paths in G between l and k nodes visiting the i-th
node, pl, k count of the shortest path in G between l and k nodes. The higher bci
value, the better (the i-th node is more important or more central). In order to
calculate the betweenness centrality, the Gephi software uses A Faster Algorithm
for Betweenness Centrality Brandes [12]. The betweenness centrality distribution is
shown in Fig. 15.

Eccentricity Distribution
As Hage and Harary [32] states, the eccentricity eci of the i-th node is calculated
using Eq. (5).

eci =maxj∈Vdij ð5Þ

where, dij represents the length of the shortest path in G between the i-th, and the j-
th node (number of edges on the shortest path from i to j). The lower eci value, the
better (the i-th node is more important or more central). In order to calculate the
eccentricity, the Gephi software uses A Faster Algorithm for Betweenness Cen-
trality Brandes [12]. The eccentricity distribution calculated is shown in Fig. 16.

Fig. 15 Betweenness centrality distribution of Mexico City’s public complex transport network
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Average Shortest Paths Length
The average shortest paths length L denotes the average minimum distance between
any two nodes. The lower L value is the better Watts et al. [62]. In this case, the
average path length of the network was 23.611 km.

L=
1

NðN − 1Þ ∑
i≠ j∈V

dij ð6Þ

Diameter
The diameter D represents the maximum path between any two nodes of the net-
work. The lower value D is the better Hage and Harary [32].

D=maxi∈Veci ð7Þ

In the case of Mexico City’s public transportation complex network, the
diameter is 77 segments.

Clustering Coefficient
The local clustering coefficient gci of a node i expresses how the neighbors of two
adjacent nodes have a link in between Watts et al. [62]. The average clustering C is
calculated as follows.

C=
1
N

∑
i∈V

gci ð8Þ

gci =
2Ei

ki ki − 1ð Þ , ki >1 ð9Þ

Fig. 16 Eccentricity distribution of Mexico City’s complex public transport network
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Here, Ei count the edges between first-neighbours of the i-th node. The higher
gci value, the better (the i-th node is more central). The average clustering coeffi-
cient was calculated using Gephi software, based on the algorithm proposed by
Latapy [40], and is equal to 0.033. Figure 17 shows the clustering coefficient
distribution of the Mexico City’s public transportation complex network.

4 Complex Network Topology of the Mexico City’s Public
Transportation Network

4.1 Topology of the Mexico City’s Public Transportation
Network

Hubs Distribution
The hubs are nodes with much higher degrees than the average node degree. The
occurrence of hubs tends to form clusters in the network. It is important to note that
the hubs distribution is assessed in Gephi software based on the algorithm of
Kleinberg [37]. The hubs distribution of Mexico City’s public transportation
complex network is shown in Fig. 18.

Authority Distribution
The authority is defined as nodes with the smaller degrees than the average node
degree. The authority distribution is also assessed in Gephi software based on the
algorithm of Kleinberg [37]. The authority distribution of Mexico City’s public
transportation complex network is shown in Fig. 19.

Fig. 17 Clustering coefficient distribution of the Mexico City’s public complex transport network
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Modularity
Fortunato and Castellano [27] describe the modularity as the decomposition of the
networks into sub-units or communities, which are sets of highly inter-connected
nodes. Following Blondel et al. [10], the identification of such communities is of
crucial importance as they help to uncover a priori unknown functional modules. As
Fortunato and Castellano [27] explain: identify modules and their boundaries allow
a classification of vertices, according to their topological position in the modules. In
this direction, vertices with a central position in their cluster may have an important

Fig. 18 Hubs distribution of Mexico City’s public complex transport network

Fig. 19 Authority distribution for Mexico City’s public complex transportation network
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function, for instance, control and stability within the group, while vertices at the
boundaries between modules play the role of mediation between different com-
munities. Modularity analysis using Gephi software is based on the algorithm
proposed by Blondel et al. [10]. It is important to note that the communities
detection in graphs is based only on the topology. In the case of Mexico City’s
public transportation complex network, the modularity is 0.895 and 29 communities
were detected. Figure 20 shows the size distribution of the communities detected in
the Mexico City’s public transportation complex network.

4.2 Assessment of Structural Vulnerability and Resilience
of Mexico City’s Public Transportation Complex
Network Based on Simulation

According to Criado and Romance [21], under the perspective of structural vul-
nerability, two types of damage can be considered on error and attack tolerance in
complex networks: the removal of randomly chosen nodes (error tolerance) and the
removal of deliberately chosen nodes (attack tolerance). To analyze the resilience of
the Mexico City’s public transportation complex network, we remove nodes, which
correspond to the stations of the trolebus, metro, metro-bus, ecobus, trenligero and
suburbano transportation systems, and edges, which correspond to the physical
distance between stations. We chose them both randomly and deliberately. In the
Mexico City’s public transportation complex network, eliminating 20% of stations

Fig. 20 Communities distribution size detected in the Mexico City’s public complex transporta-
tion network
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randomly from the network (see Fig. 21), the average degree calculated reduces
from 2.607 to 2.488 and the average weighted degree from 1539.835 to 1450.403.

Eliminating 30% of the highest degree nodes from the network (see Fig. 22), the
average degree calculated reduces from 2.607 to 1.79 and the average weighted
degree from 1539.835 to 1068.313. It is important to note that resilience and
vulnerability conditions associated with the hubs can then affect the
resilience/vulnerability of the whole network.

4.3 Multimodal Networks and Multilayer Networks

Krygsman et al. [39] observe that much of the effort associated with public transport
trips is performed to simply reach the system and the final destination. In this sense,
access and exit stations (together with wait and transfer times) are the weakest part
of a multimodal public transport chain and their contribution to the total travel
disutility is often substantial [11].

Fig. 21 Simulation of Mexico City public complex transportation network using Fruchterman
Reingold algorithm, by eliminating 20% of edges randomly
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Access and exit determine, importantly, the availability (or the catchment area)
of public transport [11, 45, 47]. Generally, an increase in access and egress (time
and/or distance) is associated with a decrease in the use of public transport [18, 48].

In this direction, two scenarios are observed: in the first one, if access and egress
exceed an absolute maximum threshold; users will not use the public transport
system, while in the second one, if the access and egress trip components are
acceptable, users may use the system, however; much will depend on the conve-
nience of the system. Therefore, we consider that making public transport attractive,
safe, self-sustaining and efficient to users is a task that must consider several aspects
that are often over looked in studies of this type. Some of the factors that have not
been considered are the connection between modes of transportation, which have to
do with cycling, walking or using some short-route transport. This has to do with
land use, climate and distance.

Due to the complexity of the system and considering the different transport
modes and networks involved, it is important to take into account the complete

Fig. 22 Simulation of Mexico City public complex transportation network using Fruchterman
Reingold algorithm, by eliminating 30% of the highest degree nodes

Simulation-Optimization of the Mexico City Public … 73



study of such networks as has been shown in the previous sections. As [29]
mentioned: “A few studies only considered many modes merged in an unique
network, but this aggregation might hide important structural features due to the
intrinsically multilayer nature of the network”.

In particular, in the case of urban transport, not considering the connection times
can lead to imprecise estimates for the network’s navigability. We note also that
interchanges are not symmetrical: rail-to-bus and bus-to-rail waiting time are dif-
ferent and are independent from the actual traffic volume (at least as long as
capacity limits are not taken into account). In addition, the existence of alternative
trajectories on different transportation modes enhances the system resilience”.

Therefore considering Kivela et al. [36] terminology: “A graph (i.e. a
single-layer network) is a tuple G = (V, E), where V is the set of nodes and
E ⊆ V × V is the set of edges that connect pairs of nodes. If there is an edge
between a pair of nodes, then those nodes are adjacent to each other. This edge is
incident to each of the two nodes, and two edges that are incident to the same node
are said to be ‘incident’ to each other.

In our most general multilayer-network framework, we allow each node to
belong to any subset of the layers, and we are able to consider edges that encompass
pairwise connections between all possible combinations of nodes and layers. (One
can further generalize this framework to consider hyper edges that connect more
than two nodes.) That is, a node u in layer α can be connected to any node v in any
layer β. Moreover, we want to consider ‘multidimensional’ layer structures in order
to include every type of multilayer network construction that we have encountered
in the literature.”

In the case of Mexico City Public Transport, each mode is a layer and networks
are connected by the stations that they share, as we show in Fig. 23.

This figure displays a part of the metro network and only metrobus stations that
have connection with it, however these connections are mainly in the central area of
Mexico City. This figure shows more clearly the need to analyze the problem as a
Multi-layer network, not all layers are considered since there is more means of
public transport.

Layer α represents Metro stations, while layer β represents Metrobus stations,
and they are connected with other modes of public transport.

In a multilayer network, we need to define connections between pairs of
node-layer tuples. As with monoplex networks, we will use the term adjacency to
describe a direct connection via an edge between a pair of node-layers and the term
incidence to describe the connection between a node-layer and an edge.

Two edges that are incident to the same node-layer are also ‘incident’ to each
other. We want to allow all of the possible types of edges that can occur between
any pair of node-layers—including ones in which a node is adjacent to a copy of
itself in some other layer as well as ones in which a node is adjacent to some other
node from another layer. In normal networks (i.e. graphs), the adjacencies are
defined by an edge set E ⊆ V × V, in which the first element in each edge is the
starting node and the second element is the ending node. In multilayer networks, we
also need to specify the starting and ending layers for each edge. We thus define an
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edge set EM of a multilayer network as a set of pairs of possible combinations of
nodes and elementary layers. That is, EM ⊆ VM × VM.

Using the components that we set up above, we define a multilayer network as a
quadruplet M = (VM, EM, V, L). [36].

For the general analysis is important to take into account the connectivity not
only by layer but intra layers, and how to consider strategies that create a resilient
network.

In this way, Demeester et al. [22] set up some objectives for an integrated
approach to multilayer survivability that includes:

• Avoiding contention between the different single-layer recovery schemes
• Promoting cooperation and sharing of spare capacity

Fig. 23 Mexico City multilayer network. Layers represent public transport networks
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• Increasing the overall availability that can be obtained for a certain investment
budget

• Decreasing investment costs required to ensure a certain survivability target

This analysis will be done in other chapter since there are more models and
details that are not possible to develop properly in this one.

5 Concluding Remarks and Future Work

An important fact to consider for this study is that in terms of mobility citizens in
Mexico City prefer to use private instead of public transportation causing the
highest congestion level on the road network at global level affecting the quality of
life of all citizens because they spend 90% extra travel time during busy hours.

In this chapter we have mentioned the mobility and accessibility of public
transport in Mexico City, as well as its connectivity, vulnerability and resilience. It
is important to note that this research goes beyond what has been exposed here.

According to some studies, the public transportation network in Mexico City is
considered as distance, disperse, and disconnected having a negative effect on the
productivity and the economic growth rate of the city. The main motivation of this
work was to assess the Mexico City public transportation network structural vul-
nerability and resilience for detecting areas of opportunity.

This first approach allows us to make a general diagnosis to build later scenarios
that allow us to take into account the other aspects of the problem, such as security,
environmental impact, land use, climate and traffic.

The results obtained from the simulation model allowed us to conclude that
public transportation in Mexico City have features of complex networks whose
structure is irregular, distributed and dynamically evolving in time.

The study of structural properties of Mexico City public transportation network
allowed us to quantify the strategic importance of a set of nodes (stations) to
preserve the functioning of the network as a whole. In order to carry out the
assessment we modeled and simulated the network using Gephi software. Our
simulations were executed using Force Atlas, Fruchterman Reingold, OpenOrd, and
Yifan Hu algorithms.

On the one hand, we observed that the network had a low accessibility because
the average degree is low, 2.607. It means that it has a low capacity to be reached
by different locations. On the other hand, when the 20% of the total nodes were
randomly eliminated to test the resilience of the network, the average degree
reduces from 2.607 to 2.488. While eliminating the 30% of the highest degree
nodes, the average degree reduces to 1.79. In conclusion, Mexico City public
transportation network also presents high vulnerability.

The importance of having this research is that measures to take make the public
transport an attractive option against the private one.
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Integrating Data Mining and Simulation
Optimization for Decision Making
in Manufacturing

Deogratias Kibira and Guodong Shao

Abstract Manufacturers are facing an ever-increasing demand for customized
products on the one hand and environmentally friendly products on the other. This
situation affects both the product and the process life cycles. To guide
decision-making across these life cycles, the performance of today’s manufacturing
systems is monitored by collecting and analyzing large volumes of data, primarily
from the shop floor. A new research field, Data Mining, can uncover insights
hidden in that data. However, insights alone may not always result in actionable
recommendations. Simulation models are frequently used to test and evaluate the
performance impacts of various decisions under different operating conditions. As
the number of possible operating conditions increases, so does the complexity and
difficulty to understand and assess those impacts. This chapter describes a
decision-making methodology that combines data mining and simulation. Data
mining develops associations between system and performance to derive scenarios
for simulation inputs. Thereafter, simulation is used in conjunction with opti-
mization is to produce actionable recommendations. We demonstrate the method-
ology with an example of a machine shop where the concern is to optimize energy
consumption and production time. Implementing this methodology requires inter-
face standards. As such, this chapter also discusses candidate standards and gaps in
those standards for information representation, model composition, and system
integration.
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1 Introduction

In 2014, the United States manufacturing industry produced $2.1 trillion worth of
goods and supported 12.3 million jobs [1]. While these figures are impressive, there
has been a declining trend in manufacturing’s share of the Gross Domestic Product
(GDP). The reasons for this decline include increasing global competition, sus-
tainability concerns, and uncertainties in the cost and supply of materials [2].

Traditionally, cost, quality, productivity, and throughput are the major consid-
erations when selecting materials, manufacturing processes or developing produc-
tion plans. However, environmental sustainability is now considered to be the
fourth such consideration. Even though it may negatively impact the other three,
sustainability is deemed critical for an organization to succeed in today’s markets.

To better understand and predict those impacts, a type of manufacturing systems,
called smart manufacturing systems (SMS), is being proposed. SMS are charac-
terized by the wide availability of data that can shed light on those impacts and
predictions. This data is expected to improve real-time system planning and
operational decision-making. But this can be achieved only if context and meaning
can be deduced from it. Data collected by smart sensors, radio frequency identifi-
cation (RFID), and wireless communications, is described by volume, velocity,
variety, veracity, validity, volatility, and value—the so-called 7 Vs of big data [3].
Figure 1 from United Nations Economic Commission for Europe (UNECE) [4]
shows the recent past, current, and projected “explosion” of business data.
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Gröger et al. [5] identifies two types of collected data: process data and opera-
tional data. Process data is made up of execution data, which includes flow-oriented
machine and production-events data recorded by the Manufacturing Execution
System (MES). Operational data mainly encompasses Computer-Aided Design
(CAD), Computer-Aided Process Planning (CAPP), and Enterprise Resource
Planning (ERP) data. These data are interrelated and influenced by many factors
including hidden patterns, correlations, associations, and trends. It is our view that
uncovering these factors can contribute to the decision-making process consider-
ably. The conventional approaches have inherent limitations for deriving actionable
recommendations based on the process data and operational data [6]. Thus, a new
methodology is needed.

In this chapter, we describe such a methodology combining simulation, data
mining, and optimization specifically for utilizing the large amount of process and
production data. This methodology is demonstrated with a case study of a
machining process where environmental impacts and production time are the per-
formance measures. The objective is to choose the process sequence, production
plan, manufacturing resources, and parameter settings that optimize both above-
mentioned measures during production operation.

Traditionally, simulation has been used to investigate the performance of
manufacturing systems under a predefined set of scenarios. Better et al. [7] observe,
however, that in a system with a high degree of complexity and uncertainty, (1) it is
not always obvious which parameters and variables to focus on to improve per-
formance nor (2) is it evident to what extent these variables should be changed for
optimal operation. Brady and Yellig [8] also observe that in complex simulation
systems of real-world problems, it is challenging to determine a set of input vari-
ables and their values to obtain optimal output. One major reason is that data
contains intricate dependencies, which must be determined before generating the
input to simulation models. Techniques and methods are needed to discover such
dependencies before performing simulation analysis. In summary, the main con-
tribution of this chapter is the novel methodology that integrates data mining,
simulation, and optimization techniques for more effective model parameter iden-
tification, simulation input preparation, and actionable recommendation derivation.

In our proposed methodology, data-mining is used to develop high-level asso-
ciation rules among various kinds of data, including performance data. The outputs
from using those rules are used as inputs to the simulation model. Simulation
optimization then determines the best process and operational parameter settings to
obtain actionable recommendations for decision makers and operators. We believe
that the combined effect of data mining, simulation, and optimization can improve
manufacturing decision making in face of big data and system complexity.

We use a case of a small machine shop with two performance objectives:
minimize production time and resource—material, energy, and water—usage dur-
ing the machining processes. Each part design has a different process plan. Some
machines can perform more than one process. However, the sequencing of parts
through the shop depends on the users’ objectives. The choice of a machine for a
given process will produce different impacts on both performance objectives.
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The chapter is structured as follows: Section 2 provides a background to data
mining with a focus on the unsupervised learning techniques: association and
clustering. Section 3 overviews simulation modeling for manufacturing applica-
tions. Section 4 reviews simulation optimization methods and techniques as they
are currently applied to decision-making in manufacturing. Section 5 illustrates the
integration of data mining, simulation, and optimization. Section 6 presents the
proposed methodology and the strengths of a combined-methods approach. Sec-
tion 7 presents a case study demonstrating how energy and production time can be
optimized in a machine shop based on the methodology. Section 8 presents a
summary and discussion of how the methodology can be implemented highlighting
integration needs.

2 Background to Data Mining

This section provides a background to data mining techniques in manufacturing
particularly association and clustering that are relevant to the work of this chapter.

2.1 Data Mining Techniques

Data mining is the process of discovering knowledge hidden in large amount of
data [9]. The data being mined is typically observed data—as opposed to experi-
mental data—so the data mining techniques employed have no influence on the
data-collection methods. In Agard and Kusiak [10], for example, the authors show
how to mine data stored in ERP, previous schedules, and MES to gain knowledge
about the best choice of manufacturing processes based on defined design
characteristics.

Data mining techniques draw from several disciplines including statistics,
visualization, information retrieval, neural networks, pattern recognition, spatial
data analysis, image databases, signal processing, probabilistic graph theory, and
inductive logic programming. Data mining can in general be distinguished into two
groups: descriptive and predictive. Descriptive techniques describe events from data
and factors that are responsible for them. Predictive techniques attempt to predict
the behavior of new data sets. Both techniques use the same general approach
which is to (1) identify data fields and types and (2) specify the data as discrete or
continuous.

Our current focus is on predictive data mining. Predictive data mining types
include supervised learning, unsupervised learning, and semi-supervised learning
[11]. With supervised learning, output variables are known or predetermined and
the purpose of a learning algorithm is to develop a function that maps output
variables to the inputs. Output variables corresponding to any given inputs can then
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be predicted using the learned function. Semi- supervised learning problems have
only some of the data associated with output variables.

Unsupervised learning is where none of the input data is associated with prior
defined responses, called data labels. The objective for unsupervised learning is to
model the underlying structure or distribution in the data in order to learn more
about or discover any patterns in the data. In other words, the intent of unsupervised
learning is to understand hidden data concepts where the data labels are not known
beforehand.

The case study described in this chapter involves predicting the best operational
performance of a manufacturing system based on collected data, from which the
best parameters are determined. Therefore, we investigate a case of unsupervised
learning. Unsupervised learning techniques include clustering and association rule
data mining [11]. We further discuss association and clustering as follows.

2.1.1 Association

Association techniques (1) discover relationships among large volumes of data and
(2) represent those relationships as rules that “describe” the data. Discovery is based
on the probability of co-occurrence of items in a collection of a large data set. The
relationships between co-occurring items are expressed as association rules. Con-
ceptually, an association rule indicates that the occurrence of certain items in a
transaction would imply the occurrence of other specific items in the same trans-
action [12]. In other words, there is a supposed phenomenon within the system that
makes these two types of items to concurrently occur.

The aim of association data mining is not to try to understand the underlying
phenomenon. Rather, the association learning process attempts to determine the
relating association rules. The idea of mining association rules originates from the
market analysis where rules such as “a customer who buys products A and B also
buys product C with probability p.” In theory, given enough manufacturing data,
such rules could be derived, rules that help explain the relationship between the
values of the input data and the values of output data representing system perfor-
mance. These rules could be of the type “if parts are sequenced such that process A
is performed before process B, then there is an increase in the total energy con-
sumed per part with probability p.” Our focus then is on understanding the rela-
tionship between input and output variables (performance data)—that is, the rules—
as well as the ranges that these variables can take. Algorithms for association rules
learning concentrate on obtaining statistically significant patterns, and deriving
rules from those patterns [13]. This is done by finding the frequency of concurrence
of items from a transaction dataset and generating association rules based on user
specified minimum confidence.

For example, one rule might say “that if we pick any product at random and find
out that it was processed according to a given processing sequence through the
factory floor, we can be confident, quantified by a percentage, that its production
time is larger than average.”
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Association rules derived from data should be reliable. The measures of rules
obtained include support and confidence of a rule. Support is a proportion of items
in the data that contain a given set of items that occur together. Confidence is an
indicator of how often a rule has been found to be true.

The main challenge of association rule induction is that there are so many
possible rules. For example, the large product range of a typical job shop results in
several classes of product designs, materials, and processing requirements. The
rules cannot be processed by inspecting each one in turn. Therefore, efficient
algorithms are needed to restrict the search space and check only a subset of all
rules, but if possible, without missing important rules. One such algorithm is the
Apriori algorithm [14], which is the algorithm used in the work of this chapter.

2.1.2 Clustering

Clustering is the process of identifying a finite set of categories, called clusters, that
“describe” the data. Clustering techniques segment large data sets into smaller
homogeneous subsets that can be easily managed, separately modelled, and ana-
lyzed [15]. Clusters are formed such that objects in the same cluster are more
similar to each other than objects in different clusters.

Clusters correspond to hidden patterns in the data. Clusters can overlap or be at
multi-level dimensions such that a data point can belong to more than one cluster.
A clustering algorithm creates clusters by identifying points closest to the center of
a cluster and expanding outwards up to a certain threshold when a new cluster
needs to be formed. The process continues until all data points are assigned to a
cluster [11].

In manufacturing applications, Kerdprasop [16] used clustering techniques to
determine patterns and relationships in multidimensional data to indicate a potential
poor yield in high volume production environments. Another potential application
is determining relationships that can help differentiate categories of parts that can be
processed by similar machines. The features of such parts are used to form a cluster
and are useful in developing cell manufacturing systems through “group
technology.”

3 Modeling and Simulation for Manufacturing
Applications

A simulation is a computerized model of a real, or a proposed, system. Users can
conduct experiments with such a model to better understand the likely behavior of
that system for a given set of conditions and scenarios [17]. Because of the dynamic
nature of manufacturing operations, most simulation models are stochastic.
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Law and Kelton [18] summarize the benefits of modeling and simulating
manufacturing systems. First, they help identify and quantify the equipment and
personnel. Second, they can predict the probability distributions associated with
performance. Third, they can be used to evaluate operational procedures. Fourth,
they can take into consideration of stochastic behavior of the system.

Objectives and types of simulation models needed may differ within each life
cycle phase of a manufacturing system. Table 1 shows typical objectives and
simulation types in various phases of a system life cycle. A review of 317 simu-
lation papers by Negahban et al. [19] shows three major research topic areas:
simulation language development, manufacturing system design, and manufactur-
ing system operation. For manufacturing system operations, simulation helps users
understand, assess, and evaluate the operation so that the ‘best’ configurations that
result in ‘optimum’ performance can be determined.

Manufacturing simulation has been widely used for determining policies or rules
to be employed in specific operational situations [20]. But, for a long time, its
application to real-time control was limited by computational capacity, system
reconfiguration time, data, and optimization issues. These days, a number of
technologies is helping to overcome those limitations. Those technologies include
high-speed computation, communication, integration technologies, standards, and
automated data collection and processing [21, 22]. Simulation models can be
updated with data to provide capacity to foresee the impact of new orders, equip-
ment failures, and changes in operations.

Simulation can also be used for generating and filling gaps in missing data for
analysis by other methods. Shao et al. [23] demonstrate how simulation could be
used to generate data to help evaluate the performance of data-analytics applica-
tions. For this approach to be effective in real applications, however, data-
generating models require improved verification and validation methods.

One of the major activities of simulation projects is input-data preparation.
Previous research efforts have attempted to address this issue. For example, Skoogh
et al. [22] demonstrates a Generic Data Management Tool (GDM—Tool) for data
extraction, conversion, cleaning, and distribution fitting. The GDM—Tool enables
data reuse, thereby, reducing needed time for carrying out simulation projects.

Table 1 Simulation application in different stages of manufacturing system life cycle

Phase Objective Model type

Planning Production volume, factory
requirements

System dynamics, control theory

Basic
design

Department layout options,
throughput analysis, aggregate
analysis

System dynamics, discrete event
simulation, agent based simulation

Detailed
design

Layout, equipment specification,
production management options

Discrete event simulation, agent
based simulation

Setup and
optimization

Production validation Discrete event simulation
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However, finding optimal parameters and settings from a large volume and variety
of streaming data, as addressed by this chapter, cannot be carried out using the
GDM-Tool.

The common approach for simulation-based decision-making is to prepare and
run a number of scenarios and select the one with best outcome, as shown in Fig. 2.
However, this approach is very difficult for a complex system with several inputs,
particularly if model execution time is long. In addition, the quality of the answer
obtained largely depends on the skill of the analyst who selects and defines the
scenarios.

Identifying the “best solution” requires an optimization process, which is mostly
the maximization or minimization of the expected value of the objective function of
a problem [24]. Brady and Bowden [25] proposed two approaches for integrating
simulation and optimization. The first is to construct an external optimization
framework around the simulation model. The second is the internal approach, to
investigate the relationship between input variables based on the dynamics of their
interaction within the simulation model. This chapter uses the first approach. The
importance of optimization has led simulation vendors to include optimization
modules as part of their tools.

4 Simulation Optimization

Simulation optimization is the search for specific values or settings of controllable
input parameters to a simulation such that a target objective is achieved [26]. This
objective depends on simulation input. The procedure for optimization is to define a
set of decision variables and optimize (i.e., maximize or minimize) the designated
performance subject to constraints and bounds on range of the decision variables.
Azadivar [24] formulated one form of the simulation optimization as:

Maximize or minimizeð Þ fðXÞ=E zðXÞ½ �
subject to gðXÞ=E rðXÞ½ � ≤ 0
and hðXÞ≤ 0.

where z and r are random vectors representing several responses of the simulation
model for a given X, a multi-dimensional vector of decision variables. The func-
tions f and g are the unknown expected values of these vectors, which can only be

Simulation 
model

System
performance

System
inputs

Fig. 2 The conceptual
relationship between inputs
and outputs of a simulation
model
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estimated by observations on z and r. That means that the objective function
(objective functions, in case of a multi-criteria problem) and/or constraints, are
responses that can only be evaluated by simulation. The variable h is a vector of
deterministic constraints on the decision variables.

The specific optimization algorithms used often depends on the type of simu-
lation method. Because running a simulation model requires significant computa-
tions, efficient optimization algorithms are crucial. Some of the optimization
methods that are applicable to different simulation types are overviewed by Amaran
[26]. Carson and Maria [27] categorize simulation optimization methods into gra-
dient based search methods, stochastic optimization, response surface methodology,
heuristic methods, A-teams, and statistical methods. Fu et al. [28] reviews the state
of practice for simulation optimization.

Table 2 shows a sample of commonly used simulation-based optimization tools.
Researchers also often develop custom-made optimization tools based on simula-
tion software for particular situations. Phatak et al. [29] introduce an example of an
in-house optimization tool for manufacturing problems based on the particle swam
optimization algorithm.

Unlike mathematical-programming formulations of optimization problems, there
is no way of telling whether an optimum has been reached using simulation-based
formulations. The optimization packages, such as those shown in Table 2, seek
improved system performance by changing settings of system parameters. Conse-
quently, these packages develop a solution incrementally by building upon earlier
solutions to obtain a better one. The packages do this by proposing new simulation
inputs, executing the simulation, and evaluating the performance iteratively [7].
Figure 3 illustrates this procedure.

Table 2 Optimization search strategies for selected simulation tools

Optimization package Search strategy
(optimization method)

Simulation software

SimRunner Evolutionary, genetic
algorithms

ProModel

OptQuest Scatter search, tabu search,
neural networks

Arena, Quest, FlexSim, Micro Saint
Sharp, Simio, etc.

AutoStat Evolutionary, genetic
algorithms

AutoMod

Optimiz Neural networks Simul8
Optimizer Simulated annealing, Tabu

search
Witness

ExtendSim
evolutionary
optimizer

Evolutionary ExtendSim
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5 Integrating Data Mining with Simulation
and Optimization

Embedding an optimization module into simulation tools, as described in Sect. 4,
provides actionable solutions. However, determining the set of inputs that optimize
system performance is challenging because of the large volume of data, and number
of possible input parameters and their interactions. Although tools such as the input
data management to simulation have been developed from previous research [22],
they do not address the data challenges discussed in the previous section. We propose
using data mining as a technique to help obtain simulation scenarios through asso-
ciation of collected data with system performance. Remondino et al. [30] described
two ways of combining data mining with simulation. The first, called micro-level
modeling, is where data mining is applied on historical data to (1) develop the
appropriate scenarios and (2) tune scenario-based simulation input parameters.

The second, called macro-level modeling, is where data mining analyzes sim-
ulation output data to (1) reveal patterns describing system behavior and (2) de-
velop ways to use those patterns to aid decision-making [31, 32].

Our proposed methodology is based on micro-level modeling the first approach.
Figure 4 shows the high-level components and their interactions. Two features are
combined with the classical simulation modeling and analysis: data-mining and
optimization. This approach is suitable for both static and dynamic data.

Simulation 
model

Optimization 
engine

Scenarios System performance

New system 
input

Solution 

Fig. 3 Process of getting a solution using simulation-based optimization

Simulation 
model

Optimization 
engine

Data

System performance Solution 

New system input

Data mining 
tools

Variables,
parameters

Fig. 4 Data mining integrated approach to simulation optimization

90 D. Kibira and G. Shao



6 A Methodology for Manufacturing System Optimization

Based on the review and discussion of Sects. 1 and 2, we conclude that (1) mod-
eling and simulation tools cannot directly use streaming data, and (2) further
analysis is needed to obtain actionable recommendations from the patterns and rules
obtained by data mining. Therefore, a methodology combining different methods is
needed. Operational steps for this methodology illustrated in Fig. 5 are next
described.

In summary, the user first formulates the problem by specifying the scope,
high-level performance objectives, indicators, and metrics. This is followed by
acquiring domain knowledge and developing a conceptual model to understand
model requirements, activities, and processes. The next step is to collect data and
apply data mining techniques on the data. The final steps are simulation modeling

Collect 
raw data

Formulate problem

Acquire domain 
knowledge 

Design conceptual  model 

Perform data 
analy cs

Derive ac onable 
recommenda ons

Perform what-if analysis 
and op miza on against 

the simula on  model

Real world

Build simula on and 
op miza on models

Data and 
distribu on   

input

Performance metrics

Ac ons
Problems

Fig. 5 Illustration of methodology steps
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and optimizations. Detailed description of these steps follows in the next
paragraphs.

Formulate the problem: This is the definition of the goal and scope of the
project. The target plant, work cell, machine, manufacturing operations, or pro-
cesses are specified at this step. The goal might be, for example, to minimize energy
consumption for a foundry shop or to maximize throughput of a machine
shop. Relevant resources, operational details, constraints, products, activities, and
data collection points are also identified.

Acquire domain knowledge: This is the step to acquire domain knowledge for
executing the project. Domain knowledge includes a thorough understanding of the
manufacturing processes and system, indicators, metrics, and performance objec-
tives and goals. In addition, knowledge about software (data mining, simulation,
and optimization), data collection, communication, and storage are also required.

Design a conceptual model: This is the step to construct a high-level concep-
tualization of the problem so that the system can be better understood and modeled
in detail. The model should provide the right level of abstraction to maintain the
focus on the objectives and understand the problem before initiating the modeling
and analysis. When designing a conceptual model, the following typical questions
need to be answered to help modelers abstract the problem and plan the detailed
modeling (1) What are the components (systems/processes) that need to be mod-
eled? (2) What are the inputs and outputs of each component? (3) What are the
relationships between components? (4) What are the indicators and metrics? and
(5) What are the data requirements for the metrics? The conceptual models also help
identify requirements for data collection. There are a number of available con-
ceptual modeling methods and techniques including workflow modeling, workforce
modeling, object role modeling, and system modeling. A system modeling lan-
guage such as SysML [33] would well be used for the conceptual model to rep-
resent requirements for analysis and decision making.

Collect data: Manufacturing data is mainly collected through the use of sensors,
bar codes, vision systems, meters, lasers, white light scanners, and RFID. Data
collected is mainly process execution data, i.e., machine and production events
recorded by the MES. From machine tools, for example, this data may include
machine name and type, process, processing time, idle time, loading time, energy
consumption, machine setting, tool, changeover time, and tear down time.
MTConnect is a standard that can be used for data collection [34]. For data storage,
Structured Query Language (SQL) is one of the means of managing data. A data
model should be developed for efficient management.

Perform data mining: There are a variety of data-mining techniques and tools
available. They are based on the methods reviewed in Sect. 2.1. The choice of a
technique depends on the particular problem. If we use association rule learning, the
applicable tools include Weka, R-programming, Orange, Knime, NLTK, ARMiner,
arules, and Tanagra.
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Mathematically, the performance indicator, y, e.g., energy, can be represented as
a function:

y= x,wð Þ,

where x= x1, x2, x3, . . . , xdð ÞT denotes the set of system parameters that are associated
with the amount of energy used and w denotes the weight of the parameters.
In the work presented in this chapter, y is known and the task of data mining is to
determine the system parameters x.

Perform simulation modeling and optimization: The system is represented by
a simulation model. Many simulation tools are supplied with optimization modules
(as shown in Table 2). Typically, these tools automatically execute multiple runs
and systematically compare the results of a current run with past runs to decide on a
new set of input values until the optimum is gradually approached. Core manu-
facturing simulation data (CMSD) standard can be used for representing the input
data for the simulation modeling [35].

Derive actionable recommendations: The final step is to derive actionable
recommendations by interpreting and translating the output from the optimization
process. The users also need to check if the recommended actions conflict with
existing knowledge about the system and resolve this conflict if necessary. As
Fig. 5 shows, the system performance can be monitored while data is continuously
collected so that a new set of decisions can be made when needed.

7 Case Study: Minimizing Energy Consumption
and Production Time in Machining Operations

Machining is one of the major manufacturing processes in the metal industry. The
process inputs, removal processes, and waste byproducts have a large potential
environmental impact. Currently, the relationships among them and their impacts
on the environmental have not been fully investigated. As a result, methods for
determining control inputs that optimize production objectives have not been fully
developed [36]. This section describes how the proposed methodology was applied
to a case study that uses data from a machining process for decision making. This
case is a first step for understanding and implementing the proposed methodology.

Many machined parts are produced in job shops. The case under study is based
on a machining job shop that was used in the research work reported in Kibira et al.
[36], and Hatim et al. [37] for simultaneously optimizing process plans and pro-
duction plans. In this investigation, we use a different part design. The shop consists
of the following machine tools: a turning lathe, a milling machine, a drill press, and
a boring machine. When orders are received and batched, it can be decided to focus
on any or all of these performance objectives (1) minimize costs (e.g., labor, cutting
tool, and energy), (2) minimize resource usage (e.g., material, energy, and water),
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and (3) maximize production. Figure 6 is a conceptual view of work flow through
the machine shop.

Each production batch, or each part in the batch, can potentially have its own
process plan because the user can choose different sets of machine and tools to
produce a given design feature on a part. We propose three approaches for the
sequencing of part-feature production: a predefined, a partially defined, and an
unspecified process plan. In the predefined case, each process has a pre-determined
machine and cutting tool, determined to optimize a given performance objective
such as minimum energy use. In an unspecified case, a machine is selected for
processing by a part according to a priority rule such as always choose the machine
with minimum number of parts waiting. The partially defined case is a combination
of these two. Either of these choices results in a different process plan and hence
different energy consumption, production time, and cost. Process and performance
data is collected for each batch as it passes through the machine shop. Both types of
data depend on resources used for each process within the process plan.

Formulate the problem: The scope and focus is on a machine shop and target
product is a grinding head shell, shown in Fig. 7. The manufacturing processes for
this part are facing, grooving, threading, spot drilling, and drilling. The objective is
to select a sequencing plan, a machine tool, and cutting tools for each process so as
to minimize energy consumption and production time.

Acquire domain knowledge: The following expert knowledge was acquired
before beginning to model the machine shop operations including production
resources, machining processes, energy consumption in machining, machining
time, production planning and sequencing in job shop environment, costs of
manufacturing processes, performance indicators and metrics, and performance
data. Take production resources as an example. Table 3 shows the manufacturing
processes to produce a grinding head shell and the machine tools available in the
machine shop. These are Computer Numerical Control (CNC) lathe, three-axis
vertical milling, press-upright drill, and mills-horizontal boring machine. For each
machining operation, one or more cutting tools can be chosen to meet the required
specification. Table 4 shows tool types available for each machine. Cutting tools

Order
arrival Lathe Mill Drill press Boring 

machine

T1,T2,T3 T4,T5,T6 T7,T8 T9

Manufacturing system
Part output

Feature
sequence

Tool types

Production 
time

Energy 
usage

Fig. 6 Conceptual view of inputs and impacts of the machining shop
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Fig. 7 Grinding head shell

Table 3 Resource
information for
manufacturing the grinding
head shell

Process Machine

Facing Three—axis CNC Lathe
Three—axis vertical milling machine

Grooving Three—axis CNC Lathe
Three—axis vertical milling machine

Threading Three—axis CNC Lathe
Spot drill Three—axis CNC Lathe

Drill press
Drill Three—axis CNC Lathe

Drill press
Boring mills-horizontal boring

Table 4 Tool types for use by each machine tool

Machine Tool type Tool description

Three—axis CNC Lathe T1 Single-point tipped tool
T2 Form turning
T3 Drill

Three—axis vertical milling machine T4 Slot milling
T5 Mill cutter
T6 Form milling

Drill press T7 Center drill
T8 Reamer

Boring mills-horizontal boring T9 Boring tool
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are as follows: turning (single-point tipped tool, form turning, drill), milling (slot
milling, mill cutter, form milling), drilling (center drill, reamer), and boring (boring
tool). When a machine may perform a particular operation, each type of tool would
perform it differently, which potentially results in different production time and
energy use.

Design conceptual model: The conceptual model shown in Fig. 8 is a schematic
representation of the problem, activity sequences, and information flow. It includes
product design, feature sequence, process selection, machines and tools require-
ments, and performance indicators that drive the above selections. The part design
describes design information, including the features’ forms, shapes complexities,
dimensions, tolerances, and surface conditions. Alternative networks that describe
features’ processing precedence during fabrication are described. Next, a set of
processes to manufacture a part is determined according to the part’s functionalities
and design requirements. The combinations of machines and tools that satisfy the
design and process requirements are designated. Performance indicators determine
the actions that give the machine shop the best chance to meet those objectives.

Model data collection: Based on domain knowledge acquired and the con-
ceptual model developed, mathematical expressions from published literature are
used to calculate energy consumption and processing time of the processes [38–44].
The processes in question are turning, milling, and drilling. A matrix of process and
prospective machine, and cutting tool to carry out the processing is used to
determine the production time and the energy consumed. Three examples are
provided to show the expressions employed.

The time to perform a turning operation is given by Tm = πDL
vf ,

the time for a drilling process is given by

Tm =
πDcðd+0.5Dctanð90− θ

2ÞÞ
vf

,

and, the energy consumed by a plain milling operation is given by

E=CzazDb
cf

udevTm.

for one specific case used in the model

E=
68.2azD− 0.86

c f 0.72d0.86v
6120

Tm

where

D, L workpiece diameter and length,
v, f, d cutting speed, feed rate, and depth of cut,
Tm machining time,
Dc diameter of the milling cutter or the drill diameter,
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z No. of teeth in milling cutter or no. of flutes in a tap,
θ drill point angle,
Cz constant of the milling operation,
a milling width,
b, e, u constants that are determined empirically. These are tabulated for different

types of machines and tools.

Part Design

Defines

Predefined 
feature 

sequence

Partially defined 
feature

sequence

Undefined 
feature

sequence

Features’ Processing Precedence

Measures:
Sustainability measures (Energy consumption)
Productivity indicators (Production time)

Processes

Machine

Tool

Require 

Generates

Require 

Require 

Production

Fig. 8 A conceptual model
representing the production
process and information flow
to a part design
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The values for some of these expressions are known constants. The others are
random variables, which have been fitted with probability distributions to simulate
their real—world variability. Only the energy consumed during processing can be
generated using such mathematical expressions. The same applies to production
time. The data set becomes (1) Machine that performs a process, (2) Tool type,
(3) Sequencing plan, (4) Energy consumption, and (5) Production time. The
machine cutting parameters (cutting speed, feed rate, and depth of cut) are set at
constant values. The energy consumed differs for the sequencing plans because of
difference in volume of material removed by a process for each plan.

Data analytics: Each line in the data obtained forms a transaction where
“transaction” data = {Sequencing plan, Operation, Machine tool, Tool, Energy
consumed, Production time}. Data mining is performed to determine the various
relationships between the range of parameters and how those relationships impact
system performance. Those relationships are represented as association rules.
Determining the association rules was carried out using open source software
developed for academic and research purposes named Tanagra [45].

Tanagra performs exploratory data analysis, statistical learning, and machine
learning. It is suitable for both supervised and unsupervised learning. It uses a
number of algorithms and approaches that employ techniques such as clustering,
factorial analysis, parametric and nonparametric statistics, association rule, and
feature selection and construction algorithms are implemented by Tanagra. We use
the Apriori algorithm, which uses a “bottom up” approach and frequent subsets are
extended—one item at a time—and tested against the data. The inputs to Apriori are
the sequencing plan, machine tool, cutting tool type, energy consumption, and
production time.

The outputs are the relationships between various factors expressed in the form
of rules. Each rule has antecedents and consequents. Antecedents are the left hand
side of a rule, implying that these are the factors and their values that are respon-
sible for the results on the right hand side, also called consequents. As such, we are
interested in antecedents that result in production time and energy consumption on
the right hand side as consequents.

While energy consumption is generated as quantitative data, it was transformed
into discrete variables using simple thresholds as the basis for the discrete classifi-
cations (“low,” “medium,” and “high”). Within the Apriori algorithm, the user can
select minimum support, to prune candidate rules by specifying a minimum lower
bound for the support measure of resulting association rules. Likewise, the confidence
(described in introduction section), is also set. The cardinal is the number of con-
curring items (itemsets) used in computation. The values chosen are: minimum
support is set at 0.16, confidence at 0.6, and minimum cardinal of itemsets is set at 4.
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A sample of the derived rules for the demonstration is shown below:

Feature sequence = undefined= >Energy=High

Feature sequence = predefined= >Energy=High

Operation =Spot Drill = >Energy=Low

Operation =Facing = >Energy=High

Machine=M2= >Energy=High

Machine=M1= >Energy=Medium

Operation =Drill = >Energy =High

Operation =Threading= >Energy=medium

Operation =Grinding&&Tool =T2= >Energy=High

Machine=M3&&Tool =T7= >Energy=Low

The rules show that feature sequencing, operation, machine, and tool are relevant
to energy consumption. These factors are included in the simulation model, which
generates the performance data. The association rules show relationships between
input factors and performance data and they are incorporated into a DES model
described.

Simulation and simulation-based optimization: The layout ofmachines and other
details of the system operation were used to develop the DES model using Arena
simulation software [17]. The model incorporates intermediate products,
work-in-progress, raw materials, lubrication, energy, and operational disturbances.
MainArenamodules in the simulationmodel include part arrival, data requirements for
the process, part routing to various machines, part exit, and statistics generation. The
manufacturing processes are represented as events, parts as entities, buffers as queues,
parts and processes specification data as attributes, and collected data as variables.

The first section of the simulation model deals with part arrival and process data
assignment. A part is assigned with information such as design features’ dimensions,
operation list, and operation orders. The process sequence for the parts can be either of
the three options described above. Based on this, the part is then sent to the second
section of the model where its operations are decided from the operation matrix
developed according to Table 3. A number of combinations of feature-
process-machine-tool assignments are implemented in the model. Once an opera-
tion is completed, the routing of the part will be decided according to the assigned
feature sequencing plan.

Optimization is performed using the OptQuest optimization package supplied by
OpTek [46]. It is provided as an option extra with the Arena simulation tool. In
OptQuest, resources, such as machine, material, control variables, attributes, con-
straints, and objective are specified. The user also controls the possible ranges of
input variables and set-up inputs for OptQuest. OptQuest uses heuristics known as
Tabu search, integer programming, neural networks, and scatter search for seeking
within the control (input) space to converge towards the optimal solution.
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The results from different scenarios are shown in Table 5. The table also displays
the resulting impacts from various system inputs.

Note that the energy consumption as well as production times differ for the same
resource set in each plan because of the different sequences in which the design
features of the part are produced. Inter-arrival time between successive batch
arrivals is set at a constant 120 min. Each batch consists of 15 parts. Data is
collected and stored in database.

Determine actionable recommendations: This section discusses the results of
various simulation runs from which actionable recommendations are made. Table 5
shows the resources available for each operation. The users can recognize the best
process plan, or plans, that minimizes energy consumption and production time (see
Table 6. The resource column shows available machine tools for a process; while the
indicator columns show the resulting impacts. The table shows the tool-tip energy
while the production time displays only the processing time on the machines. The
minimum energy consumption is obtained by selecting resources R1R3R4R6R6.

System users will probably select the partially defined or undefined feature
sequencing plans since they have lower energy consumption than the fully prede-
fined sequencing case. At the same time, this sequencing plan would also result in
minimum production time for the minimization of energy objective. We note,
however, that if the minimum time objective is the one that had originally been set
before the table was derived, the production sequence and resource set would have
probably been different.

Table 5 Resulting shop performance due to selected resource combinations

Feature sequence plan Operation Resource, Ri Machining
energy (kWh)

Production
time (h)

Predefined feature
sequence plan

Facing R1 =M1−T1 9.676 0.28681
R2 =M2−T5 16.961 0.02414

Grooving R3 =M2−T4 16.961 0.02414
Threading R4 =M1−T2 2.902 0.08604
Spot drill R6 =M1−T3 2.580 0.07648

R7 =M3−T7 6.484 0.47006
Drill R6 =M1−T3 6.451 0.19120

R9 =M3−T8 16.562 1.20068
Partially defined feature
sequence plan

Facing R2 =M1−T1 8.790 0.22207
Grooving R3 =M1−T1 1.758 0.04441

Threading R4 =M1−T2 2.637 0.06662
Spot drill R6 =M1−T3 2.344 0.05921
Drill R6 =M1−T3 5.860 0.14804

Undefined feature
sequence plan

Facing R2 =M1−T1 8.790 0.22207
Grooving R3 =M1−T1 1.758 0.04441
Threading R4 =M1−T2 2.637 0.06662
Spot drill R6 =M1−T3 2.344 0.05921
Drill R6 =M1−T3 5.860 0.148047
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8 Summary, Discussion, and Future Work

Manufacturing industries today collect large volumes of data. Conventional data
analysis methods cannot effectively transform this data into knowledge for decision
support. Neither can simulation models be applied directly using this data. New
approaches are, therefore, needed. This chapter presents a methodology that inte-
grates different methods: data mining, simulation, and optimization for
decision-making. This new idea provides the analyst and decision makers with the
ability to pinpoint crucial data and prepare model parameters and input data that more
effectively help improve performance analysis through simulation optimization. Data
mining is first applied to the system data, simulation performs “what-if” analysis for
the candidate scenarios, and optimization determines the resource sets, the production
plans, and the process plans to optimize a given performance objective. The principal
advantage of this methodology over existing approaches is to enable identifying and
focusing only on relevant or crucial parameters within collected data. It also helps to
reduce the search space for simulation model inputs and optimization by identifying
the range of data that significantly affect user-defined system performance.

A case study of a machine shop has been used to demonstrate the methodology.
In the case study, we showed how to determine a set of resources and feature
sequencing plan that results in minimum tooltip energy during processing. The
required prior knowledge can be made available to guide a product specification at
the design stage. Similar approaches can be followed for a different objective such
as minimum processing time or cost. Data mining to optimize system performance
as demonstrated is the first step in developing models for eventually predicting
system performance for any part design, machine shop resources, and desired
production time.

Table 6 Summary of process plans for different feature sequence when minimizing energy
consumption

Feature sequence plan Process
plan PPj

Facing Grooving Threading Spot drill Drill

Predefined feature
sequence plan

PP1 R1 R3 R4 R6 R6

PP2 R1 R3 R4 R7 R6

PP3 R1 R3 R4 R6 R8

PP4 R1 R3 R4 R7 R8

PP5 R2 R3 R4 R6 R6

PP6 R2 R3 R4 R7 R6

PP7 R2 R3 R4 R6 R8

PP8 R2 R3 R4 R7 R8

Partially-defined
feature sequence plan

PP1 R1 R1 R4 R6 R6

Undefined feature
sequence plan

PP1 R1 R1 R4 R6 R6
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The methodology involves data collection, model composition, model execu-
tion, and result analysis. In practice these activities would be carried out using
different tools and models that need to be integrated using standardized interfaces.
Therefore, a set of standards are required for the following purposes (1) data col-
lection, (2) data representation, (3) model composition, and (4) system integration.
Candidate standards include MTConnect [47] (data collection), CMSD [48] (data
representation), Unified Modeling Language (UML) (model composition), and
ISA-95 [49] or Open Application Group’s Integration Specification (OAGIS)
(system integration) [50]. These are briefed next.

MTConnect standard facilitates the organized retrieval of process information
from numerically controlled machine tools through continuous data logging. It
provides a mechanism for system monitoring, process, and optimization with
respect to energy and resources. This standard needs to be extended to collect other
data besides CNC machine tools. The CMSD is a standard for integrating simu-
lation applications with other manufacturing applications. CMSD uses a neutral
data format to facilitate exchanging both simulation input and output data across
supply chain partners. Among CMSD goals are supporting the construction of
manufacturing simulators and the testing and evaluation of manufacturing software.
More standardization efforts are needed especially for data collection. Currently,
data collected is still limited to machine tool data.

For model conceptual design and composition, UML is a standard language for
specifying, visualizing, constructing, and documenting the artifacts of software systems.
An example of a diagramming method based on the UML is SysML, which supports
management of system requirements along with the system development and operation.

The ISA-95 standard defines interfaces between enterprise and shop floor
activities while OAGIS establishes integration scenarios for a set of applications
including ERP, production scheduling, MES, and capacity analysis. However,
OAGIS and ISA-95 were not intended to provide interfaces with simulation sys-
tems nor with each other.

Future work includes the definition and description of a framework for data
collection and interface for input to data mining and simulation tools; investigation
of data mining standards for the methodology; the requirements analysis for
extension of existing standards for interfacing between tools for data mining,
simulation, optimization, and manufacturing system monitoring; and conducting
industrial size case studies.
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Part II
Simulation Optimization Study Cases



Improving Airport Performance Through
a Model-Based Analysis and Optimization
Approach

M. Mujica Mota, P. Scala and D. Delahaye

Abstract Traditionally airport systems have been studied using an approach in
which the different elements of the system are studied independently. Until recently
scientific community has put attention in developing models and techniques that
study the system using holistic approaches for understanding cause and effect
relationships of the integral system. This chapter presents a case of an airport in
which the authors have implemented an approach for improving the turnaround
time of the operation. The novelty of the approach is that it uses a combination of
simulation, parameter analysis and optimization for getting to the best amount of
vehicles that minimize the turnaround time of the airport under study. In addition,
the simulation model is such that it includes the most important elements within the
aviation system, such as terminal manoeuvring area, runway, taxi networks, and
ground handling operation. The results show clearly that the approach is suitable for
a complex system in which the amount of variables makes it intractable for getting
good solutions in reasonable time.

1 Introduction

Air global transportation is in continuous growth, looking at the most recent
statistics European flights have increased by 0.7% in May 2015 compared with the
same month of the last year and it was above the forecast, furthermore preliminary
data for June 2015 say that there will be a 1.2% of flights increase compare to June
2014 [10]. The majority of nations in Europe have seen a growth in their local
flight, there are reports that mention the levels of congestion the airports in Europe
are facing [10, 12]. The direct effect of congestion in the airports is delays that
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correlate with the increasing traffic. The numbers of EUROCONTROL (the
European organization for the safety or air navigation) [11] illustrate how the
percentage of delayed flight in December 2016 increased by approximately 7%
when compared to the same month in the previous year. These situations make
evident that capacity in airports is being chocked with the increase on traffic, and
this situation might become dramatic if the forecasts of Boeing and EURO-
CONTROL are correct [10]. For this reason scientific community has paid a lot of
efforts for developing tools, new paradigms and novel infrastructure that alleviates
the different congestion problems that arise when the traffic increases. These
solutions range from optimization tools, re-allocation paradigms or the design of
novel infrastructures that have flexibility among their characteristics [8].

1.1 Case Study: Lelystad Airport

Amsterdam Schiphol (AMS) is the main airport in the Netherlands and it was the
fifth busiest airport in Europe in 2014 in terms of passenger traffic [1]. Further-
more AMS is also the main hub for KLM, which provided 54% of the seats
available at the airport in 2013, and a major airport for the SkyTeam alliance, whose
members—including KLM—are responsible for 66.3% of the airport traffic in terms
of ATM [27]. Its role as a hub, by airport management and government, is central to
the airport strategy, especially considering the small size of the domestic market in
the Netherlands and the airport’s role as economic engine for the region. However
due to environmental reasons, the capacity is limited to 510,000 air traffic move-
ments per year (landings and departures). In 2015 there were 450,679 movements at
the airport, 91% of the imposed cap [29]. Since the operation is approaching to the
limits, Schiphol Group would like to support the airport strategy by redistributing
traffic non-related to the hub development to other airports in the Netherlands. The
objective of this action is to relieve capacity and at the same time continuing
providing support for the development of the region. The preferred alternative is to
upgrade Lelystad Airport (LEY) to attract commercial flights of European cities and
regions [28], putting focus on tourist destinations. In that way LEY will take an
important role in the multi airport system of the Netherlands composed currently by
Schiphol, Rotterdam and Eindhoven.

In recent years Low Cost Carriers (LCCs) in Europe have put focus on
short-haul point-to-point leisure traffic, in addition they have been targeting busi-
ness travellers more actively, and some of them even offer interline connectivity
using simple hub structures. This means that the development process at Lelystad
should consider not only the type of passengers and airlines that are desired but also
the performance parameters the airport should have in order to become attractive for
these types of carriers since the airports cannot force the activity in it, instead they
make the airport attractive through the offering of incentives economical and
operative ones.
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Lelystad is the largest airport for general aviation traffic in the Netherlands. It is
located 56 km from central Amsterdam, about 45 min by car to the east. The airport
is fully owned by the Schiphol Group, which also owns Rotterdam airport
(RTM) and a 51% stake in the Eindhoven airport (EIN), both in the Amsterdam
Multi-Airport System (see Fig. 1).

In order to attract airlines, especially LCCs, Lelystad would need to provide
differentiation factors: availability of slots; low aeronautical charges; incentive
programs and quick aircraft turnaround [15]. Therefore, in order to have better

Fig. 1 Lelystad and the multi airport system of the Netherlands
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insight about the operational performance of the future airport it is necessary to
have tools that provide information about the future performance of it and powerful
enough that allow identifying the emergent dynamics once the operation is in place.

Traditional analytical tools fall short on the capacity to understand the operative
problems that a future facility will face. Nowadays only model-based tools appear
as the ones with the capacity and analytical power for integrating the different
restrictions and factors that influence the performance of the systems while taking
into account the inherent stochasticity present in the systems. For these reasons we
present a model-based approach in which the simulation model was developed
based on public information for identifying the optimal performance of it.

Designing the layout and the infrastructure of an airport means allocating
resources in a way that traffic matches demand without incurring in congestion
situations. Furthermore, since the objective of the airport operator aims also at
minimizing the size so that the final infrastructure is not half empty when the time
comes the right balance must be found. In this context, evaluating the performance
of the airport has become a crucial aspect, especially if the aim is to efficiently
manage the existing resources.

Regarding the quality of service, from the passenger perspective, the main factor
that affects quality is the delay, so the less delays; the more positive evaluations can
be obtained from passengers. From the airport perspective, having less delays can
lead to more capacity for processing more aircraft, hence an increment in capacity.
This in turn leads to have higher revenues and the opportunity to attract more
airlines since more slots could be allocated. Additionally the better level of service
will cause the increment in passengers choosing that airport as origin and
destination.

The airport system is composed by different elements, the terminal area, the
airside (runway, taxiways and stands) and then the airspace (sectors, routes, ter-
minal manoeuvring area). These components are often analysed separately, but in
reality these components are tied to each other, and they act all together as a system
in which the good or bad performance in one element affects the others. Motivated
by this fact, in this work it was made an analysis of the performance of an airport
system, taking into account all the components previously mentioned.

The methodology applied in this work is a combination of simulation and
optimization that takes into account all the components of an airport system
(ground + airspace), and evaluates the airport performance in terms of the turn-
around time (TAT). The simulation paradigm used in this work is a Discrete-event
Simulation (DES) in a program called SIMIO [31]. The optimization approach is a
simulation-based optimization in which the search space is the domain of the
Cartesian product of the values of the main factors that affect the objective function;
the search is performed by an embedded tool called OptQuest [23] that has different
heuristics for optimizing the search.

With the use of the simulation model, different configurations of resources were
evaluated paying attention to the TAT. The use of design of experiments
(DOE) was carried out employing a multi-level factorial design with the purpose of
evaluating the effect of the factors and their interactions for the system response.
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Moreover, with the study of the Analysis of Variance (ANOVA), the main factors
that affect the objective function were determined. Finally, for optimizing the TAT,
we used the information of the identified factors for making the optimization search
more efficient than the one that could be done without the analysis.

1.2 Previous Work

Optimization of airport resources is a subject that was faced by researchers in many
studies; most of them treated the airport as a two separate entities, from one side
airspace and from the other ground side. In this context, many techniques that
aimed at improving airport performance were employed, taking into account dif-
ferent variables. Concerning the airspace, specifically for the Terminal Manoeu-
vring area (TMA) many studies focused on the sequencing and merging problem
and scheduling problem. The former is concerned in finding the best sequence for
aircraft flow in order to determine conflict-free situations [18, 33, 34], the latter is
about scheduling of aircraft flow in order to minimize the deviation between the
scheduled landing time and the actual landing time [3–6, 21].

The techniques most utilized were from the operations research arena in which
some of the solutions used stochastic optimization models [2], however, due to the
complexity of the problems, for many of them heuristics were implemented in order
to find sub optimal solutions. Just to mention some, the aircraft scheduling problem
was studied extensively by Beasley et al. [4–6] this work focused on developing a
mixed-integer one-zero problem and then the authors employed two heuristics
respectively for the static and dynamic case. Other relevant work is the one from
Balakrishnan et al. [3], which uses constrained position shifted (CPS) for improving
the sequence of aircraft by changing the position of the aircraft in order to minimize
the makespan. Hu and Chen [14] proposed a receding horizon control
(RHC) technique where the scheduling and sequencing problem were treated in a
dynamic way; they introduced a genetic algorithm for solving it.

Regarding the ground side, most of the studies are related to the optimization of
gate assignment, the scheduling of departing aircraft and taxiing operations, with
the objective of avoiding congestion situations and favouring a smooth flow of
aircraft in the taxiways. For instance, in the work of Dorndorf [9] the authors
present a survey about the techniques used to cope with the gate assignment
problem, among others we can find the work of Bolat [7] in which a branch and
bound algorithm was combined with two heuristics. A Coloured petri net
(CPN) technique was proposed by Narciso and Piera [22] in order to calculate the
number of stands needed to absorb the traffic. In other studies pushback control
strategies were proposed in order to determine the best sequence of departures
without incurring in congestion situations [16, 24, 30].
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As it can be seen for the previous review, the most implemented techniques refer
to analytic and heuristic models, and there is a clear distinction between airspace
and ground side. In this work the problem is treated from a holistic view in which
both airspace and ground side are analysed together for making a more complete
study. Additionally, a methodology has been followed that permits optimizing
airport performance following a structured way. The approach focuses in perfor-
mance measured as turnaround time which is the key for determining the amount of
resources an airport needs in order to improve throughput and reduce delays due to
congestion.

The chapter continues in the following way, in Sect. 2 the proposed method-
ology is presented. Sect. 3 presents how the methodology is applied in a particular
case, and finally in Sect. 4 the correspondent conclusions are presented.

2 Methodology

The approach uses first Discrete Event Simulation (DES) together with statistical
techniques for identifying the most influencing factors in the performance of the
airport under study. After performing an analysis of the different factors that
influence the performance, they are disaggregated for making a more refined
selection of those. The identification of the ultimate ones allows the reduction of the
search space of the optimization tool embedded in the simulation program used.

DES is an approach that is used in many applications like logistic and manu-
facturing [17]. Recently DES was also applied to the aviation field with the scope of
modelling the airport operation for both airspace and ground, even inside the ter-
minal [19]. Using this approach, it has been possible to make an initial analysis and
evaluation of airports performance [20, 25, 26]. The methodology uses statistical
tools like Design of experiments and the ANOVA for identifying the factors that
impact the system the most and a selection of parameters is done which at the final
stage will be used to optimize the values of the most influential elements of the
system.

The methodology applied works in phases, in the first phase it performs the
identification of the factors that affect the performance of the airport using an
objective function of the turnaround time. During this phase the significance of the
different factors that affect such performance are identified and then a combination
of DOE with ANOVA is performed for making a more refined selection of the
elements that affect the indicator.

In a second phase the model is combined with an optimization algorithm for
performing the improvement of the system under study in which the decision
variables are the ones that affect the objective function.

Figure 2 illustrates the different phases of the methodology.
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2.1 Development of the Airport Model and Identification
of Variables

Until recently, scientific community has been taken simulation as a key tool for
evaluating systems performance during the planning phase of facility development.
In the aviation field the studies concerning systems performance and capacity
evaluation are quite recent but its potential has been recognized by international
institutions and also as consultants which are becoming keen for the use of simu-
lation for performing studies [19, 25, 26].

The first phase focuses on the development of a simulation model of the system
under study and the identification of the main variables. In the case of the airport of
this work, we used the DES approach. This is an approach that is used for mod-
elling systems of dynamic nature in which there is strong interaction between the
different processes of the system and stochasticity is one of the characteristics that
define them. In comparison with other approaches, the time advances as events are
happening in the model, so the number of calculations is much less than the ones
required for agent-based technology for instance. As with most of the simulation
approaches, it allows the identification of emergent dynamics within the system and
it has the full potential for integrating the inherent stochasticity which in some
situations hinders the smooth behaviour of the system under study. This approach

Simulation – Optimization  Model
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Scenario Design

Model Construction

Experimentation

DOE & ANOVA
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System

Bounded Simulation-
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 of Best 
Solution

Analysis
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Fig. 2 Methodological approach for airport optimization
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has been successfully used in logistics and manufacturing systems for identifying
emergent behaviour, the impact of variability and uncertainty and for bottleneck
identification among other characteristics [20]. The tool we selected for the
approach is SIMIO [31] which possesses the aforementioned properties besides an
efficient management of graphical aspects and it takes also the advantages of the
computer resources. In addition, it allows developing the models in a modular
fashion which is very suitable for the study we are presenting.

The modular approach [26] allows putting focus only on one part of the model at
the time and once it is verified, validated and finalized it can be coupled with other
modules for obtaining the final one. The authors suggest strongly this approach
since the reliability of the final model is higher if we perform a bottom-up mod-
elling approach. Figure 3 illustrates the proposed approach for this phase.

For the developed model, the main components of airside and airspace were
included like:

• Runway system
• Taxiway system and stands
• Approaching and departing routes
• Airspace

The architecture of the different modules’ models is illustrated by Fig. 4.
The airside is made by a coupling of two modules: the runway model and the

turnaround model. The runway model integrates the main characteristics and
restrictions of the utilization of any runway in an airport system such as wake
vortex separations, speed limitations, taxi speed and limitation of the runway.

The turnaround model is made by a model in which all the services required by
an aircraft at the gate are implemented. These services are performed by a number
of vehicles dedicated to providing them. Table 1 illustrates the different imple-
mentations and restrictions of the runway and turnaround model.

The last module that composes the integral model is the one of the airspace close
to the airport, in particular the area known as terminal manoeuvring area, which is
composed by a radius of approximately 40 nautical miles. This area is important
since it is within its limits that the sequencing of arrivals is performed.

Module A: Runway Model

2nd Level Model

Module B: Airspace Model

Fig. 3 The bottom-up modular modelling approach
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The modelling approach uses a network of nodes located at different altitudes and
positions in the space in which the connections between them represent the airways
followed by the aircraft in their routes to the airport. Due to the differences of scale
in the airport and airspace model, the airport itself just represents one segment of
the network. Figure 5 illustrates the network created for modelling the airspace.

The acronyms present in the figure refer to Initial Approach Fix (IAF) and Final
Approach Fix (FAF) which are the segments in which the controllers guide the
aircraft for their final route to landing [32]. The basic restrictions that must be taken
care of for the development of the simulation model are the separations that need to
be respected by the aircraft to land. These separations are for safety reasons which
ensure the minimization of the risk of collision or interactions between the aircraft
in the area surrounding the airport.

Tables 2 and 3 present the description of the different restrictions and parameters
that compose the model.

Fig. 4 Modular architecture of the airport model

Table 1 Characteristics of
the runway and turnaround
model

Parameter Value

Number of runways 1
Number of exit ways 1
Taxiway type Parallel
Number of stands 16
Aircraft speed Taxi in [45 Knot…24 Knot]
Aircraft speed Taxi out [19 Knot]
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Once the three models have been developed and validated against the expected
speed and relevant variables, they were merged model that represents the airport
system (airside and airspace). The different modules interact with each other in such
a way that it is possible to evaluate the behaviour of different performance indi-
cators (PI) and the emergent dynamics which would not be possible to perceive if

Fig. 5 TMA airspace network

Table 2 Characteristics of the TMA model

Parameter Value Value

Entry point (Speed) 250 Knot 160 Knot
Initial approach fix (Speed) 160 Knot 130 Knot
Final approach fix (Speed) – 130 Knot
Holding pattern (number and speed limit) 1 for each route, 200 Knot
Aircraft mix Code C (B737–A320)

Table 3 Separation minima
in nautical miles (ICAO)

Leading aircraft
Heavy Medium Light

Trailing aircraft Heavy 4 3 3
Medium 5 3 3
Light 6 4 3
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the models were analysed independently. Figure 6 depicts the complete model, in
which the entities first are generated in the airspace model, then they are sequenced
for landing and the landing is performed. For the landing process they get out of the
airspace model and enter the airside model. In the airside all the landing and taxiing
is performed until the aircraft gets to the gate in which the turnaround operation is
performed by the ground handling vehicles.

With the complete model, it was possible to evaluate performance indicators
(PIs) like number of movements, data about turnaround time and about delay under
different scenarios. As an initial approach focus was put on the analysis of the TAT
which is very important for understanding the potential of the airport under study.

3 Getting More Insight: Design of Experiments

Design of experiments is a technique that permits to identify the main parameters,
or factors that affect the performance of a system. With this technique, it is possible
to evaluate what the main effects of the factors involved are, and also the effect of
their interactions. This technique allows identifying the main effects for each factor.
To that end, for each factor different values were assigned, called levels. For each
combination of factor level a response is evaluated and an analysis is performed in
order to identify if the factor is statistically significant for the studied variable.

This phase focuses on developing structured experiments with the model for
identifying the most relevant factors.

For the example we present, we applied recurrently the technique in the simu-
lation model to make an identification of the variables that affect the outcome of the
PIs. For the first and second level analysis we put the focus on the objective under
study: Turnaround Time.

Turnaround time (TAT): This parameter is the time measured from the moment
the aircraft parks in the stand until it is ready for taxing out to the runway. This is an
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Fig. 6 Complete model of the airport of Lelystad
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absolute number, so if the operation is delayed due to the lack of any of the vehicles
or resources, the TAT will be increased as well. This number is important to know
since it provides the airlines information about how efficient an operation in a
particular airport could be.

3.1 First Level of Analysis

As the reader might assume, there are multiple sources or variables that can impact
the TAT. For instance, the amount of available gates, vehicles for performing the
operation, traffic level and more. For the initial identification of the most relevant
variables, we applied DOE in categories that group some factors. This selection was
based on expert opinion and the selected ones were: air traffic, available vehicles for
the turnaround, and stand allocation. Using these factors we performed a multi-level
full factorial design. Table 4 illustrates the different categories of factors we eval-
uated for the design.

For the first and the second factors we set three levels and two levels for the last
one. In addition, 50 replications were made for each level.

The evaluated levels for the three factors followed the following logic:

• Incoming Flow of aircraft. As it has been mentioned, this study deals with the
evaluation of a future airport in the Netherlands. The public information states
that the amount of expected traffic is approximately 50,000 ATMs per year.
Thus the Level 2 is approximately this value so this traffic is considered the one
expected by the airport. The other two levels explored the situation in which
30% more and 30% less traffic than expected is received in the airport.

• Number of Vehicles. The number of vehicles refers to the sets of vehicles that
can be used for the operation. Without economical limitations we can estimate
that we might use one complete set per aircraft, thus the initial set is of 9
vehicles. One set itself is composed by 1 fuel, 2 passenger bus, 1 water, 2 bulk
trucks, 2 stair trucks and 1 loader. The other two levels are used for evaluating
the reduction in vehicles so that it is possible to perceive when the turning point
is (if there is) of performance due to the lack of vehicles.

• Apron’s entering mode. For this factor, only two levels were evaluated, they
concerned with how the aircraft were allocated in the available stands. The two
levels are, from left to right, assuming a first-in first-served allocation putting

Table 4 Evaluated category factors

Factors Level 1 Level 2 Level 3

A—Incoming flow of aircraft (flights/day) 92 132 190
B—Number of vehicles 2 5 8
C—Apron’s entering mode Left–right Center-out –
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priority in the stands closest to the left part of the apron while center-right
assumes hat the priority is put in the central stands.

3.1.1 Analysis of Variance (ANOVA)

Once we have run the full factorial analysis, we performed the one-way ANOVA
for identifying the impact of the different categories evaluated. Figure 7 presents the
results obtained with the ANOVA test.

From the ANOVA we could identify that the most significant category is the
vehicles set assuming the standard p value of 0.05. This category is followed by
traffic; however statistics cannot support conclusively this assumption. In addition
we can also perceive that the interaction of traffic with vehicles is significant. So, as
expected, traffic itself affects, however that is a variable in which we cannot
manipulate to get a better or worse performance. For this reason we paid attention to
the amount of vehicles in order to going further in the analysis.

Figure 8 depicts the Pareto chart of standardized effects to graphically illustrate
the diverse effects of the different categories evaluated.

Once we selected as vehicles as the most influential and controllable factor, the
next question that arise is what the right mix of vehicles would be for a smooth and
efficient operation.

3.2 Second Level of Analysis

We run the second level DOE in which the factors were the different categories of
vehicles and their levels were the number of them. As the reader might note, the
combinatorial challenge make it impossible to run a full factorial design, which in

Fig. 7 Analysis of variance for the factors of TAT

Improving Airport Performance Through a Model-Based … 121



this case it might imply to run at least 19 683 different scenarios. For that reason, we
implemented the Federov algorithm [13] which allowed the reduction of the amount
of configurations to evaluate by doing and intelligent selection of them. After
implementing this algorithm, the number of scenarios to evaluate was reduced to
only to 27 as Table 5 presents.

Table 5 has been encoded for the different number of vehicles, it corresponds to
−1 as 2 vehicles, 0 corresponds to 5 vehicles and +1 corresponds to 8 vehicles.

After running the 27 scenarios, we performed again the ANOVA for identifying
which vehicles were the most influential for the objective pursued. In this case and
due to the few amounts of points for the analysis it was not possible to consider the
2nd order interactions. Therefore we could only make an analysis of the first order
interactions or the direct effect of the use of vehicles.

Figure 9 presents a scatter plot that together with ANOVA helps identifying the
influence in the TAT of some parameters which later would be used for improving
the optimization search.

From the scatter plot we could identify that some values of vehicles minimize the
turnaround time, namely Stairs1, Stairs2, Bulk2, fuel truck, Bus2. This result was
also used for the last phase of the optimization.

In addition to this analysis, we performed the ANOVA for identifying which
vehicles were the most influential for the TAT. We identified that the main factors

Fig. 8 Plot of the standardized effects for turnaround time
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that affect the turnaround time was firstly the fuel truck, and then the use of the
stairs. Figure 10 illustrates the outcome of the ANOVA analysis.

This result is very important, since it suggests that when someone is interested in
improving the TAT of this particular airport, he should ensure that there are enough
amounts of fuel trucks and stairs. The Pareto chart of standardized effects in turn
can also illustrate the impact of the fuel truck and the stairs as the reader can see in
Fig. 11.

Table 5 Design of experiments based on Federov’s algorithm

Scenario
number

Loader Bulk1 Bus1 Stairs1 Stairs2 Water
service

Bulk2 Fuel
truck

Bus2

219 1 −1 −1 1 1 −1 −1 −1 −1
723 1 −1 1 1 1 1 −1 −1 −1
4609 −1 −1 1 1 1 −1 −1 1 −1
4867 −1 1 −1 −1 −1 1 −1 1 −1
4941 1 1 1 1 −1 1 −1 1 −1
5049 1 1 1 −1 1 1 −1 1 −1
5077 −1 −1 −1 1 1 1 −1 1 −1
5232 1 −1 1 0 0 −1 0 1 −1
5851 −1 −1 1 −1 −1 −1 1 1 −1
5894 0 1 −1 1 −1 −1 1 1 −1
5968 −1 −1 −1 1 0 −1 1 1 −1
6019 −1 1 1 −1 1 −1 1 1 −1
8202 1 −1 1 −1 1 −1 1 −1 0
12555 1 1 1 1 0 −1 1 1 0
13123 −1 −1 −1 −1 −1 −1 −1 −1 1
13131 1 1 −1 −1 −1 −1 −1 −1 1
13443 1 0 1 1 −1 0 −1 −1 1
13687 −1 1 1 1 −1 1 −1 −1 1
14312 0 −1 −1 1 1 0 0 −1 1
14367 1 −1 −1 0 −1 1 0 −1 1
15087 1 −1 1 −1 −1 1 1 −1 1
15136 −1 1 0 1 −1 1 1 −1 1
15255 1 1 1 −1 1 1 1 −1 1
17760 1 −1 1 −1 −1 0 −1 1 1
18007 −1 1 1 −1 −1 1 −1 1 1
19012 −1 0 −1 1 −1 −1 1 1 1
19029 1 −1 1 1 −1 −1 1 1 1
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3.3 Optimizing the Model Response

In the next phase of the analysis, we used the previous results for making a more
informed search over the solution space of the simulation model.

In most of the commercial simulation tools there are programs embedded that
perform a simulation-based optimization. This optimization is performed by

Fig. 9 Dependency of TAT on the modification of vehicle numbers

Fig. 10 ANOVA for the 1st order interaction in the TAT analysis
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parameterizing the simulation model and then undergoing a search in the domain of
the parameters’ values. The search is done in most of the cases using a brute-force
approach in which the program just tests different values and make several repli-
cations of the model in order to find the best values for the objective function. As
the reader might infer, the more parameters and the higher the range of the domain
the more time consuming the search becomes. For this reason, it is necessary to give
support to the search, otherwise the required time to get to a good solution could
take a lot of time, and sometimes it would become unfeasible to wait for a solution.

For the previous reason, in the next stage, we used the information obtained from
the previous analysis for restricting the domain of the search in the algorithm of the
optimization program embedded in SIMIO.

3.3.1 Optimization Phase

The final phase of the methodology focuses on getting the optimal values for the
Turnaround Time which is the factor analysed in this study.

OptQuest is an optimization tool present in SIMIO, and it allows the user to
specify the objective function(s), domains, independent variables which will define
the search space, and it will use the simulation model for performing the evaluation
of the objective function. As the reader might know, the search over a high
dimensional space takes from some minutes to even days, for that reason it is
important to define wisely the boundaries and objectives of the optimizer.

Fig. 11 Standardized effects for the TAT evaluation
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For making the search as fast as possible, we implemented the so-called
Restricted Search in which we fixed restrictions to the Optimizer for making the
search under the boundaries we defined in the previous analysis.

The restricted search was limited to the following domain of the vehicles:

• Fuel Truck: 8 vehicles (fixed value)
• Stairs1: 5 vehicles (fixed value)
• Stairs2: 5 vehicles (fixed value)
• Bulk2: 5 vehicles (fixed value)
• Bus2: 5 vehicles (fixed value)
• Loader: [2…8]
• Bus1: [2…8]
• Bulk1: [2…8]
• Water: [2…8]

The numbers assigned were taken from the insight obtained by the previous
phase in which we could identify that the best performance could be achieved
somewhere in the region near the fixed values of the initial five vehicles. For the
remaining vehicles we relaxed the search so that the algorithm of the optimizer can
search freely on the complete domain.

For the sake of comparison we also performed the same optimization but letting
OptQuest make the search on the domain of the relaxed variables, for this reason we
called it as Free Search.

The obtained results for both searches are presented in the following table.
For limiting the speed of calculation and time to get the results it is also nec-

essary to establish some limits for the allowed number of combinations for pro-
viding the solution. In our example, for making a comparison between the free and
the restricted search, we set the limits to 50 and 100. In addition we also set another
limit for the free search just for having an idea of the improvement that can be
achieved if the analyst had enough time to let the model run.

3.3.2 Maximum Combinations 50

Regarding the performance of the approach, when we pay attention to the scenarios,
the first one is the limited by 50 permutations.

Table 6 illustrates that in terms of Turnaround time, the free search provides a
slightly better solution than the restricted one, however the restricted search finds a
similar solution with only 5 combinations and a smaller number of vehicles than the
free search (56 compared to 65).

When we check the solution with the minimum number of vehicles, we iden-
tified that after two permutations the free search provides a solution with 18
vehicles and a turnaround time of 42.46 min, while the restricted one provides a
solution of 36 vehicles but with a shorter turnaround time of 37.01 min. These
results supports the premise that limiting the search space based on the results of the
DOE & ANOVA it will provide a better starting point for the search.
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3.3.3 Maximum Combinations 100

Regarding the turnaround time, for this amount of maximum number of permuta-
tions we can appreciate that the achieved Turnaround times are very similar,
however the restricted search finds a solution which is less costly since it uses only
56 vehicles while the free search 67. In addition, the restricted search finds it with a
minimum amount of permutations.

If we wanted to pay attention to a solution of minimum vehicles, the free search
finds a suitable solution of 18 vehicles while the restricted one finds one of 36
vehicles but with a better turnaround time in the same amount of permutations
which is in line with the previous example.

Regarding the free search with a limit of 300 permutations, we can appreciate
that the results are not necessarily better, they can be even worse than a more
restricted search. This can be noted in the turnaround time when we let it make a
free search on a more relaxed fashion. This result also indicates the complexity of
the solution space of this system.

4 Conclusions

Managing an airport system is a complex task in which the decision involves many
variables, thus the decision makers require decision-support tools that provide them
insight of the consequences of taking particular decisions.

In this work we presented a case of the analysis of an airport in the Netherlands
which is currently under construction. For the decision makers it is important to
identify what the most influential variables are in order to improve the performance.

Table 6 Analysis of the optimized search

Type of search Free search Restricted
search

Maximum number of combinations 50 100 300 50 100

Solution with minimum
TAT

Turnaround
time (min)

29.41 29.23 29.40 29.56 29.56

Number of
vehicles

65 67 58 56 56

Number of
combinations

17 37 204 5 5

Solution with minimum
number of vehicles

Turnaround
time (min)

42.46 42.46 42.46 37.01 29.56

Number of
vehicles

18 18 18 36 56

Number of
combinations

2 2 2 2 5
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This is key for them since the more efficient the airport, the most attractive for
airlines to move there.

In this work we illustrated how a structured methodology can help identifying
the most influential decision variables for the system in place. With the identifi-
cation of them, it is possible to use simulation together with optimization for finding
the values of the decision variables that improve the performance of the airport
under study; in this case we put focus on the turnaround time. The results illustrate
that certainly the methodology successfully drives the search space into a region of
good solutions so we could obtain very good values without performing a
time-consuming search.

The methodology has been implemented in the case of an integral airport model
developed in SIMIO using OptQuest as the optimization tool. However this
methodology can be easily implemented in a different area using a different sim-
ulation tool and a different optimizer.
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Airport Ground Crew Scheduling
Using Heuristics and Simulation

Blaž Rodič and Alenka Baggia

Abstract International airports are complex systems that require efficient operation
and coordination of all their departments. Therefore, suitable personnel and
equipment scheduling solutions are vital for efficient operation of an airport as a
system. Many general solutions for fleet scheduling are available; however, there is
a lack of scheduling solutions for airport ground crews, especially for work groups
with overlapping skills. In the presented case, a scheduling solution for airport
ground crew and equipment in a small international airport is described. As ana-
lytical methods are unsuitable for the system in question, the proposed scheduling
solution is based on heuristics. A combined agent based and discrete event simu-
lation model was developed to validate and improve the heuristic algorithms until
they produced acceptable schedules and shifts. The algorithms first compute the
requirements for workforce and equipment based on flight schedules and stored
heuristic criteria. Workforce requirements are then optimized using time shifting of
tasks and task reassignments, which smooth the peaks in workforce requirements,
and finally the simulation model is used to verify the generated schedule. The
scheduling procedure is considerably faster than manual scheduling and allows
dynamic rescheduling in case of disruptions. The presented schedule generation and
optimization solution is flexible and adaptable to other similar sized airports.

1 Introduction

In this chapter, we describe the development of a scheduling solution for airport
ground crew and equipment in a small international commercial airport. Similar to
other service providers, airports are facing constant competition. To attract airlines
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and passengers, they must offer efficient and high quality services for airlines and
passengers. At the same time, labour, equipment and other costs need to be kept
low enough to generate profits. This presents airports with a difficult optimization
problem.

In order to provide efficient and high quality services, airport’s resources used
for passenger and airplane services need to be scheduled. An airport is a complex
logistics system. Analysis and optimization of processes at an airport can be a
tedious and time-consuming work since the processes are interleaved, cannot be
analysed separately and are usually too complex to be modelled with an exact
mathematical approach.

The entire airline industry faces a range of different, yet typically complex
scheduling problems, from aircraft or fleet scheduling [1–4], ground crew
scheduling [5], disruption management [6], aircraft landing sequence scheduling [7,
8] to personnel training scheduling [9].

An important factor in the optimization of air traffic logistics are delays and
delay costs. While 50% of flight delays are caused by the carriers, 19% of delays are
caused by airport operations [10]. Depending on contracts between airlines and
airports, the cost of these delays can be transferred to the airport. The analysis of
tactical delay costs with network effect [11] shows that delays cost airlines from
€90.80 to €110.50 per minute, depending on the plane status and other factors. The
steep costs of delays highlight the importance of optimization in airport operations.

However, most of the related research in recent years is focused on optimization
of airport surface operations, from ground movement, runway scheduling and gate
assignment [12] and aims to efficiently utilize the resources and lower the impact on
the environment. Further, most of the research on personnel scheduling problems in
the airline industry focuses on cabin crew scheduling, whereas airport ground crew
scheduling has only gained the attention of researchers in recent years. Ground crew
scheduling is as important to the airports as cabin crew scheduling is for the airlines,
and is vital to ensure security, safety and quality of airport service.

Airport ground crew operations and tasks can be divided into passenger-related
tasks and aircraft-related tasks, where the latter include maintenance, cargo, bag-
gage, loading, cleaning, catering, towing and operations [5].

Ground crew scheduling is a complex problem since in addition to common
constraints of personnel scheduling, the required equipment and skills of the
crewmembers have to be considered. Interconnections between work groups and
overlapping of ground crew skills increase the number of constraints and possi-
bilities, which have to be considered in developing scheduling algorithms. Since
professional ground crew scheduling solutions may be prohibitively expensive for
smaller airports, solutions that require a lot of manual work are still in place,
presenting great possibilities for improvement.

Most of the research on ground crew scheduling offers partial solutions for
individual work groups e.g. check-in [13–15], baggage handling [14, 16], security
[17], or runway [12, 18, 19]. Although mathematical (linear programming) models
can be used to resolve rostering problems of a specific work group type, it cannot be
applied to a complex system, therefore other techniques need to be employed [20].
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Staff scheduling is usually carried out in several stages, where the demands are
calculated first, followed by the generation of work shift plans [21].

The airport in question is an international airport located in the southeast Europe
with over 30.000 flights and over 1.400.000 passengers per year. From the year
2004 the airport grew substantially with the introduction of low-cost carriers, fol-
lowed by the construction of a new passenger terminal and renovation of runway.
The growth of passenger and freight traffic still continues, and better information
technology (IT) support of the internal processes will be required. The airport has a
single 3300 m long runway equipped with CAT III/B Instrument Landing System,
a 23 m wide taxiway, and 25 independent parking positions. Airport’s Aerodrome
Reference Code (International Civil Aviation Organization) is 4E. The terminal
capacity is 500 passengers per hour, with 13 check-in counters and 2 baggage claim
conveyors. The total area of the airport is 320 hectares.

The arrival or a departure of an aircraft requires the execution of a series of
ground crew tasks. The scheduling of these tasks and the workforce and equipment
requirements were performed manually using spreadsheets; however, the procedure
was too lengthy to allow dynamic rescheduling in case of flight schedule changes,
and did not adequately address the variation of workforce requirements during peak
and off-peak times.

While research such as deals with fixed shifts with repetitive peak time and static
demands (e.g. [13]), our project’s end goal is to develop an automated work-force
scheduling and shift generation system, that would produce floating shifts adjusted
to variation of workforce requirements throughout the day in a fraction of the time
needed for manual schedule preparation, and would allow dynamic rescheduling in
case of unforeseen events or disruptions. In order to achieve optimal workforce
deployment, we needed to minimize the criteria of personnel costs and aircraft
delay costs. In this chapter, we describe the development of a solution for the
optimization of number of workers present in work groups covering individual
types of tasks throughout the working day.

1.1 Ground Crew Scheduling Problem Description

Ground crew scheduling problem at the considered airport is confined with the
arrival and departure of the aircraft i.e. the presence of the aircraft at the airport.
Depending on the type of aircraft, airline (carrier) and other attributes, a set of tasks
has to be performed in a predefined time sequence. The general scheduling rules at
this airport are described in the following paragraphs.

The workforce and equipment requirements for each task and their scheduling
depend on the flight schedules and parameters of each flight, e.g. destination,
aircraft type, and carrier. Tasks can be performed by work groups that have
appropriate skills. To simplify scheduling, skills are arranged into skills groups, and
every employee is a member of one or more skill groups. Employees that belong to
a skill group can perform one or more types of tasks. While employees from almost
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any skill group can perform simple tasks such as luggage handling, specialized
tasks such as supply control can be performed only by employees from a single skill
group. After the workforce requirements during a day are defined, shifts are con-
structed according to business rules (e.g. minimum duration of shifts, allowed shift
start times, maximum number of shifts per day per employee), legal limitations (e.g.
maximum duration of shifts) and other limitations (e.g. available workers in a skill
group, available equipment). Each work group performs only one type of task per
shift, and therefore all workers in this work group are selected from the same skill
group.

The tasks are performed by the three airport service departments:

• Aircraft supply service,
• Passenger service and
• Technical service (including the Fire department).

Each service department consists of personnel with different skills, matched to
specific tasks. There are two types of tasks: “fixed” tasks, which are performed by a
constant number of workers that work in fixed shifts, and are thus not a part of the
optimization problem, and the “operational” tasks. Workforce requirements for the
operational tasks and thus shifts vary according to the number and type of events
(flight arrivals and departures) at the airport. Aircraft supply service has three fixed
tasks (Shift manager, Crew bus driver, Trolley collector) and nine operational tasks
(Load balancer, Supply controller, Group leader, Sorter, Baggage handling worker
A and B, Tractor driver, Cleaner/Driver and Cleaner). Passenger service has four
fixed tasks (Ground attendant type 1, Call centre, Information desk, Business
lounge counter) and five operational tasks (Check-in, Gate, Transfer, Guidance,
Lost and found desk). The technical service has two fixed tasks (Fireman, Shift
manager), and ten operational tasks (Follow me driver, Bus driver, Power unit
operator, Water tank driver, Aircraft towing, Flatbed operator, Deicing, Disabled
people van driver, Air-start system operator and Aircraft cabin and engine blades
heating operator).

In the past, planners (usually heads of service departments), human resource
(HR) department and IT department were involved in the process of ground crew
scheduling. HR department provided up to date information on personnel skills and
availability, while the IT department provided latest flight schedules. Based on
expert knowledge of planers, schedules were generated using a spreadsheet appli-
cation 14 days in advance, with the final confirmation of the schedule at least 24 h
before the execution of the tasks.

In order to prepare schedules, planners needed to know what are the workforce
requirements for every type of task throughout the day. Their decision criteria
included the type of aircraft, carrier, length of stopover and type of flight. Based on
flight data and their expert knowledge, shifts of workers were generated and
gathered in a schedule.
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Based on the decision criteria and heuristic rules identified from manual
scheduling procedures we have documented the following attributes of flights as the
scheduling criteria:

• Type of stopover (arrival or departure),
• Flight type (charter, scheduled or transfer),
• Aircraft type (320, CRJ, SH3 etc.),
• Carrier (9 carriers are currently using the airport),
• Destination.

For each criteria type, e.g. “Aircraft type”, multiple criteria can be defined, i.e.
the aircraft type of a particular flight can influence the requirement and parameters
of several different tasks, e.g. number of cleaners, requirement of an auxiliary
power unit to start the engines etc.

The main scheduling issue in the presented case arose from the big difference in
workforce needs in peak time and outside of peak-time for some of the skill groups,
which lead to difficult and inefficient rostering of employees. While according to
heuristic rules additional workers were needed during peak times, manually pre-
pared schedules did not schedule additional workforce, as the peak times are much
shorter than a minimum shift duration. In the past, the airport instead employed
students working part time during peaks, but this solution was not sustainable. The
discrepancy between the number of available manually scheduled workers and the
number of workers required according to heuristic rules is shown in Fig. 1. Here we
can see that outside of peak hours, there are more workers available than required,
but at peak time, the task requirements exceed the number of available workers,
leading to overload and potential errors and delays.

Fig. 1 The discrepancy between the number of available manually scheduled workers and the
number of workers required according to heuristic rules
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Additionally, ad hoc work schedule changes are a constant, especially due to the
changes in flight schedules and other interruptions caused by different events (e.g.
flight delays due to weather on route and changes at other airports, flight cance-
lation due to adverse weather or malfunction, aircraft change due to malfunction or
airline decision). These changes can require different airport services with addi-
tional personnel and equipment for different aircraft, or rescheduling of a task to
peak time when personnel and equipment are not available. The response to the ad
hoc flight changes needs to be accurate and efficient, and should not disrupt the
flight schedule. In the past, planners had varying success adapting the schedules to
unexpected changes.

Although the process of manual schedule generation was not seen as a major
issue at the airport, it was quite time consuming and stressful. The scheduling
problem increased in complexity after an additional passenger terminal was built
and the runway has been upgraded, resulting in an increase of airport traffic.
Peak-time ground crew scheduling was partially alleviated using part time (student)
workforce for a while, however, a new work legislation has reduced the availability
of part time workers, and situations with redundant workforce during low traffic and
a lack of workforce during peak time have become more common.

1.2 Literature Review

Scheduling is described as the allocation of activities or actions on a timeline to
resources, according to specific performance criteria [22]. Moreover, scheduling is a
decision-making process with the goal of optimizing one or more parameters [23]
or the allocation of limited resources to activities with the objective of optimizing
one or more performance measures [24]. Optimization is generally first attempted
with the use of exact mathematical methods such as fuzzy multi-objective linear
programming [25], with heuristics eventually used where mathematical methods
cannot be used to model certain characteristics of the problem [26].

In general, there is an abundance of research on personnel scheduling in various
business branches. Personnel scheduling is traditionally about finding an optimal
schedule, which is determined by minimizing the costs of personnel while main-
taining an acceptable service level [27]. In recent years, personnel scheduling has
become more advanced, using different multidimensional approaches and tech-
niques. A frequently used method is constraint programming, which is an artificial
intelligence technique which seeks a good feasible solution that satisfies a certain
set of constraints [23]. The most common objective when using constraint pro-
gramming is to minimize the weighted quantity of late jobs. Diverse scheduling
algorithms are used to optimize the set of schedules which occur in an airport or
airline company, from flight scheduling to personnel and equipment scheduling,
and researchers often tend to use heuristics instead of exact solution techniques [9].
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Heuristics are often used because in advanced personnel scheduling solutions, skill
requirements and shift definition significantly contribute to the complexity of the
scheduling problem.

In most airlines, several departments are involved in the scheduling process [10].
On the other hand, ground crew schedules are usually handled by a division of the
airport management [5]. For a single work group of employees with different skills,
workforce demands can be calculated and a memetic algorithm can be used to
evaluate the schedule [17]. The study of aircraft maintenance staff with the time
constraint and different skill requirements is presented in [9], where the first step of
schedule generation is the definition of optimal skill mix, and the second step is the
optimization of training costs. In the case of check-in and baggage handlers
scheduling [14], each day is divided into time blocks with different constraints
defined and a required number of employees given. At the end, employees are
scheduled for work in three different shifts, 8 h each. Goal programming also
proved to be efficient for generating shift duties for baggage services section staff
[16].

A simulation study focused on aircraft maintenance, uses a classification of
aircrafts according to the time of stay at the airport [14]. Depending on the length of
stay, maintenance programs are scheduled for technicians and total technician
requirements are calculated for each sub-shift of the day. Using the stochastic
methods, delay costs in air traffic can be calculated [28]. Attempts were even made
to influence the schedule of aircraft landings in order to balance the workload of
ground staff [29].

In addition to optimization methods and heuristics, discrete event simulation
(DES) can be used to improve aircraft ground handling performance [30]. Agent
based modelling (ABM) was used to simulate and optimize the complex
socio-technical air transportation system [31], while [32] used ABM simulation to
predict the airport capacity. Based on the research of simulation methods used in
personnel scheduling problems [30–33], we can conclude that the combination of
DES and ABM methods proved to be more flexible and accurate than using DES
alone. While airport operations can certainly be modelled with DES alone, the
addition of ABM components to a DES model of airport traffic allows us to model
the activities of ground crew and the communication between ground crew groups,
their supervisors and aircraft with less abstraction and more detail, thus improving
simulation accuracy and transparency and comprehension by the client. Modelling
of decision and work processes at the level of individual agents (groups, individuals
and their equipment) will also allow us to introduce elements such as the effect of
personal work efficiency, fatigue and equipment malfunction with less abstraction,
while the spatial aspect of agents allows us to model the movements of aircraft and
ground crew on the tarmac and measure the time a group of workers spends
travelling between aircraft.
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2 Methodology

2.1 Scheduling Problem Definition

The process of scheduling does not depend on the type of scheduling problem. In
case of the production scheduling, the scheduling algorithm searches for the most
appropriate machine(s) to process an order, while in case of personnel scheduling,
the algorithm searches for the most appropriate person(s) to perform a task. The
scheduling algorithm could therefore be defined as a search procedure to find an
optimal solution among all possible solutions aligned with criteria function.

According to the previous research on scheduling (see e.g. [34]), the scheduling
problem can be defined as a general search procedure, where only one variable’s
value is changed when different types of scheduling problem are addressed.
A general example of such a procedure is shown in Algorithm 1, where the variable
can be a machine, person, equipment, etc., depending on the type of scheduling
problem. Each solution is evaluated based on the defined criteria function to find an
optimal solution.

FOR each position in the time frame

FOR each set of requirements

FOR each variable

EVALUATE possible solution

END FOR

SELECT optimal solution

END FOR

INSERT optimal solution in the time frame

END FOR

Algorithm 1: General search procedure

Since the equivalence between different scheduling problems can be observed,
every scheduling domain (SD) can be described with four basic elements as pre-
sented in Eq. 1: object type (O), parameter (P), syntax (S) and algorithm (A) [35],
where different types of relations between object types describe the behaviour of the
scheduling problem. Object types, parameters and the syntax represent the input for
the scheduling algorithm, which defines the logic to generate a schedule.

SD⊆O × P × S ×A ð1Þ

In line with the diversity of the scheduling problems addressed in the air
transport industry, diverse scheduling approaches were used, from combinatorial
optimization problems [20], linear programming [13], multi objective genetic
algorithms [36], etc. The ground crew scheduling problem addressed in this
research can be aligned with the multiple machine scheduling problems [37],
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although in case of ground crew scheduling, the sequence of operations or tasks is
not fixed and the sequence of orders is known in advance. Ground crew scheduling
operations can be scheduled independently to some extent (e.g., there is no
dependence between aircraft cleaning and passenger guidance). Although the
sequence of operations is well known in advance (flight schedule), it is often subject
to various disruptions and rendering of the schedule. Another specific of the ground
crew scheduling is the limitation of the time window for the execution of a task,
which is limited by the presence of the aircraft at the airport.

Approaches to shift planning and crew assembly often use limited validity
assumptions [21] or deal with simplified problems such as partial solutions for
individual work groups [13]. Therefore, in the presented case of a small interna-
tional airport, a heuristic approach was used to generate work schedule and shift
generation.

2.2 Simulation and Modelling

In simulation and modelling of logistics systems, three different simulation methods
are generally used, and are selected depending on the complexity and abstraction
level of the discussed system:

• System dynamics (SD) is a form of continuous simulation of complex systems
with a high level of abstraction, using stocks, flows, feedback loops and time
delays to model flows and levels of materials, people, funds etc. [38, 39]. It does
not allow the modelling or tracking of individual entities.

• Discrete event simulation (DES), uses a low level of abstraction to model
systems as a series of events or instants in time when a stage-change occurs [40].
In DES, the system is modelled as a process, with a sequence of operations that
are performed on entities or transactions. A DES model requires that the data
which describe the processes are obtained, analysed, extracted and prepared in a
suitable format for the model. Integration of simulation software and operational
databases can preserve the model accuracy even after minor changes in
processes.

• Agent based modelling (ABM) allows experimentation with models, composed
of agents that interact within an environment [41]. ABM allows different levels
of abstraction, making it more flexible than SD or DES. The main attribute in an
ABM simulation model is an object (agent) and its individual behaviour [42].
An agent can be an individual person or object (e.g. pedestrian, worker, aircraft,
and truck) or a group of persons or objects with a common decision mechanism.

A conventional approach to modelling the ground crew processes at an airport
would involve DES methodology to model the set of tasks as separate processes,
with workers and equipment as resources and the steps in a process as delay
elements. While formally correct, this approach can be too rigid to model the
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dynamics of an airport. The addition of ABM adds more flexibility, as workers and
work groups can be modelled as agents that move from plane to plane performing
tasks, and make autonomous decisions according to a set of rules and assignment of
tasks. Work group movements, communication between entities, pre-emption,
change of tasks, travel delays and other real events and conditions are easier to
model using agents. Such a model can be more realistic and more flexible than a
conventional DES model, while still allowing the monitoring of resource utilization
and other statistics. ABM is a better choice than DES to model processes that are
dynamic and must quickly adapt to changing requirements and events on a real-time
basis [43]. ABM allows the inclusion of descriptive models of how people actually
make decisions within the modelled system, and modelling of the effects of all
decision makers within the system. In contrast, DES models take a normative
approach, i.e., indicating what should be done rather than how the system really
works. In addition, ABM is better than DES when it is important that individual
agents have spatial or geo-spatial aspects to their behaviours (e.g., agents move over
a landscape or between parked aircrafts). However, the development and validation
of ABM can be considerably more difficult than SD or DES models.

3 Heuristic Algorithm Development

Planners in service departments have previously depended on their expert knowl-
edge (i.e. heuristics) to generate manual schedules. We have collected the data on
their heuristics to define the constraints and scheduling requirements used in the
heuristic approach. Similar to [44], we have used a two-step approach to generate a
feasible scheduling solution for ground crew scheduling, with the first step defining
the work force requirements and the second step constructing shifts based on the
work force requirements, business rules and legal limitations.

In the first part of the solution, the requirements and constraints for all tasks on
flights within a selected time frame are identified to generate a feasible skill group
and equipment schedule. This schedule defines the number of personnel for each
skill group and the required equipment for every minute within the time frame, and
does not include shifts or employee names.

A flowchart diagram representation of the skill group scheduling algorithm is
presented in Fig. 2. First, the planner defines the time frame for the schedule
(usually 14 days, starting after the end of current schedule), and thus defines the
range of flight data to be transferred from the Flight Information System (FIS). The
algorithm then analyses the flight data, and determines the time window, within
which all flight related tasks need to be completed. This time window limits the
optimization of workforce requirements via the time shifting of tasks. According to
flight characteristics and stored heuristic rules, the criteria and requirements for this
flight are determined and the number of personnel, their required skill groups and
required equipment are recorded. Information about the skill profiles are stored in
the Human Resources System (HRS). Finally, the personnel/workforce
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requirements per skill group and equipment requirements from all flights are
summed for every minute of time within the selected time frame.

As the availability of the equipment was determined not to be a constraint of the
scheduling problem, the equipment requirements are modelled, but not subject to
optimization in the presented solution. The focus is therefore on personnel
scheduling optimization.

The scheduling criteria types, presented in Table 1, stated by the airports experts
were included in the heuristics algorithm: type of stopover, traffic (flight) type,
aircraft type, carrier and destination.

These criteria are used to determine the tasks that need to be performed per flight
and their parameters. There are four basic scheduling parameters per each task:

• Skill required,
• Start of task,
• Duration of task, and
• Number of workers per task.

Advanced task parameters, tied to skill groups, include the possibility of time
shifting and skill groups allowed to perform the task.

The criteria have different priorities, i.e. they must be used in a prescribed
sequence to arrive at the solution. The first criterion to be used is type of stopover
with priority value 1. This is the base criterion, which sets the default requirement

Fig. 2 The flow of the airport ground crew skill profile scheduling procedure
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values, which can later be altered by the subsequent criteria (with priority value 2 or
more). In addition, two types of criteria exist: relative and absolute. Relative criteria
will reduce or increase a scheduling parameter (e.g. required number of workers or
task duration) while absolute criteria, if defined for the given flight parameters, will
set the scheduling parameter to a predefined value. For example, certain carriers
have a fixed demand for the number of ground attendants at check-in. Therefore, all
previously calculated workforce demand at check-in are overridden with a fixed
number.

Figures 3 and 4 describe the process of aircraft supply service (fixed tasks are
not included) for the arrival and departure of an aircraft of type C (e.g. Airbus 321).
The aircraft supply service department included nine different operational tasks
which were mapped to skill groups with the same name, listed in Fig. 3. Most of the
skill groups required one person to be assigned to the skill group. The two
exceptions are the skill groups Cleaner, where according to the requirements, two
workers should be assigned to the task, and Baggage sorter type A, where only half
of person (i.e. a half of worker’s full time utilization) is assigned to the task. The
assignment of “half persons” per task in combination with time shifting of tasks
allows a degree of workforce requirements optimization of certain types of tasks.
The required number of individual workers in specific task group is not shown in
the graphical presentation. As it can be seen from Figs. 3 and 4, most of the tasks
overlap and can be performed simultaneously. The only task which requires a strict
sequence is the task of baggage sorting (A and B) in Fig. 4, which has to be finished
before the tractor driver drives the baggage to the aircraft.

Table 1 Description of the scheduling criteria types

Criteria type Priority Value domain Short description

Type of
stopover (base
criterion type)

1
(highest/first)

Arrival or
departure

The default/starting values for all
requirements, subsequently altered by
lower priority criteria.
The time frame of task execution
depends on the type of stopover

Traffic (flight)
type

2 Passenger line,
Technical, Charter

E.g., technical flights do not require
baggage handlers, cleaners, ground
attendants

Aircraft type 3 Over 30 different
aircraft types use
the airport

Passenger and cargo capacity depend on
aircraft type; therefore, the staff and
equipment demands differ. In addition,
certain aircraft types require specific
equipment, e.g. auxiliary power unit

Carrier 4 Carriers using the
airport

Carriers have different requirements,
esp. regarding the equipment

Destination 5 Destination airport E.g., flights to certain destinations
require additional transfer staff as most
of passengers will be transferred from
another flight
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There are two types of tasks: fixed and operational. Fixed tasks do not depend on
the airport traffic and are always performed in the same manner. These tasks (e.g.
1 manager per shift, 1 person in call centre) cannot be optimized, and were therefore
not modelled in our solution. For operational tasks, the required number of staff
varies with the airport traffic.

Based on the recorded heuristics, the algorithm was coded in a software program
to generate a timeline of workforce requirements for all tasks. The algorithm uses
flight information and documented criteria to calculate workforce requirements for
every flight, per task. The required number of workers for every type of task is then
calculated for each minute within a given time frame (the end and start date of the
schedule), producing a timeline of heuristic (ideal) workforce requirements.

Fig. 3 The process of aircraft supply service for the arrival of type C aircraft

Fig. 4 The process of aircraft supply service for the departure of type C aircraft
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Fig. 5 The first version of the workforce requirements scheduling algorithm
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Figure 5 shows the first version of the workforce requirements scheduling
algorithm, which computes the ideal workforce requirements.

3.1 Optimized Heuristic Algorithm

Upon further examination, workers were found to temporarily change task
assignments to help overloaded colleagues, and several types of tasks were per-
formed either sooner or later than defined in the heuristics in order to avoid peak
worker overload. Furthermore, the most overloaded skill groups were found to be
temporary overloaded during peak times, and performing two tasks in the same
time period.

The main issue was therefore to smooth out workforce requirements for daily
peak times without causing flight delays due to the workforce overload. Seasonal
peak times are not considered problematic since they can be planned in advance and
additional workforce can be employed during the season period. In contrast, daily
peak times are problematic as they are mostly shorter than minimum shift length
(2 h).

Therefore, additional heuristic rules were implemented to reproduce the in-field
optimization behaviour of the examined system. Main improvement of the algo-
rithm, described in the following section, was the “smoothing” of requirement
peaks, implemented by shifting the execution of a task to a time, where more
workers are available. A task can be shifted to an earlier or a later time, according to
limitations defined by airport planners and implemented in the algorithm. Further
improvement is the temporary reassignment of workers, which is implemented by
the option of a worker being assigned to several tasks simultaneously inside a short
time frame (e.g. a tractor driver usually helps as a baggage sorter when he stops the
tractor, although he is formally still busy waiting to drive the tractor back). The
maximum duration of an overlapping activity is limited by the duration of peak time
requirements (typically less than 30 min) and the end of a shift. This version of
algorithm improves on the manual schedules by reducing workforce requirements
in the off-peak times, however the peak time optimization is still not satisfactory, as
the algorithm replicated the overloading of personnel during peak times.

Diagram of the optimized scheduling algorithm is presented in Fig. 6.
The optimized workforce requirements scheduling algorithm was implemented

as a standalone application in Java, using an Oracle database to store the data on
flights and heuristic rules. 24 relational tables were used to describe the criteria and
the demands of the airport ground crew scheduling problem. Before the start of
scheduling procedure, flight and personnel data is transferred from the FIS and
HRS.

Table 2 shows an example of parameters stored in the database, assembled from
the FIS into a single table using an SQL query. DD1 defines the date of the flight,
FLTNO_A and FLTNO_D describe the aircraft’s arrival and departure code. The
type of traffic (e.g. C—charter passenger only, F—scheduled cargo/mail, S—
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scheduled passenger) is defined in column TRFTYP, ST_A and ST_D show the time
of arrival or departure, with ROUTE_A and ROUTE_D as arrival or departure
airport. ACTYP defines the type of aircraft.

According to the criteria types and detail information on considered flight
schedule, heuristic rules stored in the database can be used to generate a schedule.
Table 3 shows an example of heuristic rules stored in the database. The column
ID_CT stands for identification number of criterion type, DM for demand (number
of workers to be set, added or subtracted according to criterion value), ST for task
start time, DR for duration of task, ABS for the distinction between absolute and
relative criteria, and CV for criteria value, i.e. the condition where this particular
rule/line is used, ID_S for identification number of skill, i.e. which skill group this
rule applies to, MVB for indication of movable tasks, i.e. tasks with flexible start or

Fig. 6 Version 2 (optimized) scheduling algorithm
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end time, LEBD for latest allowed time for task completion before departure and
A_D for the arrival/departure label. Absolute criteria require setting the work
demand/start/duration to their value, thus replacing the current value, while the
relative criteria require adding their value to the current values for work
demand/start/duration.

The heuristic rules stored in database define the flow of the scheduling procedure
in detail. The base criteria for scheduling the tasks is the stopover type: arrivals and
departures require different skills and require a different time frame calculation
method, i.e. in case of a departure, the task start times are to be subtracted from the
departure time, while for arrivals the task start times are added to the arrival time.

For example, the criterion in Table 3, row 2 applies if the flight type (A_D) is
D (Departure), TRFTYPE value is S (scheduled passenger flight), and CV (carrier) is
S. In that case, the CHECKIN skill demand (DM) is 2 (two workers). Therefore, two
ground attendants with skill ID number 1 (ID_S) should start their work 120 min
(ST) prior to the flight departure (A_D), and should perform their task for 100 min
(DR). Since the value for ABS is A, the DM (demand/number of workers) value of 2
is absolute, thus it overrides any previously set value for DM for this skill type.
Since the task is not movable (MVB is empty), we cannot change the start time of
the task and therefore no value for the latest start before departure is given. CV
criterion defines specific rules for certain carriers, which may for example require a
check-into complete earlier.

For example, if the flight carrier has the CV value “360” an additional criterion
with a lower priority also applies (Table 3, row 1). This criterion type is R (rela-
tive), which means that the start time is 30 min (prior to the departure of the
aircraft), 1 ground attendant is added to the check-in counter, and the relative event
duration is -30 min, which means the duration of this task is reduced by 30 min (i.e.
check-in ends 30 min sooner, but there is an additional ground attendant present).

Figure 7 shows the ideal workforce requirements for load balancers estimated by
the first heuristics algorithm (solid line), and the requirements “smoothed” by the
optimized heuristic algorithm (dashed line). Short periods of peak times are clearly
visible.
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Fig. 7 Workforce requirements of first and second versions of the algorithm for the load balancer
skill group
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4 Simulation Model

We have decided to validate the generated workforce schedules using a model of
the airport operations. We have used AnyLogic as the main a general-purpose
simulation and modelling tool. While AnyLogic is built in Java, and the models are
translated into Java code, most of the modelling can be performed using the Visual
Interactive Modelling (VIM) approach, which allows fast development and intuitive
comprehension of model operation for the stakeholders without previous knowl-
edge of simulation methods. Java code of the model is accessible within AnyLogic
and can be modified during model development. A unique characteristic of Any-
Logic from version 7 on is that DES entities, resources, and agents use the same
object type, allowing easier integration of DES and ABM models. A combination
of DES and ABM methods can be used in several different situations, from
implementation of a DES server as an agent, an entity as an agent or different
combinations of agent usage to introduce messages into the model [42].

Our model is divided into two parts: the DES based aircraft traffic model, which
models the arrivals and departures of aircraft, and the ABM based ground crew
work group model. The models are linked via passing of messages between aircraft
and work group agents. The DES based aircraft traffic also implements several
ABM-specific features in order to allow simulation of movement on the airport and
the passing of messages.

4.1 Aircraft Traffic Model

In the first step of the model development we have identified the entities present in
the system and selected the modelling method appropriate for the required level of
autonomy and abstraction. We have determined that a classic DES model will be
sufficient to model the aircraft traffic, i.e. the arrivals and departures of aircraft,
however we have supplemented it with ABM elements to allow the modelling and
animation of aircraft movement on the tarmac.

Arrivals depend only on the flight schedule (obtained from the airport database),
while the exact time of departure may deviate from the flight schedule due to delays
in ground crew service. Within the aircraft traffic model (Fig. 8), the arrival and
departure procedures are modelled in several discrete steps, with most detail on the
steps involving ground crew service. These steps are modelled as delay elements,
with the state of arrival and departure services (serviceArr, serviceDept) elements
depending on the agent-based model of ground services. Thus the end of the
services for individual flights depends on the logical condition: “Are all ground
crew services completed?”. The agent-based model of ground services is described
in the next section.

The physical layout of the airport and the aircraft taxi and parking procedures are
also modelled, with the main purpose of improving model comprehension and
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acceptance by the end users. According to our client, taxi and parking logistics do
not influence the ground crew service performance or delays in departures, and are
therefore not included in model statistics. While the arrival services are not prob-
lematic from the aspect of flight delays, as they are completed long before the
departure of the aircraft, they affect the availability of ground crew groups and
equipment.

The Aircraft traffic model is implemented with two DES submodels: the Arrivals
submodel, and the Departures submodel. The separation into submodels reflects the
business rules of the airport and the limitations of the FIS database: individual
aircraft are not tracked in the FIS after the arrival procedure is complete, thus the
Turnaround process cannot be modelled. After the arrival tasks are completed, an
aircraft is removed from the model by parking them at “Parking B” (exit point in the
model is ParkB). The Departures submodel in turn assumes that the aircraft is
present (parked) at the airport.

The starting point in the Arrivals submodel is the arrivals element, which
generates aircraft in the submodel according to the arrivals schedule in the FIS. At
this point, the aircraft also appears in the animation seen below the DES submodels.
Subsequently, the aircraft taxies to the gates (DES elements moveToParkA and
queueArr (wait on the apron for gate assignment)), waits to be serviced in the
ServiceArr element, and is removed from the model via the moveToParkB and
ParkB elements.

The departure traffic is also based on the FIS database, with the task start times
based on the planned (in FIS) departure times. The actual (modelled) departure
times depend on the execution of tasks, which allows us to calculate flight delays.

Fig. 8 Main view of the simulation model with DES model of aircraft traffic and airport layout
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The Departures submodel is slightly larger, as an aircraft first has to taxi from the
parking area to the gates (elements moveToParkD, queueDept and moveToGates),
where it is serviced (e.g. filled with passengers, baggage, etc.), with the delay
modelled with ServiceDept element. Afterwards, the aircraft moves into the
departure queue (moveToQO, queueOut) and the runway (moveToD, TakeOff). The
modelled queues serve to keep aircraft waiting until a taxiway or a gate or a parking
area is available. The elements arrivals and depts are linked to a local database that
contains data on every aircraft from the FIS and the service requirements for each
flight. The service requirements are assigned to every aircraft at the moment of its
generation/entry in the model according to the ideal heuristic requirements (i.e. the
requirements are based only on flight data and do not take into account the avail-
ability of workers). The service requirements are subsequently passed as messages
from an aircraft to the relevant ground crew work groups, which then add the
service request to their internal queue. Message passing is an ABM specific feature,
however as AnyLogic models all DES entities as agents, the addition of this feature
to the DES aircraft traffic model was straightforward.

4.2 Ground Crew Work Group Model

In DES models, services/stations are often modelled as static resources that
entities/transactions (e.g. products, patients) travel through on a fixed path, in a
predefined sequence, and an entity cannot be serviced by multiple stations. While it
is possible to model the ground services processes using a classical DES model, the
required abstraction would in our opinion make the model less comprehensible and
rigid in comparison to the actual processes. ABM however allows us to model the
entities and processes in a way that is closer to reality, i.e. the ground service work
groups have the role of service stations, however they travel to the aircraft and not
vice versa; the sequence of services depends on the availability of service work
groups, and the place of an aircraft within a service work groups’ internal queue;
and perhaps most important, an aircraft can be serviced by several work groups
simultaneously.

We have modelled the work groups performing tasks as agents. All work group
agents have an internal state chart model of their task process, shown in Fig. 9. The
starting point is the state Waiting, where the agent waits for a message from an
arriving or departing aircraft requesting services from this work group and speci-
fying service requirements (number of workers, start time, end time). These
requests are added to the internal queue (an array data structure). Currently, the
requests are processed according to the FIFO rule, but the implementation of pri-
ority based service, e.g. according to available number of workers or available
equipment could be easily implemented. If there is at least one request in the queue,
the work group agent proceeds to the relevant aircraft at the specified service start
time, and performs the service (modelled as a delay) for the required length of time.
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After the servicing is complete, the work group agent passes a ServiceComplete
message to the aircraft and either proceeds to the next aircraft in its internal queue
or returns to the waiting area.

4.3 Model Operation

The start, end and work requirements of tasks are determined by the aircraft to be
serviced by the ground crew (i.e. ideal heuristic requirements), while the availability
of workers is determined by the workforce requirements timeline generated and
optimized by the heuristic algorithm (version 2 of the algorithm). By combining the
timeline of optimized workforce numbers and ideal requirements of a flight, we can
verify the effects of a generated workforce requirements timeline in practice and
foresee the potential flight delay costs.

Flight schedule from the FIS is used to generate arrivals and departures at the
airport. Using the first version (ideal requirements) of heuristics, each aircraft is
assigned the values of service parameters on entry in the model.

Workforce requirements generated by the heuristic method described in previous
section are used to vary the availability of workers during the simulation run.
Workers are modelled as resources and divided into work groups. Each work group
performs only one type of tasks. A work group is then modelled as an agent. The
duration of a simulation run for a month of simulated time is approximately 20 s on
a Windows 10 computer with an Intel i5-4200 M CPU and 8 GB of RAM.

Fig. 9 State chart of the
agent based model of a
ground crew group
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At the start of a simulation run, data on the flight schedules and availability of
workers is transferred into the model. The ideal (i.e. calculated separately for each
flight) workforce requirements are calculated. Flight delays appear in a simulation
run since the availability of workers in the model is subject to the schedule and
occupancy of workers with other tasks. Therefore, the discrepancy between ideal
and modelled workforce requirements exists. The discrepancy results in a prolon-
gation of a task execution, leading to flight delays. Delays are only possible for
departures, and are measured by comparing the scheduled departure time as
recorded in the FIS, and the actual departure time as recorded by the simulation
model. The delays are however exaggerated because the start of a task is delayed
unless all required workers are available and the start times of tasks are not opti-
mised. Further development of the model will include the execution of tasks with a
reduced number of workers and longer execution time and the execution of tasks at
earliest opportunity (i.e. time shifting of tasks) and should model flight delays more
accurately.

5 Results and Discussion

The first version of the algorithm produced a workforce requirements timeline with
pronounced peaks, but with ideal numbers of workers available at every minute of
the day to perform the flight dependent tasks. On the other hand, the second version
of the algorithm produced a workforce requirements timeline with less peaks, but
with a higher chance of flight delays and human errors during peak time.

While the end user is satisfied with the current solution, as it produces schedules
in a fraction of the time required for manual schedule development (minutes vs.
hours), and the schedules are better than manually produced schedules at least
during off-peak times, there is still potential for optimization during peak-time.

In order to achieve optimal workforce deployment, we would need to minimize
the criteria of personnel costs and aircraft delay costs. Next step is the development
of a simulation model based optimization solution, which would find the optimum
between the ideal numbers of workers and the smoothed workforce requirements.

5.1 Further Optimization Possibilities

Personnel costs grow linearly with the number of workers present in work groups
and can be estimated as the number of work hours’ multiplied by average hourly
costs. Delay costs however are not linear: here we experience diminishing returns
with the increase of number of workers. The behaviour and the nature of the
variables here closely resembles the U-curve optimisation problem, which is
common in product development and inventory management [45]. According to
[45] the linear component represents the rising cost of services (e.g. number of
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workers) or carrying/holding costs, and the non-linear component, which can be
approximated as a negative exponential curve, represents delay costs or
ordering/release costs. An example of a U-curve optimisation problem in aviation is
described in [46].

Figure 10 illustrates the U-curve optimisation problem in the case of personnel
and flight delay costs. The goal of optimization is to minimize the sum of both types
of costs. The optimization problem in our case is complicated by the fact that there
are several work groups to be optimized, and that the workload changes over time.

The criteria function (Eq. 2) in our case has two main variables: the personnel
costs (p) for the simulation period (t), and the costs of flight delays (d) per simu-
lation period. The objective is to minimize the criteria function

F = ∑
p

i=1
pi + di ð2Þ

The costs of personnel (p) depend on the number of workers (w) and costs (c) of
worker per shift period in skill groups (g) as presented in Eq. 3.

p= ∑
t

i=1
ðwi*ciÞ*gi ð3Þ

The costs of flight delays depend on flight schedules and available number of
workers in various skill groups.

Workforce scheduling and shift rules at the airport prescribe that:

1. workers are assigned to work groups,
2. a work group is created at the start of a shift, and disbanded at the end of a shift,
3. all workers in a work group start and end their shifts at the same time,

op mal 
workforce 
requirements 

workers per group 

co
st

s 

delay costs 

personnel costs 

sum of costs 

Fig. 10 U-curve optimisation problem of personnel and flight delay costs (source own)
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4. a work group performs only one type of task (skill) per shift (e.g. luggage
handling), temporary task reassignments are not part of shifts,

5. shifts start and end on the hour or half-hour.

In accordance with these rules, we can optimize the workforce requirements, i.e.
the number of workers, using these limitations:

• Time resolution of optimization: optimization can be performed for half-hourly
periods;

• Workforce groups: optimization can be performed per work group, i.e. per type
of task.

With 48 time periods per day, and 29 work groups, there are theoretically 1392
values to be optimized per day. The difference of workforce requirements between
ideal heuristic requirements and smoothed heuristic requirements is up to 4
workers, therefore there are 5 different possible optimal values. Theoretically, there
are 29 × 5 scenarios to be tested per each hour, or 29 × 5× 48 = 6960 scenarios
per day to be tested in order to find the optimal workforce numbers.

However, there are several factors that reduce our optimization problem:

• Out of 29 skill groups, only 7 skill groups from all three service departments can
require more than 1 person per shift: Load balancer, Baggage handler, Cleaner,
Baggage sorter type A, Baggage sorter type B, Gate stewardess, and the “Follow
me” car driver,

• There is a limit on the number of workers available per work group,
• The difference of workforce requirements between heuristic and smoothed

versions is usually only 1 or 2 workers (heuristic results will be used as the
upper bound of the optimization),

• Differences in workforce requirements between heuristic and smoothed versions
appear only in peak hours, i.e. in up to approximately 10 h per day for all work
groups together,

• There is sufficient time from aircraft arrival to departure to perform all arrival
related tasks, therefore additional workforce requirements optimization (apart
from smoothing) is not necessary. Optimization can be done for departures tasks
only.

Due to these alleviating factors, we only have to generate up to approximately
7 × 3× 20 = 420 scenarios, i.e. half hour long simulation runs per day. With a
half hour simulation run duration of 1 s, a day’s workforce requirements could be
optimized in less than 7 min. AnyLogic can perform optimization of a set of
parameters using a user defined criteria function. Part of the optimization procedure
could therefore be automated using the built-in AnyLogic optimizer, removing the
need to manually prepare and execute the simulation runs.
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6 Conclusions

International airports are complex systems that require efficient operation and
coordination of all their departments. Therefore, suitable personnel and equipment
scheduling solutions are vital for efficient operation of an airport as a system.

Based on the experiences from the presented ground crew optimization project,
we can conclude that the problems of airport ground crew scheduling are more
demanding than general machine or order scheduling problems found in literature
and encountered in our previous projects, even at smaller international airports.
Mathematical scheduling models were not applicable in described projects, there-
fore customized heuristic algorithms were to be developed.

Our work in this project has so far resulted in two versions of heuristic
work-force requirements scheduling algorithms, a shift construction algorithm, and
a simulation model of airport operations used for verification and future opti-
mization of workforce requirements, which combines DES and ABM. The algo-
rithm for generation of floating shifts and assignment of individuals to shifts is
described in [34]. The shifts are generated according to the generated workforce
requirements and demands about shift length.

The heuristic work-force requirements scheduling algorithms and the shift
construction algorithm are currently implemented in a software package that is
undergoing testing at the client. While the manual scheduling takes several hours,
the automated scheduling can be completed within minutes, allowing dynamic
rescheduling in case of changes in flight schedules. The presented schedule gen-
eration and optimization solution is flexible and adaptable to other similar sized
airports.

Our future work on the project will involve model-based optimization of
workforce requirements as outlined in the previous section and the adaptation of the
entire scheduling solution to the airport’s development of infrastructure. Whereas
competitiveness is definitely the main reason for the optimization of airport oper-
ations, sustainability issues also need to be considered. Efficient airport ground
operations are one of the key aspects towards sustainable air transportation [36].
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Optimization of Take-Off Runway
Sequences for Airports Under
a CDM Framework

Roland Deroo and Alexandre Gama

Abstract With the regular growth of air traffic, airports are becoming the most
critical part of the aircraft path. Improving ground operations to absorb the delays
generated is becoming a necessity. This chapter presents a new departure
sequencing algorithm based on operation research methods in the context of the
CDM implementation over the European airports. This algorithm is described and
results and benefits are demonstrated using data from Paris Charles de Gaulle
airport. The performance of the algorithm is also investigated using a fast-time
simulation tool.

1 Introduction

As nodes of the air transportation network, airports are (and will always be) cru-
cially impacted by the growth of air traffic [1]. Over the last few years, important
efforts have been made in order to improve operations and increase the overall
capacity of the system. One of these major projects is the Collaborative Decision
Making program (CDM) initiated about ten years ago by EUROCONTROL [2], the
European network manager. The main idea of this program is to get airport
stakeholders to work together in an efficient and transparent way and in particular to
share data in order to provide the network manager with the most reliable infor-
mation concerning the incoming traffic as early as possible.

The technical core of the CDM implementation on an airport is the conception of
a Pre-Departure Sequencer (PDS) whose role is to compile all the information
coming from the different stakeholders in order to calculate for each departing flight
a Target Start-up Approval Time (TSAT) which is supposedly its optimum
off-block time (being the time when an aircraft leaves it stand to reach the runway).
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The CDM implementation at Paris Charles de Gaulle airport (CDG) is used as a
case study in this paper to compare potential benefits of various PDS algorithms.

The goal of this chapter is to present a new method for the sequence calculation
based on research operation methods. By using more input parameters and more
powerful algorithms to deal with the increased complexity of the calculations, it is
possible to compute a more accurate departure sequence. The quality of the
information that is sent to the network manager is therefore improved and the
overall operational capacity can be increased.

This paper will be divided into five main parts. In the first part, the overall
context is explained and related papers are discussed. The second part aims at
describing the basic inputs of a departure sequencer. The third part presents the core
of the proposed new algorithm and additional features are investigated in the fourth
part. Finally results are shown in the fifth part.

2 Context and Literature Review

2.1 A-CDM Concept

Initiated by EUROCONTROL in the 2000s, the CDM program implementation
process is described in [3]. The main steps can be summarised in five main actions
that have to be achieved (cf. Fig. 1).

The expected benefits of the CDM program are various and affect all the airport
stakeholders. For instance, airlines can expect a reduction of the fuel consumption
of their aircraft due to reduced runway waiting times and this directly translates to
decreased operating costs for them. This reduction also leads to environmental
benefits for the airport operator thanks to reduced pollutants emissions. Meanwhile,
EUROCONTROL can expect a better prevision of the oncoming traffic as take-off
times are more accurate. Capacity buffers in the airspace can thus be reduced and
the overall operational capacity of the network is improved.

This paper focuses on the step 3 and 4 of the implementation process which
concern the technical part of the overall CDM process.

2.2 Operation Research Techniques for Departure
Sequencing

The scheduling/sequencing problem is a well-documented topic in the operation
research area as can be seen in [4, 5] or [6]. There are various methods from the
operation research field that can be used for the specific airport sequencing problem.
Some of them have already been described in several papers and a rather exhaustive
summary can be found in [7]. In [8–11] the sequencing problem is addressed but a
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rather different approach is used as the sequencer is designed as a decision aid tool
for the air traffic controllers and not as an overall ground operation optimization
tool. A different method is used in [12, 13]. The problem is modelled by a constraint
satisfaction program, focusing more on the terminal manoeuvring area, as the
sequence is calculated based on the available runways on the airport and the
standard departure routes used. Results showed capacity improvement but some
work remained to be made in order to improve the calculation time for an important
airport such as CDG. In [14, 15], operation research methods are used to treat a
more global problem that includes departure, arrival and conflicts avoidance during
taxiing phases. Another interesting approach is described in [16, 17] where a
Constrained Position Shifting (CPS) approach for scheduling is used to indicate
how much an aircraft may be moved from an initial position in the sequence.

Also the constraints are not the same as with the departure case, the arrival
scheduling problem is also showing some similarities. Operations research tech-
niques and more specifically heuristic algorithms are widely used as well to solve
this problem. In [18], a population heuristic algorithm is applied to solve the problem

Information 
sharing

•This is the first step and probably most important part of the
process. Partners (air navigation service, airport operator, airlines)
must share their available information, so all of them have a
complete and accurate view of what is happening on the airport.

Milestone 
apporach

•In order to monitor an aircraft during its inbound, turn-round and
outbound phases, it is necessary to define different milestones that
can easily and quickly provide the current state of that aircraft
(final approach, landing, in-block, off-block…).

Taxi time 
table

•This table is the main key that links the off-block time and the take-
off time of an aircraft. The more accurate it is, the more accurate is
the information sent to the network manager.

Pre
Departure 
Sequencer

•The PDS is the operational core of the CDM. It gathers all the
information and provides the stakeholders with a TSAT for each
departing flight.

Adverse 
conditions 

management

•The last step is the management of adverse conditions, such as bad
meteorological conditions. The aim is to deal efficiently with
capacity reduction.

Fig. 1 CDM implementation process
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in London airspace. In [19, 20], heuristic algorithms are developed and compared to
an optimal algorithm regarding computational times and quality of the outputs.

Although a specific sequencing algorithm is proposed in this chapter, the focus is
here more on the operational aspects, and especially the integration of the algorithm
within the existing concepts developed under the CDM framework.

3 Methodology and Approach

The present paper focuses on a very specific problem, which is the departure
sequencing issue. A departure sequence consists of a set of aircraft which are
ordered in a certain manner. Although it is possible to handle the departure
sequencing using simple methods such as First-In First-Out or First-Scheduled
First-Served at the runway, the created sequences are usually not optimal from the
runway capacity usage point of view. It is therefore better for the performance of
the system to optimize the sequencing phase: depending on a set of parameters, the
goal is to calculate the best take-off sequence regarding a specific objective in a
short amount of time, and then infer the corresponding off-block times.

The methodology used to solve this problem follows a logical path. The first step
is to select all the relevant parameters that will be used for the calculation. This step
is important as the set of parameters will define both the quality of the output
sequence and the time it takes to perform the calculation.

The next step is the development of the algorithm itself. The tool that has been
developed is a heuristic algorithm, with an initialization phase that calculates a first
sequence, and an optimization phase where the initial sequence is modified to reach a
better one based on an objective function. This structure meets the two aforemen-
tioned requirements. Once the initial sequence is defined, new sequences are created
with small modifications (by switching two aircraft in the sequence at a time) of the
current reference sequence. When a better sequence is found (based on the objective
function), it becomes the new reference, and the process starts over. The tool will
keep looking for better sequences until the time limit is reached. Because the initial
sequence is the one that is built with the current PDS algorithm, the final sequence is
at least as good as the one that is used in the actual operations presently.

To evaluate the performance of the tool, two different approaches are considered.
The first one, which is fast and easy to deploy is to perform tests on static data
samples. The idea here is to freeze the time at a certain point, and to compare the
sequence created by the current PDS algorithm, and the sequence created by the
new algorithm at this specific time using the overall delay (which is defined as the
sum of all individual delays). Such a comparison is possible, because the data
available at any time are the same in both cases. This evaluation approach is
implemented in part 7.

The second evaluation approach is to use a simulation tool, to replicate real life,
and therefore make a dynamic comparison which is mandatory to truly evaluate the
performance of the algorithm as real-life operations on an airport present a lot of
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contingencies to which adaptation are required. This testing phase using an airside
simulation tool is presented in part 8.

3.1 Inputs and Constraints

As core of the system, the PDS gathers all the information from the different
stakeholders in order to compile them and provide the desired TSATs. These inputs
are described in the following paragraphs, sorted by stakeholder.

3.1.1 Airline Parameters

Airlines and their ground assistants provide the departure time of the aircraft. Two
pieces of information are available:

• Scheduled Off-Block Time (SOBT): This is the time written on the passengers
tickets. This information is known in advance.

• Target Off-Block Time (TOBT): This is an updated off-block time provided by
the airline. If the airline does not modify the departure time, then the TOBT
matches the SOBT.

3.1.2 Network Manager Parameters

The Network Manager Operations Center (NMOC) is the network manager’s unit.
Its main mission regarding our problem is to determine and allocate take-off slots to
regulate the traffic in the airspace. As an example, if the expected arrival time in an
airspace block (an airspace of defined dimensions in space and time within which
air navigation services are provided) of an aircraft leads to a demand greater than
the block’s capacity, the system will delay the aircraft so it arrives later, when the
demand is lower. This traffic management method is implemented through the
Calculated Take Off Time (CTOT) allocation. A CTOT is an important time
constraint as the effective take-off has to occur between [CTOT – 5 min] and
[CTOT + 10 min].

3.1.3 Airport Operator Parameters

The airport operator provides the taxi time table. This table which contains the
estimated taxi times links all the airport stands to the departure runways entries, and
thus allows the calculation of the TSAT from the take-off time.
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3.1.4 ATC Parameters

These are the parameters that are set by the ATC (air traffic control) concerning the
usage of the airport. There are three values:

• Runway capacity: the ATC set the maximum number of take-off within one
hour. This parameter might be different for each runway of the same airport.

• Runway pressure: this parameter defines the maximum amount of queuing
allowed at the runway entry. It can be set as a waiting time, or as a number of
waiting aircraft.

• Runway configuration: depending mostly on the wind, the ATC specifies the
runways in use. It will affect which taxi time values from the taxi time table are
used.

All these inputs and their providers are summarized in Fig. 2 Summary of the
PDS parameters and their providers. These parameters are the only ones needed for
a simple departure sequencer fulfilling the basic CDM PDS requirements. The
following set of constraints describes the job of such a PDS. They must be fulfilled
by each flight.

TSAT ≥ SOBT ð1Þ

TSAT ≥ TOBT ð2Þ

TTOT ≥CTOT − 5′ ð3Þ

TTOT ≤CTOT +10′ ð4Þ

TTOT = TSAT +EXOT +ERWT ð5Þ

ERWT ≤RWY PRESSURE ð6Þ

Fig. 2 Summary of the PDS
parameters and their providers
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where:

• EXOT is the Estimated Taxi Out Time. This is the value taken from the taxi time
table between the stand and the runway.

• ERWT is the Estimated Runway Waiting Time. This is the calculated queuing
time at the runway.

• TTOT is the Target Take-Off Time.

Equations (1) and (2) ensure that the off-block time is set after the aircraft is
ready. Equations (3) and (4) are here to make sure the aircraft takes off within the
NMOC slot. Equation (5) links the runway schedule and the off-block schedule.
Finally, (6) limits the runway waiting time at its maximum value, the runway
pressure. The capacity parameter which does not appear directly in those equations
defines the maximum of take-off slots that can be allocated in an hour in respect of
the aforementioned equations.

Although these basic inputs and constraints might define a departure sequencer,
it is possible to improve and optimize the calculated sequence by using operation
research methods, additional parameters and objective functions.

3.2 Heuristic Algorithm

This part will present a sequencing algorithm which aims at maximizing the runway
capacity by optimizing the overall sequence and more specifically the relative
position of the aircraft within the sequence. This sequencer consists of three dif-
ferent parts, each of them having its own function:

• An initialization phase
• A heuristic algorithm that improves the initial sequence
• Several additional modules to add flexibility.

3.2.1 Initialization Phase

In order to initiate the optimization phase, it is important to build a feasible first
sequence. Basic requirement of a pre-departure sequencer can be found in [21]. If
the initial sequence can already be considered as “good” according to an objective
function, then the optimization phase can be run faster and may offer better results.
This initial sequence is computed in the following way:

(1) Take-off slots: the capacity parameter provided by the ATC is used. An hour is
divided in as many take-off slots as the capacity value. As an example, if the
capacity is set to 30 departures per hour, there is then 1 slot every 2 min. The
departure sequencer’s task is to allocate these slots to the departing flights.
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(2) Aircraft sorting: in order to allocate efficiently each aircraft to one runway slot,
the aircraft have to be sorted by order of priority. Thus, if several aircraft are
able to use the same departure slot, the latter will be allocated to the highest
aircraft in the priority list which is based on the SOBT.

(3) Available slots computing: once the slots are defined and the aircraft sorted, the
next step is to calculate for each aircraft its earliest take-off time. This deter-
mines for each flight the first available runway slot. This value is calculated as
the maximum value between the potential CTOT and the sum of the TOBT (or
SOBT) and the EXOT.

(4) Slots allocation: the next step is to allocate one runway slot to each flight.
Based on their first available slot and priority order, the departure sequencer is
able to provide a TTOT (Target Take-Off Time) to each aircraft.

(5) TSAT calculation: once the TTOTs are defined, the TSATs are calculated based
on the taxi time table and the runway pressure value. Providing the TSATs to
all the stakeholders is the final step of the departure sequencer.

The different phases of this initialization phase are summarized in the
Algorithm 1.

Algorithm 1 PDS Initialization
Input: SOBT, TOBT, CTOT

Capacity, Pressure, Configuration

1: define runway slots

2: sort aircraft by priority

3: for each flight, calculate earliest take-off time

4: for each flight, calculate TTOT

5: for each flight, calculate TSAT

Output: Initial off-block sequence

3.2.2 Optimization Phase

After the computation of the initial sequence, the next step is to optimize it using a
dedicated algorithm. Details regarding this optimization phase are presented in this
paragraph.
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3.2.3 Wake Vortex Separation

Once the initial departure sequence has been computed during the first phase, a new
parameter is included in order to have a more accurate sequence. In the present
algorithm, this parameter is the true wake vortex separation between two successive
take-offs.

The capacity parameter provided by the ATC is an aggregation of the different
separation between the departures. It has to be evaluated by the controllers
depending on the traffic. If the traffic diversity (in terms of aircraft wake vortex
categories) is important, the capacity might be reduced as the average separation
increases. However, for a given set of flights, the actual runway throughput may
vary significantly depending on the order in which the aircraft take-off. Lowering
the capacity settings according to the average separation does therefore not ensure
that the runway throughput will always match the demand for departures.

Figure 3 shows different sequences for the same three aircraft (a medium, a light
and a heavy). In the depicted scenario, the “First Come First Served” sequence is
not the optimal one. This example shows that in some cases, delaying one flight by
reorganizing the sequence allows increasing the overall capacity.

The main objective of this optimization phase is to test modifications of the order
in which the aircraft are within the departure sequence and look for improvements
of the departure time of the last sequenced aircraft.

Using the true separation time between two departures instead of a mean value
(the ATC capacity) can be considered as a real time capacity adaptation.

Fig. 3 Possible sequences for three departing aircraft taking into account the wake vortex
separation
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3.2.4 Objective Function

In order to evaluate the quality of the sequences explored during the optimization
phase, an objective function must be defined. In our algorithm, we developed two
objectives functions:

• Improving the overall capacity: this objective can be seen as minimizing the
departure time of the last aircraft.

• Reducing the overall off-block delay: this objective is to minimize the sum of
the difference between the TOBT and the TSAT (see Eq. (7)).

min∑
f
ðTSAT fð Þ−TOBTðf Þ ∀ flights f in the sequence ð7Þ

In order to evaluate the performance of a sequence, these two objectives are used
and both aspects are tested as the different stakeholders might consider differently
the quality and the performance of a sequence. Therefore, a new sequence is
considered as better when either:

• the departure time of the last aircraft is improved and the overall off-block delay
is not increased;

• the overall off-block delay is improved and the departure time of the last aircraft
is not deteriorated.

3.2.5 Algorithm Requirements

The departure sequencer algorithm must be kept simple in order to allow a fast
enough calculation as a time constraint is imposed by the system itself. In CDG
airport, a new sequence is calculated every 30 s. This time includes all the different
steps (reception of the new inputs, calculation process, and communication of the
new sequence to the network manager and to the stakeholders via the CDM@CDG
communication channels). It means that the calculation of the sequence itself has to
be done in a few seconds to make sure the all process is done within the 30 s time
frame.

Because of the complexity of the problem and the technological limitations of
the available hardware, it is currently impossible to calculate the best sequence
within the desired time-frame. The problem is therefore to seek for a better
sequence in a limited amount of time. The method used in the algorithm proposed
in this paper is a local search and it has been chosen for two main reasons:

• The calculation of new sequences fits the time constraints. The computation of
the neighboring sequences and the evaluation of their performance are done in a
short amount of time which allows exploring a very large number of sequences
within the time-frame.
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• The objective is not to find the optimal sequence, but to search for a good
sequence in a short time interval. Therefore, local optimization is a good match
as it has proved quite successful for combinatorial optimization problems [22].

3.2.6 Neighborhood Structure

The local search algorithm needs a neighborhood structure to create the new
sequences to explore from the initial one. In order to keep a fast-time calculation, a
unique and simple structure is used. This is a switch structure, where new sequences
are obtained by switching two successive aircraft in the sequence. A sequence of n
aircraft has therefore a neighborhood consisting of n-1 sequences (see Fig. 4).

The method used for the neighborhood exploration is a best improve search. It
means that all the sequences are tested, according to the two objective described
previously and the best is kept.

3.2.7 Sequence Feasibility

For each sequence its feasibility is also tested, in particular regarding to the CTOT
(if applicable). Indeed, a CTOT given by the network manager has a small tolerance
interval (−5 min; +10 min) and also has a high delay penalty when it is not
complied with. This means that all the aircraft for which a CTOT has been issued
have to take-off as much as possible within that time interval. Therefore, when a
neighboring sequence is computed, a test is made to ensure that all the aircraft with
a CTOT have a runway slot within the interval.

Fig. 4 Neighborhood
structure used in the local
search
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3.2.8 TSAT

Once the available time for calculation is elapsed, the current best sequence is
retained and the TSATs are calculated based on the TTOTs from that sequence and
the EXOTs provided by the taxi time table.

The entire process of the sequence calculation is summarized on the
Algorithm 2.

Algorithm 2 Sequence calculation (for n aircraft)
Input: SOBT, TOBT, CTOT

Capacity, Pressure, Configuration
Aircraft Type, Wake vortex separation
Neighbourhood structure, objective function

1: t = current_time
2: Compute initial sequence
(see Alg. 1)

3: Add wake vortex separation
current_sequence = initial_sequence
current_quality = f(current_sequence)

4: while current_time < t + 10s
Create n-1 neighbouring sequences
n_sequence1, n_sequence2, ...
for i from 1 to n-1

if f(n_sequencei) > current_quality and sequence_feasibility = true
then current_sequence = n_sequencei

current_quality = f(n_sequencei)
i=i+1

else i=i+1
endif

endfor
endwhile

5: for each flight, calculate TSAT

Output: Off-block sequence
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4 Additional Features

In order to deal with the other objectives of the CDM implementation on an airport,
additional modules have been investigated concerning two main fields:

• Adverse conditions and more specifically deicing operations during winter
• Taxi time and therefore environmental impact reduction

Both items will be discussed in this part, focusing more on the changes and the
complexity added to the departure sequencer.

4.1 Deicing Operations

Dealing with adverse conditions and especially deicing operations is one of the five
steps to achieve in the CDM program implementation on an airport as said in the
first part of this paper. Deicing operations are particularly problematic for the
sequencing phase for the two following reasons:

• The taxi time is modified if the aircraft is deiced on a deicing pad. It means that
in order to create an accurate runway sequence, taxi times from the stands to the
pads and from the pads to the runway must be well estimated as well as the
deicing phase in itself, depending on the meteorological conditions, the aircraft
type and the pilot needs.

• The TOBT is modified if the aircraft is deiced on its stand. The deicing time also
has to be well estimated in order to predict an accurate runway sequence.

Moreover, depending on the weather conditions, all aircraft might not have to
deice before taking-off, and may use different types of deicing facilities (deicing on
stand, or remote deicing on a specific area of the airport). The authors propose the
following way to deal with this problem with two sequencers working together:

• A deicing sequencer: its job is to allocate a deicing slot (starting at the Estimated
Commencement of Deicing Time (ECZT) and ending at the Estimated End of
Deicing Time (EEZT)) and a deicing resource to the aircraft, and to modify its
Earliest Take-Off Time.

• The usual departure sequencer with the modified information from the deicing
sequencer that provides the TSAT.

With this method, the departure sequencer can work in the exact same way as in
normal conditions. A deicing tool is simply connected to update all the necessary
information. The main issues come from the accuracy of the information and its
predictability. As shown in [23], the deicing problem is complex, and is part of the
tactical phase (which means that decision are taken few minutes before take-off).
The objective in this paper is not to propose a complete integration of it in the
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departure sequencer but to highlight the complexity of that particular problem.
A diagram of the process is presented in Fig. 5.

4.2 Taxi Time Optimization

The objective function used in the algorithm and described previously aims at
increase the overall capacity and reduce the total delay of the departing aircraft. But
depending on the airport infrastructure and the environmental objectives, it might
be relevant to investigate the possibility to have the taxi time in the objective
function. This part concerns two different aspects:

• The optimization of the pressure parameter: this parameter described previously
is the maximum waiting time at the runway of an aircraft. This value has a great
importance. If it is set too low, there will not be enough queuing to ensure that
the runways always have a pool of aircraft ready to depart and departure slots
might therefore be wasted. If it is set too high, the waiting time might be too
long for no reason.

• The choice of the departure runway: this aspect concerns airports with at least
two departure runways in use simultaneously. Depending on the aircraft’s TMA
(Terminal Manoeuvring Area) exit point and the traffic load within the TMA,
aircraft can use both or one departure runway. An example is given in Fig. 6,
where some of the TMA exit points for the departures in CDG are shown. While
aircraft leaving towards the north should preferably use the north departure
runway to avoid crossings in the airspace, aircraft leaving for one of the three
exit points located east of the airport can use either the north or the south
departure runway. It is then possible to take into account the taxi time for the
two runways in the objective function, and try to minimize it.

Fig. 5 Diagram of the deicing sequencing process
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The taxi time optimization for a selection of eastern and western TMA exit point
has been implemented in a simple way for testing purposes on the CDG case. The
calculation is first made as described in the previous part. Once the calculation is
done, a test is made on all aircraft which leave the TMA from the east or the west
exit points: if the taxi time is improved by using the other runway and if changing
the departure runway does not deteriorate the other objectives, the runway is
switched. The last step is to ensure that a departure heading for the same exit point
is not leaving at the same time from the other departure runway. The process is
summarized in Fig. 7.

Switching runways only shows benefits during off-peak hours when slots
availability at the runway is high. But as in the case of the deicing, the objective is
again to highlight a new optimization horizon and not to provide a complete
integration in the main sequencing algorithm.

5 Results and Benefits

The main sequencer and the additional features have been fine tuned for the case of
Paris–Charles de Gaulle airport and were backtested using a sample of recorded
data. The CDM has been deployed at CDG in 2010 and this airport was one of the
first to get the label from EUROCONTROL. Its complex layout and traffic structure
make it a well indicated case study. Due to the specificities of the traffic structure of
CDG, various traffic samples had to be considered for the tests. Those traffic
samples can be classified in three main categories: low traffic samples, medium
traffic samples and high traffic samples.

Fig. 6 Scheme of the Paris TMA east and north exit points
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These samples also differ in terms of aircraft type diversity, especially among the
high traffic samples. This parameter is particularly critical because the more
important this diversity is, the more benefits will be obtained by reordering the
sequences to minimize the separations between successive aircraft will.

The algorithm was not tested in live operations (dynamically) but was tested
using recorded data. The TSATs were computed with the new algorithm based on
the information which was assumed to be available at the time at which the cor-
responding real world TSATs were calculated. These TSATs issued by the new
algorithm were then compared to the TSATs computed by the current PDS. The
indicator used to compare the results is the overall off-block delay (see Eq. (7)). The
number of take-off within one hour could unfortunately not be calculated because
the information (TTOT) was not available in the database used. Since the algorithm
was only tested in a static way using recorded data, there could be some differences
between the results shown below and the results which could be obtained after a
live experiment.

5.1 Low Traffic Samples

During departure off-peak hours, the new sequencing algorithm does not improve
the results already obtained by the current PDS concerning the overall delay.
Indeed, an important number of departure slots at the runway are not used because

Fig. 7 Diagram of the taxi-time optimization process
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the traffic is not high enough. Therefore, the modification of the sequence has no
impact. Neither of the two systems creates off-block delays.

However the taxi time optimization module does provide a significant
improvement over the current standard PDS. The numerous free departure slots
allow runway switching without creating any delay for the other aircraft.
Approximately 40% of the departing flights (data from 2009) leave the TMA from a
west or east exit point. Depending on their stand on the airport, a significant
proportion of these flights might be affected by a taxi time reduction. In every low
traffic sample, several flights experienced a runway modification which led to a taxi
time reduction ranging from 5 min (this value was set as the minimum value for
runway modification) to 15 min.

5.2 Medium Traffic Samples

These medium traffic samples relate to the situations where all the departure slots
are used, but the number of aircraft waiting at the runway is small. The sequence
modification will typically have a more important impact in these situations. With
the current PDS, two categories of off-block delay can be observed:

• Aircraft with a departure slot sent by the NMOC: the objective is here to have a
departure as close as possible from the CTOT.

• Aircraft without a CTOT: the objective is here to sequence the off-block time as
close as possible to the TOBT.

The results concerning the overall delays are here much more significant than for
the low traffic periods. By taking into account the true wake vortex separation
between two successive aircraft, the sequencer is able to reduce by 30–40% the
overall off-block delays on all the medium traffic test samples (see Fig. 8). The
average delay thus decreases from 94 to 56 s. Flights with a CTOT are much closer
to their slots and there is almost no delay for the flights without CTOTs.

Regarding the taxi time, no relevant results were found as the number of free
slots at both runways was close to zero. Therefore, any runway modification would
have created delay for the following aircraft.

5.3 High Traffic Samples

The samples are classified in the high traffic category when all slots at the runway
are used and the aircraft waiting time at the runway reaches the maximum value.
These samples have a high overall off-block delay and are the most critical periods
within the day. Most of the high traffic periods in CDG present a high diversity in
terms of aircraft type.
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The current PDS is able to sequence all the flights with an average off-block
delay of around 3 min per aircraft. The negative impact on a single flight is thus
relatively limited. But due to the important number of aircraft movements during
this departure peak, the overall off-block delay reaches 4–5 h. For an airline like Air
France, which represents around 50% of all flights, it represents a cumulative delay
of 2–3 h during a single departure peak.

The results of the heuristic algorithm are here again very promising; indeed the
average delay has been almost divided by three, from 3 min to 65 s. The average
overall delay on all samples decreases from 4h25 to 1h09 (see Fig. 9). The average
delay for the high traffic periods is thus brought by the heuristic algorithm to a delay
level similar to the one observed during medium traffic periods.

It is important to note that the traffic structure in CDG highlights particularly
well the added value of the heuristic algorithm. The diversity of the aircraft fleets
visiting this particular airport is important which means the true separation between
aircraft also has an important diversity. On another airport such as Lyon airport
where all aircraft are medium aircraft, the impact of the heuristic algorithm might be
less significant.

Fig. 8 Overall off-block
delay reduction for medium
traffic samples

Fig. 9 Overall off-block
delay reduction for high traffic
samples
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6 Dynamic Testing Using Simulation

In addition to the static test made on traffic sample described in the previous part,
the heuristic algorithm has also been tested using a simulation model. The tool used
for this experimentation was CAST Aircraft [24], which was chosen for its ability to
communicate with an external module using a specific interface. Using this inter-
face, it was therefore possible to control, monitor or feed the software with
dynamically modified data during a simulation run. A diagram of the process is
shown on Fig. 10. CAST outputs milestones regarding the flight status at each
time-step (the interval between two time steps being defined by the modeler):

• TSAT Locked: the current time in the simulation is too close from the TSAT
and therefore it cannot be changed.

• TSAT Unlocked: the TSAT can still be modified by the PDS.
• TAKE-OFF: the flight took off and is therefore out of the PDS range.

The communication is done using “Methods” on simulation objects. “Methods”
are commands that allow actions (display or modify values or milestones for
example) on a defined property. The main method used here is “SetTSAT” which
modifies the off-block time of an aircraft. With this architecture, the complexity of
the simulation model is kept as low as possible and all the heuristic part is done by
an external dedicated tool which could therefore offer optimized calculation.

The main drawback concerns the time required to perform the calculation inside
the PDS module, from the analyst point of view. As it has been designed for
real-time, it takes a few seconds to calculate all the new TSATs which fit the

Fig. 10 Scheme of the communication process between the external module and CAST
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Fig. 11 Lyon Saint-Exupéry airport layout
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requirements for a real-time process but it prevents the fast-time simulation tool to
run as fast as it could. A solution to this particular problem would be to optimize the
PDS code to allow faster calculation time and therefore meet the requirements for a
fast-time usage.

Although it would have been technically possible to test the PDS algorithm
using a model of Paris-CDG, the airport of Lyon Saint-Exupéry has been chosen for
the first feasibility test to evaluate the potential of the PDS in a dynamic envi-
ronment through simulation. Indeed, Lyon Saint-Exupéry airport has a simpler
layout than Paris-CDG, as well as a lower traffic. It leads to less complexity within
the simulation tool (simpler model due to the simpler layout) as well as within the
PDS (less traffic leads to less sequences to calculate). Lyon Saint-Exupéry airport is
still an interesting case as it is currently deploying the CDM concept and is
therefore adding an actual PDS to its systems. A chart of the airport layout is shown
on Fig. 11.

This first test was a great proof of concept and as such showed particularly
promising results. The communication between the simulation tool and the external
module done using Transmission Control Protocol (TCP) and a remote interface
developed specifically for CAST has been working seamlessly although the time
currently required to perform the sequencing phase within the external module
prevents the simulation software to run as fast as possible as was expected. As a
second phase, the current PDS algorithm behavior should be replicated in the
external module as well to allow comparisons with the heuristic tool using the
simulation software. A test on a bigger airport with more traffic diversity should
also be performed to emphasize the performance of the heuristic algorithm.

7 Conclusions

The heuristic algorithm presented in this paper has proved to be a high quality tool
to improve the overall operation on a platform such as Paris-Charles de Gaulle by
reducing the overall delay and increasing runway performance. The method used
fits well the time-frame constraint for the calculation and the results are very
promising.

The overall delay, as well as the average delay per aircraft can be significantly
reduced using this new sequencer. The additional features, especially the taxi time
optimization part have shown their possibilities to improve the initial algorithm
with multi-level optimization.

In a next phase, the sequencer has been tested using fast-time simulation to
evaluate its performance on a dynamic level using Lyon Saint-Exupéry airport
layout and traffic. This allowed testing on an unstable environment, and results
concerning the capacity benefits and fuel consumption reduction could be measured
using the results produced by the software. In order to go further, the current PDS
algorithm must be optimized to reduce the calculation time to allow testing on a
bigger airport with a higher traffic level.
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The diversity of the aircraft fleets visiting an airport is also important. On an
airport where the aircraft types show an important uniformity, the impact of the
heuristic algorithm might be less significant.

Further tests will have to be made to evaluate more deeply the algorithm and the
additional features on different airports with other traffic structures which were not
done yet due to expected speed performance.
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Simulation and Optimization Applied
to Power Flow in Hybrid Vehicles
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Abstract This chapter describes the application of optimization to power flow in

hybrid electric vehicles, first using a strategy based on bang-bang optimal control

and then comparing it with Pontryagin’s alternative. The first strategy, known as

the planetary gears system (PGS), focuses on satisfying the kinematic and dynamic

constraints of the gears system, starting from the allocation of the electric machine

power. The second uses Pontryagins minimum principle (PMP) to solve the energy

management problem and decide the amount of power that the electric machine

and combustion engine should provide. The approach of the PMP strategy entails

three basic elements, namely: first of all, getting the demanded power to be supple-

mented by the drive machines; secondly, maintaining the state of charge at a level

in and around a reference so as to avoid discharging and overloading the batteries

and thirdly, saving on fuel. By using the above considerations, a cost function is set

out that considers the power from both machines to be inputs. The simulations were

performed in Matlab’s Simulink using detailed models of the elements of a hybrid

diesel-electric city bus in parallel configuration. The demands are represented by

driving cycles while the combustion engine and electric machine are coupled using

a planetary gears system.
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1 Introduction

Because of our natural need to move around, humanity has developed different meth-

ods of transporting people, animals, foodstuffs, things, etc. Since their invention,

engine vehicles have been particularly popular among the majority of users, owing

to their versatility and wide range of applications. However, nowadays, large cities

have many transport-related problems, such as poor mobility, road congestion and

the deterioration of air quality, as well as the problems associated with the politics

surrounding fuels.

According to Schaefer and Victor [1], the demand for passenger transport and the

number of vehicles per inhabitant rises alongside in direct proportion to a societys

economic possibilities. In certain populations (such as Japan, Europe, the United

States, etc.), the density of car use was approximately 400–800 vehicles per 1000

inhabitants. Guzzella and Sciarretta [2] mention that up until 2007 countries such as

China (with 1,300 million inhabitants) or India (with 1,100 million inhabitants) had

a car density of around 30 vehicles per 1000 people; however, the trend was for car

density to increase.

The International Energy Agency (IEA) was created in 1974 mainly in response

to problems with fossil fuels [3]. It is principally responsible for organizing energy

policies to ensure oil supplies for its member countries. Who are seeking to avoid a

repetition of phenomena such as the silver cycle that brought about the ruin of the

city of Potosí, Bolivia [4], a place that was, in its day, a thriving city with the main

silver mine in the world but, like everything, this was not permanent. Thus, many

people are worried about oil being a non-renewable fuel and its imminent end, while

our need to move from one place to another is seemingly growing every day. Figure 1

illustrates some of the problems caused by our transport needs.

Electric vehicles (EV) are an alternative to counteract some of the problems men-

tioned above. For example, they lower the level of pollution in the city, as EVs use

electric power that has been produced elsewhere. However, such energy may not be

clean: in Mexico, only 18.3% of the energy produced is clean, as shown in Fig. 2 [5].

It is important to remember that electric vehicles need electric power produced by

Fig. 1 Transport problems
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Fig. 2 Electric power production in Mexico, 2013 (275, 522 GWh)

a power plant and only the power produced by hydroelectric plants, wind turbines,

solar power, etc. that are renewable do not generate emissions (as they do not con-

sume any type of fossil fuel) are considered to be clean energy. However, electric

vehicles have not been very successful for a variety of reasons of which the main

one might be the fact that the energy density of gasoline is much greater than the

electrochemical density that a battery can offer.

Electric drive vehicles have been around for a long time; for example, until the

end of the nineteenth century most of the first cars on the road were electric or steam

driven. Furthermore the first electric vehicles had the same problems as electric vehi-

cles have today. However, the internal combustion engine (ICE) vehicle grew in pop-

ularity because it could travel long distances, reached a high speed and was much

cheaper to buy.

At the start of the twentieth century thousands of hybrid and electric vehicles

were being designed and manufactured; in fact, they were the peoples choice. In

1900, 38% of the cars sold were electric and the rest were steam or gasoline powered;

just as a reference, more steam vehicles were sold than gasoline-powered ones [6].

Electric vehicles did not have the vibration, smell and noise of gasoline-powered

cars. Moreover, they did not need a crank to start them and there was no need for a

transmission or gear change. These were the main reasons of that the electric unit

was preferred to ICE vehicles. However, in 1904 Henry Ford overcame some of

the common objections to gasoline-powered cars (noise, vibrations and smells) and

thanks to assembly-line production was able to offer gasoline-powered vehicles at

very low prices.

In the car market, technological improvement is not only interested in the

design of (aerodynamic and convenience) bodywork or interiors. Owing to the

predominance of ICE vehicles, the transport technology that has more power density

(volume/power ratio), many research and development efforts are aimed at lowering
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emissions and increasing the ICE’s performance. However, despite so much interest

in the subject, between 1980 and the year 2000 ICE cars were the principal source of

urban pollution according to the U.S. Environmental Protection Agency (EPA) [7].

In Mexico, the body in charge of regulating the quantity of pollution emissions

produced by vehicles is the Ministry of the Environment and Natural Resources

(SEMARNAT), which establishes, in the NOM-076-SEMARNAT-2012 published

in the Federal Official Gazette in November 2012 the maximum permissible lev-

els for the emission of unburnt hydrocarbons, carbon monoxide and nitrogen oxides

from exhausts, as well as for hydrocarbons evaporative emissions from the fuel sys-

tem, for vehicles that use gasoline, liquefied petroleum gas, natural gas and other

alternative fuels projected for car use. Moreover, some of the principal cities of our

country, such as Guadalajara, Monterrey and Mexico City, among others, establish

traffic standards to try too solve problems such as road congestion and pollution

caused by cars. For example, the “hoy no circula program” (where one day a week

every car of a certain age has to stay off the roads).

In general, hybrid electric vehicles (HEV) are a suitable compromise between

fuel economy and autonomy. The purpose of the design of hybrid technologies is

to combine two or more energy sources in such a way as to get the best qualities of

each of them, while, at the same time, seeking to maximize the economic benefits

of hybrid systems against their manufacturing cost. To illustrate the advantages of

combining power in hybrid vehicles, in this chapter we are employing two power

sources: an internal combustion engine and an electric machine; in particular a diesel

ICE, the most efficient of its type, is used.

Hybrid electric vehicles offer some important advantages in comparison to con-

ventional vehicles (the ones only with internal combustion engines), despite having

additional components, greater complexity and costing more: hybridization can sig-

nificantly cut down on fuel consumption as well as helping to significantly reduce

the pollution emissions. Hodkinson and Fenton [8] mention that hybrid technology

could reduce fuel consumption by up to two thirds and emissions by a third in com-

parison to conventional vehicles. Some of the advantages of hybrid vehicles derive

from the fact that the total power is divided between the fuel power and electric

power: this fact poses interesting challenges from the point of view of control; which

some of them we aim to describe in this chapter. The main reason for this chapter is

to do with the problems generated by the large number of vehicles now in circula-

tion around the world, causing environmental pollution and very high levels of fuel

consumption. In the search for solutions, new alternative fuels have been developed

and important research is being carried out into finding ways to substantially lower

its consumption. This chapter focuses on the second point.

One of the problems detected in power flow distribution strategies is their sensi-

tivity to changes of driving cycle, for example, for the ECMS strategy, which opti-

mizes fuel consumption for a specific driving cycle and whose parameters change

drastically in another driving cycle.
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Another significant problem is the large number of calculations involved in

dynamic programming strategies that make it unviable for implementation in real

time. Therefore, they are generally used to compare the other strategies in simula-

tion.

In model predictive controls, the prediction horizons tend to be very small, so the

solutions are similar to those in a regulation problem and sometimes it is necessary

to add information about the road that requires other instruments, such as GPS in

the case of the A-ECMS strategy, to adapt the parameters of the strategy to the new

management profile.

We believe there are opportunities for improving the strategies the literature pro-

vides for power flow control in hybrid vehicles. We are mainly aiming to achieve a

simple and effective strategy for distributing the power in hybrid drive trains that can

be implemented online.

A further opportunity that we have taken from an analysis of the papers available

in the literature is that the vast majority do not assess them using detailed models of

the elements involved in the main function of the vehicle. If the ones that have the

biggest influence on the end result are used we will have fulfilled at least one of the

objectives of this chapter.

In view of the above, the purpose of this chapter is to use optimal control the-

ory to design a strategy for the power distribution in the hybrid drive train for un

hybrid electric vehicle in parallel configuration, on condition that the strategy can

be implemented in real time.

This chapter is divided into five sections as follows: in section two hybrid electric

vehicles and their configurations are described. In Sect. 3 the control of the internal

combustion engine and electric machines is described, Sect. 4 is about energy man-

agement in the hybrid drive train, and finally in Sect. 5 we present the simulations

obtained from coupling the models of each element for a hybrid electric vehicle.

2 Hybrid Electric Vehicles

A hybrid vehicle is one that combines two or more energy sources that can, directly or

indirectly, provide drive power. Ideally, each of the sources of drive works to improve

the efficiency and the performance of the rest of them and thus reduce the disadvan-

tages to a minimum. The hybrid electric vehicles in current use have a conventional

internal combustion engine and a battery-powered electric machine—bigger than the

DC starter motor-, and some have more than one electric machine.

The logic behind the use of two power sources is simple: for a conventional vehi-

cle, the combustion engine has more power than is needed for most driving situa-

tions. Only 20–40% of the power of the ICE is needed to maintain a cruising speed.

The rest is only needed for acceleration and to overcome loads, such as going up

a hill. These high-power engines use more fuel when they are asked to accelerate.

An electric motor does not consume fuel and can supply energy almost instantly.
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Hybrid electric vehicles typically use a smaller combustion engine and an electric

motor to provide the power needed for acceleration and to overcome loads.

Hybrid vehicles use much less fuel in the city than conventional ones. This is

because they do not have to provide all the power required for starting and stopping

in the traffic. The electric motors power supplements the power of the combustion

engine. There is also an improvement in fuel efficiency on the highway, owing to

the use of smaller and more efficient engines. In most cases, these advanced engines

cannot produce the power required for strong surges in acceleration without the help

of the electric motor.

Many countries have locomotives that are diesel-electric hybrids and in some

cities diesel-electric buses are used that can run on electric power provided by the

electric charge from high voltage cables, when they do not have fuel, or even when

they do not have a source of electric power, the drive is by means of the ICE.

Just some of the main advantages of HEVs in respect of conventional vehicles are

the fact that it is sometimes possible to get up to twice the efficiency, which in turn

lowers the pollution emissions, as mentioned by Zhao and Wang [9]; moreover, the

regenerative braking system offers the possibility of recuperating kinetic energy for

its later use, something that cannot be done in a conventional vehicle.

At the present time several car manufacturers are investing in these types of tech-

nologies, seeking to lower fuel consumption and, consequently, air pollution, while

a variety of types of hybrid vehicles have been created for different functions and

uses, with some very serious research going into the development of hybrid systems

that combine an internal combustion engine and an electric machine (EM) being the

hybrid systems as can be seen in Toyotas vehicle production since 1997 [10].

There are three main architectures for combining power in hybrid vehicles: series,

parallel and series-parallel. The main advantages have already been analyzed in dif-

ferent papers such as Tim et al. [11], Wirasingha et al. [12], Miller [13], Ehsani

et al. [14] and others are given below.

2.1 Configuration of Series HEV

The series configuration (see Fig. 3) was developed by adding a small combustion

engine-generator set to a pure electric vehicle, in order to offset the power discharge

in the batteries. In Fig. 3, ICE is the combustion engine; EG the generator; EM the

electric machine that in most cases operates as an engine for the drive, and Dif.,

which is the differential for sending the drive to the wheels. This configuration is

used in locomotives [15]. The first HEV with a combustion engine was designed

by Dr. Jacob Ferdinand Porsche in 1899 for the company Lohner in Austria [16].

The vehicle had a series configuration with electric motor on the front wheels, an

internal combustion engine and a generator that supplied the electricity to the motor.

It is worth mentioning that Porsche called it a vehicle with a mixed drive system.

The main advantages of the series configuration are: Mechanical decoupling of

the combustion engine from the drive wheels, which allows the combustion engine
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Fig. 3 Series configuration of HEV

to operate in its optimum region. The only source of torque for the drive wheels is

an electric motor that simplifies the speed control (similar to the accelerator pedal

control). The electric motors almost ideal torque-speed control renders a multi-gear

transmission unnecessary and avoids the mechanical components of axles, trans-

mission, gears, clutch, etc. Simple structure, drive control and easy handling (the

combustion engine—generator, batteries and the drive motor are only connected by

electric cables).

However, the series hybrid drive does have some disadvantages that are listed

below:

Dual energy conversion (from the combustion engines mechanical energy into

electrical energy through the generator and then into mechanical energy again

through the drive motor) that causes more energy losses Two electric machines (a

generator and motor) are required. A large electric engine is needed as it is the only

source of torque for the drive wheels.

Taking advantage of its structure and the simple control, the series hybrid drive

is used in heavy vehicles. The main reason is that large vehicles have enough space

for the voluminous engine and generator system.

2.2 Configuration of Parallel HEVs

In the parallel configuration for the hybrid drive system, the internal combustion

engine (ICE) and the electric machine (EM) can supply its torque directly to the

drive wheels through a mechanical coupling, as shown in Fig. 4, and this chapter has

been developed around this concept.

For the parallel configuration, the power flow from the ICE can go to drive only

or to drive in combination with the electric machine to recharge the batteries. The

power from the ME can go from the batteries to the drive axle in hybrid drive mode,

from the ICE to the batteries in hybrid battery recharge mode or from the drive axle

to the batteries in regenerative braking mode, when the ICE is freed by using a clutch

and brake to decouple it.
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Fig. 4 Parallel configuration of HEVs

The mechanical coupling could be a gearbox, a unit of belts and pulleys, a unit of

gears and chains, a planetary gear system (PGS), or even a single axle.

The advantages of the parallel hybrid drive are:

The combustion engine and the electric engine can directly provide the torque to

the drive wheels and the dual energy conversion is not produced, so there is less loss

of energy. It is more compact, does not need the generator and drive motor, a single

electric machine that can perform both functions.

However, it also has disadvantages such as:

The mechanical connection between the combustion engine and the drive wheels,

means that the engines operating points are not always in the optimum speed region.

The structure and control are more complex.

Owing to its compact characteristics, the parallel configuration is used more in

small vehicles, recently being used in the Honda Civic Hybrid 2013 [17], Volkswa-

gen Jetta Hybrid 2013, however, it also is employed in the Volvo 7700 Hybrid Bus,

being tested in Mexico City.

2.3 Series-Parallel HEV Configuration

This configuration decouples the speed of the combustion engine from the speed of

the wheels. It combines the advantages of the series and parallel drives, shown in

Fig. 5, however, it needs an additional electric machine (two electric machines EM1

and EM2) and a planetary unit that is the mechanical coupling in Fig. 5, which makes

the control of the drive more complicated. Another alternative series-parallel drive

is an electric machine with a floating stator (called a transmotor). In this configu-

ration, the stator is connected to the combustion engine and the rotor is connected

to the drivetrain of the wheels by means of gears. The motor speed and the relative

speed between the stator and the rotor can be controlled to adjust the speed of the

combustion engine to any given vehicle speed. This drive has similar operational

characteristics to those of a planetary gear drive.
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Fig. 5 Series-parallel HEV configuration

The combustion engine, the planetary gear unit and the electric machine consti-

tute the power flow paths. When the electric machine speed is negative (opposite

direction to the torque), the machine operates in generator mode. The power of the

combustion engine is divided into two parts: one is transferred to the power train

and the other to the generator. When the speed of the electric machine is positive,

the machine operates in motor mode and adds its power to the drive wheels. This

way, the engine speed can be adjusted to its optimum region by means of the electric

machines speed control.

The engine generator can be removed from the drive, blocking the engine gen-

erators stator and rotor and de-energizing it. This way, the planetary gear unit is

converted into a simple gearbox with a fixed gear ratio. Another source of power

(torque) is the drive motor EM2 (Fig. 5) that directly adds torque to the wheels [14].

In Mexico the Toyota Prius 2014 is now being marketed with this configuration.

2.4 Power Distribution in HEV

Different categories of strategies for power distribution in hybrid electric vehicles

have been identified: in the first place, rule-based strategies [18], that may use heuris-

tic, fuzzy logic, neural networks, etc. Another category uses the optimal control the-

ory, where a cost function based on the fuel consumption is minimized. Of these, the

dynamic programming (PD) approach, which is generally used for comparing how

the strategies perform particularly, stands out. There are strategies that minimize

a cost function and that include, apart from fuel consumption, the consumption of

electric power.

Since Delprat et al. [19] the aim has been to minimize fuel consumption in hybrid

vehicles by power distribution for at least one particular driving cycle, using heuris-

tic methods. Tzeng et al. [20] apply a fuzzy control to a parallel hybrid vehicle with

a continuous variable transmission (CVT) of belts and pulleys, the speed/torque

ratio is selected for the combustion engine and electric engine by means of servo
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engines. Xiong et al. [21] propose a fuzzy control for the energy management, for an

application in a city bus with a diesel combustion engine that also uses an integrated

starter generator (ISG) and another electric machine (ME) to get the series-parallel

configuration that operates according to the driving conditions and the needs of the

driver.

The size of the components including the ICE, ME, batteries and gear ratio was

chosen to meet the demands of the driver. The types of strategies mentioned are

still being employed in papers such as [22] where they have an application in an

excavator.

Johannesson and Egardt [23] present a power distribution by dynamic program-

ming for a hybrid vehicle of parallel configuration, where simple models are

employed for the elements of the vehicle, such as the ICE, battery and electric motor.

Using the simplified models of the subsystems that make up the vehicle, they seek

to shorten the computational time for the solution as well as for the performance of

the iterations.

Koot et al. [24] compare two dynamic programming and quadratic programming

strategies that minimize a function of the fuel and the pollution emissions, and find

the quadratic programming strategy to be better at lowering pollution emissions. For

the simulations, they employ static maps of the engines and engine that link torque,

speed, fuel consumption and emissions as well as the dynamics in the state of charge

and the vehicle in movement. Paganelli et al. [25] compare control strategies for

the power mix in the parallel hybrid electric vehicle; the algorithms are designed to

minimize fuel consumption by using the drive torque when changing the gear ratio

to work in more efficient regions. Paganelli et al. [26] describe a formulation for the

power distribution control problem in hybrid vehicles, which is based on distributing

the power between the ICE and the ME as well as properly choosing the gear ratio.

Paganelli et al. [27] and Sciarretta et al. [28] describe an algorithm that distributes

the power between the ICE and the ME for the purpose of minimizing fuel consump-

tion. An optimizing criterion is set out that minimizes fuel consumption and proposes

an equivalency between fuel and energy, hence its name, Equivalent Consumption

Minimization Strategy (ECMS). One interesting detail for the above strategy is that,

in order to minimize the desired performance, it is necessary to calibrate some para-

meters that depend on the driving cycle, on leaving them set and changing the cycle,

the battery is discharged or recharged. Moreover, the equivalent consumption factor

that is used for evaluating the difference between the initial and final state of charge

does not always correspond to the efficiency in the ICEs fuel use.

Delprat et al. [29] propose a strategy for energy management in the parallel hybrid

drive for distributing the power between the ICE and the ME, in such a way that it is

an efficient tool for evaluating the minimum fuel consumption that can be achieved

in simulation. This proposal is based on the classic optimal control theory, using the

Lagrange multipliers method. The performance is assessed by means of static maps

for the ICE, and the model or static map used is not mentioned for the ME. The

battery is taken as a dynamic element, then the analysis and optimization is carried

out. Moreover, there is no mention of how the difference between the initial and final

state of charge is offset to determine net fuel consumption.
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Musardo et al. [30] propose the adaptable version of the algorithm for energy

management in hybrid vehicles (A-ECMS), an enlargement on the work of Paganelli

et al. [27] and Sciarretta et al. [28]. The A-ECMS algorithm adaptable results from

adding a new variable equivalence factor in accord with the driving conditions to

the ECMS strategy. In this case the idea is to use outside information, such as a

global positioning system (GPS). This strategy is simulated with the parallel hybrid

drive, where the idea is to economize on fuel and equivalent fuel consumption to

that of electric power is obtained. However, one important problem that is similar

to the one in the earlier paper is the relationship between the difference in the state

of charge and the fuel consumption where the difference in efficiencies between the

ICE and the ME-battery are not taken into account. Moreover, Pisu and Rizzoni [31]

compare a rules-based control, the A-ECMS strategy and a H∞ control, to get better

performance out of the adaptable strategy.

Borhan et al. [32] present a strategy for distributing the power flow in HEVs based

on a model predictive control (MPC) for the series-parallel configuration. In order

to use the MPC, it is necessary to linearize the model around each operating point

that depends on the torque demand and the state of charge. The strategy is solved

by means of quadratic programming for the linear system, where the parameters

are adjusted during the prediction horizons. Yan et al. [33] present a MPC strategy

for a parallel HEV that incorporates the qualities of the diesel engine to mix the

efficiencies together with the ME. The strategy is compared to a PI control that only

depends on the tracking error, while the MPC has a minimization criterion, so the

comparison seems unfair.

Ngo et al. [34] use an MPC algorithm to select the best gear ratio in the transmis-

sion to economize on fuel. They mention that the proposed algorithm can function

in real time and the comparison of the MPC is against an optimum algorithm that

mixes dynamic programming with Pontryagins minimum principle (PMP). For the

proposed driving cycles, the optimum strategy produces a saving in comparison to

a conventional vehicle of 35.9 to 43.5.

Serrao et al. [35] analyze three main optimum strategies for the power distribution

in hybrid vehicles (HEV): dynamic programming, Pontryagins minimum principle

and the equivalent consumption strategy ECMS. The last of these three stands out

because of the speed of solution, however, as in other papers; they also mention that

the ECMS strategy has a problem in the tuning of the parameters for different driving

cycles.

Kim et al. [36] report a strategy for series/parallel hybrid electric vehicles using

Pontryagins minimum principle. They compare the strategy with dynamic program-

ming and the ECMS. They only include dynamics in state of charge in the batteries.

The strategy is related to ECMS. Fixing the fuel-electric energy equivalence they

find a 1% difference between ECMS and their PMP formulation.

Yuan et al. [37] present a similar paper to the above, but only compare Pontryagins

minimum principle strategy, which was developed in the aforementioned paper, with

dynamic programming and it is to be noted that the simulation time is significantly

less in PMP than in PD. In the objective function they only include the state of charge

and the fuel flow, apart from the fact that the dynamics shown only pertain to the
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vehicle and batteries. A variation in the efficiency of the electric machine and the

total efficiency through the coupling of the components is also considered, however,

no mention is made of the efficiency of the combustion engine, which is extremely

important. The power is mixed by means of an automated manual transmission that

replaces the usual automatic transmission.

2.5 Modeling the Vehicle

A hybrid electric vehicle consists of a variety of elements and mathematical models

are employed in this research to describe their dynamic response using ordinary dif-

ferential equations. As the emphasis is on the design of the drive train, the elements

being modeled are:

The diesel internal combustion engine, considered to be of primary interest as

its performance makes it the most popular combustion engine in freight transport

and passenger vehicles The clutch employed to couple and decouples the ICE with

the drive system. This mechanical device is still found useful in mechanical sys-

tems for joining and separating moving parts. The battery bank, as more and more

care is needed in the cars electric power storage, owing to the growing presence of

electronic components. The electric machine that has a significant influence on the

end performance of a hybrid vehicle. The vehicle in movement, that has an influ-

ence on the users acceleration and braking behavior, as well as on the driving cycles

employed to test the performance, demand and efficiency of the car. Another system

that integrates the hybrid vehicle and is a central part of the chapter is the planetary

gear system used to couple the power sources to the drive, which is also modeled

with its respective dynamics. The mechanical power that should be contributed by

the ICE or the electric machine, as appropriate, is allocated through the planetary

gear system to deliver the power demanded by the driver, or the speed and torque

setting allocated by the driving cycle in this case, in the drive.

3 Control of the Internal Combustion Engine and Electric
Machine

For the control of the main elements that supply power to the vehicle for its move-

ment, techniques used in control theory are employed such as: sliding modes, passiv-

ity, feedback linearization, to mention just a few. However, they are only mentioned

in this section to give a panorama and have an idea of the variables we are dealing

with.

The combustion engine gets its energy from fuel, while the electric machine gets

its energy from the battery. Both machines have the mechanical variables of speed

and torque in common and this is just how they are coupled for the hybrid electric
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vehicle. The main idea is for the speed the user desires to be represented by a driving

cycle. The goal is to design the control strategies in such a way that, when all the

dynamics of the subsystems are integrated, the output speed is equal to the speed of

the driving cycle.

By using the control models that have speed as a common variable, this section

describes the controllers that make the diesel internal combustion engine and the

electric machine keep to the speed that has been allocated to satisfy the demands of

the driver, providing the corresponding torque to each one of them. The aim is for

the power sources to incorporate their own controllers, first of all so that they obey a

specific speed setting and a separate torque setting, and then for them to be coupled

to the hybrid vehicles drive system.

For the internal combustion engine, the controller defines the fuel flow that enters

the combustion chamber and the speed reference is related to the air flow. Moreover,

the load torque must also be offset by this controller. The fuel injector is in charge of

dosing the diesel that has to enter the combustion chamber in accordance with the

compression /air-fuel mixture of ratio. The comparison and performance of some

controllers for the model of a diesel engine are described in Guzman et al. [38],

which we used in this chapter for the hybrid vehicle.

The electric machine is controlled by the voltage and current in the stator. When

it operates as an engine, it is supplied voltage and current in order for the machine to

provide the necessary speed and torque. When it operates as a generator, it is supplied

torque and speed in order for it to provide the voltage and current needed to recharge

the batteries.

4 Power Flow Control in the Hybrid Drive Train

For practical effects or at least in the context of vehicle systems, the terms power

flow control and energy management are interchangeable [39]. However, power is

an instant value and energy involves a period of time when the power is applied.

Therefore, when we say that power is controlled or distributed, in general we are

talking about energy management. Owing to the costs associated with the production

and use of energy, more and more research focuses on the production and manage-

ment of the elements involved. As has already been analyzed in different papers such

as Nersesian [40]; Black and Flarend [41], the production, use and management of

energy tends to employ renewable sources such as sun, wind, sea, among others, for

their conversion into electric power. Whereas the energy obtained by extraction or

conversion from biomass, such as ethanol or methane, is similar to gasoline or nat-

ural gas. Furthermore, the aim is to always find more efficient ways to use or manage

the equipment and systems employed.

All types of hybrid vehicles need a power flow control that determines how to

operate each power source to satisfy the demands of the driver, which in this case

means the monitoring of the driving cycle with the loads present. Furthermore, one

of the main objectives of power distribution is to lower the use of power and, in
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Fig. 6 Power sources

the case of combustion engines, pollution emissions. A general approach is given in

Fig. 6 that reproduces a generic system that involves different power/energy sources

and loads as well as including the distribution of power to the loads.

As the general idea of a hybrid vehicle is to combine different energy sources,

Fig. 6 illustrates the fact that each source can be of a particular type. For example,

the sources can be, starting with a combustion engine, that transforms the chemical

energy from the fuel into mechanical energy, source 2 could be an inertia drive that

transforms kinetic energy into mechanical energy, another source can be a solar cell,

that converts solar power into electric power, a battery, (a device commonly used for

storing electric power), a capacitor or fuel cell that transforms chemical energy into

electric power. In general different types of sources can be used, as they can also be

hydraulic, pneumatic, among others.

The power sources can be very similar to each other. For example, sources 1, 2

and 3, battery, fuel cell, super capacitor or even using two combustion engines, one

diesel and the other gasoline, to mention just a few.

The loads in Fig. 6 as is usual in vehicle systems, also come in different forms,

where the main load is mechanical to meet the need to move a certain mass of vehi-

cle. The electrical loads are lights, electric motors for different applications such as

cooling, and the rest of the elements. Other loads, which are usually to be found in

the most recent vehicles for the convenience of the users, are mechanical loads, such

as an air-conditioning compressor, hydraulic pumps for steering support or electric

loads such as a heater, etc.

The power flow distribution and control problem mainly centers on satisfying

energy demands (loads) using the power sources, however, from the point of view

of energy policy in respect of energy saving, and the control of gas emissions, great

care should be taken with the functionality and operation of the power sources in

order to choose the best combination for each situation. For example, if we have an

electrical load and two sources to supply it, a battery and a supercapacitor, the best

way to supply the demanded power is for the battery to operate when the demand is

constant and the supercapacitor to operate when dealing with sudden surges (peaks)

of power, as a result of the proper performance and operation of each device [42].
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Another example occurs when mechanical loads have to be supplemented and

sources can be two combustion engines, a diesel one and the other a gasoline one,

which have a different efficiency map (in general, a diesel engine is more efficient

than a gasoline engine). However, as the efficiency characteristics can vary greatly,

in certain torque-speed operating points, a gasoline engine may be more inefficient.

This section presents the chapters proposal and, in that sense, is subdivided into

three sections. The first section describes an energy management strategy that is

inspired by optimal control, which is a “bang-bang” controller variant that was pre-

sented in Becerra and Alvarez-Icaza [43, 44]. It is worth mentioning that this strategy

is implementable in real time. It also describes the tuning methodology for getting

it to perform well. In the second section we propose a power flow control strategy

derived from optimal control that involves Pontryagins principle and gives a more

general result than the earlier one which has been the subject of previous papers also

presented in Becerra et al. [45, 46]. Now the tuning methodology is also added. In

the third section we describe the allocation of speed and torque in the aforementioned

strategies, after the power distribution.

4.1 Strategy Using the Planetary Gears System
(PGS Strategy)

The PGS strategy is based on distributing the power demanded by the driver through

the constraints of the planetary gears system to each power source in addition to the

battery state of charge and the improved efficiency of the internal combustion engine.

The main idea is derived from the following observations.

1. The most important requirement in the HEVs power flow control is the ability to

satisfy the total power demanded by the driver or the driving cycle.

2. All the optimum solutions for the power flow control must preserve the battery

state of charge, on average, over a sufficiently long period of time. If the tests are

carried out during a driving cycle, the cycle must start and end with the same

state of charge in order to corroborate the performance.

3. To minimize fuel consumption, the ICE must operate in highly efficient regions,

as when efficiency is maximized, fuel consumption is minimized.

Observation 2, which is key in the strategy, points out that all the optimum solu-

tions that are based on driving cycles preserve the batterys initial state of charge at

the end of the cycle, otherwise the vehicle cannot sustain a repetition of the same

driving cycle.

A similar observation is made in Musardo et al. [30], when the fine tuning of the

adaptable equivalent consumption minimization strategy (A-ECMS) is discussed.

Observation 3 can be verified, for example, in Ehsani et al. [14], this is mainly the

reason why HEVs are more efficient than conventional vehicles.

The control problem to be solved is how to distribute the power required in the

PGS between the two power sources in order to economize on fuel. This problem has
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multiple solutions, as the combination of torque and speed in each power source may

be arbitrary while the demanded power is being obtained. The above observations

result in the approach that involves the equations to be solved, that acknowledges that,

in order to find the solution, we should resort to the PGS model, given by Eqs. (1), (2)

Pp = Tem𝜔em + Tice𝜔ice (1)

𝜔p =
1

(k + 1)
𝜔em + k

(k + 1)
𝜔ice (2)

where P is the power; T , the torque; 𝜔, the speed; k, the PGSs gear ratio constant and

the subscripts p, ice and em represent the planetary holder, ICE and EM, respectively.

Considering that Pd is the power required by the vehicle’s drive to meet the driver’s

requirements (demanded power) and Pp is the power that both machines contribute

between them.

Two strategies are employed to lower fuel consumption: using the ME as much

as possible and operating the ICE at the maximum possible efficiency. Assuming

that the state of charge in the batteries can be taken as a reference value, in the case

of drive, Pp ≥ 0, the cost criterion to be used derives from the bang-bang optimal

control [47], and is as follows

J1 = max
∫

Tc

0
(sign(Pp)sign(soc − socref ))Pemdt (3)

where Tc is the length of time of the driving cycle, socref is the soc reference and Pme
the power of the ME. This expression is used in the case of drive and the battery-

recharging drive. In other words, any time the user demands power.

When it is necessary for the vehicle to slow down, in other words, in the case of

braking, Pp < 0, the criterion employed must change slightly while conserving the

original idea, using the function that involves the regenerative braking, with which

the idea of employing the electric machine is conserved, so now the criterion is as

follows:

J2 = max
∫

Tc

0
(sign(Pp))Pemdt (4)

Using the criteria to be maximized, Eqs. (3) and (4) as well as the kinematic power

constraint because of the coupling (1), the power that each source of energy should

contribute is decided using the methodology described below.

4.1.1 Power Allocation

The power distribution strategy consists of two main parts: first the power from each

machine is allocated according to the battery state of charge, to avoid discharging

or overloading them. Initially the power corresponding to the electric machine is
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allocated, taking into account the maximum power it can contribute. Then the power

from the ICE supplements the total demanded power. The second part consists of

allocating the angular speeds: in this case, starting with the ICE and ending with the

EM.

Electric Power Allocation Pem

In the first place, the power corresponding to the electric machine is allocated, there-

fore the value of Eqs. (3)–(4) is maximized when,

Pem = min
{
sign(Pp)Pp, sign(Pp)Pmax

em
}

where Pmax
em is the maximum power of the EM (assumed to be equal in the case of

the motor and generator). However, on employing a control of this type, also known

as a maximum strain control, the vehicle and its components, in general, are submit-

ted to severe mechanical stress that can cause, apart from damage or failure in the

components, serious accidents. To avoid the abrupt change induced by the function

sign(Pp) a soft function is used that depends on the state of charge in the batteries.

The above is aimed at avoiding the aforementioned problems and the new constraint

is as follows:

Pem = Pem(soc) = 𝛼i(soc)Pmax
em , (5)

where subscript i in Eq. (5) is 1whenPp ≥ 0 and 2whenPp < 0, clearly 𝛼i ∈ [−1, 1],
as we must not exceed the maximum strain that the electric machine can provide.

Note that the criteria in Eqs. (3) and (4) are represented by Eq. (5).

We take as known the power Pp and speed 𝜔p demanded by the driver that, in a

conventional vehicle with the sensors being used nowadays, are known variables or

come from a driving cycle. The proposed solution for the power flow control problem

starts by substituting Eq. (5) in Eq. (1), in other words

Pp = 𝛼iPmax
em + Pice (6)

The value of 𝛼i depends on the drive or braking power in planetary holder Pp, as

well as the value of the state of charge in the batteries. The form of 𝛼i(soc) deter-

mines how much electric power is absorbed or delivered at a given power point. One

possible form for 𝛼i(soc) is given in Fig. 9 that is described by,

𝛼1 = tanh(A1(soc − socref )) Pp ≥ 0 (7)

𝛼2 = 0.5 − 0.5(tanh(A2(soc − socfin))) Pp < 0 (8)
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Fig. 7 Distribution of electric power versus battery state of charge (soc)

where socref is a reference value for the battery state of charge for this status to

stay around that point and socfin is a reference value to avoid the battery from being

overloaded during regenerative braking.

Figure 7 reveals that when Pp ≥ 0, 𝛼i ∈ [−1, 1], depending on the soc; if 1 is pos-

itive, the electric machine operates as a motor, otherwise it operates as a generator.

When the power in the planetary holder, Pp < 0 requires the vehicle to be braked,

𝛼i ∈ [0, 1], regenerative braking is possible and the EM can only operate as a gen-

erator until the batteries are totally recharged. The rest of the power is dissipated

through the friction brakes as described below.

Allocation of Mechanical Power (Pice) and Friction Brakes

Using the function 𝛼i, the electric power in the balance equation in the planetary

holder, Eq. 1, 1 is set. The power of the combustion engine (Pice) is obtained from

the same balance, as follows:

Pice = min(Pp − Pem,Pmax
ice ); Pp ≥ 0 (9)

where Pmax
ice is the maximum power value that the combustion engine can contribute

and in Eq. (9) it is used to indicate that the ICE is supplying the power up to its

maximum capacity. The ICE acts when power is need to drive the vehicle or when the

batteries are discharged. When it is necessary to brake the vehicle, the ICE’s power is

exchanged for the friction brakes, in other words, in the case of regenerative braking,

Pp < 0, the generator has a limit on the power it can recover and therefore the rest

of the power is dissipated through the brakes, which is described by the equation,

PFr = max
{
0,Pp − 𝛼2Pmax

em
}

(10)

where PFr is the power dissipated through the friction brakes that only depend on

the power that the generator can recover and how fast the vehicle stops.
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4.1.2 Tuning the PGS Strategy

The tuning of the PGS strategy has been detailed since its presentation in Becerra

and Alvarez-Icaza [43], where we presented a preliminary paper and proposed an

initial form of curves 𝛼i and the parameters used. However, in Becerra et al. [44],

a series of proposals is discussed for the choice of parameters, the variation of the

state of charge and fuel saving.

After various discussions and analysis of the simulations, we make a proposal

for the election of the four parameters in the PGS strategy, that consists of first allo-

cating curve 𝛼1. The first parameter socref = 60%, was proposed as per Chaturvedi

et al. [48] and Romero-Becerril and Alvarez-Icaza [49], who argue that the ideal

operation for any battery must be around half the state of charge, however, a slightly

higher level is proposed to prevent the battery being discharged as a consequence of

some mishap.

Parameter A1 determines how soft or abrupt curve 𝛼1 is, which is directly related

to the operation of the electric machine in generator or motor mode. In the case of

the vehicle’s drive, we proposed A1 = 0.4 that permits a soft operating mode for the

electric machine and avoids damaging the components through mechanical stress.

Alternatively, curve 𝛼2 should be allocated for the braking mode in order to deter-

mine how much power can be recovered in the regenerative braking. Parameter A2
now implies how steep the aforementioned curve is and socfin is the turning point,

which is incorporated to avoid overloading the batteries. The parameters of the sec-

ond curve 𝛼2 are not very strict, as it will not be possible to recover more energy

than the maximum the generator can operate or the exceed the maximum capacity

of the batteries, so it may be steeper or softer and only be careful of the overload.

A2 = 0.13 and socfin = 63.5 were chosen in this chapter.

4.2 Power Distribution by Optimization

The PGS strategy that was mentioned in the above section, is an implementable strat-

egy, however there is no way of comparing it with the best value that can be obtained

when it is implemented. Therefore, in order to compare the proposed strategy with

the optimal control approach, we look for a solution of the objective function with

its respective constraints by using an optimum solution.

The criterion to be optimized is based on the observations made for the proposed

strategy, where the biggest problem is setting out the problem and its constraints in

terms of variables that permit its solution. We choose to use Pontryagins principle,

mainly because out of all the optimization strategies, it is the one that enables us to

get solutions that can be implemented in real time.

Calculation of variations and Pontryagin’s minimum principle. As has already

been described in Pantoja-Vazquez et al. [50] that recalls that most of the energy

management strategies developed by means of optimal control use dynamic pro-

gramming, and are mainly used for testing other strategies. This is due to their high



204 G. Becerra et al.

computational load that increases with the complexity of the models employed for

the vehicle.

Furthermore, implementable controls can be obtained using Pontryagin’s mini-

mum principle. This is why this chapter uses this, the usual formulation, with some

important constraints that are described in this section. The development of the struc-

ture and the problem was inspired by the book of Kirk [51], which however uses

another model and objective function. The problem to be solved is to find an admis-

sible control u∗ ∈ U that makes a system like the following:

ẋ(t) = a(x(t), u(t), t) (11)

It follows an admissible path x∗ ∈ X that minimizes a performance formulated

using the structure

J(u) = h(x(tf ), tf ) +
∫

tf

t0
g(x(t), u(t), t)dt (12)

where g and h are assumed to be soft functions, the initial conditions are specified,

xt0 = x0, as is the initial time, t0. As is usual in control systems, x is a vector of n
state variables and u is a vector with m control inputs.

Assuming that h is a differentiable function, the aforementioned functional (12)

can be expressed as follows:

J(u) =
∫

tf

t0

{
g(x(t), u(t), t) +

[
𝜕h
𝜕x

(x(t), t)
]T

ẋ + 𝜕h
𝜕x

(x(t), t)
}

dt (13)

By introducing constraints for the systems differential equations, the objective

function argument changes through the Co-states

p(t) = [p1(t) p2(t) p3(t) ... pn(t)]

For the augmented system to have the form

ga(x(t), ẋ(t), p) = g(x(t), u(t), t) + pT (t)[a(x, u, t) − ẋ(t)] (14)

On adding the co-states as described in Eq. (14), the objective function is also

affected and should incorporate the co-states, through the constraints, equal to end

up as follows:

Ja(u) =
∫

tf

t0

{
g(x(t), u(t), t) +

[
𝜕h
𝜕x

(x(t), t)
]T

ẋ + 𝜕h
𝜕x

(x(t), t) + pT (t) [a(x(t), u(t), t) − ẋ(t)]
}

dt

(15)
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For systems with the aforementioned characteristics and objective function as

obtained above, it is possible to define a Hamiltonian with the following structure,

H(x(t), u(t), p(t), t) = g(x(t), u(t), t) + pT (t) [a(x(t), u(t), t)] (16)

With the Hamiltonian of the function, the control that minimizes the objective

depends on admissible states x∗, co-states p∗ and time t. By using the Hamilton-

Jacobi Bellman equation, it is possible to write the necessary conditions, to find

states x∗, inputs u∗ and co-states p∗, optimum that lead to the solution being sought.

They have a direct dependency with the Hamiltonian for finding the respective

dynamics, as follows:

ẋ∗(t) = 𝜕H
𝜕p

(x∗(t), u∗(t), p∗(t), t) (17)

ṗ∗(t) = −𝜕H
𝜕x

(x∗(t), u∗(t), p∗(t), t) (18)

0 = 𝜕H
𝜕u

(x∗(t), u∗(t), p∗(t), t) (19)

4.2.1 Approach to the Problem for the Optimum Allocation of Power

The main idea is to obtain a formulation like the one shown in the above section

and find the conditions of the inputs, states and co-states that correspond to the con-

straints, using the dynamics of the complete system of the hybrid electric vehicle.

Of the power allocation priorities that we have already indicated, the power con-

straint of the planetary gears system that joins the hybrid vehicles power sources must

be considered, Eq. (1). Complying with this constraint is one of the main require-

ments in the vehicle, as the power that the machines provide must meet the power

demanded by the driver (in this case the driving cycle must be satisfied), in other

words, Eq. (11) shall be employed further on to formulate one of the states of the

system to be optimized.

The following parameter of interest is the battery state of charge soc, which should

be preserved in order to avoid overloading or discharging the battery, also being a

primary element in the hybrid vehicle. The soc is expressed in terms of power, so

that it can also be used as a state of the complete system as well as to make sure that

its contain similar units to the previous one. Therefore we have,

soc = soc0 −
1

VbatQnom ∫

t

0
Pbatdt

̇soc = − 1
VbatQnom

Pbat (20)
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The power of the electric motor in respect of the battery is considered to be

affected by the efficiency 𝜂em of both components, in other words, the efficiency

between the battery bank and the electric machine, i.e.

Pem = 𝜂emPbat (21)

The third and no less important parameter to be considered is fuel, which is one

of the main reasons for making the vehicle hybrid. Therefore, from the internal com-

bustion engines output power, fuel flow mf is found as follows:

ṁf =
Pice

𝜂icepth
(22)

Now then, by using the above Eqs. (20)–(22), the dynamics of the hybrid electric

vehicles system are expressed using the following approach. The inputs vector is con-

sidered to be xT = [soc mf Pp], while the power of each motor uT = [Pbat Pice]
is taken for the inputs vector. Using the three states, it is possible to express the

complete system in terms of the state errors ePp
= Pp − Pd, esoc = soc − socref and

emf
= mf − mfref , where Pd is the power demanded by the driving cycle (driver of

the vehicle), socref and mfref are the soc and mf references that are treated as fixed.

Therefore, the dynamics of the system are expressed in the following way,

ePp
= 𝜂emPbat + Pice − Pd

ėsoc = − 1
VbatQnom

Pbat − ̇socref (23)

ėmf
=

Pice

𝜂icepth
− ṁfref

One important detail is that the efficiency of the ICE depends on the region of

operation and the fuel consumption, which can be minimized if the efficiency is

maximized. This can be expressed in terms of the power or torque and the speed at

which the combustion engine operates, in other words

𝜂ice = 𝜂ice(Pice, 𝜔ice) (24)

Based on Eq. (24), the optimal control problem is defined if the efficiency of the

combustion engine is maximized as a function of the speed

�̄�ice(Pice) = max∀𝜔ice
{𝜂ice(Pice, 𝜔ice)} (25)

That corresponds to finding the maximum possible efficiency for some Pice,

assuming that the angular velocity 𝜔ice can be adjusted to that maximum.
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Fig. 8 Power/speed/efficiency curves

One example of the dependence of speed on power is given in Fig. 8, where the

maximum efficiency can be chosen for each power. This Power/speed/efficiency map

corresponds to the combustion engine model that we presented in the second section.

min J =
∫

(eTG1e + uTG2u) dt (26)

For the system being approached in terms of error, see Eq. (23), we propose a

quadratic cost function in terms of the states eT = [ePp
esoc emf

] and the inputs

uT = [Pbat Pice], which are the energy sources. Therefore, the following objective

function is minimized. The cost function in Eq. (12) can be written as

min J =
∫

(eTG1e + uTG2u) dt (27)

where matrices G1 and G2 are chosen as follows:

G1 =
⎡
⎢
⎢
⎣

g11 0 0
0 g12 0
0 0 g13

⎤
⎥
⎥
⎦

G2 =
[
g21 0
0 g22

]
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The parameters gij are the significant parameters for moderating the priority of

the objective to be minimized with respect of the states, in other words, how much

of the supply each machine uses and the priority between power monitoring, battery

charge levels and fuel saving.

The Hamiltonian for the proposed objective function can be expressed as follows:

He = eTG1e + uTG2u + pT [a(e, u, t)] (28)

where the objective to be minimized is considered together with the co-states p and

the dynamics of the system a(e, u, t), for this is a constrained system. Therefore, the

necessary conditions for finding the optimal admissible control u∗ ∈ U, the admis-

sible path of the states e∗ ∈ X and minimizing the proposed objective are obtained

from the dynamics of the states in the expression (17), in other words,

ePp
= 𝜂emPbat + Pice − Pd

ėsoc = − 1
VbatQnom

Pbat (29)

ėmf
=

Pice

�̄�icepth

where the ones derived from the soc and mf references are made equal to zero by

assuming that they are constants.

Equation (18) is used for the co-states and their dynamics turn out to be

ṗ1 = −2g11ePp

ṗ2 = −2g12esoc (30)

ṗ3 = −2g13emf

Expression (18) is used to find the inputs and the constraints end up as

0 = 2g21u1 + p1𝜂em − p2
1

VbatQnom
(31)

0 = 2g22u2 + p1 + p3
1

�̄�icepth

The inputs are found for Eq. (30) to obtain control u that produces the optimum

admissible path. In other words:
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u∗1 = −
p1𝜂em − p2

1
VbatQnom

2g21
(32)

u∗2 = −
p1 + p3

1
�̄�icepth

2g22

If Eq. (31) are substituted for the optimal control [Pbat Pice]T = [u∗1 u∗2]
T

in the

states of the Eq. (28), the following simultaneous equations are obtained, three for

the states and three for the co-states,

e∗1 = 𝜂emu∗1(p1, p2) + u∗2(p1, p3) − Pd

ė∗2 = − 1
VbatQnom

u∗1(p1, p2)

ė∗3 = 1
�̄�icepth

u∗2(p1, p3) (33)

ṗ∗1 = −2g11e∗1
ṗ∗2 = −2g12e∗2
ṗ∗3 = −2g13e∗3

In Eq. (32) the system distributes the power between the sources EM and ICE

optimally in accordance with the chosen parameters in the objective function. In

a similar way to the PGS strategy, in the case of braking, the energy in excess of

the maximum possible from the regenerative braking should be dissipated by using

Eq. (10). Moreover, the speed and torque in each machine is distributed in a similar

fashion to the distribution in the PGS strategy and is described further on.

4.2.2 Tuning of PMP Strategy

One important problem in the solution of power distribution in a hybrid vehicle is

the selection of parameters for adjusting its operation during the route chosen by the

driver.

There are five parameters for the Pontryagin solution strategy, of which the first

three correspond to power monitoring, state of charge and fuel consumption errors,

while the two remaining parameters directly correspond to the considered inputs of

power from the machines.

The parameters gij of cost function (26) are tuned by trial and error taking into

account the fact that the intention is to save fuel, preserve the state of charge and

monitor the driving cycle. The final choice is given in Table 1.
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Table 1 Parameters in an optimum PMP strategy

g11 g12 g13 g21 g22
20 2 1 0.5 0.0613

4.3 Allocation of Speed and Torque

Once the power from each machine is allocated, we look for their speed and torque.

Owing to the fact that, in general, a combustion engine is less efficient than an electric

motor, the first thing to be considered is the allocation of the ICEs speed and torque

in order to get the best advantage from it.

Given the power from the least efficient source allocated in the above section is,

in this case, the power of the internal combustion engine Pice, the angular velocity at

which the ICE should operate, 𝜔ice, is obtained from the efficiency map in the power-

speed graph. This curve has a similar shape to the most highlighted superimposed

line that is shown in Fig. 9.

For the chosen combustion engine, with the model and the parameters that have

already been presented in section two, by obtaining the efficiency curves for each

power value required, it is possible to find the curve that stands out in Fig. 9 that

corresponds to the speed value that is more efficient for a given power value and
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Simulation and Optimization Applied to Power Flow in Hybrid Vehicles 211

corresponds to the solution of Eq. (25). The curve was approximated by using the

function

𝜔ice = 210(1 − e−(1∕21000)∗Pice ) (34)

For the combustion engine that is employed in this chapter, the maximum power

at which it can operate is 205[kW], for this reason the curve is truncated when it

reaches this power. Once the engine speed 𝜔ice is obtained by means of the high

efficiency curve, the next step is to determine the angular velocity of the electric

machine for Eq. (34)

𝜔p =
1

(k + 1)
𝜔em + k

(k + 1)
𝜔ice (35)

The Eq. (34) represents the sum of the velocities for each machine, for the mechan-

ical coupling; therefore, 𝜔em is determined by using the following Eq. (35)

𝜔em = (k + 1)
k

(𝜔p −
1

(k + 1)
𝜔ice) (36)

Once the speeds of the mechanical power sources are allocated, the torque that

the ICE should provide is obtained from the equivalence of mechanical power in a

rotational system, by using Eq. (36)

Tice =
Pice

𝜔ice
for 𝜔 > 0 and 0 for 𝜔 = 0 (37)

Using a similar technique to the above, the torque Tem of the electric machine is

determined that, in the case of drive, can operate as a motor or generator, as follows:

Tem =
Pem

𝜔em
(38)

Moreover, in the case of regenerative braking, when braking is required, in other

words, Pp < 0, the power of the combustion engine is not involved, Pice = 0; and the

electric power is directly recovered. The speed and torque that need to be dissipated

are obtained by similar means to the method shown above,

𝜔Fr = (k + 1)(𝜔p −
k

(k + 1)
𝜔em)

TFr =
PFr

𝜔Fr
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5 Simulation Results

We present the simulations obtained from coupling the models of each element for a

hybrid electric vehicle. The development of this chapter has focused on city buses, as

their manufacturing process is still manual, unlike compact vehicles, such as Toyota,

Honda, Ford, Audi, to name but a few, where the manufacturing process is highly

automated and it is hard to imagine being able to compete with such firms. Moreover,

their technologies are so protected it is hard to find any divulgation in the literature.

Whereas in the case of buses, there has not been much distribution yet and the first

prototypes are in the testing stage.

The idea is for the city bus to have driving cycle monitoring in the city and for

this to be used to analyze the performance of the strategies being put forward for the

power distribution in the hybrid electric vehicle. We are mainly proposing driving

cycles for Mexico City that have already been already in Sect. 2 for the speeds: slow,

moderate and high.

The proposed city bus has a total mass of 15,000 kg, where the mass in compo-

nents is considered to be 7,000 kg and the variable load up to 8,000 kg. The inter-

nal combustion engine is diesel with compression ignition, having 205 kW capacity,

45% maximum efficiency, that is coupled to a planetary gears system, with a gear

ratio of k = 5, by means of a clutch system to the sun gear. The electric machine is

an brushless DC motor with 93 kW capacity, 92% maximum efficiency, powered by

the battery bank with a capacity of 25Ah, at 288V.

First of all, the simulations of the machines (power sources) were carried out sep-

arately. As the speed monitoring is done through the vehicle, tests were carried out

with speed references for the machines using the respective controllers presented in

Sect. 3, where each machine model was checked to make sure that the speed and

torque settings that had been set were being followed. In this section the respec-

tive signals are set that they should follow and that altogether result in the power

demanded by the driving cycle. Then a comparison of the PMP and PGS strategies

is considered. First of all we analyze the most important requirement, the demand

of power, which is checked using the tracking of the driving cycles. Later the results

of the behavior of the state of charge in the batteries and the fuel consumption are

analyzed.

5.1 Tracking of the Hybrid Vehicles Routes

Simplified and detailed models of the machines are used to test the power flow con-

trol strategies. The tests are performed as follows: first, the driving cycle, which

is considered to be equivalent to the demand of the driver, determines the angu-

lar velocity and torque needed in the wheel (affected by its radius). These variables

are borne, through the differential ratio, to the transmission and the planetary gears
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Fig. 11 Moderate speed driving cycle

system, to the axles of each machine, which then receive the required power value

(speed-torque settings) to comply with the driving cycle.

Figures 10 and 11 show the tracking of the hybrid electric vehicle at slow and

moderate speed driving cycles, called cycle 1 and 2, respectively, in Mexico City

that correspond to the buses that drive through the City when there is a considerable

and moderate amount of traffic. Both the power flow control strategies, the PGS

strategy and the PMP strategy, are employed. We can see that there is no difference

between them and that by using the two strategies the hybrid vehicle manages to

follow the desired route.

The first route, called cycle 1, has an approximate maximum speed of 50 km∕h
and an average of under 20 km∕h, as well as a very irregular speed because of traffic

conditions. The second route to be followed corresponds to cycle 2 with an approx-

imate maximum speed of 70 km∕h, faster than the first, and an average speed of

25 km∕h, which is also faster.

Figure 12 shows the tracking of the hybrid vehicle on the route posed for the bus

driving cycle along bus lanes that corresponds to high-speed cycle 3 in Mexico City.

In this case the maximum speed reached is 70 km∕h and the average speed is higher

than the above as are the levels of acceleration and demand of power that will be

shown in the following sections.

As can be verified in the simulations, the two proposed strategies comply with

the first demand, as the power mix in the machines manages to move the city bus at

the desired speed and acceleration, without any problem whatsoever.
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Fig. 12 High speed cycle

5.2 Level of Charge in the Batteries

The following parameter of interest in this chapter is the batteries state of charge

that, for an electric vehicle, would be analogous to the amount of fuel in the tank.

In the hybrid electric vehicle the combination of fuel for the combustion engine and

batteries for the electric machine are employed as primary energy sources. However,

the first source can only be used in one direction, while the batteries allow a two-way

flow.

Numerous simulations were carried out for different conditions in each driving

cycle, only keeping the results where the end state of charge coincides with the ini-

tial state of charge, while discarding the rest of the simulations. This is because the

vehicles real fuel consumption is shown and we thus avoid the need to adjust a (dif-

ferent initial from the final) state of charge, by means of the difference and a factor

of equivalence to chemical fuel that can slant the end result.

Figures 13 and 14 show the dynamics of the state of charge in the battery bank for

the bus in the tests of the driving cycles at slow and moderate speed, respectively,

called cycle 1 and 2. The main differences are because of the forms of the corre-

sponding driving cycle and it is worth mentioning that the behavior of the two PGS

and PMP strategies is very similar, under the proper tuning.
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Fig. 13 State of charge in the battery bank for the bus in the tests of the driving cycles at slow

speed
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Fig. 15 Dynamics of the soc for driving cycle 3, for the bus when the route is along bus lanes in

Mexico City

It was necessary in the two driving cycles to start at a much lower value than the

reference value for the driving profile and energy recovery, to fulfill the constraint of

preserving the state of charge, in other words to start and end with the same value.

In cycle 2, Fig. 16, we can better appreciate how the regenerative braking profile

directly shown in the soc is less because of the protracted slowing down.

Figure 15 shows the dynamics of the soc for driving cycle 3, corresponding to

the bus when the route is along bus lanes in Mexico City. For this driving cycle, the

initial and final status are equal to the parameter socref = 63.5%.

One interesting point in the state of charge simulations that is possibly the most

visible one for comparing the results between the PMP strategies and the PGS strat-

egy is the similarity of dynamics, on top of what has already been shown, i.e. com-

pliance with the driving cycle. The behavior of the soc is practically the same, with

the difference lying in some abrupt changes.

The strategies simulations use the same tuning and the change in driving cycle can

be seen in the final value of coincidence of soc. This is obtained when the cycle tests

are repeated over and over again, using the final state of charge from the previous

test as the initial state of charge and so on until the desired coincidence is achieved.
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5.3 Fuel Consumption

The performance of any vehicle is determined by the amount of fuel consumed over

a certain distance; however, for the purposes of laboratory tests, driving cycles or

tests are usually used at constant speed with different ranges.

In order to analyze energy consumption and pollution emissions, different scenar-

ios are proposed in dynamometers that have been instrumented to obtain the respec-

tive metering apart from specifically establishing the operating ranges, loads and

demands.

One difference that this chapter has in respect of other published material in the

literature is that in other papers the battery does discharge or recharge during the

driving cycles and energy is usually converted into fuel. To do this, high efficiency

is used for the internal combustion engine, which is not always possible, because of

its power-speed operating range. Therefore, for the tests made, as has already been

mentioned in the above sections, simulations are used in which the initial state of

charge coincides with the final state of charge, which means directly measuring the

fuel consumption. Moreover, by using simulations that preserve the state of charge

in the battery, we ensure the possibility of repeating the driving cycle indefinitely.

To give an idea of the reduction in fuel consumption, a comparison is made

between the consumption of a conventional vehicle and that of a hybrid electric vehi-

cle operated under the aforementioned power distribution strategies. The compari-

son is given in Table 2, whose first column gives the consumption corresponding to

the conventional vehicle, with only a combustion engine. The second column cor-

responds to the heuristic PGS strategy. The third column is the result of using the

simplified solution from the optimum PMP strategy. In the fourth column the PMP

strategy is assessed using simulations of the detailed models of the electric machine

and engine.

In every case, the tuning parameters presented in Table 2 are used. The simulation

in fuel consumption for PGS and PMP shows that the difference between them is very

small, between 1% and 2.4%.

The distance between the simulated solution PMP (PMP-simp.), compared with

the detailed PGS strategy solution is even shorter as it is now between 0.4 and 1.8%.

Table 2 Fuel consumption with soc0 = socf
Only ICE PGS PMP PMP-sim.

Cycle kg 2.158 1.803 1.752 1.762

MX1 % 100 83.54 81.18 81.65

Cycle kg 2.803 2.222 2.194 2.205

MX2 % 100 79.26 78.27 78.67

Cycle kg 4.549 2.734 2.692 2.716

MX3 % 100 60.10 59.17 59.71
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Fig. 16 ICE variation versus fuel consumption

The difference is minimal for cycles 2 and 3 and increases for cycles 1 and 4 that are

the slowest speed.

Apart from the above, a comparative analysis was made with the results shown

in the literature, by using the constant efficiency of the internal combustion engine

�̄�ice, in the formulation of a simplified PMP. Paganelli et al. [27] and Kim et al.

[36] give an argument for the validity of the results obtained by using the ECMS

formulation, where a constant efficiency value is employed to show the fuel saving

or use equivalent to the state of charge in the battery. The results obtained in the

literature mention that these are very similar when the variable or constant efficiency

is employed.

In this work we first proceed to identify the average efficiency value correspond-

ing to each driving cycle, said value is found when the same fuel consumption is

obtained in the PMP solution using constant efficiency as the consumption obtained

when the detailed models are used.

Figure 16 illustrates the variation in the hybrid electric vehicles fuel consumption

using the strategy of Pontryagins minimum principle by considering the efficiency

of the ICE to be constant for a range of power values. The points marked with a

triangle in Fig. 16 correspond to the fuel consumption obtained by the PMP strategy

and provide a average constant efficiency �̄�ice for each driving cycle.

Once the corresponding average efficiency is obtained, it is used in the detailed

models. It is worth mentioning that it is not always possible to use the internal com-

bustion engine at constant efficiency (for the chosen parallel configuration and the

different tests in the driving cycles), therefore, we propose two options for trying to

get the ICE to operate with constant efficiency.

The first proposal, that does not give a good result because of the capacity of

the machines, is for the power of the ICE that cannot be delivered at the chosen the

constant efficiency to be supplemented by the electric machine, in order thus to try
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Fig. 17 ICE Operation points on the average constant efficiency

to carry out the driving cycle. This option is not viable as it is beyond the capacity

of the EM, so the cycle cannot be carried out.

The second option considered is to use the ICE at an efficiency of less than the

constant �̄�ice that was previous selected, when it is not possible to maintain the con-

stant efficiency to carry out the driving cycle.

Figure 17 illustrates the operating points of the combustion engine on the average

constant efficiency curve corresponding to each driving cycle (points on the right),

as well as the ICE’s operation when the power is less than the minimum that can be

delivered with the corresponding constant efficiency (points on the left) for the four

driving cycles.

Table 3 Comparison of fuel consumption (PMP), 𝜂ice variable versus �̄�ice constant, soc0 = socf
Cycle �̄�ice (%) fuel (Kg) (%)

MX1 18.21 2.025 93.85
MX2 26.89 2.585 92.22
MX3 30.11 3.611 79.38
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Table 3 shows equivalent fuel consumptions when using the ICEs average con-

stant efficiency �̄�ice in the PMP formulation for each driving cycle, when the ICE

operates on the points marked in Fig. 17 when using this solution in the detailed

models. This result also makes it possible to check that the strategy proposed in this

chapter has a better performance than the ECMS strategy in the literature, at least

when constant equivalence is used.

As we can see, consumption rises significantly between 12 and 30% more than in

the solution proposed by the PMP and PGS strategies.
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5.4 Engine Power

This section compares the powers used by the engines, using the two strategies con-

templated in this proposal. Because of the way they behave in the state of charge, we

would expect the powers and the combustion engines operating points to have very

similar behavior in the dynamics.

The power in the electric machine is given in Fig. 18, which illustrates that this

machine operates as a motor and a generator, in other words, the power is positive

when it is working in motor mode and negative when it is working as a generator, in

accordance with the needs of the driving cycle. Moreover, the electric power dynam-

ics are corroborated as being similar in the case of the PGS and PMP strategies.
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In cycle 3, that has the highest demand and recovery of energy for its range of

speed, both strategies enable the highest amount of energy to be recovered in the

regenerative braking.

The comparison of the power employed by the diesel internal combustion engine

is given in Fig. 19 for the four driving cycles used in the tests. In cycles 2 and 3, the

ICE at some instants of time is used at maximum capacity, while in cycle 1 this is

not necessary. Moreover Fig. 20 illustrates the ICEs operating points during every

driving cycle, which indicates the priority given to the speed setting imposed for

operating as efficiently as possible in respect of the efficiency map of Fig. 8.

6 Conclusions

On the one hand optimization helps to solve problems in a good way and in this

chapter is used as an engineering tool for the distribution of power in hybrid electric

vehicles. Hybrid vehicles help in some part to solve the problems related to transport,

which as in Mexico City, exist in different cities on the planet. On the other hand, in
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this chapter the simulation tool is used to perform some tests and thus evaluate the

solutions proposed by equations and the results, in order to improve the necessary

points of the proposed system.

In simulations it is observed that the vehicle achieves meet operator demands to

keep track of the driving cycles. As a next interesting point is that the state of charge

remains in the batteries and because of this it is possible to repeat each drive cycle

indefinitely and both fuel consumption reflected directly it corresponds to that used

for the operation of the vehicle.
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A Simulation-Based Optimization
Analysis of Retail Outlet Ordering
Policies and Vendor Minimum Purchase
Requirements in a Distribution System

Gerald W. Evans, Gail W. DePuy and Aman Gupta

Abstract This chapter presents an approach involving both discrete event simu-
lation (DES) and optimization to address operational problems faced by a distri-
bution system. In the system modeled, vendors may require minimum purchase
requirements for each order. The model can be used to determine whether retail
outlets should order product directly from the vendors, or through a centralized
warehouse, as well as whether each retail outlet should violate its pre-specified
inventory policy in order to meet vendor-minimum requirements. In addition, the
model can be of use as an aid in negotiation with vendors with respect to minimum
purchase requirements. The work is based on a project performed for an actual
company with a centralized warehouse, located in Louisville, Kentucky, and 19
retail outlets, located throughout the United States.

Keywords Inventory policy ⋅ Simulation ⋅ Optimization ⋅ Distribution

1 Introduction

The operation of a typical three-echelon distribution system involves the shipping
of stock keeping units (SKUs) from vendors to distribution center(s), from distri-
bution center(s) to retail outlets and directly from vendors to retail outlets (see
Fig. 1). Often, the SKUs are organized into product lines, where a specific product
line corresponds to a particular vendor. A vendor may specify that purchases within
a particular product line meet a minimum dollar or a minimum weight requirement;
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however, if a retail outlet orders the SKUs associated with a product line from a
distribution center, there typically is no minimum size order requirement.

In these three-echelon distribution systems, operating policies must account for
many inter-dependent decisions, including, for various combinations of SKUs,
product lines, retail outlets, and distribution centers, policies corresponding to the
answers to the following questions:

1. Should a retail outlet order a product line directly from the vendor, or from the
distribution center?

2. What reorder point and order quantity should each retail outlet or distribution
center use for each SKU?

3. If an order is to be placed with a vendor (as opposed to a distribution center) by
a retail outlet, and the minimum size order requirement is not met, which SKUs
(within the product line), if any, and corresponding order quantities should be
added to the order to meet the requirement?

Note that with respect to question 3 above, one must consider tradeoffs between
lost sales/backorders and inventory carrying charges; for example, a particular retail
outlet may add specific SKUs to an order in an effort to meet the minimum order
requirement specified by a vendor, thereby incurring fewer lost sales/backorders,
but also increasing inventory carrying charges. The answers to these questions will
depend on a number of factors, such as (1) customer demands at the various retail
outlets, (2) shipping charges, (3) inventory carrying charges, (4) purchase costs,
(5) selling prices, etc. In this chapter, we will describe, and illustrate the use of, a
simulation-optimization approach that can be used to answer the questions posed
above. Such a simulation-optimization approach allows for an accurate represen-
tation of the relationship between policy variables and performance measures (as
opposed to an analytical modeling approach); in addition, the optimization proce-
dure allows for the implicit consideration of a large number of alternative policies.

This chapter is organized as follows. In the next section, we review some of the
extensive literature in this area. In the third section, we describe a three-echelon
distribution system of the type described above for which a simulation model was
constructed for analysis. This model was developed for an actual organization
facing the problems described in this paper. Section four contains a description of
the simulation model that was developed to model the system. In the fifth section of

Vendors
Distribu on 

Center
Retail Outlets

Product flow

Orders

Fig. 1 A three-echelon distribution system
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the chapter, we provide the formulation for an optimization model, to be interfaced
with the simulation model. In the sixth section, we discuss the results of experi-
mentation with the simulation-optimization model for answering the questions
posed above. Data used for the simulation-optimization experiments described in
this section was actual data for a particular product line of the organization. Finally,
the last section of the paper contains a summary and conclusions.

2 Literature Review

The published research related to this paper can be categorized according to several
different characteristics, including (1) the type of system studied (e.g. one distri-
bution center vs. multiple distribution centers, one product vs. multiple products,
etc.), (2) the decisions addressed (e.g., facility location decisions, inventory policy
decisions, vendor decisions), (3) assumptions made (e.g., Poisson distributed
demands, etc.), and (4) modeling and optimization methodologies employed.

DES models, analytical models, and optimization techniques have been
employed both separately and in a joint fashion for several decades as an aid in the
design and operation of distribution systems. A major value of DES models is that
they can represent the time dynamic, probabilistic aspects of real world distribution
systems. Optimization techniques allow the identification of a “best” policy without
having to enumerate every possible policy; this feature is obviously important when
the number of possible policies is large, such as in situations when there is a
combination of integer decision variables (e.g., reorder points for several retail
outlets in an organization) or continuous decision variables. Even though it makes
sense to do so, these methodologies have only been rarely applied jointly as
described in this paper.

In spite of their drawbacks, a variety of publications describing the use of
analytical models have appeared in the literature. These analytical models are
typically easier to employ with optimization techniques because of their closed
form nature and the fact that one does not obtain just estimates for outputs, as is the
case with stochastic DES models. However, these models are often greatly
restricted with respect to the types of demand patterns that can be represented and
the fact that they are often static in nature.

As an example of these analytical models, Abdul-Jalbar et al. [1] formulated a
mixed integer, nonlinear optimization model for determining the inventory policy
variable values for a system consisting of one warehouse and multiple retailers.
Their work differs from many of the other analytical models for this type of
problem in that backorders are allowed and that, instead of a customer demand at
each of the retailers being uniformly distributed, the customer demands are modeled
as power patterns.

Boute et al. [6] developed an analytical model for analyzing a two-echelon
supply chain (one retailer and one manufacturer). Their model considered only one
type of product with independent, identically distributed demands and employed
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the variability of the order rate from the retailer as the primary decision variable; in
addition, their model allowed two types of strategies by the manufacturer: one
involving a flexible capacity which would ensure constant lead times with low
inventory levels, and the other an inflexible capacity resulting in stochastic lead
times and increased retailer inventory level.

Miranda and Garrido [25] addressed both the location and service level problem
for a two-stage (or three-echelon) distribution network involving a plant/central
warehouse, regional warehouses, and customer demand zones. Specifically, they
developed two optimization models, solved iteratively and in sequence. The first
model determines optimal regional warehouse locations and customer assignments
for a given service level, while the second model addresses the inventory
service-level optimization problem for the given locations.

Additional research in this area involving the use of analytic models has been
presented in [8, 9, 23, 26, 27, 32, 38].

Several researchers have developed metamodels of distribution systems/supply
chain simulation models. For example, Hayya et al. [16] developed regression
equations from fractional factorial experiments performed on a simulation model.
Specifically, they considered “order crossover” (defined as the situation where
orders are not received in the same sequence as placed) for the problem of deter-
mining optimal reorder quantity and reorder point for a situation with a single
product type.

Tee and Rossetti [36] explored the validity of Axsater’s [5] analytical models for
a two-echelon system with one warehouse and multiple retailers for a scenario of
nonstationary demand (a major assumption of Axsater’s models). In particular, they
developed a simulation model of the same two-echelon system to determine optimal
reorder points and reorder quantities. Tee and Rosetti determined that Axsater’s
models worked well in certain situations with low demand and large batch size
orders, but not so well under other conditions.

As noted above, each methodology (analytical modeling and simulation mod-
eling) has its own advantages and disadvantages when compared to the other
methodology. For example, Persson and Araldi [29] noted that, although many of
the supply chain models from the literature are of a closed form (an analytical
model) and involve the use of optimization techniques, these models are not able to
represent the dynamic perspective allowed by simulation models. Their work
involved using the Supply Chain Operations Reference (SCOR) model [34] as a
basis for the development of an Arena [22] DES model of a supply chain. Two case
studies are illustrated in their paper; the results of these case studies indicate where
the SCOR template could be improved, and therefore become an even more useful
tool.

Hung et al. [18] also noted that analytical models, although useful in some cases,
are too simplistic to be of practical use for complex supply chains. They developed
a general simulation model in which generic nodes were used to represent plants,
warehouses, and retailers, respectively. The model allows the investigation of
various replenishment control policies, including two continuous review policies
and two periodic review policies. Latin Supercube Sampling is used as an
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experimental procedure in the application of the model. A case study of a system
with two markets and four products was employed to demonstrate the model.

Jain [19] used a simulation model to represent a large supply chain consisting of
customers located in all 50 states and 27 countries, customer service centers, dis-
tribution centers, and suppliers. Through sampling of a relatively small number of
part types, Jain was able to develop insights into various relationships between
procurement times and administrative business process times (ABPT), between
ABPT and service levels, etc., with an ultimate aim of analyzing the tradeoffs
between service levels and low inventories.

Albino et al. [2] studied cooperation among supply chain members within the
context of industrial districts (defined as “specific production systems characterized
by a high level of fragmentation of the production process into several phases”).
The cooperation studied involves assignment of orders so that utilization of pro-
duction capacities is balanced among the various firms and unserved customer
demand is minimized. The cooperation is modeled through the use of an
agent-based simulation model.

Crnkovic et al. [11] presented a simulation-based decision support framework
for exploring tradeoffs in supply chains. In particular, they addressed the problem of
determining the amount of an item to produce in a volatile external environment in
which the production-sales interval is small under a variety of supply chain
configurations.

Son and Sheu [33] addressed a problem similar to the one addressed in this
paper, involving deviations from replenishment policies in a decentralized supply
chain. In particular, they employed Sterman’s Beer Game simulation as a hypo-
thetical case study to simulate the effects of deviations from a coordinated order
replenishment policy.

Tsai and Zheng [37] developed a simulation-based optimization approach for a
two echelon system similar to the one studied in this paper. More specifically, the
system studied consisted of a central warehouse and multiple “field depots”, each of
which supplies parts to customers who require those parts for machines which fail.
The basic problem addressed is to set the various stocking levels so that the total
inventory cost is minimized subject to constraints on the expected response time at
the depots. Tsai and Zheng noted that the use of a simulation model as opposed to
an analytical model avoids the assumption of independence between the depots.
They employed a sample average approximation technique, a cutting plane method,
and a ranking and selection procedure for solving their problem.

Chen et al. [7] addressed the management of a multi-echelon-production-
distribution supply chain for clinical trials of new drugs via a simulation-
optimization approach. Specifically, a set of mixed integer linear programs were
solved to determine the manufacturing and shipping plans for the system. The
effectiveness of these plans was then assessed through the use of Monte Carlo
simulation models for various demand scenarios.

Fang and Li [14] developed a multiobjective hybrid simulation-optimization
approach for the optimization of inventory policies in a complex distribution net-
work. The policies involved determining a reorder point and an order quantity at
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each of the inventory locations. The two conflicting performance measures of fill
rate and inventory cost were addressed through the use of a multiobjective genetic
algorithm (based on the work in [12]) interfaced with a simulation model of the
system. The approach was demonstrated on a system with a central distribution
center and 14 regional distribution centers.

Eruguz et al. [13] provided a comprehensive review of guaranteed service
models for the allocation of safety stocks (to minimize cost while meeting target
service levels) in multi-echelon distribution systems. These guaranteed service
models assume that a deterministic service time can always be satisfied at each
stage of the distribution system.

Chu et al. [10] developed a simulation-based optimization framework for
multi-echelon inventory problems with the objective of minimizing the inventory
cost while maintaining the service levels. The authors proposed an agent-based
simulation approach followed by a Monte-Carlo method. Lastly, the optimization
problem is solved by a cutting plane algorithm.

Güller et al. [15] presented a multiobjective optimization approach to determine
inventory control parameters with the objectives of minimizing total inventory cost
and maximizing the service level. To assess the control parameters an
object-oriented framework to develop the simulation model is also presented.

A simulation-optimization approach for the optimal operation of pull control
systems was proposed by Pedrielli et al. [28]. The proposed approach has the ability
to perform parameter optimization and performance evaluation in the same model.

Kochel and Nielander [24] also noted the difficulty of modeling realistic
inventory systems with an analytical modeling approach. They investigated the use
of simulation and optimization methodologies for determining continuous review
order point and order quantity policies; the hypothetical system studied involved a
single product which flowed through multiple locations in a multi-echelon inven-
tory system.

Rosen et al. [31] described a new method for interfacing simulation and opti-
mization that explicitly considers the user’s preference structure over risk and
uncertainty over multiple performance measures. They evaluated their approach
against two simulation-optimization methods that employ deterministic multicri-
teria strategies, and show that their approach yields significantly better results under
a variety of experimental settings.

Finally, the model described in this paper can be considered as a “data-driven
simulation model” since the daily demands at each of the retail outlets are read by
the model from an external file. Tannock et al. [35] used a data driven simulation
model from the civil aerospace sector to show that this type of model can be useful
in the improvement of supply chains. In particular, users can apply such a model to
different scenarios just by changing the input data.

Additional papers of interest in the area of applications of simulation for dis-
tribution system design and operation include [4, 17, 20, 21, 30].

As seen from the above review, most of the analytical models cannot be used for
purposes other than “high-level” decision-making in a distribution system/supply
chain since they are for the most part static in nature and require overly restrictive
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assumptions. Even many of the simulation models described in the literature have
been developed to represent only hypothetical systems involving, for example, only
a single part/product type, inflexible delivery schedules, etc. Even when actual
systems with multiple part/product types are modeled, relationships that exist when
products belong to the same product line are not considered. The simulation model
described in this paper addresses these various issues in an accurate fashion, and
hence allows for improved decision making.

3 Description of the System

A company operates a three-echelon physical distribution system for thousands of
different SKUs and is interested in analyzing two aspects associatedwith the operation
of its system: (1) the policies employed by its retail outlets with respect to whether the
SKUs are ordered directly from the vendor or through the company-owned distri-
bution center, and (2) the vendor minimum purchase requirements.

The company’s distribution system is composed of a single distribution center
and 19 retail outlets which distribute approximately 5000 different SKUs from
approximately 100 different vendors. These 5000 different SKUs are categorized by
product line—typically, each vendor has one product line. Customers can purchase
items at the retail outlets as well as the distribution center (i.e., the distribution
center also acts as a retail outlet in that it can sell product directly to customers).
The retail outlets can purchase SKUs directly from the vendor for that product line,
or through the company-owned distribution center. The distribution center pur-
chases SKUs directly from each vendor. The distribution center follows a regular
shipping schedule to each of the retail outlets.

Currently, separate methods are employed by the company to determine their
ordering policies at the retail outlets, depending on whether the SKU is ordered
directly from the vendor or through the distribution center.

3.1 Orders Placed Directly with the Vendor

When the on-hand inventory for a particular SKU at a retail outlet falls below the
reorder point for that SKU-outlet combination, a possible order to the vendor is
triggered. More specifically, all SKUs (with on-hand inventory levels less than their
respective reorder points) in the product line associated with the triggering SKU are
used to form a possible order to the vendor. If the resulting total order meets the
minimum purchase amount (in cost or weight) for that vendor-product line com-
bination, then the order is placed with the vendor. In some cases, the manager of the
retail outlet arbitrarily places an order with a vendor for the minimum purchase
amount even if the total order as originally computed did not meet the vendor’s
requirement, thus trading off higher inventory holding costs against the lower value
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of lost sales as a result of not being able to satisfy customer demand. This is
accomplished by adding SKUs to the order which had inventory levels above their
respective reorder points. This decision process associated with ordering SKUs for
a product line directly from a vendor is illustrated in Fig. 2.

SKU inventory level ≤ reorder 
point?

Add all SKUs in relevant product line (with 
respec ve inventory levels ≤respec ve reorder 

points) to order

Order meets minimum vendor 
requirement?
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Place order with 
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Fig. 2 Decision process associated with ordering product directly from a vendor
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The reorder points and order quantities for each respective SKU are computed as
functions of several parameter values, including customer demand, projected lead
time for delivery from the vendor, sales price, and a safety factor value. These
reorder points and order quantities can vary by specific SKU-retail outlet combi-
nation. Note that in computing the values for the reorder points and order quantities
for the distribution center, the customer demands for the SKUs at all retail outlets
supplied through the distribution center must be considered, as well as the customer
demand at the distribution center.

3.2 Orders Placed with the Distribution Center

One of the main advantages associated with ordering through the distribution center
for a retail outlet is that there is no minimum-sized order requirement. The decision
for a retail outlet of whether to order a product line from the distribution center or
from the vendor is determined as a function of several “static” parameter values,
including average customer demand, lead time, and prices for the items in the
product line. When the ordering policy for a particular product line dictates that
every SKU in that product line is to be ordered through the distribution center, a
min-max (i.e., an (s, S)) inventory policy is followed. In other words, whenever the
inventory level for any particular SKU that is ordered from the distribution center
falls below a pre-specified minimum value, an order is placed to the distribution
center for that SKU and for all other SKUs in the product line with inventory levels
below their pre-specified minimums. The order quantity for each SKU in the order
is set equal to a pre-specified maximum minus the current inventory level. Note that
these pre-specified maximum and minimum values for a SKU could vary among
the retail outlets.

The values associated with these pre-specified maximums and minimums are
computed as functions of several parameter values, including customer demand,
delivery time from the distribution center, sales price, and a safety factor value. As
stated previously, the distribution center follows a set schedule with respect to
delivery to the retail outlets.

4 The Simulation Model

The simulation model of the distribution system was developed with the Arena
Software Package [22]. This section of the chapter provides an overview of the
model’s operation; the inputs to the model, categorized as control variables or
parameters; and the output from the model.
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The model is composed of several sub-models, entitled:

1. Read Input Data,
2. Compute Initial Variable Values,
3. Day of Week and Day of Simulation Update,
4. Decrease Inventory Levels by Customer Demand and Modify Order to DC and

Order to Vendor Variables,
5. Generate Order Entities to DC and Vendors,
6. Schedule Shipments to Depart DC and Arrive at Retail Outlets,
7. Schedule Shipments to Depart Vendors and Arrive at Retail Outlets, and
8. Output Variable Computation.

Figure 3 illustrates the relationships between these submodels.
The sub-model Read Input Data reads data for the system from several different

Excel input files. This data includes the simulation duration, the warm-up period for
the simulation, the number of retail outlets, the fixed ordering costs, the number of
product lines, the specific SKUs in each product line, the product lines supplied by
each vendor, the minimum purchase requirement (in terms of weight or dollars) for
each product line, the vendor lead times to each retail outlet, the shipping schedule
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Fig. 3 Submodels of the simulation model
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from the distribution center to each retail outlet, the shipping costs (from vendors to
the retail outlets and from the distribution center to the retail outlets), the cost and
selling price for each SKU, the inventory carrying charges (expressed as a percent
of the value of the inventory), and the cost associated with a “lost sale” (expressed
as a percent of the selling price).

The sub-model Compute Initial Inventory Values computes the values asso-
ciated with several different model parameters, with the main ones being the
inventory policy values: reorder points, order quantities, minimums, and maximums
for each SKU at each retail outlet. Note that the values for reorder points and order
quantities are computed only for those SKUs that are ordered directly from the
vendor by the retail outlet, and that the values for maximums and minimums are
computed only for the SKUs that are ordered from the distribution center. The
values for the control variables associated with the decisions associated with
ordering directly from the vendor, or through the distribution center, discussed in
more detail below, are input through initialization of the Variables Modules of
Arena. Both of the sub-models Read Input Data and Compute Initial Inventory
Values are executed at simulated time 0.

The sub-model Day of Week and Day of Simulation Update is used to update
the values for the variables (1) Day of Week and (2) Day of Simulation as the
simulation is running. Day of Week is defined as having a value of 1 to represent
Monday and a value of 7 to represent a Sunday. The variable, Day of Week, is
important in representing the shipping schedule for the distribution center to the
retail outlets.

The sub-model Decrease Inventory Levels by Customer Demand and Modify
Order to DC and Order to Vendor Variables reads an Excel data file which
contains the customer demand for each SKU at each retail outlet for each day of the
simulation run. These are the actual customer demands, as the firm authorizing the
study was interested in determining an optimal policy with respect to the actual
demands for a specific year. Inventory levels are appropriately decreased and the
variable values associated with lost sales are also incremented when there is a
demand for a SKU with a zero level of on-hand inventory. In addition, a set of
variables which are used to form orders to the distribution center and to the vendors
are updated. This sub-model is executed once each simulated day.

The sub-model Generate Order Entities to DC and Vendors is executed each
simulated day immediately after execution of the sub-model Decrease Inventory
Levels by Customer Demand and Modify Order to DC and Order to Vendor
Variables. It uses the set of variables referred to in the previous paragraph in order
to form order entities representing orders to the distribution center and the vendors,
depending on which ordering policy is being followed (as determined by the
product line). This sub-model checks for orders to be placed by each retail outlet
each day of the simulation run. The order entities generated by this sub-model
contain attributes which represent the number of SKUs in each order, the specific
SKUs in the order, the quantity ordered for each SKU, and the specific retail outlet
making the order.
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When the policy indicates that a particular product line is ordered through the
distribution center, only those SKUs which have inventory positions (on-hand
inventory level plus number of units on order) less than the SKU-retail outlet
“minimum” are placed in the order.

Conversely, when the policy indicates that a particular product line is to be
ordered directly from the vendor for a particular retail outlet, this sub-model checks
to see whether the vendor minimum requirement is met by forming an order of all
SKUs with inventory positions below respective reorder points. The order quantity
for each SKU in the order is set by the computation performed in the sub-model
Compute Initial Variable Values. If the vendor minimum requirement is not met,
than SKUs are added to the order in a sequential manner, according to a control
variable: Fraction Extra Order (b, p); this control variable represents the maximum
fraction over the reorder point at retail outlet b for product line p for which a SKU
will be added to the vendor order.

For example, if the reorder point for a particular SKU in product line 3 at retail
outlet number 6 is 40, and the current inventory position is 43, then this position is
100 × (43 – 40) = 7.5% over its reorder point. Therefore, this SKU would be
eligible for addition to an order if the value for Fraction Extra Order (6, p) were
0.075 or higher, but not eligible otherwise.

Each time a SKU is added to a vendor order, a check is made to see if the vendor
minimum requirement is made. If the vendor minimum requirement is met, then an
order is placed; if not, then a check is made for the next SKU in the product line to
determine if it can be added to the order. If, after checking every SKU in the
product line, the vendor minimum requirement is not met, an order is not placed for
this product line.

The sub-model Schedule Shipments to Depart DC and Arrive at Retail
Outlets is executed based on entities which represent orders from the retail outlets
to the distribution center. This sub-model forms shipment entities which have as
attributes the specific SKUs in the shipment and appropriate shipment quantities.
The sub-model first finds the first available day (following the current day) for
which the distribution center is scheduled to make a shipment to this retail outlet
based on the shipping schedule input, and schedules an appropriate delay until the
shipment is to leave the distribution center. At that simulated time, the program
cycles through each SKU in the order and determines if the distribution center has
enough inventory to completely satisfy the order. If so, the shipment entity is
formed accordingly. If not, the shipment quantity for the relevant SKU is based on
the amount available in the distribution center inventory.

If there is not enough inventory at the distribution center to satisfy the order for a
particular SKU for at a retail outlet, then the variable: Number of Insufficient
Shipments from the DC is increased by 1, and the attribute values associated with
the shipment quantities are appropriately decreased.

Appropriate changes are made to variables representing inventory levels, volume
of inventory, and value of inventory at the distribution center, as well as inventory
in transit from the distribution center to the retail outlets. Variables representing
shipping charges are also updated. In addition, this sub-model revises variables
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which will set up potential orders from the distribution center to the vendors, based
on the revised inventory levels at the distribution center.

Following a simulated delay associated with the lead time corresponding to the
shipping schedule, the shipment arrives at the retail outlet. At this time, the vari-
ables representing the on-hand inventory levels, inventory on order, value of
inventory, and volume of inventory at the retail outlets are updated.

The sub-model Schedule Shipments to Depart Vendors and Arrive at Retail
Outlets is executed based on entities which represent orders from the retail outlets
to the vendors. This sub-model is somewhat simpler than the Schedule Shipments
to Depart DC and Arrive at Retail Outlets sub-model, since inventory levels at
the vendors do not have to be explicitly represented as they do at the distribution
center. This sub-model first updates the values for the variables representing
ordering costs and costs for purchase of stock. Following an appropriate delay
corresponding to the lead time from the vendor to the retail outlet variables cor-
responding to inventory levels, values, and volumes are updated, along with
shipping charges.

The final sub-model, Output Variable Computation, is executed at the end of
the simulation run. As its name indicates, this sub-model computes and outputs the
performance measure values for the simulation run.

The simulation model described above computes values for a variety of per-
formance measures, including:

1. Inventory Holding Costs,
2. Shipping Charges from the Vendors,
3. Shipping Charges from the Distribution Center,
4. Fixed Ordering Costs,
5. Cost of Purchase of SKUs from the Vendor,
6. Cost associated with Lost Sales,
7. Gross profit from the sales of SKUs,
8. Value of all Inventory at the End of the Warm-Up Period of the Simulation Run.
9. Value of all Inventory at the End of the Simulation Run.

All costs and profits (performance measures 1 through 7) were calculated for
each retail outlet, the distribution center and the entire system except for the
shipping charges from the distribution center (performance measure 3) which was
only calculated for each retail outlet and the entire system.

The inventory holding costs are computed as a percentage of the time average
value of the inventory in stock over a 1-year period of time. The input data for the
model allows for this annual inventory holding interest rate to vary by retail outlet,
however the company uses a rate of 25% for each retail outlet in the system.

The shipping charges are also computed as a percentage of the value of each
shipment. These percentages, which are inputs to the model, are also allowed to
vary depending upon whether the shipment was being made directly from the
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vendor, or from the distribution center, and also depending on the retail outlet to
which the shipment was being made.

The fixed ordering cost for an order is calculated as a constant multiplied by the
number of different SKUs in an order. The constant is allowed to vary depending
upon whether the order was being placed with the distribution center or directly
with the vendor. Since the system’s management is not very concerned about these
fixed ordering costs, a constant $1 is used.

The cost associated with the purchase of SKUs from the vendor is computed as a
constant (determined from the system’s database) for a particular SKU multiplied
by the number of SKUs of that type purchased.

The penalty cost associated with any lost sales is computed as a constant, which
was allowed to vary by SKU, multiplied by the number of units of demand not met.
For the experiments reported later in this chapter, a constant of 1% of the cost of the
SKU per unit from the vendor was used. The company recommended this small
penalty percentage as they believe the major cost associated with lost sales is lost
profit. Hence, this lost profit cost is already implicitly considered through the
decrease in sales.

Initial inventory levels (i.e., at simulated time 0) for each SKU at each retail
outlet are set equal to the halfway point between the minimum and maximum
inventory levels employed as policy variables when the retail outlet orders inven-
tory from the distribution center (as discussed in Sect. 3.2). Initial inventory levels
at the distribution center for each SKU are set at a value equal to 1.2 times the
reorder point value for that SKU. The calculation of these reorder points considers
the customer demand at the distribution center as well as half of the demand
associated with the 19 retail outlets (implicitly assuming that approximately half of
the retail outlets will order their product through the distribution center as opposed
to directly from a supplier). Since setting inventory levels at these values is
somewhat arbitrary, the model was allowed to warm up for a period of three
months, before the start of data collection.

Following the 3-month warm up period, the value of all inventory in the system
is computed (called Value of all Inventory at the End of the Warm Up Period of
the Simulation Run in the list above). This variable value, as well as the value for
the variable Value of all Inventory at the End of the Simulation Run, were very
complex computations, because these values reflect the policy being simulated with
respect to whether the various product lines are being ordered through the distri-
bution center or directly from the vendor for each retail outlet. Without going into
specific detail on these calculations, they consider the profit from selling the
inventory minus the inventory holding cost minus the shipping charges for ship-
ments from the DC to the retail outlets. The calculation assumes that during the
future period for which the inventory levels are depleted, the demand rate is con-
stant and equal to the average demand rate for the SKU at the retail outlet over the
entire simulation run.
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5 Optimization Model

An optimization model, to be interfaced with the simulation model described in
Sect. 4, can be defined through the use of decision variables (control variables for a
simulation model) and parameters, an objective function (or functions if there are
multiple objectives to consider) of the control variables, and constraints.

In the discussion which follows in this section, we will assume that there is only
one product line, consisting of a specified number of SKUs. This assumption of one
product line will allow for a simplified model presentation, as well as simplified
experimentation. Since the product lines operate independently, the extension of the
optimization model to represent multiple product lines is straightforward.

We begin by providing notation for several parameters. Let

B= the number of ``branches′′, or retail outlets, and

S= the number of different SKU′s in the product line.

A wide variety of control variables could be considered for this simulation
model. Corresponding to the desires of company management, we focused on two
categories of control variables for our experimentation:

yb=
1, if theproduct lineat retail outlet b isordered throughthedistributioncenter,
0,otherwise i.e., theproduct line isordered directly fromthevendorð Þ,
for b=1, . . . , Band

8
<

:

xb =Fraction ExtraOrder b, 1ð Þ; for b=1, . . . , B.

Note that the second category of control variable, xb, is only employed for a
retail outlet b and when yb = 1. Also when yb = 0, retail outlet b orders all SKUs
in the product line directly from the vendor. The Fraction Extra Order variable was
defined in Sect. 4; as noted, this control variable allows the adding of a SKU to an
order from a retail outlet to a vendor even if the inventory level for that SKU is
greater than its “small s” value. The purpose is of this variable is to allow for the
composition of an order which meets the vendor minimum requirement.

Additional control variables which could have been considered include those
related to the shipping schedule from the distribution center to the retail outlets and
the values employed for the inventory policy variables. However, in keeping with
the company’s desires and also to keep the study relatively simple, we focused on
the two categories defined above.

A variety of criterion models could have been developed to consider the various
performance measures listed above. Any such criterion model would contain an
objective function of these performance measures to be optimized, and a set of
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constraints. For example, one might want to maximize the gross profit in overall
sales from the system, subject to constraints on inventory carrying charges at some
of the retail outlets. One criterion model developed for experimentation was the
maximization of net profit, defined as follows:

Net Profit =Gross profit from the sales of SKUs+ ðValue of all Inventory at the End
of the SimulationRun−Value of all Inventory at the End of theWarmUp

Period of the SimulationRunÞ− InventoryHoldingCosts− FixedOrdering

Costs− ShippingCharges from theVendor− Shipping Charges from the

Distribution Center−Cost of Purchase of SKUs from theVendor−Cost

associatedwith Lost Sales.

A simpler model was also developed for experimentation. This model, which
allows for the study of tradeoffs between inventory holding costs and lost sales, can
be defined as follows:

Minimize InventoryHolding Costs ð1Þ

subject to:

xb = b1, for b= 1, . . . , B, ð2Þ

Units of Lost Sales ≤ b2, ð3Þ

MinimumPurchase Order = b3, ð4Þ

yb is 0, 1 and xb ≥ 0 for b= 1, . . . , B. ð5Þ

In the optimization model above, the b1, b2, b3 represent constants which are the
right hand sides of the constraints. The objective function, Inventory Holding
Costs, as well as the left hand side of (3), Units of Lost Sales, are determined as
output from the simulation model. The values for the left hand sides of (2) and (4),
xb and Minimum Purchase Order, respectively, are determined by just setting these
values equal to b1 and b3, respectively.

The basic idea in solving (1)–(5) is to determine the values for y1, y2, …, yB that
will minimize Inventory Holding Costs while satisfying the constraints. Since a
simulation is used, there is no closed-form function which represents the rela-
tionship between y1, y2, …, yB and Inventory Holding Costs or Units of Lost Sales.
Hence, a metaheuristic, as employed in the software package, OptQuest, is used.

Results from experimentation with this model are reported in Sect. 6 of the
chapter.
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6 Simulation-Optimization Results

Simulation optimization experiments are reported here for one product line con-
taining 25 different SKUs. As with the actual system, there are 19 retail outlets.
Allowing each of the retail outlets, for b = 1,…, 19, to order the product line either
directly from the distribution center (yb = 1) or from the vendor (yb = 0), resulted
in an optimization model with 19 zero-one variables, corresponding to the 19 retail
outlets.

This optimization model has 219 = 524,288 feasible solutions when all combi-
nations of zeros and ones are considered. Since it is not computationally feasible to
enumerate all of these solutions, an optimization algorithm is needed. In particular,
the model was solved through the use of the OptQuest (April et al. [3]) tool,
associated with the Arena software package. OptQuest relies on the metaheuristic
optimization tools of scatter search, tabu search, and artificial neural networks to
search the feasible decision variable space.

Results from the simulation-optimization runs are shown in Tables 1, 2, 3, and 4
for values of b3 (the value set for minimum purchase order) of $4000, $3000,
$2000, and $1000, respectively. Note that $4000 is the current value for minimum
purchase amount from the vendor for this particular product line. In the tables, each
row represents information concerning the best solution found by OptQuest for the
problem given by (1)–(4) for specific values for the right hand sides of the con-
straints (b1, b2, b3).

Table 1 Optimization results for b3 (minimum purchase order) = $4000

Value of
fraction
extra order (b1)

Upper limit
of units of
lost sales (b2)

Units of lost
sales associated
with solution

Inventory
holding costs
for solution
(in dollars)

Number of RO’s
ordering from the
DC for solution

1 1400 1395 39,288 7
1 1000 986 40,964 8
1 600 574 49,558 11
0.75 1400 1372 35,041 6
0.75 1000 942 37,240 5
0.75 600 605 55,530 19
0.5 1400 1302 31,272 5
0.5 1000 996 33,131 8
0.5 600 605 50,558 19
0.25 1400 1369 28,057 4
0.25 1000 854 31,266 7
0.25 600 610 48,209 19
0 1400 1307 26,982 6
0 1000 972 36,173 10

0 600 628 44,382 19
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Table 2 Optimization results for b3 (minimum purchase order) = $3000

Value of
fraction
extra order (b1)

Upper limit
of units of
lost sales (b2)

Units of lost
sales associated
with solution

Inventory
holding costs
for solution
(in dollars)

Number of RO’s
ordering from the
DC for solution

1 1400 1204 35,772 3
1 1000 959 37,500 4
1 600 596 42,945 11
0.75 1400 1261 32,320 5
0.75 1000 977 34,669 6
0.75 600 566 41,927 15
0.5 1400 1293 29,404 3
0.5 1000 853 32,561 3
0.5 600 605 52,427 19
0.25 1400 1388 26,958 3
0.25 1000 987 30,925 9
0.25 600 610 48,324 19
0 1400 1381 25,406 4
0 1000 972 27,700 7
0 600 613 44,737 19

Table 3 Optimization results for b3 (minimum purchase order) = $2000

Value of
fraction
extra order (b1)

Upper limit
of units of
lost sales (b2)

Units of lost
sales associated
with solution

Inventory
holding costs
for solution
(in dollars)

Number of RO’s
ordering from the
DC for solution

1 1400 755 37,146 2
1 1000 755 37,146 2
1 600 591 41,633 10
0.75 1400 784 34,050 3
0.75 1000 784 34,050 3
0.75 600 597 37,945 10
0.5 1400 842 31,599 2
0.5 1000 842 31,599 2
0.5 600 589 36,410 13
0.25 1400 922 28,630 2
0.25 1000 922 28,630 2
0.25 600 606 48,089 18
0 1400 1101 25,559 5

0 1000 982 26,697 4
0 600 613 45,217 19
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The third column of each table shows the left hand side value for the constraint
(3) for the solution found. The purpose of showing these values was basically to
show whether or not that constraint (specifically the right-hand-side constant, b2)
was close to binding or not; note that feasible solutions were obtained in most, but
not all cases; e.g., in the last line in Table 1, there were 628 units of lost sales, but
b2 = 600, indicating that the lost sales constraint was violated for the solution
found.

The values found for the inventory holding costs for the solutions are shown in
the fourth column of the tables, entitled Inventory Holding Costs for Solution (in
dollars). Finally, the numbers of retail outlets ordering product from the distribution
center (instead of directly from the vendor) for the near optimal solutions found are
shown in the last column.

In order to more easily view the tabular results, polynomial functions were fit to
the outputs, showing the relationships between lost sales and inventory holding
costs for the various values of minimum purchase requirements from the vendor
($4000, $3000, $2000, and $1000, respectively). These graphs are shown in Fig. 4.

One should first note that the results are not always “nice”, and in some cases are
counterintuitive. This could be the result of several things associated with the study.
First, not all possible control variables were considered. For example, the reorder
points and reorder quantities employed in the study were computed according to the
prespecified policy of the firm, according to the firm’s desires; it can be noted
however that this policy did account for whether an item was ordered through the
distribution center or directly from the vendor for each retail outlet. Second, the

Table 4 Optimization results for b3 (minimum purchase order) = $1000

Value of
fraction
extra order (b1)

Upper limit
of units of
lost sales (b2)

Units of lost
sales associated
with solution

Inventory
holding costs
for solution
(in dollars)

Number of RO’s
ordering from the
DC for solution

1 1400 633 36,420 3
1 1000 633 36,420 3
1 600 579 37,396 7
0.75 1400 687 32,868 1
0.75 1000 687 32,868 1
0.75 600 599 35,597 7
0.5 1400 698 30,760 2
0.5 1000 698 30,760 2
0.5 600 592 32,659 8
0.25 1400 774 29,326 2
0.25 1000 774 29,326 2
0.25 600 605 48,965 19
0 1400 865 27,120 4
0 1000 865 27,120 4
0 600 609 46,262 19
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actual demands at the retail outlets were used in the simulation, again according to
the firm’s desires; unusual demand patterns could have resulted in counterintuitive
results in some cases. Third, the optimization procedure is heuristic in nature,
working better in some cases than in others. Exact algorithms are not appropriate
for this problem since the functional relationships between the control variables and
the responses are not of a closed-form nature. The OptQuest tool, which incorpo-
rates elements of scatter search, tabu search, and artificial neural networks, was
convenient for use in this case since it is an “add-on” for the Arena software
package.

As noted, each record in each of the tables represents a near optimal solution to
the optimization problem (1)–(4) for specific values of b1, b2, and b3, thereby giving
the manager of the system much flexibility in choosing a solution.

One should also note that increasing the value of b1 (the value of the fraction
extra order parameter) is not the same thing as increasing reorder point values, as a
value of b1 other than zero only takes affect when the minimum purchase
requirement by the vendor is not met.

In viewing the results as illustrated in Fig. 4, the tradeoff between lost sales and
inventory holding costs is obvious. Of particular interest is the effect of lower
minimum purchase requirement of the vendor. That is lower values for both lost
sales and inventory holding costs can be achieved simultaneously as the minimum
purchase requirement of the vendor is decreased. The effect is especially pro-
nounced in a decrease from $3000 to $2000. This type of information can be
especially useful in negotiations with the vendor.

The importance of the distribution center to the system is noted as the
right-hand-side for the lost sales constraint is decreased. For example, as shown in
Table 1, at the current value for minimum purchase requirement of $4000, and
b1 = 0, the number of retail outlets that order product through the distribution
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Fig. 4 Relationships between lost sales and inventory holding costs for various values of
minimum purchase amounts from vendor
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center (as opposed to directly from the vendor) increases from 6, to 10, to 19 (i.e.,
all retail outlets) as the right-hand-side for the lost sales constraint decreases from
1400, to 1000, to 600, respectively.

7 Summary and Conclusions

A detailed simulation model, representing the operation of a three-echelon distri-
bution system consisting of vendors, a centralized warehouse, and multiple retail
outlets, is described in this paper. The model represents shipments from the vendors
to the centralized warehouse, from the vendors to the retail outlets, and from the
centralized warehouse to the retail outlets, as well as orders from the retail outlets to
the warehouse and vendors, and from the warehouse to the vendors. A wide variety
of inputs and outputs are represented by the model, including daily demands for
each SKU at each retail outlet, and inventory levels for each SKU at each retail
outlet and at the warehouse. A key feature of the model is the use of control
variables to represent the policy decisions of whether a retail outlet orders a product
line directly from its vendor, or from the centralized warehouse, and the “amount of
violation” by each of the retail outlets with respect to ordering a SKU when that
SKU’s inventory level is greater than its pre-specified reorder point (in order to
meet a vendor minimum order requirement).

An optimization model was interfaced with the simulation model with control
variables (as defined above) as decision variables. Several examples were run to
illustrate the optimization. In some cases counterintuitive results were achieved,
possibly as a result of not considering all possible control variables (such as reorder
points and order quantities) in the optimization. This illustrates the importance of a
system-wide perspective in systems as complex as supply chains and distribution
systems, as well as the importance of detailed simulation models for the study of
such systems.

Finally, a surprising aspect of the project itself was the complexity of the sim-
ulation model that was required to model the system. One would think that mod-
eling a system in which products, organized into product lines, are depleted from
some locations, and just moved from one location to another, would be relatively
easy to model. However, tracking the various movements, inventory levels for
various SKUs, and various variables representing different types of costs and
profits, resulted in a very complex model.

Acknowledgements This work was funded from a contract received through the Center for
Engineering Logistics and Distribution (CELDi), a multi-university, multi-disciplinary National
Science Foundation sponsored Industry/University Cooperative Research Center (I/UCRC). The
authors also acknowledge (1) the aid of two former graduate students from the Department of
Industrial Engineering at the University of Louisville: Maria Chiodi and Elizabeth Forney, and
(2) the helpful suggestions of anonymous referees.

A Simulation-Based Optimization Analysis of Retail … 245



References

1. Abdul-Jalbar, B., Gutierrez, J. M., & Sicilia, J. (2009). A two-echelon inventory/distribution
system with power demand pattern and backorders. International Journal of Production
Economics, 122, 519–524.

2. Albino, V., Carbonara, N., & Giannoccaro, I. (2007). Supply chaín cooperation in industrial
districts: A simulation analysis. European Journal of Operational Research, 177(1), 261–280.

3. April, J., Glover, F., Kelly, J. P., & Laguna, M. (2003). Practical introduction to simulation
optimization. In S. Chick, P. J. Sánchez, D. Ferrin & D. J. Morrice (Eds.), Proceedings of the
2003 Winter Simulation Conference (pp. 71–78). Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

4. Arns, M., Fischer, M., Kemper, P., & Tepper, C. (2002). Supply chain modeling and its
analytical evaluation. Journal of the Operational Research Society, 53(8), 885–894.

5. Axsater, S. (2000). Simple solution procedure for a class of two-echelon inventory problems.
Operations Research, 38(1), 64–69.

6. Boute, R. N., Disney, S. M., Lambrecht, M. R., & Van Houdt, B. (2009). Designing
replenishment rules in a two-echelon supply chain with a flexible or an inflexible capacity
strategy. International Journal of Production Economics, 119(1), 187–198.

7. Chen, Y., Mockus, L., Orcun, S., & Reklaitis, G. V. (2012). Simulation-optimization
approach to clinical trial supply chain management with demand scenario forecast. Computers
and Chemical Engineering, 40, 82–96.

8. Chen, L.-H., & Kang, F. S. (2007). Integrated vendor-buyer cooperative inventory models
with variant permissible delay in payments. European Journal of Operational Research, 183
(2), 658–673.

9. Cheng, T. C. E., & Wu, Y. N. (2005). The impact of information sharing in a two-level supply
chain with multiple retailers. Journal of the Operational Research Society, 56(10), 1159–
1165.

10. Chu, Y., You, F., Wassick, J. M., & Agarwal, A. (2015). Simulation-based optimization
framework for multi-echelon inventory systems under uncertainty. Computers and Chemical
Engineering, 73, 1–16.

11. Crnkovic, J., Tayi, G. K., & Ballou, D. P. (2008). A decision support framework for exploring
supply chain tradeoffs. International Journal of Production Economics, 115, 28–38.

12. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197.

13. Eruguz, A. S., Sahin, E., Jemai, Z., & Dallery, Y. (2016). A comprehensive survey of
guaranteed-service models for multi-echelon inventory optimization. International Journal of
Production Economics, 172, 110–125.

14. Fang, D. J., & Li, C. (2014). Simulation-based hybrid approach to robust multi-echelon
inventory policies for complex distribution networks. International Journal of Simulation
Modelling, 13(3), 377–387.

15. Güller, M., Uygun, Y., & Noche, B. (2015). Simulation-based optimization for a capacitated
multi-echelon production-inventory system. Journal of Simulation, 9(4), 325–336.

16. Hayya, J. C., Harrison, T. P., & Chatfield, D. C. (2009). A solution for the intractable
inventory model when both demand and lead time are stochastic. International Journal of
Production Economics, 122, 595–605.

17. Holweg, M., & Bicheno, J. (2002). Supply chain simulation-a tool for education,
enhancement and endeavor. International Journal of Production Economics, 78(2), 163–175.

18. Hung, W. Y., Kucherenko, S., Samsatli, N. J., & Shah, N. (2004). A flexible and generic
approach to dynamic modeling of supply chains. Journal of the Operational Research
Society, 55(8), 801–813.

19. Jain, S. (2004). Supply chain management tradeoffs analysis. In R. G. Ingalls, M. D. Rosetti,
J. S. Smith & B. A. Peters (Eds.), Proceedings of the 2004 Winter Simulation Conference
(pp. 1358–1364). Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

246 G.W. Evans et al.



20. Jansen, D. R., van Weeen, A., Beulens, A. J. M., & Huirne, R. B. M. (2001). Simulation
model of multi-compartment distribution in the catering supply chain. European Journal of
Operational Research, 133(1), 210–224.

21. Katsaliaki, K., & Brailsford, S. C. (2007). Using simulation to improve the blood supply
chain. Journal of the Operational Research Society, 58(2), 219–227.

22. Kelton, W. D., Sadowski, R. P., & Swets, N. B. (2010). Simulation with arena (5th ed.).
Boston: McGraw-Hill.

23. Khouja, M. (2003). Synchronization in supply chains: Implications for design and
management. Journal of the Operational Research Society, 54(9), 984–994.

24. Kochel, P., & Nielander, U. (2005). Simulation-based optimisation of multi-echelon inventory
systems. International Journal of Production Economics, 93–94, 505–513.

25. Miranda, P. A., & Garrido, R. A. (2009). Inventory service–level optimization within
distribution network design problem. International Journal of Production Economics, 122,
276–285.

26. Neale, J. J., & Willems, S. P. (2009). Managing inventory in supply chains with nonstationary
demand. Interfaces, 39(5), 388–399.

27. Ng, C. T., Li, L. Y. O., & Chakhlevitch, K. (2001). Coordinated replinishments with
alternative supply sources in two-level supply chains. International Journal of Production
Economics, 73, 227–240.

28. Pedrielli, G., Alfieri, A., & Matta, A. (2015). Integrated simulation–optimisation of pull
control systems. International Journal of Production Research, 53(14), 4317–4336.

29. Persson, F., & Araldi, M. (2009). The development of a dynamic supply chain analysis
tool-integration of SCOR and discrete event simulation. International Journal of Production
Economics, 121, 574–583.

30. Persson, F., & Olhager, J. (2002). Performance simulation of supply chain designs.
International Journal of Production Economics, 77, 231–245.

31. Rosen, S. L., Harmonosky, C. M., & Traband, M. T. (2007). A simulation optimization
method that considers uncertainty and multiple performance measures. European Journal of
Operational Research, 181(1), 315–330.

32. Shin, H., & Benton, W. C. (2007). A quantity discount approach to supply chain coordination.
European Journal of Operational Research, 180(2), 601–616.

33. Son, J. Y., & Sheu, C. (2008). The impact of replenishment policy deviations in a
decentralized supply chain. International Journal of Production Economics, 113, 785–804.

34. Supply Chain Council (2011). Retrieved July 8, 2011, from http://www.supply-chain.org.
35. Tannock, J., Cao, B., Farr, R., & Byrne, M. (2007). Data-driven simulation of the

supply-chain—Insights from the aerospace sector. International Journal of Production
Economics, 110(1), 70–84.

36. Tee, Y. S., & Rossetti, M. D. (2002). A robustness study of a multi-echelon inventory model
via simulation. International Journal of Production Economics, 80, 265–277.

37. Tsai, S. C., & Zheng, Y. X. (2013). A simulation optimization approach for a two-echelon
inventory system with service level constraints. European Journal of Operational Research,
229(2), 364–374.

38. Wagner, S. M., & Friedl, G. (2007). Supplier switching decisions. European Journal of
Operational Research, 183(2), 700–717.

A Simulation-Based Optimization Analysis of Retail … 247

http://www.supply-chain.org


Optimization and Simulation of Fuel
Distribution. Case Study: Mexico City

Ann Wellens, Esther Segura Pérez, Daniel Tello Gaete
and Wulfrano Gómez Gallardo

Abstract In this chapter, the combined use of optimization and simulation in the
design of a distribution network for hazardous materials in the northern region of
Mexico City is assessed. A mathematical programming model was developed to
allow for fuel dispatch truck allocation, minimizing the total distribution cost.
Heuristics were used to solve the model and different simulation scenarios were
applied to do what-if analysis to be able to decide on different managerial situations.
Reviewing simulation and optimization results, an appropriate estimate of the fuel
quantity to order (EOQ), the best type of truck to carry out the supply, as well as the
ordering schedule that minimizes the associated costs of distribution and inventory,
is provided. This real-life Mexican case study shows how a combined
optimization-simulation approach, specifically taking advantage of heuristic
methods to diminish computing time, can provide a practical, efficient and flexible
tool for optimization assessment in operational research.

1 Introduction

Fuel supply has been studied since 1959 when Dantzig and Ramser publish The
Truck Dispatching Problem, assessing the optimization of the routing of vehicles
transporting gasoline from a terminal to different service stations. Since then, a
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variety of bibliographical material on optimization and simulation of fuel supply has
been published, most of them on optimization of the distribution from production
sites to refineries, as well as from refineries to mayor storage terminals, mostly by
pipelines.

For fuel distribution from a minor deposit or distribution terminal, as Dantzig
and Ramser, most of the authors consider trucks that can dispatch part of its load at
different service stations. However, due to ruling standards, in México only trucks
without compartments and with only one valve are allowed, changing the nature of
the fuel distribution problem.

A Mexican company that distributes gasoline in the north of Mexico City using
C3 type trucks [63] having a 20 (exactly 20.108) m3 capacity, wants to know if the
inclusion of T3-S3 and T3-S2-R4 type trucks [63] with capacities of 45 (46.149) m3

and 60 (61.504) m3 respectively, will minimize the distribution costs given a
constant demand. The previous problem corresponds to a Designing Distribution
Networks (DDN) problem, where the main goal is to distribute the fuel in the
cheapest possible way. Figure 1 represents the problem graphically.

This chapter is organized in the following way: Sect. 2 addresses the theoretical
background on designing distribution networks for hazardous materials and
inventory optimization and management, Sect. 3 presents the used methodology
and Sect. 4 shows the observed results, including data collection, determination of
the distribution costs and model formulation and results.

The goal of this study is to optimize the distribution network of a hazardous
material for a company that operates in the north of Mexico City, allowing the use

Fig. 1 Representation of the study problem
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of a heterogeneous fleet, through a mathematical programming model and
simulation.

As specific objectives, the following can be mentioned:

• Collection of information on and statistical analysis of the present state of the
fuel supply system in the Azcapotzalco territorial delegation.

• Estimation of fuel demands and distribution costs for the service stations in the
Azcapotzalco region.

• Construction of a mathematical programming model to be able to obtain a good
solution for fuel ordering quantity, periodicity and the type of truck to be used,
considering the collected and estimated information in the previous steps.

• Selection and simulation of different scenarios representing possible critical
situations.

• Evaluation of the proposed scenarios by determining the corresponding per-
formance measures, to be able to define possible improvements that can be
implemented in the fuel supply system.

2 Theoretical Background

The optimization of vehicle routing and scheduling problems has been studied
extensively in specialized literature. This kind of problems aim at establishing the
best possible way to distribute products and goods from an origin node to a destiny
node, considering changes in the network structure, satisfying the customer
demands and minimizing the total costs. This cost is usually expressed in terms of
transport costs, inventory costs, opportunity costs, investment, and location-
allocation costs.

2.1 Designing Distribution Networks

The models for designing distribution networks are composed of several
sub-problems to be optimized. The main ones are: location, allocation, routing, and
inventory; different models result when variables are static or dynamic, determin-
istic or stochastic, discrete or continuous, among others.

The design of the distribution network considers different types of decisions, as
for example the location of the elements of the network, fleet dispatching, client and
provider assignment, inventory and routing management [8]. Each of these deci-
sions can be optimized independently or jointly. For example, the vehicle routing
problem (VRP) combines the decisions of selecting the best route and client
assignment with homogeneous or heterogeneous fleet [15, 31, 49]. The location
routing problem (LRP) combines the decision of locating and assigning clients to
distribution terminals [35, 45, 90].
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Min et al. [57] present the origin and evolution of LRP problems, including
different mathematical formulations; they present different LRP classifications
based on the number of deposits to locate, demand variations, vehicle number and
capacities, distance between nodes, time restrictions or the form of the objective
function. Routing and locating models for real-life problems are reported by several
authors; see for example [1, 5, 6, 9, 10, 12, 14, 24, 29, 30, 33, 38, 44, 50, 52–54, 56,
60, 62, 67, 69, 72, 73, 75, 87–89].

Problems studying inventory control and vehicle routing jointly are known as
inventory routing problems or IRP [23, 35, 42, 45, 90]. IRP problems are closely
related to vendor managed inventory (VMI) problems, having the following
characteristics: inventory levels are monitored by the vendor, which decides order
quantity and moment, and if shortage of stock is allowed.

At present, models have been developed that consider at the same time decisions
on localization, routing and inventories [1, 13]. However, the high complexity
involved in solving the complete problem with a sole algorithm originated the
formulation of models that solve the problem in stages, in order to find a good
solution in the smallest possible computer time. These methodologies involve exact
or heuristic algorithms to solve the required decisions. For example, this is the case
in the study presented by Flisberg et al. [27] where an exact solution algorithm is
proposed to obtain vehicle flows whereas the TABU search method is used in a
second step to find optimal routes towards the clients. The use of matheuristics for
solving different types of vehicle routing problems, making use of mathematical
programming models in a heuristic framework, is assessed in the interesting review
presented by Archetti and Speranza [3].

Different kinds of transportation networks include direct shipping, milk runs,
crossdocking and tailored networks [18]. The direct shipping network delivers
products from suppliers to their customers and is the one used in this study.

2.2 Models for Designing Distribution Networks
for Hazardous Materials (DDNHM)

Since the publication of The Truck Dispatching Problem [22], several studies have
been published on the optimization and simulation of fuel supply; see for example
[77] or [58].

According to Winkler [91], the fuel distribution process consists of three steps.
The first step includes the distribution from the extraction and/or production plant to
the storage terminal, the second step corresponds to the transport of the fuel from
the storage terminal to the retail customers (in this case the service stations), while
the third and last step corresponds to the distribution to the final client, being cars
and/or trucks in this case.

The project presented in this study focuses on fuel distribution in the second
stage, that is, from the storage terminals to the retail customers, service stations or
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petrol stations. In this stage, distribution is carried out by fixed-capacity trucks, as
specified in corresponding regulations.

The work of Çetinkaya et al. [16] shows that fuel truck dispatch policies for
stock replacement can be carried out regarding two metrics, based on quantity or
time. Results showed that truck dispatch based on required quantity provides higher
savings in transport costs. In this study, truck dispatching is thus planned based on
quantity and using the EOQ inventory model.

Chopra [17] considers the parameters associated with the designing of the dis-
tribution network to be directly related to the customer’s necessities and the costs
needed to implement the network. The first of them include the response time, the
variety and availability of offered products, post-sales services, etc. The latter
involve the holding costs, transport costs, costs of physical installations and the
associated cost of the information system used.

The study by Flisberg et al. [27], mentioned before, presents a truck dispatching
problem where daily routes of woodworking trucks deliver to a combination of
clients using heterogeneous fleet and taking multiple planning horizons trough
mathematical programming and TABU search.

An analysis of literature in the field shows that one of the heuristic algorithms
more frequently used to solve the optimization of distribution networks is GRASP
(see for example [26, 70]) in combination with mathematical programming. Table 1

Table 1 Most relevant studies for the optimization of distribution networks

Title Author Model

A bi-objective GRASP algorithm for distribution of oil
products by pipeline networks

Sousa et al.
[83]

GRASP

A GRASP heuristic for the mixed Chinese postman
problem

Corberán et al.
[20]

GRASP

A heuristic for minimizing inventory and transportation
costs of a multi–item inventory–routing system

Sombat [81] EOQ, GRASP,
IRP

A reactive GRASP and path relinking for a combined
production–distribution problem

Boudia et al.
[11]

GRASP

Heuristics for the bi-objective path dissimilarity
problem

Martí et al. [55] GRASP

Model and algorithm for an inventory Shen et al. [78] GRASP, IRP
The vehicle routing problem with conflicts Hamdi-Dhaoui

et al. [36]
GRASP,
VRPC, ILS,
ELS

GRASP with path relinking for the two-echelon vehicle
routing problem

Crainic et al.
[21]

VRP, GRASP

A GRASP for real-life inventory routing Problem:
application to bulk gas distribution

Dubedout et al.
[25]

GRASP, IRP

A GRASP ELS for the vehicle routing problem with
basic three-dimensional loading constraints

Lacomme et al.
[48]

VRP, GRASP

GRASP with VLSN for an inventory-routing problem Sombat [82] GRASP, IRP,
VLSN, EOQ
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shows the most relevant studies that optimize the DDM for different products,
specifically hazardous materials.

In this study, the GRASP heuristic was initially explored as the solution method
for the optimization model; however, due to the specific nature of the problem
where ordering quantity is limited by the used storage tank sizes, feasible solutions
are only very small proportion of all possible solutions. As unfeasible solutions
increase drastically when the size of the problem increases, the GRASP heuristic
would not be time efficient in this study. Still, it was considered the basis of a
problem tailored heuristic.

2.3 DDNHM Model Construction

As presented by Chopra [17], the basic components of a DDN model are:

• Localization of the network elements
• Inventory management
• Fleet design
• Vehicle routing

Reyes et al. [71] propose the development of a distribution network in three
phases: diagnostics of the distribution system, design of the logistic network and
implementation of the network. Each of these phases includes a series of steps, as
shown in Table 2.

Table 2 Procedure to construct a distribution network

Phases Steps

PHASE I: Diagnosis of the
distribution system

Step 1: Inventory of the existing equipment
Step 2: Obtaining information on the current organization
of the distribution system
Step 3: Graphical description and map analysis of the
territory of the study object
Step 4: Description of the existing route
Step 5: Feasibility study
Step 6: Temporal analysis of the distribution system
Step 7: Analysis of the demand by segment and customers
Step 8: Cost analysis

PHASE II: Design of the logistic
network

Step 9: Description of the proposed route
Step 10: Analysis of the feasibility of the design
Step 11: Development of the information system

PHASE III: Implementation of
the network

Step 12: Implementation of the new logistic network
Step 13: Measurement and analysis
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2.4 Inventory Management and Optimization

Inventory management is defined as the inventory planning and control carried out
to meet competitive priorities of the organization [47]. Taha [85] states that the
inventory problem consists of keeping in stock just enough articles to satisfy
fluctuations of the demand, based on an inventory policy that answers the question
of how much and when to order.

Different models have been presented for the optimization of inventories,
including models based on dynamic programming [4], linear programming models
[41], non-linear programming models [76] and geometric models [46]. Dynamic
programming of inventories is based on the minimization of production, retention or
holding costs [28]. The Wagner-Whitin algorithm is a classical dynamic program-
ming model that minimizes the fixed ordering and linear procurement and holding
costs, over a finite horizon, providing good results [37]. Non-linear programming
models to mathematically optimize inventories are proposed by [2, 43, 46, 76].
These models look for the optimal ordering quantity by optimizing the EOQ model.

To know the behaviour of the demand it is necessary to analyse it statistically
and know if it is deterministic or stochastic [92]; a suitable criterion is the variation
coefficient (VC) introduced by Silver and Peterson [80]. The VC is determined by
Eq. (1), where σ is the standard deviation and μ the mean value of the demand.

CV =
σ
μ

ð1Þ

If its value is below or equal to 0.2, the data has a low dispersion with respect to
the mean value, indicating that the demand can be considered to be deterministic. In
the opposite case, it is stochastic. For stochastic demands, a goodness-of-fit test
must be carried out to determine the corresponding type of distribution [2].

Taha [85] distinguishes four types of cost related to inventory problems, being
the acquisition cost, preparation or ordering cost, retention or holding cost and the
stockout cost (see Table 3).

Table 3 Types of inventory costs

Cost type Definition

Acquisition
cost

Unitary price of an inventory product

Ordering
cost

Fixed charge due to placing an order, regardless of the ordered quantity

Holding cost Costs due to having a certain level of existence during a specific time-period;
these include the opportunity cost of the inverted money, the storing cost
(rental fees, heating, illumination, refrigeration, security etc.), depreciations,
taxes, insurance fees, deterioration and obsolescence [59]

Stockout
cost

Penalty incurred when the company runs out of a product of the inventory. It
includes the loss of income, production disruptions, transaction costs to
replace inventory and loss of customer’s goodwill
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Different methods of inventory replenishment exist; their application depends on
the used inventory model, as the demand is the leading factor for replenishment.
Examples of procurement systems are given by the Wilson equation (EOQ), the
Wagner-Within dynamic programming procedure and the Silver-Meal heuristic, being
the EOQ model one of the most extendedly used, as it can be adapted for both deter-
ministic and stochastic demands [4, 79]. In this study, the EOQmodel will be applied.

2.5 Simulation

An optimization model is useful to establish the best possible way to distribute
products and goods from an origin node to a destiny node; however, in real-life
situations observed parameters and or variables change constantly, in which case
the proposed schedule must be adjusted. A simulation analysis that compares two
different possible scenarios is a cost-efficient and cheap way to decide for one of
two future options before these changes take place.

Simulation is the process of reproducing the features, appearance and behaviour
of a real system. It is based on three ideas: (1) Imitate, with a mathematical model, a
real situation, (2) Study the model’s operative characteristics and the system’s
expected properties making analogies within the simulation model; and (3) Make
conclusions and take actions in the system based on the results obtained in the
model [37].

Simulation studies are developed in three research levels: descriptive, explora-
tory and explanatory. Different authors apply the methodology proposed by Law
[51], consisting of the steps shown in Fig. 2; see for example [19]. After formu-
lating and planning the study, the data is collected and the model can be con-
structed. If the model is shown to be valid for the study system, it is implemented in
a computer program and should be verified. Experimentation is done for different
scenarios of interest; finally, output data is analysed and interpreted.

Fig. 2 Simulation methodology, adapted from Law [51]
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3 Methodology

The problem addressed in this study is a Design Distribution Network problem
where the optimized variables are inventory level, optimal ordering quantity, fleet
size and vehicle quantity, as well as order scheduling, corresponding the latter to
fleet dispatching or management; a one year planning horizon is used.

Specialized literature describes problems that optimize the previous concepts as
inventory routing problems with fleet dispatching. This study presents a special
case where each vehicle coming from the storage terminal visits only one client
(service station), as the distributed fuel cannot be discharged into fragmented bat-
ches due to legal regulations. Reducing the fuel discharge to only one service
station by vehicle, the problems seems to be simplified considerably; however, even
this special case remains to have an important combinatorial of solutions and
therefore stays highly complex.

In the presented case study, both service stations and distribution terminal
pertain to the same company, so no out of stocks are considered. Supplied quan-
tities are governed by the vehicle size and required filling level, causing small
residuals to exist for technical reasons at the end of the year. These residuals will
always be smaller than the truck capacity and are assumed to be transferred without
any problem to the next planning horizon. In consequence, demand and supply are
assumed constant and always satisfied. According to the information above, this
study designs a distribution network with the lowest possible operational costs
considering constant fuel demand without stock disruption, heterogeneous fleet,
continuous inventory review policy, and fixed capacity of vehicles and storage
tanks.

To solve the problem, a methodology of nine steps was used, including the
tailored heuristic solution algorithm and mathematical programming.

Step 1: At first, a data collection was carried out to obtain existing sales
information for the three fuel types considered in the study. Information
was found for two service stations; consistency of data was analysed.
Storage tank size was obtained for all service stations. Missing infor-
mation was estimated.

Step 2: The behaviour of the demand was analysed for the existing information,
including variability, normality and distribution parameters.

Step 3: Based on the previous information, demand estimation was done for the
rest of the service stations in the study region, considering demographic
information and service station characteristics.

Step 4: Distribution costs were determined, including holding costs, variable
and fixed transport costs and ordering costs.

Step 5: A mathematical programming model was developed to describe the
truck assignment problem in the study problem.

Step 6: The state space was downsized before solving the model heuristically, so
that only feasible solutions would be analysed. Truck combinations were
restricted to the existing storage tank sizes in each service station. This,
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in fact, is an optimization step in the solving process, as solution are
found in a more efficient and quick way.

Step 7: Programming of the linear programming model and its heuristic solution
algorithm in R.

Step 8: Determination of specific simulation scenarios representing possible
critical situations, used to compare different management policies for
truck assignment in the fuel distribution.

Step 9: Determination of cost performance measures to evaluate the proposed
scenarios and definition of possible improvements to be implemented in
the fuel supply system.

Figure 3 represents the study methodology graphically.

Fig. 3 Study methodology
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4 Case Study

4.1 Description of the Problem

In the México City greater area four fuel Distribution Terminals (DT) can be found,
being three of them located in Mexico City and the fourth one in the State of
Mexico (EDOMEX), from where three types of fuel (gasoline A, gasoline B and
Diesel) are distributed towards 371 service stations (SS) [64] in one of the 16
political delegations and some municipalities in the EDOMEX state.

In a pilot phase, this study was carried out in the Azcapotzalco political dele-
gation, located in the northern part of Mexico City (Fig. 4). This delegation has
approximately 400 000 inhabitants and one of the DT is located in this area,
supplying 18 service stations. Each of the service stations has implemented an
inventory review and control system that provides a forecasting method and a
weekly ordering schedule into maintain an appropriate service level for fuel con-
sumers, both people and industries.

At present, the Azcapotzalco distribution terminal is using a homogeneous fleet
with a 20 m3 capacity to provision periodically fuel to each of the service stations.
The company wants to know if total costs can be minimized when using a
heterogeneous fleet and optimizing the supply frequency for the different service
stations.

Fig. 4 Study area. Adapted from: http://www.mapa-mexico.com/Mapa_Ubicacion_
Azcapotzalco_Mexico_DF.htm
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4.2 Data Collection

4.2.1 Monthly Sales Information

Monthly sales information was available from January 2014 until October 2015 for
service stations SS1 and SS6; this information is presented in Table 4.

As can be seen in Table 4, SS6 sells about double the quantity of fuel for each of
the three fuel types. In both service stations, the most sold fuel is gasoline A, which
determines about 53% of the total sales. This information is consistent with
information reported by INEGI [39] from where it can be determined that average
sales per service station for the same period in the Mexican republic were
respectively 271.26, 61.27 and 332.54 for gasoline A, gasoline B and diesel. The
specific quantity sold in each service station depends on its size and correspond-
ingly on the number of hoses installed for each type of fuel.

In service station SS6 two values were missing for the diesel sales; a simple
average of the two closest values was used to estimate these missing values.

Table 4 Monthly sales for SS1 and SS6, January 2014–October 2015

SS1 SS6
Gasoline A
(m3/month)

Gasoline B
(m3/month)

Diesel
(m3/month)

Gasoline A
(m3/month)

Gasoline B
(m3/month)

Diesel
(m3/month)

Jan 2014 333.16 50.86 210.46 663.25 102.92 427.79
Feb 2014 314.15 52.85 203.07 618.09 96.85 430.44
Mar 2014 339.81 55.73 242.77 679.91 110.69 516.37
Apr 2014 319.84 51.15 213.92 622.61 104.36 454.36
May 2014 344.65 57.20 232.58 687.75 104.36 490.70
Jun 2014 324.78 53.33 228.97 648.80 106.42 NA
Jul 2014 322.36 54.64 240.94 635.28 105.56 502.76
Aug 2014 332.63 59.46 212.36 662.18 112.38 469.20
Sep 2014 325.78 56.52 216.90 652.32 107.25 456.31

Oct 2014 339.96 61.07 232.38 679.04 113.79 504.48
Nov 2014 318.11 57.96 213.37 632.71 104.01 450.75
Dec 2014 318.61 63.26 208.06 666.96 119.38 418.25
Jan 2015 306.74 56.88 190.22 636.68 117.50 434.75
Feb 2015 299.33 54.56 181.12 597.82 106.95 429.72
Mar 2015 329.73 62.70 201.74 650.40 123.67 471.84
Apr 2015 305.77 60.82 181.87 586.13 118.42 495.90
May 2015 325.38 65.44 199.77 621.87 125.79 501.20
Jun 2015 325.12 65.03 191.08 614.57 121.96 488.31
Jul 2015 332.40 65.26 198.83 629.44 129.38 506.51
Aug 2015 322.23 69.93 177.31 625.63 137.74 479.99
Sep 2015 331.59 67.29 147.94 637.38 147.12 494.85
Oct 2015 357.04 74.91 192.00 678.59 151.80 NA
Average 325.87 59.86 205.35 642.15 116.74 471.22
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4.2.2 Behaviour of the Demand

The service stations are franchises of the same company that owns the fuel supplier
(DT), so they are supposed never to run out of stock. In consequence, the monthly
demand for both stations SS1 and SS6 are matched to the monthly sales presented
in Table 4.

Similar behaviour is observed for fuel demand at different service stations,
despite differences in quantities sold (Fig. 5). Of the three fuel types, only gasoline
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Fig. 5 Behaviour of the
demand. a Gasoline A,
b gasoline B, c diesel. January
2014–October 2015
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B is presenting a marked trend in both service stations (Fig. 5b). This was cor-
roborated determining the corresponding linear regression models and hypothesis
tests to verify if the slope is statistically significant. Calculations in R show slope
and p-values as presented in Table 5.

As can be expected from graphical results presented in Fig. 5b, gasoline B
demand has a statistically significant positive slope in both service stations, while
diesel has a statistically significant negative slope or slight level change in service
station SS6. To carry out normality tests, the corresponding tendency was removed,
presenting the following averages and standard deviations (Table 6).

Analysis of the demand behaviour was carried out through the determination of
the variation coefficient (VC), as defined in Eq. (1). Variation coefficients between
0.041 or 4.1% and 0.073 or 7.3% (0.12 or 12% for non-corrected values) were
observed for the three types of fuel in SS1 and SS6; all values were below 0.2 so,
although slight level changes and/or trends were observed, the demand can be
considered deterministic.

Finally, normality was tested with the Jaque-Bera statistic adjusted to small
samples; corresponding p-values and conclusions for each of the demand series are
presented in Table 7.

Table 5 Slope and p-value for the hypothesis tests on slope significance

Series Slope p-value

SS1 Gasoline A 0.041 0.928
Gasoline B 0.863 4.85e-08
Diesel −2.570 0.0001

SS6 Gasoline A −1.281 0.169
Gasoline B 1.964 9.63e-08
Diesel 1.265 0.224

Table 6 Corrected averages and standard deviations for fuel demand, SS1 and SS6

Gasoline A Gasoline B Diesel
Average SD CV Average SD CV Average SD CV

SS1 325.87 13.26 0.041 50.86 2.96 0.058 226.09 16.11 0.071
SS6 642.16 27.37 0.043 95.92 7.04 0.073 473.12 30.37 0.064

Table 7 Jaque-Bera normality test results for fuel demand in SS1 and SS6

Series p-value Conclusion

SS1 Gasoline A 0.778 Insufficient evidence to reject normality
Gasoline B 0.395 Insufficient evidence to reject normality
Diesel 0.5705 Insufficient evidence to reject normality

SS6 Gasoline A 0.7468 Insufficient evidence to reject normality
Gasoline B 0.0327 Normality is rejected at a 5% level

Diesel 0.05386 Insufficient evidence to reject normality
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All series can be considered to have a normal distribution, unless gasoline B in
SS6, for which the hypothesis test was rejected at a 5% significance level. However,
even for this type of gasoline, normality is accepted at a 3% level.

4.2.3 Demand Estimation

As the first step in the determination of the demand for the other 16 SS, Voronoi
diagrams [34, 40] were implemented to delimit the areas to be supplied [65] for
each of the service stations; they capture information on the proximity of a set of
points P decomposing the plane in convex polygonal regions. AutoCAD tools were
used to define these areas, whereas INEGI [39] information was used to obtain the
corresponding number of inhabitants. Land use classification of the service stations
was obtained from SEDUVI [74].

Figure 6 represents respectively the political divisions in Azcapotzalco (a) and
the corresponding Voronoi polygons (b). The red dots indicate the location of the
service stations.

Table 8 shows the resulting Voronoi area for each service station, as well as the
corresponding number of inhabitants and land use type.

The Voronoi diagram method supposes that customers will get their fuel sup-
plies in the establishment closest to their domicile. However, as an important
difference exists in inhabitants registered in residential and industrial areas, the
number of inhabitants resulted not to be a suitable measure to determine the
demand; using it as a proportionality coefficient to estimate the demand in each SS,
industrial areas would have an artificially low demand as a low number of inhab-
itants can be expected. On the other hand, land use analysis indicates that both SS
where information exists are located in areas classified as mixed residential.

An additional proportionality coefficient was needed, so SS1 and SS6 demands
were compared regarding the number of hoses installed for each type of fuel; the
results are presented in Table 9. The standard deviations for gasolines A and B can
be considered statistically equivalent in both service stations, being mean demand
per hose slightly lower for gasoline A in SS1 with respect to SS6. The demand of
gasoline B per hose can be considered statistically equivalent in both stations. The
standard deviation for the diesel demand is almost two times higher in SS1 with
regard to ES6, while the mean diesel demand per hose is also higher in SS1. This
higher variability in diesel demand can be explained by the proximity of ES6 to the
industrial areas, where a more constant diesel demand is expected. The previous
analysis shows differences in the demand per hose in both service stations; how-
ever, values are of the same order of magnitude, so the number of hoses for each
type of gasoline installed in the service station in combination with the information
presented in Table 9 will be used to estimate demands in the other 16 service
stations.

The number of serving hoses for each type of gasoline and service station was
obtained from information provided by PROFECO [68], visual inspection in a field
visit and/or photographical analysis in Google Street View [32]; the results are
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Fig. 6 Azcapotzalco political delegation. a Political divisions and b corresponding Voronoi
polygons
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presented in Table 10. Values equal to 0 correspond to service stations that do not
sell the corresponding gasoline.

Multiplying the average demand per hose (Table 9) by the number of hoses
(Table 10) for each type of gasoline and service station, the estimated demand can
be found (Table 11). The demand of SS2 calls the attention; it is considerably
higher than the demand in the other service stations due to its location in the biggest
industrial area of Azcapotzalco.

Table 8 Voronoi area, number of inhabitants and land use type for each service station

Service station Voronoi area Nr of inhabitants Land use

SS 1 1.88 11534 Mixed residential
SS 2 1.18 1598 Industrial
SS 3 1.399 10501 Residential
SS 4 1.435 14856 Mixed residential
SS 5 2.068 29838 Residential
SS 6 1.469 348 Mixed residential
SS 7 0.536 6302 Mixed residential
SS 8 1.975 2650 Residential/commercial
SS 9 2.262 429 Industrial
SS 10 1.322 18603 Industrial
SS 11 1.987 16248 Residential
SS 12 2.1 36381 Residential
SS 13 1.017 25008 Mixed residential
SS 14 2.12 14190 Residential
SS 15 1.42 30845 Residential
SS 16 1.145 16257 Residential
SS 17 1.164 10796 Industrial
SS 18 0.881 3800 Industrial

Table 9 Number of hoses and corresponding demands (l/hose) for SS1 and SS6

Gasoline A Gasoline B Diesel

SS1 Number of hoses 6 6 2
Average demand (l/hose) 54.06 9.86 102.99
Standard deviation (l/hose) 2.21 1.06 11.43

SS6 Number of hoses 11 11 5
Demand (l/hose) 58.22 10.46 94.24
Standard deviation (l/hose) 2.49 1.32 6.25

Average estimated demand (l/hose) 56.14 10.16 98.62

Optimization and Simulation of Fuel Distribution … 265



Table 10 Number of hoses
for each type of gasoline and
service station

Service station Gasoline A Gasoline B Diesel

SS 1 6 6 2
SS 2 16 16 18
SS 3 8 8 0
SS 4 13 13 0
SS 5 8 8 0
SS 6 11 11 5
SS 7 10 10 0
SS 8 12 12 4
SS 9 16 16 0
SS 10 8 8 3
SS 11 8 6 2
SS 12 16 12 4

SS 13 12 12 3
SS 14 8 8 0
SS 15 16 16 0
SS 16 12 12 7
SS 17 12 8 4
SS 18 8 8 8

Table 11 Estimated demand
for each type of gasoline and
service station

Service station Gasoline A
(m3)

Gasoline B
(m3)

Diesel
(m3)

SS 1 324.39 59.14 205.98
SS 2 898.27 162.54 1,775.13
SS 3 449.14 81.27 0
SS 4 729.85 132.07 0
SS 5 449.14 81.27 0
SS 6 640.42 115.07 471.22
SS 7 561.42 101.59 0
SS 8 673.71 121.91 394.47
SS 9 898.27 162.54 0
SS 10 449.14 81.27 295.86
SS 11 449.14 60.95 197.24
SS 12 898.27 121.91 394.47
SS 13 673.71 121.91 295.86
SS 14 449.14 81.27 0
SS 15 898.27 162.54 0
SS 16 673.71 121.91 690.33
SS 17 673.71 81.27 394.47
SS 18 449.14 81.27 788.95
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4.2.4 Storage Tank Size

As the ordering quantity for each gasoline type and service station depends on the
size of the storage deposit, deposit sizes were obtained for the 18 service stations in
study. Table 12 presents the corresponding information. Values indicating (*) cor-
respond to estimated values, considering the estimated demand. Values of 0 indi-
cate the station does not sell diesel.

Note that the presented values correspond to the tank size, but not to the max-
imum tank capacity. Due to security regulations, fuel volume in the storage tank
should be maximum 90% of its nominal capacity. All storage tanks have an overfill
valve installed [61, 66].

4.3 Determination of the Distribution Costs

The costs that must be considered in the distribution network include holding costs,
transport costs and ordering costs.

Table 12 Storage tank size for each type of gasoline and service station

Service station Gasoline A (m3) Gasoline B (m3) Diesel (m3)

SS 1 50 40 40
SS 2 80 50 120(*)

SS 3 40 40 0
SS 4 120 60 0
SS 5 50 50 0
SS 6 80 40 40
SS 7 80 60 0
SS 8 100 100 60(*)

SS 9 100 100 0
SS 10 50 40 0
SS 11 60 60 60
SS 12 50 40 40
SS 13 100 100 60(*)

SS 14 100 100 0
SS 15 160 80 0
SS 16 200 80 60
SS 17 100 50 60(*)

SS 18 100 50 60(*)
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4.3.1 Holding Costs

Benitez [7] considers among the holding costs rates for physical storage, return on
capital detained in stock, insurance, transport, manipulation and distribution of
material and finally obsolescence of the material in stock. Tawfik and Chauvel [86]
consider holding costs are generally between 14 and 36% of the mean valuation of
the stocked products. In the case of fuel service stations, the material is discharged
directly in the storage tanks, so no intern transport costs must be considered. On the
other hand, the obsolescence concept is not applicable in fuel supply. Accordingly,
in this study the holding cost, Chik , is considered as a 20% rate of the cost required
to acquire the average monthly demand, being the latter half the ordered demand.
Considering a purchase cost, Cpi , of 10 MXN/l, the holding cost for fuel i in service
station k is:

Chik =20% ⋅Cpi ⋅
Qik

2
∀ i, k ð2Þ

where

Chik Holding cost for fuel i in SS k, MXN/month
Cpi Purchase cost for fuel i, MXN/m3

Qik Demanded quantity of fuel i in SS k in each order, m3

4.3.2 Transport Costs

Transport costs include fixed and variable components. Variable components are
directly proportional to the distance between origin and destiny, in addition to
taking into account the type of merchandise transported and its weight and volume.
These costs change depending on the road type, and if the transport is long range or
short range. Fixed costs include purchase costs of the fleet, salaries, driving
licenses, insurance, installations for maintenance workshops and parking lots, taxes
and recovery of financial capital. Information provided in a report presented to the
Ministerio de Transportes y Telecomunicaciones in Chile [84] suggest that fixed
costs are about 125% of the fuel cost. No specific information was found for
Mexico; as an approximation, the average obtained in the above transport report
will be used in this analysis.

Considering that each fuel truck is supplying only one service station in a
round-trip, variable fuel costs per trip were determined for three types of trucks j,
having capacities of respectively 20, 45 and 60 m3, as follows:

Cvijk =
2dk
Rj ⋅ ηj

⋅ cD ∀ i, j, k ð3Þ
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where

Cvijk Variable transport cost for fuel i, truck type j and SS k, MXN/order
dk Distance between the DT and SS k, km
Rj Fuel consumption rate of truck type j, km/l
ηj Performance efficiency of truck type j, %
cD Required fuel cost for the trip, MXN/l

Table 13 shows the specifications considered for each of the transporting units.
The trucks run on diesel; for the diesel cost, a value of 13.77 MXN/l was used
(diesel cost in México in August 2016).

For the fixed transport costs, average values of distance, fuel consumption,
efficiency and trip number were considered for each service station, in accordance
with the demand obtained in Table 11 and the tank capacity of the service station
(Table 12), resulting in:

Cfk =1.25
2dk
Rj ⋅ ηj

n ⋅ cD =1.25
2 5ð Þ

2.42ð Þ 0.7ð Þ 623 ⋅ cD =63300 MXN ̸year ð4Þ

The average number of trips per year, n, was determined including information
on required trips for the three fuel types sold in each of the service stations. The
amount determined by Eq. (5) is for the whole service station and has to be divided
by the number of trips carried out per year in each service station, nk , to obtain the
fixed cost per trip; nk depends on the obtained supply schedule.

Considering both fixed and variable transport costs, the total transport cost can
be determined thus by:

cT =Cfk + ∑
3

j=1
nijk ⋅Cvijk =

63300
nk

+ ∑
3

j=1
nijk ⋅

2dk
Rj ⋅ ηj

⋅CD ð5Þ

where nijk is the number of trips carried out per order for fuel i, truck type j and SSk.

Table 13 Data sheet for the 20, 45 and 60 m3 capacity used by the transporting company

Truck type

Specifications 20 m3 45 m3 60 m3

Truck type 3C T3-R2 T3-S2-R4
Minimum fuel consumption
rate (km/l)

3.66 ND ND

Real fuel consumption rate
(km/l)

2.95 2.48 1.83

Performance efficiency (%) 0.8 0.65 0.65
Model Freighliner M2 35k Freighliner

Columbia
Freighliner
Columbia

Motor type MBE4000 de 12.8L
EPA 04

Cummins ISX Cummins ISX

Size of the fuel deposit (l) 189 270 271
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4.3.3 Ordering Costs

Concepts used for the determination of the ordering cost include the salary of the
personnel that intervene in the ordering process and fixed costs as electricity,
telephone, computer use, security clothing and equipment, wheel shims for the tank
truck, fire extinguishers and measuring equipment to check the fuel quality.

Regarding the personnel cost, two people are considered to have to be present at
the time of discharging, including the person in charge of the service station during
the first part of the fuel discharge. A salary of 10 000 MXN/month is considered for
the employee, while the station manager has a higher salary but must only be
present part of the time. The charge and/or discharge of a 20 m3 tank truck takes
between 30 and 45 min, but time must be added for operations like connection and
disconnection of the discharge hoses, security revisions of equipment, quality
measuring of the material to discharge, leading to an estimate of 1 h for the
complete operation [63]. Considering a finite truck fleet, transport times to and from
the DT and recharging times, a maximum of 4 trips per day is considered. In
addition to the discharging personnel, a secretary with a monthly salary of 10 000
MXN is considered to dedicate 1 h of her time to each order. Considering 6 weekly
working days per week or 25 per month, and 8 daily working hours, a salary of 50
MXN per hour and a total salary cost of 150 MNX per emitted and supplied order.

Fixed ordering costs apportioned per order are assumed to ascend to the same
amount, giving a total of 300 MNX per order emitted and per service station.

4.4 Mathematical Optimization Model

4.4.1 Model Formulation

Defining the indexes, decision variables and employed parameters, a mathematical
model can be developed which can be used for the determination of a good solution
for the ordering quantity in each service station, in addition to the type of truck that
minimizes the objective function. The model is based on mixed integer program-
ming, with linear restrictions but a non-linear objective function.

In addition to the previously defined variables (see Sect. 4.3), the following
indices, variables and parameters are used in the model (Table 14):

Table 14 Indexes and additional variables and parameters used in the model

Indexes Model parameters and decision variables

i Fuel type (i = 1, 2, 3) Cj Truck capacity for truck j [m3]
j Truck type (j = 1, 2, 3) Oik Number of orders for fuel i in SS k

k Service station (SS) number (k = 1, 2,
…, 18)

Dik Yearly demand for fuel type i in SS
k [m3]

Sik Storage tank size for fuel type i in SS
k [m3]
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The objective function minimizes total distribution costs. It is a function of the
ordered quantity Qik for fuel i and service station k, which corresponds in each case
to the sum of the number of ordered trucks of each type j multiplied by the capacity
of the truck, Cj (Eq. 6). Note the factor of 0.9, which indicates that the fuel vessel
should be filled to approximately 90% of its rated capacity; this restriction is
imposed by corresponding safety regulations (see for example [61]) to avoid
accidents due to overload and/or fuel leaks.

Qik = ∑
3

j=1
nijk ⋅ 0.9 ⋅Cj ∀ i, k ð6Þ

The distribution costs Cik for fuel i and service station k (Eq. 7) are calculated as
the sum of holding costs and transport costs as defined by Eqs. (2) and (5). The
transport cost in Eq. (5) was determined considering the number of fuel trucks nijk
in one order, so it must be multiplied by the number or orders for that fuel and
service station.

Cik =20% ⋅Cpi ⋅
Qik

2
+Oik ⋅ Cfk ∑

3

j=1
nijk ⋅Cvijk

 !
∀ i, k ð7Þ

To obtain the total cost (Eq. 8), the above costs are summarized for the three fuel
types in each service station k and this quantity is increased with the ordering cost.
If the total cost is to be minimized, orders for the different fuel types in a specific
service station should be concurrent. Assuming concurrency, the number of orders
for service station k in an annual planning horizon equals the order number of the
most frequently ordered fuel. The latter depends on both the demand and storage
capacities of the fuels.

CT = ∑
18

k=1
Cok ⋅ max

∀i
½Oik�+ ∑

3

j=1
Cijk

 !
∀ i, k ð8Þ

The constraints of the model are the following:

• Each truck only supplies one service station in each trip.
• Security constraint: fuel trucks must not be overloaded; they are assumed to be

charged at 90%. This restriction is considered in the formulation of the ordered
quantity (Eq. 6).

• A single order is considered for any combination of truck and fuel types arriving
at a service station on a specific day.

• The demand is always satisfied; only a remnant smaller that the ordering
quantity can exist and will be transferred to the next planning horizon. As
mentioned before, this is a direct consequence of the specific restrictions in
loading capacity in fuel transport and containers vessels. For each iteration, the
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number of orders corresponds to the demand divided by the ordered quantity
and the following restrictions must be fulfilled:

Oik =
Dik

Qik
∀ i, k ð9Þ

• An unlimited fleet is considered.
• Capacity constraint: the total ordered quantity for fuel i and service station k for

all types of truck in each order cannot exceed the capacity of the corresponding
storage tank:

Qik ≤ Sik ∀ i, k ð10Þ

The tank is assumed to be at its minimum level at the time of ordering.
• No negativity constraint: all physical quantities should be positive.

Finally, the optimization model was implemented in the R programming lan-
guage, being the leading open-source tool in data analysis. Its main advantages are
that it is platform independent, open-source, free and very flexible and straight-
forward to use. It can handle big amounts of data due to its power and efficient
calculations. In addition, R allows integration with other languages as C/C++, Java
or Phyton and has packages allowing to integrate the optimization model within a
user-friendly interface.

4.4.2 Proposed Solution

Greedy randomized adaptive search procedure (GRASP) is a metaheuristic tech-
nique for combinatory optimization. The technique consists of an iterative process,
where each iteration is composed of two stages: in the first stage, a feasible solution
is constructed, while the second stage consists of a local search in the neighbour-
hood of the previous solution [70].

The proposed model is highly combinatorial; considering the maximum storage
tank capacity of the fuel involved in the problem (200 m3), a maximum of 66
different truck combinations can be found for each fuel type and service station,
giving a total of 1.8 × 1098 combinations. Only a very small amount of them
correspond to feasible truck combinations, as a certain combination cannot deliver
more fuel than is possible to receive in the storage tank.

Instead of determining the objective function for all possible combinations and
discarding those that violate the storage capacity restriction, the number of feasible
truck delivery combinations is determined for each storage tank size. As, due to
security reasons, fuel vessels should be loaded at a maximum of 90% and only fixed
storage tanks exist (see Table 16), in this study the 45 m3 truck is assumed to be
loaded with a maximum of 40 m3 of fuel to simplify calculations. As an example of
how feasible combinations were determined, Table 15 presents all possible
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combinations to deliver a maximum of 80 m3. This amount can be supplied with
two 45 m3 trucks, one 20 m3 and one 60 m3 truck, two 20 m3 trucks and one 45 m3

truck or, finally, four 20 m3 trucks. However, since the storage tank must not
necessarily be filled completely, there exist other combinations where the total
quantity supplied is less than 80 m3. For this example, there are a total of 10
feasible combinations.

The number of feasible combinations in this problem for commercial storage
tanks in Mexico are given in Table 16.

Selecting only feasible delivery combinations, the solution space was reduced to
5.75 × 1038, which is only a fraction of the original problem search space.

To obtain a solution, at each iteration a feasible delivery combination was
randomly selected for each type of fuel and service station. For this combination,
total distribution costs are determined. If the solution obtained is better than the best
one from previous iterations, it is stored as the best solution. If not, it is discarded.
The algorithm stops at a fixed number of iterations, or when the solutions are not
improving at a given number of iterations.

Table 15 Feasible combinations for a 80 m3 storage tank

Combination Number of
20 m3 trucks

Number of
45 m3 trucks

Number of
60 m3 trucks

Total quantity
delivered (m3)

1 1 0 0 20
2 0 1 0 40
3 2 0 0 40
4 0 0 1 60
5 1 1 1 60
6 3 0 0 60
7 0 2 0 80
8 1 0 1 80
9 2 1 0 80
10 4 0 0 80

Table 16 Number of feasible
combinations for the storage
tanks used in the problem

Storage tank size (m3) Number of feasible combinations

40 3
50 3
60 6
80 10
100 15
120 22
160 40
200 66
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4.5 Simulation

To show how simulation can be used as a tool to assess managerial decisions, we
analysed if it is convenient to consider a heterogeneous fleet to deliver the fuel
orders, instead of the current homogeneous fleet. A planning horizon of one year
was considered.

4.5.1 Scenario Definition

To be able to analyse if the inclusion of tank trucks with a higher capacity (45 and
60 m3 respectively), will minimize total distribution costs, the model was set up for
two situations:

• If the present scheme of homogeneous fleet is considered (only 20 m3 trucks),
the 54 storage tanks in the 18 service stations will be supplied only with these
trucks. As the maximum storage size is 200 m3, maximum ten feasible truck
combinations exist. For instance, the 80 m3 storage tanks can be supplied with
one, two, three or four 20 m3 trucks (combinations 1, 3, 6 or 10 in Table 15). If
the supply in all fifty four storage tanks is considered at the same time, a total of
2.2 × 1022 feasible combinations exist.

• When 45 and 60 m3 trucks are included, 5.75 × 1038 feasible combinations
exist, as explained in Sect. 4.4.2.

Simulation conditions:

• Considering the parameters included in the model (for example, unlimited
number of trucks and drivers) for the present study, the distribution cost at a
certain service station does not depend on information at other service stations.
For this reason, the optimization of the above scenarios can be carried out at
each service station independently to increase the algorithm’s efficiency. The
independency between service stations can be lost, of course, if more infor-
mation becomes available in a later stage and for example resources are shared
between them.

• A total of 100 000 iterations per simulation and 10 repetitions were carried out
for each scenario. Running time was about 25 s in a MacBookPro 2 GHz for
each run. Analysis of the repetitions suggested that 100 000 iterations was
enough to come to a good solution.

4.5.2 Experiments and Discussion

Solving the model for the first scenario where only 20 m3 trucks are programmed, a
minimum total distribution cost of 1 980 076 MXN was obtained.
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The model was rerun for the scenario that considers a heterogeneous fleet (20, 45
and 60 m3). For this case, a minimum distribution cost of 1 733 585 MXN was
found, showing an improvement of minimum 12.4% with respect to the current
costs. Since up to now no optimization rules have been applied, the current dis-
tribution costs can still be higher than the 1 980 076 MXN obtained in the simu-
lation scenario. In other words, the inclusion of tank trucks with more capacity
seems to decrease distribution costs considerably.

The best truck allocation scheme found by the model is presented in Table 17.
The proposed allocation scheme shows preference towards trucks with a higher

capacity, which is consistent with the conclusion that the use of a heterogeneous
fleet can cut distribution costs.

The corresponding ordered quantity, the number of orders in the yearly planning
horizon and the order frequency (in days) can be found in the Table 18.

If the company is not willing to buy trucks with other capacities on a short term
(vehicles can be substituted for example only when their useful life is over), the
proposed model can still be used to optimize the fuel distribution with the current
homogeneous fleet, as this study showed the following:

• Transport costs seem to be an important portion of the total distribution cost.
This is suggested by the fact that bigger trucks are preferred.

Table 17 Truck allocation scheme proposed by the model

SS 20 m3 trucks 45 m3 trucks 60 m3 trucks

Gasoline
A

Gasoline
B

Diesel Gasoline
A

Gasoline
B

Diesel Gasoline
A

Gasoline
B

Diesel

1 0 0 0 1 1 1 0 0 0

2 0 0 0 0 1 0 1 0 2

3 0 0 0 1 1 0 0 0 0

4 0 1 0 3 1 0 0 0 0

5 0 0 0 1 1 0 0 0 0

6 0 0 0 2 1 1 0 0 0

7 0 0 0 2 0 0 0 1 0

8 0 0 0 1 1 0 1 1 1

9 0 0 0 1 1 0 1 1 0

10 0 0 1 1 1 0 0 0 0

11 0 0 0 0 0 0 1 1 1

12 0 0 0 1 1 1 0 0 0

13 0 0 0 1 1 0 1 1 1

14 0 0 0 1 2 0 1 0 0

15 2 0 0 0 2 0 2 0 0

16 0 0 0 0 2 0 3 0 1

17 0 0 0 1 1 0 1 0 1

18 0 0 0 1 1 0 1 0 1
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• For the same reason, it can be cheaper to supply bigger and less frequent orders;
obviously, considering the maximum capacity of the storage tank for each type
of fuel. As mentioned before, in this study an unlimited existing homogeneous
fleet is considered. Restrictions in the number of available trucks can change the
outcome of the model.

• The fuel with the highest demand (in most cases gasoline A) seems to govern
the ordering scheme, suggesting that it is possible to make the planning in stages
and adjust the reordering schedule of the less requested gasolines based on the
optimal ordering schedule for gasoline A. More simulation runs should be
carried out to revise this assumption.

In conclusion, the proposed scenario of including trucks of different capacity
showed to be less costly than the current situation in which a homogeneous fleet is
used; the tool presented in this study can be used for the optimization of the
allocation and delivery scheme with the current fleet or when other vehicles with
different capacity are included, as well as for different “what-if?” questions raised
by the management of the company.

Table 18 Ordered quantity, number of orders and order frequency proposed by the model

SS Ordered quantity (m3) Annual orders Order frequency (days)

Gasoline
A

Gasoline
B

Diesel Gasoline
A

Gasoline
B

Diesel Gasoline
A

Gasoline
B

Diesel

1 36 36 36 110 20 70 3.3 18.3 5.2

2 54 36 108 203 55 200 1.8 6.6 1.8

3 36 36 0 152 28 0 2.4 13.0 –

4 108 54 0 83 30 0 4.4 12.2 –

5 36 36 0 152 28 0 2.4 13.0 –

6 72 36 36 109 39 160 3.3 9.4 2.3

7 72 54 0 95 23 0 3.8 15.9 –

8 90 90 54 92 17 89 4.0 21.5 4.1

9 90 90 0 122 22 0 3.0 16.6 –

10 36 36 18 152 28 200 2.4 13.0 1.8

11 54 54 54 102 14 45 3.6 26.1 8.1

12 36 36 36 304 42 134 1.2 8.7 2.7

13 90 90 54 92 17 67 4.0 21.5 5.4

14 90 72 0 61 14 0 6.0 26.1 –

15 144 72 0 76 28 0 4.8 13.0 –

16 162 72 54 51 21 156 7.2 17.4 2.3

17 90 36 54 92 28 89 4.0 13.0 4.1

18 90 36 54 61 28 178 6.0 13.0 2.1
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5 Conclusions

The methodology applied in this chapter corresponds to a mathematical program-
ming model with a tailored heuristic solution, originally based on the GRASP
algorithm, to optimize total distribution costs in a fuel distribution network. The
model provides estimates of the fuel quantity to order, the best type of truck to carry
out the supply, as well as the ordering schedule that minimizes the associated costs
of distribution and inventory. Subsequent simulation of several scenarios related to
critical situations provides a cheap, flexible and quick way to assess different
managerial decisions.

Scenarios that were analysed include the selection of a homogeneous versus a
heterogeneous fleet. The current homogeneous fleet was not proven to be the most
cost-effective option. In addition, the model is an interesting tool to learn more
about the posed supply problem, as for example the preference of supplying bigger
quantities on a less frequent basis.

With the present model, what-if analysis can easily be carried out on questions as
for example:

• What if the fuel company decides to construct a new service station?
• What if the fleet is limited? In which case should new trucks be purchased?
• What if in the future more companies (and thus different fuel terminals in the

same region) start to operate?
• Is a bigger storage tank needed for some fuels?
• In the last months of 2016, the price of diesel increased by approximately 25%

due to political and economic instability in Mexico. Does this affect the optimal
selection of the fleet? If this raise in diesel cost would persist, would the pre-
vious conclusions remain valid?

The flexibility of R to program this kind of optimization model makes it very
easy to include more advanced features or extend the problem to a larger spatial
scale. Programming in R gives very fast answers, so it should not be a problem to
consider, among other, more service stations, political divisions, truck types or cost
concepts. Even unexpected situations such as traffic problems due to major main-
tenance or construction roadworks in a heavily congested city such as Mexico can
be evaluated, for example by considering an “equivalent distance” for detours in the
determination of variable transport costs. With these relatively simple adaptations,
the nature of “what if?” questions which can be posed is very extensive.

As several variables, such as demand or fuel price, are stochastic in nature,
future investigations may include determining the corresponding behaviour with a
probability density function; in this case, the quantity to be ordered will be deter-
mined based on these probability functions and it may be necessary to change the
solution strategy. More efficient solution strategies can be considered in the future
to find a solution more quickly in these complex situations.

Finally, it should be noted that, due to the specific nature of the problem studied
in this chapter, an existing heuristic was not necessarily the best option to find a

Optimization and Simulation of Fuel Distribution … 277



quick and good solution. Although today there are very powerful mathematical
tools and computers to solve an operational research problem without worrying too
much about the required computing resources, common sense indicates that the
very nature of optimization and engineering prefers to apply simpler strategies,
based on previous knowledge of the problem, if they achieve a less intensive use of
resources.
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