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Preface

This volume comprises selected contributions to the 27th Conference on System
Modelling and Optimization that took place from June 29 to July 3, 2015, on the
SophiaTech Campus, Sophia Antipolis, France.

These articles encompass broad aspects of system modelling and optimization, such
as modelling and analysis of systems governed by partial differential equations (PDEs)
or ordinary differential equations (ODEs), control of PDEs/ODEs, nonlinear opti-
mization, stochastic optimization, multi-objective optimization, combinatorial opti-
mization, industrial applications, and numerics of PDEs. These themes are the focus
of the IFIP TC7 community.

The conference was co-organized by two local institutions, Inria Sophia Antipolis
Méditerranée and Université Côte d’Azur jointly with North Carolina State University,
(visit http://ifip2015.inria.fr).

This scientific event was attended by more than 250 participants, from about 30
different countries. The conference program was composed of eight plenary talks, and
26 invited mini-symposia, plus three sessions of refereed contributed papers, resulting
in a total of 62 sessions, and altogether 230 presentations.

The 48 refereed contributions included in the present proceedings cover the latest
progress in their respective areas, and give a flavor of the wide range and exciting
topics discussed at the meeting.

We warmly thank the members of the Scientific Committee and our solicited
reviewers for their valuable contributions.

January 2017 Lorena Bociu
Jean-Antoine Désidéri
Abderrahmane Habbal

http://ifip2015.inria.fr
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Control Methods for the Optimization of Plasma
Scenarios in a Tokamak

Jacques Blum(B), Cédric Boulbe, Blaise Faugeras, and Holger Heumann

Université Côte d’Azur, Inria, CNRS, LJAD, Nice, France
jacques.blum@unice.fr

Abstract. This paper presents the modelling of the evolution of plasma
equilibrium in the presence of external poloidal field circuits and passive
structures. The optimization of plasma scenarios is formulated as an
optimal control problem where the equations for the evolution of the
plasma equilibrium are the constraints. The procedure determines the
voltages applied to the external circuits that minimize a certain cost-
function representing the distance to a desired plasma augmented by an
energetic cost of the electrical system. A sequential quadratic program-
ming method is used to solve the minimization of the cost-function and
an application to the optimization of a discharge for ITER is shown.

Keywords: Plasma equilibrium · Optimization · Tokamak ·
Magnetohydrodynamics · Optimal control

1 Introduction

A tokamak is an experimental device whose purpose is to confine a plasma
(ionized gas) in a magnetic field so as to control the nuclear fusion of atoms of
low mass (deuterium, tritium,..) and to produce energy. The magnetic field has
two components (see Fig. 1):

– a toroidal field created by toroidal field coils, that is necessary for the stability
of the plasma,

– a poloidal field in the section of the torus created by poloidal field coils and
by the plasma itself.

The plasma current is obtained by induction from currents in these poloidal
field coils. The tokamak thus appears as a transformer whose plasma is the
secondary. The currents in the external coils play another role, that of creating
and controlling the equilibrium of the plasma. The goal of this paper is to provide
a model for the evolution in time of the equilibrium of the plasma and to derive
control methods in order to optimize a typical scenario of a discharge of the
plasma in a tokamak.
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Fig. 1. Schematic representation of a tokamak

There are two approaches for simulating a plasma made of electrons and ions:

– the microscopic approach based on kinetic equations (Vlasov, Boltzmann,
Fokker-Planck) that are 6D (3D in space and 3D in terms of the velocity)
and 1D in time.

– the macroscopic approach based on magnetohydrodynamics (MHD) equations
that are obtained by taking moments of the kinetic equations, and which are
3D in space and 1D in time. The validity of the MHD equations is clearly more
restrictive than the one of the kinetic equations. We will present in Sect. 2 the
way in which the MHD equations are obtained from the kinetic ones.

At the slow resistive diffusion time-scale, the plasma is in equilibrium at
each instant (the kinetic pressure force balances at each point the Lorentz force
due to the magnetic field) and hence the plasma follows the so-called quasi-static
evolution of the equilibrium. The resistive diffusion in the external passive struc-
tures surrounding the plasma and the equations of the circuits of the poloidal
field system enable to follow in time this quasi-static evolution. An axisymmetric
hypothesis enables to reduce the problem to a 2D p.d.e. formulation, with the
Grad-Shafranov equation for the equilibrium of the plasma. The plasma bound-
ary is a free boundary, which is a particular poloidal flux line. It is either the
outermost closed flux line inside the limiter, which prevents the plasma from
touching the vacuum vessel, or a separatrix (with a hyperbolic X-point), as they
are in presence of a poloidal divertor. This equilibrium model will be presented
in Sect. 3 of the paper.
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In order to solve numerically the set of equations for the poloidal flux, it is
necessary to derive the weak formulation of this system and then a finite element
method, coupled to Newton iterations for the treatment of the non-linearities,
enables to solve the evolution of the equilibrium configuration in a tokamak.
This is presented in Sect. 4 of this paper.

A typical discharge in a tokamak is made of several phases: ramp-up of total
plasma current, plateau phase (stationary phase), ramp-down. The plasma shape
can also move from a small circular plasma (at the beginning of the discharge)
to a large elongated one with an X-point. The goal of this work is to determine,
thanks to optimal control theory of systems governed by partial differential equa-
tions [1], the voltages applied to the poloidal field circuits that achieve at best
the desired scenario, by minimizing a certain cost-function which represents the
sum of the distance to the desired plasma and of the energetic cost of the electri-
cal system. The introduction of an appropriate lagrangian taking as constraints
the equilibrium system of the previous sections and the determination of the
corresponding adjoint state enable the computation of the gradient of the cost-
function in terms of the adjoint state. The minimization of this cost-function
is performed thanks to a SQP (Sequential Quadratic Programming) method.
An interesting test-case, solved by using these techniques, will be presented for
the ITER (International Thermonuclear Experimental Reactor) tokamak. This
is presented in Sect. 5 of this paper. This method has the purpose to replace the
empirical methods used commonly to compute the pre-programmed voltages
that enable to go from one snapshot to another one. This method can of course
be extended to other type of optimization of the scenarios just by modifying the
cost-function and the control variables (consumption of flux, desired profile of
plasma current density,..).

2 The Magnetohydrodynamic Equations

A plasma is a ionized gas composed of ions and electrons. The kinetic equations
describe the plasma thanks to a distribution function fα(x,v, t) (with α = e for
electrons and α = i for ions) where x is the point position and v the particles
velocity. For a collisional plasma the kinetic equations are based on the Fokker-
Planck equation

∂fα

∂t
+ (v.∇x)fα +

Fα

mα
.∇vfα = Cα, (1)

where mα is the mass of the particles, Fα the force applied to these particles
and Cα the term due to collisions between particles. This microscopic approach
requires the resolution of a partial differential equations in 6 dimensions (space
and velocity) plus the time dimension. This is extremely difficult from a compu-
tational point of view. Therefore from this equation one derives a macroscopic
representation based on the fluid equations in the following way. Let us define
the density of particles by

nα(x, t) =
∫

fα(x,w, t)dw,
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the fluid velocity by

uα(x, t) =
1

nα

∫
fα(x,w, t)wdw,

and the pressure tensor

Pα(x, t) = mα

∫
fα(x,w, t)(w − uα)(w − uα)dw,

which under the isotropic assumption becomes

pα(x, t) =
mα

3

∫
fα(x,w, t)(w − uα)2dw.

Multiplying Eq. (1) by a test function φ(w) and integrating over the space
of velocities leads to the fluid equations. The first moment (corresponding to
φ = 1) gives the equation for the density of particles:

∂nα

∂t
+ ∇.

∫
fαwdw − 1

mα

∫
∂F α

∂w
fαdw = 0.

Since for electromagnetic forces
∂F α

∂w
= 0, and since collisions do not change

the number of particles one obtains:

∂nα

∂t
+ ∇.(nαuα) = 0.

The second moment is obtained by taking φ = mαw which leads to the momen-
tum equation

mα
∂

∂t
(nαuα) + mα∇x.

∫
fαwwdw −

∫
∇w.(F α.w)fαdw =

∫
mαwCαdw,

where we have set w = (w − uα) + uα. Using the equation for conservation of
the density one gets

mαnα(
∂uα

∂t
+ uα.∇uα) = −∇.Pα + nαF α + Rα,

whith F α = Ze(E +uα ×B) where Ze is the charge of particles and Rα is the
change rate of the momentum due to collisions.

The third moment gives the energy equation which needs to be complemented
with closing relations on the heat flux. These latter come from a transport model.
The single fluid magnetohydrodynamic equations are derived by defining the
mass density

mn = mene + mini

= meZni + mini ≈ mini
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the velocity of the fluid

u =
meneue + miniui

ρ
≈ ui,

the current density

j = −eneue + Zeniui,

= ene(ui − ue),

and the scalar pressure
p = nekTe + nikTi,

where k is the Boltzmann constant. The Maxwell equations need to be added
since we are in the presence of a magnetic field B and of an electric field E.
Finally the resistive MHD equations for a single fluid [2] read:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂n

∂t
+ ∇.(nu) = s ( Conservation of particles)

mn(
∂u

∂t
+ u.∇u) + ∇p = j × B (Conservation of momentum)

3
2
(
∂p

∂t
+ u.∇p) +

5
2
p∇.u + ∇Q = s′ (Conservation of particle energy)

∇ × E = −∂B

∂t
(Faraday’s law)

∇.B = 0 (Conservation of B)
E + u × B = ηj (Ohm’s law)
∇ × H = j (Ampere’s law)
B = μH (Magnetic permeability)
p = nkT (Law of perfect gases)

(2)

where n denotes the density of the particles, m their mass, u their mean velocity,
p their pressure, T their temperature, Q the heat flux, η the resistivity tensor, s
and s′ the source terms and k the Boltzmann constant.

3 Equilibrium of a Plasma in a Tokamak

In order to simplify system (2) some characteristic time constants of the plasma
need to be defined. The Alfven time constant τA is

τA =
a(μ0mn)1/2

B0
,

where a is the minor radius of the plasma and B0 is the toroidal magnetic field.
It is of the order of a microsecond for present tokamaks.

The diffusion time constant of the particle density n is

τn =
a2

D
,
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where D is the particle diffusion coefficient. Likewise, the time constants for
diffusion of heat of the electrons and of the ions are

τe =
nea

2

Ke
,

τi =
nia

2

Ki
,

where ne, ni are the density of electrons and ions, respectively, and Ke, Ki are
their thermal conductivities. These constants τn, τe, τi are of the order of a
millisecond on tokamaks currently operating.

Finally, the resistive time constant for the diffusion of the current density
and magnetic field in the plasma is given by

τr =
μ0a

2

η
,

and is of the order of a second.
If a global time constant for plasma diffusion is defined by

τp = inf(τn, τe, τi, τr),

we note that
τA � τp.

On the diffusion time-scale τp the term (∂u
∂t +u∇u) is small compared with ∇p

(see [3,4]) and the equilibrium equation

∇p = j × B (3)

is thus satisfied at every instant in the plasma.
Consequently the equations which govern the equilibrium of a plasma in

the presence of a magnetic field in a tokamak are on the one hand Maxwell’s
equations satisfied in the whole of space (including the plasma):

⎧⎨
⎩

∇ · B = 0,

∇ × (
B

μ
) = j,

(4)

and on the other hand the equilibrium Eq. (3) for the plasma itself.
Equation (3) means that the plasma is in equilibrium when the force ∇p due

the kinetic pressure p is equal to the Lorentz force of the magnetic pressure
j × B. We deduce immediately from (3) that

B · ∇p = 0, (5)

and
j · ∇p = 0. (6)
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Thus for a plasma in equilibrium the field lines and the current lines lie on
isobaric surfaces (p = const.); these surfaces, generated by the field lines, are
called magnetic surfaces. In order for them to remain within a bounded volume
of space it is necessary that they have a toroidal topology. These surfaces form
a family of nested tori. The innermost torus degenerates into a curve which is
called the magnetic axis.

In a cylindrical coordinate system (r, φ, z) (where r = 0 is the major axis
of the torus) the hypothesis of axial symmetry consists in assuming that the
magnetic field B is independent of the toroidal angle φ. The magnetic field can
be decomposed as B = Bp+Bφ, where Bp = (Br, Bz) is the poloidal component
and Bφ is the toroidal component. From Eq. (4) one can define the poloidal flux
ψ(r, z) such that ⎧⎪⎨

⎪⎩
Br = −1

r

∂ψ

∂z
,

Bz =
1
r

∂ψ

∂r
.

(7)

Concerning the toroidal component Bφ we define f by

Bφ =
f

r
eφ, (8)

where eφ is the unit vector in the toroidal direction, and f is the diamagnetic
function. The magnetic field can be written as:

⎧⎪⎪⎨
⎪⎪⎩

B = Bp + Bφ,

Bp =
1
r
[∇ψ × eφ],

Bφ =
f

r
eφ.

(9)

According to (9), in an axisymmetric configuration the magnetic surfaces are
generated by the rotation of the flux lines ψ = const. around the axis r = 0 of
the torus.

From (9) and the second relation of (4) we obtain the following expression
for j: ⎧⎪⎪⎨

⎪⎪⎩

j = jp + jφ,

jp =
1
r
[∇(

f

μ
) × eφ],

jφ = (−Δ∗ψ)eφ,

(10)

where jp and jφ are the poloidal and toroidal components respectively of j, and
the operator Δ∗ is defined by

Δ∗· = ∂r

(
1
μr

∂r·
)

+ ∂z

(
1
μr

∂z·
)

= ∇
(

1
μr

∇·
)

. (11)

Expressions (9) and (10) for B and j are valid in the whole of space since
they involve only Maxwell’s equations and the hypothesis of axisymmetry. Hence
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they can be reduced to one equation given in 2 space dimensions in the poloidal
plane (r, z) ∈ Ω∞ = (0,∞) × (−∞,∞) for the poloidal flux ψ:

− Δ∗ψ = jφ. (12)

r

ΩFe

z

Ωci

Ωps

Ωp

ΩL

0

∂ΩL

Fig. 2. Schematic representation of the poloidal plane of a tokamak. Ωp is the plasma
domain, ΩL is the limiter domain accessible to the plasma, Ωci represent poloidal field
coils, Ωps the passive structures and ΩFe the ferromagnetic structures.

The toroidal component of the current density jφ is zero everywhere outside
the plasma domain, the poloidal field coils and the passive structures. The dif-
ferent sub-domains of the poloidal plane of a tokamak (see Fig. 2) as well as the
corresponding expression for jφ are described below:

• ΩL is the domain accessible to the plasma. Its boundary is the limiter ∂ΩL.
• Ωp is the plasma domain where relation (5) implies that ∇p and ∇ψ are

co-linear, and therefore p is constant on each magnetic surface. This can be
denoted by

p = p(ψ). (13)

Relation (6) combined with the expression (10) implies that ∇f and ∇p are
co-linear, and therefore f is likewise constant on each magnetic surface

f = f(ψ). (14)

The equilibrium relation (3) combined with the expression (9) and (10) for
B and j implies that:

∇p = −Δ∗ψ
r

∇ψ − f

μ0r2
∇f, (15)

which leads to the so-called Grad-Shafranov equilibrium equation:

− Δ∗ψ = rp′(ψ) +
1

μ0r
(ff ′)(ψ). (16)
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Fig. 3. Example of a plasma whose boundary is defined by the contact with limiter
(left) or by the presence of an X-point (right).

Here μ is equal to the magnetic permeability μ0 of the vacuum and Δ∗ is
a linear elliptic operator. From (10) it is clear that right-hand side of (16)
represents the toroidal component of the plasma current density. It involves
functions p(ψ) and f(ψ) which are not directly measured inside the plasma.
The plasma domain is unknown, Ωp = Ωp(ψ), and this is a free boundary
problem. This domain is defined by its boundary which is the largest closed ψ
iso-contour contained within the limiter ΩL. The plasma can either be limited
if this iso-contour is tangent to the limiter ∂ΩL (see Fig. 3, left) or defined by
the presence of a saddle-point also called X-point (see Fig. 3, right). In the
later configuration which is obtained in presence of a divertor, the plasma does
not touch any physical component and the performances and the confinement
of the plasma are improved (see [5]).

• ΩFe represents the ferromagnetic structures. They do not carry any current,
jφ = 0 but the magnetic permeability μ is not constant and depends on the
magnetic field:

μ = μFe(
|∇ψ|2

r2
). (17)

• Domains Ωci
represent the poloidal field coils carrying currents. If we consider

that the voltages Vi applied to these coils are given, using Faraday and Ohm
laws the current density can be written as

jφ =
niVi

Ri|Ωci
| − 2πn2

i

Ri|Ωci
|2

∫
ΩCi

ψ̇ds, (18)

where ni is the number of windings in the coil, |Ωci
| its section area, Ri its

resistance and ψ̇ is the time derivative of ψ,
• Ωps represents passive structures where the current density can be written as

jφ = −σ

r
ψ̇, (19)

where σ is the conductivity.
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In summary we are seeking for the poloidal flux ψ(t) that is a solution of
(12) with jφ given by (16), (18) and (19) and verifies boundary conditions

ψ(0, z) = 0 and lim
‖(r,z)‖→+∞

ψ(r, z) = 0.

4 Weak Formulation and Discretization

We chose a semi-circle Γ of radius ρΓ surrounding the iron domain ΩFe, the coil
domains Ωci

and the passive structures domain Ωps. The truncated domain, we
use for our computations, is the domain Ω having the boundary ∂Ω = Γ ∪ Γ0,
where Γ0 := {(0, z), zmin ≤ z ≤ zmax}. The weak formulation for ψ(t) uses the
following Sobolev space:

H :=
{

ψ : Ω → R, ‖ψ‖ < ∞, ‖ |∇ψ|
r

‖ < ∞, ψ|Γ0 = 0
}

∩ C0(Ω),

with
‖ψ‖2 =

∫
Ω

ψ2 r drdz.

It reads as: Given V(t) = {Vi(t)}N
i=1 find ψ(t) ∈ H such that for all ξ ∈ H

A(ψ(t), ξ) − Jp(ψ(t), ξ) + jps(ψ̇(t), ξ) + jc(ψ̇(t), ξ) + c(ψ(t), ξ) = �(V(t), ξ), (20)

where
A(ψ, ξ) :=

∫
Ω

1
μ(ψ)r

∇ψ · ∇ξ drdz,

Jp(ψ, ξ) :=
∫

Ωp(ψ)

(
rSp′(ψN) +

1
μ0r

Sff ′(ψN)
)

ξ drdz,

�(V(t), ξ) :=
N∑

i=1

ni

Ri|Ωci
|Vi(t)

∫
Ωci

ξ drdz,

jps(ψ, ξ) :=
∫

Ωps

σ

r
ψξ drdz,

jc(ψ, ξ) :=
Ni∑
i=1

2πn2
i

Ri|Ωci
|2

∫
Ωci

ψ drdz

∫
Ωci

ξ drdz,

(21)

and

c(ψ, ξ) :=
1
μ0

∫
Γ

ψ(P1)N(P1)ξ(P1)dS1

+
1

2μ0

∫
Γ

∫
Γ

(ψ(P1) − ψ(P2))M(P1,P2)(ξ(P1) − ξ(P2))dS1dS2, (22)

with

M(P1,P2) = kP1,P2

2π(r1r2)
3
2

(
2−k2

P1,P2
2−2k2

P1,P2

E(kP1,P2) − K(kP1,P2)
)

,

N(P1) = 1
r1

(
1

δ+
+ 1

δ−
− 1

ρΓ

)
and δ± =

√
r21 + (ρΓ ± z1)2.
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where Pi = (ri, zi) and K and E the complete elliptic integrals of first and
second kind, respectively and

kPj ,Pk
=

√
4rjrk

(rj + rk)2 + (zj − zk)2
.

The bilinear form c : H × H → R is accounting for the boundary conditions
at infinity [6]. We refer to [7, Chap. 2.4] for the details of the derivation. The
bilinear form c(·, ·) follows basically from the so-called uncoupling procedure in
[8] for the usual coupling of boundary integral and finite element methods. As
we focus here on the equilibrium problem the two functions p′ and f f ′ have to
be supplied as data, called Sp′ and Sff ′ in the definition of Jp(ψ, ξ). While the
domain of p′ and f f ′ depends on the poloidal flux itself, it is more practical to
supply those profiles Sp′ and Sff ′ as functions of the normalized poloidal flux
ψN(r, z):

ψN(r, z) =
ψ(r, z) − ψax(ψ)
ψbd(ψ) − ψax(ψ)

, (23)

where
ψax(ψ) := ψ(rax(ψ), zax(ψ)),

ψbnd(ψ) := ψ(rbd(ψ), zbd(ψ))
(24)

with (rax(ψ), zax(ψ)) the magnetic axis, where ψ has its global maximum in ΩL

and (rbnd(ψ), zbnd(ψ)) the coordinates of the point that determines the plasma
boundary. The point (rbnd, zbnd) is either an X-point of ψ or the contact point
with the limiter ∂ΩL. Sp′ and Sff ′ , have, independently of ψ, a fixed domain
[0, 1] and are usually given as (piecewise) polynomial functions. Another frequent
a priori model is

Sp′(ψN) = λ
β

r0
(1 − ψα

N)γ , Sff ′(ψN) = λ(1 − β)μ0r0(1 − ψα
N)γ (25)

with r0 the major radius of the vacuum chamber and α, β, γ ∈ R given para-
meters. We refer to [9] for a physical interpretation of these parameters. The
parameter β is related to the poloidal beta, whereas α and γ describe the peak-
age of the current profile and λ is a normalization factor.

Numerical Methods. It is straightforward to combine Galerkin methods in
space and time-stepping schemes to get approximation schemes for solving (20)
numerically. For the choice of the spatial discretization, the fine details of real-
istic tokamak sections (see Fig. 4) give here favor to finite element spaces based
on triangular meshes. Since for many years now the piecewise affine approxi-
mations are the standard choice for the stationary free-boundary equilibrium
problems [7,10,11], we stay also here with linear Lagrangian finite elements for
the discretization in space. Higher order methods are likewise implementable.

In order to prohibit numerical instablities it is advisable to use implicit
time-stepping methods such as implicit Euler, which leads to non-linear finite-
dimensional problems. The Newton-type methods for solving such non-linear
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Fig. 4. The different subdomains of the geometry of the tokamak WEST (left) and
ITER (right) and triangulations that resolve the geometric details.

problems can be based on the Gâteaux derivative

DψA(ψ, ξ)(ψ̃) =
∫

Ω

1
μ(ψ)r

∇ψ̃ · ∇ξ drdz

− 2
∫

ΩFe

μ′
Fe(

|∇ψ|2
r2 )

μ2
Fe(

|∇ψ|2
r2 )r3

(∇ψ̃ · ∇ψ)(∇ψ · ∇ξ) drdz

of A(ψ, ξ) and the Gâteaux derivative

DψJp(ψ, ξ)(ψ̃) =
∫

Ωp(ψ)

∂jp(r, ψN(ψ))
∂ψN

∂ψN(ψ)
∂ψ

ψ̃ ξ drdz

−
∫

Γp(ψ)

jp(r, 1)|∇ψ|−1(ψ̃ − ψ̃(rbd(ψ), zbd(ψ)))ξ dΓ

+
∫

Ωp(ψ)

∂jp(r, ψN(ψ))
∂ψN

∂ψN(ψ)
∂ψax

ψ̃(rax(ψ), zax(ψ))ξ drdz

+
∫

Ωp(ψ)

∂jp(r, ψN(ψ))
∂ψN

∂ψN(ψ)
∂ψbd

ψ̃(rbd(ψ), zbd(ψ))ξ drdz

(26)

of Jp(ψ, ξ), where Γp is the plasma boundary ∂Ωp and

jp(r, ψN(ψ)) = rSp′(ψN(ψ)) +
1

μ0r
Sff ′(ψN(ψ)). (27)

The derivation of the linearization DψJp(ψ, ξ)(ψ̃) requires to assume that ∇ψ �=
0 on ∂Ωp and involves shape calculus [12,13] and the non-trivial derivatives:

Dψψax(ψ)(ψ̃) = ψ̃(rax(ψ), zax(ψ)) and Dψψbd(ψ)(ψ̃) = ψ̃(rbd(ψ), zbd(ψ)).
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Clearly, ∇ψ �= 0 on ∂Ωp will not be true for the nowadays important X-point
equilibria. Nevertheless this theoretical difficulty is not very essential for prac-
tical computations. In [14] it is pointed out that accurate Newton methods for
discretized versions of the weak formulation (20) need to use accurate deriva-
tives for the discretized non-linear operator, which is not necessarily equal to
the discretization of the analytical derivatives. Here, the discretization and lin-
earization of Jp(ψ, ξ) needs special attention due to the ψ-dependent domain of
integration. We refer to [14, Sect. 3.2] and [14, Sect. 3.3] for the technical details.

5 The Optimal Control Problem

We intend to determine the voltages Vi(t) applied to the poloidal field circuits
so that the plasma boundary Γp fit to a desired boundary Γdesi during the whole
discharge while minimizing a certain energetic cost.

Let Γdesi(t) ⊂ ΩL denote the evolution of a closed line, contained in the
domain ΩL that is either smooth and touches the limiter at one point or has
at least one corner. The former case prescribes a desired plasma boundary
that touches the limiter. The latter case aims at a plasma with X-point that
is entirely in the interior of ΩL. Further let (rdesi(t), zdesi(t)) ∈ Γdesi(t) and
(r1(t), z1(t)), . . . , (rNdesi(t), zNdesi(t)) ∈ Γdesi(t) be Ndesi + 1 points on that line.
We define a quadratic functional K(ψ) that evaluates to zero if Γdesi(t) is an
ψ(t)-isoline, i.e. if ψ(t) is constant on Γdesi(t):

K(ψ, t) :=
1
2

(
Ndesi∑
i=1

(
ψ(ri(t), zi(t)) − ψ(rdesi(t), zdesi(t))

)2)
. (28)

Another functional, that will serve as regularization, is

R(V(t)) :=
N∑

i=1

wi

2
V2

i (29)

with regularization weights wi ≥ 0. The regularization functional penalizes the
strength of the voltages Vi and represents the energetic cost in the coil system.

We consider the following minimization problem:

min
ψ(t),V(t)

∫ T

0

K(ψ(t), t) + R(V(t)) dt (30)

subject to

A(ψ(t), ξ)− Jp(ψ(t), ξ)+jps(ψ̇(t), ξ)+ jc(ψ̇(t), ξ)+c(ψ(t), ξ) = �(V(t), ξ) ∀ξ ∈ H.

This minimization problem for transient axisymmetric equilibria extends the
minimization problems for static axisysmmetric equilibria introduced in [15,
Chap. II]. Hence, theoretical assertions for (30) such as the first order neces-
sary conditions for optimality follow by similar arguments as those in [15, p.
80–84].
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The Lagrangian for the optimization problem (30) with Lagrange multiplier
φ is:

L(ψ(t),V(t), φ(t)) =
∫ T

0

K(ψ(t), t) + R(V(t)) dt

−
∫ T

0

A(ψ(t), φ(t)) − Jp(ψ(t), φ(t)) + c(ψ(t), φ(t))dt

−
∫ T

0

jps(ψ̇(t), φ(t)) + jc(ψ̇(t), φ(t)) − �(V(t), φ(t))dt.

We can state the first order necessary conditions for optimality under the fol-
lowing three assumptions in the limiter case:

1. supΩL
ψ is attained at one and only one point M0 = (rbd, zbd).

2. supΩp
ψ is attained at one and only one point M1, which is an interior point

of Ωp and M1 = (rax, zax). ψ is of class C2 in a neighbourhood of M1 and
the point M1 is a non-degenerated elliptic point.

3. ∇ψ vanishes nowhere on ∂Ωp.

Equivalent necessary conditions can be obtained in the X-point case.
Then necessary conditions for (ψ(t),V(t), φ(t)) to be a saddle point of L are

obtained, after integrating by parts in time the Lagrangian:

– ψ(t) and V(t) are solution of the direct problem (20)
– ψ(t) and φ(t) are solution of the adjoint problem

DψA(ψ(t), φ(t))(ξ) − DψJp(ψ(t), φ(t))(ξ) + c(ξ, φ(t))

− jps(ξ, φ̇(t)) − jc(ξ, φ̇(t)) = DψK(ψ(t), t)(ξ) ∀ξ ∈ H (31)

with φ(T ) = 0 and

DψK(ψ, t)(ξ) =
Ndesi∑
i=1

(
ψ(ri(t), zi(t)) − ψ(rdesi(t), zdesi(t))

)·
(
ξ(ri(t), zi(t)) − ξ(rdesi(t), zdesi(t))

)
.

– V(t) and φ(t) are solution to

wiVi(t) +
ni

Ri|Ωci
|
∫

Ωci

φ(t) drdz = 0 , 1 ≤ i ≤ N. (32)

The adjoint problem has the following strong formulation:

−Δ∗φ(t)+ 1ΩFe∇ ·
(

2
μ′
Fe(

|∇ψ|2
r2 )

μ2
Fe(

|∇ψ|2
r2 )r3

(∇φ(t) · ∇ψ)∇ψ

)

−1Ωp(ψ)
∂jp(r, ψN(ψ))

∂ψN

∂ψN(ψ)
∂ψ

φ(t)
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−δbd

∫
Γp(ψ)

jp(r, 1)
|∇ψ| φ(t) dΓ + (δΓp ,

jp(r, 1)
|∇ψ| φ(t))

−δax

∫
Ωp(ψ)

∂jp(r, ψN(ψ))
∂ψN

∂ψN(ψ)
∂ψax

φ(t) drdz

−δbd

∫
Ωp(ψ)

∂jp(r, ψN(ψ))
∂ψN

∂ψN(ψ)
∂ψbd

φ(t) drdz

−1Ωps

σ

r
φ̇(t) −

Ni∑
i=1

1Ωci

2πn2
i

Ri|Ωci
|2

∫
Ωci

φ̇ drdz

=

(
Ndesi∑
i=1

(
ψ(ri(t), zi(t), t) − ψ(rdesi(t), zdesi(t), t)

)) (
δ(ri,zi) − δ(rdesi,zdesi)

)

with φ(T ) = 0, where δax and δbd are the Dirac masses at the points (rax, rax)
and (rbd, rbd), respectively. δΓp is the Dirac mass of Γp with

(δΓp ,
jp(r, 1)
|∇ψ| φ(t)ξ) =

∫
Γp

jp(r, 1)
|∇ψ| φ(t)ξ dΓ.

Equation (32) is the Euler equation for the minimization of (30). Equations (20),
(31) and (32) constitute the optimality system for problem (30).

Numerical Methods. The discretization of our minimization problem (30)
builds on the space-time discretization for (20) that we outlined in the previous
section. Next, the discrete minimization problem can be recast as the following
constrained optimization problem

min
u,y

J(y,u) s.t. B(y) = F(u), (33)

where y and u are the so-called state and control variables. In our setting y will
be the variable that describes the plasma and u will be the externally applied
voltages. We think of y as the vector of degrees of freedoms describing the space
and time evolution of the poloidal flux ψ, and B(y) and F(u) are the discretiza-
tions of the non-linear operators in the variational formulation (20). Sequential
Quadratic Programming (SQP) is one of the most effective methods for non-
linear constrained optimization with significant non-linearities in the constraints
[16, Chap. 18]. SQP methods find a numerical solution by generating iteration
steps that minimize quadratic cost functions subject to linear constraints. The
Lagrange function formalism in combination with Newton-type iterations is one
approach to derive the SQP-methods: the Lagrangian for (33) is

L(y,u,p) = J(y,u) + 〈p,B(y) − F(u)〉, (34)

and the solution of (33) is a stationary point of this Lagrangian:

DyJ(y,u) + DyBT (y)p = 0,
DuJ(y,u) − DuFT (u)p = 0,

B(y) − F(u) = 0.
(35)
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A Newton-type method for solving (35) are iterations of the type
⎛
⎝ Hk

y,y Hk
y,u DyBT (yk)

Hk
u,y Hk

u,u −DuFT (uk)
DyB(yk) −DuF(uk) 0

⎞
⎠

⎛
⎝yk+1 − yk

uk+1 − uk

pk+1 − pk

⎞
⎠

= −
⎛
⎝DyJ(yk,uk) + DyBT (yk)pk

DuJ(yk,uk) − DuFT (uk)pk

B(yk) − F(uk)

⎞
⎠
(36)

with (
Hk

y,y Hk
y,u

Hk
u,y Hk

u,u

)
=

(
Dy,yL(yk,uk,pk) Dy,uL(yk,uk,pk)
Du,yL(yk,uk,pk) Du,uL(yk,uk,pk)

)
.

If the linear systems in (36) become too large, we are pursuing the null space
approach to arrive at the SQP formulation with the reduced Hessian for the
increment Δuk := uk+1 − uk:

M(yk,uk)Δuk = −h(yk,uk), (37)

where

M(yk,uk) :=
(
DuF

T (uk)DyB
−T (yk) Id

)
(
Hk

y,y Hk
y,u

Hk
u,y Hk

u,u

)(
DyB

−1(yk)DuF(uk)
Id

)

and

h(yk,uk) :=DuJ(yk,uk) + DuFT (uk)λk

− (
DuFT (uk)DyB−T (yk)Hk

y,y + Hk
u,y

)
DyB−1(yk)r(yk,uk))

with

λk :=DyB−T (yk)DyJ(yk,uk) , r(yk,uk) :=B(yk) − F(uk).

We are using iterative methods, e.g. the conjugate gradient methods, to solve
(37). Since in our case the number of control variables will be small we can
expect convergence within very few iterations. Within each iteration step of the
iterative method, we still have to solve the two linear systems corresponding to
DyB(yk) and DyBT (yk). Alternatively, if we have sufficient memory to store
M(·, ·), we can compute M(·, ·) explicitly. Clearly, we never compute neither
DyB−1(yk) nor DyB−T (yk) explicitly.

Once we know Δuk we can compute yk+1 and pk+1 by:

yk+1 − yk = DyB−1(yk)DuF(uk)Δuk − r(uk,yk),

pk+1 + λk = −DyB−T (yk)(Hk
y,y(yk+1 − yk) + Hk

y,u(uk+1 − uk)).

We would like to highlight that the SQP-method relies on proper derivatives
of the non-linear operators B and F. In our case F is affine, hence the derivative
of B remains the most difficult part. On the other hand these are exactly the
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same terms that appear in the Newton iterations for the direct problem (20)
and we can reuse the methodology presented at the end of Sect. 4. For practical
purposes we do neglect all involved second order derivatives of B.

It is very instrumental to compare the expression involved in the reduced
formulation (37) of SQP to the gradient and the Hessian of the reduced cost
function, that would appear when using algorithms for unconstrained optimiza-
tion problems.

Let Ĵ(u) := J(y(u),u), with B(y(u)) = F(u) be the reduced cost function,
then we have the following expressions for gradient

DuĴ(u) = DuJ(y,u) + DuFT (u), λ

Fig. 5. The optimal voltages.
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Fig. 6. Optimal control for a ramp-up scenario: the plasma bound-
ary (green) follows the prescribed boundary (black points), snapshots at
t = 0, 2, 6, 10, 20, 30, 40, 45, 50, 54, 58, 60 s (from left to right, top to down). (Color
figure online)
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and Hessian

Du,uĴ(u) =ZT

(
Dy,yJ(y,u) Dy,uJ(y,u)
Du,yJ(y,u) Du,uJ(y,u)

)
Z

+ ZT

(−Dy(DyBT (y)λ) 0
0 Du(DuFT (u)λ)

)
Z

with

λ = DyB−T (y)DyJ(y,u) and Z =
(

DyB−1(y)DuF(u)
Id

)

Hence, the reduced gradient h(yk,uk) is not the gradient of the reduced cost
function, unless the state and control variable yk and uk verify the equation of
state B(yk) = F(uk).

Preliminary Example. Finally, we would like to show first results for a so-
called ramp-up scenario in an ITER-like tokamak, where the plasma evolves
from a small circular to a large elongated plasma. The optimal coil voltages are
depicted in Fig. 5. Then, if we use those as data to solve the direct problem we
verify that the plasma boundary follows indeed the prescribed trajectory (see
Fig. 6).

Conclusion. The study and the optimization of scenarios is more and more
important for the realization of objectives in magnetic confinement controlled
fusion and will certainly be crucial for the ITER project. The first results pre-
sented in this paper are very encouraging and are the starting point of the
development of new tools devoted to the preparation of scenarios of the future
devices.

References

1. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equa-
tions. Springer, Heildelberg (1971)

2. Brangiskii, S.I.: Reviews of Plasma Physics, vol. 1. Consultant Bureau, New York
(1965)

3. Maschke, E.K., Sudano, J.P.: Etude analytique de l’évolution d’un plasma toroidal
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Abstract. We investigate the numerical approximation of solutions to
some variational inequalities modeling the humid atmosphere when the
saturation of water vapor in the air is taken into account. Here we
describe part of our work [31] and extend our former results to the case
where the saturation qs evolves with time.

Keywords: Atmosphere equation · Variational inequality · Penaliza-
tion · Regularization · Uniform estimates · Fractional step method

1 Introduction

The rigorous mathematical theory of the equations of humid atmosphere has
been initiated in [21,22] and has attracted the attention of a large number of
researchers, see e.g., [1,3–8,13–16,24,30] and the references therein. These cited
research works solved a large class of practical problems by investigating the
system of partial differential equations based on different accuracies of the math-
ematical modelings [17,18,26]. However, in the modelings in [17,18,23,26], the
saturation of vapor is not taken into account. As shown in [29,32], the resulted
systems of partial differential equations are not physically correct in the extreme
cases where the atmosphere is totally dry, q = 0, or when the atmosphere is
totally humid, q = 1. To remedy this drawback, we have proposed in [32] a
new formulation of the problem in the context of the variational inequalities
[2,9,19,20,25]. This new variational inequality formulation also involves discon-
tinuities due to phase changes. In this work, we describe the numerical approxi-
mation of the solutions to the variational inequalities derived from the humidity
equations when the saturation of water vapor in the air is taken into account. As
explained above, a striking feature of our work here is that the problems we study
contain discontinuities and involve inequalities which come from the changes of
phases and the extreme cases for the vapor concentration respectively (see e.g.,
[10–12]). In addition, we manage to extend our recent study [31] to the case that
the saturation concentration qs evolves according to the thermodynamical laws.

In [31], we proposed an implicit Euler scheme to approach the solutions to the
system which involves a variational inequality. However, we can not simply pro-
ceed directly as usual due to the difficulties induced from the discontinuities and
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 21–42, 2016.
DOI: 10.1007/978-3-319-55795-3 2
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physical requirement of vapor concentration (i.e. 0 ≤ q ≤ 1). To overcome the
difficulty caused by the discontinuities in our current modeling, we use a regular-
ization method. This regularization enables us to first study a system of partial
differential equations and then discuss the approximation of the solutions to
the original variational inequality. The constraint requirement q ∈ K for almost
every t ∈ [0, t1] for the vapor concentration q = q(t,x) brings us great technical
challenges. Here t1 > 0 is an arbitrary but fixed constant. See Sect. 2.1 for more
details about this physical range requirement. The source of challenges in our
study is that this range requirement can not be preserved in the discretization
procedure in the implicit Euler scheme. To deal with these challenges, we devised
a penalization technique in the regularized Euler scheme. Together with delicate
energy estimates, the penalization technique can elegantly help us achieve the
physical requirement on q. We point out here that the forms and the signs of the
penalization terms encode very elegant structural propositions and are crucial
for us to obtain the desired energy estimates. Finally, when we extend the study
to the case where the saturation vapor concentration qs evolves according to the
thermodynamical laws, we emphasize that the discretization of the qs-equation is
of different nature from the discretization of the temperature equation on T and
vapor concentration equations on q. See Remark 2 for more detailed comments.

The rest of the article is organized as follows. In Sect. 2, we give the formula-
tion of the problem. In Sect. 3, we introduce the Euler scheme and derive various
uniform estimates for the functions associated with the penalized and regular-
ized scheme. In Sect. 4, we investigate the convergence of the Euler scheme. We
devote Sect. 5 to the study of the implicit Euler scheme in the case where qs

depends on time.

2 The Problem

2.1 Formulation of the System

Let M = M′ × (p0, p1) where M′ ⊂ R
2 is a bounded domain with smooth

boundary and p0, p1 are two real numbers with 0 < p0 < p1. We will use x =
(x, y, p) to denote a typical point in M, and use n to denote the outward normal
vector to ∂M, the boundary of M. Let K be the non-empty closed convex set
in H1(M) defined as K = {q ∈ H1(M); 0 ≤ q ≤ 1, a.e.}. Given a fixed t1 > 0,
we consider the following problem:

To find T : (0, t1) → H1(M), q : (0, t1) → K and hq ∈ H(q − qs) such that
for qb ∈ K, there hold

∂tT + AT T + v · ∇T + ω∂pT − Rω

cpp
T =

1
p
ω−hqϕ(T ), (1)

〈∂tq, q
b − q〉 +

(Aqq + v · ∇q + ω∂pq, q
b − q

) ≥ ( − 1
p
ω−hqF (T ), qb − q

)
, (2)

with initial and boundary conditions to be specified. Here H is the multivalued
Heaviside function such that H(τ) = 0 for τ < 0, H(0) = [0, 1], H(τ) = 1 for
τ > 0.
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For the sake of simplicity, the velocity field of the fluid u :=
(v(x, t), ω(x, t)) ∈ R

3 is considered as a given data in this article. Through-
out the presentation, we assume that the time-dependent velocity field u sat-
isfies u ∈ Lr(0, t1;V ) ∩ L∞(0, t1;H) for some given r ∈ (4,+∞]; ∇ = (∂x, ∂y)
and Δ = ∂2

x + ∂2
y are the horizontal gradient and horizontal Laplace operators

respectively. In this way, the operators AT and Aq are defined as

AT = −μ1Δ − ν1∂p

(
(

gp

RT̄
)2∂p

)
, Aq = −μ2Δ − ν2∂p

(
(

gp

RT̄
)2∂p

)
, (3)

where μi, νi, g, R, cp are positive constants and T̄ = T̄ (p) is the average temper-
ature over the isobar with pressure p. We assume that T̄ satisfies:

T̄∗ ≤ T̄ (p) ≤ T̄ ∗, |∂pT̄ (p)| ≤ M, for some postive constants T̄∗, T̄ ∗, M and p ∈ [p0, p1]. (4)

Concerning the right hand sides of Eqs. (1)–(2), the functions F and ϕ both
from R

1 to R
1 are defined as

F (ζ) = qsζ
RL(ζ) − cpRvζ

cpRvζ2 + qsL(ζ)2
, with L(ζ) = c1 − c2ζ; ϕ(ζ) =

1
cp

L(ζ)F (ζ). (5)

Above, c1, c2, Rv, Rq are all strictly positive constants. It is easy to see that
F is bounded and that both functions F and ϕ are globally Lipschitz; ω+ :=
max{ω, 0} refers to the positive part of ω.

We partition the boundary of M as ∂M = Γi ∪ Γu ∪ Γl with Γi, Γu and Γl
defined by

Γi = {x ∈ M; p = p1}, Γu = {x ∈ M; p = p0}, Γl = {x ∈ M; p0 ≤ p ≤ p1, (x, y) ∈ ∂M′}.

We supplement the system (1)–(2) with the boundary conditions
⎧⎪⎨
⎪⎩

∂pT = α(T∗ − T ), ∂pq = β(q∗ − q) on Γi,

∂pT = 0, ∂pq = 0 on Γu,

∂nT = 0, ∂nq = 0 on Γl,

(6)

and initial conditions

T (x, 0) = T0(x), q(x, 0) = q0(x). (7)

If we allow qs to evolve, the dependence of the nonlinear functions F and ϕ
on qs should be made explicit, i.e., F = F (T, qs), ϕ = ϕ(T, qs). In this case, we
augment (1)–(2) with the following governing equation for the evolution of qs

(see [17,18,26]):
dqs

dt
= −δω−

p
hqF (T, qs). (8)

We will also impose a further initial condition

qs(x, 0) = qs,0(x). (9)
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We shall always assume q0 ∈ L2(M), 0 ≤ q0 ≤ 1 for a.e. x ∈ M, and
qs,0 ∈ L2(M) ∩ L∞(M), 0 < qs,0 < 1 and 0 ≤ q∗ ≤ 1 for a.e. x ∈ M, and
assume the boundary datum T∗ and q∗ to satisfy T∗, q∗ ∈ L2(0, t1;L2(Γi)). For
the convenience of fixing the ideas and of presentation, we shall first assume qs

is stationary during our study. In the last section, we will explain the case where
qs evolves according to the governing Eq. (8).

2.2 Functional Analytic Framework

We denote as usual H = L2(M), V = H1(M). We use (·, ·)L2 (regarded the
same as (·, ·)H) and | · |L2 to denote the usual scalar product and induced norm
in H. In the space V , we will use ((·, ·)) and ‖ · ‖ to denote the scalar product
adapted to the problem under investigation

((ϕ, φ)) := (∇ϕ,∇φ) + (∂pϕ, ∂pφ) +
∫

Γi

ϕφ dΓi,

and the induced norm. The symbol 〈·, ·〉 will denote the duality pair between a
Banach space E and its dual space E∗. We use the following standard function
spaces for the vector field u:

H = {u ∈ H × H × H
∣∣ div u = 0 and u · n = 0 on ∂M},

V = {u ∈ V × V × V
∣∣ div u = 0 and u · n = 0 on ∂M}.

For T, T b, q, qb ∈ V , we have the following specific forms for the duality pairs
through integration by parts and in view of the Neumann boundary conditions:

〈AT T, T
b〉 = μ1(∇T, ∇T

b
)H +ν1

∫
M

( gp

RT̄

)2
∂pT∂pT

b
dM+ν1

∫
Γi

( gp1

RT̄

)2
α(T −T∗)T

b
dΓi, (10)

〈Aqq, qb〉 = μ2(∇q, ∇qb)H +ν2

∫
M

( gp

RT̄

)2
∂pq∂pqb dM+ν2

∫
Γi

(gp1

RT̄

)2
β(q −q∗)qb dΓi. (11)

Consequently, we define the following bilinear forms

aT (T, T b) = μ1(∇T, ∇T b)H + ν1

∫
M

( gp

RT̄

)2
∂pT∂pT b dM + ν1α

∫
Γi

(gp1

RT̄

)2
TT b dΓi, (12)

aq(q, qb) = μ2(∇q,∇qb)H + ν2

∫
M

( gp

RT̄

)2
∂pq∂pq

b dM + ν2β

∫
Γi

(gp1
RT̄

)2
qqb dΓi.

(13)
Meanwhile, we set U := (T, q), U b := (T b, qb) and introduce the bilinear form

a(U,U b) := aT (T, T b) + aq(q, qb). (14)

As for the Navier-Stokes equation, we define

b(u, U, U b) :=
∫

M
(u · ∇x,y,pU) · U b dM = bT (u, T, T b) + bq(u, q, qb), (15)
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where bT (u, T, T b) and bq(u, q, qb) are given by

bT (u, T, T b) =

∫

M
(v·∇T+ω∂pT )T b dM, bq(u, q, qb) =

∫

M
(v·∇q+ω∂pq)qb dM. (16)

In view of the last term in the left hand side of the (1), we introduce the
following bilinear form

d(ω, T, T b) =
∫

M

RωTT b

cpp
dM. (17)

Similarly, in view of the last terms in (10) and (11), we define the linear
functional

l(Ub) := lT (T b) + lq(q
b) = ν1α

∫

Γi

(gp1

RT̄

)2
T∗T b dΓi + ν2β

∫

Γi

(gp1

RT̄

)2
q∗qb dΓi. (18)

Next, we consider the mapping relations related to the operators AT , Aq and
the above defined functionals.

It is well-known that the linear operators AT , Aq : V → V ∗ defined through
the relations

〈AT u, v〉 := aT (u, v), 〈Aqu, v〉 := aq(u, v),∀u, v ∈ V, (19)

are both bounded linear operators.
Similarly, the operators B(u, U) =

(
BT (u, U), Bq(u, q)

)
: V × V 2 → (V ∗)2

and D(u, u) : H × V → V ′ defined by

〈B(u, U), U b〉 :=
(
bT (u, T, T b), bq(u, q, qb)

)
, ∀ u ∈ V, U, U b ∈ V 2, (20)

and
〈D(u, u), v〉 := d(ω, u, v), ∀u ∈ H, u, v ∈ V, (21)

are also bounded.
Due to the divergence free condition of u, we easily see that for any T, q ∈ V ,

bT (u, T, T ) = 0, bq(u, q, q) = 0. (22)

Concerning the boundedness of the above functionals, we have the following
lemma.

Lemma 1 (Boundedness of the functionals). Assume U,U b ∈ V 2 and u ∈
V. There exist universal positive constants λ and Ki, 1 ≤ i ≤ 6 such that

|aT (T, T b)| ≤ K1‖T‖‖T b‖, aT (T, T ) ≥ λ‖T‖2; (23)

|aq(q, qb)| ≤ K2‖q‖‖qb‖, aq(q, q) ≥ λ‖q‖2; (24)

|b(u, U, U b)| ≤ K3‖u‖V|U | 1
2
L2‖U‖ 1

2 ‖U b‖; (25)

|d(ω, T, T b)| ≤ K4|ω|L2 |T | 1
4
L2‖T‖ 3

4 |T b| 1
4
L2‖T b‖ 3

4 ; (26)

|lT (T b)| ≤ K5‖T b‖, |lq(qb)| ≤ K6‖qb‖. (27)
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Definition 1. Let (T0, q0) ∈ H × H be such that 0 ≤ q0 ≤ 1 a.e. in M and let
t1 > 0 be fixed. A vector U = (T, q) ∈ L2(0, t1;V × V ) ∩ C([0, t1];H × H) with
(∂tT, ∂tq) ∈ L2(0, t1;V ∗ × V ∗) is a solution to the initial and boundary value
problem described by (1), (2), (6) and (7), if for almost every t ∈ [0, t1] and for
every (T b, qb) ∈ V × K, we have

〈∂tT, T b〉+aT (T, T b)+bT (u, T, T b)−d(ω, T, T b)−lT (T b) = (
1
p
ω−(t)hqϕ(T ), T b),

(28)

〈∂tq, q
b−q〉+aq(q, qb−q)+bq(u, q, qb−q)−lq(qb−q) ≥ (−1

p
ω−(t)hqF (T ), qb−q),

(29)
for some hq ∈ H(q − qs) and

U0 = (T0, q0). (30)

3 Time Discretization-The Euler Scheme

3.1 Time-Discretization

We assume that the velocity field u is given, time-dependent and satisfies u ∈
Lr(0, t1;V ) ∩ L∞(0, t1;H) for some given r ∈ (4,+∞].

Let N be an integer which will eventually go to +∞ and set Δt := k = t1/N .
We will define recursively a family of elements of V × K, say (T 0, q0), (T 1, q1),
· · · , (TN , qN ), where (Tm, qm) will be in some sense an approximation of the
functions (T, q) we are looking for, on the interval [(m − 1)k,mk).

First, we define um = 1
k

∫ mk

(m−1)k
u(t) dt, m = 1, 2, · · · , N . Our discretization

is as follows:
We begin with (T 0, q0) := (T0, q0), i.e., the given initial datum. When

(T 0, q0), (T 1, q1), · · · , (Tm−1, qm−1) are known, Tm ∈ V and qm ∈ K are deter-
mined by:

〈Tm − Tm−1

k
, T b〉 + aT (Tm, T b) + bT (um, Tm, T b) − d(ωm, Tm−1, T b) − lT (T b)

= (
1
p
[ωm]−hQmϕ(Tm−1), T b),

(31)

〈qm − qm−1

k
, qb − qm〉 + aq(qm, qb − qm) + bq(um, qm, qb − qm) − lq(qb − qm)

≥ (−1
p
[ωm]−hQmF (Tm−1), qb − qm),

(32)
for some hQm ∈ H(Qm − qs) where Qm is either qm−1 or qm.

In the above construction of the discretization scheme (31)–(32), one shall
pay special attention to the indices in the terms d and ϕ. Notice that we have
d(ωm, Tm−1, T b) and ϕ(Tm−1). Obviously, this choice of indices will have influ-
ence on our search for Tm and qm recursively. More importantly for us, it is
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crucial for us to obtain energy estimates later: the required estimates would not
be true if we changed the indices m− 1 to be m in d and ϕ. However, the choice
of the indices in F and hQm is not so sensitive.

Remark 1. In the above discretization, we have to deal with variational inequal-
ities due to the q-equation (32). Meanwhile, we shall keep in mind that the
physical constraint on the function q in our problem, qm ∈ K is not preserved
during the discretization (31)–(32). Finally, the problem we meet is nonlinear.
The above three aspects form the main sources of difficulties for our study.

3.2 Regularization and Penalization

In view of Remark 1, we proceed our investigation by way of regularization and
penalization. Let ε = (ε1, ε2) and εi > 0 be small for i = 1, 2. For ε2 > 0,
we define as follows the regularization Hε2 of H(·) : R → [0, 1]: equal to 0 for
η ≥ 0, to 1 for η ≥ ε2, and linear continuous between 0 and ε2. And consider
the associated regularized and penalized problem:

To find Tm
ε , qm

ε ∈ V such that

〈Tm
ε − Tm−1

ε

k
, T b〉 + aT (Tm

ε , T b) + bT (um, Tm
ε , T b) − d(ωm, Tm−1

ε , T b) − lT (T b)

= (
1
p
[ωm]−Hε2(Q

m
ε − qs)ϕ(Tm−1

ε ), T b),

(33)

〈qm
ε − qm−1

ε

k
, qb〉 + aq(qm

ε , qb) + bq(um, qm
ε , qb) − lq(qb)

= (
1
ε1

[qm
ε ]−, qb) − (

1
ε1

[qm
ε − 1]+, qb) − (

1
p
[ωm]−Hε2(Q

m
ε − qs)F (Tm−1

ε ), qb),

(34)
for all T b, qb ∈ V .

Notice that we have two choices for Qm
ε either Qm

ε = qm−1
ε or Qm

ε = qm
ε .

The introduction of penalization in the scheme (33)–(34) is designed to rem-
edy the difficulty brought by the physical range requirement for the humidity q.
The regularization process will overcome the difficulty caused by the variational
inequality and the requirement on hq. Here one may suspect that the two penal-
ization terms in (34) may be potentially dangerous due to the blowing up factor
1
ε1

. However, we point out that we could still obtain elegant estimates which do
not depend on ε1 (and ε2, k) though we have a blowing up factor 1

ε1
when we

pass to the limit ε → (0+, 0+). These estimates will yield that the limit func-
tions qmof qm

ε satisfy the range requirement, i.e., 0 ≤ qm ≤ 1 for m = 1, 2, · · · N
and a.e. x ∈ M.

3.3 Validity of Iteration

The scheme (33)–(34) yields elliptic system on (Tm
ε , qm

ε ) when (Tm−1
ε , qm−1

ε )
is known. To carry out our program, the step of finding (Tm

ε , qm
ε ) given
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(Tm−1
ε , qm−1

ε ) is indispensable. To realize this iteration step, we need some sur-
jective or existence theorems. Typically, we can use the Minty-Browder surjective
theorem, Lax-Milgram theorem or Galerkin method. Here we can realize the iter-
ation step by different methods depending on the choices of Qm

ε in our scheme
(33)–(34). When Qm

ε = qm−1
ε , the factor Hε2(·) is known when we proceed to

obtain Tm
ε and qm

ε once Tm−1
ε and qm−1

ε are known. We can apply the Minty-
Browder surjective theorem (see e.g., [20]) or Galerkin method (see e.g. [28])
to derive the existence of (Tm

ε , qm
ε ). On the other hand, if Qm

ε = qm
ε , we only

can proceed by Galerkin method (see e.g., [27,28]) to derive the existence of
(Tm

ε , qm
ε ), since the factor Hε2(·) is not known when we proceed to obtain Tm

ε

and qm
ε even though Tm−1

ε and qm−1
ε are known.

3.4 A Priori Estimate for (T m
ε , qm

ε )

The a priori estimates on (Tm
ε , qm

ε ) independent of k and ε for the regularized
and penalized problem (33)–(34) will be crucial for the processes of passing to
the limits ε → (0+, 0+) and k → 0+.

Lemma 2. We have the estimates

|U j
ε |2L2 ≤ C(u, U0, t1), ∀ 1 ≤ j ≤ N,

N∑
m=1

|Um
ε − Um−1

ε |2L2 ≤ C(u, U0, t1),

k
N∑

m=1

‖Um
ε ‖2 ≤ C(u, U0, t1),

(35)

where C(u, U0, t1) is a finite constant depending on the given datum u, U0 and
t1, but independent of ε and k.

In Lemma 2, the process to obtain the estimates on the Tm’s is more involved
than that for the qm’s. The reason lies in the fact that the function F is bounded
while ϕ is not. Due to this reason, we need the following version of the so-called
discrete Gronwall lemma [33]:

Lemma 3 (Discrete Gronwall Lemma). Let θ be any positive constant
and N0 > 1 be an integer. Suppose the three nonnegative number sequences
(Xm), (Ym) and (Zm) for m = 0, 1, 2, · · · , N0 satisfy the following relation

Xm ≤ Xm−1(1 + θYm) + θZm. (36)

Then for m = 1, 2, 3, · · · , N0, the following estimates hold

Xm ≤ X0 exp(
m−1∑
i=0

θYi+1) +
m−1∑
i=1

θZi exp(
m−1∑
j=i

θYj+1) + θZn. (37)

The iteration relation (36) in the Discrete Gronwall Lemma explains our
choice of index in ϕ(Tm−1) and d(ωm, Tm−1, T b) in the initial discretization.
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We have the following a priori bound for the norm k
∑N

m=1 ‖Um
ε −Um−1

ε

k ‖2V ∗ ,
which will be used in our compactness argument.

Lemma 4. For any ε1 > 0 and any ε2 > 0, the inequality

k

N∑
m=1

‖Um
ε − Um−1

ε

k
‖2V ∗ ≤ C(u, U0, t1) < +∞, (38)

holds for some constant C(u, U0, t1) depending on U0,u, t1, but not on ε and k.

The main point of Lemma 4 is that the bound is independent of ε = (ε1, ε2)
and any k. As ε2 comes into play through the regularization function Hε2 and Hε2

is bounded say by 1, it is easy to obtain the bound independent of ε2. Therefore,
the main issue here is to control the penalization terms which contain a blowing
up factor 1

ε1
in the limit process ε → (0+, 0+). We have the following bounds

for the penalization terms.

Lemma 5. The following bounds hold:

k

N∑
m=1

∣∣ [qm
ε ]−

ε1

∣∣2
L2 ≤ C|ω|2L2(0,t1;H), k

N∑
m=1

∣∣ [qm
ε − 1]+

ε1

∣∣2
L2 ≤ C|ω|2L2(0,t1;H). (39)

The proof of the estimates on the two penalization terms is subtle. Let us
briefly illustrate this point. To prove the two estimates in Lemma5, we choose
the test function qb = [qm]− and [qm − 1]+ in (34) respectively. Then the terms
〈 qm−qm−1

k , [qm]−〉 and 〈 qm−qm−1

k , [qm − 1]+〉 will appear. However, neither term
has a favorable sign. Actually, we think that the two kinds of terms may not
have the same sign for different k = 1, 2, · · · , N . Here we need more quantitative
estimates. Interestingly, though for each fixed k, the above two kinds of terms
may not have a definite sign, we have the following definite signs for their sums

N∑
m=1

〈qm − qm−1

k
, [qm]−〉 ≤ 0, −

N∑
m=1

〈qm − qm−1

k
, [qm − 1]+〉 ≤ 0, (40)

by writing qm = [qm]+ − [qm]− and the same for qm−1 directly. Due to the form
of the estimates in Lemma 5, the two relations in (40) are sufficient to derive the
proof of Lemma 5.

3.5 Passage to the Limit ε → (0+, 0+)

Assume the time step k > 0 is fixed. Our goal, in this part, is to pass to the limit
ε → (0+, 0+) in the scheme (33)–(34). The limit functions (Tm, qm) of (Tm

ε , qm
ε )

will be solutions to the time discretized scheme (31)–(32). These solutions will
serve as building blocks for us to construct approximate solutions to our original
problem.
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After extracting a finite number of subsequences, ε → 0, we infer from
Lemma 2 that, for m = 1, 2, · · · , N there exist functions Um ∈ V such that,
as ε → 0+

Um
ε ⇀ Um weakly in V. (41)

We still use ε as the index for the subsequence.
Since the inclusion V ⊂ H is compact and Um

ε is weakly convergent in V , it
is strongly convergent in H, i.e., we also have

Um
ε → Um strongly in H. (42)

By an additional extraction of subsequences we see that:

Um
ε (x) → Um(x) a.e.,m = 1, 2, · · · , N. (43)

Meanwhile, we have Hε2(Q
m
ε − qs) ⇀ hQm weak-* in L∞(M).

Concerning the limit functions qm, the second component of Um for m =
1, 2, · · · , N , we know from Lemma 5 that

k

N∑
m=1

(|[qm
ε ]−|2L2 + |[qm

ε − 1]+|2L2

) ≤ Cε21|ω|2L2(0,t1;H). (44)

As the real functions g±(θ) = θ± are both Lipschitz functions with Lipschitz
constant 1 on R, i.e., |g±(θ1) − g±(θ2)| ≤ |θ1 − θ2|, we have

|[qm
ε ]− − [qm]−|L2 ≤ |qm

ε − qm|L2 , |[qm
ε − 1]+ − [qm − 1]+|L2 ≤ |qm

ε − qm|L2 .

Consequently, with (42) we have [qm
ε ]− → [qm]− and [qm

ε − 1]+ → [qm − 1]+ in
H. As k > 0 is a fixed number, we can pass to the limit on ε in (44) to obtain
that

N∑
m=1

(|[qm]−|2L2 + |[qm − 1]+|2L2

)
= 0,

which implies
0 ≤ qm ≤ 1, a.e. in x ∈ M, i.e., qm ∈ K. (45)

With the above preparations, we could pass to the limit from the scheme
(33)–(34) to the scheme (31)–(32) term by term. We only point out the following
three subtle points. First, here we obtain the strong convergence of the functions
Um

ε to their limits Um in H by the compact embedding V ⊂ H. The strong
convergence will imply the a.e. convergence of Um

ε in M up to subsequences.
The strong convergence and the a.e. convergence of Um

ε are crucial when we
pass to the limit in the nonlinear terms in the scheme (33)–(34). The reason is
well-known: nonlinear mappings do not preserve weak convergences. Second, for
the two penalization terms, we have for qb ∈ K that

( 1
ε1

[qm
ε ]−, qb − qm

ε

) ≥ 0, −( 1
ε1

[qm
ε − 1]+, qb − qm

ε

) ≥ 0. (46)
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Due to weak convergence of qm in V and the weak lower semi-continuity property
of the norm, we also have

lim sup aq(qm
ε , qb − qm

ε ) = lim aq(qm
ε , qb) − lim inf aq(qm

ε , qm
ε )

≤ aq(qm, qb) − aq(qm, qm)

= aq(qm, qb − qm).

(47)

All the above three terms produce correct direction of inequalities during the
limit process. Therefore, we obtain the desired variational inequalities in (32).
Third, in order to show that hQm ∈ H(Qm − qs), we shall use the idea of
subdifferential for convex functions.

Summarizing the above arguments, we obtain from (33)–(34) via passing to
the limit on ε the existence of a solution (Tm, qm) to (31)–(32).

4 Convergence of the Euler Scheme

In this section, we want to prove the convergence of the solutions of the Euler
scheme (31)–(32) to the solutions of the system (28)–(30). We shall use the same
conventions on subsequences and indices as in the last section, that is, the limit
process in this part is N → +∞ or equivalently k → 0+ and up to subsequences.

Due to the weak lower semi-continuity property of the norms, we know that
for the limit functions Um which now have no dependence on ε, the bounds in
Lemmas 2 and 4 are now valid with Um

ε replaced by the limit functions Um.

4.1 Construction of Approximations

For each fixed k (or N), we associate to the elements U0, U1, U2, · · · , UN the
following approximate functions Uk = (Tk, qk), Ũk = (T̃k, q̃k) and Wk = (Tk,Qk)
which are defined piecewise on [0, t1] and take values in the space V 2:

Uk(t) = Um, Ũk(t) = Um−1, for t ∈ [(m − 1)k,mk),m = 1, 2, · · · , N. (48)

Wk(t) =
Um − Um−1

k
(t − (m − 1)k) + Um−1, for t ∈ [(m − 1)k, mk), m = 1, 2, · · · , N.

(49)

4.2 Reinterpretation of A Priori Estimates

First, we give a lemma measuring the distance in L2(0, t1;H) of the functions
Uk, Ũk and Wk in the limit process k → 0+.

Lemma 6. For the functions Uk,Wk and Ũk defined above, there hold

|Uk − Wk|L2(0,t1;H) ≤ C(u, U0, t1)
√

k, |Uk − Ũk|L2(0,t1;H) ≤ C(u, U0, t1)
√

k.

Now, we state a result concerning the boundedness of the functions Uk, Ũk and
Wk.
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Lemma 7. The functions Uk, Ũk and Wk remain in a bounded set of
L2(0, t1;V ) ∩ L∞(0, t1;H) as k → 0+. The functions ∂tWk form a bounded
set in L2(0, t1;V ∗) and Uk − Wk → 0 in L2(0, t1;H) strongly as k → 0+.

Lemmas 6 and 7 can be regarded as reinterpretations of Lemmas 2 and 4 in
terms of the functions Uk,Wk, Ũk.

Define uk : [0, t1] → V as follows:

uk(t) = um, for t ∈ [(m − 1)k,mk),m = 1, 2, · · · , N. (50)

We have the following classical lemma:

Lemma 8 (Convergence of uk). For the functions uk defined above, there
holds

uk → u, in Lr(0, t1,V) as k → 0 + . (51)

For later use, we also define the linear averaging map for the test functions
U b = (T b, qb) ∈ L2(0, t1;V ) that we will use below, that is, we define U b

k :
[0, t1] → V 2 piecewise by

U b
k(t) =

1
k

∫ mk

(m−1)k

U b(t) dt on [(m − 1)k,mk).

Similarly as in Lemma 8, we conclude that U b
k → U b strongly in L2(0, t1;V 2) as

k → 0. Moreover, if qb ∈ K for a.e. t ∈ [0, t1], we have qb
k ∈ K for all t ∈ [0, t1].

4.3 Passage to the Limit: k → 0+

We first reinterpret as follows the scheme (31)–(32) in terms of the functions
Uk = (Tk, qk), Ũk = (T̃k, q̃k), Wk = (Tk,Qk) and U b

k = (T b
k , qb

k):

〈∂tTk, T b
k〉 + aT (Tk, T b

k) + bT (uk, Tk, T b
k) − d(ωk, T̃k, T b

k) − lT (T b
k)

= (
1
p
[ωk]−hQk

ϕ(T̃k), T b
k ),

(52)

〈∂tQk, qb
k − qk〉 + aq(qk, qb

k − qk) + bq(uk, qk, qb
k − qk) − lq(qb

k − qk)

≥ (−1
p
[ωk]−hQk

F (T̃k), qb
k − qk),

(53)

where Qk is either q̃k or qk. Furthermore, hQk
is defined by hQk

(t) = hQm when
t ∈ [(m − 1)k,mk). Here we emphasize that we require qb

k ∈ L2(0, t1;K).
Due to Lemma 7, we have, up to subsequences, in the limit k → 0+, that

Uk ⇀ U = (T, q), weakly in L2(0, t1;V ) and weak- ∗ in L∞(0, t1;H), (54)

Wk ⇀ W = (T ,Q), weakly in L2(0, t1;V ) and weak- ∗ in L∞(0, t1;H), (55)

and
∂tWk ⇀ ∂tW = (∂tT , ∂tQ), weakly in L2(0, t1;V ∗). (56)
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Obviously, Ũk = U(· − k) converges also to U in L2(0, t1;V ) weakly and in
L∞(0, t1;H) weak-∗.

In view of Lemma 6, we know that

U = W. (57)

Now, we consider the inclusions V ⊂ H ⊂ V ∗ where the first inclusion is compact
and the second inclusion is continuous. In view of (55) and (56), we conclude,
by applying the Aubin-Lions compactness theorem, that

Wk → W, strongly in L2(0, t1;H). (58)

By Lemma 6 again, we conclude that

Uk, Ũk,Wk → U, strongly in L2(0, t1;H). (59)

With the above preparations, we can now pass to the limit k → 0+ from
(52)–(53) to (28)–(30) term by term. Here we also point several subtle points.
First, we obtain the strong convergence, i.e. (59), in this step by the Aubin-Lions
compactness argument. For further details, see [28]. Second, the limit function
q satisfies the required range condition. Indeed, regarded as a convex subset of
L2(0, t1;V ), L2(0, t1;K) is closed with respect to the strong topology induced
by the L2(0, t1;V )-norm. Therefore, it is also closed with respect to the weak
topology. Furthermore, in view of the fact that qk ∈ L2(0, t1;K) which is obvious
from the definition and that qk converge to q weakly in L2(0, t1;V ), we conclude
that q ∈ L2(0, t1;K). Third, the subtle point in this passage to the limit is to
deal with the term

∫ t1
0

〈∂tQk, qb
k −qk〉 dt which is the sum of

∫ t1
0

〈∂tQk, qb
k −Qk〉 dt

and
∫ t1
0

〈∂tQk,Qk − qk〉 dt. Using integration by parts, (56) and the lower semi-
continuity of the norm, we write

lim sup

∫ t1

0

〈∂tQk, qb
k − Qk〉 dt = − lim inf

∫ t1

0

〈∂tQk, Qk〉 dt + lim

∫ t1

0

〈∂tQk, qb
k〉 dt

= − lim inf
1

2
|Qk(t1)|2L2 +

1

2
|q0|2L2 +

∫ t1

0

〈∂tq, q
b〉 dt

≤ −1

2
|q(t1)|2L2 +

1

2
|q0|2L2 +

∫ t1

0

〈∂tq, q
b〉 dt

= −
∫ t1

0

〈∂tq, q〉 dt +

∫ t1

0

〈∂tq, q
b〉 dt

=

∫ t1

0

〈∂tq, q
b − q〉 dt.

(60)
where we have used, in the second equality of (60), the observation

lim
∫ t1

0

〈∂tQk, qb
k〉 dt →

∫ t1

0

〈∂tq, q
b〉 dt, (61)

which is a simple consequence of (56) and the strong convergence of qb
k to qb in

L2(0, t1;V ).
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A subtle point is the treatment of
∫ t1
0

〈∂tQk,Qk−qk〉 dt. Though we have (56)
(which implies in particular that ∂tQk is bounded in L2(0, t1;V ∗) and Qk −qk ⇀

0 weakly in L2(0, t1;V ), we can not conclude that the limit of
∫ t1
0

〈∂tQk,Qk −
qk〉 dt is 0. Rather, we show, by the specific forms of Qk and qk, that

lim sup
∫ t1

0

〈∂tQk,Qk − qk〉 dt ≤ 0. (62)

Indeed, noticing that ∂tQk = qm−qm−1

k and Qk − qk = qm−qm−1

k (t − mk) on the
subinterval [(m − 1)k,mk) of [0, t1], we have:

∫ t1

0

〈∂tQk,Qk − qk〉 dt =
N∑

m=1

∫ mt

(m−1)t

〈∂tQk,Qk − qk〉 dt

=
N∑

m=1

∫ mk

(m−1)t

〈qm − qm−1

k
,
qm − qm−1

k
(t − mk)〉 dt

=
N∑

m=1

∫ mk

(m−1)t

|qm − qm−1|2L2

k2
(t − mk) dt

≤ 0,

which implies (62). From (60) and (62), we can conclude that

lim sup
∫ t1

0

〈∂tQk, qb
k − qk〉 dt ≤

∫ t1

0

〈∂tq, q
b − q〉 dt. (63)

To sum up, we have proved the following theorem when qs is constant:

Theorem 1. Given T0, q0 ∈ H with 0 ≤ q0 ≤ 1 a.e. in M, the Euler scheme
(31)–(32) contains a subsequence which converges to a solution of the system
(1)–(7).

5 The Case Where qs Depends on Time

In this part, we extend our former results to the case where qs is not constant.

5.1 The Nonlinearities ϕ and F

When qs evolves according to (8), the nonlinearities F and ϕ will also depend
on the function qs. The nonlinearities (see e.g., [17,18]) ϕ and F : R × R → R

are defined as follows:

F (T, qs) = qsG(T, qs) = qsT
RL(T ) − cpRvT

cpRvT 2 + qsL(T )2
, (64)

ϕ(T, qs) =
L(T )
cp

F (T, qs), (65)
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where

L(T ) = c1 − c2T, G(T, qs) = T
RL(T ) − cpRvT

cpRvT 2 + qsL(T )2
. (66)

In the above, c1, c2, R, cp, Rv are all strictly positive constants. The additional
dependence of F and ϕ on qs will bring us technical complexities during the
passages to the limits.

Notice that the functions F , G, and ϕ have a singularity at (0, 0); F (T, qs)
is bounded but discontinuous at (0, 0) and G(T, qs) may blow up at (0, 0). To
overcome this difficulty, we introduce the following regularized version ϕr, Fr

and Gr for ϕ, F and G.

Fr(T, qs) = qsGr(T, qs) = qsT
RL(T ) − cpRvT

cpRv max (T, γ)2 + qsL(T )2
, (67)

ϕr(T, qs) =
L(T )
cp

Fr(T, qs), (68)

Gr(T, qs) = T
RL(T ) − cpRvT

cpRv max (T, γ)2 + qsL(T )2
, (69)

where γ > 0 is smaller than any temperature on Earth. Once arriving at qs ≥ 0,
we can derive Gr is nonnegative by observing that T ≤ LR

cpRv
for any temperature

on Earth. It is easy to see the rational function Fr is bounded and globally
Lipschitz on R × R, i.e.,

|Fr(ζ1, ξ1) − Fr(ζ2, ξ2)| ≤ C(|ζ1 − ζ2| + |ξ1 − ξ2|), ∀ ζ1, ζ2 ∈ R, ξ1, ξ2 ∈ [0,∞),
(70)

and
|Fr(ζ, ξ)| ≤ C, ∀ ζ ∈ R, ξ ∈ [0,∞). (71)

The function ϕr is also globally Lipschitz,

|ϕr(ζ1, ξ1) − ϕr(ζ2, ξ2)| ≤ C(|ζ1 − ζ2| + |ξ1 − ξ2|), ∀ ζ1, ζ2 ∈ R, ξ1, ξ2 ∈ [0, ∞). (72)

In addition, as Fr(0, 0) = 0, we have ϕr(0, 0) = 0. Hence the Lipschitz function
ϕr also satisfies |ϕr(ζ, ξ)| ≤ C(|ζ| + |ξ|).
Definition 2. Let (T0, q0, qs,0) ∈ H × H × H be such that 0 ≤ q0 ≤ 1, 0 <
qs,0 < 1 a.e. in M and let t1 > 0 be fixed. A vector (T, q, qs) ∈ L2(0, t1;V ×
V ) ∩ C([0, t1];H × H) × L∞(M × [0, t1]) with 0 < qs < 1, (∂tT, ∂tq, ∂tqs) ∈
L2(0, t1;V ∗ × V ∗) × L∞(M × [0, t1]) is a solution to the initial boundary value
problem described by (1), (2), (8), (6), (7) and (9), if for a.e. t ∈ [0, t1] and for
every (T b, qb) ∈ V × K, we have

〈∂tT, T b〉 + aT (T, T b) + bT (u, T, T b) − d(ω, T, T b) − lT (T b) = (
1

p
ω−(t)hqϕ(T, qs), T

b),

(73)
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〈∂tq, q
b − q〉+ aq(q, q

b − q)+ bq(u, q, qb − q)− lq(q
b − q) ≥ (−1

p
ω−(t)hqF (T, qs), q

b − q),

(74)

dqs

dt
= −1

p
ω−hqF (T, qs) for a.e. (t,x) ∈ [0, t1] × M, (75)

for some hq ∈ H(q − qs) and

U0 = (T0, q0, qs,0). (76)

5.2 The Discretization Scheme

We begin with

(T 0, q0, q0s) := (T0, q0, qs,0), i.e., the given initial datum. (77)

When (T 0, q0, q0s), (T 1, q1, q1s), · · · , (Tm−1, qm−1, qm−1
s ) are known, Tm ∈ V

and qm ∈ K are determined by:

〈Tm − Tm−1

k
, T b〉 + aT (Tm, T b) + bT (um, Tm, T b) − d(ωm, Tm−1, T b) − lT (T b)

= (
1
p
[ωm]−hqm−1ϕ(Tm−1, qm−1

s ), T b),

(78)

〈qm − qm−1

k
, qb − qm〉 + aq(qm, qb − qm) + bq(um, qm, qb − qm) − lq(qb − qm)

≥ (−1
p
[ωm]−hqm−1F (Tm−1, qm−1

s ), qb − qm),

(79)
and

qm
s := Zm(mk), (80)

where Zm(t) is the solution to the following initial value problem
{

dZm(t)
dt = − 1

p [ωm]−hqm−1F (Tm−1, Zm(t)),
Zm((m − 1)k) = qm−1

s ,
(81)

where hqm−1 ∈ H(qm−1 − qm−1
s ).

Remark 2. We shall point out the distinct feature of the discretization for the
qs-equation. First, the qs-equation shall be discretized once the (T, q)-equation is
discretized as the (T, q)-equation depends on qs through the nonlinear functions
F (T, qs) and ϕ(T, qs) and we do not allow time dependence in the discretized
equation on (T, q). Here we did not use the standard Euler algorithm for ordinary
differential equations (ODEs). Rather, we define qm

s by successively solving the
ordinary differential equation (81) and make evaluations at specific time points.
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The latter will make the qm
s ’s satisfy the required range condition inherited from

that of qs. The Euler algorithm for ODEs cannot guarantee this range condition.
Finally, we emphasize that we need to use hqm−1 in the scheme (78), (79) and
(81). This choice makes the (Tm, qm)-equation and the qm

s -equation decouple.

To show the existence of a solution (Tm, qm, Zm) to (78)–(81), we consider
the associated regularized and penalized problem:

To find Tm
ε , qm

ε ∈ V and Zm
ε ∈ H such that

〈Tm
ε − Tm−1

ε

k
, T b〉 + aT (Tm

ε , T b) + bT (um, Tm
ε , T b) − d(ωm, Tm−1

ε , T b) − lT (T b)

= (
1
p
[ωm]−Hε2(q

m−1
ε − qm−1

s,ε )ϕr(Tm−1
ε , qm−1

s,ε ), T b),

(82)

〈 qm
ε − qm−1

ε

k
, qb〉 + aq(q

m
ε , qb) + bq(u

m, qm
ε , qb) − lq(q

b)

= (
1

ε1
[qm

ε ]−, qb) − (
1

ε1
[qm

ε − 1]+, qb) − (
1

p
[ωm]−Hε2 (q

m−1
ε − qm−1

s,ε )Fr(T
m−1
ε , qm−1

s,ε ), qb),

(83)
and

qm
s,ε := Zm

ε (mk), (84)

where Zm
ε is the solution to the following initial value problem{

dZm
ε (t)
dt = − 1

p [ωm]−Hε2(q
m−1
ε − qm−1

s,ε )Fr(Tm−1
ε , Zm

ε (t)),
Zm

ε ((m − 1)k) = qm−1
s,ε .

(85)

5.3 Validity of the Iteration

In order to have a valid scheme, we should be able to obtain (Tm
ε , qm

ε , qm
s,ε) when

(Tm−1
ε , qm−1

ε , qm−1
s,ε ) are known. This is true. First, observe that the equation

on (Tm
ε , qm

ε ) and qm
s,ε are decoupled. Noticing that the arguments of Fr and ϕr

have index m − 1 in (82) and (83), we can obtain (Tm
ε , qm

ε ) either by the Minty-
Browder Theorem or by the Galerkin method when (Tm−1

ε , qm−1
ε , qm−1

s,ε ) are
known. The determination of qm

s,ε is easy when (Tm−1
ε , qm−1

ε , qm−1
s,ε ) are known:

we just need to use the initial value problem (85). The initial value problem
(85) admits a unique solution Zm

ε (t) on [(m − 1)k, T ∗). The maximum time of
existence T ∗ = +∞ due to the form of Fr. Actually, we have

Fr(Tm−1
ε , Zm

ε (t)) = Zm
ε (t)Gr(Tm−1

ε , Zm
ε (t)).

Therefore, we have the following integral form of (85):

qm
s,ε(t) = qm−1

ε exp
{

−
∫ t

(m−1)k

1
p
[ωm]−Hε2(q

m−1
ε − qm−1

s,ε )Gr(Tm−1
ε , Zm

ε (t)) dτ
}

.

(86)
Due to the above expression of qm

s,ε(t), no blow-up can happen as we always have

|Zm
ε (t)|L2 ≤ |qm−1

s,ε |L2 , |Zm
ε (t)|L∞ ≤ |qm−1

s,ε |L∞ for t ≥ (m − 1)k. (87)

For our purpose, we just need T ∗ ≥ mk so that qm
s,ε is well-defined.
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5.4 A Priori Estimates for (T m
ε , qm

ε , qm
s,ε)

Integrating the first equation in (85) from (m − 1)k to mk, we find

qm
s,ε = qm−1

s,ε exp
{

−
∫ mk

(m−1)k

1

p
[ωm]−Hε2(q

m−1
ε − qm−1

s,ε )Gr(T
m−1
ε , Zm

ε (t)) dτ
}

. (88)

As 0 < q0s = qs,0 < 1, we easily conclude that 0 < qm
s,ε < 1 for all 1 ≤ m ≤ N

by repeatedly using (88) for m = 1, 2, · · · , N . Actually, we have the following
pointwise monotone relations

0 < qm
s,ε(x) ≤ qm−1

s,ε (x) < 1, m = 1, 2, · · · , N. (89)

Now we aim to obtain a priori estimates on (Tm
ε , qm

ε ) independent of k and
ε for the regularized and penalized problem (82)–(83). Due to the form of ϕr,
Fr and our estimate on qm

s,ε, we know that

|ϕr(Tm−1
ε , qm−1

s,ε )| ≤ C(|Tm−1
ε | + 1) and |Fr(Tm−1

ε , qm−1
s,ε )| ≤ C, (90)

where C is constant independent of ε and k. Therefore, Lemma 2 is still valid.
Now, we explain that Lemma 4 is still valid even when qs is not constant.

Since |Fr(Tm−1
ε , qm−1

s,ε )| can be bounded by a universal constant, we still have,
for the penalization terms, that Lemma5 holds. Then estimating the duality
pair 〈Um

ε −Um−1
ε

k , U b〉 where U b ∈ V 2, we can derive the conclusion of Lemma 4.

5.5 Passage to the Limit ε → 0+ and k → 0+

The passage to the limit can be proceeded essentially as before. By the compact
Sobolev embedding theorem as before, we can derive that (Tm

ε , qm
ε ) → (Tm, qm)

strongly in H. In addition, by the above estimates on qm
s,ε, we know that there

exist qm
s ∈ H ∩ L∞(M) such that, up to subsequences,

qm
s,ε ⇀ qm

s weakly in H and weak-* in L∞(M). (91)

During the passage to the limit: k → 0+, besides defining Uk, Ũk, Wk, hq̃k

as before, we should also define qs,k : [0, t1] → L∞(M) ∩ L2(M) as follows:

qs,k(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1(t), when t ∈ [0, k),
Z2(t), when t ∈ [k, 2k),
· · · ,

Zm(t), when t ∈ [(m − 1)k,mk),
· · · ,

ZN (t), when t ∈ [(N − 1)k,Nk).

(92)

By our definition of qs,k, we know that qs,k(0) = qs,0 and qs,k is piecewise
differentiable and satisfies (84) on the whole interval [0, t1]. Then, we can rein-
terpret our scheme in terms of the above functions Uk = (Tk, qk), Ũk = (T̃k, q̃k),
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Wk = (Tk,Qk) and U b
k = (T b

k , qb
k) as follows

〈∂tTk, T b
k〉 + aT (Tk, T b

k) + bT (uk, Tk, T b
k) − d(ωk, T̃k, T b

k ) − lT (T b
k)

= (
1
p
[ωk]−hq̃k

ϕr(T̃k, q̃s,k), T b
k ),

(93)

〈∂tQk, qb
k − qk〉 + aq(qk, qb

k − qk) + bq(uk, qk, qb
k − qk) − lq(qb

k − qk)

≥ (−1
p
[ωk]−hq̃k

Fr(T̃k, q̃s,k)), qb
k − qk),

(94)

dqs,k

dt
= −1

p
[ωk]−hq̃k

Fr(T̃k, qs,k). (95)

The two passages to the limit processes ε → 0+ and k → 0+ are paral-
lel to those in the case that qs is constant. However, we shall pay attention
to the convergences of the terms involving ϕr(Tm−1

ε , qm−1
s,ε ), Fr(Tm−1

ε , qm−1
s,ε )

during the passage to the limit ε → (0+,+), and ϕr(T̃k, q̃s,k), Fr(T̃k, q̃s,k) dur-
ing the passage to the limit k → 0+ respectively. In both of the two limit
processes, we could achieve strong convergences for the sequences (Tm

ε )ε and
(T̃k)k up to subsequences by compact Sobolev embedding and Aubin-Lions argu-
ment respectively. While for (qm

s,ε)ε and (q̃s,k)k, we could not obtain strong con-
vergences. Fortunately, we could obtain a.e. convergences for them for x ∈ M
and (t,x) ∈ [0, t1]×M respectively. These pointwise convergences, together with
the Lebesgue Dominated Convergence Theorem, will enable us to pass to the
limits for these terms. The a.e. convergences are guaranteed by the following
lemma.

Lemma 9. Consider the following equation
{

dqj
s(t)
dt = F (T j(t), qj

s(t)),
qj
s(0) = qs,0,

(96)

where F (·, ·) is a real-valued bounded Lipschitz function. Suppose T j = T j(x, t)
converges to some T = T (x, t) strongly in L2(0, l;H) as j → ∞. Then up to
subsequences, we have

qj
s(x, t) → qs(x, t) for any t ∈ [0, l] and a.e.x ∈ Ω \ Ω0, (97)

where qs(x, t) is the solution to the initial value problem
{

dqs(t)
dt = F (T (t), qs(t)),

qs(0) = qs,0,
(98)

and Ω0 is a subset of M which has Lebesgue measure 0 and is independent of t.

Proof. By assumption, we have up to a subsequence that

T j(x, t) → T (x, t) a.e. (x, t).
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Writing the ODE on qj
s in the integral equation form, we have

qj
s(t) = qj

s(0) +
∫ t

0

F (T j(x, τ), qj
s(x, τ)) dτ. (99)

By assumption, we have
∫ l

0

∫
M

|T j(x, t) − T (x, t)|2 dxdt =

∫
M

(∫ l

0
|T j(x, t) − T (x, t)|2 dt

)
dx → 0, as j → ∞.

By Fubini’s theorem, we have for a.e. x that
∫ l

0

|T j(x, t) − T (x, t)|2 dt → 0.

Now take x∗ such that
∫ l

0

|T j(x∗, t) − T (x∗, t)|2 dt → 0. (100)

Notice that {
dqj

s(x∗,t)
dt = F (T j(x∗, t), qj

s(x∗, t)),
qj
s(x∗, 0) = qs(x∗, 0).

(101)

As |dqj
s

dt |L∞(0,l) ≤ C, we have up to a subsequence and with x∗ fixed that
qji
s → qs uniformly on [0, l].

Since F (T ji(x∗, t)) and qji
s (x∗, t) converge for a.e. t ∈ [0, l], we can pass to

the limit in the following equation

qji
s (x∗, t) = qj

s(x∗, 0) +
∫ t

0

F (T ji(x∗, τ), qji
s (x∗, τ)) dτ,

and by the Lebesgue Dominated Convergence Theorem, we have

qs(x∗, t) = qs(x∗, 0) +
∫ t

0

F (T (x∗, τ), qs(x∗, τ)) dτ. (102)

By uniqueness of the solution to (99) and the fact that the limit solution is
independent of the subsequence, we conclude that

qj
s(·, x∗) → qs(·, x∗), uniformly in t,

for any x∗ such that (100) holds, i.e., for x∗ ∈ Ω \ Ω0 where |Ω0| = 0, Hence,

qj
s(x, t) → qs(x, t) for any t and for a.e. x ∈ Ω \ Ω0. (103)

Remark 3. A particular case of the above lemma is that T j = T j(x), i.e., T j

has no dependence on the time variable t ∈ [0, l]. In this case we can regard T j

as a constant function of t ∈ [0, l] and consequently, we still have T j → T in
L2(0, l;H).
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In summary, when qs depends on time, we have the following theorem.

Theorem 2. Given T0, q0, qs,0 ∈ H with 0 ≤ q0 ≤ 1, and 0 < qs,0 < 1 a.e. in
M, the scheme (78)–(81) contains a subsequence which converges to a solution
of the system (1)–(9).
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4. Coti Zelati, M., Frémond, M., Temam, R., Tribbia, J.: The equations of the
atmosphere with humidity and saturation: uniqueness and physical bounds. Phys-
ica D 264, 49–65 (2013)

5. Coti Zelati, M., Huang, A., Kukavica, I., Temam, R., Ziane, M.: The primitive
equations of the atmosphere in presence of vapor saturation. Nonlinearity (2015,
in press). http://dx.doi.org/10.1088/0951-7715/28/3/625

6. Diaz, J.I.: Mathematical analysis of some diffusive energy balance models in clima-
tology. In: Dı́az, J.I., Lions, J.L. (Eds.) Mathematics, Climate and Environment.
Research Notes in Applied Mathematics, vol. 27, Masson, Paris, pp. 28–56 (1993)

7. Diaz, J.I., Tello, L.: On a nonlinear parabolic problem on a Riemannian manifold
without boundary arising in climatology. Collect. Math. L (Fascicle 1) 50, 19–51
(1999)

8. Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin
(1976). (Translated from the French by C.W. John, 397 p.)

9. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Classics in
Applied Mathematics. North-Holland Publishing Company, Amsterdam (1987).
(+416 p.)

10. Feireisl, E., Norbury, J.: Some existence, uniqueness and nonuniqueness theorems
for solutions of parabolic equations with discontinuous nonlinearities. Proc. R. Soc.
Edinb. Sect. A 119, 1–17 (1991)
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Abstract. A least-squares method is developed for estimating parame-
ters in a size-structured population model with distributed states-at-
birth from field data. First and second order finite difference schemes for
approximating the nonlinear-nonlocal partial differential equation model
are utilized in the least-squares problem. Convergence results for the
computed parameters are established. Numerical results demonstrating
the efficiency of the technique are provided.

1 Introduction

It is often the case that direct observations of vital rates of individual organisms
are not accessible and our knowledge of the vital rates is incomplete. Therefore,
the inverse problem approach often plays an important role in deducing such
information at the individual level from observation at the population level. In
recent years substantial attention has been given to inverse problems governed
by age/stage/size structured population models [1–3,6–9,12,13]. Methodologies
applied to solve such inverse problems include the least-squares approach [1,3,9]
and the fixed point iterative technique [17]. The least-squares approach has been
often used in inverse problems governed by size-structured models. For exam-
ple, in [8,9] the authors used least-squares method to estimate the growth rate
distribution in a linear size-structured population model. A similar technique
was applied to a semi-linear size-structured model in [14] where the mortality
rate depends on the total population due to competition between individuals.
Furthermore, such least-squares methodology has been applied for estimat-
ing parameters in general conservation laws [13]. Therein the author utilizes
monotone finite-difference schemes to numerically solve the conservation law
and present numerical results for estimation the flux function from numerically
generated data. And in [3], the authors solved an inverse problem governed by
structured juvenile-adult model. Therein, the least-squares approach was used
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to estimate growth, mortality and reproduction rates in the adult stage from
field data on an urban green tree frog population. The estimated parameters
were then utilized to understand the long-term dynamics of this green tree frog
population.

In this paper we consider the following nonlinear Gurtin-MacCamy type
model with distributed states-at-birth:

∂

∂t
p(x, t; θ) +

∂

∂x
(g(x, t,Q(t; θ))p(x, t; θ)) = −μ(x, t,Q(t; θ))p(x, t; θ)

+
∫ xmax

xmin

β(x, y, t,Q(t; θ))p(y, t; θ)dy, (x, t) ∈ (xmin, xmax) × (0, T ),

g(xmin, t, Q(t; θ))p(xmin, t; θ) = 0, t ∈ [0, T ],
p(x, 0; θ) = p0(x), x ∈ [xmin, xmax].

(1)
Here, θ = (g, μ, β) is the vector of parameters to be identified. The function
p(x, t; θ) is the parameter-dependent density of individuals of size x at time t.

Therefore, Q(t; θ) =
∫ xmax

xmin

p(x, t; θ)dx provides the total population at time t

which depends on the vector of parameters θ = (g, μ, β). The functions g and μ
represent the individual growth and mortality rates, respectively. It is assumed
that individuals may be recruited into the population at different sizes with
β(x, y, t,Q) representing the rate at which an individual of size y gives birth to
an individual of size x. Henceforth, we will call the model (1) Distributed Size
Structured Model and abbreviate it as DSSM.

The main goal of this paper is to develop a least-squares approach for esti-
mating the parameter θ from population data and to provide convergence results
for the parameter estimates. The paper is organized as follows. In Sect. 2, we set
up a least-squares problem and present finite difference schemes for comput-
ing an approximate solution to this least-squares problem. In Sect. 3 we provide
convergence results for the computed parameters. In Sect. 4, numerical examples
showing the performance of the least-squares technique and an application to a
set of field data on green tree frogs are presented.

2 The Least-Squares Problem and Approximation
Schemes

Let D1 = [xmin, xmax] × [0, T ] × [0,∞) and D2 = [xmin, xmax] × [xmin, xmax] ×
[0, T ] × [0,∞) throughout the discussion. Let B = C1

b (D1) × Cb(D1) × Cb(D2),
where Cb(Ω) denotes the Banach space of bounded continuous functions on Ω
endowed with the usual supremum norm and C1

b (Ω) is the Banach space of
bounded continuous functions with bounded continuous derivatives on Ω and
endowed with the usual supremum norm. Clearly, B is a Banach space when
endowed with the natural product topology. Let c be a sufficiently large positive
constant and assume that the admissible parameter space Θ is any compact
subset of B (endowed with the topology of B) such that every θ = (g, μ, β) ∈ Θ
satisfies (H1)–(H4) below.
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(H1) g ∈ C1
b (D1) with gx(x, t,Q) and gQ(x, t,Q) being Lipschitz continuous in x

with Lipschitz constant c, uniformly in t and Q. Moreover, 0 < g(x, t,Q) ≤
c for x ∈ [xmin, xmax) and g(xmax, t, Q) = 0.

(H2) μ ∈ Cb(D1) is Lipschitz continuous in x and Q with Lipschitz constant c,
uniformly in t. Also, 0 ≤ μ(x, t,Q) ≤ c.

(H3) β ∈ Cb(D2) is Lipschitz continuous in Q with Lipschitz constant c, uni-
formly in x, y and t. Also, 0 ≤ β(x, y, t,Q) ≤ c and for every partition
{xi}N

i=1 of [xmin, xmax], we have

sup
(y,t,Q)∈[xmin,xmax]×[0,T ]×[0,∞)

N∑
i=1

|β(xi, y, t, Q) − β(xi−1, y, t, Q)| ≤ c.

(H4) p0 ∈ BV ([xmin, xmax]), the space of functions with bounded total variation
on [xmin, xmax], and p0(x) ≥ 0.

We now define a weak solution to the model (1).

Definition 21. Given θ ∈ Θ, by a weak solution to problem (1) we mean a
function p(·, ·; θ) ∈ L∞([xmin, xmax] × [0, T ]), p(·, t; θ) ∈ BV ([xmin, xmax]) for
t ∈ [0, T ], and satisfies
∫ xmax

xmin

p(x, t; θ)φ(x, t)dx −
∫ xmax

xmin

p0(x)φ(x, 0)dx

=

∫ t

0

∫ xmax

xmin

p(x, τ ; θ)[φτ (x, τ) + g(x, τ, Q(τ ; θ))φx(x, τ) − μ(x, τ, Q(τ ; θ))φ(x, τ)]dxdτ

+

∫ t

0

∫ xmax

xmin

∫ xmax

xmin

β(x, y, τ, Q(τ ; θ))p(y, τ ; θ)φ(x, τ)dydxdτ.

(2)
for every test function φ ∈ C1((xmin, xmax) × (0, T )) and t ∈ [0, T ].

We are interested in the following least-squares problem: given data Xs which
corresponds to the number of individuals at time ts, s = 1, 2, · · · , S, find a
parameter θ = (g, μ, β) ∈ Θ such that the weighted least-squares cost functional

F (θ) =
S∑

s=1
|W (Q(ts; θ)) − W (Xs)|2 is minimized over the admissible parameter

space Θ, i.e., find θ∗ such that

θ∗ = arg min
θ∈Θ

F (θ) = arg min
θ∈Θ

S∑
s=1

|W (Q(ts; θ)) − W (Xs)|2 , (3)

where W ∈ C([0,∞)) is a weight function.
In order to numerically approximate the solution to the minimization prob-

lem (3), we first need to approximate the solution of model (1). To this end, we
utilize similar finite-difference approximation schemes as those developed in [5].
Suppose that the intervals [xmin, xmax] and [0, T ] are divided into N and L
subintervals, respectively. The following notations will be used throughout the
pater: Δx = (xmax − xmin)/N and Δt = T/L. The discrete mesh points are
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given by xi = xmin + iΔx, tk = kΔt for i = 0, 1, · · · , N , k = 0, 1, · · · , L.
For ease of notation, we take a uniform mesh with constant sizes Δx and Δt.
More general nonuniform meshes can be similarly considered. We shall denote by
pk

i (θ) and Qk(θ) the finite difference approximation of p(xi, tk; θ) and Q(tk; θ),
respectively. For convenience we will also use the notation pk

i and Qk without
explicitly stating their dependence on θ. We also let gk

i = g(xi, tk, Qk), μk
i =

μ(xi, tk, Qk), βk
i,j = β(xi, yj , tk, Qk). Here, Qk =

N∑
i=1

pk
i Δx.

We define the 	1, 	∞ norms and TV (total variation) seminorm of the grid
functions pk by

‖pk‖1 =
N∑

i=1

|pk
i |Δx, ‖pk‖∞ = max

0≤i≤N
|pk

i |, TV (pk) =
N−1∑
i=0

|pk
i+1 − pk

i |,

and the finite difference operators by

Δ+pk
i = pk

i+1 − pk
i , 0 � i � N − 1, Δ−pk

i = pk
i − pk

i−1, 1 � i � N.

Throughout the discussion, we impose the following CFL condition concerning
Δx and Δt:

(H5) Δt
Δx + Δt � 1

c .

We discretize model (1) using the following first order explicit upwind finite
difference scheme (FOEU):

pk+1
i −pk

i

Δt + gk
i pk

i −gk
i−1pk

i−1
Δx = −μk

i pk
i +

N∑
j=1

βk
i,jp

k
j Δx, 1 ≤ i ≤ N, 0 ≤ k ≤ M − 1,

gk
0pk

0 = 0, 0 ≤ k ≤ M,
p0i = p0(xi), 0 ≤ i ≤ N.

(4)
We could write the first equation in (4) equivalently as

pk+1
i =

Δt

Δx
gk

i−1p
k
i−1 +

(
1 − Δt

Δx
gk

i − μk
i Δt

)
pk

i +

⎛
⎝ N∑

j=1

βk
i,jp

k
j Δx

⎞
⎠ Δt,

1 ≤ i ≤ N, 0 ≤ k ≤ M − 1. (5)

It is easy to check that under assumptions (H1)–(H4) FOEU scheme con-
verges to a unique weak solution of system (1) as proved in [5]. The above
approximation can be extended to a family of functions {pΔx,Δt(x, t; θ)} defined
by pΔx,Δt(x, t; θ) = pk

i (θ) for (x, t) ∈ [xi−1, xi) × [tk−1, tk), i = 1, 2, · · · , N, k =
1, 2, · · · ,M .

Since the parameter set is infinite dimensional, a finite-dimensional approx-
imation of the parameter space is necessary for computing minimizers.
Thus, we consider the following finite-dimensional approximations of (3): Let
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QΔx,Δt(t; θ) =
∫ xmax

xmin

pΔx,Δt(x, t; θ)dx denote the finite difference approxima-

tion of the total population and consider the finite dimensional minimization
problem

arg min
θ∈Θm

FΔx,Δt(θ) = arg min
θ∈Θm

S∑
s=1

|W (QΔx,Δt(ts; θ)) − W (Xs)|2 . (6)

Here, Θm ⊆ Θ is a sequence of compact finite-dimensional subsets that approx-
imate the parameter space Θ, i.e., for each θ ∈ Θ, there exist a sequence of
θm ∈ Θm such that θm → θ in the topology of B as m → ∞.

Remark 22. If the compact parameter space Θ is chosen to be finite dimen-
sional, then the approximation space sequence can be taken to be Θm = Θ.

Since the FOEU (4) scheme is first order it would require a large number of grid
points to achieve high accuracy. Thus, we next propose a second order minmod
finite difference scheme based on MUSCL schemes [5,15,18] to approximate the
solutions of the DSSM model (1) in the least-squares problem. We begin by using
the following second order approximations for the integrals:

Qk =
N∑

i=0

�

pk
i Δx =

1
2
pk
0Δx +

N−1∑
i=1

pk
i Δx +

1
2
pk

NΔx

and
N∑

j=0

�

βk
i,jp

k
j Δx =

1
2
βk

i,0p
k
0Δx +

N−1∑
j=1

βk
i,jp

k
j Δx +

1
2
βk

i,Npk
NΔx.

Then we approximate the model (1) by

pk+1
i −pk

i

Δt
+

f̂k

i+1
2
−f̂k

i− 1
2

Δx
= −μk

i pk
i +

N∑

j=0

�
βk

i,jp
k
j Δx, i = 1, 2, · · · , N, k = 0, 1, · · · , L − 1,

gk
0pk

0 = 0, k = 0, 1, · · · , L,
p0

i = p0(xi), i = 0, 1, · · · , N.

(7)
Here, the limiter is defined as

f̂k
i+ 1

2
=

{
gk

i pk
i + 1

2 (gk
i+1 − gk

i )pk
i + 1

2gk
i mm(Δ+pk

i ,Δ−pk
i ), i = 2, · · · , N − 2,

gk
i pk

i , i = 0, 1, N − 1, N,
(8)

where mm(a, b) = sign(a)+sign(b)
2 min(|a|, |b|).

3 Convergence Theory for the Parameter Estimation
Problem Using FOEU

The results in this section pertain to the case when (1) is approximated by the
FOEU scheme (4). Our future efforts will focus on extending these theoretical
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results to case when the model (1) is approximated by the higher order SOEM
scheme (7). We establish the convergence results for the parameter estimation
problem using an approach based on the abstract theory in [8]. To this end, we
have the following theorem:

Theorem 31. Let θr = (gr, μr, βr) ∈ Θ. Suppose that θr → θ in Θ and
Δxr,Δtr → 0 as r → ∞. Let pΔxr,Δtr

(x, t; θr) denote the solution of the finite
difference scheme with parameter θr and initial condition p0, and let p(x, t; θ)
be the unique weak solution of the problem with initial condition p0(x) and
parameter θ. Then pΔxr,Δtr

(·, t; θr) → p(·, t; θ) in L1(xmin, xmax), uniformly
in t ∈ [0, T ].

Proof. Define pk,r
i = pk

i (θr). From the fact that Θ is compact and using similar
arguments as in [5], there exist positive constants c1, c2, c3 and c4 such that
‖pk,r‖1 ≤ c1, ‖pk,r‖∞ ≤ c2, TV (pk,r) ≤ c3 and

N∑
i=1

∣∣∣∣p
m,r
i − pn,r

i

Δtr

∣∣∣∣ Δxr ≤ c4(m − n),

where m > n. Thus, there exist p̂ ∈ BV ([xmin, xmax]) such that
pΔxr,Δtr

(·, t; θr) → p̂(·, t) in L1(xmin, xmax) uniformly in t. Hence, from the
uniqueness of bounded variation weak solutions which can be established using
similar techniques as in [5], we just need to show that p̂(x, t) is the weak solution
corresponding to the parameter θ.

In order to prove this, let φ ∈ C1 ([xmin, xmax] × [0, T ]) and denote the value
of φ(xi, tk) by φk

i . Multiplying Eq. (5) by φk+1
i and rearranging some terms we

have

pk+1,r
i φk+1

i − pk,r
i φk

i = pk,r
i (φk+1

i − φk
i ) + Δt

Δx [gk,r
i−1p

k,r
i−1(φ

k+1
i − φk+1

i−1 )

−(gk,r
i−1p

k,r
i−1φ

k+1
i−1 − gk,r

i pk,r
i φk+1

i )]

−μk,r
i pk,r

i φk+1
i Δt +

N∑
j=1

βk,r
i,j pk,r

j φk+1
i ΔxΔt.

(9)

Multiplying the above equation by Δx, summing over i = 1, 2, · · · , N , k =
0, 1, · · · ,M − 1, and applying pk

0 = 0 and gk
N = 0 we obtain,

N∑
i=1

(
pL,r

i φL
i − p0,r

i φ0
i

)
Δx =

M−1∑
k=0

N∑
i=1

pk,r
i

φk+1
i −φk

i

Δt ΔxΔt

+
M−1∑
k=0

N−1∑
i=0

gk,r
i−1p

k,r
i−1

φk+1
i −φk+1

i−1
Δx ΔxΔt

−
M−1∑
k=0

N∑
i=1

μk,r
i pk,r

i φk+1
i ΔxΔt

+
M−1∑
k=1

N∑
i=1

N∑
j=1

βk,r
i,j pk,r

j φk+1
i ΔxΔtΔx.

(10)

Using the fact that θr → θ as r → ∞ in Θ, passing to the limit in (10) we find
that p̂(x, t) is the weak solution corresponding to the parameter θ.
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Since W is a continuous on [0,∞), as an immediate consequence of Theorem 31,
we obtain the following.
Corollary 32. Let pΔxr,Δtr

(x, t; θr) denote the numerical solution of the finite
difference scheme with parameter θr → θ in Θ and Δxr,Δtr → 0 as r → ∞.
Then

FΔxr,Δtr
(θr) → F (θ), as r → ∞.

In the next theorem, we establish the continuity of the approximate cost func-
tional in the parameter θ ∈ Θ (a compact set), so that the computational prob-
lem of finding an approximate minimizer has a solution.
Theorem 33. Let Δx and Δt be fixed. For each θ ∈ Θ, let pΔx,Δt(x, t; θ) denote
the solution of the finite difference scheme and θr → θ as r → ∞ in Θ; then
pΔx,Δt(·, t; θr) → pΔx,Δt(·, t; θ) as r → ∞ in L1(xmin, xmax) uniformly in t ∈
[0, T ].

Proof. Fix Δx and Δt. Define pk,θr

i and pk,θ
i to be the solution of the finite

difference scheme with parameter θr and θ, respectively. Let vk,θ
i = pk,θr

i − pk,θ
i .

Then vk,θ
i satisfy the following

vk+1,θ
i = Δt

Δx

(
gk,θr

i−1 pk,θr

i−1 − gk,θ
i−1p

k,θ
i−1

)
+ (pk,θr

i − pk,θ
i ) − Δt

Δx

(
gk,θr

i pk,θr

i − gk,θ
i pk,θ

i

)

−Δt(μk,θr

i pk,θr

i − μk,θ
i pk,θ

i ) +
N∑

j=1

(
βk,θr

i,j pk,θr

j − βk,θ
i,j pk,θ

j

)
ΔxΔt,

1 ≤ i ≤ N, 0 ≤ k ≤ M − 1,

vk+1,θ
0 = pk+1,θr

0 − pk+1,θ
0 = 0, 0 ≤ k ≤ M − 1.

(11)

Here, Qk,θr

=
N∑

i=1

pk,θr

i Δx, gk,θr

i = gθr

(xi, tk, Qk,θr

) and similar notations are

used for μk,θr

i and βk,θr

i,j . Using the first equation in (11) and assumption (H5)
we obtain

N∑

i=1

|vk+1,θ
i |Δx ≤

N∑

i=1

[

1 − Δtμk,θr

i +

(
N∑

j=1

βk,θr

i,j Δx

)

Δt

]

|vk,θ
i |Δx − Δt

N∑

i=1

(
gk,θr

i |vk,θ
i |

−gk,θr

i−1 |vk,θ
i−1|
)

+ Δt
N∑

i=1

|
(
gk,θr

i−1 − gk,θ
i−1

)
pk,θ

i−1 −
(
gk,θr

i − gk,θ
i

)
pk,θ

i |

+Δt
N∑

i=1

|μk,θr

i − μk,θ
i |pk,θ

i Δx + Δt
N∑

i=1

N∑

j=1

|βk,θr

i,j − βk,θ
i,j |pk,θ

j ΔxΔx.

(12)
By assumption (H1), and (11)

N∑
i=1

(
gk,θr

i |vk,θ
i | − gk,θr

i−1 |vk,θ
i−1|

)
=

(
gk,θr

N |vk,θ
N | − gk,θr

0 |vk,θ
0 |

)
= 0. (13)

By assumptions (H2) and (H3) we have
N∑

i=1

[

1 − μk,θr

i Δt +

(
N∑

j=1

βk,θr

i,j Δx

)

Δt

]

|uk,θ
i |Δx ≤ (1 + c(xmax − xmin)Δt) ‖vk,θ‖1.

(14)
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By assumption (H1),

N∑
i=1

|
(
gk,θr

i−1 − gk,θ
i−1

)
pk,θ

i−1 −
(
gk,θr

i − gk,θ
i

)
pk,θ

i |

≤ supi |gk,θr

i−1 − gk,θ
i−1|

N∑
i=1

|pk,θ
i − pk,θ

i−1| +
N∑

i=1

∣∣∣∣
(

gk,θr

i −gk,θr

i−1

)
−(gk,θ

i −gk,θ
i−1)

Δx

∣∣∣∣ pk,θ
i Δx.

(15)∣∣∣∣
(

gk,θr

i −gk,θr

i−1

)
−(gk,θ

i −gk,θ
i−1)

Δx

∣∣∣∣ ≤
∫ 1

0

∣∣∣gθr

x (τxi−1 + (1 − τ)xi, tk, Qk,θr

)

−gθr

x (τxi−1 + (1 − τ)xi, tk, Qk,θ)
∣∣ dτ

+
∫ 1

0

∣∣∣gθr

x (τxi−1 + (1 − τ)xi, tk, Qk,θ)

−gθ
x(τxi−1 + (1 − τ)xi, tk, Qk,θ)

∣∣ dτ.

(16)

Assumption (H1), (15) and (16) yield

N∑

i=1

|
(
gk,θr

i−1 − gk,θ
i−1

)
pk,θ

i−1 −
(
gk,θr

i − gk,θ
i

)
pk,θ

i | ≤ supi |gk,θr

i−1 − gk,θ
i−1|

N∑

i=1

|pk,θ
i − pk,θ

i−1|

+
N∑

i=1

[∫ 1

0

∣
∣
∣gθr

x (τxi−1 + (1 − τ)xi, tk, Qk,θr

)

−gθr

x (τxi−1 + (1 − τ)xi, tk, Qk,θ)
∣∣
∣ dτ

+

∫ 1

0

∣∣
∣gθr

x (τxi−1 + (1 − τ)xi, tk, Qk,θ)

−gθ
x(τxi−1 + (1 − τ)xi, tk, Qk,θ)

∣
∣ dτ
]
pk,θ

i Δx.

(17)
Note that

|Qk,θr − Qk,θ| =

∣∣∣∣∣
N∑

i=1

(pk,θr

j − pk,θ
j )Δx

∣∣∣∣∣ ≤
N∑

i=1

|vk,θ
i |Δx = ‖vk,θ‖1. (18)

By the assumption (H1) and the equation above, (17) yields

N∑
i=1

|
(
gk,θr

i−1 − gk,θ
i−1

)
pk,θ

i−1 −
(
gk,θr

i − gk,θ
i

)
pk,θ

i |

≤ supi |gk,θr

i−1 − gk,θ
i−1|TV (pk,θ) +

(
c‖vk,θ‖1 + supi

∫ 1

0

∣∣∣gθr

x (x̄i, tk, Qk,θ)

−gθ
x(x̄i, tk, Qk,θ)

∣∣ dx
) ‖pk,θ‖1,

(19)

where x̄i = τxi−1 + (1 − τ)xi. By assumption (H2)

N∑
i=1

|μk,θr

i − μk,θ
i |pk,θ

i Δx ≤ supi |μk,θr

i − μk,θ
i |‖pk,θ‖1. (20)

And from assumption (H3) we obtain

N∑
i=1

N∑
j=1

|βk,θr

i,j − βk,θ
i,j |pk,θ

j ΔxΔx ≤ supi,j |βk,θr

i,j − βk,θ
i,j |‖pk,θ‖1. (21)
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Using (13)–(21) we arrive at

‖vk+1,θ‖1 ≤ (1 + c(xmax − xmin)Δt)‖vk,θ‖1
+Δt

[
supi |μk,θr

i − μk,θ
i |‖pk,θ‖1 + supi,j |βk,θr

i,j − βk,θ
i,j ‖pk,θ‖1

+ supi |gk,θr

i−1 − gk,θ
i−1|TV (pk,θ) +

(
c‖vk,θ‖1 + supi

∫ 1

0

∣∣∣gθr

x (x̄i, tk, Qk,θ)

−gθ
x(x̄i, tk, Qk,θ)

∣∣ dx
) ‖pk,θ‖1

]
.

(22)
Note that

|μk,θr

i − μk,θ
i | ≤ |μθr

(xi, tk, Qk,θr

) − μθr

(xi, tk, Qk,θ)| + |μθr

(xi, tk, Qk,θ)
−μθ(xi, tk, Qk,θ)|,

|gk,θr

i−1 − gk,θ
i−1| ≤ |gθr

(xi−1, tk, Qk,θr

) − gθr

(xi−1, tk, Qk,θ)| + |gθr

(xi−1, tk, Qk,θ)
−gθ(xi−1, tk, Qk,θ)|,

|βk,θr

i,j − βk,θ
i,j | ≤ |βθr

(xi, yj , tk, Qk,θr

) − βθr

(xi, yj , tk, Qk,θ)|
+|βθr

(xi, yj , tk, Qk,θ) − βθ(xi, yj , tk, Qk,θ)|.
(23)

Thus, by assumptions (H1)–(H4) and the Eqs. (23) (18), we have

supi |μk,θr

i − μk,θ
i | ≤ c‖vk,θ‖1 + supi |μθr

(xi, tk, Qk,θ) − μθ(xi, tk, Qk,θ)|,
supi |gk,θr

i−1 − gk,θ
i−1| ≤ c‖vk,θ‖1 + supi |gθr

(xi−1, tk, Qk,θ) − gθ(xi−1, tk, Qk,θ)|,
supi,j |βk,θr

i,j − βk,θ
i,j | ≤ c‖vk,θ‖1 + supi,j |βθr

(xi, yj , tk, Qk,θ) − βθ(xi, yj , tk, Qk,θ)|.
Set δk = 3c‖pk,θ‖1 + cTV (pk,θ) and

ρr
k = ‖pk,θ‖1

(
supi |μθr

(xi, tk, Qk,θ) − μθ(xi, tk, Qk,θ)| + supi,j |βθr

(xi, yj , tk, Qk,θ)

−βθ(xi, yj , tk, Qk,θ)|
+ supi

∫ 1

0

∣
∣
∣gθr

x (x̄i, tk, Qk,θ) − gθ
x(x̄i, tk, Qk,θ)

∣
∣
∣ dx

)
+ supi |gθr

(xi−1, tk, Qk,θ)

−gθ(xi−1, tk, Qk,θ)|TV (pk,θ).

Then we have

‖vk+1,θ‖1 ≤ (1 + c(xmax − xmin)Δt)‖vk,θ‖1 + Δt(ρr
k + δk)‖vk,θ‖1. (24)

Since for each k, ρr
k → 0 as r → ∞, the result follows from (24).

Next, we establish subsequential convergence of minimizers of the finite dimen-
sional problem (6) to a minimizer of the infinite dimensional problem (3).

Theorem 34. Suppose that Θm is a sequence of compact subsets of Θ. More-
over, assume that for each θ ∈ Θ, there exist a sequence of θm ∈ Θm such that
θm → θ as m → ∞. Then the function FΔx,Δt has a minimizer over Θm. Fur-
thermore, if θr

m denotes a minimizer of FΔxr,Δtr
over Θm and Δxr,Δtr → 0,

then any subsequence of θr
m has a further subsequence which convergence to a

minimizer of F .

Proof. The proof here is a direct application of the abstract theory in [10], base
on the convergence of FΔxr,Δtr

(θr) → F (θ).
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4 Numerical Results

In this section we present several numerical simulations to demonstrate the per-
formance of the parameter estimation methodology. Although the theory pre-
sented here applies for the case of infinite dimensional parameter space Θ, for
simplicity we restrict the unknown parameter space to finite-dimensional in the
examples below.

4.1 Convergence of Parameter Estimates Computed by FOEU
and SOEM in the Least-Squares Problem

In this example, we test the performance of the parameter-estimation technique
using both FOEU and SOEM approximation schemes. As a first step in gen-
erating data, we choose Δx = 0.0100,Δt = 0.0025, xmin = 0, xmax = 1, T =
1.0, g(x, t,Q) = (1−x)/2, β(x, y, t,Q) = 10 sin(4t)+10, μ(x, t,Q) = 1/4 exp(Q),
and the initial condition

p0(x) =

⎧⎪⎪⎨
⎪⎪⎩

0.8, 0.25 ≤ x ≤ 0.45,
2.5, 0.45 < x ≤ 0.65,
0.7, 0.65 < x < 0.8,
0, else.

We then solve system (1) with this choice of parameters in MATLAB using
SOEM discretization and collect the resulting total population Q(tk) =∫ 1

0

p(x, tk)dx for tk = k/20, k = 1, · · · , 20. Observe that while p(x, t) is dis-

continuous because p0(x) is, Q(t) is a smooth function.
Assume all parameters are known except for μ = b exp(Q) with b being an

unknown parameter to be estimated. In our parameter estimation simulations,
we fixed Δx = 0.005, Δt = 0.0025 for FOEU scheme. As for the SOEM scheme,
the mesh sizes were chosen to be four times larger, that is, Δx = 0.020 and
Δt = 0.010. We began with the above-mentioned data without noise in the
least-squares problem described in Sect. 2. We then modified the data by adding
normally distributed noise with mean zero and standard deviation σ = 0.05, 0.10,
and 0.15, respectively, to the data. To solve the least-squares minimization prob-
lem we set θ = b and use the goal function

F (θ) =
S∑

s=1

|Q(ts; θ) − Xs|2,

i.e., W = 1. For each data set the least-squares minimization process was per-
formed to estimate b using both numerical schemes. Our simulation results cor-
roborate the convergence results of computed parameters. Figure 1 demonstrates
the agreement of best fit model solutions obtained using FOEU and SOEM
schemes in solving DSSM with the corresponding data sets with no noise as well
as with different noise levels. A comparison of the two finite difference methods
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Fig. 1. (a) Comparison of data sets without noise and the corresponding best fit model
solution using FOEU and SOEM schemes in solving DSSM. (b) (c) (d) Comparison of
data at different noise levels (σ = 0.05, 0.10, 0.15) and the corresponding best fit model
solutions using FOEU and SOEM schemes in solving DSSM.
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performing in the least-squares parameter estimation process was provided in
Table 1. It can be seen that using the SOEM scheme for approximating DSSM
in the least-squares problem one could obtain a similar estimated value b (where
the least-squares errors are at the same scale) with less than 10% of the CPU
time compared to that using the FOEU scheme.

Table 1. Performance comparisons of FOEU and SOEM schemes in least-squares
parameter estimates process

Without noise With noise

σ = 0.05 σ = 0.10 σ = 0.15

FOEU SOEM FOEU SOEM FOEU SOEM FOEU SOEM

Estimated value of b 0.2507 0.2503 0.2674 0.2768 0.2853 0.2837 0.3033 0.3028

Least-squares error 6.33-04 3.85e-04 0.0838 0.1871 0.3112 0.2857 0.6583 0.6473

CPU time (in minutes) 285.48 20.67 264.59 16.45 367.49 22.47 368.71 15.33

4.2 Fitting DSSM Model to Green Tree Frog Population Estimates
from Field Data

In this example, we fit DSSM to a set of green tree frog population estimates
obtained from capture-mark-recapture (CMR) field data during years 2004–2009
(as shown in Fig. 2 (Left) [3]. The purpose is to estimate individual level vital
rates for adult green tree frogs, and then use these parameter estimates to gain
understanding of the dynamics of this population. In [3,4] the authors developed
a model (referred to as JA model hereafter) to describe the dynamics of green
tree frog population by dividing individuals into two stages, juveniles and adults,
and set a least-squares problem to obtain the best fitted parameters to the CMR
field data. With those estimated parameter values, they obtained the adult frog
population curve (see Fig. 2 (Left)). Due to the relative short duration for the
tadpole stage and the lack of other information regarding tadpoles, the authors
in [3] simply assumed constant vital rates for tadpole stage. To circumvent this
issue, we consider the short duration of juvenile stage as part of the reproduc-
tion process and adopt the DSSM to describe the adult frog dynamics. Here,
β(x, y, t,Q) in DSSM represents the rate at which an adult frog of size y gives
birth to tadpoles that survive to metamorphose into frogs of size x.

As in [3], we take t = 0 to be the first week in January 2004. We chose
Δt = 1/52. Since there are 52 weeks every year Δt represents one week. Let Xs,
s = 1, 2, · · · , 136, denote the observed number of frogs which was estimated sta-
tistically from CMR experiment data for 136 weeks during the breeding seasons
in this six year experiment. The growth rate and mortality rates are assumed to
take the same forms as in [3]:

g(x, t,Q) = α1(6 − x),
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and

μ(x, t,Q) =

⎧⎨
⎩

(
α2(1 − t

2 ) + α3
t
2

)
(1 + 0.00343Q) exp(α5x), 0 ≤ t ≤ 2,(

α3(2 − t
2 ) + α4( t

2 − 1)
)
(1 + 0.00343Q) exp(α5x), 2 ≤ t ≤ 4,(

α4(3 − t
2 ) + 3.093( t

2 − 2)
)
(1 + 0.00343Q) exp(α5x), 4 ≤ t ≤ 6.

Here, the mortality rate was assumed to depend linearly on density as well as
time since frogs hibernate during winter time. By monitoring program [16] the
breeding season begins around the middle of April and ends in early August.
Thus, similar to [3] the birth rate function was assumed to be

β(x, y, t,Q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α6
0.3+εγ(x, α7, α8), 0.3 ≤ t ≤ 0.6, 3 ≤ y ≤ 6,
α6(y−3+ε)

ε(0.3+ε) γ(x, α7, α8), 0.3 − ε ≤ t < 0.3, 2.7 + t < y < 6,
α6(y−3+ε)

ε(0.3+ε) γ(x, α7, α8), y − 2.7 < t < 3.6 − y, 0.3 − ε < y < 0.3,
α6(0.6+ε−t)

ε(0.3+ε) γ(x, α7, α8), 0.6 < t < 0.6 + ε, 3.6 − t ≤ y ≤ 6,

0, else.

Here, the gamma distribution density function with the shape parameter α7

and scale parameter α8, γ(x, α7, α8), was chosen to model the size distribution
of newly metamorphosed frogs. The constant ε is a positive small number that
allows β to be extended to (x, y, t) ∈ [1.5, 6] × [1.5, 6] × [0, 1] and to satisfy the
smoothness properties in (H4). We then also extend β periodically over one year
intervals [t, t + 1], t = 1, 2, · · · , 5.

We have α1, · · · , α8 as unknown constants to be estimated (i.e., θ =
(α1, · · · , α8)). We chose the initial condition in DSSM to be p(x, 0) =
615.96 exp(−0.75x) which implies Q(0) = 257.2 (cf. [3]). To solve the least-
squares minimization problem, similar to [3], we set the goal function to be

F (θ) =
S∑

s=1

| log(Q(ts; θ) + 1) − log(Xs + 1)|2.

To guarantee that the estimated parameter values are biologically relevant, we
set appropriate upper and lower bounds for each αi. That is, αi ≤ αi ≤ αi i =
1, · · · , 8. Using the vital rates determined by estimated αi, i = 1, · · · , 8 given
in Table 2, we simulated DSSM and compared the resulting adult frog popula-
tion approximations to the data as well as the population estimates from the
JA model in [3]. The comparison results are demonstrated in Fig. 2 (Left). It
shows clearly that DSSM model output agrees with the population estimates
resulting from field observations better than the JA model. Specifically, DSSM
is more accurate in capturing the population dynamics when adult frog numbers
are relatively low. Also, the DSSM fitting bears a smaller least-squares error of
33.5 compared to the JA model fitting which yielded an error of 37.8. Further-
more, the γ distribution that provided the best fit as presented in Fig. 2 (Right)
indicates that the newly metamorphosed frogs have body length between 1.5 cm
and 2 cm and approximately 99.6% of adult frogs give birth to tadpoles that
eventually metamorphose into frogs of size between 1.5 cm and 2.0 cm.
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Table 2. Parameter estimation values and corresponding standard deviation

α1 α2 α3 α4 α5 α6 α7 α8

Estimated value 0.486 2.973 0.0085 2.376 0.000 47.061 6.740 1.849

Standard deviation 0.0183 0.7044 0.1164 1.6373 0.125 2.8295 0.8000 1.4763
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Fig. 2. Left: A comparison of the total population resulting from CMR field data to
the total population resulting from model (1) and the JA model in [3]. Right: The
probability density function that an adult frog gives birth to tadpoles that eventually
metamorphose into frogs of size x.

We also applied a statistically based method to compute the variance in the
estimated model parameters θ = (α1, · · · , α8) similar to the work in [3] using
standard regression formulations [12]. Table 2 provides the standard deviation
for α′

is estimated above.
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Abstract. In this work we are interested in the modelling and control
of opinion dynamics spreading on a time evolving network with scale-
free asymptotic degree distribution. The mathematical model is formu-
lated as a coupling of an opinion alignment system with a probabilistic
description of the network. The optimal control problem aims at forc-
ing consensus over the network, to this goal a control strategy based on
the degree of connection of each agent has been designed. A numerical
method based on a model predictive strategy is then developed and dif-
ferent numerical tests are reported. The results show that in this way it
is possible to drive the overall opinion toward a desired state even if we
control only a suitable fraction of the nodes.

Keywords: Multi-agent systems · Consensus dynamics · Scale-free
networks · Collective behavior · Model predictive control

1 Introduction

Graph theory has emerged in recent years as one of the most active fields of
research [1,7–10,24]. In fact, the study of technological and communication net-
works earned a special attention thanks to a huge amount of data coming from
empirical observations and more recently from online platforms like Facebook,
Twitter, Instagram and many others. This fact offered a real laboratory for
testing on a large-scale the collective behavior of large populations of agents
[16,17,20] and new challenges for the scientific research has emerged. In partic-
ular, the necessity to handle millions, and often billions, of vertices implied a
substantial shift to large-scale statistical properties of graphs giving rise to the
study of the so-called scale-free networks [8,18,24].

In this work, we will focus our attention on the modelling and control of opin-
ion dynamics on a time evolving network. We consider a system of agents, each
one belonging to a node of the network, interacting only if they are connected
through the network. Each agent modifies his/her opinion through a compromise
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function which depends both on opinions and the network [3–5,13,14,19,21,23].
At the same time new connections are created and removed from the network
following a preferential attachment process. For simplicity here we restrict to
non-growing network, that is a graph where the total number of nodes and the
total number of edges are conserved in time. An optimal control problem is then
introduced in order to drive the agents toward a desired opinion. The rest of
the paper is organized as follows. In Sect. 2 we describe the alignment model
for opinions spreading on a non-growing network. In order to control the tra-
jectories of the model we introduce in Sect. 3 a general setting for a control
technique weighted by a function on the number of connections. A numerical
method based on model predictive control is then developed. Finally in Sect. 4
we perform numerical experiments showing the effectiveness of the present app-
roach. Some conclusion are then reported in the last Section.

2 Modelling Opinion Dynamics on Networks

In the model each agent i = 1, . . . , N is characterized by two quantities
(wi, ci), i = 1, . . . , N , representing the opinion and the number of connections of
the agent ith respectively. This latter term is strictly related to the architecture
of the social graph where each agent shares its opinion and influences the inter-
action between individuals. Each agent is seen here as a node of a time evolving
graph GN = GN (t), t ∈ [t0, tf ] whose nodes are connected through a given set of
edges. In the following we will indicates the density of connectivity the constant
γ ≥ 0.

2.1 Network Evolution Without Nodes’ Growth

In the sequel we will consider a graph with both a fixed number of nodes N and
a fixed number of edges E. In order to describe the network’s evolution we take
into account a preferential attachment probabilistic process. This mechanism,
known also as Yule process or Matthew effect, has been used in the modeling
of several phenomena in biology, economics and sociology, and it is strictly con-
nected to the generation of power law distributions [8,24]. The initial state of the
network, GN (0), is chosen randomly and, at each time step an edge is randomly
selected and removed from the network. At the same time, a node is selected
with probability

Πα(ci) =
ci + α∑N

j=0(cj + α)
=

ci + α

2E + Nα
, i = 1, . . . , N, (1)

among all possible nodes of GN , with α > 0 an attraction coefficient. Based
on the probability (1) another node is chosen at time t and connected with the
formerly selected one. The described process is repeated at each time step. In this
way both the number of nodes and the total number of edges remains constant
in the reference time interval. Let p(c, t) indicates the probability that a node is
endowed of degree the c at time t. We have
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∑
c

p(c, t) = 1,
∑

c

c p(c, t) = γ. (2)

The described process may be described by the following master equation [6]

d

dt
p(c, t) =

D

E
[(c + 1)p(c + 1, t) − cp(c, t)]

+
2D

2E + Nα
[(c − 1 + α)p(c − 1, t) − (c + α)p(c, t)] ,

(3)

where D > 0 characterizes the relaxation velocity of the network toward an
asymptotic degree distribution p∞(c), the righthand side consists of four terms,
the first and the third terms account the rate of gaining a node of degree c and
respectively the second and fourth terms the rate of losing a node of degree
c. The equation (3) holds in the interval c ≤ E, whereas for each c > E we
set p(c, t) = 0. While most the random graphs models with fixed number of
nodes and vertices produces unrealistic degree distributions like the Watts and
Strogatz generation model, called small-world model [22], the main advantage
of the graph generated through the described rewiring process stands in the
possibility to recover the scale-free properties. Indeed we can easily show that
if γ = 2E/N ≥ 1 with attraction coefficient α � 1 then the stationary degree
distribution p∞(c) obeys a power-law of the following form

p∞(c) =
(

α

γ

)α
α

c
. (4)

When α � 1 we loose the features of the preferential attachment mechanism,
in fact high degree nodes are selected approximately with the same probabil-
ity of the nodes with low degree of connection. Then the selection occurs in a
non preferential way and the asymptotic degree distribution obeys the Poisson
distribution

p∞(c) =
e−γ

c!
γc. (5)

A simple graph is sketched in Fig. 1 where we can observe how the ini-
tial degree of the nodes influences the evolution of the connections. In order
to correctly observe the creation of the new links, that preferentially connect
nodes with the highest connection degree, we marked each node with a number
i = 1, . . . , 20 and the nodes’ diameters are proportional with their number of
connections.

2.2 The Opinion Alignment Dynamics

The opinion of the ith agent ranges in the closed set I = [−1, 1], that is wi =
wi(t)∈ I for each t ∈ [t0, tf ], and its opinion changes over time according to the
following differential system

ẇi =
1

|Si|
∑
j∈Si

Pij(wj − wi), i = 1, . . . , N (6)
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Fig. 1. Left: initial configuration of the sample network G20 with density of connec-
tivity γ = 5. Right: a simulation of the network G20 after 10 time steps of the prefer-
ential attachment process. The diameter of each node is proportional to its degree of
connection.

where Si indicates the set of vertex connected with the ith agent and reflects
the architecture of the chosen network, whereas ci = |Si| < N stands for the
cardinality of the set Si, also known as degree of vertex i. Note that the number
of connections ci evolves in time accordingly to the process described in Sect. 2.1.
Furthermore we introduced the interaction function Pij ∈ [0, 1], depending on
the opinions of the agents and the graph GN which can be written as follows

Pij = P (wi, wj ;GN ). (7)

A possible choice for the interaction function is the following

P (wi, wj ;GN ) = H(wi, wj)K(GN ), (8)

where H(·, ·) represents the positive compromise propensity, and K a general
function taking into account statistical properties of the graph G. In what follows
we will consider K = K(ci, cj), a function depending on the vertices’ connections.

3 Optimal Control Problem of the Alignment Model

In this section we introduce a control strategy which characterizes the action of
an external agent with the aim of driving opinions toward a given target wd.
To this goal, we consider the evolution of the network GN (t) and the opinion
dynamics in the interval [t0, tf ]. Therefore we introduce the following optimal
control problem

min
u∈U

J(w, u) :=
1
2

∫ tf

t0

{ 1
N

N∑
j=1

(wj(s) − wd)2 + νu(s)2
}

ds, (9)

subject to

ẇi =
1

|Si|
∑
j∈Si

Pij(wj − wi) + uχ(ci ≥ c∗), wi(0) = w0
i , (10)
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where we indicated with U the set of admissible controls, with ν > 0 a regu-
larization parameter which expresses the strength of the control in the overall
dynamics and wd ∈ [−1, 1] the target opinion. Note that the action of the control
u is weighted by an indicator function χ(·), which is active only for the nodes
with degree ci ≥ c∗. In general this selective control approach models an a-priori
strategy of a policy maker, possibly acting under limited resources or unable to
influence the whole ensemble of agents. For example we can consider a varying
horizon control acting on a fixed portion of connected agents.

The solution of this kind of control problems is in general a difficult task,
given that their direct solution is prohibitively expensive for a large number of
agents. Different strategies have been developed for alignment modeling in order
to obtain feedback controls or more general numerical control techniques [2–5,11,
12,15]. To tackle numerically the described problem a standard strategy makes
use of a model predictive control (MPC) approach, also referred as receding
horizon strategy.

In general MPC strategies solves a finite horizon open-loop optimal control
problem predicting the dynamic behavior over a predict horizon tp ≤ tf , with
initial state sampled at time t (initially t = t0), and computing the control on a
control horizon tc ≤ tp. The optimization is computed introducing a new integral
functional Jp(·, ·), which is an approximation of (9) on the time interval [t, t+tp],
namely

Jp(w, ū) :=
1
2

∫ t+tp

t

{ 1
N

N∑
j=1

(wj(s) − wd)2 + νpū(s)2
}

ds (11)

where the control, ū : [t, t+tp] → U , is supposed to be an admissible control in the
set of admissible control U , subset of R, and νp a possibly different penalization
parameter with respect to the full optimal control problem. Thus the computed
optimal open-loop control ū(·) is applied feedback to the system dynamics until
the next sampling time t+ ts is evaluated, with ts ≤ tc, thereafter the procedure
is repeated taking as initial state of the dynamics at time t + ts and shifting
forward the prediction and control horizons, until the final time tf is reached.
This process generates a sub-optimal solution with respect to the solution of the
full optimal control problem (9)–(10).

Let us consider now the full discretize problem, defining the time sequence
[t0, t1, . . . , tM ], where tn − tn−1 = ts = Δt > 0 and tM := MΔt = tf , for all
n = 1, . . . ,M , assuming furthermore that tc = tp = pΔt, with p > 0. Hence
the linear MPC method look for a piecewise control on the time frame [t0, tM ],
defined as follows

ū(t) =
M−1∑
n=0

ūnχ[tn,tn+1](t). (12)
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In order to discretize the evolution dynamics we consider a Runge-Kutta scheme,
the full discretized optimal control problem on the time frame [tn, tn+pΔt] reads

min
ū∈U

Jp(w, ū) :=
1
2

∫ tn+pΔt

tn

{ 1
N

N∑
j=1

(wj(s) − wd)2 + νpū
2
}

ds (13)

subject to

W
(n)
i,l = wn

i + Δt
s∑

k=1

al,k

(
F (t + θkΔt,W

(n)
i,k ) + Ū

(n)
k Qi(t + θkΔt)

)
,

wn+1
i = wn

i + Δt

s∑
l=1

bl

(
F (t + θlΔt,W

(n)
i,l ) + Ū

(n)
l Qi(t + θlΔt)

)
,

wn
i = wi(tn),

(15)

for all n = 1, . . . , p − 1; l = 1, . . . , s; i, . . . , N and having defined the following
functions

F (t, wi) =
1

|Si(t)|
∑

j∈Si(t)

Pij(wj − wi), Qi(t) = χ(ci(t) ≥ c∗).

The coefficients (al,k)l,k, (bl)l and (θl)l, with l, k = 1, . . . , s, define the Runge-
Kutta method and (Ū (n))l, (W

(n)
i,l )l are the internal stages associated to

ū(t), wi(t) on time frame [tn, tn+1].

3.1 Instantaneous Control

Let us restrict to the case of a single prediction horizon, p = 1, where we dis-
cretize the dynamics with an explicit Euler scheme (a1,1 = θ1 = 0 and b1 = 1).
Notice that since the control ū is a constant value and assuming that the net-
work, GN remains fixed over the time interval [tn, tn + Δt] the discrete optimal
control problem (13) reduces to

min
ū ∈ U

Jp(w, ūn) := Δt
{ 1

N

N∑
j=1

(wn+1
j (ūn) − wd)2 + νp(ūn)2

}
(16)

with

wn+1
i = wn

i + Δt (F (tn, wn
i ) + ūnQn

i ) , wn
i = wi(tn). (17)

In order to find the minima of (13) is sufficient to find the value ū satisfying
∂ūJp(w, ū) = 0, which can be computed by a straightforward calculation

ūn = − 1

Nν + Δt
∑N

j=1(Q
n
j )2

⎛
⎝ N∑

j=1

Qn
j

(
wn

j − wd

)
+ Δt

N∑
j=1

Qn
j F (tn, wn

i )

⎞
⎠ .

(18)

where we scaled the penalization parameter with νp = Δtν.
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Fig. 2. Evolution of the constrained opinion dynamics with uniform initial distribution
of opinions over the time interval [0, 50] for different values of c∗ = 10, 15, 30 with target
opinion wd = 0.8, control parameter κ = 0.1, Δt = 10−3 and confidence bound Δ = 0.4.

4 Numerical Results

In this section we present some numerical results in order to show the main
features of the control introduced in the previous paragraphs. We considered a
population of N = 100 agents, each of them representing a node of an undirected
graph with density of connectivity γ = 30. The network G100 evolves in the time
interval [0, 50] with attraction coefficient α = 0.01 and represents a single sample
of the evolution of the master equation (3) with D = 20. The control problem
is solved by the instantaneous control method described in Remark 3.1 with
Δt = 5 10−2. In Fig. 3 we present the evolution over the reference time interval
of the constrained opinion dynamics. The interaction terms have been chosen as
follows

K(ci, cj) = e−λci
(
1 − e−βcj

)
, H(wi, wj) = χ(|wi − wj | ≤ Δ), (19)

where the function H(·, ·) is a bounded confidence function with Δ = 0.4, while
K(·, ·) defines the interactions between the agents i and j taking into account
that agents with a large number of connections are more difficult to influence and
at the same time they have more influence over other agents. The action of the
control is characterized by a parameter κ = 0.1 and target opinion wd = 0.8. We
present the resulting opinion dynamics for a choice of constants λ = 1/100, β = 1
in Fig. 2. We report the evolution of the network and of the opinion in Fig. 3, here
the diameter of each node is proportional with its degree of connection whereas
the color indicates its opinion. As a measure of consensus over the agents we
introduce the quantity

Vwd
=

1
N − 1

N∑
i=1

(wi(tf ) − wd)2, (20)

where wi(tf ) is the opinion of the ith agent at the final time tf . In Fig. 4 we
compare different values of Vwd

as a function of c∗. Here we calculated the size of
the controlled agents and the values of Vwd

both, starting from a given uniform
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Fig. 3. Evolution of opinion and connection degree of each node of the previously
evolved graph G100. From left to right: graph at times t = 0, 25, 50. From the top:
opinion dynamics for threshold values c∗ = 10, 20, 30. The target opinion is set wd = 0.8
and the control parameter κ = 0.1. (Color figure online)

initial opinion and the same graph with initial uniform degree distribution. It
can be observed how the control is capable to drive the overall dynamics toward
the desired state acting only on a portion of the nodes.
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Fig. 4. Left: the red squared plot indicates the size of the set of controlled agent at
the final time tf in dependence on c∗ whereas the blue line indicates the mean square
displacement Vwd . Right: values of the control u at each time step for c∗ = 10, 20, 30.
In the numerical test we assumed Δ = 0.4, Δt = 5 10−2, κ = 0.1. (Color figure online)

Conclusions and Perspectives

In this short note we focus our attention on a control problem for the dynamic
of opinion over a time evolving network. We show that the introduction of a
suitable selective control depending on the connection degree of the agent’s node
is capable to drive the overall opinion toward consensus. In a related work we
have considered this problem in a mean-field setting where the number of agents,
and therefore nodes, is very large [6]. In future works we plan to concentrate on
the model predictive control setting, where the evolution of the control is based
on the evolution of the network, and on the case with varying prediction horizon
acting on a given portion of the agents.

Acknowledgments. GA acknowledges the support of the ERC-Starting Grant
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Abstract. We study the approximation of optimal control problems via
the solution of a Hamilton-Jacobi equation in a tube around a reference
trajectory which is first obtained solving a Model Predictive Control
problem. The coupling between the two methods is introduced to improve
the initial local solution and to reduce the computational complexity
of the Dynamic Programming algorithm. We present some features of
the method and show some results obtained via this technique showing
that it can produce an improvement with respect to the two uncoupled
methods.

Keywords: Optimal control · Dynamic Programming · Model
Predictive Control · Semi-Lagrangian schemes

1 Introduction

The numerical solution of partial differential equations obtained by applying the
Dynamic Programming Principle (DPP) to nonlinear optimal control problems
is a challenging topic that can have a great impact in many areas, e.g. robot-
ics, aeronautics, electrical and aerospace engineering. Indeed, by means of the
DPP one can characterize the value function of a fully–nonlinear control prob-
lem (including also state/control constraints) as the unique viscosity solution
of a nonlinear Hamilton–Jacobi equation, and, even more important, from the
solution of this equation one can derive the approximation of a feedback control.
This result is the main motivation for the PDE approach to control problems
and represents the main advantage over other methods, such as those based on
the Pontryagin minimum principle. It is worth to mention that the characteriza-
tion via the Pontryagin principle gives only necessary conditions for the optimal
trajectory and optimal open-loop control. Although from the numerical point of
view the control system can be solved via shooting methods for the associated
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two point boundary value problem, in real applications a good initial guess for
the co-state is particularly difficult and often requires a long and tedious trial-
and-error procedure to be found. In any case, it can be interesting to obtain
a local version of the DP method around a reference trajectory to improve a
sub-optimal strategy. The reference trajectory can be obtained via the Pontrya-
gin principle (with open-loop controls), via a Model Predictive Control (MPC)
approach (using feedback sub-optimal controls) or simply via the already known
engineering experience. The application of DP in an appropriate neighborhood
of the reference trajectory will not guarantee the global optimality of the new
feedback controls but could improve the result within the given constraints.

In this paper we focus our attention on the coupling between the MPC app-
roach and the DP method. Although this coupling can be applied to rather
general nonlinear control problems governed by ordinary differential equations
we present the main ideas of this approach using the infinite horizon optimal
control, which is associated to the following Hamilton–Jacobi–Bellman equation:

λv(x) + max
u∈U

{−f(x, u) · Dv(x) − �(x, u)} = 0, for x ∈ R
d.

For numerical purposes, the equation is solved in a bounded domain Ω ⊂ R
d,

so that also boundary conditions on ∂Ω are needed. A rather standard choice
when one does not have additional information on the solution is to impose
state constraints boundary conditions. It is clear that the domain Ω should
be large enough in order to contain as much information as possible. It is, in
general, computed without any information about the optimal trajectory. Here
we construct the domain Ω around a reference trajectory obtained by a fast
solution with a Model Predictive Control (MPC). MPC is a receding horizon
method which allows to compute the optimal solution for a given initial condition
by solving iteratively a finite horizon open-loop problem (see [5,7]).

2 A Local Version of DP via MPC Models

Let us present the method for the classical infinite horizon problem. Let the
controlled dynamics be given by the solution of the following Cauchy problem:

{
ẏ(t) = f(y(t), u(t)), t > 0,
y(0) = x,

(1)

where x, y ∈ R
d, u ∈ R

m and u ∈ U ≡ {u : R+ → U, measurable}. If f
is Lipschitz continuous with respect to the state variable and continuous with
respect to (x, u), the classical assumptions for the existence and uniqueness result
for the Cauchy problem (1) are satisfied. To be more precise, the Carathéodory
theorem (see [2]) implies that for any given control u(·) ∈ U there exists a unique
trajectory y(·;u) satisfying (1) almost everywhere. Changing the control policy
the trajectory will change and we will have a family of infinitely many solutions
of the controlled system (1) parametrized with respect to the control u.
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Let us introduce the cost functional J : U → R which will be used to select
the optimal trajectory. For the infinite horizon problem the cost functional is

Jx(u(·)) =
∫ ∞

0

�(y(s), u(s))e−λsds, (2)

where λ > 0 is a given parameter and � is typically Lipschitz continuous function
(although this is not strictly necessary to define the integral). We remark that
for the numerical simulations we are working on a compact set and, in order
to apply the error estimates for approximation (as in [3,4]), we will just need
� locally Lipschitz continuous in both arguments. The function � represents the
running cost and λ is the discount factor which allows to compare the costs at
different times rescaling the costs at time 0. From the technical point of view,
the presence of the discount factor guarantees that the integral is finite whenever
� is bounded, i.e. ||�||∞ ≤ M�, where ||�||∞ is defined as the supremum norm in
R

d × U . In this section we will summarize the basic results for the two methods
as they are the building blocks for our new method.

2.1 Hamilton–Jacobi–Bellman Equations

The essential features will be briefly sketched, and more details in the framework
of viscosity solutions can be found in [2,4].

Let us define the value function of the problem as

v(x) = inf
u(·)∈U

Jx(u(·)). (3)

It is well known that passing to the limit in the Dynamic Programming
Principle one can obtain a characterization of the value function in terms of the
following first order non linear Bellman equation

λv(x) + max
u∈U

{−f(x, u) · Dv(x) − �(x, u)} = 0, for x ∈ R
d. (4)

Several approximation schemes on a fixed grid G have been proposed for
(4). To simplify the presentation, let us consider a uniform structured grid with
constant space step k := Δx. We will use a semi-Lagrangian method based on a
Discrete Time Dynamic Programming Principle. A first discretization in time of
the original control problem [2] leads to a characterization of the corresponding
value function vh (for the time step h := Δt) as

vh(x) = min
u∈U

{e−λhvh (x + hf (x, u)) + h� (x, u)}. (5)

Then, we have to project on the grid and reconstruct the value
vh (x + hf (x, u)) by interpolation (for example by a linear interpolation).
Finally, we obtain the following fixed point formulation of the DP equation

w(xi) = min
u∈U

{e−λhw (xi + hf (xi, u)) + h� (xi, u)}, for xi ∈ G, (6)
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where w(xi) = vh,k(xi) is the approximation of the value function at the node
xi (see [3,4] for more details). Under appropriate assumptions, vh,k converges
to v(x) when (Δt,Δx) goes to 0 (precise a-priori-estimates are available, e.g. [3]
for more details). This method is referred in the literature as the value iteration
method because, starting from an initial guess for the value function, it modifies
the values on the grid according to the foot of the characteristics. It is well-
known that the convergence of the value iteration can be very slow, since the
contraction constant e−λΔt is close to 1 when Δt is close to 0. This means that
a higher accuracy will also require more iterations. Then, there is a need for an
acceleration technique in order to cut the link between accuracy and complexity
of the value iteration. One possible choice is the iteration in the policy space
or the coupling between value iteration and the policy iteration in [1]. We refer
the interested reader to the book [4] for a complete guide on the numerical
approximation of the equation and the reference therein. One of the strength of
this method is that it provides the feedback control once the value function is
computed (and the feedback is computed at every node even in the fixed point
iteration). In fact, we can characterize the optimal feedback control everywhere
in Ω

u∗(x) = arg min
u∈U

{−f(x, u) · Dv(x) − �(x, u)}, x ∈ Ω,

where Dv is an approximation of the value function obtained by the values at
the nodes.

2.2 Model Predictive Control

Nonlinear model predictive control (NMPC) is an optimization based method
for the feedback control of nonlinear systems. It consists on solving iteratively
a finite horizon open loop optimal control problem subject to system dynamics
and constraints involving states and controls.

The infinite horizon problem, described at the beginning of Sect. 2, turns out
to be computationally unfeasible for the open-loop approach. Therefore, we solve
a sequence of finite horizon problems. In order to formulate the algorithm we
need to introduce the finite horizon cost functional:

JN
y0

(u(·)) =
∫ tN0

t0

�(y(s), u(s))e−λsds

where N is a natural number, tN0 = t0 + NΔt is the final time, NΔt denotes
the length of the prediction horizon for the chosen time step Δt > 0 and the
state y solves ẏ(t) = f(y(t), u(t)), y(t0) = y0, t ∈ [t0, tN0 ) and is denoted by
y(·, t0;u(·)). We also note that y0 = x at t = 0 as in Eq. (1). The basic idea of
NMPC algorithm is summarized at the end of sub-section.

The method works as follows: we store the optimal control on the first subin-
terval [t0, t0 + Δt] together with the associated optimal trajectory. Then, we
initialize a new finite horizon optimal control problem whose initial condition
is given by the optimal trajectory y(t) = y(t; t0, uN (t)) at t = t0 + Δt using
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the sub-optimal control uN (t) for t ∈ (t0, t0 + Δt]. We iterate this process by
setting t0 = t0 + Δt. Note that (7) is an open loop problem on a finite time
horizon [t0, t0 + NΔt] which can be treated by classical techniques, see e.g. [6].
The interested reader can find in [5] a detailed presentation of the method and
a long list of references.

In general, one can obtain a better feedback approximation increasing the
prediction horizon, but this will of course make the CPU time grow. Typically
one is interested in short prediction horizons (or even horizon of minimal length)
which can guarantee stabilization properties of the MPC scheme. The problem
is that when the horizon N is too short we will lose these properties (see [5]
Example 6.26). Estimates on the minimum value for N which ensures asym-
potitic stability are based on the relaxed dynamic programming principle and
can be found in [5] and the references therein. The computation of this minimal
horizon is related to a relaxed dynamic programming principle in terms of the
value function for the finite horizon problem (7).

MPC Algorithm

Start: choose Δt > 0, N ∈ N, λ > 0.
for n = 0, 1, 2, . . .
Step 1: Compute the state y(tn) of the system at tn = nΔt,
Step 2: Set t0 = tn = nΔt, y0 = y(tn) and compute a global solution,

uN (t) := arg min
u∈U

JN
y0

(u(t0)). (7)

Step 3: Define the MPC feedback value uN (t), t ∈ (t0, t0 + Δt]
and use this control to compute the associated
state y = y(t; t0, uN (t)) by solving (1) in [t0, t0 + Δt].

end for

end

2.3 Coupling MPC with Bellman Equation

The idea behind the coupling is to combine the advantages from both methods.
The Dynamic Programming approach is global and gives information on the
value function in a domain, provided we solve the Bellman equation. It gives the
feedback synthesis in the whole domain. Model Predictive control is local and
gives an approximate feedback control just for a single initial condition. Clearly
MPC is faster but does not give the same amount of information.

In many real situations, we need a control to improve the solution around a
reference trajectory starting at x, yx(·), so we can reduce the domain to a neigh-
borhood of yx(·). Now let us assume that we are interested in the approximation
of feedbacks for an optimal control problem given the initial condition x. First
of all we have to select a (possibly small) domain where we are going to compute
the approximate value function and to this end we need to compute a first guess
that we will use as reference trajectory.
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MPC can provide quickly a reasonable reference trajectory yx(·) := yMPC(·),
but this trajectory is not guaranteed to be globally optimal (or have the required
stabilization properties as we said in the previous section). In our approach, we
can choose a rather short prediction horizon in order to have a fast approximation
of the initial guess. This will not give the final feedback synthesis but will be
just used to build the domain Ωρ where we are going to apply the DP approach.
It is clear that MPC may provide inaccurate solutions if N is too short but its
rough information about the trajectory yMPC will be later compensated by the
knowledge of the value function obtained by solving the Bellman equation. We
construct Ωρ as a tube around yMPC defining

Ωρ := {x ∈ Ω : dist(x, yMPC) ≤ ρ} (8)

This tube can be actually computed via the Eikonal equation, i.e. solving the
Dirichlet problem

|∇v(x)| = 1, x ∈ R
N\T , with v(x) = 0, x ∈ T , (9)

where the target is T := {yMPC(t), t ∈ [0, T ]}. We just want to mention that for
this problem several fast methods are available (e.g. Fast Marching [8] and Fast
Sweeping [9]) so this step can be solved very efficiently. The interested reader
can find in [4] many details on numerical approximation of the weak solutions
to the eikonal equation.

Solving the eikonal Eq. (9) (in the viscosity sense) we obtain the distance
function from the target. Then, we choose a radius ρ > 0 in order to build the
tube Ωρ. In this way the domain of the HJB is not built by scratch but takes
into account some information on the controlled system. To localize the solution
in the tube we impose state constraints boundary conditions on ∂Ωρ penalizing
in the scheme (6) the points outside the domain. It is clear that a larger ρ will
allow for a more accurate approximation of the value function but at the same
time enlarging ρ we will lose the localization around our trajectory increasing the
number of nodes (and the CPU time). Finally, we compute the optimal feedback
from the value function computed and the corresponding optimal trajectories in
Ωρ The algorithm is summarized below:

Localized DP algorithm (LDP)

Start: Inizialization
Step 1: Solve MPC and compute yMPC

x starting at x
Step 2: Compute the distance from yMPC

x via the Eikonal equation
Step 3: Select the tube Ωρ of radius ρ centered at yMPC

x

Step 4: Compute the constrained value function vtube in Ωρ via HJB
Step 5: Compute the optimal feedbacks and trajectory using vtube.
End
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3 Numerical Tests

In this section we present two numerical tests for the infinite horizon problem to
illustrate the performances of the proposed algorithm. However, the localization
procedure can be applied to more general optimal control problems.

All the numerical simulations have been made on a MacBook Pro with 1
CPU Intel Core i5 2.4 GHz and 8 GB RAM. The codes used for the simulations
are written in Matlab. The routine for the approximation of MPC is provided
in [5].

Test 1: 2D Linear Dynamics. Let us consider the following controlled dynamics:
{

ẏ(t) = u(t), t ∈ [0, T ],
y(0) = x

(10)

where u = (u1, u2) is the control, y : [0, T ] → R
2 is the dynamic and x is the

initial condition. The cost functional we want to minimize is:

Jx(u) :=
∫ ∞

0

min{|y(t;u) − P |2, |y(t;u) − Q|2 − 2} e−λt dt (11)

where λ > 0 is the discount factor.
In this example, the running cost has two local minima in P and Q. We set

P := (0, 0) and Q := (2, 2) so that the value of the running cost is 0 at P and
−2 at Q. Note that we have included a discount factor λ, which guarantees the
integrability of the cost functional Jx(u) and the existence and uniqueness of
the viscosity solution. The main task of the discount factor is to penalize long
prediction horizons. Since we want to make a comparison we introduce it also
in the setting of MPC, although this is not a standard choice. As we mentioned,
MPC will just provide a first guess which is used to define the domain where we
are solving the HJB equation.

In this test the chosen parameters are: u ∈ [−1, 1]2, ρ = 0.2, Ω = [−4, 6]2,
ΔtMPC = 0.05 = ΔtHJB , ΔxHJB = 0.025, Δτ = 0.01 (the time step to integrate
the trajectories). In particular, we focus on λ = 0.1 and λ = 1. The number of
controls are 212 for the value function and 32 for the trajectories. Note that
the time step used in the HJB approach for the approximation of the trajectory
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Fig. 1. Test 1: MPC solver with λ = 0.1 (left) and λ = 1 (right)
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(Δτ) is smaller than the one used for MPC: this is because with MPC we want
to have a rough and quick approximation of the solution. In Fig. 1, we show the
results of MPC with λ = 0.1 on the left and λ = 1 on the right. As one can
see, none of them is an accurate solution. In the first case, the solution goes to
the local minimum (0, 0) and is trapped there, whereas when we increase λ the
optimal solution does not stop at the global minimum y2. On the other hand
these two approximations help us to localize the behavior of the optimal solution
in order to apply the Bellman equation in a reference domain Ωρ.

In Fig. 2, we show the contour lines of value function in the whole interval
Ω for λ = 1 and the corresponding value function in Ωρ. Finally, the optimal
trajectories for λ = 1 are shown in Fig. 3. On the right we propose the optimal
solution obtained by the approximation of the value function in Ω whereas, on
the left we can see the first approximation of the MPC solver (dotted line), the
tube (solid lines) and the optimal solution via Bellman equation (dashed line).
As you can see in the pictures, the solutions provided from the DP approach
in Ω and Ωρ are able to reach the global desired minimum y2. In Table 1, we
present the CPU time and the evaluation of the cost functional for different
tests. As far as the CPU time is concerned, in the fourth column we show the
global time needed to get the approximation of the value function in the whole
domain and the time to obtain the optimal trajectory, whereas the third column
shows the global time needed to compute all the steps of our LDP algorithm: the
trajectory obtained via MPC, to build the tube, to compute the value function
in the reduced domain and to compute the optimal trajectory. As we expected,
the value of the cost functional is lower when we compute the value function
in the whole domain (just because Ωρ ⊂ Ω). It is important to note that the
approximation in Ωρ guarantees a reduction of the CPU time of the 62.5%.
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Fig. 2. Test 1: contour lines of the value function in the tube Ωρ (left) and in Ω (right).

Test 2: Van der Pol Dynamics. In this test we consider the two-dimensional
nonlinear system dynamics given by the Van Der Pol oscillator:

⎧⎨
⎩

ẋ(t) = y(t)
ẏ(t) = (1 − x(t)2)y(t) − x(t) + u(t)
x(0) = x0, y(0) = y0.

(12)



76 A. Alla et al.

MPC & HJB TRAJECTORY IN THE TUBE
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Fig. 3. Test 1: optimal trajectory via MPC (dotted line) and via HJB (dashed line) in
the tube (solid lines) (left), optimal trajectory via HJB in Ω (right).

Table 1. A comparison of CPU time (seconds) and values of the cost functional.

λ = 1 MPC N = 5 HJB in Ωρ HJB in Ω

CPU 16 s 239 s 638 s

Jx(u) 5.41 5.33 5.3

The cost functional we want to minimize with respect to u is:

Jx(u) :=
∫ ∞

0

(x2 + y2)e−λt dt. (13)

We are dealing with a standard tracking problem where the state we want to
reach is the origin. The chosen parameters are: λ = {0.1, 1}, u ∈ [−1, 1], ρ = 0.4,
Ω = [−6, 6]2, ΔtMPC = 0.05 = ΔtHJB , ΔxHJB = 0.025, Δτ = 0.01, x0 = −3,
y0 = 2. We took 21 controls for the approximation of the value function and 3
for the optimal trajectory. In Fig. 4, we present the optimal trajectory: on the
right, the one obtained solving the HJB equation in the whole domain, on the
left, the one obtained applying the algorithm we propose.

In Table 2 we present the CPU time and the evaluation of the cost functional
with λ = 0.1 and λ = 1. In both cases we can observe that the algorithm we
propose is faster than solving HJB in the whole domain and the cost functional
provides a value which improves the one obtained with the MPC algorithm.

MPC & HJB TRAJECTORY IN THE TUBE
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Fig. 4. Test 2: optimal trajectory via MPC (dotted line) and via HJB (dashed line) in
the tube Ωρ (left) and in Ω (right) for λ = 0.1.
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Table 2. Test 2: a comparison of CPU time (seconds) and values of the cost functional
for λ = {0.1, 1}.

λ = 0.1 MPC N = 10 HJB in Ωρ HJB in Ω

CPU 79 s 155 s 228 s

Jx(u) 14.31 13.13 12.41

λ = 1 MPC N = 10 HJB in Ωρ HJB in Ω

CPU 23 s 49 s 63 s

Jx(u) 6.45 6.09 6.07

4 Conclusions

We have proposed a local version of the dynamic programming approach for the
solution of the infinite horizon problem showing that the coupling between MPC
and DP methods can produce rather accurate results. The coupling improves
the original guess obtained by the MPC method and allows to save memory
allocations and CPU time with respect to the global solution computed via
Hamilton-Jacobi equations. An extension of this approach to other classical con-
trol problems and more technical details on the choice of the parameters λ and
ρ will be given in a future paper.
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Abstract. The paper deals an investment timing problem appearing
in real options theory. The present values from an investment project
are modeled by general diffusion process. We find necessary and suf-
ficient conditions under which the optimal investment time is induced
by a threshold strategy. We study also conditions for optimality of the
threshold strategy (over all threshold strategies) and discuss the connec-
tion between the solutions to the investment timing problem and the
free-boundary problem.

Keywords: Real options · Investment timing problem · Diffusion
process · Optimal stopping · Threshold stopping time · Free-boundary
problem

1 Introduction

One of the fundamental problems in real options theory concerns the determi-
nation of the optimal time for investment into a given project (see, e.g., the
classical monograph [6]).

Let us think of an investment project, for example, a founding of a new firm in
the real sector of economy. This project is characterized by a pair (Xt, t ≥ 0, I),
where Xt is the present value of the firm founded at time t, and I is a cost of
investment required to implement the project (for example, to found the firm).
The input and the output production prices are assumed to be stochastic, so
Xt, t ≥ 0 is considered as a stochastic process, defined on a general filtered
probability space (Ω,F , {Ft, t ≥ 0},P). This model assumes that:

– at any moment, a decision-maker (investor) can either accept the project
and proceed with the investment or delay the decision until he obtains new
information;

– investment are considered to be instantaneous and irreversible so that they
cannot be withdrawn from the project any more and used for other purposes.

The investor’s problem is to evaluate the project and determine an appro-
priate time for the investment (investment timing problem). In real options the-
ory investment times are considered as stopping times (adapted to the flow of
σ-algebras {Ft, t ≥ 0}).
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
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In real options theory there are two different approaches to solving investment
timing problem (see [6]).

The project value under the first approach is the maximum of the net present
value from the implemented project over all stopping times (investment rules):

F = max
τ

E(Xτ − I)e−ρτ , (1)

where ρ is a given discount rate. An optimal stopping time τ∗ in (1) is viewed
as the optimal investment time (investment rule).

Within the second approach an opportunity to invest is considered as an
American call option – the right but not obligation to buy the asset on predeter-
mined price. The exercise time is viewed as an investment time, and the option
value is accepted as the investment project value. In this framework a project is
spanned with some traded asset, whose price is completely correlated with the
present value Xt of the project. In order to evaluate the (rational) value of this
real option one can use methods of financial options pricing theory, especially,
contingent claims analysis (see, e.g., [6]).

In this paper we follow the approach that the optimal investment timing deci-
sion can be mathematically determined as the solution of an optimal stopping
problem (1). Such an approach originated in the well-known McDonald–Siegel
model (see [6,11]), in which the underlying present value’s dynamics is modeled
by a geometric Brownian motion. The majority of results on this problem (opti-
mal investment strategy) has a threshold structure: to invest when the present
value of the project exceeds a certain level (threshold). At a heuristic level this
is so for the cases of geometric Brownian motion, arithmetic Brownian motion,
mean-reverting process and a few others (see [6]). However the following gen-
eral question arises: For which underlying processes the optimal decision in the
investment timing problem will have a threshold structure?

Another investment timing problem (with additional restrictions on stop-
ping times) was considered by Alvarez [1], who established sufficient (but not
necessary) conditions for optimality.

In this paper we focus our attention on finding of necessary and sufficient con-
ditions for optimality of threshold strategies in the investment timing problem.
Since this problem is a special case of the optimal stopping problem, a simi-
lar question may be addressed in the general optimal stopping problem: Under
what conditions (on both process and payoff function) the optimal stopping time
will have a threshold structure? Some results in this direction (in the form of
necessary and sufficient conditions) were obtained in [2,3,5] under additional
assumptions on underlying process and/or payoffs.

The paper is organized as follows. After a formal description of the investment
timing problem and the assumptions on the underlying process (Sect. 2.1), we
turn to study the threshold strategies in this problem. Since the investment tim-
ing problem by threshold strategies is reduced to one-dimensional maximization
problem, then a related problem is to find the optimal threshold. In Sect. 2.2 we
give necessary and sufficient conditions for the optimal threshold (over all thresh-
olds). Solving a free-boundary problem (based on smooth-pasting principle) is
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the most commonly used method (but this is not the only method, see, e.g.,
[12]) that allows to find a solution to the optimal stopping problem. In Sect. 2.3
we discuss the connection between solutions to the investment timing problem
and the free-boundary problem. Finally, in Sect. 2.4 we prove the main result on
necessary and sufficient conditions under which the optimal investment time is
generated by a threshold strategy.

2 Investment Timing Problem

Let I be the cost of investment required for implementing a project, and Xt

the present value from the project started at time t. As usual the investment is
supposed to be instantaneous and irreversible, and the project—infinitely-lived.

At any time a decision-maker (investor) can either accept the project and
proceed with the investment or delay the decision until she/he obtains new infor-
mation regarding its environment (prices of the product and resources, demand
etc.). The goal of a decision-maker in this situation is to use the available infor-
mation and find the optimal time for investing in the project (investment timing
problem), i.e., find a time τ that maximizes the net present value from the
project:

Ex (Xτ − I) e−ρτ1{τ<∞} → max
τ∈M

. (2)

Here Ex is the expectation for the process Xt starting from the initial state x,
1A is indicator function of the set A, and the maximum is taken over all stopping
times τ from a certain class M of stopping times1.

We treat the interesting case I < r; otherwise the optimal time in (2) will be
+∞.

2.1 Mathematical Assumptions

Let Xt, t > 0 be a diffusion process with values in the interval D ⊆ R
1 with

boundary points l and r, where −∞ ≤ l < r ≤ +∞, open or closed (i.e. it may
be (l, r), [l, r), (l, r], or [l, r]), which is the solution to the stochastic differential
equation:

dXt = a(Xt)dt + σ(Xt)dwt, X0 = x, (3)

where wt is a standard Wiener process, a : D �→ R
1 and σ : D �→ R

1
+ are the

drift and the diffusion coefficients, respectively. Denote I = int(D) = (l, r).
The process Xt is assumed to be regular; this means that, starting from an

arbitrary point x ∈ I, this process reaches any point y ∈ I in finite time with
positive probability.

It is known that the following local integrability condition:
∫ x+ε

x−ε

1 + |a(y)|
σ2(y)

dy < ∞ for some ε > 0, (4)

1 We consider stopping times which can take infinite values (with positive probability).
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at any x ∈ I guarantees the existence of a weak solution of equation (3) and its
regularity (see, e.g. [10]).

The process Xt is associated with the infinitesimal operator

Lf(x) = a(x)f ′(x) +
1
2
σ2(x)f ′′(x). (5)

Under the condition (4) there exist (unique up to constant positive multipli-
ers) increasing and decreasing functions ψ(x) and ϕ(x) with absolutely contin-
uous derivatives, which are the fundamental solutions to the ODE

Lf(p) = ρf(p) (6)

almost sure (with respect to Lebesque measure) on the interval I (see, e.g. [10,
Chap. 5, Lemma 5.26]). Moreover, 0 < ψ(p), ϕ(p) < ∞ for p ∈ I. Note, if the
functions a(x), σ(x) are continuous, then ψ, ϕ ∈ C2(I).

2.2 Optimality of Threshold Strategies

Let us define τp = τp(x) = inf{t ≥ 0 : Xt ≥ p}—the first time when the process
Xt, starting from x, exceeds level p. The time τp is said to be a threshold stop-
ping time generated by a threshold strategy—to stop when the process exceeds
threshold p. Let Mth = {τp, p ∈ I} be a class of all such threshold stopping
times.

For the class Mth the investment timing problem (2) can be written as
follows:

(p − I)Exe−ρτp → max
p∈(l,r)

. (7)

Such a problem appeared in [7] as the heuristic method for solving a general
investment timing problem (2) over the class of all stopping times.

We say that the threshold p∗ is optimal for the investment timing problem
(7) if the threshold stopping time τp∗ is optimal in (7). The following result gives
necessary and sufficient conditions for the optimal threshold.

Theorem 1. Threshold p∗ ∈ I is optimal in the problem (7) for all x ∈ I, if
and only if the following conditions hold:

p − I

ψ(p)
≤ p∗ − I

ψ(p∗)
if p < p∗; (8)

p − I

ψ(p)
does not increase for p ≥ p∗, (9)

where ψ(p) is an increasing solution to the ODE (6).

Proof. Let us denote the left-hand side in (7) by V (p;x). Obviously, V (p;x) =
x − I for x ≥ p.

Along with the above stopping time τp let us define the first hitting time to
the threshold p: Tp = inf{t ≥ 0 : Xt = p}, p ∈ (l, r).
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For x < p, clearly, τp = Tp and using known formula Exe−ρTp = ψ(x)/ψ(p)
(see, e.g., [4,9]) we obtain:

V (p;x) = (p − I)Exe−ρτp1{τp<∞} = (p − I)Exe−ρTp =
p − I

ψ(p)
ψ(x). (10)

Denote h(x) = (x − I)/ψ(x).

(i) Necessity. Let p∗ ∈ I be an optimal threshold in the problem (7) for all
x ∈ I. Then for p < p∗ we have

V (p; p) = p − I ≤ V (p∗; p) =
p∗ − I

ψ(p∗)
ψ(p),

i.e. (8) holds. If p∗ ≤ p1 < p2, then

V (p2; p1) = h(p2)ψ(p1) ≤ V (p∗; p1) = p1 − I = h(p1)ψ(p1),

and it follows that (9) is true.
(ii) Sufficiency. Now, suppose that conditions (8) and (9) hold.

Let p < p∗. If x ≥ p∗, then V (p;x) = x − I = V (p∗;x).
If p ≤ x < p∗, then, due to (8), Vp(x) = x − I = h(x)ψ(x) ≤ h(p∗)ψ(x) =
V (p∗;x).
Finally, if x < p, then, using (8) and (10), we obtain:
V (p;x) = h(p)ψ(x) ≤ h(p∗)ψ(x) = V (p∗;x).
Consider the case p > p∗. If x ≥ p, then V (p;x) = x − I = V (p∗;x).
Whenever p∗ ≤ x < p, then, due to (9), V (p;x) = h(p)ψ(x) ≤ h(x)ψ(x) =
x − I = V (p∗;x).
When x < p∗, then V (p;x) = h(p)ψ(x) ≤ h(p∗)ψ(x) = V (p∗;x), since
h(p) ≤ h(p∗).
Theorem is completely proved.

Remark 1. The condition (9) is equivalent to the inequality

(p − I)ψ′(p) ≥ ψ(p) for p ≥ p∗.

This relation implies, in particular, that the optimal threshold p∗ must be strictly
greater than the cost I (because the values ψ(p∗), ψ′(p∗) are positive).

Remark 2. Assume that log ψ(x) is a convex function, i.e. ψ′(x)/ψ(x) increases.
In this case there exists a unique point p∗ which satisfies the equation

(p∗ − I)ψ′(p∗) = ψ(p∗). (11)

This value p∗ constitutes the optimal threshold in the problem (7) for all x ∈ I.
Indeed, the sign of the derivative of the function (p− I)/ψ(p) coincides with the
sign of ψ(p) − (p − I)ψ′(p). Therefore, in the considered case the conditions (8)
and (9) in Theorem 1 are true automatically.



Real Options and Threshold Strategies 83

There are a number of cases of diffusion processes Xt which are more or less
realistic for modeling the present values of a project. Some of them are listed
below.

(1) Geometric Brownian motion (GBM):

dXt = Xt(αdt + σdwt). (12)

In this case ψ(x) = xβ , where β is the positive root of the equation 1
2σ2β(β−

1) + αβ − ρ = 0.
(2) Arithmetic Brownian motion (ABM):

dXt = x + αdt + σdwt. (13)

In this case ψ(x) = eβx, where β is the positive root of the equation 1
2σ2β2+

αβ − ρ = 0.
(3) Mean-reverting process (or geometric Ornstein–Uhlenbeck process):

dXt = α(x̄ − Xt)Xtdt + σXt dwt. (14)

In this case ψ(x) = xβ
1F1

(
β, 2β +

2αx̄

σ2
;
2α

σ2
x

)
, where β is the positive root

of equation 1
2σ2β(β−1)+αx̄β−ρ = 0, and 1F1(p, q;x) is the confluent hyper-

geometric function satisfying Kummer’s equation xf ′′(x) + (q − x)f ′(x) −
pf(x) = 0.

(4) Square-root mean-reverting process (or Cox–Ingersoll–Ross process):

dXt = α(x̄ − Xt)dt + σ
√

Xt dwt. (15)

In this case ψ(x) = 1F1

(
ρ

α
,
2αx̄

σ2
;
2α

σ2
x

)
.

The above processes are well studied in the literature (in connection with
real options and optimal stopping problems see, e.g., [6,8]).

For the first two processes, (12) and (13), Theorem 1 gives explicit formulas
for the optimal threshold in the investment timing problem:

p∗ =
β

β − 1
I for the GBM, and p∗ = I +

1
β

for the ABM.

On the contrary, for mean-reverting processes (14) and (15) the function ψ(x)
is represented as an infinite series, and the optimal threshold can be find only
numerically.

So, Theorem 1 states that optimal threshold p∗ is a point of maximum for the
function h(x) = (x − I)/ψ(x). This implies the first-order optimality condition
h′(p∗) = 0, i.e. the equality (11), and smooth-pasting principle:

V ′
x(p∗;x)

∣∣
x=p∗ = 1.
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In the next section we discuss smooth-pasting principle and appropriate free-
boundary problem more closely.

2.3 Threshold Strategies and Free-Boundary Problem

There is a common opinion (especially among engineers and economists) that
the solution to a free-boundary problem always gives a solution to an optimal
stopping problem.

A free-boundary problem in the case of threshold strategies in the investment
timing problem can be formulated as follows: find the threshold p∗ ∈ (l, r) and
a twice differentiable function H(x), l < x < p∗, such that

LH(x) = ρH(x), l < x < p∗; (16)
H(p∗−0) = p∗ − I, H ′(p∗−0) = 1. (17)

If ψ(x) is a twice differentiable function, then the solution to the problem
(16) and (17) has the form

H(x) =
p∗ − I

ψ(p∗)
ψ(x), l < x < p∗. (18)

Here ψ(x) is an increasing solution to the ODE (6) and p∗ satisfies the smooth-
pasting condition (11). We call such p∗ a solution to a free-boundary problem.

According to Theorem 1 the optimal threshold in problem (7) must be the
point of maximum of the function h(x) = (x − I)/ψ(x). However the smooth-
pasting condition (11) provides only a stationary point for h(x). Thus, we can
apply standard second-order optimality conditions to derive relations between
the solutions to the investment timing problem and the free-boundary problem.

Let p∗ be a solution to the free-boundary problem (16) and (17). If p∗ is
also an optimal threshold in the investment timing problem (7), then, of course,
h′′(p∗) ≤ 0. This means that

ψ′′(p∗) = −h′′(p∗)ψ(p∗) + 2h′(p∗)ψ′(p∗)
h(p∗)

= −h′′(p∗)ψ(p∗)
h(p∗)

≥ 0.

Thus, the inequality ψ′′(p∗) ≥ 0 may be viewed as a necessary condition for a
solution of the free-boundary problem to be optimal in the investment timing
problem. The inverse relation between solutions can be stated as follows.

Statement 1. If p∗ is the unique solution to the free-boundary problem (16)
and (17), and ψ′′(p∗) > 0, then p∗ is an optimal threshold in the problem (7)
for all x ∈ I.

Proof. Since h′(p∗) = 0 and ψ′′(p∗) > 0 then h′′(p∗) = −h(p∗)ψ′′(p∗)/ψ(p∗)<0.
Therefore, h′(p) strictly decreases at some neighborhood of p∗.

Then, it is easy to see that h′(p) > 0 for p < p∗ and h′(p) < 0 for p > p∗.
Otherwise h′(q) = 0 for some q 	= p∗, that contradicts the uniqueness of the
solution to the free-boundary problem (16) and (17). Therefore, conditions (8)
and (9) hold and Theorem 1 gives the optimality of threshold p∗.
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The following result concerns the general case when the free-boundary prob-
lem has several solutions.

Statement 2. Let p∗ and p̃ be two solutions to the free-boundary problem (16)
and (17) such that ψ′′(p∗) > 0 and (x−I)/ψ(x) ≤ (p∗ −I)/ψ(p∗) for l < x < p∗.
If p̃ > p∗ is such that ψ(k)(p̃) = 0, k = 2, . . . , n − 1 and ψ(n)(p̃) > 0 for some
n > 2, then p∗ is an optimal threshold in the problem (7) for all x ∈ I.

Proof. Let us prove that h′(p) ≤ 0 for all p > p∗. The inequality ψ′′(p∗) > 0
implies (as above) that h′′(p∗) < 0, and, therefore, h′(p) < 0 for all p∗ < p < p1
with some p1. If we suppose that h′(p2) > 0 for some p2 > p∗, then there
exists p0 ∈ (p1, p2) such that h′(p0) = 0 and h′(p) > 0 for all p0 < p < p2.
Therefore, p0 would be another solution to the free-boundary problem (16)–
(17). The conditions of the Statement imply that h(k)(p0) = 0, k = 2, . . . , n−1,
h(n)(p0) < 0 for some n > 2, which contradicts the positivity of h′(p) for p0 <
p < p2.

Hence, h′(p) ≤ 0 for all p > p∗ and conditions (8) and (9) hold. Thus,
according to Theorem 1, p∗ is an optimal threshold in the problem (7).

2.4 Optimal Strategies in the Investment Timing Problem

Now, let us return to the ‘general’ investment timing problem (2).
A specific version of the investment timing problem (2) over the class M0 of

stopping times τ such that τ < τ(0) = inf{t ≥ 0 : Xt ≤ 0} was considered by
Alvarez [1]. He derived sufficient conditions under which an optimal investment
time in (2) over the class M0 will be a threshold stopping time. However these
conditions are not necessary.

In this section we give necessary and sufficient conditions (criterion) for opti-
mality of the threshold stopping time in the investment timing problem (2) over
the class of all stopping times.

To reduce some technical difficulties we assume below that the drift a(x) and
the diffusion σ(x) of the underlying process Xt are continuous functions.

Theorem 2. The threshold stopping time τp∗ , p∗ ∈ I, is optimal in the invest-
ment timing problem (2) for all x ∈ I if and only if the following conditions
hold:

(p − I)ψ(p∗) ≤ (p∗ − I)ψ(p) for p < p∗; (19)
ψ(p∗) = (p∗ − I)ψ′(p∗); (20)
a(p) ≤ ρ(p − I) for p > p∗. (21)

Here ψ(x) is an increasing solution to the ODE (6) and a(p) is the drift coeffi-
cient of the process Xt.

Proof. Define the value function for the problem (2) over the class M of all
stopping times as follows:

V (x) = sup
τ∈M

Ex (Xτ − I) e−ρτ1{τ<∞}.
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(i) Sufficiency. Let conditions (19)–(21) hold. Take the function

Φ(x) = V (p∗;x) =

⎧⎨
⎩

p∗ − I

ψ(p∗)
ψ(x), for x < p∗,

x − I, for x ≥ p∗.

Obviously, Φ(x) > 0 (due to condition (20)) and V (x) ≥ Φ(x) for all x ∈ I.
On the other hand, condition (19) implies

p∗ − I

ψ(p∗)
ψ(x) ≥ x − I

ψ(x)
ψ(x) = x − I.

Therefore Φ(x) ≥ x − I for all x ∈ (l, r), i.e. Φ(x) is a majorant of the specific
payoff function x − I.

For any stopping time τ ∈ M and a real number N > 0 put τ̃ = τ ∧N . From
Itô–Tanaka–Meyer formula (see, e.g. [10]) we have:

ExΦ(Xτ̃ )e−ρτ̃ = Φ(x) + Ex

∫ τ̃

0

(LΦ − ρΦ)(Xt)e−ρtdt

+
1
2
σ2(p∗)[Φ′(p∗+0) − Φ′(p∗−0)]Ex

∫ τ̃

0

e−ρtdLt(p∗), (22)

where Lt(p∗) is the local time of the process Xt at the point p∗.
By definition and in view of condition (20) we have

Φ′(p∗ + 0) − Φ′(p∗ − 0) = 1 − p∗ − I

ψ(p∗)
ψ′(p∗) = 0.

Denote T1 = {t : 0 ≤ t ≤ τ̃ , Xt < p∗}, T2 = {t : 0 ≤ t ≤ τ̃ , Xt > p∗}. We
have:

LΦ(Xt) − ρΦ(Xt) =
p∗ − I

ψ(p∗)

(
Lψ(Xt) − ρψ(Xt)

)
= 0 for t ∈ T1,

LΦ(Xt) − ρΦ(Xt) = a(Xt) − ρ(Xt − I) ≤ 0 for t ∈ T2.

These relations follow from the definition of the function ψ(x) and in view of
condition (21). Then

ExΦ(Xτ̃ )e−ρτ̃ ≤ Φ(x) + Ex

⎛

⎝
∫

T1

(LΦ − ρΦ)(Xt)e
−ρtdt +

∫

T2

(LΦ − ρΦ)(Xt)e
−ρtdt

⎞

⎠

≤ Φ(x).

Since Φ(Xτ̃ )e−ρτ̃ a.s.−→ Φ(Xτ )e−ρτ1{τ<∞} when N → ∞, then due to Fatou’s
Lemma: ExΦ(Xτ )e−ρτ1{τ<∞} ≤ Φ(x) for all τ ∈ M and x ∈ I. Therefore,
Φ(x) is a ρ-excessive function, which majorates the payoff function x − I. Since,
by Dynkin’s characterization, the value function V (x) is the least ρ-excessive
majorant, then V (x) ≤ Φ(x).



Real Options and Threshold Strategies 87

Therefore, V (x) = Φ(x) = V (p∗;x), i.e. τp∗ is the optimal stopping time in
problem (2) for all x.

(ii) Necessity. Now, let τp∗ be an optimal stopping time in the problem
(2). Note, that τp∗ will be also an optimal stopping time in the problem (7).
Therefore, Theorem 1 implies conditions (19) and (20), since p∗ is a point of
maximum for the function (x − I)/ψ(x).

Further, assume that inequality (21) is not true at some point p0 > p∗, i.e.
a(p) > ρ(p − I) in some interval J ⊂ (p∗, r) (by continuity). For some x̃ ∈ J
define τ = inf{t ≥ 0 : Xt /∈ J}, where the process Xt starts from the point x̃.
Then for any N > 0 from Dynkin’s formula

Ex̃(Xτ∧N − I)e−ρ(τ∧N) = x̃ − I + Ex̃

∫ τ∧N

0

[a(Xt) − ρ(Xt − I)]e−ρtdt > x̃ − I.

Therefore, V (x̃) > x̃ − I which contradicts the relation V (x̃) = V (p∗; x̃) = g(x̃),
since x̃ > p∗.

Example 1. Let the process Xt be the geometric Brownian motion (12). Then
Theorem 2 implies that the threshold stopping time τp∗ will be optimal in the
investment timing problem (2) over all investment times if and only if p∗ =
Iβ/(β − 1), where β is the positive root of the equation 1

2σ2β(β−1)+αβ−ρ = 0.
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Abstract. This paper provides expressions for the boundary potential
that provides the best electrostatic potential approximation of a given
L2 vector field on a nice bounded region in R

N . The permittivity of the
region is assumed to be known and the potential is required to be zero on
the conducting part of the boundary. The boundary potential is found by
solving the minimization conditions and using a special basis of the trace
space for the space of allowable potentials. The trace space is identified
by its representation with respect to a basis of Σ-Steklov eigenfunctions.

Keywords: Boundary control · Trace spaces · Best approximation ·
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1 Introduction

Quite often in physical applications one wishes to produce electrostatic fields in
a region of known permittivity ε(x) that approximate a prescribed (given) field
F. Such fields are determined by their boundary values, so a natural question is
what imposed potentials on the boundary provide good approximations, in an
energy norm, to F? Very often the boundary includes surface patches that are
conductors as well as patches where nonzero potentials may be imposed. This
may be regarded as a problem of stationary control or approximation.

The difficulty with such problems has been how to work with the control
space of allowable boundary conditions as it will be a trace space of allowable
H1 functions. The standard Lions-Magenes description of trace spaces is not
amenable to nice constructions of solutions for problems of this type. This prob-
lem is treated here using methods based on the spectral characterization of trace
spaces as described in Auchmuty [3,4] which provides constructive methods and
explicit bases for the traces. The allowable trace space is characterized as being
isomorphic to a class of weak solutions of a linear elliptic equation and a basis
of Σ-Steklov eigenfunctions of this space is identified.
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Here an explicit expression for the best approximation in terms of the data is
found. Moreover boundary data that is close in a boundary norm to this optimal
solution will provide good approximations to the field F in an energy norm on Ω.
The analysis described here is described for quite general N-dimensional regions
since the results are essentially independent of the dimension N ≥ 2 and the
methods may be of interest for other approximation questions.

2 Definitions and Requirements

To analyze this problem, standard definitions, terminology and assumptions will
be used as in Attouch et al. [1]. All functions in this paper will take values
in R := [−∞,∞], derivatives should be taken in a weak sense and N ≥ 2
throughout.

A region is a non-empty, connected, open subset of RN . Its closure is denoted
Ω and its boundary is ∂Ω := Ω\Ω. Let Lp(Ω),H1(Ω) be the usual real Lebesgue
and Sobolev spaces of functions on Ω. The norm on Lp(Ω) is denoted ‖.‖p and
the inner product on L2(Ω) by 〈., .〉. The basic requirement on Ω is

(B1): Ω is a bounded region in R
N whose boundary ∂Ω is the union of a finite

number of disjoint closed Lipschitz surfaces; each surface having finite surface
area.

The region Ω is said to satisfy Rellich’s theorem provided the imbedding of
H1(Ω) into Lp(Ω) is compact for 1 ≤ p < pS where pS(N) := 2N/(N − 2) when
N ≥ 3, or pS(2) = ∞ when N = 2.

The trace map is the linear extension of the map restricting Lipschitz con-
tinuous functions on Ω to ∂Ω. When (B1) holds, this map has an extension to
W 1,1(Ω) and then the trace of u on ∂Ω will be Lebesgue integrable with respect
to σ, see [5], Sect. 4.2 for details. The region Ω is said to satisfy the compact
trace theorem provided the trace mapping γ : H1(Ω) → L2(∂Ω, dσ) is compact.
We will use the inner product

[u, v]∂ :=
∫

Ω

∇u(x) · ∇v(x) dx +
∫

∂Ω

γ(u) γ(v) dσ (2.1)

on H1(Ω) and the associated norm is denoted ‖u‖∂ . This is an equivalent inner
product to the usual inner product when Ω obeys (B1) - see [2] for a proof. Here
∇u := (D1u, . . . ,DNu) is the gradient of the function u.

Our interest is in a problem that arises in electrostatics where part of the
boundary Σ is a conductor and a potential can be imposed on the complementary
part of the boundary Σ̃ := ∂Ω \ Σ. Mathematically our requirements are

(B2): Σ is an nonempty open subset of ∂Ω, Σ and Σ̃ have strictly positive
surface measure and σ(∂Σ) = 0.

A function u ∈ H1(Ω) is said to be in H1
Σ0(Ω) provided γ(u) = 0, σa.e. on

Σ. This is equivalent to requiring that∫
∂Ω

γ(u) γ(v) dσ = 0 for all v ∈ XΣ (2.2)
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Let X be the space H1(Ω) ∩ C(Ω) and XΣ be the subspace of functions in
X with supp v ∩ ∂Ω ⊂ Σ. The space H1

Σ0(Ω) is a closed subspace of H1(Ω)
that contains H1

0 (Ω).

3 The Boundary Control Problem

The problem to be studied here is given a vector field F on Ω to find the
potential ϕ that provides the best L2-approximation when the region Ω has
known permittivity tensor ε(.) and part of the boundary Σ is a conductor held
at zero potential. That is we want to find the function ϕ̃ that minimizes

‖ ε∇ϕ − F ‖2
2 :=

∫
Ω

|ε∇ϕ − F|2 dx over all ϕ ∈ H 1
Σ0 (Ω). (3.3)

with |.| is the Euclidean norm on R
N . Since F is known this reduces to minimizing

the functional

E(ϕ) :=
∫

Ω

[ (A(x)∇ϕ) · ∇ϕ − 2G · ∇ϕ ] dx over all ϕ ∈ H 1
Σ0 (Ω). (3.4)

where A(x) := ε(x)T ε(x) is real symmetric, G(x) := ε(x)TF(x) on Ω and the
superscript T denotes the vector transpose. The following will be assumed.

(A1): A(x) := (ajk(x)) is a real symmetric matrix whose components are
bounded Lebesgue-measurable functions on Ω and there exist constants c0, c1
such that

c0 |ξ|2 ≤ ξT A(x)ξ ≤ c1 |ξ|2 for all ξ ∈ R
N , x ∈ Ω. (3.5)

Existence uniqueness and extremality conditions for this problem may be
obtained using standard methods. The problem is a convex quadratic minimiza-
tion problem on a Hilbert space so the existence may be stated as follows.

Theorem 3.1. Assume that (A1), (B1), (B2) hold and F ∈ L2 (Ω : RN ) is
given, then there is a unique minimizer ϕ̃ of E on H1

Σ0(Ω).

The functional E also is G-differentiable so the minimizers satisfy the
following.

Theorem 3.2. Assume that (A1), (B1), (B2) hold and F ∈ L2 (Ω : RN ) is
given, then the minimizer ϕ̃ of E on H1

Σ0(Ω) satisfies the equation
∫

Ω

(A(x)∇ϕ − G) · ∇ψ dx = 0 for all ψ ∈ H 1
Σ0 (Ω). (3.6)

To obtain further results about this problem a decomposition of the space
H1

Σ0(Ω) will be used. Consider the bilinear form a : H1
Σ0(Ω) → R defined by

a(u, v) := [u, v]a :=
∫

Ω

(A∇u) · ∇v dNx +
∫

Σ̃

γ(u) γ(v) dσ (3.7)
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This bilinear form defines the a-inner product on H1
Σ0(Ω) and is equivalent to

the ∂-norm (2.1) when A satisfies (A1).
Observe that a function w ∈ H1

Σ0(Ω) is a-orthogonal to H1
0 (Ω) if and only if

∫
Ω

(A∇w) · ∇v dx = 0 for all v ∈ H1
0 (Ω). (3.8)

That is γ(w) is zero on Σ and L Aw(x) := div (A∇w)(x) = 0 in a weak sense
on Ω. The space of all such functions will be denoted N(L A, Σ) so we have the
orthogonal decomposition

H1
Σ0(Ω) = H1

0 (Ω) ⊕a N(L A, Σ) (3.9)

where ⊕a indicates that the a-inner product is used.
In light of this result, the minimizer ϕ̃ has a decomposition of the form

ϕ̃ = ϕ0 + ϕb where ϕ0 is the minimizer of E on H1
0 (Ω) and ϕb ∈ N(L A, Σ) is

the solution of∫
Ω

(A∇ϕ) ·∇ψ dx =
∫

Ω

(G−A∇ϕ0) ·∇ψ dx for all ψ ∈ N(LA,Σ). (3.10)

The fact that ϕ0 is a solution of the extremality condition on H1
0 (Ω) implies

that div (A∇ϕ0 − G ) = 0 on Ω in a weak sense so this last equation may be
written∫

Ω

(A∇ϕ)·∇ψ dx =
∫

Σ̃

ψ (G−A∇ϕ0)·ν dσ for all ψ ∈ N(LA,Σ). (3.11)

This is the weak form of the equation L Aϕ = 0 on Ω subject to the boundary
conditions

ϕ(z) = 0 on Σ and A∇ϕ · ν = (G − A∇ϕ0) · ν on Σ̃. (3.12)

The solution of the problem for ϕ0 is a standard Dirichlet boundary value
problem and it is worth noting that the value of E(ϕ0) = 0 if and only if div G =
0 on Ω in a weak sense. In this case the general problem reduces to that of solving
(3.10) or (3.11) alone.

Our interest is in the problem of finding an expression for the boundary
trace of ϕ̃ or ϕb on Σ̃. That is what boundary data gives the best approximating
potential for the given field F on Ω?

4 Bases and Representations of N(LA, Σ)

To find the boundary data that provides the best L2-approximation to the field
F, an orthogonal basis of the space consisting of certain Steklov-type eigenfunc-
tions of L A is constructed and used. This will yield a spectral representation of
ϕb as described in Theorem 5.1 below.
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An a-orthonormal basis of N(L A, Σ) may be found using the algorithm
described in Auchmuty [4]. In the notation of that paper take V = N(L A, Σ), a
as above and

m(u, v) :=
∫

Σ̃

γ(u) γ(v) dσ. (4.13)

A function χ ∈ N(L A, Σ) is said to be a Σ-Steklov eigenfunction of L A on
Ω provided it is a solution of

∫
Ω

(A∇χ) · ∇ψ dx = λ

∫
Σ̃

γ(χ) γ(ψ) dσ for all ψ ∈ H1
Σ0(Ω). (4.14)

This problem has the form of Eq. 2.1 of [4] and the bilinear forms a,m satisfy
conditions (A1)–(A4) of that paper. Moreover condition (A5) there holds with
H = L2(Σ̃, dσ).

Define A(χ) = a(χ, χ), M (χ) := m(χ, χ) and C1 to be the closed unit
ball in H1

Σ0(Ω) with respect to the a-norm. Consider the variational problem of
maximizing M on C1. This problem has maximizers ±χ1 that have a-norm 1
and are solutions of (4.14) associated with an eigenvalue λ1 > 0. Moreover one
has the coercivity inequality

A(χ) ≥ (λ1 + 1)
∫

Σ̃

γ(χ)2 dσ for all χ ∈ H1
Σ0(Ω). (4.15)

Using the construction of Sect. 4 of [4], a countably infinite a-orthonormal
basis B := {χj : j ≥ 1} of N(L A, Σ) may be constructed using a sequence of
constrained maximization problems for M .

These eigenfunctions also are m-orthogonal so that m(χj , χk) = 0 when j �=
k. Define χ̃j := χj/

√
λj + 1 then B̃ := { γ(χ̃j) : j ≥ 1} will be an m-orthonormal

basis of L2(Σ̃, dσ) from theorem 4.6. Since these functions constitute bases of
the various Hilbert spaces, there is a spectral representation of functions ϕ ∈
N(L A, Σ) in terms of their boundary values. Namely when ϕ ∈ N(L A, Σ) then,

ϕ(x) =
∞∑

j=1

cj χ̃j(x) on Ω with cj := m(ϕ, χ̃j) (4.16)

and this series converges strongly in H1
Σ0(Ω). Thus these constructions yield the

following result.

Theorem 4.1. Assume that (A1), (B1), (B2) hold and B, B̃ are defined as
above. If ϕ ∈ N(L A, Σ) then (4.16) holds and the series converges in a-norm.
Moreover a(ϕ,ϕ) =

∑∞
j=1 (1 + λj) c2j .

Let H1/2(Σ̃) be the subspace of L2(Σ̃, dσ) of all functions with∑∞
j=1 (1 + λj) c2j < ∞. It will be a Hilbert space with respect to the inner

product

〈ϕ,ψ〉1/2,Σ̃ :=
∞∑

j=1

(1 + λj)m(φ, χj)m(ψ, χj) (4.17)
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In particular this yields an isomorphism between functions in N(L A, Σ) and
functions in H1/2(Σ̃). Thus H1/2(Σ̃) may be regarded as the boundary trace
subspace (on Σ̃) of functions in N(L A, Σ) and this is an isometry with a(ϕ,ϕ) =
〈ϕ,ϕ〉2

1/2,Σ̃
.

5 The Best Approximating Potential

We are now in a position to specify the boundary data for the potential that
minimizes (3.3). The preceding analysis enables the derivation of an explicit
representation of the solution ϕb of (3.10) or (3.11). Equation (3.10) implies
that ϕb satisfies

a(ϕb, χ̃j) = gj :=
∫

Ω

(G − A∇ϕ0) · ∇χ̃j dx for j ≥ 1.

Note that the gj depend onlds only on the data, the eigenfunction χ̃j and the
solution ϕ0 of the zero-Dirichlet variational problem. Then the eigenfunction
equation (4.14) yields that the solution is

ϕb(x) =
∞∑

j=1

gj

(1 + λj)
χ̃j(x). (5.18)

Thus the boundary trace on Σ̃ of the best approximation is given by the bound-
ary trace of this right hand side. That is imposing Dirichlet boundary data γ(ϕb)
on Σ̃ given by (5.18) yields the minimizing potential ϕb of E .

Theorem 5.1. Assume that (A1), (B1), (B2) hold and B̃, gj are defined as
above. Then the potential ϕ̃ that minimizes the norm in (3.3) or E on H1

Σ0(Ω)
is given by ϕ̃ = ϕ0 + ϕb where ϕ0 minimizes E on H1

0 (Ω) and ϕb is given by
(5.18). When div G = 0 on Ω, then F = ε∇ϕ̃ on Ω.

Proof. This is a restatement of the preceding results. Note that when div G = 0
on Ω, then ϕ0 = 0 so the last sentence holds.

Moreover when the boundary potential ϕ is a good approximation of this ϕb

in the norm of H1/2(Σ̃) then the fact that the a-norm and the norm on H1/2(Σ̃)
are isometric implies that such potentials ϕ will provide a good approximation
of F on Ω in any equivalent norm on H1

Σ0(Ω).
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Abstract. We continue our efforts on modeling of the population
dynamics of herbivorous insects in order to develop and implement effec-
tive pest control protocols. In the context of inverse problems, we explore
the dynamic effects of pesticide treatments on Lygus hesperus, a common
pest of cotton in the western United States. Fitting models to field data,
we consider model selection for an appropriate mathematical model and
corresponding statistical models, and use techniques to compare models.
We address the question of whether data, as it is currently collected, can
support time-dependent (as opposed to constant) parameter estimates.

Keywords: Inverse problems · Generalized least squares · Model
selection · Information content · Residual plots · Piecewise linear splines ·
Hemiptera · Herbivory · Pesticide

1 Introduction

When addressing questions in fields ranging from conservation science to agri-
cultural production, ecologists frequently collect time-series data in order to
better understand how populations are affected when subjected to abiotic or
biotic disturbance [12,13,22]. Fitting models to data, which generally requires a
broad understanding of both statistics and mathematics, is an important compo-
nent of understanding pattern and process in population studies. In agricultural
ecology, pesticide disturbance may disrupt predator-prey interactions [27,28] as
well as impose both acute and chronic effects on arthropod populations. In the
past several decades, the focus of many studies of pesticide effects on pests and
their natural enemies has shifted away from static measures such as the LC50,
as authors have emphasized population metrics/outcomes [17–19,26,29]. Simple
mathematical models, parameterized with field data, are often used to then pre-
dict the consequences of increasing or decreasing pesticide exposure in the field.
Accuracy in parameter estimation and quantification of uncertainty in fitting
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 95–106, 2016.
DOI: 10.1007/978-3-319-55795-3 8
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data to models, which has recently received increasing attention in ecological
circles [20,21], depends critically on the appropriate model selection. In most
cases, this includes selection of both statistical and mathematical models
in fits-to-data – something that is not always fully explicitly addressed in the
ecological literature. We first addressed this gap in [1,3] using data from pest
population counts of Lygus hesperus Knight (Hemiptera: Meridae) feeding on
pesticide-treated cotton fields in the San Joaquin Valley of California [23].

In particular, in [1,3] we investigated the effect of pesticide treatments on the
growth dynamics of Lygus hesperus. This was done by constructing mathematical
models and then fitting these models to field data so as to estimate growth rate
parameters of Lygus hesperus both in the absence and in the presence of pesti-
cide application. Overall, compelling evidence was found for the untreated fields,
using model comparison tests, that it may be reasonable to ignore nymph mor-
tality (i.e., just count total number of L. hesperus and not distinguish between
nymphs and adults). This would greatly simplify the models, as well as the data
collection process.

In the present effort we further examine the importance of model selection
and demonstrate how optimal selection of both statistical and mathematical
models is crucial for accuracy in parameter estimation and uncertainty quantifi-
cation in fitting data to models. This report further investigates these issues by
testing different data sets from the same database as in [1,3] but with a varied
number of pesticide applications in treated fields.

2 Methods

The data used came from a database consisting of approximately 1500 replicates
of L. hesperus density counts, using sweep counts, in over 500 Pima or Acala
cotton fields in 1997–2008 in the San Joaquin Valley of California. This data is
described more fully in [3]. We selected subsets to analyze using the following
criteria:

– In each replicate (corresponding to data collected during one season at one
field) we considered data that was collected by pest control advisors (PCAs)
between June 1 and August 30.

– We considered data which had the pesticide applications that targeted beet
armyworms, aphids, mites as well as Lygus.

– We used only replicates where adult and nymph counts were combined into a
total insect count.

– No counts were made on the days of pesticide applications.
– Superposition of pesticide applications has not been incorporated in the algo-

rithm, so we chose samples with at least a week gap between consecutive
pesticide applications.

We consider inverse or parameter estimation problems in the context of a
parameterized (with vector parameter q ∈ Ωκq ⊂ R

κq ) N -dimensional vector
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dynamical system or mathematical model given by

dx

dt
(t) = g(t,x(t), q), (1)

x(t0) = x0, (2)

with scalar observation process

f(t;θ) = Cx(t;θ), (3)

where θ = (qT, x̃T
0 )T ∈ Ωκθ ⊂ R

κq+Ñ = R
κθ , Ñ ≤ N , and the observation

operator C maps RN to R
1. The sets Ωκq and Ωκθ are assumed known restraint

sets for the parameters.
We make some standard statistical assumptions (see [7,8,16,24]) underlying

our inverse problem formulations.

– (A1) Assume Ei are independent identically distributed i.i.d. with E(Ei) = 0
and cov(Ei, Ei) = σ2

0, where i = 1, ..., n and n is the number of observations or
data points in the given data set taken from a time interval [0, T ].

– (A2) Assume that there exists a true or nominal set of parameters θ0 ∈ Ω ≡
Ωκθ .

– (A3) Ω is a compact subset of Euclidian space of Rκθ and f(t,θ) is continuous
on [0, T ] × Ω.

Denote as θ̂ the estimated parameter for θ0 ∈ Ω. The inverse problem is
based on statistical assumptions on the observation error in the data. If one
assumes some type of generalized relative error data model, then the error is
proportional in some sense to the measured observation. This can be represented
by a statistical model with observations of the form

Y i = f(ti;θ0) + f(ti;θ0)γEi, γ ∈ [0, 2], (4)

with corresponding realizations

yi = f(ti;θ0) + f(ti;θ0)γεi, γ ∈ [0, 2], (5)

where the εi are realizations of the Ei, i = 1, ..., n.
For relative error models one should use inverse problem formulations with

Generalized Least Squares (GLS) cost functional

Jn(Y ;θ) =
n∑

i=1

(
Y i − f(ti;θ)

f(ti;θ)γ

)2

. (6)

The corresponding estimator and estimates are respectively defined by

ΘGLS = argmin
θ∈Ω

n∑
i=1

(
Y i − f(ti;θ)

f(ti;θ)γ

)2

, γ ∈ [0, 2], (7)

with realizations
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θ̂GLS = argmin
θ∈Ω

n∑
i=1

(
yi − f(ti;θ)

f(ti;θ)γ

)2

, γ ∈ [0, 2]. (8)

GLS estimates θ̂
n

and weights {ωj}n
j=1 are found using an iterative method as

defined below (see [7]). For the sake of notation, we will suppress the superscript
n (i.e., θ̂GLS := θ̂

n

GLS).

1. Estimate θ̂GLS by θ̂
(0)

using the OLS method ((8) with γ = 0). Set k = 0.

2. Compute weights ω̂j = f−2γ(tj , θ̂
(k)

).

3. Obtain the k + 1 estimate for θ̂GLS by θ̂
(k+1)

:= argmin
∑n

j=1 ω̂j [yj −
f(tj ,θ)]2.

4. Set k := k + 1 and return to step 2. Terminate when the two successive
estimates for θ̂GLS are sufficiently close.

3 Mathematical Models

Our focus here is on the comparison of two different models for insect (L. hespe-
rus) population growth/mortality in pesticide-treated fields. The simplest model
(which we denote as model B) is for constant reduced growth due to effects of pes-
ticides versus an added time-varying mortality (denoted by model A) to reflect
this decreased total population growth rate. Model B is given by

dx

dt
= ηx

x(t1) = x0,
(9)

where x0 is defined as initial population count at time t1 of initial observation
and η is the reduced population growth rate in the presence of pesticides.

Model A is given by
dx

dt
= k(t)x

x(t1) = x0,
(10)

where t1 is again the time of the first data point, and k(t) is a time dependent
growth rate

k(t) =

{
η + p(t) t ∈ Pj , j ∈ {1, 2, 3, 4}
η otherwise.

Here p(t) is composed of piecewise linear splines as described below, and
Pj = [tpj

, tpj
+ 1/4], j = 1, . . . j∗ with tpj

as the time point of the jth pesticide
application. Observe that these tpj

are not the same as the observation or data
points tj . Also note that |Pj | = 1/4 which is approximately the length of time
of one week when t is measured in months. This reflects the general assumption
that pesticides are most active during the 7 days immediately following treat-
ment. Clearly, η is a reduced constant growth rate of the total population in the
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presence of pesticides. In addition, t = 0 refers to June 1 (as no data is present
before June 1 in our database).

Piecewise linear splines [25] were used to approximate p(t) as follows. Con-
sider m linear splines

p(t) =
m∑

i=1

λili(t),

where

li(t) = 1/h

⎧⎪⎨
⎪⎩

t − ti−1 ti−1 ≤ t < ti

ti+1 − t ti ≤ t ≤ ti+1

0 otherwise,

where h is the step size, h = |Pj |
(m+1) . Piecewise linear spline representations are

simple, yet flexible in that they allow the modeler to avoid assuming a cer-
tain shape to the curve being approximated. Incorporating a time-dependent
component such as p(t) is useful when modeling a system with discontinuous
perturbations (such as the removal of a predator, or the application of an insec-
ticide). The addition of more splines (m > 3) provides a finer approximation,
but demands more terms in the parameter estimates. We assume here that it
is likely that m = 3 is sufficient. (Our subsequent findings suggest that per-
haps even m = 2 is sufficient!). In our analysis, we first estimated the initial
condition x0 using model B (as this data point precedes any pesticide applica-
tions and provides a good estimate for x0), and then fixed this parameter in all
subsequent parameter estimates. Therefore, the parameters to be estimated in
model A are θ = q = {η, λ1, λ2, λ3} whereas for model B we must only esti-
mate θ = q = {η, 0, 0, 0} since model A reduces to model B when applying the
constraint p(t) ≡ 0, i.e. λi = 0 for i = 1, 2, 3.

4 Parameter Estimation

Using the model information provided in [3] we try to estimate parameters for
new data sets and determine whether the fit-to-data provided by model A does
provide a statistically significantly better fit than the fit provided by model B.
A big part of the parameter estimation process is the minimization of the respec-
tive cost functions for both model A and model B. The constrained nonlinear
optimization solver in Matlab, fmincon was initially being used for minimiza-
tion of GLS cost functionals in model A while fminsearch was being used for
minimization of cost functionals for model B. We later switched to lsqnonlin
which gave faster and better results. Since model A is stiff in nature, Matlab
solver ode15s was used whereas for model B ode45 was used. Both fmincon and
fminsearch require an initial guess of parameters. While for model B fminsearch
was able to find a minimum fairly quickly, the initial guess of θ = {η, λ1, λ2, λ3}
for model A involved a fairly detailed process given below:

1. Create a trial file of data selected based on a specific set of rules.
2. Choose a parameter space Ω = [ε,K] × [−K,−ε]3.
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3. Choose a constant γ ∈ [0, 1.5]. (Note that best way to choose (see [7,8])
gamma is to consider the plot of residuals using both residual vs time and
residual vs model plots to ascertain whether the scatter of the error appears
to violate the statistical assumption of being i.i.d.).

4. Choose an initial condition x0 to the exponential model by considering the
plot of the data and model and visually estimating x0. We observe that this
did not produce acceptable results so we eventually solved a separate inverse
problem to estimate intrinsic growth rate ignoring the effects of pesticides
and initial condition.

5 Model Comparsion: Nested Restraint Sets

Here we summarize the use of statistically based model comparison tests. These
residual sum of squares model comparison tests as developed in [5], described in
[7,8] and extended in [9] to GLS problems is used in the same manner as used in
[1,3]. This test is used to determine which of several nested models is the best
fit to the data; therefore, this test can be applied to the comparison of models A
and B. In these examples below we are interested in questions related to whether
the data will support a more detailed or sophisticated model to describe it. In
the next section we recall the fundamental statistical tests to be employed here.

5.1 Statistical Comparison Tests

In general, assume we have an inverse problem for the model observations f(t,θ)
and are given n observations. As in (6), we define

Jn(Y ;θ) =
n∑

i=1

(
Y i − f(ti;θ)

f(ti;θ)γ

)2

,

where our statistical model has the form (4). Here, as before, θ0, is the nominal
value of θ which we assume to exist. We use Ω to represent the set of all the
admissible parameters θ. We make some further assumptions.

– (A4) Observations are taken at {tj}n
j=1 in [0, T ]. There exists some finite

measure μ on [0, T ] such that

1
n

n∑
j=1

h(tj) −→
∫ T

0

h(t)dμ(t)

as n → ∞, for all continuous functions h.
– (A5) J0(θ) =

∫ T

0
(f(t;θ0) − f(t;θ))2dμ(t) = σ2 has a unique minimizer in Ω

at θ0.

Let Θn = Θn
GLS(Y ) be the GLS estimator for Jn as defined in (7) so that

Θn
GLS(Y ) = argmin

θ∈Ω
Jn(Y ;θ)
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and
θ̂

n

GLS = argmin
θ∈Ω

Jn(y;θ),

where as above y is a realization for Y .
One can then establish a series of useful results (see [5,7,9] for detailed

proofs).

Result 1: Under (A1) to (A5), 1
nΘn = 1

nΘn
GLS(Y ) −→ θ0 as n → ∞ with

probability 1.
We will need further assumptions to proceed (these will be denoted by (A7)–

(A11) to facilitate reference to [5,7]). These include:

– (A7) Ω is finite dimensional in Rp and θ0 ∈ intΩ.
– (A8) f : Ω → C[0, T ] is a C2 function.
– (A10) J = ∂2J0

∂θ2 (θ0) is positive definite.
– (A11) ΩH = {θ ∈ Ω|Hθ = c} where H is an r × p matrix of full rank, and c

is a known constant.

In many instances, including the examples discussed here, one is interested in
using data to question whether the “nominal” parameter θ0 can be found in a
subset ΩH ⊂ Ω which we assume for discussions here is defined by the con-
straints of assumption (A11). Thus, we want to test the null hypothesis H0:
θ0 ∈ ΩH , i.e., that the constrained model provides an adequate fit to the data.

Define then
Θn

H(Y ) = argmin
θ∈ΩH

Jn(Y ;θ)

and
θ̂

n

H = argmin
θ∈ΩH

Jn(y;θ).

Observe that Jn(y; θ̂
n

H) ≥ Jn(y; θ̂
n
). We define the related non-negative test

statistics and their realizations, respectively, by

Tn(Y ) = Jn(Y ;θn
H) − Jn(Y ;θn)

and
T̂n = Tn(y) = Jn(y; θ̂

n

H) − Jn(y; θ̂
n
).

One can establish asymptotic convergence results for the test statistics
Tn(Y )–see [5]. These results can, in turn, be used to establish a fundamen-
tal result about much more useful statistics for model comparison. We define
these statistics by

Un(Y ) =
nTn(Y )

Jn(Y ;θn)
, (11)

with corresponding realizations

ûn = Un(y).

We then have the asymptotic result that is the basis of our analysis-of-
variance–type tests.
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Results 2: Under the assumptions (A1)–(A5) and (A7)–(A11) above and assum-
ing the null hypothesis H0 is true, then Un(Y ) converges in distribution (as
n → ∞) to a random variable U(r), i.e.,

Un
D−→ U(r),

with U(r) having a chi-square distribution χ2(r) with r degrees of freedom.
In any graph of a χ2 density there are two parameters (τ, α) of interest. For

a given value τ , the value α is simply the probability that the random variable
U will take on a value greater than τ . That is, Prob{U > τ} = α where in
hypothesis testing, α is the significance level and τ is the threshold.

We then wish to use this distribution Un ∼ χ2(r) to test the null hypothesis,
H0, that the restricted model provides an adequate fit to represent the data. If
the test statistic, ûn > τ , then we reject H0 as false with confidence level (1 −
α)100%. Otherwise, we do not reject H0. For our examples below, we use a χ2(3)
table, which can be found in any elementary statistics text, online or the partial
summary below. Typical confidence levels of interest are 90%, 95%, 99%, 99.9%,
with corresponding (α, τ) values given in Table 1 below.

To test the null hypothesis H0, we choose a significance level α and use χ2

tables to obtain the corresponding threshold τ = τ(α) so that Prob{χ2(r) >
τ} = α. We next compute ûn = τ and compare it to τ . If ûn > τ , then we reject
H0 as false; otherwise, we do not reject the null hypothesis H0.

We use a χ2(3) for our comparison tests as summarized here.

Table 1. Chi-square table: χ2(3)

α .10 .05 .01 .001
τ 6.251 7.815 11.345 16.266

We can then formulate the null and alternative hypotheses:

H0: The fit provided by model A does not provide a statistically significantly
better fit to the data than the fit provided by model B.

HA: The fit provided by model A does provide a statistically significantly better
fit to the data than the fit provided by model B.

We considered such comparison tests for a number of data sets with a varying
no. of pesticides applications among the fields. These included

– Replicate number 296 (1 pesticide application at t = 0.5 months)
– Replicate number 350 (2 pesticide applications at times t = 1 and t = 1.7

months)
– Replicate number 277 (3 pesticide applications at t = .4, .7, 1.9 months)
– Replicate number 178 (4 pesticide applications at t = .13, .77, 1.9, 2.27

months)
– Replicate number 174 (4 pesticide applications at t = .13, .77, 1.83, 2.27

months)
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We carried out multiple inverse problems with varying values of γ for these
data sets (see [2]). We visually examined the resulting residual plots (residual
vs time and residual vs observed output) and determined whether the scatter
of the error appear to be i.i.d. On examining the plots for a wide range of γ we
observed that the statistical i.i.d. assumptions were approximately satisfied for
γ values ranging around 0.7 to 0.8. We therefore used these values of γ in the
results reported here and in [2].

We note here that one could, as an alternative to use of residual plots, include
the parameter γ as a parameter to be estimated along with θ as often done in
statistical formulations [16] for the joint estimation of β = (θ, γ), or one could
attempt to estimate the form of the statistical model (i.e., the value of γ directly
from the data itself as suggested in [6]. Both of these methods offer some advan-
tages but include more complex inverse problem analysis. We have therefore
chosen here to use the simpler but less sophisticated analysis of residuals in our
approach.

6 Results

We examine the importance of model selection and how optimal selection of
both statistical and mathematical models is crucial for accuracy in parameter
estimation and fitting data to models testing different data sets from the same
database with varied number of pesticide applications. Tables 2, 3 and 4 contain
summaries of the results for the investigated replicates.

Table 2. Parameter estimates for models A and B

Replicate no. No. of pest. apps Par. Est. for model A

(η, λ1, λ2, λ3)

Par. Est. for model

B (η, λ1, λ2, λ3)

296 (n=19) 1 (1.3551, −7.8782, −7.1632, −9.9904) (0.3548, 0, 0, 0)

350 (n=19) 2 (3.0150, −16.7393, −17.9356, −8.580) (0.7683, 0, 0, 0)

277 (n=19) 3 (3.1255, −3.5165, −6.2870, −7.1868) (1.7284, 0, 0, 0)

178 (n=22) 4 (1.8201, −6.6352, −2.5786, −4.1605) (0.6335, 0, 0, 0)

174 (n=20) 4 (2.8600, −7.9867, −13.2780, −4.6992) (0.4110, 0, 0, 0)

Table 3. Cost functional values for models A and B

Replicate no. Cost functional
model A

Cost functional
model B

Range of γ values x0

296 3.9577 7.3663 0.5 to 1.0 0.39
350 7.4100 18.223 0.5 to 0.8 0.28
277 5.5290 8.075 0.7 to 0.9 0.05
178 5.7596 8.371 0.7 to 1.0 0.37
174 6.7480 9.390 0.0 to 0.8 0.34
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Table 4. Statistical comparison test results for degrees of freedom r = 3

Replicate no. Test statistic
ûn

Threshold
τ

Signif. level
α

Null hyp. (H0)
accept or reject

Confid. level

296 16.36 16.26 0.001 Rejected 99.9%

350 27.73 16.26 0.001 Rejected 99.9%

277 8.7458 7.815 0.05 Rejected 95%

178 9.9715 7.815 0.05 Rejected 95%

174 7.8281 7.815 0.05 Rejected 95%

7 Concluding Remarks

The above results strongly support the notion that time varying reduced
growth/mortality rates as opposed to constant rates provide substantially bet-
ter models at the population levels for the description of the effects of pesticides
on the growth rates. It is interesting to note that our findings hold consistently
across the differing levels of pesticide applications, even in the case of only one
pesticide application. Another interesting observation is that this is consistent
even when one uses total pest counts as opposed to individual nymph and adult
counts. This, of course, has significant implications for data collection proce-
dures. The model comparison techniques employed here are just one of several
tools that one can use to determine aspects of information content in support of
model sophistication/complexity. Of note are the use of the Akiake Information
Criterion (AIC) and its variations [1,4,10,11,14,15] for model comparison.
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Abstract. In this work we introduce a novel operator Δ(p,q) as an
extended family of operators that generalize the p-Laplace operator. The
operator is derived with an emphasis on image processing applications,
and particularly, with a focus on image denoising applications. We pro-
pose a non-linear transition function, coupling p and q, which yields a
non-linear filtering scheme analogous to adaptive spatially dependent
total variation and linear filtering. Well-posedness of the final parabolic
PDE is established via pertubation theory and connection to classi-
cal results in functional analysis. Numerical results demonstrates the
applicability of the novel operator Δ(p,q).

Keywords: p-Laplace operator · Parabolic equations · Image
denoising · Anisotropic diffusion · Inverse problems

1 Introduction

A well known inverse problem in image processing is image denoising [4]. In
the last decades the energy functional approach together with its corresponding
Euler-Lagrange (E-L) equation has attracted great attention in solving inverse
problems applied to image reconstruction. One important case of E-L equations
is the one which involves the p-Laplace operator

Δpu = div(|∇u|p−2∇u), p ≥ 1, (1)

associated with the evolution equation of p-Laplacian
⎧⎨
⎩

∂tu − Δpu = 0, in Ω × (0, T )
u(0) = u0, in Ω
∂nu = 0, on ∂Ω × (0, T )

(2)
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where Ω is a bounded domain in R2 and u0 : Ω → R is a given degraded
image [5,7,13] and ∇u is the gradient. The degenerate parabolic Eq. in (2) has
been studied by many authors and we limit ourselves here to refer the reader to
[10]. It is well known that the case p = 2 gives the linear Gaussian filter, which
however, impose strong spatial regularity and therefore image details such as
lines and edges are oversmoothed. p = 1 is often refereed to as the method of
total variation [13] and p = 0 is an instance of the so called balanced forward
backward evolution [9].

In this work we study a decoupled form of the p-Laplace operator, expressed
as a non-linear combination of the Δ1 and Δ∞ operators, introduced below.
We call our new operator Δ(p,q). Via established existence theory we show that
the corresponding perturbed parabolic equation is well-posed and close to the
original operator.

In Sect. 2 we review some of the properties of the p-Laplace operator applied
in image denoising and compare it with Perona-Malik models. Our main contri-
bution is in Sect. 3 where we extend the p-Laplace operator to a new operator
Δ(p,q) with focus on image denoising. We consider the corresponding variable
version Δ(p(x),q(x)) in Sect. 4. Finally, in Sect. 5 we demonstrates the applicabil-
ity of Δ(p,q) by numerical results.

2 p-Laplacian for Image Denosing

An important feature in any evolution process for image denoising is preservation
of certain geometrical features of the underlying image. In the case of image
restoration these features include edges and corners. It is straight-forward to
express the p-Laplace operator (1) as

Δpu = |∇u|p−1Δ1u + (p − 1)|∇u|p−2Δ∞u, (3)

where Δ1u = div
( ∇u

|∇u|
)
, Δ∞u =

∇u

|∇u| · (D2u)
∇u

|∇u| and D2u is the Hessian of

u. However, an intuitive way to represent Δp, giving direct interpretation of the
diffusivity directions is to express Δp by using Gauge coordinates (x, y) → (η, ξ):

Δpu = |∇u|p−2(uξξ + (p − 1)uηη) (4)

where

η =
∇u

|∇u| , ξ =
∇⊥u

|∇u| , (5)

and
uξξ = |∇u|Δ1u, uηη = Δ∞u. (6)

From (4) it is now clear that Δp imposes the same diffusivity strength in both
directions ξ and η independent of the magnitude of the gradient. In an attempt to
resolve this drawback, Perona and Malik (P-M) [12] proposed to replace |∇u|p−2

with g(|∇u|2) in (1). The idea is that the weight should satisfy g(s) → 0, s → ∞
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Noisy Δ(p(x),q(x)) TV

PSNR: 22.2 36.2 28.3
SSIM: 0.30 0.96 0.94

Δ(p(x),q(x)) TV

Fig. 1. Synthetic test image with 20 standard deviations of noise (left) and the obtained
results for TV (green/thick) and the Δ(p(x),q(x))-operator (red/dashed). We see that
both error measures improve with our operator and we get less staircasing artifacts
while preserving corner points and edges as shown in the detailed images. (Color figure
online)

and g(s) → 1, s → 0+. P-M studied weights like g = k/(k + s) and g = e−ks

and demonstrated the advantages of these weight functions for edge preservations.
Rewriting the operator given by the P-M method in Gauge coordinates, we obtain

div
(
g(|∇u|2)∇u

)
= g(|∇u|2)uξξ + φ(|∇u|2)uηη, (7)

where φ(s) = (sg(s))′. Thus the diffusion in the direction η differs from the
diffusion in the direction ξ. Since φ(s) is negative for large s, the evolution
will be of backward diffusion effect near edges. This backward evolution cause
problem for the well-posedness of the model and could also lead to staircasing
problem [17].

The Perona-Malik PDE is a forward-backward type equation, and the diffu-
sion is forward in the region {|∇u| < k} and is backward and hence ill-posed
in the region {|∇u| > k}. From evolution point of view, the forward-backward
type equation may have infinitely many solutions and from variational minimiza-
tion perspective the energy functional may have infinitely many minima [17]. To
overcome the ill-posedness in the P-M model the authors in [17] introduced a
regularization and proposed the following model

∂tu = div(g(|∇Gσ ∗ u|)∇u),

where Gσ is a Gaussian function with standard deviation σ. A similar but time
dependent variance σ(t) was used in [16]. However, it’s rather tricky to choose
σ(t) since it should neither decay too fast nor too slow during the evolution.

3 Extending the p-Laplace Operator

3.1 Anisotropic Decomposition via Constant Coefficients

The p-Laplace operator in (1), is an isotropic operator and expanding the diver-
gence we obtain the equivalent form

Δpu = ∂x([(∂xu)2 + (∂yu)2]
p−2
2 ∂xu) + ∂y([(∂xu)2 + (∂yu)2]

p−2
2 ∂yu). (8)
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An anisotropic behavior of the Δp-operator is induced by suppressing mixed
derivatives, i.e., we define

L(p,p)u = ∂x(|∂xu|p−2∂xu) + ∂y(|∂yu|p−2∂yu), 1 ≤ p < ∞. (9)

In the case p = 1, (8) is known as isotropic TV and (9) is anisotropic TV [8].
By decoupling the exponents in (9) one obtains the operator L(p1,p2)

L(p1,p2)u = ∂x(|∂xu|p1−2∂xu) + ∂y(|∂yu|p2−2∂yu), 1 ≤ p1, p2 < ∞, (10)

which has previously appeared in fluid mechanics and we refer to [2,3].
Next, to see how the diffusion appears in the operator (10) we reformulate it

in Gauge coordinates (5) by making the following definition.

Definition 1. The L(p1,p2)-operator is given by

L(p1,p2)u = ∂ξ(|∂ξu|p1−2∂ξu) + ∂η(|∂ηu|p2−2∂ηu), (11)

where 1 ≤ p1, p2 < ∞.

The above operator L(p1,p2) is in fact a generalization of several known operators.
We have

1. The case p1 = p2 = 2. The operator L(2,2) in (11) is the Laplacian, by now
well studied. Due to the Laplacian’s rotation invariance property we get

L(2,2)u = ∂ξ(∂ξu) + ∂η(∂ηu) = Δu = uxx + uyy. (12)

2. The case p1 = 2 and p2 = 1. The operator L(p1,p2) in (11) is then given by

L(2,1)u = ∂ξ(∂ξu) + ∂η(|∂ηu|−1∂ηu). (13)

Since we have |∂ηu|−1∂ηu = 1, it follows that L(2,1)u = uξξ. In Cartesian
coordinates this corresponds to

L(2,1)u = |∇u|Δ1u, (14)

i.e. the mean curvature equation (see e.g., [6]). The corresponding regularized
(weighted) mean curvature equation is given by

∂tu = g(|∇Gσ ∗ u|)|∇u|Δ1u (15)

previously studied in the context of image analysis, see e.g., [1].
3. The case p1 = 2 and p2 = p ∈ (1, 2). It follows from (11) that

L(2,p)u = ∂ξξu + ∂η(|∂ηu|p−2∂ηu) = ∂ξξu + (p − 1)up−2
η uηη (16a)

= |∇u|Δ1u + (p − 1)|∇u|p−2Δ∞u (16b)

i.e. a mean curvature operator (14) with a second order term correspond-
ing to (3). Note that the second order term induce invariant smoothing of
the image data. Since (16) is merely a special case of (3), we further relax
the mean curvature term next to better reflect the trade-off between edge-
preservation and obtained smoothness. Although this modification appears
straight-forward, its implications are non-trivial, however.
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The anisotropic L(2,p) operator is given by

Definition 2. The operator Δ(p,q) is

Δ(p,q)u = |∇u|qΔ1u + (p − 1)|∇u|p−2Δ∞u, p ∈ [1, 2], q ≥ 0. (17)

Remark 1. Definition 2 is a straight-forward relaxation of the exponents in (3),
motivated by the discussion in above point 3. The introduction of q in (17),
defines an additional degree of freedom, allowing us to control the trade-off
between Δ1 and Δ∞, i.e., a trade-off between edge preservation and smoothness.

The corresponding evolution problem of the operator Δ(p,q) is

Definition 3. The evolution problem of Δ(p,q) is given by
⎧⎨
⎩

∂tu − Δ(p,q)u = 0, p ∈ [1, 2], q ≥ 0
u(0) = u0

∂nu = 0
(18)

We point out that q = 0, p = 1 yields the familiar isotropic TV regularizer
and q = 1, p = 2 results in the heat equation, i.e., isotropic filtering. In the
next section, we propose to couple p and q via a smooth non-linear transition
function such that Δ(p,q) can be thought of a spatially variant TV and isotropic
regularizer.

4 Variable Coefficients

4.1 Coefficient Coupling

In the previous section we motivated the Δ(p,q) operator and advocated to intro-
duce variable coefficients, depending on the image data. The behavior of the
operator Δ(p(x),q(x)) that we seek, is the edge-preserving effect of TV leading to
Δ(p(x),q(x)) → Δ(1,0) (the case of TV) as |∇u| → ∞. In regions with small gradi-
ents we define the (p(x), q(x))-coefficients such that the operator is a linear filter
leading to Δ(p(x),q(x)) → Δ(2,1) = Δ (the case of isotropic diffusion) as |∇u| → 0.
To see how the diffusion appears in Δ(p(x),q(x)) we rewrite the operator in Gauge
coordinates.

Lemma 1. The operator Δ(p,q) in (17) can be written as

Δ(p,q)u = |∇u|q−1

(
ξ�(D2u)ξ + (p − 1)|∇u|p−q−1η�(D2u)η

)
. (19)

Proof. Using the relations in (6) and by rotation invariance of Laplacian, we
obtain

Δu = uξξ + uηη = Δ∞u + |∇u|Δ1u. (20)

Now we observe that the operator Δ1u can be expanded as

Δ1u =
u2

yuxx − 2uxuyuxy + u2
xuyy

|∇u|3 =
(∇⊥u)�(D2u)∇⊥u

|∇u|3 , (21)
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and using this in (20) gives

Δ∞u = |∇u|2Δu − (∇⊥u)�(D2u)∇⊥u = ∇�u(D2u)∇u. (22)

Thus, the Δ(p,q) operator in (17) reformulates to

Δ(p,q)u = |∇u|q−3(∇⊥u)�(D2u)∇⊥u + (p − 1)|∇u|p−4∇�u(D2u)∇u

= |∇u|q−1ξ�(D2u)ξ + (p − 1)|∇u|p−2η�(D2u)η,

which shows the result. 	

Next, we couple p and q via the relation

p(|∇u|) = 1 + q(|∇u|) (23)

and from which we derive the following result.

Lemma 2. If p(x) = 1 + q(x), then

Δ(1+q(x),q(x))u = |∇u|q(x)−1

(
ξ�(D2u)ξ + q(x)η�(D2u)η

)
. (24)

Proof. The proof follows immediately from Lemma1. 	

In this study, we couple p and q via the negative exponential function

(although other selections are possible), i.e., we set

q(|∇u|) = k2 exp (−|∇u|/k1) , (25a)
p(|∇u|) = 1 + q(|∇u|), (25b)

where k1 > 0 and 0 < k2 < 1. Under this selection we form the following
parabolic PDE

∂tu − |∇u|q(|∇u|)−1

(
ξ�(D2u)ξ + q(|∇u|)η�(D2u)η

)
= 0. (26)

One easily checks that (26) describes a smooth transition between total variation
and linear filtering for the selection of p, q in (25). By using |∇u|Δ1u = Δu −
Δ∞u, the operator Δ(1+q,q) becomes

Δ(1+q,q)u = |∇u|q(|∇u|)−1

(
Tr(D2u) +

q(|∇u|) − 1
|∇u|2 ∇u�(D2u)∇u

)
. (27)

Remark 2. The operator Δ(1+q,q) is non-linear and have unbounded coefficients.
In this first study, we perturb the Δ(1+q,q)-operator to obtain a regularized
version of the evolution problem (18). This regularization enables us to pose the
necessary conditions for well-posedness, introduced next.
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4.2 Regularity of Solutions

In order to set up the framework for numerical calculation, we define

Definition 4. Let 0 < ε, δ < 1 and q as in (25). Then

Δε,δ
(1+q,q)u =

(|∇u|2 + ε2)(q(|∇u|)−1)/2

(
(1 + δ)Tr(D2u) +

q(|∇u|) − 1
|∇u|2 + ε2

∇u�(D2u)∇u

)
. (28)

Thus we study the regularized evolution equation

ut = Δε,δ
(1+q,q)u =

∑
i,j=1

aε,δ
ij (∇u)uij (29)

where

aε,δ
ij (ζ) = (|ζ|2 + ε2)(q(|ζ|)−1)/2

[
(1 + δ)δij +

q(|ζ|) − 1
|ζ|2 + ε2

ζiζj

]
, (30)

and ζ = ∇u. Given u(k), we obtain the next update u(k+1) by solving the fol-
lowing, equivalent (see [15]), initial value problem iteratively

⎧⎪⎨
⎪⎩

u
(k+1)
t =

∑
aε,δ

ij (∇u(k))u(k+1)
ij , in Ω × (0, T )

u(k+1)(0) = u0, in Ω

∂nu(k+1) = 0, on ∂Ω × (0, T )
(31)

Proposition 1. If the initial data u(0) = 0 then the solution u(k) to (31) exists
and is in C∞(Ω × (0, T )).

Proof. If the initial guess u(0) = 0, then
∑

aε,δ
ij (0)uij = (1 + δ)εq(0)−1Δu and

we deduce from Theorem 4.31 in [10] that u(1) exists and is C∞(Ω × (0, T )).
Given u(k) ∈ C∞, then ||u(k)||C1(Ω×(0,T )) is bounded, (|ζ|2 + ε2)(q(|ζ|)−1)/2 is
bounded from below and aε,δ

ij are also C∞(Ω×(0, T )). Hence, there are constants
c = c(ε, δ, k) and C = C(ε, δ, k) > 0, depending only on ε, δ, ||u(k)||C1 , such that

c|ζ|2 ≤ aε,δ
ij (∇u(k))ζiζj ≤ C|ζ|2.

It follows once again from Theorem 4.31 in [10] that u(k+1) exists and also is
C∞(Ω × (0, T )). 	


5 Evaluation

5.1 Implementation

The parabolic PDE is discretized by using finite differences and a simple forward
Euler scheme. We used a state of the art Split Bregman (SB) implementation
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Noisy Δ(2,1) Δ(1.75,0.75) Δ(1.5,0.5)

PSNR: 22.1 27.5 27.9 28.2
SSIM: 0.43 0.68 0.76 0.83

Original Δ(1.25,0.25) TV Δ(p(x),q(x))

PSNR: 28.9 27.2 29.2
SSIM: 0.86 0.83 0.87

Fig. 2. Example results for the Δ(p,q)-operator where we stopped the filtering process
at the maximum SSIM value. “TV”-was obtained using the Split Bregman method [8].
We set k1 = k2 = 0.1 in Δ(p(x),q(x)). See text for details.

of total variation. For details on SB see [8]. The regularization parameter for
the SB was optimized in the range [0.01, 1] in increasing steps of 0.11. The
regularization parameter of the Bregman-variables of SB was set to 1 and the
scheme was terminated as 10−3 > ||u(k)−u(k−1)||2/||u(k−1)||2 and we choose the
regularization parameter that produces highest SSIM value [14]. We also report
the peak signal-to-noise value (PSNR). For the (p(x), q(x))-operator we found
that k1 = k2 = 0.1 and the update stepsize as α = 10−5 and τ = 0.5 works
well for the considered noise level of 20 standard deviations of additive Gaussian
noise. These values are ad-hoc and future work include methods for parameter
estimation.

5.2 Results

First we test our algorithm on a synthetic test image seen in Fig. 1. We see that
the result of the proposed operator appears smoother than the result of TV in
the center region, but yet preserves the corner point well. In Fig. 2 (cropped
256 × 256 pixels of image 35049.jpg [11]) we compare the visual quality and the
SSIM-values for a range of p, q-values. As expected for Δ(2,1) (isotropic filtering)
performs the worst whereas the operator produce improved result w.r.t. SSIM
as well as perceptual appearance. In the case of non-adaptive parameters, TV
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Original Noisy (P: 22.1, S: 0.54)

Δ(p(x),q(x)) TV

PSNR (P): 25.9 24.0
SSIM (S): 0.81 0.74

Δ(p(x),q(x)) TV

Δ(p(x),q(x)) TV

Fig. 3. Example denoising a grayscale image with 20 standard deviations of noise.
In the close-up images to the right it can be seen that TV (thick/green) produces
the characteristic staircasing effect while the operator Δ(p,q) (dashed/red) shows good
visual similarity with the noise free patch. TV shows good result in the sky (up right),
but oversmooths, e.g., the window tiles seen in the close-up down right. (Color figure
online)

performs the best. However, the operator with adaptive coefficients improve both
SSIM, PSNR values and produces less oversmoothing (down-right figure). We
also include the result from a grayscale image “Castle” (cropped 256×256 pixels
of image 102061.jpg [11]) in Fig. 3. In this image TV performs very well in the
sky (detail up right with green/thick frame) whereas the result from the Δ(p,q)

operator appears less noisy and looks visually more crisp. In both examples the
proposed operator shows an improvement in PSNR as well as SSIM values.

6 Conclusion

In this paper we introduced a new family of operators, Δ(p,q). Preliminary numer-
ical results indicate that there could be a relationship between p(x) and q(x)
that further improves the restoration effect. In forthcoming works we will inves-
tigate the operator Δ(p,q) further regarding both regularity and different areas of
applications.
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Abstract. We are presenting a modification of the well-known Alternat-
ing Direction Method of Multipliers (ADMM) algorithm with additional
preconditioning that aims at solving convex optimisation problems with
nonlinear operator constraints. Connections to the recently developed
Nonlinear Primal-Dual Hybrid Gradient Method (NL-PDHGM) are pre-
sented, and the algorithm is demonstrated to handle the nonlinear inverse
problem of parallel Magnetic Resonance Imaging (MRI).

Keywords: ADMM · Primal-dual · Nonlinear inverse problems ·
Parallel MRI · Proximal point method · Operator splitting · Iterative
Bregman method

1 Introduction

Non-smooth regularisation methods are popular tools in the imaging sciences.
They allow to promote sparsity of inverse problem solutions with respect to
specific representations; they can implicitly restrict the null-space of the for-
ward operator while guaranteeing noise suppression at the same time. The most
prominent representatives of this class are total variation regularisation [19] and
�1-norm regularisation as in the broader context of compressed sensing [8,10].

In order to solve convex, non-smooth regularisation methods with linear oper-
ator constraints computationally, first-order operator splitting methods have
gained increasing interest over the last decade, see [3,9,11,12] to name just
a few. Despite some recent extensions to certain types of non-convex problems
[7,14–16] there has to our knowledge only been made little progress for nonlinear
operators constraints [2,22].

c© IFIP International Federation for Information Processing 2016
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In this paper we are particularly interested in minimising non-smooth, con-
vex functionals with nonlinear operator constraints. This model covers many
interesting applications; one particular application that we are going to address
is the joint reconstruction of the spin-proton-density and coil sensitivity maps
in parallel MRI [13,21].

The paper is structured as follows: we will introduce the generic problem
formulation, then address its numerical minimisation via a generalised ADMM
method with linearised operator constraints. Subsequently we will show connec-
tions to the recently proposed NL-PDHGM method (indicating a local conver-
gence result of the proposed algorithm) and conclude with the joint spin-proton-
density and coil sensitivity map estimation as a numerical example.

2 Problem Formulation

We consider the following generic constrained minimisation problem:

(û, v̂) = arg min
u,v

{H(u) + J(v) subject to F (u, v) = c} . (1)

Here H and J denote proper, convex and lower semi-continuous functionals, F
is a nonlinear operator and c a given function. Note that for nonlinear operators
of the form F (u, v) = G(u) − v and c = 0 problem (1) can be written as

û = arg min
u

{H(u) + J(G(u))} . (2)

In the following we want to propose a strategy for solving (1) that is based on
simultaneous linearisation of the nonlinear operator constraint and the solution
of an inexact ADMM problem.

3 Alternating Direction Method of Multipliers

We solve (1) by alternating optimisation of the augmented Lagrange function

Lδ(u, v;μ) = H(u) + J(v) + 〈μ, F (u, v) − c〉 +
δ

2
‖F (u, v) − c‖22. (3)

Alternating minimisation of (3) in u, v and subsequent maximisation of μ via a
step of gradient ascent yields this nonlinear version of ADMM [11]:

uk+1 ∈ arg min
u

{
δ

2
‖F (u, vk) − c‖22 + 〈μk, F (u, vk)〉 + H(u)

}
, (4)

vk+1 ∈ arg min
v

{
δ

2
‖F (uk+1, v) − c‖22 + 〈μk, F (uk+1, v)〉 + J(v)

}
, (5)

μk+1 = μk + δ
(
F (uk+1, vk+1) − c

)
. (6)

Not having to deal with nonlinear subproblems, we replace F (u, vk) and
F (uk+1, v) by their Taylor linearisations around uk and vk, which yields
F (u, vk) ≈ F (uk, vk) + ∂uF (uk, vk)

(
u − uk

)
and F (uk+1, v) ≈ F (uk+1, vk) +

∂vF (uk+1, vk)
(
v − vk

)
, respectively. The updates (4) and (5) modify to
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uk+1 ∈ arg min
u

{
δ

2

∥∥Aku − ck
1

∥∥2

2
+ 〈μk, Aku〉 + H(u)

}
, (7)

vk+1 ∈ arg min
v

{
δ

2

∥∥Bkv − ck
2

∥∥2

2
+ 〈μk, Bkv〉 + J(v)

}
, (8)

with Ak := ∂uF (uk, vk), Bk := ∂vF (uk+1, vk), ck
1 := c + Akuk − F (uk, vk) and

ck
2 := c+Bkvk −F (uk+1, vk). Note that the updates (7) and (8) are still implicit,

regardless of H and J . In the following, we want to modify the updates such
that they become simple proximity operations.

4 Preconditioned ADMM

Based on [23], we modify (7) and (8) by adding the surrogate terms ‖uk+1 −
uk‖2

Qk
1
/2 and ‖vk+1−vk‖2

Qk
2
/2, with ‖w‖Q :=

√〈Qw,w〉 (note that if Q is chosen
to be positive definite, ‖ · ‖Q becomes a norm). We then obtain

uk+1 ∈ arg min
u

{
δ

2

∥∥Aku − ck
1

∥∥2

2
+ 〈μk, Aku〉 + H(u) +

1
2
‖u − uk‖2Qk

1

}
,

vk+1 ∈ arg min
v

{
δ

2

∥∥Bkv − ck
2

∥∥2

2
+ 〈μk, Bkv〉 + J(v) +

1
2
‖v − vk‖2Qk

2

}
.

If we choose Qk
1 := τk

1 I −δAk∗Ak with τk
1 δ < 1/‖Ak‖2 and Qk

2 := τk
2 I −δBk∗Bk

with τk
2 δ < 1/‖Bk‖2 and if we define μk := 2μk − μk−1 we obtain

uk+1 =
(
I + τk

1 ∂H
)−1 (

uk − τk
1 Ak∗μk

)
, (9)

vk+1 =
(
I + τk

2 ∂J
)−1 (

vk − τk
2 Bk∗ (

μk + δ
(
F (uk+1, vk) − c

)))
, (10)

with (I + α∂E)−1(w) denoting the proximity or resolvent operator

(I + α∂E)−1(w) := arg min
u

{
1
2
‖u − w‖22 + αE(u)

}
.

The entire proposed algorithm with updates (9), (10) and (6) reads as

Algorithm 1. Preconditioned ADMM with nonlinear operator constraint
Parameters: H, J, F, c
Initialization: u0, v0, μ0, δ
μ0 = μ0

while convergence criterion is not met do

Ak = ∂uF (uk, vk)
Set τk

1 such that τk
1 δ < 1/‖Ak‖2

uk+1 =
(
I + τk

1 ∂H
)−1 (

uk − τk
1 Ak∗μk

)

Bk = ∂vF (uk+1, vk)
Set τk

2 such that τk
2 δ < 1/‖Bk‖2

vk+1 =
(
I + τk

2 ∂J
)−1 (

vk − τk
2 Bk∗ (μk + δ

(
F (uk+1, vk) − c

)))

μk+1 = μk + δ
(
F (uk+1, vk+1) − c

)

μk+1 = 2μk+1 − μk

end while
return uk, vk, μk, μk



120 M. Benning et al.

5 Connection to NL-PDHGM

In the following we want to show how the algorithm simplifies in case the non-
linear operator constraint is only nonlinear in one variable, which is sufficient
for problems of the form (2). Without loss of generality we consider constraints
of the form F (u, v) = G(u) − v, where G represents a nonlinear operator in u.
Then we have Ak = J G(uk) (with J G(uk) denoting the Jacobi matrix of G at
uk), Bk = −I and if we further choose τk

2 = 1/δ for all k, update (10) reads

vk+1 =
(

I +
1
δ
∂J

)−1 (
G(uk+1) +

1
δ
μk

)
.

Applying Moreau’s identity [18] b =
(
I + 1

δ ∂J
)−1 (b)+ 1

δ (I + δ∂J∗)−1(δb) yields

μk+1 = (I + δ∂J∗)−1 (
μk + δG(uk+1)

)
.

If we further change the order of the updates, starting with the update for μ,
the whole algorithm reads

μk+1 = (I + δ∂J∗)−1 (
μk + δG(uk)

)
,

μk+1 = 2μk+1 − μk,

uk+1 =
(
I + τk

1 ∂H
)−1 (

uk − τk
1 J G(uk)∗μk+1

)
.

Note that this algorithm is almost the same as NL-PDHGM proposed in [22] for
θ = 1, except that the extrapolation step is carried out on the dual variable μ
instead of the primal variable u. In the following we want to briefly sketch how
to prove convergence for this algorithm in analogy to [22]. We define

N(μk+1, uk+1) :=
(

∂J∗(μk+1) − ∇G(uk)uk+1 − ck

∂H(uk+1) + J G(uk)∗μk+1

)
,

Lk :=

(
1
δ I J G(uk)

J G(uk)∗ 1
τk
1
I

)
,

with ck := G(uk)−J G(uk)uk. Now the algorithm is: find (μk+1, uk+1) such that

N(μk+1, uk+1) + Lk(μk+1 − μk, uk+1 − uk) � 0.

If we exchange the order of μ and u here, i.e., reorder the rows of N , and the
rows and columns of Lk, we obtain almost the “linearised” NL-PDHGM of [22].
The difference is that the sign of J G in Lk is inverted. The only points in
[22] where the exact structure of Lk (Mxk therein) is used, are Lemma 3.1,
Lemma 3.6 and Lemma 3.10. The first two go through exactly as before with
the negated structure. Reproducing Lemma 3.10 demands bounding actual step
lengths ‖uk−uk+1‖ and ‖μk−μk+1‖ from below, near a solution for arbitrary ε >
0. A proof would go beyond the page limit of this proceeding. Let us just point
out that this can be done, implying that the convergence results of [22] apply
for this algorithm as well. This means that under somewhat technical regularity
conditions, which for TV type problems amount to Huber regularisation, local
convergence in a neighbourhood of the true solution can be guaranteed.
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6 Joint Estimation of the Spin-Proton Density and Coil
Sensitivities in Parallel MRI

We want to demonstrate the numerical capabilities of Algorithm1 by applying it
to the nonlinear problem of joint estimation of the spin-proton density and the
coil sensitivities in parallel MRI. The discrete problem of joint reconstruction
from sub-sampled k-space data on a rectangular grid reads
⎛
⎜⎜⎜⎝

û
ĉ1
...
ĉ2

⎞
⎟⎟⎟⎠ ∈ arg min

v=(u,c1,...,cn)

⎧⎨
⎩

1
2

n∑
j=1

‖SF(G(v))j − fj‖22 + α0R0(u) +
n∑

j=1

αjRj(cj)

⎫⎬
⎭ ,

where F is the 2D discrete Fourier transform, fj are the k-space measurements
for each of the n coils, S is the sub-sampling operator and Rj denote appropriate
regularisation functionals. The nonlinear operator G maps the unknown spin-
proton density u and the different coil sensitivities cj as follows [21]:

G(u, c1, . . . , cn) = (uc1, uc2, . . . , ucn)T . (11)

In order to compensate for sub-sampling artefacts in sub-sampled MRI it is
common practice to use total variation as a regulariser [6,17]. Coil sensitivities
are assumed to be smooth, cf. Fig. 1, motivating a reconstruction model similar
to the one proposed in [13]. We therefore choose the discrete isotropic total
variation, R0(u) = ‖∇u‖2,1, and the smooth 2-norm of the discretised gradient,
i.e. Rj(cj) := ‖∇cj‖2,2, for all j > 0, following the notation in [4]. We further
introduce regularisation parameters λj in front of the data fidelities and rescale

all regularisation parameters such that α0 + 1
n

(∑n
j=1 λj +

∑n
j=1 αj

)
= 1. In

order to realise this model via Algorithm 1 we consider the following operator
splitting strategy. We define F (u0, . . . , un, v0, . . . , v2n) as

F (u0, . . . , un, v1, . . . , vn) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

G(u0, . . . , un)
∇u0 0 · · · 0

0 ∇u1
. . .

...
...

. . . . . . 0
0 · · · 0 ∇un

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

v0
...

vn

...
v2n

⎞
⎟⎟⎟⎟⎟⎟⎠

,

set H(u0, . . . , un) ≡ 0, and J(v0, . . . , v2n) =
∑2n

j=0 Jj(vj) with Jj(vj) :=
λj

2 ‖SFvj − fj‖22 for j ∈ {0, . . . , n − 1}, Jn(vn) = α0‖vn‖2,1 and Jj(vj) =
αj−n‖vj‖2,2 for j ∈ {n + 1, . . . , 2n}. Note that with these choices of functions,
all the resolvent operations can be carried out easily. In particular, we obtain
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(I + τk
1 ∂H)−1(w) = w,

(I + τk
2 ∂Jj)−1(w) = F−1

( Fwj + τk
2 λjS

T fj

1 + τk
2 λjdiag(ST S)

)
for j ∈ {0, . . . , n − 1},

(I + τk
2 ∂Jn)−1(w) =

wn

‖wn‖2 max
(‖wn‖2 − α0τ

k
2 , 0

)
,

(I + τk
2 ∂Jj)−1(w) =

wj

‖wj‖2,2
max

(‖wj‖2,2 − αj−nτk
2 , 0

)
for j ∈ {n + 1, . . . , 2n}.

Moreover, as Bk = −I (and thus, ‖Bk‖ = 1) for all k, we can simply eliminate
τk
2 by replacing it with 1/δ, similar to Sect. 5.

(a) Brain phantom (b) 25% sub-sampling

1

0.5

0

(c) 1st coil (d) 2nd coil (e) 3rd coil (f) 4th coil

2

1

0

(g) 5th coil (h) 6th coil (i) 7th coil (j) 8th coil

2

1

0

Fig. 1. (a) shows the brain phantom as described in Sect. 6.1. (c)–(j) show visualisations
of the measured coil sensitivities of a water bottle. (b) shows the simulated, spiral-
shaped sub-sampling scheme used to sub-sample the k-space data.
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(a) Zero-filling (b) Reconstruction u

1

0.5

0

(c) 1st coil (d) 3rd coil (e) 5th coil (f) 7th coil

2

1

0

Fig. 2. Reconstructions for noise with low noise level σ = 0.05. Despite the sub-
sampling, features of the brain phantom are very well preserved. In addition, the coil
sensitivities seem to correspond well to the original ones, despite a slight loss of con-
trast. Note that coil sensitivities remain the initial value where the signal is zero.

6.1 Experimental Setup

We now want to discuss the experimental setup. We want to reconstruct the
synthetic brain phantom in Fig. 1a from sub-sampled k-space measurements. The
numerical phantom is based on the design in [1] with a matrix size of 190 × 190.
It consists of several different tissue types like cerebrospinal fluid (CSF), gray
matter (GM), white matter (WM) and cortical bone. Each pixel is assigned a
set of MR tissue properties: Relaxation times T1(x, y) and T2(x, y) and spin
density ρ(x, y). These parameters were also selected according to [1]. The MR
signal s(x, y) in each pixel was then calculated by using the signal equation of a
fluid attenuation inversion recovery (FLAIR) sequence [5]:

s(x, y) = ρ(x, y)(1 − 2 e−TI/T1(x,y))(1 − e−TR/T1(x,y)) e−TE/T2(x,y).

The sequence parameters were selected: TR = 10000 ms, TE = 90 ms. TI was set
to 1781 ms to achieve signal nulling of CSF (Tcsf

1 log(2) with Tcsf
1 = 2569ms).

In order to generate artificial k-space measurements for each coil, we pro-
ceed as follows. First, we produce 8 images of the brain phantom multiplied by
the measured coil sensitivity maps shown in Fig. 1c–j. The coil sensitivity maps
were generated from the measurements of a water bottle with an 8-channel
head coil array. Then we produce artificial k-space data by applying the 2D
discrete Fourier-transform to each of those individual images. Subsequently, we
sub-sample only approx. 25% of each of the k-space datasets via the spiral shown
in Fig. 1b. Finally, we add Gaußian noise with standard deviation σ to the sub-
sampled data.
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(a) Zero-filling (b) Reconstruction u
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(c) 1st coil (d) 3rd coil (e) 5th coil (f) 7th coil

2

1

0

Fig. 3. Reconstructions for noise with high noise level σ = 0.95. Due to the large
amount of noise, higher regularisation parameters are necessary. As a consequence, fine
structures are smoothed out and in contrast to the case of little noise, compensation
of sub-sampling artefacts is less successful.

6.2 Computations

For the actual computations we use two noisy versions fj of the simulated k-
space data; one with small noise (σ = 0.05) and one with a high amount of noise
(σ = 0.95). As stopping criterion we simply choose a fixed number of iterations;
for both the low noise level as well as the high noise level dataset we have fixed
the number of iterations to 1500. The initial values used for the algorithm are
u0

j = 1 with 1 ∈ R
l×1 being the constant one-vector, for all j ∈ {0, . . . , n}. All

other initial variables (v0, μ0, μ0) are set to zero.

Low Noise Level. We have computed reconstructions from the noisy data with
noise level σ = 0.05 via Algorithm 1, with regularisation parameters set to λj =
0.0621, α0 = 0.0062 and αj = 0.9317 for j ∈ {1, . . . , n}. We have further created
a näıve reconstruction by averaging the individual inverse Fourier-transformed
images obtained from zero-filling the k-space data. The modulus images of the
results are visualised in Fig. 2. The PSNR values for the averaged zero-filled
reconstruction is 10.2185, whereas the PSNR of the reconstruction with the
proposed method is 24.5572.

High Noise Level. We proceeded as in the previous section, but for noisy
data with noise level σ = 0.95. The regularisation parameters were set to λj =
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0.0149, α0 = 0.0135 and αj = 0.9716 for j ∈ {1, . . . , n}. The modulus images
of the results are visualised in Fig. 3. The PSNR values for the averaged zero-
filled reconstruction is 9.9621, whereas the PSNR of the reconstruction with the
proposed method is 16.672.

7 Conclusions and Outlook

We have presented a novel algorithm that allows to compute minimisers of a
sum of convex functionals with nonlinear operator constraint. We have shown
the connection to the recently proposed NL-PDHGM algorithm which implies
local convergence results in analogy to those derived in [22]. Subsequently we
have demonstrated the computational capabilities of the algorithm by applying
it to a nonlinear joint reconstruction problem in parallel MRI.

For future work, the convergence of the algorithm in the general setting has
to be verified, and possible extensions to guarantee global convergence have to be
studied. Generalisation of stopping criteria such as a linearised primal-dual gap
will also be of interest as well. With respect to the presented parallel MRI appli-
cation, exact conditions for the convergence (like the exact norm of the bounds)
have to be verified. The impact of the algorithm - as well as the regularisation-
parameters on the reconstruction has to be analysed, and a rigorous study with
artificial and real data would also be desirable. Moreover, future research will
focus on alternative regularisation functions, e.g. based on spherical harmonics
motivated by [20]. Last but not least, other applications that can be modelled
via (1) should be considered in future research.
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Abstract. We deal with a regularized optimal control problem gov-
erned by a nonlinear hyperbolic initial-boundary value problem describ-
ing behaviour of a viscoelastic plate vibrating against a rigid obstacle.
A variable thickness of a plate plays the role of a control variable. The
original problem for the deflection is regularized in order to have the
uniqueness of a solution to the state problem and only the existence of
an optimal thickness but also necessary optimality conditions.

Keywords: Viscoelastic anisotropic plate · Variable thickness · Rigid
foundation · Regularization · Optimal control · Optimality conditions

1 Introduction

Shape design optimization problems belong to frequently solved problems with
many engineering applications. We deal here with a regularized optimal design
problem for a viscoelastic anisotropic plate vibrating against a rigid foundation.
A variable thickness of a plate plays the role of a control variable. The corre-
sponding state initial-boundary value contact problem represents one of the most
natural problem of mechanics not frequently solved because of the hyperbolic
character of the presented evolutional variational inequality. We deal here with
a plate made of short memory viscoelastic material. It characterizes construc-
tions made of concrete for example [7]. The dynamic contact for a viscoelastic
bridge in a contact with a fixed road has been solved in [3]. The similar optimal
control problems for the beams in a boundary contact are investigated in [1,4]
respectively.

Due to the variable thickness e and the contact between a bottom of the plate
and the obstacle represented by a function Φ the equation for the movement u
of the middle surface and the complementarity conditions have the form
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1
2ρe(x)utt − 1

12div [e3(x)grad utt] + [e3(x)(Aijk�ut,xixj
+ Bijk�uxixj

)]xkx�

= F + G, 0 ≤ G⊥u − 1
2e − Φ ≥ 0 in (0, T ] × Ω,

where F and G express a perpendicular force acting on the plate and an unknown
contact force respectively. In order to derive not only the existence of optimal
variable thickness e but also the necessary optimality conditions we regularize
the contact condition using the function

ω �→ gδ(ω), gδ(ω) =

⎧⎪⎨
⎪⎩

0 for w ≤ 0
6
δ3 ω3 − 8

δ4 ω4 + 3
δ5 ω5 for 0 < ω < δ

1
δ ω for ω ≥ δ.

in an analogous way as in [5], where the control problem for an elastic beam
vibrating against an elastic foundation of Winkler’s type was considered. We
remark that instead of the function gδ we can use any not negative nondecreasing
function g ∈ C2(R) of the variable ω vanishing for ω ≤ 0 and equaled to 1

δ ω for
ω ≥ δ.

Solving the state problem we apply the Galerkin method in the same way
as in [1], where the rigid obstacle acting against a beam is considered or in
[2] where the problem for a viscoelastic von Kármán plate vibrating against a
rigid obstacle has been solved. The compactness method will be used in solving
the minimum problem for a cost functional. We apply the approach from [5] in
deriving the optimality conditions.

2 Solving the State Problem

2.1 Setting of the State Problem

We consider an anisotropic plate short memory viscoelastic plate with the middle
surface Ω ⊂ R

2. The variable thickness of the plate is expressed by a positive
function x �→ e(x), x ∈ Ω̄, the positive constant ρ is the density of the material,
Aijk�, Bijk� are the symmetric and positively definite tensor expressing the
viscoelastic and elastic properties of the material. The plate is clamped on its
boundary. Let F : (0, T ] × Ω �→ R be a perpendicular load per a square unit
acting on the plate. Let u0, v0 : Ω �→ R be the initial displacement and velocity,
and

a =
1
6ρ

, aijk� =
2
ρ
Aijk�, bijk� =

2
ρ
Bijk�, f =

2F

ρ

be the new mechanical and material characteristics. Then the vertical displace-
ment u : (0, T ] × Ω �→ R is a solution of the following regularized hyperbolic
initial-boundary value problem
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e(x)utt − a
1
12

div [e3grad utt] + [e3(x)(aijk�ut,xixj
+ bijk�uxixj

)]xkx�

− gδ( 12e(x) + Φ(x) − u) = f(t, x), in (0, T ] × Ω.
(1)

u(t, ξ) =
∂u

∂n
(t, ξ) = 0, t ∈ (0, T ], ξ ∈ ∂Ω (2)

u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Ω. (3)

We introduce the Hilbert spaces

H ≡ L2(Ω), Hk(Ω) = {y ∈ H : Dαy ∈ H, |α| ≤ k}, k ∈ N

with the standard inner products (·, ·), (·, ·)k and the norms | · |0, ‖ · ‖k,

H̊1(Ω) = {y ∈ H1(Ω) : y(ξ) = 0, ξ ∈ ∂Ω (in the sense of traces)}
and

V ≡ H̊2(Ω) = {y ∈ H2(Ω) : y(ξ) =
∂y

∂n
(ξ) = 0, ξ ∈ ∂Ω (in the sense of traces)}

with the inner product and the norm

((y, z)) =
∫

Ω

yxixj
(x)zxixj

(x) dx, ‖y‖ = ((y, y))1/2, y, z ∈ V.

We denote by V ∗ the dual space of linear bounded functionals over V with
duality pairing 〈F, y〉∗ = F (y), F ∈ V ∗, y ∈ V. It is a Banach space with a
norm ‖ · ‖∗.

The spaces V, H, V ∗ form the Gelfand triple meaning the dense and compact
embedings

V ↪→↪→ H ↪→↪→ V ∗.

We set I = (0, T ), Q = I × Ω. For a Banach space X we denote by Lp(I;X)
the Banach space of all functions y : I �→ X such that ‖y(·)‖X ∈ Lp(0, T ), p ≥ 1,
by L∞(I;X) the space of essentially bounded functions with values in X, by
C(Ī;X) the space of continuous functions y : Ī �→ X, Ī = [0, T ]. For k ∈ N we
denote by Ck(Ī;X) the spaces of k-times continuously differentiable functions
defined on Ī with values in X. If X is a Hilbert space we set

Hk(I;X) = {v ∈ Ck−1(Ī;X) :
dkv

dtk
∈ L2(I;X)}

the Hilbert spaces with the inner products

(u, v)Hk(I,X) =
∫

I

[(u, v)X +
k∑

j=1

(uj , vj)X ] dt, k ∈ N.

We denote by ẇ, ẅ and
...
w the first, the second and the third time derivative of

a function w : I → X. In order to derive necessary optimality conditions in the
next chapter we assume stronger regularity of data:
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e ∈ Ead :=
{

e ∈ H2(Ω) : 0 < emin ≤ e(x) ≤ emax ∀x ∈ Ω̄, ‖e‖2 ≤ ê
}

;

u0 ∈ V ∩ H4(Ω), u0(x) ≥ 1
2emax + Φ(x)∀x ∈ Ω;

Φ ∈ C(Ω̄), Φ(ξ) ≤ 0 ∀ξ ∈ ∂Ω; , v0 ∈ V, f ∈ H1(I;H).

(4)

The symmetric and positively definite fourth-order tensors aijk�, bijk� fulfil

aijk� = ak�ij = ajik�, bijk� = bk�ij = bjik�,

α0 > 0, α0, εijεij ≤ aijk� εijεk� ≤ α1 εijεij ∀ {εij} ∈ R
2×2
sym,

β0 > 0, β0 εijεij ≤ bijk� εijεk� ≤ β1 εijεij ∀ {εij} ∈ R
2×2
sym,

(5)

where the Einstein summation convention is employed and R
2×2
sym is the set of

all second-order symmetric tensors. For e, u, y ∈ H2(Ω) we define bilinear forms
A(e), B(e) by

A(e)(u, y) = e3aijk�uijyk�, B(e)(u, y) = e3bijk�uijyk�.

Definition 1. A function u is a weak solution of the problem (1)–(3) if ü ∈
L2(I; H̊1(Ω)), u̇ ∈ L2(I;V ), there hold the identity

∫
Q

[
e(x)üy + ae3(x)∇ü · ∇y + A(e; u̇, y) + B(e;u, y)

]
dx dt

=
∫

Q

[
gδ( 12e(x) + Φ(x) − u) + f(t, x)

]
y dx dt ∀ y ∈ L2(I;V )

(6)

and the initial conditions

u(0) = u0, u̇(0) = v0. (7)

2.2 Existence and Uniqueness of the State Problem

We verify the existence and uniqueness of a weak solution.

Theorem 1. There exists a unique solution u of the problem (6) and (7) such
that u ∈ C1(Ī;V ), ü ∈ L2(I;V ) ∩ L∞(I; H̊1(Ω)) ∩ C1(Ī;H),

...
u ∈ L2(I;H) and

there hold the estimates

‖u‖C(Ī,V )‖ + ‖u̇‖L2(I,V ) + ‖u̇‖C(Ī,H̊1(Ω))

≤ C0(α0, α1, β0, β1, emin, emax, ê, u0, v0, f),
(8)

‖u̇‖C(Ī,V ) + ‖ü‖L2(I,V ) + ‖ü‖L∞(I,H̊1(Ω)) + ‖...
u‖L2(I,H)

≤ C1(δ, α0, α1, β0, β1, emin, emax, ê, u0, v0, f).
(9)
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Proof. Let {wi ∈ V ∩H4(Ω); i ∈ N} be a basis of V . We introduce the Galerkin
approximation um of a solution in a form

um(t) =
m∑

i=1

αi(t)wi, αi(t) ∈ R, i = 1, . . . ,m, m ∈ N,

∫
Ω

[
e(x)ümwi + ae3(x)∇üm · ∇wi + A(e)(u̇m, wi) + B(e)(um, wi)

]
dx =

∫
Ω

[
gδ( 12e(x) + Φ(x) − um) + f(t)

]
wi dx, i = 1, . . . ,m;

um(0) = u0m, u̇m(0) = v0m; u0m → u0 in H4(Ω), v0m → v0 in V.

A solution originally existing only locally can be prolonged to the whole time
interval I with the a priori estimates

‖um‖C(Ī,V ) + ‖u̇m‖L2(I,V ) + ‖u̇m‖C(Ī,H̊1(Ω))

≤ C2(α0, α1, β0, β1, emin, emax, ê, u0, v0, f).
(10)

Better estimates can be achieved after differentiating the Galerkin equation with
respect to t:

‖u̇m‖C(Ī,V ) + ‖üm‖L2(I,V ) + ‖üm‖C(Ī,H̊1(Ω))

≤ C3(δ, α0, α1, β0, β1, emin, emax, ê, u0, v0, f).
(11)

We proceed with the convergence of the Galerkin approximation. Applying
the estimates (10) and (11), the Aubin-Lions compact imbedding theorem [9],
Sobolev imbedding theorems and the interpolation theorems in Sobolev spaces
[8] we obtain for a subsequence of {um} (denoted again by {um}) a function
u ∈ C(Ī , V ) with u̇ ∈ L∞(I, V ), ü ∈ L∞(I, H̊1(Ω)) and the convergences

üm ⇀∗ ü in L∞(I, H̊1(Ω)),
üm ⇀ ü in L2(I, V ),
u̇m ⇀∗ u̇ in L∞(I;V ),
um → u in C(Ī;V ),

um → u in C1(Ī;H2−ε(Ω)) ∀ ε > 0,

um → u in C1(Ī;C(Ω̄)).

(12)

The convergence process (12) implies that a function u fulfils for a.e. t ∈ I
∫

Ω

[
eüw + ae3(x)∇ü · ∇w + A(e; u̇, w) + B(e;u,w)

]
dx

=
∫

Ω

[
gδ( 12e(x) + Φ(x) − u) + f

]
w dx, ∀w ∈ V.

(13)

The identity (6) follows directly after setting w ≡ y(t, ·), y ∈ L2(I;V ) in (13).
The estimate (10) together with the convergences (12) implies the estimate (8).
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Due to the differentiability of gδ, f we obtain the third time derivative
...
u ∈

L2(I;H) fulfilling∫
Q

[...
u

(
e(x)y − div (e3(x)∇y)

)
+ A(e; ü, y) + B(e; u̇, y)

]
dx dt

=
∫

Q

[
−g′

δ(
1
2e(x) + Φ(x) − u)u̇ + ḟ(t, x)

]
y dx dt ∀ y ∈ L2(I;V ).

(14)

The estimate (9) is then the consequence of (11) together with the convergences
(12) and the relation (14). The proof of the uniqueness can be performed in a
standard way using the Gronwall lemma.

Remark 1. The constant C0(α, β, emin, emax, ê, u0, v0, f, q) in the estimate (8)
does not depend on δ for δ ∈ (0, δ0). It is possible to derive the existence of
a variational solution u of the original problem with the rigid obstacle in a simi-
lar way as in [2], where the method of penalization was applied. We can use the
limit of a subsequence of solutions {uδn

}, δn → 0+ to the problem (6), and (7)
for δ ≡ δn, n ∈ N instead of the sequence of penalized solutions.

Let K be a closed convex set in L2(I;V ) of the form

K := {y ∈ L2(I;V ); ẏ ∈ L2(I; H̊1(Ω)), y ≥ 1
2e + Φ}. (15)

A function u ∈ K such that u̇ ∈ L2(I;V ) and u(0, ·) = u0 solves the initial value
problem for a nonstationary variational inequality∫

Q

(
A(e; u̇, y − u) + B(e;u, y − u) − ae3∇u̇ · ∇(ẏ − u̇) − eu̇(ẏ − u̇)

)
dx dt

+
∫

Ω

(
ae3∇u̇ · ∇(y − u) + eu̇(y − u)

)
(T, ·) dx

≥
∫

Ω

(
a∇v0 · (∇y(0, ·) − ∇u0) + v0(y(0, ·) − u0)

)
dx

+
∫

Q

f(y − u) dx dt ∀y ∈ K.

(16)

3 Optimal Control Problem

3.1 The Existence of an Optimal Thickness

We consider a cost functional J : L2(I;V ) × H2(Ω) �→ R fulfilling the
assumption

un ⇀ u in L2(I;V ), en ⇀ e in H2(Ω) ⇒ J(u, e) ≤ lim inf
n→∞ J(un, en) (17)

and formulate

Optimal control problem P : To find a control e∗ ∈ Ead such that

J(u(e∗), e∗) ≤ J(u(e), e) ∀e ∈ Ead, (18)

where u(e) is a (unique) weak solution of the Problem (1)–(3).
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Theorem 2. There exists a solution of the Optimal control problem P.

Proof. We use the weak lower semicontinuity property of the functional J and
the compactness of the admissible set Ead of thicknesses in the space C(Ω̄). Let
{en} ⊂ Ead be a minimizing sequence for (18). i.e.

lim
n→∞ J(u(en); en) = inf

e∈Ead

J(u(e), e). (19)

The set Ead is convex and closed and hence a weakly closed in H2(Ω) as the
closed convex set. Then there exists a subsequence of {en} (denoted again by
{en}) and an element e∗ ∈ Ead such that

en ⇀ e∗ in H2(Ω), en → e∗ in C(Ω̄). (20)

The a priori estimates (8), Sobolev imbedding theorems and the Ascoli theorem
on uniform convergence on Ī imply the existence of a function u∗ ∈ C(Ī;V ) such
that u̇ ∈ L∞(I;V ) ∩ C(Ī; H̊1(Ω)), ü ∈ L∞(I; H̊1(Ω)) and the convergences

ü(en) ⇀∗ ü∗ in L∞(I; H̊1(Ω)),

u̇(en) ⇀∗ u̇∗ in L∞(I;V ), u̇(en) → u̇∗ in C(Ī; H̊1(Ω)),

u(en) ⇀∗ u∗ in L∞(I;V ), u(en) → u∗ in C(Ī;C1(Ω̄))

(21)

for a chosen subsequence. Functions un ≡ u(en) solve the initial value state
problem (6), and (7) for e ≡ en. We verify that u∗ solves the problem (6),
and (7) with e ≡ e∗. The previous convergences together with the Lipschitz
continuity of gδ imply

enün ⇀ e∗ü∗ in L2(Q), e3nün,i ⇀ e3∗ü∗i in L2(Q), i = 1, 2;

e3nu̇n,ij ⇀ e3∗u̇∗ij in L2(Q), e3nun,ij ⇀ e3∗u∗ij in L2(Q), i, j ∈ {1, 2};

gδ( 12 (en + Φ − un) ⇀ gδ( 12 (e∗ + Φ − u∗) in L2(Q).

Then u∗ ≡ u(e∗) and hence

u(en) ⇀ u(e∗) in L2(I;V ), en ⇀ e in H2(Ω).

Property (17) together with (19) then imply that

J(u(e∗), e∗) = min
e∈Ead

J(u(e), e)

and the proof is complete.

3.2 Necessary Optimality Conditions

We introduce the Banach space W = {w ∈ H1(I;V ) : ẅ ∈ L2(I;V ∗)} with a
norm

‖w‖W = ‖w‖H1(I;V ) + ‖ẅ‖L2(I;V ∗)
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and operators A(e) : W → L2(I;V ∗), B(e) : H2(Ω) → L2(I;V ∗) by

〈〈A(e)z, y〉〉 =
∫

Q

z̈[ey − adiv (e3∇y)] dx dt+
∫

Q

[A(e)(ż, y) + B(e)(z, y) + g′
δ(ω(e))zy] dx dt,

(22)

〈〈B(e)h, y〉〉 =
∫

Q

h
[
ü(e)y − 3a div (e2∇y)

]
dx dt+

∫
Q

h

[
A′(e)(ż, y) + B′(e)(z, y) − 1

2
g′

δ(ω(e))y
]

dx dt,

(23)

ω(e) = 1
2e + Φ − u(e), y ∈ L2(I;V ).

In a similar way as in [5] or [6] the following theorem about Fréchet differentia-
bility of the mapping e �→ u(e) can be verified.

Theorem 3. The mapping u(·) : Ead → W is Fréchet differentiable and its
derivative z ≡ z(h) = u′(e)h ∈ W, h ∈ H2(Ω) fulfils for every e ∈ Ead uniquely
the operator equation

A(e)z = −B(e)h, z(0) = ż(0) = 0 (24)

Proof. The existence of a solution z to the Eq. (24) can be verified using the
standard Galerkin method and its uniqueness by the Gronwall lemma.

We proceed with the differentiability of e �→ z(e) :
Let h ∈ H2(Ω) with e + h ∈ Ead and

r(h) = u(e + h) − u(e) − z(h)

We have
A(e)r(h) = A(e)[u(e + h) − u(e)] + B(e)h,

and verify

r(h) = o(h) i.e. lim
‖h‖2→0

r(h)
‖h‖2 = 0 ⇒ z(h) = u′(e)h.

In order to derive necessary optimality conditions we assume that the cost
functional J(·, ·) : L2(I;V ) × H2(Ω) → R is Fréchet differentiable.

The optimal control problem can be expressed in a form

j(e∗) = min
e∈Ead

j(e), j(e) = J(u(e), e). (25)

The functional j in (25) is Fréchet differentiable and its derivative in e∗ ∈ Ead

has the form

〈j′(e∗), h〉 = 〈〈Ju(u(e∗), e∗), u′(e∗)h〉〉 + 〈Je(u(e∗), e∗), h〉−2, h ∈ H2(Ω) (26)

with the duality pairings 〈〈·, ·〉〉, 〈·, ·〉−2 between L2(I;V )∗ and L2(I;V ),
(H2(Ω))∗ and H2(Ω) respectively.
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The optimal thickness e∗ ∈ Ead fulfils the variational inequality

〈j′(e∗), e − e∗〉−2 ≥ 0 ∀e ∈ Ead. (27)

which can be expressed in a form

〈〈Ju(u(e∗), e∗), u′(e∗)(e − e∗)〉〉 + 〈Je(u(e∗), e∗), e − e∗〉−2 ≥ 0 ∀e ∈ Ead. (28)

Applying Theorem3 we obtain necessary optimality conditions in a form of
a system with an adjoint state p:

Theorem 4. The optimal thickness e∗, the corresponding state (deflection)
u∗ ≡ u(e∗) and the adjoint state p∗ ≡ p(e∗) are solutions of the initial value
problem

∫
Q

[
e∗u∗

tty + ae3∇u∗
tt · ∇y + A(e)(u∗

t , y) + B(e)(u∗, y)
]
dx dt

=
∫

Q

[
gδ( 12e + Φ − u∗) + f(t, x)

]
y dx dt ∀ y ∈ L2(I;V ),

u∗(0) = u0, u∗
t (0) = v0,

A(e∗)p∗ = −Ju(u∗, e∗); p∗(T ) = p∗
t (T ) = 0,

〈〈B(e∗)(e − e∗), p∗〉〉 + 〈Je(u∗, e∗), e − e∗〉−2 ≥ 0 ∀e ∈ Ead.

Remark 2. If the partial derivative e �→ Je(u(e), e) is strongly monotone i.e.

〈Je(u(e1), e1) − Je(u(e2), e2), e1 − e2〉2 ≥ N‖e‖22 ∀e1, e2 ∈ H2(Ω), N > 0,

then it is possible after using the variational inequality (28) to obtain for suffi-
ciently large N the uniqueness of the Optimal control e∗.

Remark 3. We have mentioned in Remark 1 that there is a sequence {δn}, δn →
0+ such that a corresponding sequence of regularized solutions uδn

of (6), and
(7) converges to a solution u of the original problem. If e∗ ≡ e∗(δn) is a sequence
of optimal thicknesses tending to some ẽ∗ ∈ Ead then it is an open question if
ẽ∗ ∈ Ead is a solution of the corresponding Optimal control problem connected
with the Problem (16). In this case there is no uniqueness of solutions and hence
this Optimal control problem has the form

Optimal control problem P̃ : To find a couple {ũ∗, ẽ∗} ∈ U × Ead such that

J(ũ∗, ẽ∗) ≤ J(u, e) ∀{u, e} ∈ U × Ead,

where
U = {u ∈ K; u̇ ∈ L2(I;V ), u(·, 0) = u0 and (16) holds}.
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Abstract. In this paper, the abort landing problem is considered with
reference to a point-mass aircraft model describing flight in a vertical
plane. It is assumed that the pilot linearly increases the power setting
to maximum upon sensing the presence of a windshear. This option is
accounted for in the aircraft model and is not considered as a control.
The only control is the angle of attack, which is assumed to lie between
minimum and maximum values. The aim of this paper is to construct
a feedback strategy that ensures a safe abort landing. An algorithm for
solving nonlinear differential games is used for the design of such a strat-
egy. The feedback strategy obtained is discontinuous in time and space
so that realizations of control may have a bang-bang structure. To be
realistic, outputs of the feedback strategy are being smoothed in time,
and this signal is used as control.

Keywords: Aircraft model · Penetration landing · Abort landing ·
Differential game · Hamilton-Jacobi equation · Grid method · Feedback
strategy · Optimal trajectories

1 Introduction

Many aircraft accidents are caused by severe windshears such as e.g. downbursts.
A downburst appears when a descending column of air hits the ground and
then spreads horizontally. This phenomenon is especially dangerous for aircrafts
during landing or take-off, because a headwind can be followed by a downdraft
and then by a tailwind at relatively low altitudes.

There are a large number of works devoted to the problem of aircraft control
in the presence of severe windshears. In particular, papers [1–8] address the
problem of aircraft control during take-off in the presence of windshears. In
works [1,2], the wind velocity field is assumed to be known. It is shown that
open loop controls obtained as solutions of appropriate optimization problems
provide satisfactory results for rather severe wind disturbances. Nevertheless, it
is clear that the spatial distribution of wind velocity cannot be measured with
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
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an appropriate accuracy, and therefore feedback principles of control design are
more realistic. Different types of feedback controls are proposed in papers [3–6].
In [3], the design of a feedback robust control is based on the construction of an
appropriate Lyapunov function. Robust control theory is used in [4] to develop
feedback controls stabilizing the relative path inclination and, in [5,6], for the
design of feedback controls stabilizing the climb rate. In papers [7,8], feedback
controls, which are effective against downbursts, are designed using differential
game approach (see e.g. [9]). The value function, which is a viscosity solution (see.
e.g. [10,11]) of an appropriate Hamilton-Jacobi equation, are computed using
dynamic programming techniques described in [12,13]. Both the case of known
wind velocity field and the case of unknown wind disturbance are considered.

An approach based on differential game theory is used in paper [14] in con-
cern with the problem of landing. A full nonlinear system of model equations is
linearized and reduced to a two-dimensional differential game using a transfor-
mation of variables. The resulting differential game is numerically solved, and
optimal feedback controls are constructed.

Paper [15] considers the penetration landing problem with reference to flight
in a vertical plane. The model is governed either by one control (the angle of
attack, if the power setting is predetermined) or two controls (the angle of attack
and the power setting). The wind field is simulated by a downburst, and an near-
optimal open-loop control is computed.

Works [16–20] refer to the abort landing problem. In paper [16], the opti-
mization problem, a Chebysbev problem of optimal control, is converted into
a Bolza problem through suitable transformations. The Bolza problem is then
solved employing the dual sequential gradient-restoration algorithm for optimal
control problems. Numerical results are obtained for several combinations of
windshear intensities, initial altitudes, and power setting rates. Papers [17–19]
are also concerned with a Chebysbev problem of optimal control. They utilize
a multiple shooting method to compute a near-optimal control maximizing a
performance index and providing necessary state constraints. Paper [20] deals
with the application of differential games theory to take-off and abort land-
ing problems. The same as in [1,16], nonlinear aircraft model describing flight
in a vertical plane is considered, the dynamics equations are linearized about
some reference trajectory, and the resulting differential game is reduced to a
two-dimensional one under the assumption that the performance index is being
computed at a fixed termination time and depends on two state variables. Feed-
back strategies are constructed in the form of switch lines that divide the reduced
two-dimensional state space into components where certain constant values of
control are prescribed. A careful tuning of this method, which includes the use of
a “sliding” termination time, allows the author to obtain trajectories comparable
with those from work [16].

The current paper concerns with the abort landing problem considered in
[20] in the framework of differential game theory. The difference consists in the
application of numerical methods described in [12,13] to the original nonlinear
model reported in [16]. Moreover, a performance index of Chebysbev type is
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used in the current paper. The optimal trajectories are comparable with these
obtained in [16,20]. It should be noted that the method described in the current
paper does not require fine tuning of parameters.

2 Model Equations

We use a simplified aircraft model describing flight in a vertical plane, see papers
[1,2,16]. Hence, the following system of four ordinary differential equations gov-
erning the horizontal distance x, the altitude h, the aircraft relative velocity V ,
and the relative path inclination γ is considered:

ẋ = V cos γ + Wx,

ḣ = V sin γ + Wh,

mV̇ = T cos(α + δ) − D − mg sin γ − mẆx cos γ − mẆh sin γ,

mV γ̇ = T sin(α + δ) + L − mg cos γ + mẆx sin γ − mẆh cos γ.

(1)

Here, α is the angle of attack; Wx and Wh are the longitudinal and vertical
components of the wind velocity, respectively; g is the acceleration of gravity;
m the aircraft mass; δ the thrust inclination; T,D, and L are the thrust, drag,
and lift forces, respectively. The following definitions hold:

T = β(t)(A0 + A1V + A2V
2), β(t) =

{
β0 + β̇0 t, t ∈ [0, t0]
1, t ∈ [t0, tf ]

,

D =
1
2
CDρSV 2, CD = B0 + B1α + B2α

2, L =
1
2
CLρSV 2,

CL =

{
C0 + C1α, α ≤ α∗∗
C0 + C1α + C2(α − α∗∗)2, α ∈ [α∗∗, α∗],

where β(·) is a function that changes the power setting at time t0, upon sensing
the presence of a windshear; tf is the end time; and β0, β̇0, α∗, α∗∗ are given
constants. The attack angle α is considered as the control parameter constrained
by the inequalities 0 ≤ α ≤ α∗.

If the components Wx(x, h) and Wh(x, h) of the velocity field are known, the
derivatives Ẇx and Ẇh in model (1) are computed using the first two equations.

Two wind velocity field models are used in our simulations.

Wind Model 1. The first, downburst, model is borrowed from [3]:

Wx =

⎧⎪⎪⎨
⎪⎪⎩

−k, x ≤ a

−k + 2k
(x − a)
(b − a) , a ≤ x ≤ b

k, x ≥ b.

; Wh =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x ≤ a

−k(h/h∗)
(x − a)
(c − a) , a ≤ x ≤ c

−k(h/h∗)
(b − x)
(b − c) , c ≤ x ≤ b

0, x ≥ b,
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where a, b, c, and k are parameters defining the location and the strength of the
downburst. It was set k = 50, which corresponds to strong-to-severe windshears.

Wind Model 2. The second, double vortex model, is taken from [4]. It has
two cores of radius R located symmetric about the vertical line x = 1500. The
vortex motion of air about the centres of the cores occurs as follows. Inside of
each core, the tangential speed, Wθ, of wind increases linearly from zero (at the
center) to a maximum value W0 (at the core boundary). Outside of the core,
Wθ decreases in inverse proportion to the distance from the core. In the polar
coordinate system with the origin at the core center, the tangential speed of
wind is given by the formula

Wθ =

{
W0 r/R, 0 ≤ r ≤ R,

W0 R/r, r > R.

It was chosen W0 = 100, which corresponds to strong-to-severe windshears.

The conflict control problem is stated in the same way as in [20]:

mV̇ = T cos(α + δ) − D − mg sin γ − mẆx cos γ − mẆh sin γ

mV γ̇ = T sin(α + δ) + L − mg cos γ + mẆx sin γ − mẆh cos γ

Ẇx = −κ (Wx − v1)
Ẇh = −κ (Wh − v2).

(2)

Here, v1 and v2 are artificial disturbances that may have instantaneous jumps.
The wind components Wx and Wh smoothly track v1 and v2, respectively, with
a time lag depending on the parameter κ (set κ = 0.2). The following constraints
are imposed (cf. [20]):

α ∈ [0, 16] deg, |v1| ≤ 50 ft/s |v2| ≤ 20 ft/s. (3)

3 Problem Statement

Two problem statements will be considered. In both cases, the wind velocity
field is supposed to be unknown. Feedback controls will be constructed from the
corresponding conflict control problems.

P1. The objective of the control α in system (2) is to maximize a payoff func-
tional defined below, i.e.

J = min
τ∈[0,tf ]

(
V (τ) sin γ(τ) + Wh(τ)

) → max
α[·]

min
v1(·),v2(·)

. (4)

It is easily seen that the expression in the parentheses of (4) is the climb rate
ḣ(t). Besides, the maximum in (4) is taken over all feedback strategies α[·].

In this variant, the full four-dimensional differential game (2)–(4) will be
numerically solved.
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P2. In the second variant, the idea to derive an equation for the climb rate (see
[6]) is used. Computing ḧ from system (2) yields the formulae

ḧ =
T

m
[cos (α + δ) sin γ + sin (α + δ) cos γ] − D

m
sin γ +

L

m
cos γ − g,

sin γ =
ḣ − Wh

V
, cos γ =

√
1 − (

ḣ − Wh)2/V 2.

Thus, the following system arises:

ḣ = z, ż = Z(z, α, V,Wh),

where the function Z is defined by the above formulae. Moreover, the payoff
functional is chosen the same as in P1:

J = min
τ∈[0,tf ]

z(t) → max
α[·]

min
V (·),Wh(·)

It should be noted that the vertical wind velocity, Wh, and the relative velocity,
V , are considered as disturbances. The same constraints as in [7,8] are imposed:

0 ≤ α ≤ 16 deg, V ∈ [Vref − 20, Vref], Wh ∈ [−100, 0], (5)

where Vref = 276 ft/s is a reference value. It is worth to mention that only
negative deviations of V and Wh from their reference values are taken in (5),
because negative deviations are more dangerous.

4 Numerical Method

Let us shortly outline the solution method for problems P1 and P2. The descrip-
tion will be given in terms of general nonlinear differential games, which is similar
to that presented in [7,8].

4.1 Differential Game and Value Function

Consider a differential game defined as follows:

ẋ = f(t, x, α, β), t ∈ [0, tf ], x ∈ Rn, α ∈ A ⊂ Rp, β ∈ B ⊂ Rq (6)

where x is the state vector, α and β are control parameters of the first and
second player, respectively. The sets A and B are given compacts. The game
starts at t0 ∈ [0, tf ] and finishes at tf . The objective of the first player (control
α) is to minimize the functional

J(x(·)) = min
τ∈[t0, tf ]

σ(x(τ)). (7)

It is assumed that the first player uses pure feedback strategies, i.e. functions
of the form:

A : [0, tf ] × Rn → A.
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The second player (wind) uses feedback counter strategies:

Bc : [0, tf ] × Rn × A → B.

Thus, it is assumed that second player can measure the current value of the
attack angle (“future” values are not available), which meets the concept of
guaranteeing control.

For any initial position (t0, x0) ∈ [0, tf ]×R
n and any strategies A and Bc, two

functional sets X1(t0, x0,A) and X2(t0, x0,Bc) are defined (see [9]). It is proven
in [9] that the differential game (6), (7) has a value function defined by:

V(t0, x0) = max
A

min
x(·)∈X1(t0,x0,A)

J(x(·)) = min
Bc

max
x(·)∈X2(t0,x0,Bc)

J(x(·)).

It is known (see [10–12]) that the value function is a viscosity solution of the
Hamilton-Jacobi equation:

Vt + H(t, x,Vx) = 0, where H(t, x, p) = max
α∈A

min
β∈B

〈p, f(t, x, α, β)〉. (8)

4.2 Grid Method for Computing the Value Function

To compute viscosity solutions of (8), the following finite difference scheme can
be used (see [7,8,12,13]).

Let h1, ..., hn and τ be space and time discretization steps, and F an operator
defined on continuous functions by the relation

F (V; t, τ)(x) = max
α∈A

min
β∈B

V(x + τf(t, x, α, β)). (9)

Set Λ = tf/τ , t� = �τ, � = 0, ..., Λ, and introduce the following notation:

V�(xi1 , ..., xin) = V(t�, i1h1, ..., inhn), σh(xi1 , ..., xin) = σ(i1h1, ..., inhn).

The following backward in time finite-difference scheme yields an approxi-
mate solution:

V�−1 = max
{

F
(Lh[V�]; t�, τ

)
, σh

}
, VΛ = σh, � = Λ,Λ − 1, ..., 1. (10)

Here, Lh is an interpolation operator that maps grid functions to continuous
functions.

4.3 Control Design

During the performance of the algorithm (10), the optimal grid values of the
attack angle,

α�
i1i2...in = arg

α
max
α∈A

min
β∈B

Lh[V�](xi1i2...in + τf(t�, xi1i2...in , α, β)),

are stored on a hard disk for all �. The control at a time instant ts and the
current state x(ts) is computed as Lh[αs]

(
x(ts)

)
, where αs denotes the grid

function αs
i1i2...in

.
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5 Simulation Results

This section describes numerical results of simulations where optimal controls
obtained in problems P1 and P2 work against wind models 1 and 2. Numerical
values of parameters appearing in our considerations are the same as in [3,16,20].
The parameters correspond to Boeing-727.

In all simulations, t ∈ [0, 40] s, and the initial values of the state variables are
chosen the same as in [16,20]: x(0) = 0, h(0) = 600 ft, V (0) = 239.7 feet/s, and
γ(0) = −2.249 deg.

In all figures, the horizontal axes measure either the traveled distance (from
0 to 10700 ft) or the time of flight (from 0 to 40 s).

The calculations are performed on a Linux SMP-computer with 8xQuad-Core
AMD Opteron processors (Model 8384, 2.7 GHz) and shared 64 GB memory. The
programming language C with OpenMP (Open Multiprocessing) support is used.
The efficiency of the parallelization is up to 80%.

Simulation 1. An optimal feedback strategy α[·] computed from problem P1
works up against wind models 1 and 2 in the simulation of model (1). When
solving problem P1, a 100 × 10 × 40 × 40 grid in the state space (V, γ,Wx,Wh)
is used. Another variant concerns the application of sparse grid techniques (see
e.g. [21]). Namely, the grid functions V� are stored on a sparse grid, and the
operator Lh is implemented as interpolation on this grid.

Simulation 2. An optimal feedback strategy α[·] computed from problem P2
works up against wind models 1 and 2 in the simulation of model (1). When
solving problem P2, a 400 × 200 grid in the state space (h, ḣ) is used.

Figure 2A shows that the maximal attack angle guidance fails against wind
model 1. The reason is that the aircraft relative velocity drops just in the begin-
ning of the trajectory because of the large attack angle.

Figure 1A shows Simulation 1 in the case of wind model 1. It is seen that the
angle of attack is close to zero in the beginning of the trajectory. The aircraft
drifts down for a while and gains the relative velocity, which enables a safe abort
landing. Figure 1B shows the same but for wind model 2.

Figure 2B shows Simulation 1 for wind model 2 in the case where the differ-
ential game (2) is solved using sparse grid techniques.

Figure 3 shows the change of results if the output, ᾱ, of an optimal feedback
strategy found from the differential game (2) is being smoothed using the filter
α̇ = −(α−ᾱ) when computing trajectories in model (1). Wind model 1 is used in
this simulation. It should be noted that a comparable divergence of trajectories
occurs when using wind model 2.

Figure 4 shows the difference of results in Simulations 1 and 2. Wind model 1
is used in both simulations. The solid line corresponds to Simulations 1, and the
dashed one stands for Simulation 2.

Note that our simulation results are in a good agreement with those of paper
[16] where an open loop control is designed for the aircraft dynamics given by (1).
Besides, our results are in conformity with those of paper [20] where a control
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Fig. 1. Simulation of system (1) with an optimal feedback control found from the
differential game (2). (A) wind model 1; (B) wind model 2.
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Fig. 2. (A) Simulation of system (1) with wind model 1 and α ≡ 16 deg. (B) Simulation
of system (1) with wind model 2 and an optimal feedback control found from the
differential game (2) using sparse grid techniques.
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Fig. 3. The change of results if the output of an optimal strategy found from the
differential game (2) is being smoothed with a filter. Wind model 1 is used. The dashed
line shows the case of smoothing.
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Fig. 4. The difference of results in Simulations 1 and 2. Wind model 1 is used in both
simulations. The solid line corresponds to Simulation 1, and the dashed line stands for
Simulation 2.

based on the computation of switch lines in an appropriate two-dimensional
linear differential game is constructed.

6 Conclusion

The current investigation shows that methods based on the theory of differential
games can be successfully applied to nonlinear conflict control problems con-
cerned with aircraft maneuvers under windshear conditions. The paper demon-
strates that the approach based on the solution of nonlinear differential games
yields feedback controls that can work against strong-to-severe wind disturbances
in abort landing. It should be noted that this approach does not require spe-
cial adaptation of the controller to the problem, and, on the other hand, it is
competitive with other approaches based, e.g. on robust control theory.
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12. Botkin, N.D., Hoffmann, K.-H., Mayer, N., Turova, V.L.: Approximation schemes
for solving disturbed control problems with non-terminal time and state con-
straints. Analysis 31, 355–379 (2011)

13. Botkin, N.D., Hoffmann, K.-H., Turova, V.L.: Stable numerical schemes for solving
Hamilton-Jacobi-Bellman-Isaacs equations. SIAM J. Sci. Comput. 33(2), 992–1007
(2011)

14. Patsko, V.S., Botkin, N.D., Kein, V.M., Turova, V.L., Zarkh, M.A.: Control of an
aircraft landing in windshear. J. Optim. Theory Appl. 83(2), 237–267 (1994)

15. Miele, A., Wang, T., Wang, H., Melvin, W.W.: Optimal penetration landing tra-
jectories in the presence of windshear. J. Optim. Theory Appl. 57(1), 1–40 (1988)

16. Miele, A., Wang, T., Tzeng, C.Y., Melvin, W.W.: Optimal abort landing trajecto-
ries in the presence of windshear. J. Optim. Theory Appl. 55(2), 165–202 (1987)

17. Bulirsch, R., Montrone, F., Pesch, H.J.: Abort landing in the presence of a winds-
hear as a minimax optimal control problem, part 1: necessary conditions. J. Optim.
Theory Appl. 70(1), 1–23 (1991)

18. Bulirsch, R., Montrone, F., Pesch, H.J.: Abort landing in the presence of a winds-
hear as a minimax optimal control problem, part 2: multiple shooting and homo-
topy. J. Optim. Theory Appl. 70(2), 223–254 (1991)

19. Berkmann, P., Pesch, H.J.: Abort landing in windshear: optimal control problem
with third-order state constraint and varied switching structure. J. Optim. Theory
Appl. 85(1), 21–57 (1995)

20. Turova, V.L.: Application of numerical methods of the theory of differential games
to the problems of take-off and abort landing. In: Osipov, Y. (ed.) Proceedings of
the Institute of Mathematics and Mechanics, Ross. Akad. Nauk Ural. Otdel., Inst.
Mat. Mekh., Ekaterinburg, vol. 2., pp. 188–201 (1992). (in Russian)
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Abstract. This paper concerns the problem of aircraft control during
the takeoff roll in the presence of severe wind gusts. It is assumed that
the aircraft moves on the runway with a constant axial acceleration from
a stationary position up to a specific speed at which the aircraft can go
into flight. The lateral motion is controlled by the steering wheel and
the rudder and affected by side wind. The aim of control is to prevent
rolling out of the aircraft from the runway strip. Additionally, the lateral
deviation, lateral speed, yaw angle, and yaw rate should remain in cer-
tain thresholds during the whole takeoff roll. The problem is stated as
a differential game with state constraints. A grid method for computing
the value function and optimal feedback strategies for the control and
disturbance is used. The paper deals both with a nonlinear and linearized
models of an aircraft on the ground. Simulations of the trajectories are
presented.

Keywords: Aircraft runway · Lateral runway model ·
Differential game · Grid method

1 Introduction

Control of aircraft on the ground is a very complicated problem because of
nonlinear effects playing a significant role in the dynamics of aircraft. Moreover,
severe wind gusts may lead to rolling out from the runway, especially during
high-speed roll.

The following investigations are devoted to the enhancement of aircraft-on-
ground models and to the development of controllers providing safe ground oper-
ations, including taxing and takeoff run.

In the report [1], a detailed explanation of essential requirements and basic
assumptions for aircraft modeling is given, including a description of various
elements needed in the model structure. The main focus lies on the description
of the interface between the aircraft and the runway pavement.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 147–158, 2016.
DOI: 10.1007/978-3-319-55795-3 13
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In paper [2] a bifurcation analysis of steady-state solutions and a transient
analysis are applied to the study of the behavior of aircraft on the ground. A
general approach to assess an aircraft’s performance during taxiway manoeuvres
is introduced. This allows to the author to find maximal loads during taxiway
manoeuvres, which is important for assessing existing regulations for the certi-
fication of aircraft.

The work [3] presents results and interpretations from the analytical analysis
aimed to uncover the dominant directional characteristics of the aircraft. Three
mathematical models, of growing complexity, of the aircraft on the ground are
used. Some fundamental dynamic characteristics such as e.g. the yaw rate to
steering command transfer function are determined.

Paper [4] presents the study of a yaw rate control of the aircraft on the
ground. A highly nonlinear realistic model of the aircraft is used, and the con-
trol design is based on the feedback linearization technique aimed to design a
non-linear controller that forces the system output to follow a linear reference
behavior. This approach supposes that the linear reference model perfectly cor-
responds to the real system. It should be noted that wind disturbances are not
included into the study.

Paper [5] uses a simplified LFT (Linear Fractional Transformation) model
of an aircraft on the ground. In particular, the nonlinear lateral ground forces
are reduced to saturation-type nonlinearities. A robust anti-windup control tech-
nique is applied to the simplified model to improve lateral control laws to exclude
oversteer when working against lateral wind step inputs.

The works [6,7] are devoted to modeling of the takeoff and landing phases
for an unmanned aerial vehicle. The investigation is aimed to the development
of an automatic takeoff and landing control system reducing effects of human
pilot errors. The main attention is concentrated on the takeoff phase and, in
particular, on aircraft’s lateral motion during the takeoff roll. The authors apply
transfer function techniques to a linearized model of the aircraft on the ground
to design a controller. This approach does not provide safety against worst-case
disturbances.

Paper [8] concerns the application of differential game theory (see e.g. [9])
to the aircraft takeoff roll. A linearized model of aircraft’s lateral motion on the
runway is considered there, and a conflict control problem, differential game, is
formulated. It is assumed that the first player, autopilot, uses feedback strate-
gies to minimize the objective functional of the form J = σ

(
y(T ), ẏ(T )

)
, where

y is the lateral deviation, and T is a fixed termination time. The second player,
side wind, strives to maximize the objective functional using all possible con-
strained non-anticipative strategies. Thus, the lateral position and velocity of
the aircraft are evaluated only at the termination time T , which is insufficient
from the technical point of view. The reason to use such a simplified functional
is that the authors could solve only two-dimensional games that time, and this
simplification allowed the authors to reduce the original differential game to a
two-dimensional one using a variable transformation. The main result of this
paper is the construction of optimal feedback strategies of the autopilot in the
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form of switch lines that divide the reduced two-dimensional state space into
components where certain constant values of control are prescribed. A similar
representation of optimal strategies of side wind is also found.

The following limitations of this investigation should be mentioned. First,
the transformation reducing the original differential game to a two-dimensional
one is of course not invertible, and therefore imposing state constraints in the
original problem is impossible. Second, the strategies found from the linearized
model were not tested in the original nonlinear system. All these reasons give
rise to the motivation to investigate the problem with modern tools for solving
nonlinear state constrained differential games.

The current paper deals with the problem of aircraft control during the take-
off roll and enhances the work [8]. The modification consists in the application of
modern grid methods for solving nonlinear differential games (see [10,11]) to a
nonlinear lateral motion runway model derived in [6,7]. These methods allow us
to solve nonlinear differential games of a relative high dimension with accounting
for state constraints. Speaking more certainly, it is now possible to consider the
objective functional of the form J = maxτ∈[0,T ] σ

(
x1(τ), ..., xn(τ)

)
, n = 4 or 5,

and therefore to constrain all state variables for all time instants. This allows
us to develop a control law that prevents rolling out of the airplane from the
runway.

The model parameters are fitted to the characteristics of Boeing-727.

2 Model Equations

Consider an aircraft during the takeoff roll (see Fig. 1).

y

z

W

W

U

Fig. 1. Aircraft during the takeoff roll under wind gusts.

Let the state variables be defined as follows: y is the lateral deviation, V the
lateral velocity, ψ the yaw angle, and R the yaw rate. The model derived in [6]
reads:

ẏ = V,

V̇ = −UR + (Fu + Fa)/m,

ψ̇ = R,

Ṙ = (Mu + Ma)/Iz.

(1)

Here, U = at is the axial velocity increasing linearly with time t according
to the acceleration a; Fu and Mu are the undercarriage forces and moments,
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respectively; Fa and Ma are aerodynamic forces and moments, respectively; m
is the aircraft mass, and Iz is the z-axis moment of inertia. The expressions for
the forces and moments are given by the formulas

Fu = NsCαα

[
arctan

V + lsR

U
− δs

]
cos δs − Nsμf sin δs

+ NlCαα arctan
V − lmR

U + lw/2R
+ NrCαα arctan

V − lmR

U − lw/2R
,

Mu = lsNsCαα

[
arctan

V + lsR

U
− δs

]
cos δs − lsNsμf sin δs

− lmNlCαα arctan
V − lmR

U + lw/2R
− lmNrCαα arctan

V − lmR

U − lw/2R
,

(2)

Fa = q · S · (Cyββ + b/(2Va)CyrR + Cyδrδr),

Ma = b · q · S · (Cnββ + b/(2Va)CnrR + Cnδrδr).
(3)

Here, Va =
√

U2 + (V − W )2 is the air speed, W the velocity of side wind;
q = 1/2ρV 2

a the dynamic pressure; β = arcsin
(
(V − W )/Va

)
the sideslip angle;

δs the steering wheel deflection; and δr the rudder deflection. It is assumed
that δs = 1/3δr for balanced manoeuvres. The control variable, u, and the
disturbance, v, are introduced as follows:

u := δr ∈ [−25, 25] deg, v := W ∈ [−17, 17]m/s. (4)

The following notation for the components of the state vector is used below:

x1 := y, x2 := V, x3 := ψ, x4 := R. (5)

The coefficients appearing in (1), (2), and (3) are listed in Table 1. The model is
considered on the time interval t ∈ [0, T ], where T = 34 s.

The linearized, non-stationary, model reads:

ẋ1 = x2,

ẋ2 = a22(t)x2 + a23(t)x3 + a24(t)x4 + a25(t)u + c2(t)v,

ẋ3 = x4,

ẋ4 = a42(t)x2 + a43(t)x3 + a44(t)x4 + a45(t)u + c4(t)v,

u̇ = −k(u − ū).

(6)

Here, an artificial control ū that may have instantaneous jumps is introduced.
The physical control u (= δr) smoothly tracks ū with a time lag depending on
the parameter k. The artificial control is constrained just as u in (4).
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Table 1. Model coefficients approximately corresponding to Boeing-727.

Notation Name Value Units

CG Center of gravity - -

μf Coefficient of kinetic friction 0.5 -

ρ Air density 1.207 kg/m3

m Aircraft mass 288773 kg

S Wing area 511 m2

b Wing span 60 m

Iz z-axis moment of inertia 67.38e6 kg · m2

ls Distance from CG to steering wheel along x 28.36 m

lm Distance from CG to main wheels along x 1.64 m

ll, lr Distance from CG to left/right main wheel along y 6 m

lw Distance between main wheels (lw = ll + lr) 12 m

lL Distance from steering to main wheels (lL = ls + lm) 30 m

Ns Normal reactions at steering wheel 154.863 kN

Nl, Nr Normal reactions at main wheels 1338.99 kN

Cαα Tire cornering coefficient 0.25 1/rad

Cyβ Output of y-force due to sideslip angle −0.9 1/rad

Cyr Output of y-force due to yaw rate 0 1/rad

Cyδr Output of y-force due to rudder deflection 0.120 1/rad

Cnβ Output of yawing moment due to sideslip angle 0 1/rad

Cnr Output of yawing moment due to yaw rate −0.280 1/rad

Cnδr Output of yawing moment due to rudder deflection −0.1 1/rad

The coefficients appearing in (6) are defined by the formulas

a22(t) = 0.229(1 − 100/ξ) − 0.345 · 10−2ξ,

a23(t) = 0.12 · 10−3 ξ2 − 0.8(1 − 0.01ξ),

a24(t) = −0.138 · 10−2(1 − 100/ξ),

a25(t) = −0.2 · 10−4 ξ2 + 0.32 · 10−1(1 − 0.01ξ),

a42(t) = −0.132 · 10−1ξ, a43(t) = −0.464 · 10−3 ξ2,

a44(t) = 0.715 · 10−1(1 − 100/ξ),

a45(t) = −0.164 · 10−3 ξ2 − 0.3(1 − 0.01ξ),

c2(t) = 0.345 · 10−2ξ, c4(t) = 0.132 · 10−1ξ, ξ := t + 1, k = 4.

(7)

The model is considered on the time interval t ∈ [0, T ], where T = 34 s.
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3 Numerical Method

Let us shortly outline the solution method that is applicable both to linear and
nonlinear problems. The description will be given in terms of general nonlinear
differential games, see [9,12,13].

3.1 Differential Game and Value Function

Consider the differential game

ẋ = f(t, x, u, v), x ∈ Rn, u ∈ P ⊂ Rp, v ∈ Q ⊂ Rq, (8)

where u and v are control parameters of the first and second player, respectively.
The sets P and Q are given compacts. The game starts at t0 ∈ [0, T ] and finishes
at T . The aim of the first (resp. second) player is to minimize (resp. maximize)
an objective functional of the form:

J
(
x(·)) = max

{
σ0

(
x(T )

)
, max
τ∈[t0,T ]

σ
(
x(τ)

)}
, (9)

where σ0 and σ : Rn → R are given functions.

The value function, W, is informally defined by the relation

W(t, x) = max
Vc

min
U

J(x(·)) = min
U

max
Vc

J(x(·)),

where the minimum is taken over all admissible feedback strategies of the first
player, and the maximum is computed over the so-called feedback counter-
strategies of the second player (see [9]). This means that the second player
(e.g. wind) can measure the current choice of the first player (e.g. the ruder
deflection), which makes the second player more dangerous.

It should be noted that the strong definition of the value function (see [9]) is
more complicated than that, because the strategies are in general discontinuous
functions of x, and therefore cannot be directly substituted into (8) in place of
u and v.

The value function plays a very important role, representing the guaranteed
result of the players. For example, let the game starts from a position (t0, x0),
and W(t0, x0) ≤ 0. Then, there exists a feedback strategy U such that, for all
trajectories x(·) generated by U and any Vc, the inequalities σ0(x(T )) ≤ 0 and
σ(x(t)) ≤ 0, t ∈ [t0, T ], hold. This can be interpreted as obtaining a guaranteed
gain at the termination time T and keeping the object inside of prescribed state
constraints at any time instant. Moreover, as the Subsect. 3.3 shows, optimal
strategies of the players can be constructed in the course of computing the value
function. Besides, an optimal feedback counter-strategy of the second player is
directly derived from the value function.
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It is established, see [10,14,15], that the value function is a viscosity solution
of the following Hamilton-Jacobi equation:

Wt + H(t, x,Wx) = 0, where H(t, x, p) = min
u∈P

max
v∈Q

〈f(t, x, u, v), p〉. (10)

This correspondence has given rise to numerical methods for computing value
functions. The next subsection describes a grid method developed for computing
viscosity solutions of (10) and, therefore, value functions in the differential game
(8)–(9).

3.2 Grid Method for Computing the Value Function

To compute the value function, the following finite difference scheme is used, see
[10–13].

Let h1, ..., hn, and τ be space and time discretization step lengths.
Set L = T/τ , t� = 	τ, 	 = 0, 1, ..., L, and denote

W�(xi1 , . . . , xin) = W(	τ, i1h1, . . . , inhn),

σh
0 (xi1 , . . . , xin) := σ0(i1h1, . . . , inhn), σh(xi1 , . . . , xin) := σ(i1h1, . . . , inhn).

Let c be a grid function. Assume that the variable x runs over all grid nodes and
define the following upwind operator:

F (c; t, τ, h1, ..., hn)(x) = c(x) + τ min
u∈P

max
v∈Q

n∑
i=1

(pR
i f+

i + pL
i f−

i ),

where fi = fi(t, x, u, v) are the right hand sides of the control system, and

a+ = max {a, 0}, a− = min {a, 0},

pR
i = [c(x1, ..., xi + hi, ..., xn) − c(x1, ..., xi, ..., xn)]/hi,

pL
i = [c(x1, ..., xi, ..., xn) − c(x1, ..., xi − hi, ..., xn)]/hi.

An approximate solution is the output of the following backward in time
finite-difference scheme:

W�−1 = max
{
F (W�; t�, τ, h1, ..., hn), σ�

}
, WL = σh

0 , 	 = L,L − 1, ..., 0. (11)

This algorithm is proposed and analyzed in [10–13]. It was stated there that
its convergence rate is of order

√
τ if τ/hi = c, i = 1...n, where c is a small

enough constant. This convergence rate is not improvable when applying grid
methods to Hamilton-Jacobi equations arising from differential games.
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3.3 Control Design

When running the algorithm (11), the minimizing grid values of the control,

u�
i1i2...in = arg

u
min
u∈P

max
v∈Q

n∑
i=1

(pR
i f+

i + pL
i f−

i ),

are stored on a hard disk for each grid multi index i1i2...in and each time sam-
pling index 	. The control at a time instant t� and the current state x(t�) is
computed as Lh[u�]

(
x(t�)

)
, where u� denotes the grid function u�

i1i2...in
, and Lh

is an interpolation operator.
A counter-strategy of the second player is defined as follows. Let

(
t�, x(t�)

)
be the current position of the game, and a control u of the first player is chosen.
Then the second player chooses its control as

v = arg
v

max
v∈Q

Lh[W�]
(
x(t�) + τf(t�, x(t�), u, v)

)
,

where W� is the grid approximation of the value function at the time instant t�,
computed by formula (11).

4 Simulation Results

This section describes simulation results for the models (1)–(4) and (6)–(7). In
both cases, the objective functional of the form (9) with the functions

σ0(x) = max
{ |x1|

10
,
|x2|
5

,
|x3|
10

,
|x4|
5

}
−1, σ(x) = max

{ |x1|
15

,
|x2|
5

,
|x3|
15

,
|x4|
5

}
−1

is used. Thus, the controls u and ū, see (4) and the last equation of (6), strive
to satisfy the conditions

σ0(x(T )) ≤ 0 and σ(x(t)) ≤ 0, t ∈ [0, T ],

for any realization of the disturbance v constrained as in (4). In other words, u
(resp. ū) strives to satisfy the conditions

|y(T )| ≤ 10m, |V (T )| ≤ 5m/s, |ψ(T )| ≤ 10 deg, |R(T )| ≤ 5 deg/s

at the termination time T = 34 s and to keep the state constraints

|y(t)| ≤ 15m, |V (t)| ≤ 5m/s, |ψ(t)| ≤ 15 deg, |R(t)| ≤ 5 deg/s

for all time instants. According to the problem statement, this is possible if the
value function, see Sect. 3.1 and the explanation there, is non-positive at the
initial state {t = 0, y = 0, V = 0, ψ = 0, R = 0}.

Differential games (1)–(4) and (6)–(7) are solved using numerical methods
outlined in Sect. 3. The calculations are performed on a Linux SMP-computer
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with 8xQuad-Core AMD Opteron processors (Model 8384, 2.7 GHz) and shared
64 Gb memory. The programming language C with OpenMP (Open Multi-
processing) support is used. The efficiency of the parallelization is up to 80%.

When solving the differential game related to the linear model (6)–(7), a
rectangular 40 × 20 × 40 × 20 × 30 grid is chosen. In the case of the nonlinear
model (1)–(4), a rectangular 40 × 20 × 40 × 20 is used.

Figure 2 shows the simulation of the linear model (6)–(7) with an opti-
mal feedback control strategy and the corresponding optimal feedback counter-
strategy for wind. The horizontal axes measure the traveled distance in meter,
the vertical axes measure the lateral deviation y (meter), the yaw angle ψ
(degree), the rudder deflection δr (degree), and the velocity of side wind
(meter/sec), respectively. The vertical bold bars, drawn to the right in the first
two graphs, show the admissible interval for the terminal values of y and ψ,
respectively. It is seen that the terminal and state constraints are satisfied for y
and ψ. It should also be noted that the other two variables, V and R (not shown
here), satisfy their terminal and state constraints too.

Figure 3 presents the simulation of the nonlinear model (1)–(4) using the
optimal feedback control strategy found for the linear model (6)–(7), whereas the
disturbance is formed using the optimal feedback counter-strategy for wind taken
from the nonlinear model. It is seen that the terminal and state constraints are
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Fig. 2. Simulation of the linear model (6)–(7).
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Fig. 3. Simulation of the nonlinear model (1)–(4) with the optimal feedback control
strategy found for the linear model (6)–(7), whereas the optimal feedback counter-
strategy for wind is taken from the nonlinear model.
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Fig. 4. Simulation of the nonlinear model (1)–(4).

violated. This means that the linearized model (6)–(7) does not properly reflect
the dynamical properties of the real nonlinear plant. Thus, the construction of
controllers based on linearized models is questionable.

Figure 4 shows the simulation of the nonlinear model (1)–(4) with the opti-
mal feedback control strategy and the corresponding optimal feedback counter-
strategy for wind, found from the four-dimensional nonlinear differential game
(1)–(4). During the simulation of trajectories, the output, u, of the optimal con-
trol strategy is smoothed with the filter δ̇r = −4 (δr − u). It is seen that the
terminal and state constraints are satisfied for y and ψ. The other two variables,
V and R (not shown here), satisfy the terminal and state constraints too.
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The simulation results show that the control strategy found from the linear
differential game associated with the models (6)–(7) works perfectly in the linear
model, and does not work in the nonlinear one.

The control strategy found from the nonlinear differential game (1)–(4) works
perfectly in the real nonlinear model against very severe wind disturbances com-
parable with hurricane. It should be noted that none conventional control sys-
tem cannot apparently keep the aircraft on the runway in the presence of smart
wind gusts obtained from the nonlinear differential game. However, our control
strategies ensure the desired terminal and state constraints (see Figs. 2 and 4).
Moreover, the strategies work stable in a wide range of discretization parameters
such as time sampling and spatial steps in the algorithm (11), which is checked in
numerous test runs. Finally, these strategies can be physically implemented on
board, because all state variables used in them are available for measurements.

5 Conclusion

The current investigation shows that methods based on the theory of differential
games can be successfully applied to nonlinear conflict control problems related
to aircraft’s takeoff roll under severe wind gusts. The paper demonstrates the
following advantages: A very detailed nonlinear model of aircraft’s takeoff roll
is used. The corresponding highly nonlinear differential games are solved using
a novel grid method, and optimal control strategies ensuring a safe takeoff roll
are designed. It is planned to test them on a flight simulator providing a fully
realistic model of an aircraft.
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Abstract. The article discusses a numerical approach to solve optimal
control problems in discrete time that involve continuous and discrete
controls. Special attention is drawn to the modeling and treatment of
dwell time constraints. For the solution of the optimal control prob-
lem in discrete time, a dynamic programming approach is employed. A
numerical example is included that illustrates the impact of dwell time
constraints in mixed integer optimal control.
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1 Introduction

Mixed-integer optimal control is a field of increasing importance as practi-
cal applications often include discrete decisions in addition to continuous-
valued control variables. Examples of such problems can be found, e.g., in
[1,2,4,5,8,14,15,18]. One way to approach mixed-integer optimal control prob-
lems is by solving necessary optimality conditions provided by the well-known
maximum principle. These necessary conditions are valid even for discrete con-
trol sets. In [6] a graph-based solution method exploiting the maximum principle
was developed, which is however limited to single-state problems. The drawback
of maximum principle based methods is that a very good initial guess of the
switching structure is needed which is often not available for practical applica-
tions. Direct discretization methods based on variable time transformations as in
[1,2,9–11,18,19], or direct discretization methods based on relaxations and sum-
up-rounding strategies as in [13,16,17] have shown their ability to solve difficult
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real-world examples. Extensions towards mixed control-state constraints, which
depend on the discrete variable and lead to vanishing constraints, can be found in
[7, Chap. 5] and [12]. The dynamic programming approach in [3, Chap. 7] allows
to consider switching costs to avoid frequent switches of the discrete-valued con-
trols. This paper particularly addresses so-called dwell time constraints in mixed-
integer optimal control problems in discrete time. Dwell times are an important
aspect in many engineering applications, especially in the context of switched
systems. After a switch has occured, the physical process typically requires a
certain time period to recover and to return to normal operation. During this
dwell time the process is limited in its operation and follows specified dynam-
ics. An example for such a behavior is a truck with gear shifts. As the clutch
is engaged, the motor torque does not arrive at the wheels for a short time
period. Only after the clutch is released again, the motor torque is distributed
at the wheels. Throughout the paper, we focus on optimal control problems in
discrete time, which exist in their own rights but often they are obtained as
discretizations of optimal control problems in continuous time. The purpose of
the paper is twofold. Firstly, a model taking into account dwell time is sug-
gested. Herein, we will use delays in the dynamics. Secondly, it is shown that a
dynamic programming principle applies and can be used for numerical computa-
tions, if the state dimension is low. The paper is organized as follows. Section 2
defines the mixed-integer optimal control problem in discrete time with dwell
time constraints. Section 3 discusses a dynamic programming approach to solve
the problems. Section 4 discusses an illustrative numerical example.

2 Modeling Dwell Time Constraints in Mixed-Integer
Optimal Control in Discrete Time

Let a fixed grid GN = {t0 < t1 < . . . < tN} with N ∈ N be given. For i =
0, . . . , N and x ∈ R

nx let ∅ �= X (ti) ⊆ R
nx and ∅ �= U(ti, x) ⊆ R

nu be closed
connected sets and

V = {v1, . . . , vM}
a discrete set of vectors vj ∈ R

nv , j = 1, . . . , M . On the grid GN , grid func-
tions are introduced. The grid function x : GN −→ R

nx is called state and it
is restricted by the state constraints x(ti) ∈ X (ti), i = 0, . . . , N . The grid func-
tion u : GN −→ R

nu is called real-valued control and it is restricted by the
control constraints u(ti) ∈ U , i = 0, . . . , N . The grid function v : GN → R

nv is
called discrete-valued control and it is restricted by the constraints v(ti) ∈ V,
i = 0, . . . , N . We say the discrete-valued control switches at time point ti ∈ GN

with i ∈ {0, . . . , N − 1}, if v(ti) �= v(ti+1). Switches in the grid function v can
be measured with the help of the discrete variation dv : GN → R

nv defined by

dv(ti) =
{

v(ti+1) − v(ti), for i = 0, . . . , N − 1,
v(tN ) − v(tN−1), for i = N.

A jump of v at ti occurs if and only if dv(ti) �= 0. In order to define dwell time
constraints let L ∈ N denote a number of steps and ū ∈ U a fixed control vector.
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Definition 1. A dwell time constraint of time horizon length L ∈ N and control
ū applies, if and only if the following conditions are met:

(a) v switches at ti for some i ∈ {0, . . . , N − 1} and
(b) u(ti+�) = ū for � = 1, . . . , L.

In other words, a dwell time constraint is a logical implication of type

v(ti) �= v(ti+1) =⇒ u(ti+�) = ū for � = 1, . . . , L,

i.e. if the discrete control switches, then control u is fixed to ū for a defined
future time horizon of length L.

Remark 1. For notational simplicity we fixed the full control vector u in Defin-
ition 1 (b) to a specified value ū for all time points ti+�, � = 1, . . . , L. This can
be generalized such that only some components of u are fixed to specified values
which may even vary with the index �. This more general setting would cause a
more technical notation, but otherwise can be treated with the same techniques
as below.

Let the state evolve according to the discrete dynamics

x(ti+1) = f(ti, x(ti), u(ti), v(ti)), i = 0, 1, . . . , N − 1.

Imposing a dwell time constraint of length L and value ū implies that the future
state depends not just on the current control value but on the history of the
control v, i.e.

u(ti) ∈ Ū(v(ti), v(ti−1), . . . , v(ti−L))

:=
{ U , if v(ti−�) = v(ti−�−1) for � = 0, 1, . . . , L − 1,

{ū}, otherwise.

Herein and throughout the paper we use the convention

v(t−�) := v(t0) for � = 1, . . . , L. (1)

We arrived at the following mixed-integer optimal control problem in discrete
time with a dwell time constraint of length L with value ū:

Probelm 1 (DMIOCP).
Minimize

F (x, u, v) := ϕ(x(tN )) +
N−1∑
i=0

f0(ti, x(ti), u(ti), v(ti))

subject to the constraints

x(ti+1) = f(ti, x(ti), u(ti), v(ti)), i = 0, 1, . . . , N − 1,
x(t0) = x0,
x(ti) ∈ X (ti), i = 0, 1, . . . , N,
u(ti) ∈ Ū(v(ti), v(ti−1), . . . , v(ti−L)), i = 0, 1, . . . , N − 1,
v(ti) ∈ V, i = 0, 1, . . . , N − 1.
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Note that the control v(tN ) does not have any influence in the problem. Con-
sequently, only switches at the time points t0, . . . , tN−1 are taken into account.
In the sequel we will make use of the convention vN = vN−1 whenever useful.

3 A Dynamic Programming Approach

DMIOCP is embedded into a family of perturbed problems as follows. To this
end we use the notation vL

(k) := (vk−1, . . . , vk−L) for L ∈ N and some index k

with values vk−� ∈ V for � = 1, . . . , L. We denote with VL the cartesian product
V × · · · × V (L times).

Probelm 2 (DMIOCP(tk, xk, vL
(k))).

For a given index tk ∈ GN , xk ∈ R
nx , and vL

(k) ∈ VL, minimize

Fk(x, u, v) := ϕ(x(tN )) +
N−1∑
i=k

f0(ti, x(ti), u(ti), v(ti))

subject to

x(ti+1) = f(ti, x(ti), u(ti), v(ti)), i = k, . . . , N − 1,
x(tk) = xk,
x(ti) ∈ X (ti), i = k, . . . , N,
u(ti) ∈ Ū(v(ti), v(ti−1), . . . , v(ti−L)), i = k, . . . , N − 1,
v(ti) ∈ V, i = k, . . . , N − 1,

v(tk−�) = vk−�, � = 1, . . . , L.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2)

Definition 2. The function W : GN × R
nx × VL −→ R that assigns to every

(tk, xk, vL
(k)) ∈ GN × R

nx × VL the optimal value of DMIOCP(tk, xk, vL
(k)) is

called optimal value function of DMIOCP, i.e.

W (tk, xk, vL
(k)) :=

{
inf

x,u,v with (2)
Fk(x, u, v), if DMIOCP(tk, xk, vL

(k)) is feasible,

∞, otherwise.

The next theorem establishes Bellman’s optimality principle.

Theorem 1. Let (x̂, û, v̂) be optimal grid functions for DMIOCP and let Gk
N :=

GN \{t0, . . . , tk−1}. Then, the restrictions on G
k
N given by x̂|Gk

N
, û|Gk

N
, and v̂|Gk

N

are optimal for DMIOCP(tk, x̂(tk), v̂L
(k)) with v̂L

(k) = (v̂(tk−1), . . . , v̂(tk−L)) for
all k = 0, . . . , N subject to the convention (1).

Proof. Assume that the restrictions x̂|Gk
N

, û|Gk
N

, and v̂|Gk
N

are not optimal for
DMIOCP(tk, x̂(tk), v̂L

(k)) for some k ∈ {0, . . . , N − 1}. Then there exist feasible
grid functions x̃ : G

k
N −→ R

nx , ũ : G
k
N −→ R

nu , and ṽ : G
k
N −→ V for

DMIOCP(tk, x̂(tk), v̂L
(k)) with

Fk(x̃, ũ, ṽ) < Fk(x̂, û, v̂), (3)
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x̃(tk) = x̂(tk), and ṽ(tk−�) = v̂(tk−�) for � = 1, . . . , L. Hence, the trajectories
x : GN −→ R

nx , u : GN −→ R
nu , and v : GN −→ V with

(x(ti), u(ti), v(ti)) :=
{

(x̂(ti), û(ti), v̂(ti)) for i = 0, 1, . . . , k − 1,
(x̃(ti), ũ(ti), ṽ(ti)) for i = k, k + 1, . . . , N,

are feasible for DMIOCP and satisfy

F (x, u, v) = ϕ(x(tN )) +
N−1∑
i=0

f0(ti, x(ti), u(ti), v(ti))

= ϕ(x̃(tN )) +
k−1∑
i=0

f0(ti, x̂(ti), û(ti), v̂(ti)) +
N−1∑
i=k

f0(ti, x̃(ti), ũ(ti), ṽ(ti))

< ϕ(x̂(tN )) +
k−1∑
i=0

f0(ti, x̂(ti), û(ti), v̂(ti)) +
N−1∑
i=k

f0(ti, x̂(ti), û(ti), v̂(ti))

= ϕ(x̂(tN )) +
N−1∑
i=0

f0(ti, x̂(ti), û(ti), v̂(ti))

= F (x̂, û, v̂),

where (3) is exploited. This contradicts the optimality of x̂(·), û(·), and v̂(·). 	

From the definition of the optimal value function one immediately obtains

W (tN , xN , vL
(N)) =

{
ϕ(xN ), if xN ∈ X (tN ),

∞, otherwise. (4)

Bellman’s optimality principle allows to derive the following result.

Theorem 2. For all (tk, xk, vL
(k)) ∈ GN ×X (tk)×VL and k = N − 1, . . . , 0, the

optimal value function in Definition 2 satisfies the recursion

W (tk, xk, vL
(k)) = inf

u∈Ū(v,vk−1,...,vk−L),v∈V

{
f0(tk, xk, u, v)

+W (tk+1, f(tk, xk, u, v), vL
(k+1))

}

where vL
(k) = (vk−1, . . . , vk−L) and vL

(k+1) = (v, vk−1, . . . , vk−L+1) and conven-
tion (1) is used. Herein, W at t = tN is given by (4) and the convention
W (tk, xk, vL

(k)) = ∞ is used whenever (xk, vL
(k)) �∈ X (tk) × VL.

Proof. Let (tk, xk, vL
(k)) ∈ GN × X (tk) × VL and k ∈ {0, . . . , N − 1} be given. If

(xk, vL
(k)) �∈ X (tk) × VL, then W (tk, xk, vL

(k)) = ∞ by definition.
If f(tk, xk, u, v) �∈ X (tk+1) for all u ∈ Ū(v, vk−1, . . . , vk−L) and all

v ∈ V, then DMIOCP(tk, xk, vL
(k)) and DMIOCP(tk+1, f(tk, xk, u, v), vL

(k+1))
are infeasible for every u ∈ Ū(v, vk−1, . . . , vk−L) and every v ∈ V and hence
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W (tk, xk, vL
(k)) = ∞. For arbitrary u ∈ Ū(v, vk−1, . . . , vk−L) and v ∈ V with

f(tk, xk, u, v) ∈ X (tk+1) the definition of the optimal value function yields

W (tk, xk, vL
(k)) ≤ f0(tk, xk, u, v) + W (tk+1, f(tk, xk, u, v), vL

(k+1)).

Taking the infimum over all u ∈ Ū(v, vk−1, . . . , vk−L) and v ∈ V yields the first
part of the assertion. Now let ε > 0 and feasible grid functions x̃, ũ, ṽ with
x̃(tk) = xk and

Fk(x̃, ũ, ṽ) ≤ W (tk, xk, ṽL
(k)) + ε

with ṽL
(k) = (ṽ(tk−1), . . . , ṽ(tk−L)) be given. Then,

W (tk, xk, ṽL
(k)) ≥ Fk(x̃, ũ, ṽ) − ε

≥ f0(tk, xk, ũ(tk), ṽ(tk))
+W (tk+1, f(tk, xk, ũ(tk), ṽ(tk)), ṽL

(k+1)) − ε

≥ inf
u∈Ū(v,ṽ(tk−1),...,ṽ(tk−L)),v∈V

{
f0(tk, xk, u, v)

+W (tk+1, f(tk, xk, u, v), vL
(k+1))

}
− ε,

where ṽL
(k+1) = (ṽ(tk), . . . , ṽ(tk−L+1)) and vL

(k+1) = (v, ṽ(tk−1), . . . , ṽ(tk−L+1)).
As ε > 0 was arbitrary, the assertion follows. 	

Theorem 2 allows to deduce the following dynamic programming algorithm.

Note that owing to the presence of vL
(k) in DMIOCP, the recursive formula for

the optimal value function is not of standard type. The vector vL
(k) contains the

history of the discrete-valued control, which influences the decision at stage k.
The vector vL

(k) can be interpreted as additional states in the argument of W

and leads to an additional runtime factor of ML when compared to standard
dynamic programming. In general this is a prohibitively large factor, but often
M and L are moderate numbers. For instance, a binary control (M = 2) and
L = 3 leads to a factor of 8.

Algorithm: Dynamic Programming

Init: Let GN = {t0 < t1 < . . . < tN} be given. Set

W (tN , xN , vL
(N)) =

{
ϕ(xN ), if xN ∈ X (tN ),

∞, otherwise

for all xN ∈ R
nx and all vL

(N) = (vN−1, . . . , vN−L) ∈ VL.

Phase 1 (Backward solution): For k = N − 1, . . . , 0 compute

W (tk, xk, vL
(k)) = inf

u∈Ū(v,vk−1,...,vk−L),v∈V

{
f0(tk, xk, u, v)

+W (tk+1, f(tk, xk, u, v), vL
(k+1))

}
(5)
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with vL
(k+1) = (v, vk−1, . . . , vk−L+1) for all xk ∈ R

nx and all vL
(k) ∈ VL.

Phase 2 (Forward solution): Set x̂(t0) = x0. For k = 0, . . . , N − 1 find

(û(tk), v̂(tk)) = arg min
u∈Ū(v,v̂(tk−1),...,v̂(tk−L)),v∈V

{
f0(tk, x̂(tk), u, v)

+W (tk+1, f(tk, x̂(tk), u, v), v̂L
(k+1))

}
(6)

with v̂L
(k+1) = (v, v̂(tk−1), . . . , v̂(tk−L+1)) and set

x̂(tk+1) = f(tk, x̂(tk), û(tk), v̂(tk)).

3.1 Practical Issues in the Dynamic Programming Algorithm

The implementation of the dynamic programming approach works on a compact
state space Ω = {x ∈ R

nx | x� ≤ x ≤ xu} ⊂ R
nx with lower and upper bounds

x�, xu ∈ R
nx and −∞ < x� < xu < ∞. The bounds should be chosen such that

all realistically relevant trajectories are contained in this set. The state space Ω
is discretized with an equidistant partition

ΩNx
=

⎧⎨
⎩(x1, . . . , xnx

)� ∈ Ω

∣∣∣∣∣
xj = x�,j + i

xu,j−x�,j

Nx
,

j = 1, . . . , nx,
i ∈ {0, . . . , Nx}

⎫⎬
⎭

with Nx ∈ N. During the backward solution and forward solution phases of
the dynamic programming algorithm values of the value function at points x =
f(tk, xk, u, v) not in ΩNx

are approximated by polynomial interpolation of the
value function on a cell of ΩNx

that contains x.
The minimization in (5) and (6) is usually done by a sufficiently dense dis-

cretization of the control set Ū and complete enumeration of all possible values.
The v-component is not crucial as V is supposed to be a finite discrete set. For a
fixed v the minimization w.r.t. the component u could be carried out using meth-
ods from nonsmooth optimization, e.g. Bundle methods or subgradient methods.
However, such methods may result in a local minimum and therefore the pre-
viously mentioned enumeration technique is preferred. The general drawback of
the dynamic programming approach is the curse of dimensions. Since the value
function W depends on the state x and the control history vL

(k) of length L,
the approach is computationally feasible merely for low state dimensions and
moderate values of L and M , where M is the number of elements in V.

Remark 2. Please note that a more efficient coding of the switching history is
possible. To this end, it would be sufficient to replace vL

(k) in W by vk−1 and
an additional state with values in {0, . . . , L}, which encodes how long the last
switch is ago (with 0 meaning longer than L).



166 M. Burger et al.

4 Numerical Results

We consider a car of mass m driving on a road with a given slope profile γ(·)
and aim to optimize the gear shift control on a given time horizon [0, T ]. The
car model is adapted from [1] with the state (x, v) (position and velocity) and
controls φ ∈ U := [0, 1] (gas pedal position) and μ ∈ V := {1, . . . , 5} (gear shift).
The optimal control problem in discrete time with step-size h = T/N , N ∈ N,
reads as follows:

Minimize

−αx(tN ) + h

N−1∑
k=0

f0(v(tk), φ(tk), μ(tk))

subject to the constraints x(0) = 1470, v(0) = 23, and for k = 0, 1, . . . , N −1,

x(tk+1) = x(tk) + hv(tk),

v(tk+1) = v(tk) +
h

m

(
ig(μ(tk))itMmot(φ(tk), v(tk), μ(tk))

R

−FR(v(tk)) cos(γ(x(tk))) − FL(v(tk)) − mg sin(γ(x(tk)))
)

,

μ(tk) ∈ V, φ(tk) ∈ U , v(tk) ∈ [22, 30].

Herein, α ≥ 0 is a weight factor, ig is the gear transmission coefficient, it the
motor torque transmission, R the wheel radius, FR the friction force of the rolling
wheel, FL(v) = 1

2cwρAv2 the drag, and

f0(v, φ, μ) = β1ωmot(v, μ) + β2 |Mmot(φ, v, μ)| + β3ωmot(v, μ) |Mmot(φ, v, μ)|
models the fuel costs, where ωmot denotes the rotary frequency of the motor and
Mmot the motor torque, for details on ωmot, Mmot, and FR please refer to [1].

Figure 1 shows the results of the dynamic programming algorithm for both,
the problem with dwell time constraint (with L = 3 and ū = φ̄ = 0, i.e. φ
is set to zero, if μ switches) and the problem without dwell time constraint.
The parameters α = 1/10, β1 = 1/120, β2 = 10/258, β3 = 1/10320, cw = 0.3,
ρ = 1.249512, A = 2, R = 0.302, it = 3.91, g = 9.81, m = 2000, T = 10, N = 25,
Nx = (100, 45), Nu = 100, ig(1) = 3.91, ig(2) = 2.002, ig(3) = 1.33, ig(4) = 1,
ig(5) = 0.805 were used. The optimal value for the problem with dwell time
constraint is −79.7656, while the optimal value without dwell time constraint is
−88.0430. In the presence of the dwell time constraint it can be nicely seen that
φ is set to zero after μ switches at approximately t = 4. The CPU time on a PC
with 2.3 GHz is 1 min 47.146 s without dwell time constraint and 14 min 38.9 s
with dwell time constraint.

5 Conclusions

The paper discusses a dynamic programming principle that allows to consider
dwell times in a time discrete optimal control problem with discrete-valued con-
trols. Dwell times have to be taken into account in many applications where
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Fig. 1. Optimal gear sequence (top left), gas pedal position (top right), velocity
(bottom left), and slope profile (bottom right).

a switch in a discrete-valued control fixes the dynamics of the process for a
specified time period before the process can be controlled again. A particular
example is the optimization of gear shifts in a car, where a shift in gears implies
that the motor torque is reduced for a given time period. A dynamic program-
ming approach is suggested to solve such problems and a numerical example
shows the applicability of the method. However, the curse of dimension associ-
ated to dynamic programming approaches limits the method to low dimensional
systems with few states. Hence, it is desirable to develop further methods for this
problem class and extend it to optimal control problems in continuous time. To
this end, a formulation of the dwell time constraint in a continuous time setting
becomes necessary, which is subject to future research.
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Abstract. In this paper we analyse an infimal convolution type regular-
isation functional called TVL∞, based on the total variation (TV) and
the L∞ norm of the gradient. The functional belongs to a more general
family of TVLp functionals (1 < p ≤ ∞) introduced in [5]. There, the
case 1 < p < ∞ is examined while here we focus on the p = ∞ case.
We show via analytical and numerical results that the minimisation of
the TVL∞ functional promotes piecewise affine structures in the recon-
structed images similar to the state of the art total generalised variation
(TGV) but improving upon preservation of hat–like structures. We also
propose a spatially adapted version of our model that produces results
comparable to TGV and allows space for further improvement.

Keywords: Total variation · Infimal convolution · L∞ norm ·
Denoising · Staircasing

1 Introduction

In the variational setting for imaging, given image data f ∈ Ls(Ω), Ω ⊆ R
2, ones

aims to reconstruct an image u by minimising a functional of the type

min
u∈X

1
s
‖f − Tu‖s

Ls(Ω) + Ψ(u), (1.1)

over a suitable function space X. Here T denotes a linear and bounded opera-
tor that encodes the transformation or degradation that the original image has
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gone through. Random noise is also usually present in the degraded image, the
statistics of which determine the norm in the first term of (1.1), the fidelity term.
The presence of Ψ, the regulariser, makes the minimisation (1.1) a well–posed
problem and its choice is crucial for the overall quality of the reconstruction. A
classical regulariser in imaging is the total variation functional weighted with a
parameter α > 0, αTV [10], where

TV(u) := sup
{∫

Ω

u divφ dx : φ ∈ C1
c (Ω,R2), ‖φ‖∞ ≤ 1

}
. (1.2)

While TV is able to preserve edges in the reconstructed image, it also promotes
piecewise constant structures leading to undesirable staircasing artefacts. Several
regularisers that incorporate higher order derivatives have been introduced in
order to resolve this issue. The most prominent one has been the second order
total generalised variation (TGV) [3] which can be interpreted as a special type
of infimal convolution of first and second order derivatives. Its definition reads

TGV2
α,β(u) := min

w∈BD(Ω)
α‖Du − w‖M + β‖Ew‖M. (1.3)

Here α, β are positive parameters, BD(Ω) is the space of functions of bounded
deformation, Ew is the distributional symmetrised gradient and ‖ · ‖M denotes
the Radon norm of a finite Radon measure, i.e.,

‖μ‖M = sup
{∫

Ω

φ dμ : φ ∈ C∞
c (Ω,R2), ‖φ‖∞ ≤ 1

}
.

TGV regularisation typically produces piecewise smooth reconstructions elimi-
nating the staircasing effect. A plausible question is whether results of similar
quality can be achieved using simpler, first order regularisers. For instance, it is
known that Huber TV can reduce the staircasing up to an extent [6].

In [5], a family of first order infimal convolution type regularisation function-
als is introduced, that reads

TVLp
α,β(u) := min

w∈Lp(Ω)
α‖Du − w‖M + β‖w‖Lp(Ω), (1.4)

where 1 < p ≤ ∞. While in [5], basic properties of (1.4) are shown for the
general case 1 < p ≤ ∞, see Proposition 1, the main focus remains on the finite
p case. There, the TVLp regulariser is successfully applied to image denoising
and decomposition, reducing significantly the staircasing effect and producing
piecewise smooth results that are very similar to the solutions obtained by TGV.
Exact solutions of the L2 fidelity denoising problem are also computed there for
simple one dimensional data.

1.1 Contribution of the Present Work

The purpose of the present paper is to examine more thoroughly the case p = ∞,
i.e.,

TVL∞
α,β(u) := min

w∈L∞(Ω)
α‖Du − w‖M + β‖w‖L∞(Ω), (1.5)
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and the use of the TVL∞ functional in L2 fidelity denoising

min
u

1
2
‖f − u‖2

L2(Ω) + TVL∞
α,β(u). (1.6)

We study thoroughly the one dimensional version of (1.6), by computing exact
solutions for data f a piecewise constant and a piecewise affine step function.
We show that the solutions are piecewise affine and we depict some similarities
and differences to TGV solutions. The functional TVL∞

α,β is further tested for
Gaussian denoising. We show that TVL∞

α,β , unlike TGV, is able to recover hat–
like structures, a property that is already present in the TVLp

α,β regulariser
for large values of p, see [5], and it is enhanced here. After explaining some
limitations of our model, we propose an extension where the parameter β is
spatially varying, i.e., β = β(x), and discuss a rule for selecting its values. The
resulting denoised images are comparable to the TGV reconstructions and indeed
the model has the potential to produce much better results.

2 Properties of the TVL∞
α,β Functional

The following properties of the TVL∞
α,β functional are shown in [5]. We refer the

reader to [5,9] for the corresponding proofs and to [1] for an introduction to the
space of functions of bounded variation BV(Ω).

Proposition 1 [5]. Let α, β > 0, d ≥ 1, let Ω ⊆ R
d be an open, connected

domain with Lipschitz boundary and define for u ∈ L1(Ω)

TVL∞
α,β(u) := min

w∈L∞(Ω)
α‖Du − w‖M + β‖w‖L∞(Ω). (2.1)

Then we have the following:

(i) TVL∞
α,β(u) < ∞ if and only if u ∈ BV(Ω).

(ii) If u ∈ BV(Ω) then the minimum in (2.1) is attained.
(iii) TVL∞

α,β(u) can equivalently be defined as

TVL∞
α,β(u) = sup

{∫
Ω

u divφ dx : φ ∈ C1
c (Ω,R2), ‖φ‖∞ ≤ α, ‖φ‖L1(Ω) ≤ β

}
,

and TVL∞
α,β is lower semicontinuous w.r.t. the strong L1 convergence.

(iv) There exist constants 0 < C1 < C2 < ∞ such that

C2TV(u) ≤ TVL∞
α,β(u) ≤ C1TV(u), for all u ∈ BV(Ω).

(v) If f ∈ L2(Ω), then the minimisation problem

min
u∈BV(Ω)

1
s
‖f − u‖2

L2(Ω) + TVL∞
α,β(u),

has a unique solution.
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3 The One Dimensional L2–TVL∞
α,β Denoising Problem

In order to get an intuition about the underlying regularising mechanism of the
TVL∞

α,β regulariser, we study here the one dimensional L2 denoising problem

min
u∈BV(Ω)
w∈L∞(Ω)

1
2
‖f − u‖2

L2(Ω) + α‖Du − w‖M + β‖w‖L∞(Ω). (3.1)

In particular, we present exact solutions for simple data functions. In order to
do so, we use the following theorem:

Theorem 2 (Optimality conditions). Let f ∈ L2(Ω). A pair (u,w) ∈ BV
(Ω)×L∞(Ω) is a solution of (3.1) if and only if there exists a unique φ ∈ H1

0(Ω)
such that

φ′ = u − f, (3.2)
φ ∈ αSgn(Du − w), (3.3)

φ ∈
{{

ψ ∈ L1(Ω) : ‖ψ‖L1(Ω) ≤ β
}

, if w = 0,{
ψ ∈ L1(Ω) : 〈ψ,w〉 = β‖w‖L∞(Ω), ‖ψ‖L1(Ω) ≤ β

}
, if w 
= 0.

(3.4)

Recall that for a finite Radon measure μ, Sgn(μ) is defined as

Sgn(μ) =
{

φ ∈ L∞(Ω) ∩ L∞(Ω, μ) : ‖φ‖L∞(Ω) ≤ 1, φ =
dμ

d|μ| , |μ| − a.e.
}

.

As it is shown in [4], Sgn(μ) ∩ C0(Ω) = ∂‖ · ‖M(μ) ∩ C0(Ω).

Proof. The proof of Theorem 2 is based on Fenchel–Rockafellar duality theory
and follows closely the corresponding proof of the finite p case. We thus omit it
and we refer the reader to [5,9] for further details, see also [4,8] for the analogue
optimality conditions for the one dimensional L1–TGV and L2–TGV problems. �

The following proposition states that the solution u of (3.1) is essentially
piecewise affine.

Proposition 3 (Affine structures). Let (u,w) be an optimal solution pair for
(3.1) and φ be the corresponding dual function. Then |w| = ‖w‖L∞(Ω) a.e. in the
set {φ 
= 0}. Moreover, |u′| = ‖w‖L∞(Ω) whenever u > f or u < f .

Proof. Suppose that there exists a U ⊆ {φ 
= 0} of positive measure such that
|w(x)| < ‖w‖L∞(Ω) for every x ∈ U . Then

∫
Ω

φw dx ≤
∫

Ω\U

|φ||w| dx +
∫

U

|φ||w| dx < ‖w‖L∞(Ω)

(∫
Ω\U

|φ| dx +
∫

U

|φ| dx

)

= ‖w‖L∞(Ω)‖φ‖L1(Ω) = β‖w‖L∞(Ω),
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where we used the fact that ‖φ‖L1(Ω) ≤ β from (3.4). However this contradicts
the fact that 〈φ,w〉 = β‖w‖L∞(Ω) also from (3.4). Note also that from (3.2) we
have that {u > f}∪{u < f} ⊆ {φ 
= 0} up to null sets. Thus, the last statement
of the proposition follows from the fact that whenever u > f or u < f then
u′ = w there. This last fact can be shown exactly as in the corresponding TGV
problems, see [4, Prop. 4.2]. �

Piecewise affinity is typically a characteristic of higher order regularisation
models, e.g. TGV. Indeed, as the next proposition shows, TGV and TVL∞

regularisation coincide in some simple special cases.

Proposition 4. The one dimensional functionals TGV2
α,β and TVL∞

α,2β coin-
cide in the class of those BV functions u, for which an optimal w in both defin-
itions of TGV and TVL∞ is odd and monotone.

Proof. Note first that for every odd and monotone bounded function w we have
‖Dw‖M = 2‖w‖L∞(Ω) and denote this set of functions by A ⊆ BV(Ω). For a
BV function u as in the statement of the proposition we have

TGV2
α,β(u) = argmin

w∈A
α‖Du − w‖M + β‖Dw‖M

= argmin
w∈A

α‖Du − w‖M + 2β‖w‖L∞(Ω) = TVL∞
α,2β(u).

�
Exact Solutions: We present exact solutions for the minimisation problem
(3.1), for two simple functions f, g : (−L,L) → R as data, where f(x) =
hX(0,L)(x) and g(x) = f(x) + λx, with λ, h > 0. Here XC(x) = 1 for x ∈ C
and 0 otherwise.

With the help of the optimality conditions (3.2)–(3.4) we are able to compute
all possible solutions of (3.1) for data f and g and for all values of α and β. These
solutions are depicted in Fig. 1. Every coloured region corresponds to a different
type of solution. Note that there are regions where the solutions coincide with
the corresponding solutions of TV minimisation, see the blue and red regions in
Fig. 1a and the blue, purple and red regions in Fig. 1b. This is not surprising since
as it is shown in [5] for all dimensions, TVL∞

α,β = αTV, whenever β/α ≥ |Ω|1/q

with 1/p + 1/q = 1 and p ∈ (1,∞]. Notice also the presence of affine structures in
all solutions, predicted by Proposition 3. For demonstration purposes, we present
the computation of the exact solution that corresponds to the yellow region of
Fig. 1b and refer to [9] for the rest.

Since we require a piecewise affine solution, from symmetry and (3.2) we have
that φ(x) = (c1 − λ)x2

2 − c2|x| + c3. Since we require u to have a discontinuity
at 0, (3.3) implies φ(0) = a while from the fact that φ ∈ H1

0(Ω) and from (3.4)
we must have φ(−L) = 0 and 〈φ,w〉 = β‖w‖L∞(Ω). These conditions give

c1 =
6(αL − β)

L3
+ λ, c2 =

4αL − 3β

L2
, c3 = α.
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(a) Piecewise constant data function f
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3

hL2
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α

(b) Piecewise affine data function g

Fig. 1. Exact solutions for the L2–TVL∞
α,β one dimensional denoising problem (Color

figure online)

We also have c1 = u′ = w and thus we require c1 > 0. Since we have a jump at
x = 0 we also require g(0) < u(0) < h, i.e., 0 < c2 < h

2 and u(−L) > g(−L) i.e.,
φ′(−L) > 0. These last inequalities are translated to the following conditions

{
β < αL +

λL3

6
, β >

4αL

3
− hL2

6
, β >

2αL

3
, β <

4αL

3

}
,

which define the yellow area in Fig. 1b. We can easily compute u now:

u(x) =

{( 6(αL−β)
L3 + λ

)
x + h − 4αL−3β

L2 , x ∈ (0, L),( 6(αL−β)
L3 + λ

)
x + 4αL−3β

L2 , x ∈ (−L, 0).

Observe that when β = αL, apart from the discontinuity, we can also recover
the slope of the data g′ = λ, something that neither TV nor TGV regularisation
can give for this example, see [8, Sect. 5.2].

4 Numerical Experiments

In this section we present our numerical experiments for the discretised version
of L2–TVL∞

α,β denoising. We solve (3.1) using the split Bregman algorithm, see
[9, Chap. 4] for more details.

First we present some one dimensional examples that verify numerically our
analytical results. Figure 2a shows the TVL∞ result for the function g(x) =
hX(0,L)(x) + λx where α, β belong to the yellow region of Fig. 1b. Note that
the numerical and the analytical results coincide. We have also computed the
TGV solution where the parameters are selected so that ‖f − uTGV‖2 = ‖f −
uTVL∞‖2. Figure 2b shows a numerical verification of Proposition 4. There, the
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Fig. 2. One dimensional numerical examples

TVL∞ parameters are α = 2 and β = 4, while the TGV ones are α = 2 and
β = 2. Both solutions coincide since they satisfy the symmetry properties of the
proposition.

We proceed now to two dimensional examples, starting from Fig. 3. There
we used a synthetic image corrupted by additive Gaussian noise of σ = 0.01, cf.
Figs. 3a and b. We observe that TVL∞ denoises the image in a staircasing–free
way in Fig. 3c. In order to do so however, one has to use large values of α and β

(a) Original
synthetic image

(b) Noisy,
Gaussian noise,

σ = 0.01
SSIM = 0.2457

(c) TVL∞:
α = 0.7,
β=14000,

SSIM = 0.9122

(d) Original
surface plot,
central part

zoom

(e) Bregman
iteration TGV
surface plot,
central part

zoom

(f) Bregman
iteration TV:

α = 2,
SSIM = 0.8912

(g) Bregman
iteration TGV:
α = 2, β = 10,
SSIM = 0.9913

(h) Bregman
iteration TVL∞:

α = 3,
β = 65000,

SSIM = 0.9828

(i) Bregman
iteration TV
surface plot,
central part

zoom

(j) Bregman
iteration TVL∞

surface plot,
central part

zoom

Fig. 3. TVL∞ based denoising and comparison with the corresponding TV and TGV
results. All the parameters have been optimised for best SSIM.
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something that leads to a loss of contrast. This can easily be treated by solving
the Bregman iteration version of L2–TVL∞

α,β minimisation, that is

uk+1 = argmin
u,w

1
2
‖f − vk − u‖2

2 + α‖∇u − w‖1 + β‖w‖∞,

vk+1 = vk + f − uk+1.

(4.1)

Bregman iteration has been widely used to deal with the loss of contrast in
these type of regularisation methods, see [2,7] among others. For fair comparison
we also employ the Bregman iteration version of TV and TGV regularisations.
The Bregman iteration version of TVL∞ regularisation produces visually a very
similar result to the Bregman iteration version of TGV, even though it has
a slightly smaller SSIM value, cf. Figs. 3g and h. However, TVL∞ is able to
reconstruct better the sharp spike at the middle of the figure, cf. Figs. 3d, e and j.

The reason for being able to obtain good reconstruction results with this par-
ticular example is due to the fact that the modulus of the gradient is essentially
constant apart from the jump points. This is favoured by the TVL∞ regularisa-
tion which promotes constant gradients as it is proved rigorously in dimension
one in Proposition 3. We expect that a similar analytic result holds in higher
dimensions and we leave that for future work. However, this is restrictive when
gradients of different magnitude exist, see Fig. 4. There we see that in order to
get a staircasing–free result with TVL∞ we also get a loss of geometric informa-
tion, Fig. 4b, as the model tries to fit an image with constant gradient, see the
middle row profiles in Fig. 4c. While improved results can be achieved with the
Bregman iteration version, Fig. 4d, the result is not yet fully satisfactory as an
affine staircasing is now present in the image, Fig. 4e.

(a) Noisy,
Gaussian noise,

σ = 0.01,
SSIM = 0.1791

(b) TVL∞:
α = 5,

β = 60000,
SSIM = 0.8197

0 50 100 150 200
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Middle row
profiles of

Figure 4b (blue)
and the ground
truth (black)

(d) Bregman
iteration

TVL∞: α = 5,
β = 60000,

SSIM = 0.9601,

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Middle row
profiles of

Figure 4d (blue)
and the ground
truth (black)

Fig. 4. Illustration of the fact that TVL∞ regularisation favours gradients of fixed
modulus

Spatially Adapted TVL∞: One way to allow for different gradient values in
the reconstruction, or in other words allow the variable w to take different values,
is to treat β as a spatially varying parameter, i.e., β = β(x). This leads to the
spatially adapted version of TVL∞:
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(a) TVL∞:
α = 0.3,

β = 3500,
SSIM = 0.9547

(b) TVL∞:
α = 0.3,

β = 7000,
SSIM = 0.9672

(c) Bregman
iteration TGV:
α = 2, β = 10,
SSIM = 0.9889

(d) Bregman
iteration

TVL∞
s.a.: α = 5,

βin = 6 · 104,
βout = 11 · 104,
SSIM = 0.9837

(e) Ground
truth

Fig. 5. TVL∞ reconstructions for different values of β. The best result is obtained by
spatially varying β, setting it inversely proportional to the gradient, where we obtain
a similar result to the TGV one

TVL∞
s.a.(u) = min

w∈L∞(Ω)
α‖Du − w‖M + ‖βw‖L∞(Ω). (4.2)

The idea is to choose β large in areas where the gradient is expected to be
small and vice versa, see Fig. 5 for a simple illustration. In this example the
slope inside the inner square is roughly twice the slope outside. We can achieve
a perfect reconstruction inside the square by setting β = 3500, with artefacts
outside, see Fig. 5a and a perfect reconstruction outside by setting the value of
β twice as large, i.e., β = 7000, Fig. 5b. In that case, artefacts appear inside the
square. By setting a spatially varying β with a ratio βout/βin � 2 and using
the Bregman iteration version, we achieve an almost perfect result, visually very
similar to the TGV one, Figs. 5c and d. This example suggests that ideally β
should be inversely proportional to the gradient of the ground truth. Since this
information is not available in practice we use a pre-filtered version of the noisy
image and we set

β(x) =
c

|∇fσ(x)| + ε
. (4.3)

Here c is a positive constant to be tuned, ε > 0 is a small parameter and fσ

denotes a smoothing of the data f with a Gaussian kernel. We have applied
the spatially adapted TVL∞ (non-Bregman) with the rule (4.3) in the natural
image “Ladybug” in Fig. 6. There we pre-smooth the noisy data with a discrete
Gaussian kernel of σ = 2, Fig. 6d, and then apply TVL∞

s.a. with the rule (4.3),
Fig. 6g. Comparing to the best TGV result in Fig. 6f, the SSIM value is slightly
smaller but there is a better recovery of the image details (objective). Let us
note here that we do not claim that our rule for choosing β is the optimal one.
For demonstration purposes, we show a reconstruction where we have computed
β using the gradient of ground truth ug.t., Fig. 6c, as β(x) = c/(|∇ug.t.(x)| + ε),
with excellent results, Fig. 6h. This is of course impractical, since the gradient
of the ground truth is typically not available but it shows that there is plenty
of room for improvement regarding the choice of β. One could also think of
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(a) Ladybug (b) Noisy data,
Gaussian noise of

σ = 0.005,
SSIM = 0.4076

(c) Gradient of the
ground truth

(d) Gradient of the
smoothed data,

σ = 2, 13x13 pixels
window

(e) TV: α = 0.06,
SSIM = 0.8608

(f) TGV: α = 0.068,
β = 0.046,

SSIM = 0.8874

(g) TVL∞
s.a.:

α = 0.07 and β
computed from

filtered version with
c = 30, ε = 10−4,
SSIM = 0.8729

(h) TVL∞
s.a.: α = 0.5

and β computed
from ground truth

with c = 50,
ε = 10−4,

SSIM = 0.9300

Fig. 6. Best reconstruction of the “Ladybug” in terms of SSIM using TV, TVG and
spatially adapted TVL∞ regularisation. The β for the latter is computed both from
the filtered (Fig. 6g) and the ground truth image (Fig. 6h)

reconstruction tasks where a good quality version of the gradient of the image
is available, along with a noisy version of the image itself. Since the purpose of
the present paper is to demonstrate the capabilities of the TVL∞ regulariser,
we leave that for future work.
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Abstract. In parameter estimation problems an important issue is the
approximation of the confidence region of the estimated parameters.
Especially for models based on differential equations, the needed compu-
tational costs require particular attention. For this reason, in many cases
only linearized confidence regions are used. However, despite the low
computational cost of the linearized confidence regions, their accuracy
is often limited. To combine high accuracy and low computational costs,
we have developed a method that uses only successive linearizations in
the vicinity of an estimator. To accelerate the process, a principal axis
decomposition of the covariance matrix of the parameters is employed.
A numerical example illustrates the method.

Keywords: Parameter estimation · Nonlinear confidence region ·
Covariance matrix · Differential equations

1 Introduction

To simplify the notation, we consider a nonlinear model f(t, θ), with θ ∈ R
n and

t ∈ R, which does not depend on an additional (dynamical) system. We assume
that f is differentiable with respect to θ and continuous with respect to t.

We consider the approximation of a confidence region about parameter val-
ues estimated by nonlinear least squares. The parameters are estimated by using
experimental data yi in some given points ti with i = 1, . . . ,m. The observed val-
ues contain unknown errors ei that we assume additive, so the response variable
can be modeled by

yi = f(ti, θtrue) + ei, (1)

where θtrue is the unknown true value of the parameters. Therefore, the least
squares estimator θ̂ is the value that solves the following problem

θ̂ = argmin
1
2
S(θ), (2)

where S(θ) is the residual sum of squares
c© IFIP International Federation for Information Processing 2016
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L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 180–188, 2016.
DOI: 10.1007/978-3-319-55795-3 16



Successive Approximation of Nonlinear Confidence Regions (SANCR) 181

S(θ) =
m∑

i=1

(yi − f(ti, θ))2. (3)

We assume that the model is correct and that the errors are normal, independent
and identically distributed (iid) random variables with zero mean and variance
σ2, i.e. ei ∼ N(0, σ2).

The confidence regions are here interpreted (from the frequentistic perspec-
tive [14]) as the regions in the parameter space covering the true value of the
parameters θtrue, in large samples, with probability approximately 1 − α.

The use of linearized confidence regions with nonlinear algebraic models has
been extensively treated in literature, see for example [1,2,6,8,11,16]. In par-
ticular, it has been shown that confidence regions derived for the linear case
can be used in linearized form also for nonlinear models, but in many cases
with limited accuracy [18]. Furthermore, there are approximation techniques for
nonlinear models that are not based on linearizations [3,10,17,19].

To simplify the exposition, in this work we consider an algebraic model,
but the method can be used for more complex models. In fact, the problem to
approximate nonlinear confidence regions for implicit models, i.e. models based
on a system of (differential) equations has been considered from different points
of view and for different kind of applications by several authors. To cite only
few of them, see the work [18] and the references therein for the design under
uncertainty, [20] for an application to ground water flow, [13] for ecological sys-
tems, and [15] for additional examples. Newly, it has been presented a method
based on second-order sensitivity for the approximation of nonlinear confidence
regions applied to ODE based models [12]. It has been shown that higher order
sensitivities give a higher accurate approximation of the confidence regions than
methods using only the first order sensitivities.

With this work we show that the approximation using only linearized confi-
dence regions can be substantially improved by a systematic successive applica-
tion of linearizations, in the following called Successive Approximation of Non-
linear Confidence Regions (SANCR) method. We show results for the case with
only two model parameters. An extension to more than two parameters is tech-
nically straightforward and could be partially parallelized, but the effect of suc-
cessive linearizations in more than two (parameter space) dimensions has yet to
be studied in this framework.

This paper is organized as follows (i) In Sect. 2 we report the two methods
on which our approach is based; (ii) In Sect. 3 we describe the new method; (iii)
In Sect. 4 we show a numerical realization of the SANCR method.

2 Linearized Confidence Region and Likelihood Ratio
Test

As explained above, there are several methods to approximate (nonlinear) con-
fidence regions. Our method is based on the following two approaches [19].
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For a given estimator θ̂ of the parameter θ, we consider:

(i) The method derived from the likelihood ratio test (LR)

−2 log
(
L(θ)/L(θ̂)

) ≤ γ2, (4)

from which it follows

S(θ) − S(θ̂) ≤ γ2. (5)

where L is the likelihood function and γ2 is the confidence level.
(ii) The method based on the Wald test that leads to the linearized confidence

regions (CL):

(θ − θ̂)T Cov−1(θ − θ̂) ≤ γ2, (6)

where Cov is the estimated covariance matrix of the parameters. There are
several approximations of Cov [18], we use the one based on the Jacobian
J of f :

Cov = s2(JT J)−1, (7)

where

Ji,j =
∂f(ti, θ)

∂θj
. (8)

The level γ2 = χ2
1−α,n is given by the 1 − α percentile of the chi-square

distribution with n degrees of freedom in case σ2 is known, and it is γ2 =
s2nF(1−α,n,m−n) in case σ2 is unknown, but approximated by s2 = S(θ̂)/(m−n).
It has been proved [7] that these two confidence regions are asymptotically equiv-
alent, but far from the asymptotic behavior, i.e. in case of a small number of
data, they perform differently as presented in [18]. Additionally, our method
show the limitation of linearized confidence regions based only on (6).

One of the major goals in defining the confidence regions is the reduction
of the costs associated to their computation. From the perspective of the com-
putational costs, the method CL is cheap since it needs only one evaluation of
the covariance matrix at the parameter value θ̂, while the method LR is much
more expensive because it is based on the evaluation of the functional S in an
adequately high number of points θ in the vicinity of θ̂ to produce a contour. In
addition, the extension of the confidence region is not known a priori. In practice,
the number of function evaluations needed for the method LR is in the order of
several thousands, for example in our case with two parameters we use a grid of
104 points for the method LR.

On the contrary, as indicated in the expression (7), the covariance matrix
can be evaluated at the cost of building the Jacobian J . Therefore, the major
computational costs for the method CL are given by the computation of the
derivatives of the model f with respect to the parameters. Thus, we have few
computations of a linearized model for the method CL while many thousand
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computations of a nonlinear model are needed for the method LR. Unfortunately,
the accuracy of these two methods is inversely related to their computational
costs, with the CL method being much more inaccurate if the model is highly
nonlinear. We remind that both methods are only asymptotically exact for linear
models and their quality decreases far from the asymptotic behavior.

Therefore, a compromise between computational costs and precision is highly
required for many practical applications especially in case the model is based on
differential equations. To this aim we established a new method combining low
computational costs and high accuracy.

3 Successive Linearizations of Nonlinear Confidence
Regions

The SANCR method is based on the use of successive linearizations of the confi-
dence region, starting from the estimated parameter value θ̂ (see expression (2))
combined with the likelihood ratio test (5) as explained below examplarily for a
model with two parameters.

The likelihood ratio test is used to check whether a point belongs or not to
the approximate nonlinear confidence region. Instead of testing all points in the
vicinity of θ̂ we use an educated guess, i.e. the likelihood ratio test is performed
only on few points lying on the contour of the linearized confidence regions.
In fact, linearized confidence regions are ellipsoids in the parameter space and
the directions of the semi-axis are defined by the eigenvectors of the covariance
matrix as can be deduced by the quadratic form (6). Note that the covariance
matrix has dimension n × n, where n is the number of parameters to estimate.
Therefore, starting from θ̂ we determine the directions of the principal axes and
their length which is given by

�i = γ
√

λi,

where λi is the eigenvalue corresponding to the ith eigenvector. We perform the
likelihood ratio test for the extreme points of the semi-axes, see points θA, θB,
θC, θD in Fig. 1.

Let be θA the first point to be processed. If this point passes the test, i.e. if
the following condition is fulfilled

S(θA) − S(θ̂) ≤ γ2,

it is considered for the construction of the confidence region and the procedure
continues along the second axis. On the contrary, if the point θA does not pass
the test, it is discarded and a new candidate in the same direction θ̂θA is chosen.

A new point θ′
A along the selected semi-axis is taken by scaling �1 by a factor

α < 1 as shown in Fig. 2(a). This procedure is repeated with a new likelihood
ratio test and possibly a rescaling (reducing α) until a point that satisfies the
test
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θ̂

�1

θ1

θC

θB

θA

�2 θD

θ2

Fig. 1. Definition of the points to perform the likelihood ratio test for two parameters.

S(θ′
A) − S(θ̂) ≤ γ2

is found. Once this point, say θnew, has been found, we linearize the confidence
region around this new point. To this aim we calculate the Jacobian J(θnew) (see
(8)) and the covariance Cov(θnew) (see (7)).

After performing the eigendecomposition of the new covariance matrix, the
principal axes might have changed direction due to the nonlinearity of the model,
see Fig. 2(b). Following the new principal directions, we can analogously find
the next candidate points belonging to the confidence region, i.e. the points
θnew,A, θnew,C and θnew,D, see Fig. 2(b). The point θnew,B is not considered
because it is the opposite extremal point of the same principal axis. In fact,
instead of taking θnew,B, we perform the same procedure starting from θB to
approximate the confidence region in the direction θ̂θB. Therefore, this proce-
dure is repeated along all principal axes considering both directions.

Stopping Criterion. The search along one principal axis is stopped if the distance
of the next accepted point, let’s say θ′

new,A, to the previous one is less than a
given tolerance

|θ′
new,A − θnew,A| < TOL, (9)

then the point θnew,A is retained to define the nonlinear confidence region, see
Fig. 3.

Contour Approximation. The countour of the nonlinear confidence region is
approximated by connecting all retained points, in our case θnew,A, θnew,C,
θnew,D, θC, θD and θB. These points are linearly connected as shown in Fig. 3(b).
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Fig. 2. Scaling the semi-axes (a) and linearize at the new point (b).
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Fig. 3. Stopping criterion (a) and interpolation (b).
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4 Numerical Results

As an example the following model is considered

y = θ1t
θ2 ,

where the parameter θ1 and θ2 are estimated by the nonlinear least squares
method. To simulate the parameter estimation process we have applied per-
turbed data generated using the “true” values of the parameters according to
the following model response:

yi = f(ti, θtrue) + ei, (11)

where ei is a random variable distributed as N(0, σ2). The Table 1 indicates the
values θtrue and σ2 used in the calculations, and the least squares estimated val-
ues θ̂ found by minimizing S(θ) for a realization of the observations yi. Addition-
ally, the Table 2 includes the measurement positions ti. One stopping criterion of
the SANCR method is that the distance of two successive candidates is smaller
than a given tolerance TOL, see (9). We have used TOL = 0.15.

To evaluate the results of our approach we compare it with a Markov Chain
Monte Carlo (MCMC) method described in [9] using the associated MCMC
toolbox for Matlab. In fact, an alternative way to perform a statistical analysis
of nonlinear models is the use of the Bayes’s theorem [4]. Bayesian inference is
not the focus of our work, therefore we refer for example to [5] for a presentation
of the Bayesian approach. Since the MCMC method does not allow to easily
define a stopping criterion to assure convergence, we have set to 5 · 106 the
number of model evaluations in the MCMC code.

In Fig. 4 the approximations of the confidence region using the four methods
can be qualitatively compared. The blue dots (for the colors see the electronic
version) are the points of the MCMC method. The cyan ellipse is the linearized
confidence region of the method CL. The green curve is the confidence region
approximated by the method LR and the red curve is the confidence region
approximated by the SANCR method.

One can observe that the linearized confidence region CL is much smaller
than the MCMC approximation and that it is not centered in it. The SANCR
method is an approximation of the confidence region defined by the method
LR obtained at a much lower computational cost than the method LR itself.
The computational costs are reported in Tables 3 and 4. The method CL is
very cheap with only one evaluation of the nonlinear model and the evaluations
of the sensitivities with respect to the two parameters, but its quality is not
satisfactory. The SANCR method uses 59 function evaluations and 42 ellipses.
The latter correspond to 84 sensitivity evaluations according to the number of
two parameters. The LR and the MCMC methods have been used here with 104,
respectively 5 · 106, model evaluations.
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Table 1. Parameters and variance

σ2 θtrue θ̂

0.1 (0.725, 4) (0.7279, 3.9974)

Table 2. Position of measurement points

x1 x2 x3 x4 x5 x6

1.309 1.471 1.490 1.565 1.611 1.680

Table 3. Model evaluations of the four methods

SANCR CL LR MCMC

59 1 104 5 · 106

Table 4. Derivatives computations of the four methods

SANCR CL LR MCMC

84 2 0 0

Fig. 4. Confidence region approximated by the four methods.
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Abstract. Video streaming services need a server selection algorithm
that allocates efficiently network and server resources. Solving this opti-
mization problem requires information about current resources. A video
streaming system that relies entirely on the service provider for this task
needs an expensive monitoring infrastructure. In this paper, we con-
sider a two-phase approach that reduces the monitoring requirements by
involving the clients in the selection process: the provider recommends
several servers based on limited information about the system’s resources,
and the clients make the final decision, using information obtained by
interacting with these servers. We implemented these selection methods
in a simulator and compared their performance. The results show that the
two-phase selection is effective, improving substantially the performance
of lightweight service providers, with limited monitoring capabilities.

Keywords: Content networks · Video streaming · Server selection ·
Multi-criteria decision algorithms

1 Introduction

An essential task of a video streaming service provider is to select a suitable con-
tent server. This task can be formalized as a multi-criteria optimization problem,
that takes into account various static and dynamic attributes of the system’s
components. The goal is to allocate efficiently the network and server resources,
while providing a suitable Quality of Experience (QoE) to the service users.

These problems are NP-complete, in general, but practical server selection
algorithms are available. As these algorithms need information about network
and server resources, a service provider has to deploy a complex monitoring
infrastructure in order to use them. Lightweight service providers, without mon-
itoring capabilities, can only make suboptimal decisions.

In this paper, we consider a more flexible approach, that splits the selection
process between the service provider and the clients. The provider recommends
a short list of content servers, using limited information (e.g., the lengths of
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the paths between servers and clients). The client refines the selection using
additional information, obtained by interacting directly with these servers. The
provider and the clients can use various combinations of algorithms, correspond-
ing to different capabilities to obtain information about the system, and different
tradeoffs between performance and complexity. In particular, this approach can
improve the performance for lightweight service providers.

The paper has the following structure. Section 2 introduces a generic video
streaming model and Sect. 3 describes the server selection methods. We imple-
mented these methods in a simulator, presented in Sect. 4. The results of the
simulations are discussed in Sect. 5, followed by a summary in Sect. 6.

2 Video Streaming Framework

We introduce in the following the generic model of online video streaming used
in this paper. Figure 1 shows the main actors, the interactions between them,
and the infrastructure used to deliver the service. We separate the management
of the service, assigned to a service provider (SP) entity, from the delivery of the
video content, performed by a collection of content servers (CS). An essential
function of the SP is to select a content server when a client initiates a session.

We assume over-the-top delivery, using video streaming over HTTP or a
similar technology [6]. The video content is stored on a collection of servers
deployed in the Internet, each video file being available from several servers.
These servers usually operate in a Content Delivery Network (CDN) [5]. We
expect efficient CDN operation, with server placement and content replication
adapted to the video streaming traffic. The video streaming system can include
a CDN, or use the services of one or more CDN providers [1].

Fig. 1. Video streaming model: (a) Actors and interactions. (b) Infrastructure.
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Table 1. Information used by service providers for content server selection.

Static or quasi-static information Dynamic information

Lists of content servers and video files Available capacity of the content servers

Mapping of video content to servers and
of clients and servers to network nodes

Available capacity of the paths between
servers and clients

Length of server-client network paths Admission control for servers and paths

A video streaming session starts with the following interactions (Fig. 1a):

– The client sends a request to the SP, specifying the desired video content.
– The SP runs a server selection algorithm and replies with a list of servers that

could deliver the requested video content (or rejects the request). Table 1 lists
the information used by the SP in the server selection process.

– In a single-phase selection process, the client simply asks one of the servers
indicated by the provider to deliver the desired video content.

– In a two-phase selection process, the client chooses a server from the provider’s
list by running its own selection algorithm, with additional information.

For example, if the service is implemented using the DASH standard [6], the
provider can answer with a Media Presentation Description (MPD) file, con-
taining information about the encoding of the video content (including available
resolutions and data rates) and the URLs of the servers that can deliver it.

We assume that the main bottlenecks of the transport network are the links
between the autonomous systems (AS) of the network service providers. There-
fore, the network is modeled as a collection of interconnected nodes, correspond-
ing to an AS-level, multi-tier network topology, similar to the Internet topology
(Fig. 1b). The clients and the content servers are attached to these network
nodes. The Border Gateway Protocol (BGP), responsible for inter-domain rout-
ing in the Internet, determines a single best path between ASes, based on net-
work service provider policies and path length. Load balancing on multiple paths
would help to allocate more efficiently the network resources to the video stream-
ing sessions, and could be achieved using application-level overlays. We consider,
therefore, this additional capability for some of the server selection algorithms.

3 Content Server Selection

Multi-Criteria Decision Algorithm (MCDA). Selection of a server and a path
in content delivery systems can be formulated as a multi-criteria optimization
problem. These problems are NP-complete in general, and are solved in practice
using heuristics methods. Practical and efficient methods have been proposed for
server and path selection based on Multi-Criteria Decision Algorithms (MCDA)
[3]. The variant of MCDA used in this paper is described below:
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– The algorithm determines a set of candidate solutions, S = {Si}i∈1,...,n, from
information about the request and the delivery system. A candidate solution is
a vector of decision variables, Si = (vi,j)j∈1,...,m, representing characteristics
of a server and a path that could deliver the requested content.

– For each candidate solution Si and variable vi,j , the algorithm calculates the
component achievement function Ri,j = ri,j−vi,j

ri,j−ai,j
, where vi,j is the value of the

variable, while ri,j and ai,j are the reservation level and aspiration level for
this variable, respectively (the algorithm can be extended with more complex
functions). We use two decision variables: the available (unused) capacity of
the server and the available capacity (unused bandwidth) of the path. For
these variables, the reservation level is a lower bound for suitable solutions,
and the aspiration level is an upper bound beyond which the preference of the
solutions is similar. We set ai,j to the maximum capacity of the server and
of the path, respectively, and ri,j to the amount of server capacity and path
capacity consumed by a session, respectively.

– The algorithm calculates the rank of each solution, Ri = minj{Ri,j}, and then
determines the index of the best solution, argmini{Ri}.

Single-Phase Selection. The single-phase selection relies entirely on the service
provider to find suitable servers for the clients’ sessions. In its simplest variant,
the provider answers a client’s request by indicating a single server [3]. We con-
sider a more general variant, in which the provider answers with an ordered list
of servers. The client can start the session by connecting to one of these servers
and use the others as back-up [1]. By delivering a list of servers, the provider
enables the client to improve the initial server selection and/or use certain adap-
tive streaming techniques [2]. The selection proceeds as follows:

– The service provider maintains a resource database with the information about
network and content servers that is necessary for server selection. The database
contains static information and some of the dynamic information listed in
Table 1, depending on the algorithm being used.

– When a service request arrives, the provider determines an ordered list of suit-
able servers and delivers it to the client. The selection is based on information
received in the service request (e.g., client and video ids) and information
available in the resource database. If the provider does not find any suitable
server the request is rejected.
Candidate solutions consist of a server that has a copy of the requested video
file and a path from that server to the client. The selection algorithm takes as
input a set of candidate solutions that (optionally) satisfy additional require-
ments. The provider can use a range of server selection algorithms, that offer
different tradeoffs between the complexity of the system and the optimality of
the solution (e.g., different requirements for the information collected by the
provider about network and servers). The algorithms used in our simulation
experiments are listed in Table 2.

– If the request is accepted, the client starts the video session by connecting to
the first server in the list. In case of failure, the client can try the next servers,
without having to ask the provider to recommend another server.
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Table 2. Server selection algorithms used by the service provider.

Algorithm Input Output (list of servers)

Random servers Set of feasible solutions Randomly chosen servers; shortest
or random path

Closest servers Set of feasible solutions. Length of
the paths from servers to client

Servers with the shortest paths to
the client

MCDA Set of feasible solutions. Available
capacity of the servers and the
paths

Servers in the solutions with the
highest MCDA rank

This approach simplifies the functionality of the client. On the other hand,
the service provider has, essentially, two main options: algorithms that use only
static information and offer poor performance and algorithms that can achieve
much better performance, but require an expensive monitoring infrastructure.

Two-Phase Selection. We consider now a more flexible, two-phase approach,
that involves the clients in the selection process:

– The provider’s resource database contains only the information about network
and servers that is necessary for a preliminary selection: static and quasi-
static information (Table 1) and, possibly, dynamic information that is easier
to collect (e.g., server load).

– When a request arrives, the service provider makes a preliminary server selec-
tion and delivers to the client a short, ordered list of recommended servers.
The procedure is essentially the same as for single-phase selection, using algo-
rithms that match the limited information collected by the provider: e.g.,
random servers or closest servers.

– If the request is accepted, the client performs the second phase of the selection,
choosing the server that will be used by the video streaming session. The
input of the client’s selection algorithm is the list of servers received from the
provider and additional information obtained by the client:

1. Local information: Client capabilities, processor and link load.
2. Current state of the recommended servers: Reports from the servers, indi-

cating if they can handle the request and/or the available capacity.
3. Current state of the paths between the servers and the client: Throughput

of the connection with each server.
The client can use MCDA based on available server and path capacity, or
choose the least loaded server, depending on the information it can obtain.

Admission Control. The video streaming sessions have to ensure continuous
playout. This requires timely data delivery, and hence a certain lower bound
for the end-to-end data rate. An important issue, therefore, is to add some
form of admission control to the server selection process. This can be achieved
by removing the solutions with fully loaded servers or paths from the set of
candidate solutions given as input to the selection algorithms.
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Admission control is simpler for content servers. The available capacity can
be estimated by a local monitoring application and reported by the servers
to the provider or the clients. Moreover, a fully loaded server can reject addi-
tional requests. This offers basic admission control, independent of the selection
process. However, it is more difficult to determine if the path from a server to a
client can handle additional sessions. The service providers need for this purpose
a network monitoring infrastructure that measures the throughput between net-
work nodes. The clients can measure the throughput of the connections with the
recommended servers. These end-to-end measurements are more relevant, but
increase the delay and overhead of session establishment. Also, they may fail to
detect initial congestion and avoid the QoE degradation of current sessions.

4 Simulation Software

We analyzed the performance of the server selection methods described in Sect. 3
by simulation. The simulation software developed for this purpose is written in
C++ and uses the discrete event simulator OMNeT++ [8] as basic simulation
engine. Figure 2 shows the main components of the simulation software.

Fig. 2. High-level architecture of the simulation software.

The class ResourceManager provides a resource database with information
about the entire system infrastructure: network topology (nodes and links, link
capacity and load), network paths, list of content servers (server capacity and
load), mapping of video content to servers, mapping of clients and servers to net-
work nodes. The simulations are driven by the RequestProcess, which generates
the service requests, manages the video streaming sessions, and collects statistics.
When a session starts or ends, the RequestProcess notifies the ResourceManager,
which updates accordingly the load of the server and the load of the links on the
path from the server to the client.

The server selection process is implemented by the classes ServiceProvider
and ServiceClients, and obtains information about system resources from the
ResourceManager. The class ServiceProvider handles the clients’ service requests
and implements the server selection algorithms run by the service provider for
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single-phase and two-phase selection (Table 2). The class ServiceClients imple-
ments the server selection algorithms run by the clients in two-phase selection.
The network model uses random topologies generated using the tool aSHIIP [7]
and the network nodes are the autonomous systems (AS) of the network ser-
vice providers (Fig. 1b). The topologies have a multi-tier structure similar to the
Internet. We assume that this structure corresponds to the usual business rela-
tions between network service providers: peering relations between nodes in the
same tier, and customer-provider relations between nodes in different tiers, with
the customer in the lower tier. The paths used in the simulations are similar to
the BGP paths, according to the relations between network providers [4].

The clients and the content servers are attached to network nodes. Servers are
deployed all over the network, in well-connected nodes, close to clients, taking
into account the number of links of the node and their bandwidth.

The resources consumed by the video streaming sessions are measured using a
metric for server capacity and a metric for link capacity. To simplify the analysis,
we assume that a session consumes 1 unit of server capacity and 1 unit of link
capacity. The system is provisioned by assigning a fixed maximum capacity to
servers and links, which is available for video streaming. The servers have the
same capacity and are deployed in clusters; better connected nodes have larger
clusters. The network is provisioned by assigning capacity to links according to
its hierarchical structure, with higher capacity in upper tiers.

The main performance metric used in the analysis of the server selection
process is the success rate, defined as the ratio between the number of successful
service requests and the total number of service requests. A request is successful
if the system has sufficient server and network resources to deliver the requested
video content to the client, with the desired quality, for its entire duration.

Failures can occur in the server selection phase or during the video streaming
session. If admission control is available, a request is rejected when the selection
process does not find a server and a path with sufficient unused capacity; the
load of the system remains unchanged. Otherwise, a new session is created, which
may overload the server and/or some links on the path from server to client. The
RequestProcess monitors the current sessions and updates their state. If a session
has been successful so far and does not have sufficient resources any more, its
state changes from success to fail.

5 Performance Evaluation

We discuss in this section the results of simulations with single-phase and two-
phase selection, for different selection algorithms. The experiments use a network
with 1000 nodes, structured into 4 tiers, and (up to) 3 paths for any pair of nodes.
The network is provisioned so that the number of concurrent sessions can reach
the total capacity of the servers, 61500 sessions, for a suitable server selection.
Service requests are generated at random time intervals with exponential distri-
bution. We measure the session success rate as a function of the request rate.
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Table 3. Configurations used for server selection by the service provider.

Name Server and path selection algorithm Admission control (AC)

RandRand Random servers and paths Server reject

RandShrt Random servers, shortest paths Server reject

NearSrv Servers with shortest paths to client Server reject

MCDA MCDA for available server and path capacity AC for servers and paths

Fig. 3. Single-phase selection: (a) with session abort; (b) without session abort.

Analysis of Single-Phase Selection. Figure 3 shows the success rate for single-
phase selection and the configurations in Table 3. Service providers with net-
work monitoring capability can use MCDA and admission control for servers
and paths. The success rate of MCDA is equal to 1 for request rates up to 150
requests/sec and about 60000 concurrent sessions, close to the total server capac-
ity (the mean session duration is 400 s). The performance drops drastically if
the providers have only static information and select random servers or closest
servers, without admission control. The degradation is due to sessions rejected
by fully loaded servers and, especially, congestion of network links.

Congested sessions may be aborted due to poor QoE. The freed resources
can then be used to start other sessions, which may be successful (e.g., their
paths do not include congested links). Figure 3 shows the simulations results
when the congested sessions are aborted and when they are allowed to continue.
Important performance differences appear for randomly chosen servers and/or
paths, because the allocation of network resources is less efficient.

Intuitively, the performance should improve when the load is distributed on
multiple network paths. We observe, however, that using the shortest path is
better than the random choice of a path (e.g., RandShrt versus RandRand).
In a multi-tier network with valley-free paths, the shortest path may avoid the
core of the network, while the other paths are more likely to cross it (e.g., the
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paths between SC2 and CG1 in Fig. 1). Thus, the random choice of the path
concentrates the traffic in the network core. Therefore, if multiple paths are
available, the choice should take into account the path load (e.g., using MCDA).

For similar reasons, the performance improves when the provider selects the
servers with the shortest paths to the client (NearSrv), instead of choosing them
randomly (e.g., RandRand, RandShrt): the sessions use less network resources
and the paths are more likely to avoid the core. However, the performance of
NearSrv selection is very sensitive to server placement.

Analysis of Two-Phase Selection. In the two-phase selection process, the
provider and the clients can use various combinations of algorithms. Our main
goal is to see the effects of this approach on the performance of the video stream-
ing services offered by lightweight providers. We assume, therefore, that the
provider has global, static information about the entire system, and the clients
can obtain dynamic information for a particular request and several candidate
servers.

Fig. 4. Two-phase versus single-phase selection for: (a) NearSrv; (b) RandShrt.

Figure 4 shows the simulation results for the following configurations:

– TpNearSrvMcda/TpRandShrtMcda: Provider: NearSrv/RandShrt. Client:
MCDA for available server and path capacity. Congested sessions are aborted.

– TpNearSrvMcdaClac/TpRandShrtMcdaClac: Similar to the previous config-
uration, with client admission control for servers and paths.

– The provider sends a list of 3 recommended servers, out of 8 candidates.
– The results for single-phase selection using NearSrv, RandShrt, and MCDA

are added to Fig. 4 to facilitate the performance comparison.

The two-phase selection clearly improves the success rate with respect to
single-phase selection when the provider chooses the recommended servers using
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NearSrv or RandShrt and the clients use MCDA. NearSrv can achieve better per-
formance than RandShrt, for a suitable placement of the servers in the network,
but the performance varies significantly depending on server placement.

However, the two-phase selection cannot reach the performance of the single-
phase selection using MCDA (with admission control): the provider runs MCDA
with the entire set of candidate solutions, while the client has a short list of
servers, chosen without information about system load. The size of the list is a
trade-off between system performance and the delay and overhead of the inter-
actions between client and servers, that collect additional information for the
final selection. The results suggest that a short list of 3 servers is sufficient.

The performance improves significantly when the clients add admission con-
trol to MCDA, becoming close to the performance of a provider that is able to
run MCDA itself. The improvement is more important when the provider uses
RandShrt, which is more vulnerable to network congestion.

6 Conclusions

A service provider that offers over-the-top video streaming needs an expensive
monitoring infrastructure for efficient server selection. Lightweight providers,
without such capabilities, can only use simple selection methods, based on static
information. Simulation results show a large performance gap between these two
approaches. We explored, therefore, a two-phase selection process, that aims at
improving the performance for lightweight providers, by involving the clients.

We studied the performance of two-phase selection by simulation. The results
show that the approach is effective, improving substantially the success rate.
In the ideal case, when the clients can reliably apply admission control, the
performance of the two-phase selection becomes close to the performance of a
provider that runs MCDA using a network monitoring infrastructure.

Future work will focus on implementing the two-phase selection, using, e.g.,
DASH [6]. The critical issue is to enable the clients to obtain the information
needed for the final selection with minimum delay and overhead, and sufficient
accuracy. Ideally, this information could be collected during the initial buffering
phase. The DASH standard offers several features that could be exploited for this
purpose, e.g., chunks of video content can be downloaded from several servers.
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Abstract. In this paper we formulate a time-optimal control problem
in the space of probability measures endowed with the Wasserstein met-
ric as a natural generalization of the correspondent classical problem in
R

d where the controlled dynamics is given by a differential inclusion.
The main motivation is to model situations in which we have only a
probabilistic knowledge of the initial state. In particular we prove first a
Dynamic Programming Principle and then we give an Hamilton-Jacobi-
Bellman equation in the space of probability measures which is solved
by a generalization of the minimum time function in a suitable viscosity
sense.

Keywords: Optimal transport · Differential inclusions · Time optimal
control

1 Introduction

The controlled dynamics of a classical time-optimal control problem in finite-
dimension can be presented by mean of a differential inclusion as follows:{

ẋ(t) ∈ F (x(t)), for a.e. t > 0,

x(0) = x0 ∈ R
d,

(1)

where F is a set-valued map from R
d to R

d. The problem in this setting is to
minimize the time needed to steer x0 to a given closed target set S ⊆ R

d, S �= ∅,
defining the minimum time function T : Rd → [0,+∞] by

T (x0) := inf{T > 0 : ∃x(·) solving (1) such that x(T ) ∈ S}. (2)
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The main motivation of this work is to model situations in which the knowl-
edge of the starting position x0 is only probabilistic (for example in the case of
affection by noise) and this can happen even if the evolution of the system is
deterministic.

We thus consider as state space the space of Borel probability measures with
finite p-moment endowed with the p-Wasserstein metric Wp(·, ·), (Pp(Rd),Wp).
In [2] the reader can find a detailed treatment about Wasserstein distance.

Following this idea we choose to describe the initial state by a probability
measure μ0 ∈ Pp(Rd) and for its evolution in time we take a time-depending
probability measure on R

d, μ := {μt}t∈[0,T ] ⊆ Pp(Rd), μ|t=0 = μ0. In order to
preserve the total mass μ0(Rd) during the evolution, the process will be described
by a (controlled) continuity equation

{
∂tμt + div(vtμt) = 0, 0 < t < T,

μ|t=0 = μ0,
(3)

where the time-depending Borel velocity field vt : Rd → R
d has to be chosen in

the set of L2
μt

-selections of F in order to respect also the classical underlying
control problem (1) which is the characteristic system of (3) in the smooth case.

It is well known that if vt(·) is sufficiently regular then the solution of the con-
tinuity equation is characterized by the push-forward of μ0 through the unique
solution of the characteristic system.

In Theorem 8.2.1 in [2] and Theorem 5.8 in [4], the so called Superposition
Principle states that, if we conversely require much milder assumptions on vt, the
solution μt of the continuity equation can be characterized by the push-forward
et�η, where et : Rd × ΓT → R

d, (x, γ) 	→ γ(t), ΓT := C0([0, T ];Rd) and η is a
probability measure in the infinite-dimensional space R

d × ΓT concentrated on
those pairs (x, γ) ∈ R

d ×ΓT such that γ is an integral solution of the underlying
characteristic system, i.e. of an ODE of the form γ̇(t) = vt(γ(t)), with γ(0) = x.
We refer the reader to the survey [1] and the references therein for a deep analysis
of this approach that is at the basis of the present work.

Pursuing the goal of facing control systems involving measures, we define a
generalization of the target set S by duality. We consider an observer that is
interested in measuring some quantities φ(·) ∈ Φ; the results of this measure-
ments are the average of these quantities w.r.t. the state of the system. The
elements of the generalized target set S̃Φ

p are the states for which the results of
all these measurements are below a fixed threshold.

Once defined the admissible trajectories in this framework, the definition
of the generalized minimum time function follows in a straightforward way the
classical one.

Since classical minimum time function can be characterized as unique vis-
cosity solution of a Hamilton-Jacobi-Bellman equation, the problem to study a
similar formulation for the generalized setting would be quite interesting. Several
authors have treated a similar problem in the space of probability measures or
in a general metric space, giving different definitions of sub-/super differentials
and viscosity solutions (see e.g. [2,3,8–10]). For example, the theory presented
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in [10] is quite complete: indeed there are proved also results on time-dependent
problems, comparison principles granting uniqueness of the viscosity solutions
under very reasonable assumptions.

However, when we consider as metric space the space P2(Rd), we notice that
the class of equations that can be solved is quite small: the general structure of
metric space of [10] allows only to rely on the metric gradient, while P2(Rd)
enjoys a much more richer structure in the tangent space (which is a subset
of L2).

Dealing with the definition of sub-/superdifferential given in [8], the major
bond is that the “perturbed” measure is assumed to be of the form (IdRd + φ) �μ
in which a (rescaled) transport plan is used. It is well known that, by Brenier’s
Theorem, if μ 
 L d in this way we can describe all the measures near to μ.
However in general this is not true. Thus if the set of admissible trajectories
contains curves whose points are not all a.c. w.r.t. Lebesgue measure (as in our
case), the definition in [8] cannot be used.

In order to fully exploit the richer structure of the tangent space of P2(Rd),
recalling that AC curves in P2(Rd) are characterized to be weak solutions of the
continuity equation (Theorem 8.3.1 in [2]), we considered a different definition
than the one presented in [8] using the Superposition Principle.

The paper is structured as follows: in Sect. 2 we give the definitions of the
generalized objects together with the proof of a Dynamic Programming Princi-
ple in this setting. In Sect. 3 we focus on the main result of this work, namely we
outline a Hamilton-Jacobi-Bellman equation in P2(Rd) and we solve it in a suit-
able viscosity sense by the generalized minimum time function, assuming some
regularity on the velocity field. Finally, in Sect. 4 we illustrate future research
lines on the subject.

2 Generalized Minimum Time Function

Definition 1 (Standing Assumptions). We will say that a set-valued func-
tion F : Rd ⇒ R

d satisfies the assumption (Fj), j = 0, 1, 2 if the following hold
true

(F0) F (x) �= ∅ is compact and convex for every x ∈ R
d, moreover F (·) is contin-

uous with respect to the Hausdorff metric, i.e. given x ∈ X, for every ε > 0
there exists δ > 0 such that |y − x| ≤ δ implies F (y) ⊆ F (x) + B(0, ε) and
F (x) ⊆ F (y) + B(0, ε).

(F1) F (·) has linear growth, i.e. there exist nonnegative constants L1 and L2

such that F (x) ⊆ B(0, L1|x| + L2) for every x ∈ R
d,

(F2) F (·) is bounded, i.e. there exist M > 0 such that ‖y‖ ≤ M for all x ∈ R
d,

y ∈ F (x).

Definition 2 (Generalized target). Let p ≥ 1, Φ ⊆ C0(Rd,R) such that the
following property holds

(TE) there exists x0 ∈ R
d with φ(x0) ≤ 0 for all φ ∈ Φ.
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We define the generalized target S̃Φ
p as follows

S̃Φ
p :=

{
μ ∈ Pp(Rd) :

∫
Rd

φ(x) dμ(x) ≤ 0 for all φ ∈ Φ

}
.

For an analysis of the properties of the generalized target see [5] or [6] for
deeper results.

Definition 3 (Admissible curves). Let F : Rd ⇒ R
d be a set-valued function,

I = [a, b] a compact interval of R, α, β ∈ Pp(Rd). We say that a Borel family of
probability measures μ = {μt}t∈I ⊆ Pp(Rd) is an admissible trajectory (curve)
defined in I for the system ΣF joining α and β, if there exists a family of Borel
vector fields v = {vt(·)}t∈I such that

1. μ is a narrowly continuous solution in the distributional sense of the conti-
nuity equation ∂tμt + div(vtμt) = 0, with μ|t=a = α and μ|t=b = β.

2. JF (μ, v) < +∞, where JF (·) is defined as

JF (μ, v) :=

⎧
⎪⎪⎨

⎪⎪⎩

∫

I

∫

Rd

(
1 + IF (x) (vt(x))

)
dμt(x) dt, if ‖vt‖L1

μt
∈ L1([0, T ]),

+∞, otherwise,

(4)

where IF (x) is the indicator function of the set F (x), i.e., IF (x)(ξ) = 0 for all
ξ ∈ F (x) and IF (x)(ξ) = +∞ for all ξ /∈ F (x).

In this case, we will also shortly say that μ is driven by v.

When JF (·) is finite, this value expresses the time needed by the system to
steer α to β along the trajectory μ with family of velocity vector fields v.

Definition 4 (Generalized minimum time). Given p ≥ 1, let Φ ∈ C0(Rd;R)
and S̃Φ

p be the corresponding generalized target defined in Definition 2. In analogy
with the classical case, we define the generalized minimum time function T̃Φ

p :
Pp(Rd) → [0,+∞] by setting

T̃Φ
p (μ0) := inf {JF (μ, v) : μ is an admissible curve in [0, T ], (5)

driven by v, with μ|t=0 = μ0, μ|t=T ∈ S̃Φ
p

}
,

where, by convention, inf ∅ = +∞.
Given μ0 ∈ Pp(Rd), an admissible curve μ = {μt}t∈[0,T̃ Φ

p (μ0)]
⊆ Pp(Rd),

driven by a time depending Borel vector-field v = {vt}t∈[0,T̃ Φ
p (μ0)]

and satisfying

μ|t=0 = μ0 and μ|t=T̃ Φ
p (μ0)

∈ S̃Φ
p is optimal for μ0 if

T̃Φ
p (μ0) = JF (μ, v).
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Some interesting results concerning the generalized minimum time function
together with comparisons with the classical definition are proved in the pro-
ceedings [5] and in the forthcoming paper [6].

Here we will focus our attention on the problem of finding an Hamilton-
Jacobi-Bellman equation for our time-optimal control problem.

First of all we need to state and prove a Dynamic Programming Principle
and, for this aim, the gluing result for solutions of the continuity equation stated
in Lemma 4.4 in [7] will be used.

Theorem 1 (Dynamic programming principle). Let p ≥ 1, 0 ≤ s ≤ τ , let
F : Rd ⇒ R

d be a set-valued function, let μ = {μt}t∈[0,τ ] be an admissible curve
for ΣF . Then we have

T̃Φ
p (μ0) ≤ s + T̃Φ

p (μs).

Moreover, if T̃Φ
p (μ0) < +∞, equality holds for all s ∈ [0, T̃Φ

p (μ0)] if and only if
μ is optimal for μ0 = μ|t=0.

Proof. The proof is based on the fact that, by Lemma 4.4 in [7], the juxtaposition
of admissible curves is an admissible curve. Thus, for every ε > 0 we consider the
curve obtained by following μ up to time s, and then following an admissible
curve steering μs to the generalized target in time T̃Φ

p (μs) + ε. We obtain an
admissible curve steering μ0 to the generalized target in time s + T̃Φ

p (μs) + ε,
and so, by letting ε → 0+, we have T̃Φ

p (μ0) ≤ s + T̃Φ
p (μs).

Assume now that T̃Φ
p (μ0) < +∞ and equality holds for all s ∈ [0, T̃Φ

p (μ0)].
By taking s = T̃Φ

p (μ0) we get TΦ
p (μT̃ Φ

p (μ0)
) = 0, i.e., μT̃ Φ

p (μ0)
∈ S̃Φ

p . In particular,

μ steers μ0 to S̃Φ
p in time T̃Φ

p (μ0), which is the infimum among all admissible
trajectories steering μ0 to the generalized target. So μ is optimal.

Finally, assume that μ is optimal for μ0 and T̃Φ
p (μ0) < +∞. Starting from

μ0, we follow μ up to time s. Since μ is still an admissible curve steering μs to
the generalized target in time T̃Φ

p (μ0) − s, we must have T̃Φ
p (μs) ≤ T̃Φ

p (μ0) − s,
and so T̃Φ

p (μs) + s = T̃Φ
p (μ0), since the reverse inequality always holds true. ��

3 Hamilton-Jacobi-Bellman Equation

In this section we will prove that, under some assumptions, the generalized
minimum time functional T̃Φ

2 is a viscosity solution, in a sense we will precise, of a
suitable Hamilton-Jacobi-Bellman equation on P2(Rd). In this paper we assume
the velocity field to be continuous for simplicity. In the forthcoming paper [6]
we prove a result of approximation of L2

μ-selections of F with continuous and
bounded ones in L2

μ-norm that allows us to treat a more general case.
We recall that, given T ∈ ]0,+∞], the evaluation operator et : Rd ×ΓT → R

d

is defined as et(x, γ) = γ(t) for all 0 ≤ t < T . We set

TF (μ0) := {η ∈ P(Rd × ΓT ) : T > 0,η concentrated on trajectories of

γ̇(t) = v(γ(t)), with v ∈ C0(Rd;Rd), v(x) ∈ F (x)∀x ∈ R
d

and satisfies γ(0)�η = μ0},
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where μ0 ∈ P2(Rd).
It is not hard to prove the following result.

Lemma 1 (Properties of the evaluation operator). Assume (F0) and (F1),
and let L1, L2 > 0 be the constants as in (F1). For any μ0 ∈ P2(Rd), T ∈ ]0, 1],
η ∈ TF (μ0), we have:

(i) |et(x, γ)| ≤ (|e0(x, γ)|+L2) eL1 for all t ∈ [0, T ] and η-a.e. (x, γ) ∈ R
d×ΓT ;

(ii) et ∈ L2
η(Rd × ΓT ;Rd) for all t ∈ [0, T ];

(iii) there exists C > 0 depending only on L1, L2 such that for all t ∈ [0, T ] we
have ∥∥∥∥et − e0

t

∥∥∥∥
2

L2
η

≤ C (m2(μ0) + 1).

In the case we are considering, where the trajectory t 	→ et�η is driven by a
sufficiently smooth velocity field, we recover as initial velocity what we expected.

Lemma 2 (Regular driving vector fields). Let μ = {μt}t∈[0,T ] be an abso-
lutely continuous solution of

⎧⎪⎨
⎪⎩

∂tμt + div(vμt) = 0, t ∈ ]0, T [

μ|t=0 = μ0 ∈ P2(Rd),

where v ∈ C0
b (Rd;Rd) satisfies v(x) ∈ F (x) for all x ∈ R

d. Then if η ∈ TF (μ0)
satisfies μt = et�η for all t ∈ [0, T ], we have that

lim
t→0

∥∥∥∥et − e0
t

− v ◦ e0

∥∥∥∥
L2

η

= 0.

The proof is based on the boundedness of v and on the fact that, by hypothesis,
γ ∈ C1, γ̇(t) = v(γ(t)). The conclusion comes applying Lebesgue’s Dominated
Convergence Theorem.

We give now the definitions of viscosity sub-/superdifferential and viscosity
solutions that suit our problem. As presented in the Introduction, these concepts
are different from the ones treated in [2,3,8–10], due mainly to the structure of
P2(Rd).

Definition 5 (Sub-/Super-differential in P2(Rd)). Let V : P2(Rd) → R

be a function. Fix μ ∈ P2(Rd) and δ > 0. We say that pμ ∈ L2
μ(Rd;Rd) belongs

to the δ-superdifferential D+
δ V (μ) at μ if for all T > 0 and η ∈ P(Rd × ΓT )

such that t 	→ et�η is an absolutely continuous curve in P2(Rd) defined in [0, T ]
with e0�η = μ we have

lim sup
t→0+

V (et�η) − V (e0�η) −
∫

Rd×ΓT

〈pμ ◦ e0(x, γ), et(x, γ) − e0(x, γ)〉 dη(x, γ)

‖et − e0‖L2
η

≤ δ.

(6)
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In the same way, qμ ∈ L2
μ(Rd;Rd) belongs to the δ-subdifferential D−

δ V (μ) at μ

if −qμ ∈ D+
δ [−V ](μ). Moreover, D±

δ [V ](μ) is the closure in L2
μ of D±

δ [V ](μ) ∩
C0

b (Rd;Rd).

Definition 6 (Viscosity solutions). Let V : P2(Rd) → R be a function and
H : P2(Rd) × C0

b (Rd;Rd) → R. We say that V is a

1. viscosity supersolution of H (μ,DV (μ)) = 0 if there exists C > 0 depending
only on H such that H (μ, qμ) ≥ −Cδ for all qμ ∈ D−

δ V (μ) ∩ C0
b , δ > 0 and

μ ∈ P2(Rd).
2. viscosity subsolution of H (μ,DV (μ)) = 0 if there exists C > 0 depending

only on H such that H (μ, pμ) ≤ Cδ for all pμ ∈ D+
δ V (μ) ∩ C0

b , δ > 0 and
μ ∈ P2(Rd).

3. viscosity solution of H (μ,DV (μ)) = 0 if it is both a viscosity subsolution
and a viscosity supersolution.

Definition 7 (Hamiltonian Function). Given μ ∈ P2(Rd), we define the
map HF : P2(Rd) × C0

b (Rd;Rd) → R by setting

HF (μ, ψ) := −
[
1 + inf

η∈TF (μ)

∫
Rd

〈p(x), v(x)〉 dμ(x)
]
.

Theorem 2 (Viscosity solution). Assume (F0) and (F2). Then T̃Φ
2 (·) is a

viscosity solution of HF (μ,DT̃Φ
2 (μ)) = 0, with HF defined as in Definition 7.

Proof. The proof is splitted in two claims.

Claim 1. T̃Φ
2 (·) is a subsolution of HF (μ,DT̃Φ

2 (μ)) = 0.

Proof of Claim 1. Given η ∈ TF (μ0) and set μt = et�η for all t by the Dynamic
Programming Principle we have T̃Φ

2 (μ0) ≤ T̃Φ
2 (μs) + s for all 0 < s ≤ T̃Φ

2 (μ0).
Without loss of generality, we can assume 0 < s < 1. Given any pμ0 ∈
D+

δ T̃Φ
2 (μ0) ∩ C0

b , and set

A(s, pμ0 ,η) := − s −
∫
Rd×ΓT

〈pμ0 ◦ e0(x, γ), es(x, γ) − e0(x, γ)〉 dη,

B(s, pμ0 ,η) :=T̃Φ
2 (μs) − T̃Φ

2 (μ0) −
∫
Rd×ΓT

〈pμ0 ◦ e0(x, γ), es(x, γ) − e0(x, γ)〉dη,

we have A(s, pμ0 ,η) ≤ B(s, pμ0 ,η).
We recall that since by definition pμ0 ∈ L2

μ0
, we have that pμ0 ◦ e0 ∈ L2

η.
Dividing by s > 0 the left hand side, we observe that we can use Lemma 2,
indeed the velocity field v(·) associated to η ∈ TF (μ0) satisfies all the hypothesis
(the boundedness comes from (F2)) and so we have

lim sup
s→0+

A(s, pμ0 ,η)
s

= −1 −
∫
Rd×ΓT

〈pμ0 ◦ e0(x, γ), v ◦ e0(x, γ)〉 dη(x, γ).
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Recalling that pμ0 ∈ D+
δ T̃Φ

2 (μ0) and using Lemma 1(iii), we have

lim sup
s→0+

B(s, pμ0 ,η)
s

= lim sup
s→0+

B(s, pμ0 ,η)
‖es − e0‖L2

η

·
∥∥∥∥es − e0

s

∥∥∥∥
L2

η

≤ Cδ,

where C > 0 is a suitable constant (we can take twice the upper bound on F
given by (F2)).

We thus obtain for all η ∈ TF (μ0) that

1 +
∫
Rd×ΓT

〈pμ0 ◦ e0(x, γ), v ◦ e0(x, γ)〉 dη(x, γ) ≥ −Cδ.

By passing to the infimum on η ∈ TF (μ0) we have

−Cδ ≤ 1 + inf
η∈TF (μ0)

∫
Rd×ΓT

〈pμ0 ◦ e0(x, γ), v ◦ e0(x, γ)〉 dη(x, γ)

= 1 + inf
η∈TF (μ0)

∫
Rd

〈pμ0(x), v(x)〉 dμ0(x) = −HF (μ0, pμ0),

so T̃Φ
2 (·) is a subsolution, thus confirming Claim 1. �

Claim 2. T̃Φ
2 (·) is a supersolution of HF (μ,DT̃Φ

2 (μ)) = 0.

Proof of Claim 2. Given η ∈ TF (μ0), let us define the admissible trajectory
μ = {μt}t∈[0,T ] = {et�η}t∈[0,T ]. Given qμ0 ∈ D−

δ T̃Φ
2 (μ0) ∩ C0

b , we have∫
Rd×ΓT

〈qμ0 ◦ e0(x, γ),
es(x, γ) − e0(x, γ)

s
〉 dη(x, γ)

≤ 2δ

∥∥∥∥es − e0
s

∥∥∥∥
L2

η

− T̃Φ
2 (μ0) − T̃Φ

2 (μs)
s

.

Thus, using Lemma 2 and Lemma 1, we have∫
Rd×ΓT

〈qμ0 ◦ e0(x, γ), v ◦ e0(x, γ)〉 dη(x, γ) ≤ 3Cδ − T̃Φ
2 (μ0) − T̃Φ

2 (μs)
s

,

for all s > 0.
Then, by passing to the infimum on all admissible trajectories, we obtain

−HF (μ0, qμ0) − 1 = inf
η∈TF (μ0)

∫
Rd×ΓT

〈qμ0 ◦ e0(x, γ), v ◦ e0(x, γ)〉 dη(x, γ)

≤ 3Cδ − sup
η∈TF (μ0)

T̃Φ
2 (μ0) − T̃Φ

2 (μs)
s

.

Thus

HF (μ0, qμ0) ≥ −3Cδ + sup
η∈TF (μ0)

[
T̃Φ
2 (μ0) − T̃Φ

2 (μs)
s

− 1

]
.

By the Dynamic Programming Principle, recalling that
T̃Φ
2 (μ0) − T̃Φ

2 (μs)
s

−1 ≤ 0

with equality holding if and only if μ is optimal, we obtain HF (μ0, qμ0) ≥ −C ′δ,
which proves that T̃Φ

2 (·) is a supersolution, thus confirming Claim 2. ��
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4 Conclusion

In this work we have studied a Hamilton-Jacobi-Bellman equation solved by a
generalized minimum time function in a regular case. In the forthcoming paper
[6] an existence result is proved for optimal trajectories as well as attainability
properties in the space of probability measures. Furthermore, a suitable approx-
imation result allows to give a sense to a Hamilton-Jacobi-Bellman equation in
a more general case.

We plan to study if it is possible to prove a comparison principle for an
Hamilton-Jacobi equation solved by the generalized minimum time function, as
well as to give a Pontryagin maximum principle for our problem.
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Abstract. An optimal control problem of steady-state complex heat
transfer with monotone objective functionals is under consideration.
A coefficient function appearing in boundary conditions and reciprocally
corresponding to the reflection index of the domain surface is considered
as control. The concept of strong maximizing (resp. strong minimizing)
optimal controls, i.e. controls that are optimal for all monotone objec-
tive functionals, is introduced. The existence of strong optimal controls
is proven, and optimality conditions for such controls are derived. An
iterative algorithm for computing strong optimal controls is proposed.

Keywords: Conductive-convective-radiative heat transfer · Diffusion
approximation · Control problem · Strong optimal controls · Optimality
condition

1 Introduction

The interest in studying problems of complex heat transfer (where the radiative,
convective, and conductive contributions are simultaneously taken into account)
is motivated by their importance for many engineering applications. The com-
mon feature of such processes is the radiative heat transfer dominating at high
temperatures. The radiative heat transfer equation (RTE) is a first order integro-
differential equation governing the radiation intensity. The radiation traveling
along a path is attenuated as a result of absorption and scattering. The precise
derivation and analysis of such models can be found in the monograph [1].

Solutions to the RTE can be represented in the form of the Neumann series
whose terms are powers of an integral operator applied to a certain start func-
tion. The terms can be calculated using a Monte Carlo method, which may be
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interpreted as tracking the history of energy bundles from emission to adsorp-
tion on the boundary or within the participating medium. The method assumes
that the bundles start from random points, propagate in random directions, and
show the energy exchange due to random scattering (see e.g. [2]).

A way to avoid solving the integro-differential RTE is the use of expansions
of the local intensity in terms of spherical harmonics, with truncation to N terms
in the series, and substitution into the moments of the differential form of the
RTE (see e.g. [1]). This approach leads to the PN approximations, where N is
the approximation order. Especially interesting is the P1 (diffusion) approxima-
tion because it does not require high computational efforts. Using the diffusion
model instead of the integro-differential RTE becomes popular, and this is sub-
stantiated in various applications (e.g., image reconstruction [3] and modeling
the radiative transfer in biological tissues [4]). In this connection, the work [5]
can also be mentioned: It is shown there that the diffusion approximation yields
a good accuracy for temperatures up to 1200◦C. Thus, the diffuse approximation
can successfully be applied to various heat transfer problems where very high
accuracy is not required.

Optimal control problems of complex heat transfer draw the interest of
researchers working in applied fields, e.g. glass manufacturing [6–8], laser ther-
motherapy [9], the design of cooling systems [10,11], etc. A considerable number
of works is devoted to control problems related to evolutionary systems describ-
ing radiative heat transfer (see e.g. [6–10,12–14]). In the above-mentioned works,
the transfer of radiation is described by an integral-differential equation or by
its approximations. The temperature field is simulated by the conventional evo-
lutionary heat transfer equation with additional source terms accounting for the
contribution of radiation.

As for steady-state problems of complex heat transfer, there are few results in
this direction. It is worth to mention the work [11], where an optimal boundary
multiplicative control problem for a steady-state complex heat transfer model is
considered. The problem is formulated as the maximization of the energy outflow
from the model domain by controlling reflection properties of the boundary. The
solvability of this problem is proven based on new a priori estimates for solutions
of the model equations. Moreover, an analogue of the bang-bang principle arising
in control theory for ordinary differential equations is proven. Notice that the
optimization of energy in/out flow, which improves heating/cooling systems, is
a quite popular problem in many engineering applications. In [15–18], similar
problems are considered in the context of shape optimization.

In the current work, a conductive-convective-radiative heat transfer control
problem with monotone objective functionals is under consideration. The defi-
nition of monotone functionals looks as follows. Let θ and ϕ be the state vari-
ables of the model, and J(θ, ϕ) the objective functional. This functional is called
monotone increasing (resp. decreasing) if the relations θ1 ≤ θ2 and ϕ1 ≤ ϕ2,
a. e., imply the relation J(θ1, ϕ1) ≤ J(θ2, ϕ2) (resp. J(θ1, ϕ1) ≥ J(θ2, ϕ2)). It
should be noticed that such functionals appear very often in applications. For
example, the objective functional in the problem of maximum energy outflow is
a monotone one.
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Moreover, the concept of strong minimizing (resp. maximizing) optimal con-
trols, i.e. controls that yield minimal (resp. maximal) state functions is intro-
duced. Sufficient optimality conditions that do not involve solutions of adjoint
equations are derived.

An iterative algorithm for finding strong optimal controls is proposed, and its
convergence is proven. This, in particular, proves the existence of strong optimal
controls.

2 Problem Setting

The normalized diffusion model, P1 approximation, of radiative, conductive, and
convective heat transfer in a bounded domain Ω ⊂ R

3 looks as follow (see
[1,19–21]):

− aΔθ + v · ∇θ + bκa(|θ|θ3 − ϕ) = 0, (1)

− αΔϕ + κa(ϕ − |θ|θ3) = 0. (2)

Here, θ is the normalized temperature, ϕ the normalized intensity of radiation
averaged over all direction, κa the absorbtion coefficient, and v a prescribed
velocity field. The constants a, b, and α are defined by the formulas

a =
k

ρcp
, b =

4σn2T 3
max

ρcp
, α =

1
3κ − Aκs

,

where k is the thermal conductivity, cp the specific heat capacity, ρ the density,
σ the Stefan-Boltzmann constant, n the refractive index, Tmax the maximum
temperature in unnormalized model, κ := κs + κa the extinction coefficient, κs

the scattering coefficient. The coefficient A ∈ [−1, 1] describes the anisotropy of
scattering. The case A = 0 corresponds to isotropic scattering.

The following boundary conditions on Γ := ∂Ω are imposed:

a∂nθ + β(θ − θb) = 0, α∂nϕ + u(ϕ − θ4b ) = 0. (3)

Here, ∂n denotes the derivative in the direction of the outward normal n; θb =
θb(x), x ∈ Γ , and β = β(x), x ∈ Γ , are given non-negative functions describing
the normalized external temperature and the normalized overall heat transfer
coefficient, respectively. The function u = u(x), x ∈ Γ , describing the reflection
properties of the boundary is considered as control input.

The minimum (resp. maximum) control problem is formulated as finding a
control û ∈ L∞(Γ ), û(x) ∈ [u1(x), u2(x)], a.e. on Γ , such that for any admissible
control u the following relation holds: y(û) ≤ y(u) (resp. y(û) ≥ y(u), a.e. in Ω,
where y(û) and y(u) are solution pairs satisfying relations (1)–(3) with û and
u, respectively. Here, u1, u2 are given non-negative functions defining inequality
constraints imposed on the control.

It is clear that the control û is optimal in the sense of minimization (resp.
maximization) of monotone functionals outlined in Sect. 1.
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3 Problem Formalization

Assume that Ω be a bounded Lipschitz domain. Let Lp, p ∈ [1,∞], denotes
the Lebesgue space, and Hs(Ω) the Sobolev space W s

2 (Ω). Moreover, let the
following conditions be fulfilled:

(i) v ∈ H1(Ω), divv = 0;
(ii) β, u1, u2, θb ∈ L∞(Γ ), 0 < β0 ≤ β, 0 < u0 ≤ u1 ≤ u2, θb ≥

0, β0, u0 are const;
(iii) β + v · n ≥ 0, if v · n < 0.

Denote H = L2(Ω), V = H1(Ω), and define the norms, ‖ · ‖ and ‖ · ‖V , in H
and V , respectively, as follows:

‖f‖2 = (f, f), ‖f‖2V = ‖f‖2 + ‖∇f‖2, (f, g) =
∫

Ω

f(x)g(x)dx.

Definition 1. A pair {θ, ϕ} ∈ V × V is called a (weak) solution of the problem
(1)–(3) if

a(∇θ,∇η) + (v · ∇θ + bκa(|θ|θ3 − ϕ), η) +
∫

Γ

β(θ − θb)ηdΓ = 0 ∀η ∈ V, (4)

α(∇ϕ,∇ψ) + κa(ϕ − |θ|θ3, ψ) +
∫

Γ

u(ϕ − θ4b )ψdΓ = 0 ∀ψ ∈ V. (5)

Theorem 1 (see [21]). Let the conditions (i)–(iii) be true. Then the problem
(1)–(3) is uniquely solvable, a weak solution {θ, ϕ} belongs to

(
L∞(Ω)

)2 and
satisfies the inequalities 0 ≤ θ ≤ M and 0 ≤ ϕ ≤ M4, where M = ‖θb‖L∞(Γ ),
and the following estimate is true:

‖θ‖V + ‖ϕ‖V ≤ C, (6)

where C depends only on Ω, M , ‖β‖L∞(Γ ), ‖u‖L∞(Γ ), ‖v‖V , a, α, b, and κa.

Now, the conception of strong optimal controls will be introduced. Denote
by Uad = {u ∈ L∞(Γ ) : u1 ≤ u ≤ u2} the set of admissible controls.

Definition 2. A function û ∈ Uad is called strong minimizing (resp. maximiz-
ing) optimal control if θ̂ ≤ θ and ϕ̂ ≤ ϕ (resp. θ̂ ≥ θ and ϕ̂ ≥ ϕ), a.e. in Ω, for
all u ∈ Uad, where {θ̂, ϕ̂} and {θ, ϕ} are solution pairs corresponding to û and
u, respectively.

Definition 3. A functional J : [V ∩ L∞(Ω)]2 → R is called monotone if the
relations 0 ≤ θ1 ≤ θ2 and 0 ≤ ϕ1 ≤ ϕ2, a.e. in Ω, imply the inequality
J(θ1, ϕ1) ≤ J(θ2, ϕ2), where θ1, θ2, ϕ1, and ϕ2 are arbitrary functions from
V ∩ L∞(Ω).
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Consider examples of monotone functionals.
1. The sum of weighted norms of θ and ϕ:

J(θ, ϕ) =
∫

Ω

(
r1θ

2 + r2ϕ
2
)
dx, (7)

where r1 and r2 ∈ L∞(Ω) are non-negative given functions.

2. Energy flow through a part of the boundary. Let Γ1 ⊂ Γ be an outflow
boundary part, i.e. v · n ≥ 0 on Γ1. The density of the energy flow is defined by
the formula

q = −a∇θ + θv − αb∇ϕ,

and therefore, the energy outflow through Γ1 is given by the functional

J(θ, ϕ) =
∫

Γ1

q · n dΓ =
∫

Γ1

(β(θ − θb) + θv · n + bγ(ϕ − θ4b ))dΓ. (8)

Here, γ is a constant that replaces the function u in the boundary condition
for ϕ on the opening Γ1. If the Marshak boundary condition [22] is used, then
γ = 0.5.

Say that a triple {θ, ϕ, u} is admissible if u ∈ Uad and {θ, ϕ} ∈ V × V is a
solution of the problem (1)–(3) corresponding to the control u. Denote the set
of all admissible triples by U .

Let J be a monotone functional (see Definition 3). Consider the following
optimization problems:

Problem 1:
J(θ, ϕ) → min, {θ, ϕ, u} ∈ U .

Problem 2:
J(θ, ϕ) → max, {θ, ϕ, u} ∈ U .

A solution {θ, ϕ, u} of Problem 1 or 2 will be called optimal triple, and its
components {θ, ϕ} and u will be referred as optimal state and optimal control,
respectively.

The following proposition is an obvious corollary of Definitions 2 and 3,
accounting for that the objective functionals of Problems 1 and 2 are monotone.

Proposition 1. A strong minimizing (resp. maximizing) optimal control solves
Problem 1 (resp. Problem 2).

The next section describes the derivation of sufficient optimality conditions
characterizing strong optimal controls and discusses the question of uniqueness.
These considerations give rise to an iterative numerical method that always
converges to a strong optimal control, which, in particular, proves the existence
of such controls.
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4 Conditions of Optimality

Similar to [21], introduce nonlinear operators F1 : L∞(Ω) × Uad → L∞(Ω) ∩
H1(Ω) and F2 : L∞(Ω) → L∞(Ω) ∩ H1(Ω) as follows: ϕ = F1(θ, u) if

α(∇ϕ,∇v) +
∫

Γ

u (ϕ − θ4b )vdΓ + κa(ϕ, v) = κa(|θ|θ3, v) ∀v ∈ V, (9)

and θ = F2(ϕ) if

a(∇θ,∇v)+
∫

Γ

β(θ−θb)vdΓ+(v∇θ, v)+bκa(|θ|θ3, v) = bκa(ϕ, v) ∀v ∈ V. (10)

Notice that {θ̂, ϕ̂} is a weak solution of the problem (1)–(3) with a control û if
and only if θ̂ = F2(F1(θ̂, û)), ϕ̂ = F1(F2(ϕ̂), û). The operators F1 and F2 have
the following properties (see [21]):

1. If u ∈ Uad, M = ‖θb‖L∞(Γ ), 0 ≤ θ ≤ M , and 0 ≤ ϕ ≤ M4, a.e. in Ω, then
0 ≤ F1(θ, u) ≤ M4 and 0 ≤ F2(ϕ) ≤ M , a.e. in Ω.

2. If u ∈ Uad, θ1 ≤ θ2, and ϕ1 ≤ ϕ2, a.e. in Ω, then F1(θ1, u) ≤ F1(θ2, u) and
F2(ϕ1) ≤ F2(ϕ2), a.e. in Ω.

Define an operator U : L∞(Γ ) → L∞(Γ ) as follows:

U(η)(s) =

{
u1(s), η(s) − θ4b (s) < 0,

u2(s), η(s) − θ4b (s) > 0.

Lemma 1. If ũ ∈ Uad, θ ≤ θ̃ a.e. in Ω, ϕ = F1(θ, u), ϕ̃ = F1(θ̃, ũ), where
u = U(ϕ) or u = U(ϕ̃), then ϕ ≤ ϕ̃ a.e. in Ω.

Proof. Set θ = θ − θ̃ and ϕ = ϕ − ϕ̃. Observe that Eq. (9) implies the equation

α(∇ϕ,∇v)+
∫

Γ

[u(ϕ−θ4b )−ũ(ϕ̃−θ4b )]vdΓ+κa(ϕ, v) = κa(|θ|θ3−|θ̃|θ̃3, v) ∀v ∈ V.

(11)
Denote ψ = max(ϕ, 0) and put v = ψ into (11) to obtain the estimate

α‖∇ψ‖2 +
∫

Γ

[u(ϕ − θ4b ) − ũ(ϕ̃ − θ4b )]ψdΓ + κa‖ψ‖2 = κa(|θ|θ3 − |θ̃|θ̃3, ψ) ≤ 0.

Notice that the equality

u(ϕ − θ4b ) − ũ(ϕ̃ − θ4b ) = ũϕ + (u − ũ)(ϕ − θ4b ) = uϕ + (u − ũ)(ϕ̃ − θ4b )

implies the non-negativity of the boundary integral in the estimate provided that
u = U(ϕ) or u = U(ϕ̃). Therefore, ψ = 0, i.e. ϕ ≤ ϕ̃ a.e. in Ω.

Theorem 2. In order for a function u ∈ Uad to be a strong minimizing optimal
control, it is sufficient that u = U(ϕ), where ϕ = ϕ(u) is a solution of system
(1)–(3) with the control u.
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Proof. Assume that u satisfies the conditions of Theorem2. Let ũ ∈ Uad be an
arbitrary control, θ = θ(u), ϕ = ϕ(u), θ̃ = θ(ũ), and ϕ̃ = ϕ(ũ). Lemma 1 implies
the inequality ϕ = F1(θ, u) ≤ F1(θ, ũ) = ϕ̃1. Let

θ̃k = F2(ϕ̃k), ϕ̃k+1 = F1(θ̃k, ũ), k = 1, 2, . . . . (12)

Since {θ, ϕ} is a solution pair, the equation θ = F2(ϕ) holds, and therefore, due
to above mentioned properties 1 and 2 of the operators F1 and F2, the following
inequalities are true:

0 ≤ θ ≤ θ̃k ≤ M, 0 ≤ ϕ ≤ ϕ̃k ≤ M4, k = 1, 2, . . . .

Notice that the sequences {θ̃k} and {ϕ̃k} are bounded in V . Therefore, there
exist functions θ∗, ϕ∗ ∈ L∞(Ω) ∩ H1(Ω) such that

θ̃k → θ∗, ϕ̃k → ϕ∗ a.e. in Ω, weakly in H1(Ω), and strongly in L2(Ω)

up to subsequences.
The above convergence allows us to pass to the limit in (12) as k → ∞.

Therefore, {θ∗, ϕ∗} is a weak solution of the problem (1)–(3) with the control
ũ. Moreover, θ ≤ θ∗ and ϕ ≤ ϕ∗. By the uniqueness of solutions of the problem
(1)–(3), it holds that θ̃ = θ∗ and ϕ̃ = ϕ∗, and therefore θ ≤ θ̃ and ϕ ≤ ϕ̃, a.e. in
Ω. This proves the theorem.

The proof of the next theorem is similar to that of Theorem2.

Theorem 3. In order for a function u ∈ Uad to be a strong maximizing optimal
control, it is sufficient that

u(s) =

{
u1(s), if ϕ(s) − θ4b (s) > 0,

u2(s), if ϕ(s) − θ4b (s) < 0,

where ϕ = ϕ(u).

Theorem 4. Let u and ũ be two strong optimal controls. Then u = ũ on Γ
where ϕ �= θ4b .

Proof. Let u and ũ be two strong optimal controls. From the definition of strong
optimal controls, it follows that ϕ(u) = ϕ(ũ) = ϕ and θ(u) = θ(ũ) = θ, a.e. in
Ω. Using Eq. (11) yields the relation

∫
Γ

[u(ϕ − θ4b ) − ũ(ϕ − θ4b )]vdΓ =
∫

Γ

(u − ũ)(ϕ − θ4b )v = 0 ∀v ∈ V,

which yields that (u − ũ)(ϕ − θ4b ) = 0 a.e. in Γ . Therefore, u = ũ at points of Γ
where ϕ �= θ4b .

Corollary 1. If a strong optimal control û is arbitrarily changed at points of Γ
where ϕ(û) = θ4b , then it remains to be a strong optimal control.
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Proof. Let û be a strong optimal control, and θ̂ and ϕ̂ the corresponding solutions
satisfying Eqs. (4) and (5). Assume that û is changed on the set {s ∈ Γ : ϕ̂−θ4b =
0} to obtain a new control ûnew. Equations (4) and (5) imply that the pair {θ̂, ϕ̂}
is also a weak solution corresponding to the modified control ûnew because the
last integral of Eq. (5) remains unchanged. Thus, the control ûnew is a strong
optimal control.

5 Iterative Algorithm for Finding the Optimal Control

By Theorem 2, a function u ∈ Uad such that u = U(ϕ(u)) is a strong minimiz-
ing optimal control. This gives rise to the idea to use an iterative procedure for
finding strong minimizing optimal controls. Below, such a procedure will be pro-
posed, and its convergence will be proven. This additionally proves the existence
of strong minimizing optimal controls. The case of strong maximizing optimal
controls is treated analogously.

Let w ∈ Uad, ϕ0 = ϕ(w), θ0 = θ(w), i.e. ϕ0 = F1(θ0, w), θ0 = F2(ϕ0). Define
the sequences

uk+1 = U(ϕk), θk+1 = F2(ϕk), ϕk+1 = F1(θk+1, uk+1), k = 0, 1, 2, . . . . (13)

Using properties 1 and 2 of the operators F1 and F2 yields the following
estimates:

0 ≤ θk ≤ M, 0 ≤ ϕk ≤ M4, k = 0, 1, 2, . . . ,

and, additionally, the sequences {θk} and {ϕk} are bounded in V . Observe that
θ1 = F2(ϕ0) = θ0, and hence ϕ1 = F1(θ1, U(ϕ0)) ≤ ϕ0 = F1(θ0, w) by Lemma 1.
Then, the monotonicity of F2 yields the inequality θ2 ≤ θ1.

Now, inductive arguments yield the following relations:

ϕk ≤ ϕk−1, θk+1 ≤ θk, uk+1 ≤ uk, a.e. pointwise, for all k ≥ 1.

Indeed, if ϕk ≤ ϕk−1 and θk+1 ≤ θk for some k ≥ 1, then, by the Lemma 1,

ϕk+1 = F1(θk+1, U(ϕk)) ≤ ϕk = F1(θk, uk),

and therefore θk+2 ≤ θk+1. Moreover, the monotonicity of the mapping U
with respect to the a.e. pointwise order yields the inequality uk+1 = U(ϕk) ≤
U(ϕk−1) = uk.

Similar to the arguments used in the proof of Theorem2, the properties of
boundedness and monotonicity of the sequences {uk}, {θk}, and {ϕk} allow us
to clime the existence of functions û ∈ L∞(Γ ) and θ̂, ϕ̂ ∈ L∞(Ω) ∩ H1(Ω) such
that

uk → û a.e. in Γ, θk → θ̂, ϕk → ϕ̂ a.e. in Ω,

weakly in H1(Ω), and strongly in L2(Ω).
(14)

The convergence (14), taking into account the upper semi-continuity of the map-
ping U , allows us to pass to the limit in (13) to obtain the equations

û = U(ϕ̂), θ̂ = F2(ϕ̂), ϕ̂ = F1(θ̂, û).



Strong Optimal Controls 217

Therefore, û = U(ϕ(û)), θ̂ ≤ θ(w), and ϕ̂ ≤ ϕ(w), i.e. û is a strong minimizing
optimal control.

Thus, the following statement is true:

Theorem 5. There exists a strong minimizing (resp. maximizing) control u
uniquely defined on the set Γ \ {η ∈ Γ : ϕ(u) = θ4b}. The modification of such a
control on the set {η ∈ Γ : ϕ(u) = θ4b} does not violate its strong optimality.

6 Numerical Experiment

The following data are used in the numerical experiments. The region Ω being
a channel of the following form (the units are centimeters):

Ω = {r = (x1, x2, x3) : 0 < x2 < 50, 0 < x1,3 < 10}.

The boundary parts at x2 = 0 and x2 = 50 are inflow and outflow regions,
respectively. The side faces, parallel to the x2 axis, are solid walls of the channel.
The velocity field is specified as v = (0, 9, 0) [cm/s]. The function θb is defined
as follows:

θb(x1, 0, x3) = 0.5, θb(x1, 50, x3) = 1,

θb(0, x2, x3) = θb(10, x2, x3) = θb(x1, x2, 0) = θb(x1, x2, 10) = 0.5 + 0.01x2.
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Fig. 1. Distribution of the control on the top face, x3 = 10, of the channel.
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The thermodynamical characteristics of the medium inside the channel corre-
spond to air at the normal atmospheric pressure and the temperature of 400 ◦C.
The maximum temperature in unnormalized model is chosen as Tmax = 500 ◦C.
The extinction coefficient κ is equal to 0.1 [cm−1], α = 3.3(3), the absorption
coefficient κa equals 0.01 [cm−1], the anisotropy coefficient A equals 0, and the
coefficient γ equals 10.

It is assumed that the control u is variable on the upper face, x3 = 10, and
constrained by the inequalities 0.2 ≤ u ≤ 0.4. On the other faces, the control
assumes prescribed constant values as follows:

u(x1, 0, x3) = u(x1, 50, x3) = 0.5,

u(0, x2, x3) = u(10, x2, x3) = u(x1, x2, 0) = 0.3.

The iterative algorithm requires only two steps to deliver a strong maximizing
optimal control. The distribution of this control on the upper face of the channel
is shown in Fig. 1.

7 Conclusion

The current paper deals with a nonstandard problem of optimal control and pro-
poses its complete solution. The notion of strong optimal controls seems to be a
little bit unrealistic for common control problems. Nevertheless, the model con-
sidered in this work does have such solutions. They are unique in some sense and
can be easily computed. Another surprising point is that the intuition fails when
predicts that e.g. a strong maximizing optimal control should assume possibly
maximal admissible values. In contrast to that, the example presented shows
the opposite. Some analysis shows that a strong maximizing optimal control
assumes minimal admissible values on a part of the surface where the absorp-
tion of thermal radiation occurs. Thus, the structure of strong optimal controls
may be rather complicated, and therefore some practical heuristic solutions can
be improved using the study presented. It would be also interesting to find other
problems permitting strong optimal controls.
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Abstract. The main objective of this article is to present Bayesian opti-
mal control over a class of non-autonomous linear stochastic discrete time
systems with disturbances belonging to a family of the one parameter
uniform distributions. It is proved that the Bayes control for the Pareto
priors is the solution of a linear system of algebraic equations. For the
case that this linear system is singular, we apply optimization techniques
to gain the Bayesian optimal control. These results are extended to gen-
eralized linear stochastic systems of difference equations and provide the
Bayesian optimal control for the case where the coefficients of these type
of systems are non-square matrices. The paper extends the results of the
authors developed for system with disturbances belonging to the expo-
nential family.

Keywords: Bayes control · Optimal · Singular system · Disturbances ·
Pareto distribution

1 Introduction

Linear stochastic discrete time systems (or linear matrix stochastic difference
equations), are systems in which the variables take their value at instantaneous
time points. The horizon of control depends on the problem. The state at instance
n depends on random disturbance and the chosen controls. Discrete time sys-
tems differ from continuous time ones in that their signals are in the form of
sampled data. With the development of the digital computer, the stochastic dis-
crete time system theory plays an important role in the control theory. In real
systems, the discrete time system often appears when it is the result of sampling
the continuous-time system or when only discrete data are available for use. The
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investigation aims are, when such system is under consideration, determining the
control goals, performance measures and the information available at moments
of controls’ specification. The small deviations of the parameters can be treated
as disturbances. As the random disturbance is admitted the performance mea-
sure will be the mean value of the deviation of the states from the required
behavior of the system. When all the parameters of the system are known and
the distribution of disturbances is well defined then the optimal control can be
determined at least for the finite horizon case. The extension of the model to the
adaptive one means that the disturbances are not precisely described. Adaptive
control is the control method used by a controller which must adapt to a con-
trolled system with parameters which vary, or are initially uncertain (c.f. Black
et al. [2] or Tesfatsion [18] for the history of the adaptive control). Under some
unification the model of adaptive control of the linear system is formulated as a
control of the discrete time Markov process (cf. [5]).

It is assumed that the disturbance has a fixed probabilistic description which
is determined by the assumption. In this paper it is assumed that the distrib-
ution function is known to be an accuracy of parameters and the disturbances
additionally change the state of the system. It resembles the statistical problem
of estimation. It was seminal paper by Wald [21] where the background of the
modern decision theory was established (cf. [22, Chap. 7]). The decision the-
ory approach to the control problems were immediately applied (see books by
Sworder [16], Aoki [1], Sage and Melsa [14]). The new class of control systems
under uncertainty was called adaptive (cf. [2,18]). In these adaptive control prob-
lems the important role have Bayesian systems. In this class of control models
it is assumed that the preliminary knowledge of the disturbances is given by
a priori distributions of their parameters. The aim is to construct the controls
in a close form. The construction of the Bayes control is also auxiliary for the
construction of minimax controls (see Szajowski and Trybu�la [17], Porosiński
and Szajowski [11], Grzybowski [8], González-Trejo et al. [7]). It is observed the
interested in various models of disturbance structure (cf. Duncan and Pasik-
Duncan [6]) and the disturbance distributions (cf. Walczak [19,20]). Stochastic
discrete time systems have many applications which we have described in [3]
where the Bayes control of the linear system with quadratic cost function and
the disturbances having the distribution belonging to the exponential family
with conjugate priors is solved.

The paper is organized as follows: the description of the stochastic discrete
time systems is subject of the Sect. 1.1 and some remarks on disturbances are
given in the Sect. 1.2. In the Sect. 2 we determine the Bayes control for the con-
jugate prior distribution π of the parameter λ as the solution of a singular linear
system and provide optimal Bayesian control. We close the paper by studying
the Bayes control of a class of generalized linear stochastic discrete time systems.

1.1 Stochastic Discrete Time Systems

Let xn ∈ R
m be the state of the system, un ∈ R

m be the control. Assume
that υn ∈ V ⊂ R

m, with υn = (υ1
n, υ2

n, . . . , υk
n, 0, . . . , 0)T , is the disturbance at
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time n and αn, bn, cn∈ R
m×m. Consider a stochastic discrete time system (cf.

Kushner [9])

xn+1 = αnxn + bnun + cnυn, ∀n = 0, 1, . . . , N − 1. (1)

The horizon N of the control, the time up to which the system is controlled,
is a random variable, independent of the disturbances υ0, υ1, . . ., and has the
following known distribution

P{N = k} = pk, ∀k = 0, 1, ...,M,

M∑
i=0

pk = 1, pM �= 0. (2)

In the authors paper [3] it was considered the family of the exponentially dis-
tributed disturbances. Let us assume here that the disturbances υi

n have the
uniform distributions on [0, λi] with parameter λi ∈ �+, i = 1, 2, . . . , k and

Xn = (x0, x1, ..., xn), Un = (u0, u1, ..., un), λ = (λ1, λ2, ..., λk, 0, ..., 0)T .

For convenience UM will be denoted by U and called a control policy.

Definition 1. The control cost for a given policy U (the loss function) is the
following

L(U,XN ) =
N∑

i=0

(yT
i siyi + uT

i kiui), (3)

where ki ∈ R
m×m ≥ 0m,m, are symmetric matrices, si ∈ R

2m×2m ≥ 02m,2m and

yi =

⎛
⎝ xi

· · ·
λ

⎞
⎠ ∈ R

2m, ∀i = 0, 1, ...,M . With 0i,j we will denote the zero matrix

i × j.

Let the prior distribution π of the parameter λ be given. It is considered the
Pareto priors (see [4, Chap. 9.7], [10]) with parameters ri > 0, βi > 2

g(λi|βi, ri) =
βir

βi

i

λβi+1
i

I[ri,∞)(λi). (4)

Denote EN , Eλ the expectations with respect to the distributions of N and
random vectors υ0, υ1, ... (when λ is the parameter), Eπ and E are the expecta-
tions with respect to the distribution π and to the joint distribution υn and λ,
respectively.

Definition 2 (see [9,12,15,19,20]). Let L(·, ·) be the loss function given by (3).

(a) The risk connected with the control policy U , when the parameter λ is given,
is defined as follows

R(λ,U) = EN

[
Eλ[L(U,XN ) | X0]

]
= EN

[
Eλ[

N∑
i=0

yT
i siyi + uT

i kiui | X0]

]
.
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(b) The expected risk r, associated with π and the control policy U , is equal to

r(π,U) = Eπ[R(λ,U)] = EN

[
E[

N∑
i=0

yT
i siyi + uT

i kiui | X0]

]
.

(c) The expected risk r, associated with π and the control policy U , is equal to

rn(π,Un) = EN [Eπ[R(λ,U)] = EN

[
E[

N∑
i=n

yT
i siyi + uT

i kiui | X0]

]
.

Let the initial state x0 and the distribution π of the parameter λ be given.

Definition 3. A control policy U∗ is called the Bayes policy when r(π,U∗) =
infU∈℘π

r(π,U), where ℘π is the class of the control policies U for which exists
r(π,U).

1.2 Filtering

Let us assume that the random variables υn have the density p(υn, λ) with
respect to a σ-finite measure μ on R. The consideration is focused on the special
case when each coordinate has the uniform distribution, i.e. the density p(υn, λ)
has the following representation:

p(υn, λ) =
k∏

i=1

p(υi
n, λi), (5)

where p(υi
n, λi) = 1

λi
I[0,λi](υ

i
n), for all i = 1, 2, ..., k. V ∗

i is the set of the random
variables υi

n. We have:

Eλi
[υi

n] =
λi

2
= qiλi and, Eλi

[(υi
n)2] =

λ2
i

3
= q1,iλ

2
i ,

where qi, q1,i are constants. Let λ have the a priori distribution π with density

g(λ | β, r) =
k∏

i=1

gi(λi; βi, ri), (6)

where gi(λi|βi, ri) is given by (4) where β ∈ Sβ
k ⊂ R

m, r ∈ Sr
k ⊂ R

m with

β = (β1, β2, . . . , βk, 0, . . . , 0)T ,

and r = (r1, r2, . . . , rk, 0, . . . , 0)T . When such the a priori density is assigned to
λi and then the object of filtering, to determine the Bayes control, is to produce a
posteriori density for λi after any new observations of the state of the system. We
change the control after obtaining the new data. Hence, to determine the Bayes
control, a posteriori density for λ must be obtained after any new observations.
This is possible if for n = 0, 1, ...N −1 and a given x0, we can derive υn from (1),
i.e. the equations
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υn = c−1
n [xn+1 − αnxn − bnun].

If for a value of n, the matrix cn is singular, we will have to compute the Moore-
Penrose Pseudoinverse c†

n and then use the following expression

υn = c
†
n[xn+1 − αnxn − bnun].

The Moore-Penrose pseudo-inverse can be calculated via the singular value
decomposition of cn (see [13]). In these cases a posteriori density f(λ | Xn, Un−1)
of the parameter λ, after having observed Xn and chosen Un−1, has the same
form as (6) i.e.

f(λ | Xn, Un−1) = f(λ | Vn−1) = g(λ | βn, rn),

where Vn−1 = (υ0, υ1, ..., υn−1), βn = βn−1 + 2q, q = (q1, q2, ..., qk, 0, ..., 0)T ∈
Q∗

i ⊂ R
m and rn = rn−1 ∨ υn (r0 = r). Under these denotations we have

E(λi | Xn, Un−1) = Tn,iri
n = βn

βn−1ri
n and E(λ2

i | Xn, Un−1) = Tn,i
1 (ri

n)2. For
known Xn and Un−1, the conditional distribution of υn has the density

h(υn | Xn, Un−1) =
k∏

i=1

hi(υi
n | Xn, Un−1),

where

hi(υi
n | Xn, Un−1) =

∫ ∞

0

p(υi
n, λ)g(λ|βi

n, ri
n)dλ

=
βi

n(ri
n)βi

n

βi
n+1

1
(ri

n+1)βn+1
I[0,∞)(v),

for n = 0, 1, ...,M−1, i = 1, 2, ..., k. In addition (see [19,20]) by direct calculation
we get

Lemma 1. The following equations are fulfilled:

E(vi
n | Xn, Un−1) =

1
2

βi
n

βi
n+1

ri
n = Qn,irn (7)

E((vi
n)2 | Xn, Un−1) = Qn,i

1 (ri
n)2 where Qn,i

1 =
βi

n

3(βn − 2)
. (8)

E(ri
n+1 | Xn, Un−1) = Qn,i

2 ri
n where Qn,i

2 =
(βi

n)2

(βi
n)2 − 1

, (9)

E((ri
n+1)

2 | Xn, Un−1) = Qn,i
3 (ri

n)2 where Qn,i
3 =

βi
n(βi

n − 1)
(βn + 1)(βn + 2)

. (10)

E(xi
n+1 | Xn, Un−1) = αnxn + un + γnQn,iri

n, (11)

E((xi
n+1)

2 | Xn, Un−1) = (αnxn + un)2 + 2(αnxn + un)γi
nQn,iri

n

+γ2
nQn,i

1 (ri
n)2, (12)

E(xn+1r
i
n+1 | Xn, Un−1) = (αnxn + un)Qn,i

2 ri
n + γi

nQn,i
4 ri

n, (13)

where Qn,i
4 = (βi

n)2

(βn+1)(βn−2) .
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2 The Bayes Control

Suppose the initial state x0 is given, the disturbances have the distribution with
the density given by (5) and the prior distribution π of the parameter λ is given
by (6). Let the distribution of the random horizon N be given by (2). Consider
the problem of the Bayes control for the system (1) with the starting point at
the moment n, when Xn, Un−1 are given. The expected risk is then given by (c.f
Defintion 2 (c); see [3,12])

rn(π,Un) = E

[
M∑

i=n

(yT
i siyi + uT

i kiui) | Xn, Un−1

]
. (14)

Let us denote ϕk =
∑M

i=k pi. We have

rn = E[
M∑

i=n

ϕi

ϕn
(yT

i siyi + uT
i kiui) | Xn, Un−1].

For the above truncated problem we provide the following definitions:

Definition 4. The Bayes risk is defined as

Wn = inf
Un

rn(π,Un), (15)

where r(π,Un) is the expected risk defined in the Definition 2 (c) and the
formulae (14).

Definition 5. If there exists Un∗
= (u∗

n, u∗
n+1, .., u

∗
N ) such that Wn = r(π,Un∗

),
then Un∗

will be called the Bayes policy and u∗
i , i = n, n+1, ..., N the Bayes controls

for truncated control problem.

Obviously, r(π,U0) = r(π,U),W0 = r(π,U∗). For the solution of the Bayes
control problem we derive the Bayes controls u∗

n for n = N,N − 1, ..., 1, 0 recur-
sively. Then U0∗

is the solution of the problem. From the Bellman’s dynamic
programming optimality principle we obtain the following Lemma, see [12].

Lemma 2. Assume the stochastic discrete time system (1). Then the Bayes risk
Wn has the form

Wn = xT
nAnxn + 2rT

nBnxn + 2rT
nCnrn, (16)

where An, Bn, Cn ∈ R
m×m, Dn ∈ R

m with An = f1(sn), Bn = f2(Qn, Qn
2 , sn),

Cn = f3(Qn, Qn
1 , Qn

3 , Qn
4 , sn). The functions fj, j = 1, 2, 3 are strictly monotonic,

differentiable. The constants Qn,i, Qn,i
j , j = 1, 2, 3, 4, n = 0, 1, ..., N are given by

(7), (8) and sn is defined in (3).
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2.1 Bayesian Optimal Control for Stochastic Discrete Time Systems

We can now prove the following theorem

Theorem 1. Assume the stochastic discrete time system (1). Then, the Bayes
control u∗

n is given by the solution of the linear system

Knu∗
n = Ln, (17)

where
Kn = kn + bT

nAn+1bn (18)

and
Ln = −bT

n [An+1αnxn + (An+1cnQn + Bn+1Q
n
2 )rn]. (19)

The matrices kn, An, Qn, are defined in (3), (16), the Lemma 1, respectively
and e =

∑n−1
j=0 Qjrj.

Proof. From (15), the Bayes risk is given by Wn = infUn r(π,Un). It is,
equivalently,

Wn = min
Un

E

[
M∑

i=n

(yT
i siyi + uT

i kiui) | Xn, Un−1

]
.

We have

Wn = min
un

{
uT

nknun + E
[
yT

nsnyn | Xn, Un−1

]

+ min
Un+1

E

[
E

[
k∑

i=n+1

(yT
i siyi + uT

i kiui)

]
| Xn, Un−1

] }
.

It means Wn = minun

{
uT

nknun + E
[
yT

nsnyn | Xn, Un−1

]
+ E [Wn+1 | Xn,

Un−1]}. Hence, the Bayes control u∗
n satisfies the equation (∇ is the gradient):

∇un

{
uT

nknun + E
[
yT

nsnyn | Xn, Un−1

]
+ E [Wn+1 | Xn, Un−1]

}
un=u∗

n
= 0m,1.

By using (16) we get

knu∗
n + bT

nAn+1(αnxn + bnun

+ cnE(υn | Xn, Un−1)) + E
[{

bT
nBn+1rn+1

}
un=u∗

n
| Xn, Un−1

]
= 0m,1.

By the properties of conjugate priors for the uniform distribution (see the
Lemma 1 we have

knu∗
n + bTnAn+1(αnxn + bnun + cnQnrn) + E

[{
bTnBn+1rn+1

}
un=u∗

n

| Xn, Un−1

]
= 0m,1,

and at the end (kn+bT
nAn+1bn)u∗

n = −bT
n [An+1αnxn+(An+1cnQn+Bn+1Q

n
2 )rn].

The proof is completed. �
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Similarly like for the system with the disturbances belonging to the exponential
family (see [3]) we get

Theorem 2. Consider the system (1) and the matrices Kn, Ln as defined in
(18), (19) respectively. Then

(a) ∀n such that Kn is full rank, the Bayes control u∗
n, is given by

u∗
n = K−1

n Ln. (20)

(b) ∀n such that Kn is rank deficient, the Bayesian optimal control û∗
n is given

by
û∗

n = (KT
n Kn + ET E)−1KT

n Ln. (21)

Where E is a matrix such that KT
n Kn + ET E is invertible and ‖E‖2 = θ,

0 < θ � 1. Where ‖·‖2 is the Euclidean norm.

2.2 Bayesian Optimal Control for Generalized Stochastic Discrete
Time Systems

In this subsection we will expand the results of the Sect. 2.1 by studying Bayesian
optimal control for a class of linear stochastic discrete time systems with non-
square coefficients. We consider the following non-autonomous linear stochastic
discrete time system

Ir,mxn+1 = αnxn + bnun + cnυn, ∀n = 0, 1, ..., N − 1. (22)

Where xn ∈ R
m is the state of the system, un ∈ R

m is the control, υn ∈ V ⊂ R
m,

with υn = (υ1
n, υ2

n, ..., υk
n, 0, ..., 0)T , is the disturbance at time n and αn, bn, cn∈

R
r×m. The horizon N of the control is fixed and independent of the disturbances

υn, n ≥ 0. If r = m, then Ir,m = Im. If r > m, then Ir,m =
[

Im

0r−m,m

]
and if

r < m, then Ir,m =
[
Ir 0r,m−r

]
with Im, Ir identity matrices.

Definition 6. We will refer to system (22) as a generalized stochastic linear
discrete time system.

In the above definition we use the term “generalized” because the coefficients in
the system (22) can be either square or non-square matrices.

Theorem 3. Consider the system (22) for r �= m and assume the matrices Kn,
Ln as defined in (18), (19) respectively. Then, ∀n such that

(a) m < r, rank(Kn) = m and Ln ∈ colspanKn, the Bayes control u∗
n, is given

by
u∗

n = K−1
n Ln. (23)

(b) m < r, rank(Kn) = m and Ln /∈ colspan(Kn), a Bayesian optimal control
is given by

û∗
n = (KT

n Kn)−1KT
n Ln. (24)
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(c) Ln /∈ colspanKn and Kn is rank deficient, a Bayesian optimal control is
given by

û∗
n = (KT

n Kn + ET E)−1KT
n Ln. (25)

Where E is a matrix such that KT
n K + ET E is invertible and ‖E‖2 = θ,

0 < θ � 1.
(d) m > r, Kn is full rank, a Bayesian optimal control is given by

û∗
n = KT

n (KnKT
n )−1Ln. (26)

(e) Ln ∈ colspanKn and Kn is rank deficient, a Bayesian optimal control is
given by (25).

The proof is based on ideas similar to those used in prove [3, Theorem 3] and is
omitted here.

3 Conclusions

In this article we focused on developing the Bayesian optimal control for a class
of non-autonomous linear stochastic discrete time systems of type (1). Firstly,
we proved that the Bayes control of these type of systems is the solution of a
linear system of algebraic equations which can also be singular. For this case
we used optimization techniques to derive the optimal Bayes control for (1). In
addition, we used these methods to obtain the Bayesian optimal control of the
non-autonomous linear stochastic discrete time system of type (2), where the
coefficients of this system are non-square matrices.

The further extension of this paper is to study to Bayes control problem of
stochastic fractional discrete time systems. The fractional nabla operator is a
very interesting tool when applied to systems of difference equations and has
many applications especially in macroeconomics, since it succeeds to provide
information from a specific year in the past until the current year. For all these
there is some research in progress.

Acknowledgments. I. Dassios is supported by Science Foundation Ireland (award
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Abstract. The Hadamard semidifferential retains the advantages of the
differential calculus such as the chain rule and semiconvex functions are
Hadamard semidifferentiable. The semidifferential calculus extends to
subsets of R

n without Euclidean smooth structure. This set-up is an
ideal tool to study the semidifferentiability of objective functions with
respect to families of sets which are non-linear non-convex complete met-
ric spaces. Shape derivatives are differentials for spaces endowed with
Courant metrics. Topological derivatives are shown to be semidifferen-
tials on the group of Lebesgue measurable characteristic functions.

Keywords: Semidifferential · Shape and topological derivatives

1 Introduction

In the past decades, direct constructions of complete metric spaces of shapes and
geometries (cf., for instance, Delfour and Zolésio [7]) and, additional new ones
(cf., Delfour [4,6]) have been given without appealing to the classical notions
of atlases or smooth manifolds encountered in classical Differential Geometry.
Since, at best, such spaces are groups, the issue of making sense of tangent spaces
and differentials naturally arises not only for “differentiable” functions but also
for large classes of “non-differentiable” functions.

In that context, the geometrical definition of a differentiable function of
Hadamard [5,11] is especially interesting since it implicitly involves the con-
struction of trajectories (or paths) and tangent vectors to trajectories living in
the space under investigation. His definition was relaxed by Fréchet [10] in 1937
by dropping the requirement that the differential be linear with respect to the
direction or tangent vector while preserving two important properties of the
differential calculus: the continuity of the function and the chain rule. A vast
litterature on differentials on topological spaces followed (cf., for instance, the
survey papers of Averbuh and Smoljanov [3] in 1988 and the 207-page paper of
Nashed [12] for a rather complete account until 1971). The definition of Fréchet
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can be further relaxed to the one of semidifferential which handles convex and
semiconvex functions while preserving the two properties.

Since the semidifferential is not required to be linear, they have far reaching
consequences for a function f : A → B between arbitrary sets A and B. De facto,
this relaxes the requirement that the tangent spaces in each points of the sets A
and B be linear spaces. It is sufficient to work with tangent cones to A and B such
as Bouligand’s tangent cone to make sense of semidifferentials. Shortcircuiting
the requirement of a smooth manifold makes it possible to directly study the
tangent spaces to non-convex metric spaces of shapes and geometries.

We show that the metric group of Lebesgue measurable characteristic
functions has semi-tangents and that the notion of topological derivative of
Soko�lowski and Zȯchowski [14] is in fact a semidifferential obtained by dilatation
of a point creating a hole. By extending this construction via dilatations, we also
show that the tangent space contains distributions creating topological pertur-
bations along curves and surfaces that can break the connectivity of the set.
In the same spirit dilatations of d-rectifiable and some Hd-rectifiable compact
sets (Hd, d-dimensional Hausdorff measure) of Ambrosio et al. [1] also generate
semi-tangents. Orthogonal dilatations of closed subsets of the boundary of a set
of positive reach can also be used via Steiner formula (see Federer [8]).

2 Hadamard Differential and Semidifferential

Hadamard Differential. In 1923 Hadamard [11] gave a geometrical definition
by using an auxiliary function t �→ x(t) : R → R

N such that

x(0) = a and x′(0) def= lim
t→0

x(t) − a

t
exists in R

N,

where R is the field of real numbers. It defines a path that induces a perturbation
or a variation of the point a. We shall use the terminology time for the auxiliary
variable t and admissible trajectory for the auxiliary function x. Note that x
need not be continuous or differentiable at t �= 0. The vector x′(0) is the tangent
to the trajectory x at the point x(0) = a. Scaling t by an arbitrary non-zero real
number generates a whole line tangent to x at a

Definition 1. A function f : RN → R
K is Hadamard differentiable at a ∈ R

N if

(i) for all admissible trajectories x at a the limit

(f ◦ x)′(0) def= lim
t→0

f(x(t)) − f(a)
t

exists in R
K

(ii) and there exists a linear function Df(a) : R
N → R

K such that for all
admissible trajectories x at a

(f ◦ x)′(0) = Df(a) (x′(0)) .

Df(a) is the differential of f at a. ��
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The definition of Hadamard differentiability is equivalent to the one of Fréchet
differentiability in finite dimension. In Banach and Fréchet spaces, a Hadamard
differentiable function at a point a is continuous at a and the chain rule is
applicable. In 1937, Fréchet [10] insisted on the fact that the definition of
Hadamard is more general than his since it extends to functions f : X → R

K

defined on topological vector spaces X that are not normed vector spaces. Fur-
thermore, in Banach spaces of functions, we can consider the set of tangent
vectors (functions) x′(0) as weak limits . . . and even as distributions.

In his 1937 paper, Fréchet [10] observed that, in function spaces, the
Hadamard differentiability is not only a notion more general than the one he
introduced in 1911 but that the linearity in part (ii) is not necessary to pre-
serve the continuity of the function and the chain rule. He gives the following
example:

f(x1, x2)
def= x

√
x2
1

x2
1 + x2

2

for (x1, x2) �= (0, 0) and f(0, 0) def= 0.

([10, p. 239]). Indeed, it is readily checked that for any trajectory x : R2 → R

such that x(0) = (0, 0) and x′(0) exists

(f ◦ x)′(0) def= lim
t→0

f(x(t)) − f(0, 0)
t

= f(x′(0)).

Hadamard always insisted on the linearity and this new notion was criticized by
P. Lévy. Yet, his example shows that such nondifferentiable functions exist.

Hadamard Semidifferential. By relaxing the linearity, we can deal with some
families of non-differentiable functions. Unfortunately, some convex continuous
functions and, in particular, the norm ‖x‖ in a = 0, are not differentiable in this
relaxed sense. To get around this, we need the notion of semidifferential.

For instance, in the case of the Euclidean norm x �→ f(x) = ‖x‖ : RN → R at
x = 0, consider a semi-trajectory x : [0,+∞) → R

N through the origin x(0) = 0
for which the right-hand limit x′(0+) exists. We get at a = 0

(f ◦ x)′(0+) def= lim
t↘0

f(x(t)) − f(0)
t

= lim
t↘0

∥∥∥∥x(t) − x(0)
t

∥∥∥∥ = ‖x′(0+)‖,

where the notation t ↘ 0 means that t goes to 0 by strictly positive values.
We have a similar result for convex and semiconvex continuous functions. When
(f ◦ x)′(0+) is not a linear function of the semi-tangent x′(0+), we say that the
function is semidifferentiable.

From Linear to Non-convex Spaces. The hypothesis of linearity of the
differential is also a severe restriction to define a differential for a function
f : A ⊂ R

N → B ⊂ R
K since it requires that the tangent space to A at a

and the tangent space to B at f(a) be linear subspaces. This necessitates that
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the sets A and B be sufficiently smooth in the sense that, at each point of A and
of B, the tangent spaces be linear subspaces of RN and R

K .
Since the Hadamard semidifferential does not require the linearity of the

tangent space, the a priori smoothness assumption of the sets A and B can be
de facto dropped since the semidifferential only needs to be defined on a tangent
cone. Several tangent cones are available in the literature, but the following one
is especially well suited for semidifferentials.

Definition 2. The Bouligand tangent cone to a set A at a point a ∈ A is

TaA
def=

{
v ∈ R

N : ∃{xn} ⊂ A and {tn ↘ 0} such that lim
n→∞

xn − a

tn
= v

}
.

��
When the boundary ∂A of A is smooth, TaA is a linear subspace of RN . However,
the linearity of TaA puts a severe restriction on the sets A. For instance, the
requirement that TaA be linear rules out a curve in R

2 with kinks.

A

- tangent linear subspace Ta(A)

a

path or trajectory x(t)

x′(0)
def
= limt→0

x(t)−a
t

exists

A

- tangent (non convex) cone Ta(A)

a

half or semi-trajectory x(t)
x′(0+)

def
= limt↘0

x(t)−a
t

exists

This naturally leads to the following notions of admissible trajectory.

Definition 3. Given A ⊂ R
N, an admissible semi-trajectory in A at a ∈ A is a

function x : [0, τ ] → A, τ > 0, such that the semi-tangent at a

x′(0+) def= lim
t↘0

x(t) − a

t

exists. When the limit x′(0+) exists, it follows that x(t) → a as t ↘ 0. ��
An equivalent characterization of the Bouligand’s tangent cone is obtained.

Theorem 1. TaA = {x′(0+) : x is an admissible semi-trajectory in A at a}.
Following Fréchet, we now relax the linearity and formalize the notion of

semidifferential for functions f : A → B.

Definition 4 (Geometrical definition). Given A ⊂ R
N and B ⊂ R

K , the func-
tion f : A → B is Hadamard semidifferentiable at a ∈ A if
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(i) for each admissible semi-trajectory x in A at a, the limit

(f ◦ x)′(0+) def= lim
t↘0

f(x(t)) − f(a)
t

exists

(ii) and there exists a (positively homogeneous) function v �→ dAf(a; v) : TaA →
Tf(a)B such that for all admissible semi-trajectories x in A at a

(f ◦ x)′(0+) = dAf(a;x′(0+)).

The function v �→ dAf(a)(v) = dAf(a; v) is referred to as the (tangential) semi-
differential of f at a ∈ A. It can be shown that dAf(a) is continuous on TaA. ��
This definition has an equivalent analytical counterpart.

Theorem 2 (Analytical definition). Given A ⊂ R
N and B ⊂ R

K , the function
f : A → B is Hadamard semidifferentiable at a ∈ A if and only if there exists a
(positively homogeneous) function v �→ dAf(a; v) : TaA → Tf(a)B such that for
all v ∈ TaA and all sequences {xn} ⊂ A and {tn ↘ 0} such that (xn−a)/tn → v

lim
n→∞

f(xn) − f(a)
tn

= dAf(a; v).

With the above definitions, the two important properties are preserved: con-
tinuity of f at a and the chain rule. The previous definitions extend to subsets A
of topological vector spaces X, but we have to be careful and retain the abstract
notions that are really meaningful. For shapes and geometries, the subset A will
be a complete metric space with or without a group structure in a surrounding
Banach or Fréchet space. We consider Courant metrics and the metric space of
characteristic functions. Oriented distance functions can also be considered.

3 Metric Group of Characteristic Functions

Consider the metric Abelian group of characteristic functions on R
N

X(RN) =
{
χΩ : Ω ⊂ R

N Lebesgue measurable
} ⊂ L∞(RN).

It is a closed subset without interior of the Banach space L∞(RN) and of the
Fréchet spaces Lp

loc(R
N), 1 ≤ p < ∞. The analog would be the sphere in R

3.

3.1 Velocity Method

For the velocity method, consider the following continuous trajectory in X(RN)

t �→ χTt(V )(Ω) : [0, 1] → X(RN),
dTt(V )

dt
= V (t) ◦ Tt(V ), T0(V ) = I.

The semitangent at χΩ is obtained by considering the limit of the differential
quotient

(
χTt(V )(Ω) − χΩ

)
/t ∈ L∞(RN) which does not exist in L∞(RN), but

also not in Lp
loc(R

N), 1 ≤ p < ∞.
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To get a derivative consider the distribution associated with χTt(V )(Ω)

φ �→
∫
RN

χTt(V )(Ω) φ dx =
∫

Tt(V )(Ω)

φ dx =
∫

Ω

φ ◦ Tt det DTt dx : D(RN) → R

If V ∈ C0,1(RN,RN), then

d

dt

∣∣∣∣
t=0+

∫
Ω

φ ◦ Tt det DTt dx =
∫

Ω

div (V (0)φ) dx =
∫
RN

χΩ div (V (0)φ) dx

(see, for instance, [7, Theorem 4.1, Chap. 9, p. 483]). The bilinear function

(φ, V ) �→
∫
RN

χΩ div (V (0)φ) dx : H1
0 (RN) × C0,1(RN,RN) → R

is continuous. This generates the continuous linear mapping V �→ ∇χΩ · V :
C0,1(RN,RN) → H−1(RN)

(∇χΩ · V )φ
def=

∫
RN

χΩ div (V (0)φ) dx,

where ∇χΩ is the distributional gradient of χΩ . The support of ∇χΩ · V is in
Γ , the boundary of Ω. So, the tangent space to X(RN) (considered as a subset
of the space of distributions) at χΩ contains the linear subspace

{
∇χΩ · V : V ∈ C0,1(RN,RN)

}
⊂ H−1(RN) ⊂ D(RN )′

of functions in H−1(RN). When Ω is an open set with Lipschitz boundary

d

dt

∣∣∣∣
t=0+

∫
RN

χTt(V )(Ω) φ dx =
∫

Γ

V (0) · nΓ φ dHN−1

is a bounded measure, where Hd is the d-dimensional Hausdorff measure.

3.2 Topological Derivative via Dilatations

The rigorous introduction of the topological derivative in 1999 by Soko�lowski
and Zȯchowski [14]) (see also the book by Novotny-Soko�lowski [13]) opened a
broader spectrum of notions of “differential” with respect to a set. The set Ω is
topologically perturbed by introducing a small hole around a point a ∈ Ω, that
is, a dilatation of a. This idea can be readily extended to some families of closed
subsets E of Ω of dimension d, 1 ≤ d ≤ N − 1, for which Hd(E) is finite.

Given Ω ⊂ R
N open, we consider several examples where mN denotes the

Lebesgue measure in R
N . The distance function dE(x) of x to a subset E ⊂ R

N

and the r-dilatation of E are defined as

dE(x) def= inf
y∈E

|x − y|, Er
def= {x ∈ R

N : dE(x) ≤ r}. (3.1)
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Example 1. E = {a}, a ∈ R
3, dim E = 0. The r-dilatation of E is B̄r(a),

t
def= m3(B̄r(a)) = α3 r3, α3 = 4π/3 = volume of unit ball in R

3

φ �→ φ(a) : D(R3) → R is a distribution.

Assuming that B̄r(a) ⊂ Ω for some r > 0, the perturbed sets will be

t �→ Ωt
def= Ω\Er = Ω\B̄ 3

√
t/α3

(a).

Given φ ∈ D(R3), the weak limit of the differential quotient (χΩt
− χΩ)/t is

1
t

[∫
Ωt

φ dx −
∫

Ω

φ dx

]
= − 1

m3(B̄ 3
√

t/α3)
(a))

∫
B̄ 3√t/α3

(a)

χΩ φ dx

= − 1
m3(B̄r(a))

∫
B̄r(a)

χΩ φ dx → −φ(a).

This distribution is a half tangent since for all ρ > 0

1
t

[∫
Ωρt

φ dx −
∫

Ω

φ dx

]
→ −ρφ(a).

��
Example 2. Let A ⊂ R

3 be an open set of class C1,1, ∂A compact, dim ∂A = 2,
and bA(x) def= dA(x) − dR3\A(x) be the oriented distance function, then

∃ε > 0 such that bA ∈ C1,1(Uε(∂A)), Uε(∂A) def=
{
x ∈ R

3 : |bA(x)| < ε
}

projection onto ∂A : p∂A(x) = x − bA(x)∇bA(x), H2(∂A) < ∞.

Consider the shell or sandwich of thickness t = 2r around E = ∂A and, for 0 <

r < ε, the r-dilatation Er
def=

{
x ∈ R

3 : |bA(x)| ≤ r
}

=
{
x ∈ R

3 : d∂A(x)| ≤ r
}
,

t = 2r = α1 r, α1 = 2 = volume of the unit ball in R
1

φ �→
∫

E

φ dH2 : D(R3) → R is a distribution.

Assuming that Uε(∂A) ⊂ Ω, the perturbed sets for 0 < t < ε are

t �→ Ωt
def= Ω\Er = Ω\Et/2.

Given φ ∈ D(R3), the weak limit of the differential quotient (χΩt
− χΩ)/t is

1
t

[∫
Ωt

φ dx −
∫

Ω

φ dx

]
= −1

t

∫
Et/2

χΩ φ dx

= − 1
α1r

∫
Er

χΩ φ dx → −
∫

E

φ dH2.
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This distribution is a half tangent since for all ρ > 0

1
t

[∫
Ωρt

φ dx −
∫

Ω

φ dx

]
→ −ρ

∫
E

φ dH2.

When E = ∂A, we create a new connected component (cf. Fig. 1). This
construction extends to a set of class C1,1 with compact boundary in R

N . ��

Ω

A

t

(∂A)t/2

Ωt

Fig. 1. For E = ∂A, Ωt has two connected components

Example 3. Let A = ∂A ⊂ R
N , N ≥ 3, be a compact C2-submanifold for

which there exists ε > 0 such that d2A ∈ C2(Uε(A)), then

projection onto ∂A : pA(x) = x − 1
2
∇d2A(x), DpA(x) = I − 1

2
D2d2A(x),

Im DpA(x) = tangent space at x ∈ A, dim A(x) = dim (Im DpA(x)).

Let dim A = d and Hd(A) < ∞ for some d, 0 < d < N − 1. Given E = A
and 0 < r < ε, consider the r-dilatation Er of E,

t = αN−d rN−d, αN−d = volume of the unit ball in R
N−d

φ �→
∫

E

φ dHd : D(RN ) → R is a distribution.

Assuming that Uε(A) ⊂ Ω, the perturbed set for 0 < r < ε will be

t �→ Ωt
def= Ω\Er = Ω\E N−d

√
t/αN−d

.

Given φ ∈ D(RN ), the weak limit of the differential quotient (χΩt
− χΩ)/t is

1
t

[∫
Ωt

φ dmN −
∫

Ω

φ dmN

]
= −1

t

∫
E N−d

√
t/αN−d

χΩ φ dmN

= − 1
αN−d rN−d

∫
Er

χΩ φ dmN → −
∫

E

φ dHd.
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This distribution is a half tangent since for all ρ > 0

1
t

[∫
Ωρt

φ dmN −
∫

Ω

φ dmN

]
→ −ρ

∫
E

φ dHd.

��

4 Generalization and Concluding Remarks

In Sect. 3.2 we considered the Minkowski content Md(E) of closed subsets E of
R

N (of positive reach) such that

Md(E) def= lim
r↘0

mN (Er)
αN−d rN−d

= Hd(E), 0 ≤ d ≤ N, (4.1)

and the associated distribution (measure)

φ �→
∫

E

φ dHd = lim
r↘0

1
αN−d rN−d

∫
Er

φ dmN : D(RN ) → R. (4.2)

Choosing the volume t = αN−d rN−d of the ball of radius r in R
N−d as the

auxiliary variable, that is, r = (t/αN−d)1/(N−d),

φ �→
∫

E

φ dHd = lim
t↘0

1
t

∫
E

(t/αN−d)1/(N−d)

φ dmN : D(RN ) → R. (4.3)

Given a Lebesgue measurable Ω ⊂ R
N , we considered the perturbation

Ωt = Ω\Er (4.4)

and obtained a continuous trajectory t �→ χΩt
in X(RN ) such that

χΩt
→ χΩ\E in Lp

loc(R
N ), 1 ≤ p < ∞.

If mN (E) = 0, then χΩt
→ χΩ in Lp

loc(R
N ), 1 ≤ p < ∞.

Such a construction extends to dilatations of d-rectifiable compact sets (see
Federer [9]) and to Hd-rectifiable sets E verifying a certain density condition
(see Ambrosio et al. [2, Definition 2.57, p. 80] and [1, pp. 730–731]).

Another family of closed sets is provided by the extension of the Steiner
formula by Federer [8, Theorem 5.6, p. 455] to closed sets A of positive reach.
Given E ⊂ ∂A closed and 0 ≤ r < reach (A), define the orthogonal r-dilatation
of E: EA

r
def=

{
x ∈ R

N : dA(x) ≤ r and pA(x) ∈ E
}
, where pA is the projection

onto A. Then limr↘0 mN (EA
r )/(αN−dr

N−d) is a Radon measure for some d,
0 ≤ d ≤ N .

The emerging point of view is to consider the elements of the group X(RN) of
characteristic functions χΩ of Lebesgue measurable subsets Ω ⊂ R

N as a subset
of measures in the space of distributions D(RN )′:

φ �→
∫
RN

χΩ φ dx =
∫

Ω

φ dx : D(RN ) → R, X(RN) ⊂ D(RN )′. (4.5)
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It is conjectured that the tangent cone TχΩ
X(RN) is contained in D(RN )′. In

Sect. 3.1 the velocities generate tangents that are distributions in H1(RN )′; in
Sect. 3.2 the compact subsets E generate semi-tangents that are bounded mea-
sures. As a result, TχΩ

X(RN) is not a linear space and it does not only contain
measures, but we don’t know how big it is. We could also attempt to characterize
the tangent space to a family of measures.
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Abstract. We consider an optimal control problem with Volterra-type
integral equations on a nonfixed time interval subject to endpoint con-
straints, mixed state-control constraints of equality and inequality type,
and pure state inequality constraints. The main assumption is the linear–
positive independence of the gradients of active mixed constraints with
respect to the control. We formulate first order necessary optimality con-
ditions for an extended weak minimum, the notion of which is a natural
generalization of the notion of weak minimum with account of variations
of the time. The presented conditions generalize the local maximum prin-
ciple in optimal control problems with ordinary differential equations.

Keywords: Volterra-type equation · Extended weak minimum · Local
maximum principle · State-control constraints · Adjoint equation ·
Transversality conditions · Change of time variable · Linear–positive
independence

1 Introduction

The results presented in this paper generalize the results obtained in our previous
two papers [6,7]. Paper [6] was devoted to the first order necessary conditions for
a weak minimum in a general optimal control problem with Volterra-type integral
equations, considered on a fixed time interval, subject to endpoint constraints of
equality and inequality type, mixed state-control constraints of inequality and
equality type, and pure state constraints of inequality type. Paper [7] studied
first order necessary conditions for an extended weak minimum in an optimal
control problem with Volterra-type integral equations considered on a non-fixed
time interval, subject to endpoint constraints of equality and inequality type,
but without mixed state-control constraints and pure state constraints. Here we
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consider a problem generalizing both problems of [6,7]. We formulate first order
necessary conditions for an extended weak minimum in this general problem.
Following the tradition, we call them stationarity conditions, or conditions of the
local maximum principle. They are presented in Theorem 1. As far as we know,
such conditions for problems with integral equations on a variable time interval
were not obtained up to now. Their novelty, as compared with those for problems
on a fixed time interval is that the costate equation and transversality condition
with respect to t involve nonstandard terms that are absent in problems with
ODEs. More remarks concerning the existing literature on the problems with
integral equations can be found in papers [1–4,6,7].

As was already mentioned in [6], the stationarity conditions in optimal control
problems constitute an important stage in obtaining any further necessary opti-
mality condition, including maximum principle or higher order conditions, and
thus, they deserve a separate thorough study for each specific class of problems.

The paper is organized as follows. In Sect. 2 we formulate a general optimal
control problem with integral equations on a variable time interval which we
call Problem A. We also define in this section the notion of the extended weak
minimum. Section 3 is devoted to formulation of the main result of the paper –
the local maximum principle in Problem A, which is the first order necessary
condition for an extended weak minimum (Theorem1). A short discussions of
its proof is given in Sect. 4.

2 General Optimal Control Problem with Integral
Equations on a Variable Time Interval (Problem A)

Consider the following control system of Volterra-type integral equations on a
variable time interval [t0, t1]:

x(t) = x(t0) +
∫ t

t0

f(t, s, x(s), u(s)) ds, (1)

where x(·) is a continuous n– dimensional and u(·) is a measurable essentially
bounded r– dimensional vector-functions on [t0, t1]. As usual, we call x(·) the
state variable and u(·) the control variable (or simply the control). A pair w(t) =
(x(t), u(t)) defined on its own interval [t0, t1] and satisfying (1) for a.e. t ∈
[t0, t1] is called a process. We assume that the function f is defined and twice
continuously differentiable on an open set R ⊂ R2+n+r.

The problem is to minimize the endpoint functional

J = ϕ0(t0, x(t0), t1, x(t1)) → min (2)

on the set of all processes (solutions of system (1)) satisfying the endpoint con-
straints

ηj(t0, x(t0), t1, x(t1)) = 0, j = 1, . . . , k, (3)

ϕi(t0, x(t0), t1, x(t1)) � 0, i = 1, . . . , ν, (4)
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the mixed state-control constraints

Fi(t, x(t), u(t)) � 0 for a.e. t ∈ [t0, t1], i = 1, . . . , d(F ), (5)

Gj(t, x(t), u(t)) = 0 for a.e. t ∈ [t0, t1], j = 1, . . . , d(G), (6)

and the state constraints

Φk(t, x(t)) � 0 for all t ∈ [t0, t1], k = 1, . . . , d(Φ). (7)

The functions ϕ0, ϕi, ηj are assumed to be defined and continuously differentiable
on an open set P ⊂ R2n+2, and the functions Fi, Gj , and Φk are assumed to be
defined and continuously differentiable on an open set Q ⊂ R1+n+r (the smooth-
ness assumptions). The notation d(F ), d(G), and d(Φ) stand for the numbers of
these functions.

Moreover, we assume that the mixed constraints (5) and (6) are regular in
the following sense: at any point (t, x, u) ∈ Q satisfying relations Fi � 0 ∀i and
Gj = 0 ∀j, the system of vectors

Fiu(t, x, u), i ∈ I(t, x, u), Gju(t, x, u), j = 1, . . . , d(G),

is positively–linearly independent, where I(t, x, u) = {i | Fi(t, x, u) = 0} is the
set of active indices of mixed inequality constraints at the given point. Here and
in the sequel we denote by Fiu the partial derivative (gradient) of the function
Fi with respect to the variable u. Similar notation is used for other functions an
variables.

Recall that a system consisting of two tuples of vectors p1, . . . , pm and
q1, . . . , qk in the space Rr is said to be positively-linearly independent if there does
not exist a nontrivial tuple of multipliers α1, . . . , αm, β1, . . . βk with all αi � 0
such that

∑
i

αi pi +
∑

j

βj qj = 0.

The problem (1)–(7) will be called Problem A, and the relations (2)–(4) its
endpoint block.

Note that the function f explicitly depends on two time variables, t and s,
the roles of which are essentially different. Conventionally, the variable s will be
called inner, while t will be called outer time variable, and one should carefully
distinguish between them in further considerations. Among the four arguments
of the function f and its derivatives, the first argument will always be the outer
and the second one be the inner time variables, no matter by which letters they
will be denoted.

As in [6,7], we mention an important particular case of system (1): if f does
not depend on the outer time variable t, i.e., f = f(s, x(s), u(s)), then the inte-
gral equation (1) is equivalent to the differential equation ẋ(t) = f(t, x(t), u(t)),
hence Problem A becomes an optimal control problem of ordinary differential
equations on a nonfixed time interval.
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Obviously, each process under consideration must “lie” in the domain R of
the function f(t, s, x, u), i.e.

(t, s, x(s), u(s)) ∈ R for a.e. (t, s) ∈ Δ[t0, t1],

where Δ[t0, t1] = {(t, s) : t0 � s � t � t1}. We will need even a stronger
condition.

Definition. A process w(t) = (x(t), u(t)) defined on an interval t ∈ [t0, t1] (with
continuous x(t) and measurable and essentially bounded u(t)) will be called
admissible with respect to R if its “extended graph”

Γ (w) = {(t, s, x(s), u(s)) | (t, s) ∈ Δ[t0, t1]}
lies in the set R with some “margin”, i.e.,

dist ((t, s, x(s), u(s)), ∂R) � const > 0 for a.a. (t, s) ∈ Δ[t0, t1].

A process is called admissible in problem A if it is admissible with respect to R
and satisfies all the constraints (1) and (3)–(7) of the problem.

Like in any problem on a nonfixed time interval, the notion of weak minimum
in Problem A needs a modification.

Definition. We will say that an admissible process w0(t) = (x0(t), u0(t)), t ∈
[t̂0, t̂1], provides the extended weak minimum if there exists an ε > 0 such that
for any Lipschitz continuous bijective mapping ρ : [t0, t1] → [t̂0, t̂1] satisfying
the conditions |ρ(t) − t| < ε and |ρ̇(t) − 1| < ε, and for any admissible process
w(t) = (x(t), u(t)), t ∈ [t0, t1], satisfying the conditions

|x(t) − x0(ρ(t))| � ε ∀t, and |u(t) − u0(ρ(t))| � ε (∀)t, (8)

we have J(w) � J(w0). (Notation (∀), as usual, means “for almost all”.)

The conditions on ρ imply ρ(t0) = t̂0 and ρ(t1) = t̂1 with |t̂0 − t0| < ε and
|t̂1 − t1| < ε. If the interval [t0, t1] is fixed and we take ρ(t) = t, then relations
(8) describe the usual uniform closeness between the processes w0 and w both
in the state and control variables. However, for an arbitrary ρ(t), relations (8)
extend the set of “competing” processes, and thus, even for a fixed time interval,
the extended weak minimum is stronger than the usual weak minimum.

3 Local Maximum Principle in Problem A

Let a process

w0(t) = (x0(t), u0(t)), t ∈ [t̂0, t̂1] (9)

provide an extended weak minimum in Problem A. We assume that the endpoints
of the reference state x0(t) do not lie on the boundary of state constraints;
moreover, that

Φk(t̂0, x0(t̂0)) < 0, Φk(t̂1, x0(t̂1)) < 0, k = 1, . . . , d(Φ). (10)
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For process (9), let us introduce a tuple of Lagrange multipliers

λ = (α0, α, β, ψx(t), ψt(t), hi(t),mj(t), μk(t)). (11)

Here α0 ∈ R corresponds to the cost ϕ0, the components of vectors α =
(α1, . . . , αν) ∈ Rν and β = (β1, . . . , βk) ∈ Rk correspond to endpoint con-
straints ϕi � 0, and ηj = 0, respectively, adjoint variables ψx(t) : [t̂0, t̂1] → Rn

and ψt(t) : [t̂0, t̂1] → R correspond to the control system, μk(t) : [t̂0, t̂1] → R,
k = 1, . . . , d(Φ), refer to the state constraints Φk(t, x) � 0; moreover, ψx, ψt,
and μk are functions of bounded variation, continuous at t̂0 and t̂1; multipliers
hi(t) : [t̂0, t̂1] → R, i = 1, . . . , d(F ), and mj(t) : [t̂0, t̂1] → R, j = 1, . . . , d(G)
corresponding to the mixed constraints Fi(t, x, u) � 0, Gj(t, x, u) = 0, are mea-
surable bounded functions.

Note that here ψx and ψt are not the partial derivatives with respect to x
and t, but simply the adjoint variables, which refer to x and t, respectively. This
notation was proposed by Dubovitskii and Milyutin and turned out to be highly
convenient, especially in problems with many state variables. We hope it will
not cause confusion.

We denote by dψx, dψt, dμk the Lebesgue-Stieltjes measures which cor-
respond to the functions of bounded variation ψx, ψt, μk, respectively. These
measures have no atoms at the points t̂0 and t̂1, and moreover, dμk � 0, k =
1, . . . , d(Φ), since it corresponds to the inequality constraint. Hence each μk is a
monotone nondecreasing function. By

dψx

dt
= ψ̇x(t),

dψt

dt
= ψ̇t(t),

dμk

dt
= μ̇k(t)

we denote the generalized derivatives of these functions with respect to t.
Consequently, the following relations hold:

ψ̇x(t) dt = dψx(t), ψ̇t(t) dt = dψt(t), μ̇k(t) dt = dμk(t).

In what follows, all pointwise relations involving continuous functions hold for
all t, while those involving measurable functions hold for almost all t.

In order to present optimality conditions in Problem A, introduce, for a tuple
λ of (11), the modified Pontryagin function

H(t, s, x, u) = ψx(t−) f(t, s, x, u) +
∫ t̂1

t

ψx(τ) ft(τ, s, x, u) dτ. (12)

Here ψx(t−) means the left hand value of the function ψx at a point t, and ft

means the partial derivative of the function f(t, s, x, u) with respect to the first,
outer variable t.

Also, for w0 and λ, let us introduce the augmented modified Pontryagin func-
tion

H(t, s, x, u) = H(t, s, x, u)
−∑

i

hi(t)Fi(s, x, u) − ∑
j

mj(t)Gj(s, x, u) − ∑
k

μ̇k(t)Φk(s, x), (13)
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the endpoint Lagrange function

l(t0, x0, t1, x1) =
( ν∑

i=0

αiϕi +
k∑

j=1

βjηj

)
(t0, x0, t1, x1),

and a special auxiliary function

R(t) =
∫ t

t̂0

ft(t, s, x0(s), u0(s)) ds.

The main result of the paper is the following

Theorem 1 (local maximum principle). If a process w0(t) = (x0(t), u0(t)),
t ∈ [t̂0, t̂1] provides the extended weak minimum in Problem A and satisfies
assumption (10), then there exists a tuple of multipliers (11) satisfying the spec-
ified above properties and such that the following conditions hold true:

(a) nonnegativity conditions

α0 � 0, α � 0, hi(t) � 0, i = 1, . . . , d(F ), dμk � 0, k = 1, . . . , d(Φ),

(b) nontrivality condition

α0 + |α| + |β| +
∑

k

(
μk(t̂1) − μk(t̂0)

)
+

∑
i

∫ t̂1

t̂0

hi(t) dt > 0,

(c) endpoint complementary slackness conditions

αi ϕi(t̂0, x0(t̂0), t̂1, x0(t̂1)) = 0, i = 1, . . . , ν,

(d) pointwise complementary slackness conditions

dμk(t)Φk(t, x0(t)) ≡ 0, k = 1, . . . , d(Φ),
hi(t)Fi(t, x0(t), u0(t)) = 0 a.e. on [t̂0, t̂1],

(e) adjoint equation in x

−dψx(t) = Hx(t, t, x0(t), u0(t))dt

=
(
ψx(t−)fx(t, t, x0(t), u0(t)) +

∫ t̂1

t
ψx(τ) ftx(τ, t, x0(t), u0(t)) dτ

)
dt

−
(∑

i

hi(t) Fix(t, x0(t), u0(t)) +
∑

j

mj(t) Gjx(t, x0(t), u0(t))
)

dt

−
∑

k

dμk(t) Φkx(t, x0(t)),
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(f) adjoint equation in t

− dψt(t) = Hs(t, t, x0(t), u0(t)) dt

−
( ∑

i

hi(t)Fit(t, x0(t), u0(t)) +
∑

j

mj(t)Gjt(t, x0(t), u0(t))
)

dt

−
∑

k

dμk(t)Φkt(t, x0(t)) − dψx(t)R(t), (14)

with

Hs(t, t, x0(t), u0(t)) = ψx(t−)fs(t, t, x0(t), u0(t))

+
∫ t̂1

t

ψx(τ) fts(τ, t, x0(t), u0(t)) dτ,

where fs is the partial derivative of the function f(t, s, x, u) with respect to
the second, inner variable s, and fts is its second partial derivative,

(g) transversality conditions in x,

ψx(t̂0) = lx0 , −ψx(t̂1) = lx1 ,

(h) transversality conditions in t,

ψt(t̂0) = lt0 , −ψt(t̂1) = lt1 − ψx(t̂1)R(t̂1), (15)

(i) stationarity condition with respect to the control

Hu(t, t, x0(t), u0(t)) = 0 a.e. on [t̂0, t̂1],

i.e.,

ψx(t−)fu(t, t, x0(t), u0(t)) +
∫ t̂1

t

ψx(τ) ftu(τ, t, x0(t), u0(t)) dτ

−
∑

i

hi(t)Fiu(t, x0(t), u0(t)) +
∑

j

mj(t)Gju(t, x0(t), u0(t)) = 0,

(k) the “energy evolution law”

H(t, t, x0(t), u0(t)) + ψt(t) = 0 a.e. on [t̂0, t̂1].

The last condition is called in such a way, since together with (14) it gives
the equation for evolution of the function H(t, t, x0(t), u0(t)), which is often
(especially in mechanical problems) regarded as the total energy of the system:

Ḣ = Hs − ψ̇xR.

If the state and mixed constraints are absent and the dynamics does not explicitly
depend on time: f = f(x, u), then H = H,R = 0, and we get “the energy
conservation law”: H = const along the optimal process.
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Note that both the adjoint equation in t and the right transversality condition
in t involve additional terms, dψx(t)R(t) and ψx(t̂1)R(t̂1), respectively. Both
these terms are generated by the dependence of f(t, s, x, u) on the outer time
variable t, which was absent in problems with ODEs. (Indeed, in those problems
ft = 0, whence F = 0, so this term disappears.) In our opinion, this novelty
in optimality conditions for problems on a variable time interval needs further
study.

Using generalized derivatives of functions of bounded variation, we can rep-
resent the adjoint equation in x and t in the easy-to-remember form:

− dψx(t)
dt

= Hx(t, t, x0(t), u0(t))

= Hx(t, t, x0(t), u0(t)) −
∑

i

hi(t)Fix(t, x0(t), u0(t))

−
∑

j

mj(t)Gjx(t, x0(t), u0(t)) −
∑

k

dμk(t)
dt

Φkx(t, x0(t)), (16)

and

− dψt(t)
dt

= Hs(t, t, x0(t), u0(t))

−
∑

i

hi(t)Fit(t, x0(t), u0(t)) −
∑

j

mj(t)Gjt(t, x0(t), u0(t))

−
∑

k

dμk(t)
dt

Φkt(t, x0(t)) − dψx(t)
dt

R(t). (17)

4 About the Proof of Theorem 1

Like in our paper [7], in order to prove Theorem1, we reduce Problem A to an
auxiliary problem on a fixed time interval by using the change of time variable
t = t(τ), where dt/dτ = v(τ) and v(τ) > 0. Setting x̃(τ) = x(t(τ)) and ũ(τ) =
u(t(τ)), we come to the following system of integral equations:

x̃(τ) = x(τ0) +
∫ τ

τ0

f(t(τ), t(σ), x̃(σ), ũ(σ)) v(σ) dσ, (18)

t(τ) = t(τ0) +
∫ τ

τ0

v(σ) dσ, (19)

where τ is a new time, t(τ) an additional state variable, v(τ) an additional
control variable, and σ a new time of integration instead of s.

We see that here the integrand of the first equation involves the value t(τ)
of a state variable, which was not allowed in (1). Abstracting from the specific
form of the second equation and changing the notation t(τ) to a more general
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y(τ) (and changing also τ to a more convenient t), we come to a system of the
following form on a fixed interval [t0, t1]:

x(t) = x(t0) +
∫ t

t0

g(t, s, y(t), x(s), y(s), u(s)) ds, (20)

y(t) = y(t0) +
∫ t

t0

h(t, s, y(s), u(s)) ds, (21)

where x(t) and y(t) are continuous functions of dimensions n and m respectively,
u(t) is a measurable and essentially bounded function on [t0, t1]. We still denote
the time by t. The data functions g and h, as before, are assumed to be twice
continuously differentiable on an open set R̃ ⊂ R2+2m+n+r.

This system does not fall into the framework of Eq. (1), since the integrand
of the first equation depends on y(t) (which can be regarded as the outer state
variable). Thus, we have to study a new, broader than (1), class of integral control
systems.

Adding to the obtained system the mixed constraints, the state constraints
and the terminal block, we obtain the following

4.1 Problem B on a Fixed Time Interval

On the set of solutions w = (x, y, u) to system (20)–(21) satisfying the con-
straints

Fi(t, x(t), y(t), u(t)) � 0 for a.e. t ∈ [t0, t1], i = 1, . . . , d(F ), (22)

Gj(t, x(t), y(t), u(t)) = 0 for a.e. t ∈ [t0, t1], j = 1, . . . , d(G), (23)

Φk(t, x(t), y(t)) � 0 for all t ∈ [t0, t1], k = 1, . . . , d(Φ), (24)

ηj(x(t0), y(t0), x(t1), y(t1)) = 0, j = 1, . . . , k, (25)

ϕi(x(t0), y(t0), x(t1), y(t1)) � 0, i = 1, . . . , ν, (26)

to minimize the endpoint functional

J = ϕ0(x(t0), y(t0), x(t1), y(t1)) → min. (27)

Like before, the functions ηj , ϕi, and ϕ0 are assumed to be continuously differ-
entiable on an open set P̃ ⊂ R2n+2m, the functions Fi, Gj , and Φk continuously
differentiable on an open set Q̃ ⊂ R1+m+n+r. We also assume that the mixed
constraints (22)–(23) are regular in the same sense as in Problem A.

To derive optimality conditions in Problem B, we consider it as a particular
case of an abstract nonsmooth problem in a Banach space, hence we can apply
the well known abstract Lagrange multipliers rule for nonsmooth problems (see,
e.g. [5,6]). Let us formulate it.
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4.2 Lagrange Multipliers Rule for an Abstract Nonsmooth Problem

Let X,Y,Zi, i = 1, . . . , ν be Banach spaces, D ⊂ X an open set, Ki ⊂ Zi, i =
1, . . . , ν closed convex cones with nonempty interiors, f0 : D → R, bi : D → Zi,
i = 1, . . . , ν, and g : D → Y given mappings. Consider the following problem

f0(x) → min, bi(x) ∈ Ki, i = 1, . . . , ν, g(x) = 0. (28)

We study the local minimality of an admissible point x0 ∈ D. Assume that the
cost f0 and the mappings bi are Frechet differentiable at x0, the operator g is
strictly differentiable at x0, and the image of g′(x0) is closed. Let K0

i be the
polar cone to Ki, i = 1, . . . , ν.

Theorem 2. Let x0 provide a local minimum in problem (28). Then there exist
Lagrange multipliers α0 � 0, ζ∗

i ∈ K0
i , i = 1, . . . , ν, and y∗ ∈ Y ∗, not all equal to

zero, satisfying the complementary slackness conditions 〈ζ∗
i , bi(x0)〉 = 0, i =

1, . . . , ν, and such that the Lagrange function

L(x) = α0f0(x) +
ν∑

i=1

〈ζ∗
i , bi(x)〉 + 〈y∗, g(x)〉

is stationary at x0 : L′(x0) = 0.

Applying Theorem2 to Problem B, we perform some analysis of the obtained
conditions and represent them in the form of local maximum principle for Prob-
lem B. The latter is then applied to the auxiliary problem with system (18)–(19),
and finally, we rewrite the results in terms of the original Problem A.
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Abstract. In the present paper a robust stabilization problem of
continuous-time linear dynamic systems with Markov jumps and cor-
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1 Introduction

The stochastic systems subject both to Markovian jumps and to multiplicative
white noise perturbations received a considerable attention over the last years.
Relevant results include the stability of such systems, optimal control and filter-
ing (see e.g. [4–6,8] and their references). In the present paper a robust stabi-
lization problem of continuous-time linear dynamic systems with Markov jumps
and corrupted with multiplicative (state-dependent) white noise perturbations
is considered. The robustness analysis is performed with respect to the inten-
sity of the white noise terms. It is proved that the robustness radius depends
on the solution of an algebraic system of coupled Lyapunov matrix equations.
The derived results are a generalization of the ones proved in [10] for the case
without Markovian jumps. The paper is organized as follows: in the next section
the problem statement is presented. The third section includes some preliminary
results concerning the Lyapunov operators associated to the considered class of
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stochastic systems. The main result is presented and proved in Sect. 4. In the
last section the stability radius is determined for two relevant particular cases
and a numerical example illustrates the theoretical developments.

2 The Problem Statement

Consider the system of stochastic linear differential equations:

dx(t) = A(ηt)x(t)dt +
r∑

l=1

μlbl(ηt)cT
l (ηt)x(t)dwl(t) (1)

where {wl(t)}t≥0, 1 ≤ l ≤ r, are one-dimensional independent standard Wiener
processes defined on a given probability space (Ω,F ,P); {ηt}t≥0 is a homoge-
neous standard right continuous Markov process defined on the same probability
space (Ω,F ,P) and taking value in the finite set N = {1, 2, ..., N} and having
the transition semigroup P (t) = eQt, t ≥ 0, where Q ∈ R

N×N is a matrix whose
elements qij satisfy the condition

⎧⎨
⎩

qij ≥ 0 if i �= j, i, j ∈ N

N∑
j=1

qij = 0,∀i ∈ N.
(2)

For more details we refer to [1,3,9,12]. We also assume that {ηt}t≥0,
{wl(t)}t≥0, 1 ≤ l ≤ r, are independent stochastic processes. In (1) the matrices
A(i) ∈ R

n×n, bl(i), cl(i) ∈ R
n×1, 1 ≤ l ≤ r, 1 ≤ i ≤ N are known, while the

scalars μl ∈ R are unknown. The system (1) can be regarded as a perturbation
of the so called nominal system

ẋ(t) = A(ηt)x(t). (3)

The perturbed system (1) emphasizes the fact that the coefficients of the
nominal system are affected by parametric uncertainties modeled by state mul-
tiplicative white noise perturbations with unknown intensity μl. Often when we
refer to the perturbed system (1) we shall say that it corresponds to the vec-
tor of parameters μ = (μ1, μ2, ..., μr). Assuming that the nominal system (3)
is exponentially stable in mean square (ESMS) we want to find necessary and
sufficient conditions which will be satisfied by the parameters μl, 1 ≤ l ≤ r such
that the perturbed system (1) to be also ESMS. In the special case N = {1}
(no Markov jumps) the conditions derived in this note recover those derived in
[10]. The concept of exponential stability in mean square of the linear stochastic
systems of type (1) and (3) may be found in [2] and [8], respectively.

3 Some Preliminaries

Let SN
n = Sn ⊗ Sn ⊗ ... ⊗ Sn, where Sn ⊂ R

n×n is the subspace of symmet-
ric matrices. Let SN

n+ be the convex cone defined by SN
n+ = {X = (X(1),
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X(2), ...,X(N)) ∈ SN
n |X(i) ≥ 0, 1 ≤ i ≤ N}. Here, X(i) ≥ 0 means that X(i) is

positive semidefinite, SN
n+ is a closed convex cone with non empty interior. Its

interior is IntSN
n+ = {X = (X(1),X(2), ...,X(N)) ∈ SN

n+|X(i) > 0, 1 ≤ i ≤ N}.
Applying Theorem 3.3.2 and Theorem 3.3.3 from [8] in the case of system (1)
one obtains the following result.

Proposition 3.1. The following are equivalent

(i) The system (4) is ESMS;
(ii) For any H = (H(1),H(2), ...,H(N)) ∈ IntSN

n+ there exists
X = (X(1),X(2), ...,X(N)) ∈ IntSN

n+ solving the following equation on
SN

n

AT (i)X(i) + X(i)A(i) +
N∑

j=1

qijX(j) +
r∑

l=1

μ2
l cl(i)bT

l (i)X(i)bl(i)cT
l (i)

+H(i) = 0; 1 ≤ i ≤ N ;
(4)

(iii) For any H ∈ IntSN
n+, there exists Y = (Y (1), y(2), ..., Y (N)) ∈ IntSN

n+

solving the following equation on SN
n

A(i)Y (i) + Y (i)AT (i) +
N∑

j=1

qjiY (j) +
r∑

l=1

μ2
l bl(i)cT

l (i)Y (i)cl(i)bT
l (i)

+H(i) = 0, 1 ≤ i ≤ N ;
(5)

(iv) There exists X = (X(1), ...,X(N)) ∈ IntSN
n+ satisfying the following system

of LMIs

AT (i)X(i) + X(i)A(i) +
N∑

j=1

qijX(j) +
r∑

l=1

μ2
l cl(i)bT

l (i)X(i)bl(i)cT
l (i) < 0,

where 1 ≤ i ≤ N .

Then one associates the following Lyapunov operators to the nominal system
(3) L : SN

n → SN
n , L : SN

n → SN
n defined by

L[X](i) = AT (i)X(i) + X(i)A(i) +
N∑

j=1

qijX(j), 1 ≤ i ≤ N, (6)

and

L[X](i) = A(i)X(i) + X(i)AT (i) +
N∑

j=1

qjiX(j), 1 ≤ i ≤ N (7)

for all X = (X(1), ...,X(N)) ∈ SN
n . It is easy to check that L is the adjoint

operator of L with respect to the usual inner product on SN
n :

< X,Y >=
N∑

j=1

Tr[X(i)Y (i)]. (8)
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Invoking Proposition 3.20 and Theorem 3.21 from [2] (see also Theorem 3.2.2
and Theorem 3.2.4 from [8]) one deduces that the nominal system (3) is ESMS if
and only if the eigenvalues of the linear operator L are located in the half plane
C−. This allows us to obtain the following result.

Corollary 3.2. If the nominal system (3) is ESMS then for each H ∈ SN
n the

equations

L[X] + H = 0 (9)

and

L[Y] + H = 0 (10)

have unique solutions given by X = −L−1[H] = (−L−1[H](1), ...,−L−1

[H](N)) ∈ SN
n and Y = −L−1[H] = (−L−1[H](1), ...,−L[H](N)) ∈ SN

n , respec-
tively. If H ∈ SN

n+ then X ∈ SN
n+, Y ∈ SN

n+. Moreover, if H ∈ IntSN
n+ then the

unique solutions of (9) and (10), respectively are in IntSN
n+ i.e.

− L−1[H](i) > 0 (11)

and

− L−1[H](i) > 0 (12)

for all 1 ≤ i ≤ N .
Further, let us consider the ordered space (Rd,Rd

+) where the order relation is
induced by the convex cone R

d
+ = {x = (x1, x2, ..., xd)T ∈ R

d|xi ≥ 0, 1 ≤ i ≤ d}.
The interior IntRd

+ of the convex cone R
d
+ consists of the set IntRd

+ = {x =
(x1, x2, ..., xd)T ∈ R

d
+|xi > 0, 1 ≤ i ≤ d}. If D = (dij)ij ∈ R

d×d is the matrix of a
linear operator D : Rd → R

d then DR
d
+ ⊂ R

d
+ if and only if dij ≥ 0, 1 ≤ i, j ≤ d.

In this case D will be called positive matrix. Applying Theorems 2.6 and 2.7
from [7] in the special case of the ordered linear space (Rd,Rd

+) one obtains the
following result.

Proposition 3.3. For a positive matrix D ∈ R
d×d the following are equivalent:

(i) ρ(D) < 1, ρ(·) being the spectral radius;
(ii) There exists ψ ∈ IntRd

+ such that the equation

(Id − D)ζ = ψ (13)

has a solution ζ ∈ IntRd
+.

4 Main Results

The equivalence (i) ↔ (iv) from Proposition 3.1 allows us to deduce that if the
perturbed system (1) is ESMS for a value μ = (μ1, μ2, ..., μr) of the intensities of
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the white noises, then this system is ESMS for every value μ‘ = (μ‘
1, ..., μ

‘
r) which

are satisfying |μ‘
l| ≤ |μl| for all 1 ≤ l ≤ r. In this section we shall derive a set

of necessary and sufficient conditions which guarantee the exponential stability
in mean square of a perturbed system (1) corresponding to a set of unknown
vector of intensities μ = (μ1, ..., μr). Using Proposition 3.1 one notices that the
system (1) is ESMS if and only if for any H ∈ IntSN

n+ the Eq. (4) has a solution
X ∈ IntSN

n+. Using (6) we may rewrite (4) in the form

L[X] + H̃ = 0 (14)

where H̃ = (H̃(1), ..., H̃(N)),

H̃(i) =
r∑

l=1

μ2
l b

T
l (i)X(i)bl(i)cl(i)cT

l (i) + H(i), 1 ≤ i ≤ N. (15)

Further, we rewrite H̃ in the form:

H̃ =
r∑

l=1

N∑
j=1

μ2
l b

T
l (j)X(j)bl(j)Ξlj + H (16)

where Ξlj = (Ξlj(1), ..., Ξlj(N)) ∈ SN
n+ with

Ξlj(i) =
{

cl(j)cT
l (j), if i = j

0, otherwise. (17)

Since the nominal system (3) is necessarily ESMS if the perturbed system (1)
is ESMS, we deduce via Corollary 3.2 and (16) that the solution of the equation
(14) satisfies

X = −
r∑

l=1

N∑
j=1

bT
l (j)X(j)bl(j)μ2

l L−1[Ξlj ] − L−1[H].

The ith component of this solution is

X(i) = −
r∑

l=1

N∑
j=1

bT
l (j)X(j)bl(j)μ2

l L−1[Ξlj ](i) − L−1[H](i), 1 ≤ i ≤ N. (18)

Multiplying (18) on the left by bT
k (i) and on the right by bk(i), one obtains

bT
k (i)X(i)bk(i) =

r∑
l=1

N∑
j=1

bT
l (j)X(j)bl(j)mki,lj + νki (19)

1 ≤ k ≤ r, 1 ≤ i ≤ N , where

mki,lj = −μ2
l b

T
k (i)L−1[Ξlj ](i)bk(i) (20)
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and

νki = −bT
k (i)L−1[H](i)bk(i). (21)

One sees that (19) is a system of rN scalars equations with rN scalar
unknowns. Based on the fact that for each integer α ∈ {1, 2, ..., rN} there exists
a unique pair of natural numbers (k, i) ∈ {1, 2, ..., r} × {1, 2, ..., N} such that
α = (k − 1)N + i we may write (19) as an equation of the form (13) on the
space R

rN . To this end we set ζ = (ζ1, ζ2, ..., ζrN )T , Ψ = (Ψ1, Ψ2, ..., ΨrN )T ,
D = (dαβ)1≤α,β≤rN ,

ζβ = bT
l (j)X(j)bl(j) if (l − 1)N + j = β, (22)

Ψα = νki = −bT
k (i)L−1[H](i)bk(i) if (k − 1)N + i = α (23)

dαβ = mki,lj = −μ2
l b

T
k (i)L−1[Ξlj ](i)bk(i) (24)

if (k − 1)N + i = α and (l − 1)N + j = β. With these notations (19) may be
written in a compact form:

(I − D)ζ = Ψ. (25)

Since the matrix D defined by (24) depend upon the unknown parameters
μl, for each perturbed system of type (1) one may associate a matrix D = D(μ)
as before. Now we are in a position to state and proof the following result.

Theorem 4.1 Assume bk(i) �= 0, 1 ≤ k ≤ r, 1 ≤ i ≤ N . Under this condition
the following are equivalent:

(i) The perturbed system (1) corresponding to the set of parameters μ =
(μ1, ..., μr) is ESMS;

(ii) The nominal system (3) is ESMS and the matrix D(μ) associated to the
perturbed system (1) satisfies ρ(D(μ)) < 1.

Proof. (i) ⇒ (ii) Let H ∈ IntSN
n+ be arbitrary but fixed. If the perturbed

system (1) is ESMS, then the nominal system (3) is also ESMS. Hence, the
Eqs. (14)–(15) has a solution X = (X(1), ...,X(N)) with X(i) > 0, 1 ≤ i ≤ N .
Consider ζ, Ψ ∈ R

rN defined via (22) and (23). Since bk(i) �= 0, for all (k, i) ∈
{1, 2, ..., r} × {1, 2, ..., N} one deduces that ζα > 0 and Ψα > 0, 1 ≤ α ≤ rN .
Further, one associates the matrix D whose elements are computed via (24). One
may check that dαβ ≥ 0, for all 1 ≤ α, β ≤ rN . So, it follows that the Eq. (25)
associated to the perturbed system (1) satisfies the conditions from Proposition
3.3 (ii). Hence, ρ(D) < 1, this shows that the assertion (ii) from the statement
holds if (i) is satisfied.

Now the implication (ii) ⇒ (i) will be proved. Let H ∈ IntSN
n+ be arbitrary.

It will be shown that the corresponding Eq. (4) has a solution X ∈ IntSN
n+. One

notices that if the nominal system (3) is ESMS, then Ψ ∈ IntRrN and the matrix
D ∈ R

rN×rN are well defined via (23) and (24), respectively. If ρ(D) < 1 then,
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based on the implication (i) ⇒ (ii) from Proposition 3.3 it follows (25) has a
unique solution ζ ∈ IntRrN

+ . Based on the components of the vectors Ψ , ζ and
of the matrix D one may define

Ψ̃ki = Ψα, ζ̃lj = ζβ , d̃ki,lj = dαβ (26)

if (k, i), (l, j) ∈ {1, 2, ..., r} × {1, 2, ..., N}, (k − 1)N + i = α, (l − 1)N + j = β. It
is easy to see that Ψ̃ki = Ψki, d̃ki,lj = mki,lj . With these notations one obtains
the following version of the Eq. (25)

ζ̃ki = −
r∑

l=1

N∑
j=1

μ2
l b

T
k (i)L−1[Ξlj ](i)bk(i)ζ̃lj − bT

k (i)L−1[H](i)bk(i) (27)

∀(k, i) ∈ {1, 2, ..., r} × {1, 2, ..., N}. Defining

X(i) = −
r∑

l=1

N∑
j=1

μ2
l ζ̃ljL−1[Ξlj ](i) − L−1[H](i), 1 ≤ i ≤ N. (28)

and setting X = (X(1), ...,X(N)), it results that X ∈ IntSN
n+ since

−L−1[Ξlj ](i) ≥ 0, −L−1[H](i) > 0 and ζ̃lj > 0 for all (l, j, i) ∈ {1, 2, ..., r} ×
{1, 2, ..., N} × {1, 2, ..., N}. From (28) it follows

L[X] +
r∑

l=1

N∑
j=1

μ2
l ζ̃ljΞlj + H = 0. (29)

Based on (17) it results that Ξlj(i) = 0 if i �= j, obtaining thus the following
componentwise version of (29)

L[X](i) +
r∑

l=1

μ2
l ζ̃licl(i)cT

l (i) + H(i) = 0, 1 ≤ i ≤ N. (30)

From (28) with (27) it results that ζ̃ki = bT
k (i)X(i)bk(i) for all 1 ≤ k ≤ r,

1 ≤ i ≤ N . Therefore one may rewrite (30) in the form

L[X](i) +
r∑

l=1

μ2
l cl(i)bT

l (i)X(i)bl(i)cT
l (i) + H(i) = 0 (31)

which is just (4). Thus the proof is complete.

Remark 4.1. The result proved in Theorem4.1 shows that, in order to decide
if the perturbed system (1) corresponding to a vector of unknown parameters
μl ∈ [−|μ̃l|, |μ̃l|], 1 ≤ l ≤ r is ESMS, we have to check if the spectral radius of
the matrix D = D(μ̃) (associated via (24) to the parameters μ̃l) is less then 1.
One notices that (24) may be rewritten in the form

dαβ = μ̃2
l b

T
k (i)Zlj(i)bk(i) (32)
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where (k, i), (l, j) ∈ {1, 2, ..., r} × {1, 2, ..., N} are such that (k − 1)N + i = α
and (l − 1)N + j = β, Zlj = (Zlj(1), ..., Zlj(N)) being the unique solution of the
equation

AT (i)Zlj(i) + Zlj(i)A(i) +
N∑

ι=1

qiιZlj(ι) + Ξlj(i) = 0 (33)

1 ≤ i ≤ N , with Ξlj defined in (17).
According with [10] one introduces the following definition.

Definition 4.1. The vector of noise intensities μ0 = (μ0
1, μ

0
2, ..., μ

0
r) is called

critical for the system (1) if the system (1) corresponding to the noise intensities
εμ0 is ESMS if 0 < ε < 1 and it is not ESMS if ε ≥ 1.

Remark 4.2. Denote D(μ) the matrix D corresponding to the vector μ =
(μ1, ..., μr) of the noise intensities. Based on (24) it follows that D(εμ0) =
ε2D(μ0). Since the spectral radius of a positive matrix is an eigenvalue of that
matrix one may infer that

ρ[D(εμ0)] = ε2ρ[D(μ0)].

If μ0 is a critical vector of noise intensities then one obtains from Theorem
4.1 that ρ[D(εμ0)] < 1 for all 0 < ε < 1 obtaining thus that ρ[D(μ0)] < 1

ε2 ,
0 < ε < 1. So, we deduce that ρ[D(μ0)] ≤ 1. Since the perturbed system (1)
corresponding to the vector μ0 is not ESMS, one concludes via Theorem 4.1, that
ρ[D(μ0)] = 1. Hence, the vector μ0 = (μ0

1, ..., μ
0
r) is a solution of the equation

det(IrN − D(μ)) = 0.
In the space R

r of the vector μ = (μ1, ..., μr) the critical vectors of noise
intensities μ0 are included in the boundary of the stability region.

5 Several Special Cases

The first special case analyzed here is r = 1 and N ≥ 2. In this case the system
(1) becomes

dx(t) = A(ηt)x(t)dt + μb(ηt)cT (ηt)x(t)dw1(t). (34)

The matrix D associated to the system (34) is D = μ2D1 where

D1 =

⎛
⎜⎜⎝

bT (1)Z1(1)b(1) bT (1)Z2(1)b(1) ... bT (1)ZN (1)b(1)
bT (2)Z1(2)b(2) bT (2)Z2(2)b(2) ... bT (2)ZN (2)b(2)

... ... ... ...
bT (N)Z1(N)b(N) bT (N)Z2(N)b(N) ... bT (N)ZN (N)b(N)

⎞
⎟⎟⎠ (35)

for each 1 ≤ j ≤ N , (Zj(1), ..., Zj(N)) is the unique solution of the following
equation on SN

n

AT (i)Zj(i) + Zj(i)A(i) +
N∑

ι=1

qiιZj(ι) + Ξj(i) = 0 (36)
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Ξj(i) = 0 if i �= j and Ξj(i) = c(j)cT (j) if i = j.
In the special case of the system (34), the Theorem 4.1 yields to the following

result.

Corollary 5.1. If b(i) �= 0, ∀ 1 ≤ i ≤ N the following are equivalent:

(i) The perturbed system (34) is ESMS;
(ii) The nominal system (3) is ESMS and the parameter μ satisfies the condition

μ2 < 1
ρ[D1]

.

Remark 5.1. The previous Corollary shows that the exponential stability in
mean square of the nominal system (3) is preserved for the perturbed system (34)
if and only if the unknown parameter μ lies in the interval (−ρ

−1
2 [D1], ρ

−1
2 [D1]),

which is the stability region in the case of perturbed system (34).

The second special case discussed here is r ≥ 1, N = 1. Now, the system (1)
becomes

dx(t) = Ax(t)dt +
r∑

l=1

μlblc
T
l x(t)dwl(t). (37)

The matrix D associated to the system (37) via (24) is

D = D̂diag(μ2
1, ..., μ

2
r), (38)

where

D̂ =

⎛
⎜⎜⎝

bT
1 Z1b1 bT

1 Z2b1 ... bT
1 Zrb1

bT
2 Z1b2 bT

2 Z2b2 ... bT
2 Zrb2

... ... ... ...
bT
r Z1br bT

r Z2br ... bT
r Zrbr

⎞
⎟⎟⎠ (39)

for each 1 ≤ l ≤ r, Zl is the unique solution of the Lyapunov equation

AT Zl + ZlA + clc
T
l = 0. (40)

The result proved in Theorem 4.1 yields the next result.

Corollary 5.2. The following are equivalent

(i) The perturbed system (37) is ESMS for any value of the unknown parameters
μl ∈ (−|μ̃l|; |μ̃l|), 1 ≤ l ≤ r.

(ii) A is a Hurwitz matrix and ρ[D] < 1, D being defined in (38)–(39) with μl

replaced by μ̃l, 1 ≤ l ≤ r.

Remark 5.2.(a) The result stated in Corollary 5.2 is just the main result
derived in [10]. Its discrete-time version may be found in [11].

(b) Condition of the form bl �= 0, 1 ≤ l ≤ r (as it is imposed in the general case
in Theorem 4.1) is redundant in the case of system (37) because, if bl0 = 0
for some l0, it follows that the noise wl0(t) does not affect the perturbed
system.
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In order to illustrate the above theoretical results one considers the dynamics
of Hopfield neural network of form

v̇i(t) = aivi(t) +
n∑

j=1

bijgj (vj(t)) + ci, i = 1, ..., N

ai < 0 and the activation functions gi(·) are strictly increasing. Then its approx-
imation around an equilibrium point v0 is

ẋ(t) = Ax(t) + Bf(x(t))

where x(t) = v(t) − v0, f(x) = g(x + v0) − g(v0) and where A =
diag(a1, ..., an) the elements of f(·) being sector-type nonlinearities satisfying
fk(xk) (fk(xk) − μkxk) ≤ 0, k = 1, ..., n. Then for the above system associate
the linear approximation

dx(t) = Ax(t)dt + μ
r∑

l=1

blc
T
l x(t)dwl(t), n = 3, r = 2

A = diag (−0.5, −0.5, −0.5)
b1 = [0.5, 1, 1 ]T , c1 = [1, 2, 1 ]T ,
b2 = [1, 0.25, −1 ]T , c2 = [0.25, −1 , 1 ]T

Applying Corollary 5.2 it results that the above system is ESMS for all μ ∈
[−0.2857; 0.2857].
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Abstract. In this paper we study an optimal control problem for a
doubly nonlinear evolution equation governed by time-dependent subd-
ifferentials. We prove the existence of solutions to our equation. Also,
we consider an optimal control problem without uniqueness of solutions
to the state system. Then, we prove the existence of an optimal control
which minimizes the nonlinear cost functional. Moreover, we apply our
general result to some model problem.

Keywords: Optimal control · Doubly nonlinear evolution equations ·
Subdifferentials · Without uniqueness

1 Introduction

The present paper is concerned with an optimal control problem without unique-
ness of solutions to a doubly nonlinear evolution equation governed by time-
dependent subdifferentials in a real Hilbert space H.

In our optimal control problem, for each control f , the state system (P; f) is
as follows:

State system (P;f):

(P; f)
{

∂ψt(u′(t)) + ∂ϕ(u(t)) + g(u(t)) � f(t) in H for a.e. t ∈ (0, T ),
u(0) = u0 in H,

(1.1)

where 0 < T < ∞, u′ = du/dt in H, ψt : H → R ∪ {∞} is a time-dependent
proper, l.s.c. (lower semi-continuous), convex function for each t ∈ [0, T ], ϕ :
H → R∪ {∞} is a time-independent proper, l.s.c., convex function, ∂ψt and ∂ϕ

N. Yamazaki—This work was supported by Grant-in-Aid for Scientific Research (C)
No. 26400164 and No. 26400179, JSPS.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 261–271, 2016.
DOI: 10.1007/978-3-319-55795-3 24



262 M.H. Farshbaf-Shaker and N. Yamazaki

are their subdifferential in H, g(·) is a single-valued Lipschitz operator in H, f
is a given H-valued control function and u0 ∈ H is a given initial data.

In this present paper, we consider the optimal control problem without
uniqueness of solutions to the state system (P; f). To this end, let V be a real
Hilbert space such that the embedding V ↪→ H is dense and compact. Then, we
study the following optimal control problem without uniqueness of solutions to
(P; f):

Problem (OP): Find the optimal control f∗ ∈ F such that

J(f∗) = inf
f∈F

J(f).

Here F := W 1,2(0, T ;H) ∩ L2(0, T ;V ) is the control space and J(f) is the cost
functional defined by

J(f) := inf
u∈S(f)

πf (u), (1.2)

where f ∈ F is the control, S(f) is the set of all solutions to (P; f) with the
control function f . Also, u is a solution to the state system (P; f) and πf (u) is
its functional defined by

πf (u) :=
1
2

∫ T

0

|u(t) − uad|2Hdt +
1
2

∫ T

0

|f(t)|2V dt +
1
2

∫ T

0

|ft(t)|2Hdt, (1.3)

where uad ∈ L2(0, T ;H) is a given target profile and | · |H (resp. | · |V ) is the
norm of H (resp. V ).

There is vast literature on optimal control problems to (parabolic or elliptic)
variational inequalities. For instance, we refer to [5,10,11,17–19,23]. In particu-
lar, Lions [18] and Neittaanmäki et al. [19, Sect. 3.1.3.1] discussed the singular
control problems, which is the class of control problems characterized by not
well-posed state systems.

The theory of nonlinear evolution equations are useful in the systematic
study of variational inequalities. For instance, many mathematicians studied the
nonlinear evolution equation of the form:

u′(t) + ∂ϕt(u(t)) � f(t) in H for a.e. t ∈ (0, T ), (1.4)

where ϕt(·) : H → R ∪ {∞} is a proper, l.s.c. and convex function. For various
aspects of (1.4), we refer to [11,14,20,22]. In particular, Hu–Papageorgiou [11]
studied the optimal control problems to (1.4).

Also, doubly nonlinear evolution equations were studied. For instance,
Kenmochi–Pawlow [15] studied the following type of doubly nonlinear evolution
equations:

d

dt
∂ψ(u(t)) + ∂ϕt(u(t)) � f(t) in H for a.e. t ∈ (0, T ), (1.5)
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where ψ(·) : H → R ∪ {∞} is a proper, l.s.c. and convex function. The abstract
results of doubly nonlinear evolution Eq. (1.5) can be applied to elliptic-parabolic
equations. Therefore, from the view point of (1.5), Hoffmann et al. [10] studied
optimal control problems for quasi-linear elliptic-parabolic variational inequali-
ties with time-dependent constraints. Also, Kadoya–Kenmochi [12] studied the
optimal sharp design of elliptic-parabolic equations.

On the other hand, Akagi [1], Arai [2], Aso et al. [3,4], Colli [8], Colli–
Visintin [9], Senba [21] investigated the following type of doubly nonlinear evo-
lution Eq. (cf. (1.1)):

∂ψt(u′(t)) + ∂ϕ(u(t)) � f(t) in H for a.e. t ∈ (0, T ). (1.6)

However, there was no result of optimal control for (1.1) and (1.6) since (1.1)
and (1.6) are not well-posed state systems, in general. Therefore, by arguments
similar to Kadoya et al. [13], more precisely, using the cost functional defined by
(1.2) and (1.3), we establish the abstract theory of the optimal control problem
(OP) without uniqueness of solutions to the state system (1.1).

The plan of this paper is as follows. In the next Sect. 2, we state the main
result in this paper. In Sect. 3, we first give the sketch of the proof of solvability
for (1.1). Also, we prove the convergence result (Proposition 3) of solutions to
(P; f). Moreover, we prove the main result (Theorem 1) on the existence of the
optimal control to (OP). In the final Sect. 4, we apply our abstract result to a
parabolic PDE with Neumann boundary condition.

Notations

Throughout this paper, let H be a real Hilbert space with the inner product
(·, ·) and norm | · |H , respectively. Also, let V be a real Hilbert space with the
norm | · |V such that the embedding V ↪→ H is dense and compact.

Let us here prepare some notations and definitions of subdifferential of convex
functions. To this end, let E be a real Hilbert space with the inner product
(·, ·)E . Then, for a proper (i.e., not identically equal to infinity), l.s.c. and convex
function φ : E → R ∪ {∞}, the effective domain D(φ) is defined by

D(φ) := {z ∈ E; φ(z) < ∞}.

The subdifferential of φ is a possibly multi-valued operator in E and is defined
by z∗ ∈ ∂φ(z) if and only if

z ∈ D(φ) and (z∗, y − z)E ≤ φ(y) − φ(z) for all y ∈ E.

The next proposition is concerned with the closedness of maximal monotone
operator ∂φ in E.

Proposition 1 (cf. [7, Lemma 1.2]). Let E be a real Hilbert space with the
inner product (·, ·)E. Let φ : E → R ∪ {∞} be a proper, l.s.c. and convex
function. Also, let [zn, z∗

n] ∈ ∂φ and [z, z∗] ∈ E × E be such that

zn → z weakly in E and z∗
n → z∗ weakly in E as n → ∞.
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Suppose that

lim sup
n→∞

(zn, z∗
n)E ≤ (z, z∗)E .

Then, it follows that [z, z∗] ∈ ∂φ and limn→∞(zn, z∗
n)E = (z, z∗)E.

For various properties and related notions of the proper, l.s.c., convex func-
tion φ and its subdifferential ∂φ, we refer to a monograph by Brézis [6].

2 Main Theorem

We begin by defining the notion of a solution to (P; f).

Definition 1. Given f ∈ L2(0, T ;H) and u0 ∈ H, the function u : [0, T ] → H
is called a solution to (P;f) on [0, T ], if the following conditions are satisfied:

(i) u ∈ W 1,2(0, T ;H).
(ii) There exist functions ξ ∈ L2(0, T ;H) and ζ ∈ L2(0, T ;H) such that

ξ(t) ∈ ∂ψt(u′(t)) in H for a.e. t ∈ (0, T ),
ζ(t) ∈ ∂ϕ(u(t)) in H for a.e. t ∈ (0, T )

and

ξ(t) + ζ(t) + g(u(t)) = f(t) in H for a.e. t ∈ (0, T ).

(iii) u(0) = u0 in H.

Now, we give the assumptions on ψt, ϕ and g.

(A1) For each t ∈ [0, T ], ψt(·) : H → R ∪ {∞} is a proper, l.s.c. and convex
function. Also, ϕ(·) : H → R ∪ {∞} is a proper, l.s.c. and convex function.

(A2) There exists a positive constant C1 > 0 such that

ψt(z) ≥ C1|z|2H , ∀t ∈ [0, T ], ∀z ∈ D(ψt).

(A3) There exists a positive constant C2 > 0 such that

|z∗|2H ≤ C2(ψt(z) + 1), ∀[z, z∗] ∈ ∂ψt, ∀t ∈ [0, T ].

(A4) There are functions α ∈ W 1,2(0, T ) and β ∈ W 1,1(0, T ) satisfying the
following property: for any s, t ∈ [0, T ] with s ≤ t and z ∈ D(ψs), there exists
z̃ ∈ D(ψt) such that

|z̃ − z|H ≤ |α(t) − α(s)|
(
1 + ψs(z)

1
2

)
,

ψt(z̃) − ψs(z) ≤ |β(t) − β(s)| (1 + ψs(z)).
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(A5) There exists a positive constant C3 > 0 such that

ϕ(z) ≥ C3|z|2H , ∀z ∈ D(ϕ).

(A6) For each r > 0, the level set {z ∈ H;ϕ(z) ≤ r} is compact in H.
(A7) g : H → H is a single-valued Lipschitz operator. Namely, there is a positive

constant Lg > 0 such that

|g(z1) − g(z2)|H ≤ Lg|z1 − z2|H , ∀zi ∈ H (i = 1, 2).

Remark 1. The assumption (A4) is the standard time-dependence condition of
convex functions (cf. [14,20,22]).

By a slight modification of [1,3], we can prove the following existence result
for problem (P;f). We give a sketch of its proof in Sect. 3.

Proposition 2 (cf. [1, Theorem 3.2], [3, Theorem 2.1]). Assume (A1)–
(A7). Then, for each u0 ∈ D(ϕ) and f ∈ L2(0, T ;H), there exists at least one
solution u to (P;f) on [0, T ]. Moreover, there exists a positive constant N0 > 0,
independent of u0, such that

∫ T

0

ψt(u′(t))dt + sup
t∈[0,T ]

ϕ(u(t)) ≤ N0

(
ϕ(u0) + |f |2L2(0,T ;H) + 1

)
. (2.1)

Remark 2. Colli [8, Theorem 5] and Colli–Visintin [9, Remark 2.5] showed sev-
eral criteria for the uniqueness of solutions to the following type of doubly non-
linear evolution equations:

∂ψ(u′(t)) + ∂ϕ(u(t)) � f(t) in H for a.e. t ∈ (0, T ). (2.2)

For instance, if ∂ϕ is linear, positive, self-adjoint in H and ∂ψ is strictly
monotone in H, we can show the uniqueness of solutions to (2.2). However, ∂ψt

and ∂ϕ in (1.1) are nonlinear and not self-adjoint, and hence, the uniqueness
question to (1.1) is still open.

Now, we state the main result of this paper, which is directed to the existence
of an optimal control to (OP) without uniqueness of solutions to (P;f).

Theorem 1. Assume (A1)–(A7) and u0 ∈ D(ϕ). Let uad be an element in
L2(0, T ;H). Then, (OP) has at least one optimal control f∗ ∈ F such that

J(f∗) = inf
f∈F

J(f).
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3 Proof of Main Theorem1

In this section, we give the sketch of the proof of Proposition 2 by arguments
similar to Akagi [1] and Aso et al. [3]. Moreover, we prove Theorem 1.

Throughout this section, we suppose that all the assumptions of Theorem1
hold.

Sketch of the proof of Proposition 2.
By arguments similar to Akagi [1] and Aso et al. [3], we can prove Proposition 2.
In fact, for each λ ∈ (0, 1], we consider the following approximate problem for
(P;f), denoted by (P;f)λ:

(P; f)λ

⎧⎨
⎩

λu′
λ(t) + ∂ψt(u′

λ(t)) + ∂ϕλ(uλ(t)) + g(Jϕ
λ uλ(t)) � f(t) in H

for a.e. t ∈ (0, T ),
uλ(0) = u0 in H,

where ∂ϕλ and Jϕ
λ := (I + λ∂ϕ)−1 denote the Yosida approximation and the

resolvent of ∂ϕ, respectively.
By Cauchy–Lipschitz–Picard’s existence theorem and the fixed point argu-

ment for compact operators (e.g. the Schauder’s fixed point theorem), we can
prove the existence of solutions uλ to (P; f)λ on [0, T ].

From the standard calculation, we can establish a priori estimate (cf. (2.1))
of solutions uλ to (P; f)λ with respect to λ ∈ (0, 1]. Therefore, by the limiting
procedure of solutions uλ to (P; f)λ as λ → 0, we can construct the solution to
(P; f) on [0, T ] satisfying the boundedness estimate (2.1). For a detailed argu-
ment, see [1, Sects. 4 and 5] or [3, Sects. 3 and 4], for instance. ��

Here, let us mention the result of the convergence of solutions to (P; f), which
is a key proposition to proving Theorem 1.

Proposition 3. Assume (A1)–(A7). Let {fn} ⊂ L2(0, T ;H), {u0,n} ⊂ D(ϕ),
f ∈ L2(0, T ;H) and u0 ∈ D(ϕ). Assume that

fn → f strongly in L2(0, T ;H), (3.1)

u0,n → u0 in H and ϕ(u0,n) → ϕ(u0) (3.2)

as n → ∞. Let un be a solution to (P;fn) on [0, T ] with initial data u0,n. Then,
there exist a subsequence {nk} ⊂ {n} and a function u ∈ W 1,2(0, T ;H) such
that u is a solution to (P;f) on [0, T ] with initial data u0 and

unk
→ u in C([0, T ];H) as k → ∞. (3.3)

Proof. From the bounded estimate (2.1), (A2), (A5) and the level set compact-
ness of ϕ (cf. (A6)), we derive that there are a subsequence {nk} of {n} and a
function u ∈ W 1,2(0, T ;H) such that nk → ∞,

unk
→ u weakly in W 1,2(0, T ;H),

in C([0, T ];H),
weakly-∗ in L∞(0, T ;H)

⎫⎬
⎭ (3.4)
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as k → ∞. Hence, we observe from (3.2) and (3.4) that u(0) = u0 in H.
Now, let us show that u is a solution of (P; f) on [0, T ] with initial data u0.

Since unk
is a solution of (P; fnk

) on [0, T ] with initial data u0,nk
, there exist

functions ξnk
∈ L2(0, T ;H) and ζnk

∈ L2(0, T ;H) such that

ξnk
(t) ∈ ∂ψt(u′

nk
(t)) in H for a.e. t ∈ (0, T ), (3.5)

ζnk
(t) ∈ ∂ϕ(unk

(t)) in H for a.e. t ∈ (0, T ), (3.6)

ξnk
(t) + ζnk

(t) + g(unk
(t)) = fnk

(t) in H for a.e. t ∈ (0, T ). (3.7)

Then, it follows from (2.1) and (A3) that

{ξnk
} is bounded in L2(0, T ;H). (3.8)

Therefore, taking a subsequence if necessary (still denote it by {nk}), we observe
that:

ξnk
→ ξ weakly in L2(0, T ;H) for some ξ ∈ L2(0, T ;H) as k → ∞. (3.9)

Also, it follows from (A7) and (3.4) and that

g(unk
) → g(u) in C([0, T ];H) as k → ∞. (3.10)

Therefore, we infer from (3.1), (3.7), (3.8) and (3.10) that

{ζnk
} is bounded in L2(0, T ;H).

Hence, taking a subsequence if necessary (still denote it by {nk}), we observe
that:

ζnk
→ ζ weakly in L2(0, T ;H) for some ζ ∈ L2(0, T ;H) as k → ∞. (3.11)

Thus, we infer from (3.1), (3.7), (3.9), (3.10) and (3.11) that:

ξ + ζ + g(u) = f in L2(0, T ;H). (3.12)

Also, from (3.4), (3.6), (3.11) and the demi-closedness of maximal monotone
operator ∂ϕ (cf. Proposition 1), we infer that

ζ ∈ ∂ϕ(u) in L2(0, T ;H), (3.13)

which implies that ζ(t) ∈ ∂ϕ(u(t)) in H for a.e. t ∈ (0, T ).
Now, we show that

ξ(t) ∈ ∂ψt(u′(t)) in H for a.e. t ∈ (0, T ). (3.14)
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From (3.1), (3.2) and (3.4)–(3.13) we observe that

lim sup
k→∞

∫ T

0

(ξnk
(t), u′

nk
(t))dt

= lim sup
k→∞

∫ T

0

(fnk
(t) − ζnk

(t) − g(unk
(t)), u′

nk
(t))dt

= lim sup
k→∞

[∫ T

0

(fnk
(t) − g(unk

(t)), u′
nk

(t))dt −
∫ T

0

d

ds
ϕ(unk

(s))ds

]

≤
∫ T

0

(f(t) − g(u(t)), u′(t))dt + lim sup
k→∞

(−ϕ(unk
(T )) + ϕ(u0,nk

))

≤
∫ T

0

(f(t) − g(u(t)), u′(t))dt − ϕ(u(T )) + ϕ(u0)

=
∫ T

0

(f(t) − g(u(t)) − ζ(t), u′(t))dt

=
∫ T

0

(ξ(t), u′(t))dt,

thus, we observe from Proposition 1, namely, the closedness of maximal
monotone operator ∂ψt that

ξ ∈ ∂ψt(u′) in L2(0, T ;H),

which implies that (3.14) holds. Therefore, we observe that u is a solution of
(P; f) on [0, T ] with initial data u0. Thus, the proof of this proposition has been
completed. ��

Now, let us prove the main Theorem 1 in our paper, which is the existence
of an optimal control to (OP).

Proof of Theorem 1.
Note that we show the existence of an optimal control to (OP) without unique-
ness of solutions to state problem (P; f)

Also note from (1.2) and (1.3) that J(f) ≥ 0 for all f ∈ F . Let {fn} ⊂ F be
a minimizing sequence such that

d∗ := inf
f∈F

J(f) = lim
n→∞ J(fn).

Then, we observe that {J(fn)} is bounded. Therefore, by the definition (1.2) of
J(fn), for each n there is a solution un ∈ S(fn) such that

πfn
(un) < J(fn) +

1
n

.

Hence, we observe that {πfn
(un)} is bounded. Thus, by the definition of πfn

(un)
(cf. (1.3)) and by the Aubin’s compactness theorem (cf. [16, Chapter1, Sect. 5]),
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there are a subsequence {nk} ⊂ {n} and a function f∗ ∈ F such that

fnk
→ f∗ weakly in W 1,2(0, T ;H),

weakly in L2(0, T ;V ),
in L2(0, T ;H)

⎫⎬
⎭ (3.15)

as k → ∞,
Now, taking a subsequence if necessary, we infer from Proposition 3 that there

is a solution u∗ to (P;f∗) on [0, T ] with initial data u0 satisfying

unk
→ u∗ in C([0, T ];H) as k → ∞. (3.16)

Therefore, it follows from (3.15)–(3.16), u∗ ∈ S(f∗) and the weak lower semi-
continuity of L2–norm that

d∗ = inf
f∈F

J(f) ≤ J(f∗) = inf
u∈S(f∗)

πf∗(u)

≤ πf∗(u∗) =
1
2

∫ T

0

|u∗(t) − uad|2Hdt +
1
2

∫ T

0

|f∗(t)|2V dt +
1
2

∫ T

0

|f∗
t (t)|2Hdt

≤ lim inf
k→∞

πfnk
(unk

)

≤ lim inf
k→∞

{
J(fnk

) +
1
nk

}

= lim
k→∞

J(fnk
) = d∗.

Hence, we have d∗ = inff∈F J(f) = J(f∗), which implies that f∗ ∈ F is an
optimal control to (OP). Thus, the proof of Theorem1 has been completed. ��

4 Application

In this section, we apply Theorem 1 to the simple model problem as follows:

(SMP) p

⎧⎪⎨
⎪⎩

A(t, ut) − div
(|∇u|p−2∇u

)
+ g(u) � f(t) in Q := (0, T ) × Ω,

∂u

∂ν
= 0 on Σ := (0, T ) × Γ,

u(0) = u0 a.e. in Ω,

where 0 < T < ∞, Ω is a bounded domain in R
N (1 ≤ N < ∞), the boundary

Γ := ∂Ω of Ω is smooth if N > 1, g is Lipschitz on R, p is a positive number
with p ≥ 2, ν is an outward normal vector on Γ and u0 is a given initial data.
Also, A(t, ·) is the given time-dependent function defined by

A(t, z) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z − c(t), if z − c(t) ≥ 1,
1, if 0 < z − c(t) < 1,

[−1, 1] , if z = c(t),
−1, if − 1 < z − c(t) < 0,

z − c(t), if z − c(t) ≤ −1,
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where c(·) is a given smooth function on [0, T ].
To apply the abstract result to (P;f), we put H := L2(Ω) and V := H1(Ω)

with usual real Hilbert space structures. Define a function ϕ on H by

ϕ(z) :=

⎧⎨
⎩

1
p

∫
Ω

|∇z(x)|pdx + C4, if z ∈ W 1,p(Ω),

∞, otherwise ,

Also, for each t ∈ [0, T ], define a function ψt on H by

ψt(z) :=
∫

Ω

Â(t, z(x))dx for all z ∈ H := L2(Ω),

where Â(t, ·) is the primitive of A(t, ·) such that Â(t, ·) ≥ 0 for all t ∈ [0, T ].
It is not difficult to show that the assumptions (A1)–(A7) are satisfied. For

instance, put z̃ = z − c(s) + c(t), α(t) :=
∫ t

0
|c′(τ)|dτ and β(t) ≡ 0 for (A4) (cf.

[14, Chap. 3]). Therefore, by applying Theorem1, we can consider the control
problem (OP) without uniqueness of solutins to (SMP)p.
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Abstract. The goal of this paper is to derive a traffic flow macroscopic
model from a microscopic model with a transition function. At the micro-
scopic scale, we consider a first order model of the form “follow the
leader” i.e. the velocity of each vehicle depends on the distance to the
vehicle in front of it. We consider two different velocities and a transi-
tion zone. The transition zone represents a local perturbation operated
by a Lipschitz function. After rescaling, we prove that the “cumulative
distribution function” of the vehicles converges towards the solution of a
macroscopic homogenized Hamilton-Jacobi equation with a flux limiting
condition at junction which can be seen as a LWR model.

1 Introduction

The goal of this paper is to present a rigorous derivation of a traffic flow macro-
scopic model by homogenization of a follow-the-leader model, see [8,10]. The
idea is to rescale the microscopic model, which describes the dynamics of each
vehicle individually, in order to get a macroscopic model which describes the
dynamics of density of vehicles. Several studies have been done about the con-
nection between microscopic and macroscopic traffic flow model. This type of
connection is important since it allows us to deduce macroscopic models rigor-
ously and without using strong assumptions. We refer for example to [1–3] where
the authors rescaled the empirical measure and obtained a scalar conservation
law (LWR (Lighthill-Whitham-Richards) model). More recently, another kind of
macroscopic models appears. These models rely on the Moskowitz function and
make appear an Hamilton-Jacobi equation. This is the setting of our work which
is a generalization of [6]. Indeed, authors in [6] considered a single road and one
velocity throughout this road with a local perturbation at the origin while we
consider two different velocities and a transition zone which can be seen as a
local perturbation thats slows down the vehicles. At the macroscopic scale, we
get an Hamilton-Jacobi equation with a junction condition at zero and an effec-
tive flux limiter. In order to have our homogenization result, we will construct
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 272–281, 2016.
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the correctors. The main new technical difficulties comes from the construction
of correctors and in particular the gradient estimates are more complicated from
that in [6] because the gradient on the left and on the right may differ.

2 The Microscopic Model

In this paper, we consider a “follow the leader” model of the following form

U̇j(t) = V1(Uj+1(t) − Uj(t))ϕ (Uj(t)) + V2(Uj+1(t) − Uj(t)) (1 − ϕ (Uj(t))) ,

where Uj denotes the position of the j-th vehicle and U̇j its velocity. The function
ϕ simulates the presence of a local perturbation around the origin which allows
us to pass from the optimal velocity function V1 (on the left of the origin) to V2

(on the right). We make the following assumptions on V1, V2 and ϕ.

Assumption (A).

– (A1) V1, V2 : R → R
+ are Lipschitz continuous, non-negative and non-

decreasing.
– (A2) For i = 1, 2, there exists a hi

0 ∈ (0,+∞) such that

Vi(h) = 0 for all h ≤ hi
0.

– (A3) For i = 1, 2, there exists a hi
max ∈ (0,+∞) such that

Vi(h) = Vimax for all h ≥ hi
max.

– (A4) For i = 1, 2, there exists a real pi
0 ∈ [−1/hi

0, 0) such that the function
p �→ pVi(−1/p) is decreasing on [−1/hi

0, p
i
0) and increasing on [pi

0, 0).
– (A5) The function ϕ : R → [0, 1] is Lipschitz continuous and

ϕ(x) =

{
1 if x ≤ −r

0 if x > r.

3 The Homogenization Result

We introduce the “cumulative distribution function” of the vehicles:

ρ(t, y) = −
⎛
⎝∑

i≥0

H (y − Ui(t)) +
∑
i<0

(−1 + H (y − Ui(t)))

⎞
⎠
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and we make the following rescaling

ρε(t, y) = ερ (t/ε, y/ε).

ρε is a discontinuous solution of the following equation: for (t, x) ∈ (0,+∞)×R,
⎧⎪⎪⎨
⎪⎪⎩

uε
t +

(
Mε

1

[
uε(t, ·)

ε

]
(x)ϕ

(x

ε

)
+ Mε

2

[
uε(t, ·)

ε

]
(x)

(
1 − ϕ

(x

ε

)))
· |uε

x| = 0

uε(0, x) = u0(x)

(3.1)

where the non-local operators Mε
i and Mε

2 are defined by

Mε
i [U ](x) =

∫ +∞

−∞
Ji(z)E (U(x + εz) − U(x)) dz − 3

2
Vimax (3.2)

with

E(z) =

⎧⎨
⎩

0 if z ≥ 0,
1/2 if − 1 ≤ z < 0
3/2 if z < −1.

, J1 = V ′
1 and J2 = V ′

2 onR. (3.3)

We also assume that the initial condition satisfies the following assumption.

(A0) (Gradient Bound). Let k0 = max
(
k1
0, k

2
0

)
with ki

0 = 1/hi
0. The function u0

is Lipschitz continuous and satisfies

−k0 ≤ (u0)x ≤ 0.

We have the following theorem (see [6]).

Theorem 1. Assume (A0) and (A). Then, there exists a unique viscosity solu-
tion uε of (3.1). Moreover, the function uε is continuous and there exists a
constant K such that

u0(x) ≤ uε(t, x) ≤ u0(x) + Kt.

We will introduce now the macroscopic model which is a Hamilton-Jacobi
equation on a junction. The Hamiltonians H1 and H2 are called effective Hamil-
tonians (see Proposition 2.9 in [6]) and are defined as follows: for i = 1, 2

Hi(p) =

⎧⎪⎪⎨
⎪⎪⎩

−p − ki
0 for p < −ki

0,

−Vi

(−1
p

)
· |p| for − ki

0 ≤ p ≤ 0,

p for p > 0,

s (3.4)

with

Hi
0 = min

p∈R

Hi(p) andH0 = max
(
H1

0 ,H2
0

)
. (3.5)
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Now we can define the limit problem. We refer to [9] for more details about
existence and uniqueness of solution for this type of equation.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0
t + H1(u0

x) = 0 for (t, x) ∈ (0,+∞) × (−∞, 0)
u0

t + H2(u0
x) = 0 for (t, x) ∈ (0,+∞) × (0,+∞)

u0
t + FA(u0

x(t, 0−), u0
x(t, 0+)) = 0 for (t, x) ∈ (0,+∞) × {0}

u0(0, x) = u0(x) for x ∈ R.

(3.6)

where A has to be determined and FA is defined by

FA(p−, p+) = max
(
A,H

+

1 (p−),H
−
2 (p+)

)
;

H
+

1 and H
−
2 represent respectively the increasing and the decreasing part of H1

and H2. The following theorem is our main result in this paper.

Theorem 2. There exists A ∈ [
H1

0 , 0
]
such that the function uε defined by

Theorem1 converge locally uniformly towards the unique solution u0 of (3.6).

Remark 1. Formally, if we derive (3.6), we will obtain a scalar conservation law
with discontinuous flux whose literature is very rich, see for example [4]. However,
the passage from microscopic to macroscopic models are more difficult in this
setting and in particular on networks. On the contrary, the approach proposed
in this paper can be extended to models posed on networks (see [5]).

4 Correctors for the Junction

The key ingredient to prove the convergence result is to construct correctors for
the junction. Given A ∈ R, we introduce two real numbers p1, p2 ∈ R, such that

H2 (p2) = H
+

2 (p2) = H1 (p1) = H
−
1 (p1) = A. (4.1)

If A ≤ H0, we then define p1, p2 ∈ R as the two real numbers satisfying

H2 (p2) = H
+

2 (p2) = H1 (p1) = H
−
1 (p1) = H0. (4.2)

Due to the form of H1 and H2 this two real numbers exist and are unique. We
consider now the following problem: find λ ∈ R such that there exists a solution
w of the following global-in-time Hamilton-Jacobi equation

(M1[w](x) · ϕ(x) + M2[w](x) · (1 − ϕ(x))) · |wx| = λ for x ∈ R (4.3)

with

Mi[U ](x) =
∫ +∞

−∞
Ji(z)E (U(x + z) − U(x)) dz − 3

2
Vimax (4.4)
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Theorem 3 (Existence of a global corrector for the junction). Assume
(A).

(i) (General properties) There exists a constant Ā ∈ [H1
0 , 0] such that there

exists a solution w of (4.3) with λ = A and such that there exists a constant
C > 0 and a globally Lipschitz continuous function m such that for all
x ∈ R,

|w(x) − m(x)| ≤ C. (4.5)

(ii) (Bound from below at infinity) If Ā > H1
0 , then there exists γ0 such that

for every γ ∈ (0, γ0), we have{
w(x − h) − w(x) ≥ (−p1 − γ)h − C for x ≤ −r and h ≥ 0,
w(x + h) − w(x) ≥ (p2 − γ)h − C for x ≥ r and h ≥ 0.

(4.6)

(iii) (Rescaling w) For ε > 0, we set

wε(x) = εw
(x

ε

)
,

then (along a subsequence εn → 0) we have that wε converges locally uniformly
towards a function W = W (x) which satisfies⎧⎨

⎩
|W (x) − W (y)| ≤ C|x − y| for all x, y ∈ R,
H1(Wx) = A for all x < 0,
H2(Wx) = A for all x > 0.

(4.7)

In particular, we have (with W (0) = 0)

W (x) = p1x1{x<0} + p2x1{x>0}. (4.8)

5 Proof of Theorem3

This section contains the proof of Theorem3. To do this, we will construct cor-
rectors on truncated domains and then pass to the limit as the size of the domain
goes to infinity. For l ∈ (r,+∞), r << l and r ≤ R << l, we want to find λl,R,
such that there exists a solution wl,R of⎧⎪⎨

⎪⎩
QR

(
x, [wl,R], wl,R

x

)
= λl,R if x ∈ (−l, l)

H
−
1 (wl,R

x ) = λl,R if x ∈ {−l}
H

+

2 (wl,R
x ) = λl,R if x ∈ {l},

(5.1)

with

QR(x, [U ], q) = ψR(x) · M2[U ](x) · (1 − ϕ(x)) · |q| + (1 − ψR(x)) · H2(q) (5.2)

+ ΦR(x) · M1[U ](x) · ϕ(x) · |q| + (1 − ΦR(x)) · H1(q) (5.3)

and ψR, ΦR ∈ C∞, ψR, ΦR : R → [0, 1], with

ψR ≡
{

1 x ≤ R
0 x > R + 1 and ΦR ≡

{
1 x ≥ −R
0 x < −R − 1.

(5.4)
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Proposition 1 (Existence of correctors on truncated domains). There
exists a unique λl,R ∈ R such that there exists a solutions wl,R of (5.1). More-
over, there exists a constant C (depending only on k0), and a Lipschitz contin-
uous function ml,R, such that

⎧⎨
⎩

H1
0 ≤ λl,R ≤ 0,

|ml,R(x) − ml,R(y)| ≤ C|x − y| for x, y ∈ [−l, l],
|wl,R(x) − ml,R(x)| ≤ C for x ∈ R × [−l, l].

(5.5)

Proof. We only give the main steps of the proof. Classically, we will consider the
approximated problem depending on the parameter δ and then take δ to 0.

⎧⎪⎨
⎪⎩

δvδ + QR(x, [vδ], vδ
x) = 0 for x ∈ (−l, l)

δvδ + H
−
1 (vδ

x) = 0 for x ∈ {−l}
δvδ + H

+

2 (vδ
x) = 0 for x ∈ {l}

(5.6)

Step 1: construction of barriers. Using Perron’s method and 0 and δ−1|H1
0 | as

barriers, we deduce that there exists a continuous viscosity solution vδ of (5.6)
which satisfies

0 ≤ vδ ≤ |H1
0 |

δ
. (5.7)

Step 2: control of the space oscillations of vδ. The function vδ satisfies for all
x, y ∈ [−l, l], x ≥ y,

−k0(x − y) − 1 ≤ vδ(x) − vδ(y) ≤ 0,

with k0 = max(k1
0, k

2
0) (see [6, Lemma 6.5]).

Step 3: construction of a Lipschitz estimate. As in [6, Lemma 6.6] we can con-
struct a Lipschitz continuous function mδ, such that there exists a constant C,
(independent of l, R and δ) such that

{ |mδ(x) − mδ(y)| ≤ C|x − y| for all x, y ∈ [−l, l],
|vδ(x) − mδ(x)| ≤ C for all x ∈ [−l, l]. (5.8)

Step 4: passing to the limit as δ goes to 0. Classicly, taking δ to zero, we get
λl.R, wl,R and ml,R satisfiying (5.5). The uniqueness of λl,R is classical so we
skip it. This ends the proof of Proposition 1. 	

Proposition 2. The following limits exist (up to a subsequence)

AR = lim
l→+∞

λl,R, and A = lim
R→+∞

AR.

Moreover, we have

H1
0 ≤ AR, A ≤ 0.
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Proposition 3 (Control of the slopes on a truncated domain). Assume
that l and R are big enough. Let wl,R be the solution of (5.1) given by Proposi-
tion 1. We also assume that up to a sub-sequence A = lim

R→+∞
lim

l→+∞
λl,R > H1

0 .

Then there exits a γ0 > 0 such that for all γ ∈ (0, γ0), there exists a constant C
(independent of l and R) such that for all x ≤ −r and h ≥ 0

wl,R(x − h) − wl,R(x) ≥ (−p1 − γ)h − C. (5.9)

Similarly, for all x ≥ r and h ≥ 0,

wl,R(x + h) − wl,R(x) ≥ (p2 − γ)h − C. (5.10)

Proof. We only prove (5.9) since the proof for (5.10) is similar. For σ > 0 small
enough, we denote by pσ

− the real number such that

H1(pσ
−) = H

−
1 (pσ

−) = λl,R − σ.

Let us now consider the function w− = pσ
−x that satisfies

H1(w−
x ) = λl,R − σ for x ∈ R.

We also have

M1[w−](x) = −V1

(−1
pσ−

)
.

For all x ∈ (−l,−r), using that ϕ(x) = 1 and ψR(x) = 1, we deduce that w−

satisfies {
QR (x, [w−], w−

x ) = λl,R − μ for x ∈ (−l,−r)
H

−
1 (w+

x ) = λl,R − μ for x ∈ {−l}.

Using the comparaison principle, we deduce that for all h ≥ 0, for all x ∈
(−l,−r), we have that

wl,R(x − h) − wl,R(x) ≥ −pσ
−h − 2C.

Finally, for γ0 and σ small enough, we can set pσ
− = p1 + γ. 	


Proof of Theorem 3. The proof is performed in two steps.

Step 1: proof of (i) and (ii). The goal is to pass to the limit as l → +∞ and then
as R → +∞. There exists ln → +∞, such that

mln,R − mln,R(0) → mR as n → +∞,

the convergence being locally uniform. We also define

wR(x) = lim sup
ln→+∞

∗ (
wln,R − wln,R(0)

)
,

wR(x) = lim inf
ln→+∞∗

(
wln,R − wln,R(0)

)
.
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Thanks to (5.5), we know that wR and wR are finite and satisfy

mR − C ≤ wR ≤ wR ≤ mR + C.

By stability of viscosity solutions, wR − 2C and wR are respectively a sub and
a super-solution of

QR(x, [wR], wR
x ) = AR for x ∈ R (5.11)

Therefore, using Perron’s method, we can construct a solution wR of (5.11) with
mR, A

R
and wR satisfying

⎧⎨
⎩

|mR(x) − mR(y)| ≤ C|x − y| for all x, y ∈ R,
|wR(x) − mR(x)| ≤ C for x ∈ R × R,
H1

0 ≤ AR ≤ 0.
(5.12)

Using Proposition 3, if A > H0, we know that there exists γ0 and C > 0, such
that for all γ ∈ (0, γ0),

{
wR(x − h) − wR(x) ≥ (−p1 − γ)h − C for all x ≤ −r, h ≥ 0,
wR(x + h) − wR(x) ≥ (p2 − γ)h − C for all x ≥ r, h ≥ 0.

(5.13)

Passing to the limit as R → +∞ and proceeding as above, the proof is complete.

Step 2: proof of (iii). Using (4.6), we have that

wε(x) = εm
(x

ε

)
+ O(ε).

Therefore, we can find a sequence εn → 0, such that

wεn → W locally uniformly as n → +∞,

with W (0) = 0. Like in [7](Appendix A.1), we have that

H1(Wx) = A for x < 0 and H2(Wx) = A for x > 0.

For all γ ∈ (0, γ0), we have that if A > H1
0 and x > 0,

Wx ≥ p2 − γ,

where we have used (4.6). Therefore we get

Wx = p2 for x > 0,

Similarly, we get Wx = p1 for x < 0. This ends the proof of Theorem 3. 	
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6 Proof of Convergence

In this section, we will prove our homogenization result. Classicly, the proof relies
on the existence of correctors. We will just prove the convergence result at the
junction point since at any other point, the proof is classical using that v = 0 is
a corrector, see [6].

Proof of Theorem 2. We introduce

u(t, x) = lim sup
ε→0

∗uε and u(t, x) = lim inf
ε→0 ∗

uε. (6.1)

Let us prove that u is a sub-solution of (3.6) at the point 0, (the proof for u is
similar and we skip it). The definition of viscosity solution for Hamilton-Jacobi
equation is presented in Sect. 2 in [9]. We argue by contradiction and assume
that there exist a test function Ψ ∈ C1(J∞) such that

⎧⎪⎪⎨
⎪⎪⎩

u(t̄, 0) = Ψ(t̄, 0)
u ≤ Ψ on Qr̄,r̄(t̄, 0) with r̄ > 0
u ≤ Ψ − 2η outside Qr̄,r̄(t̄, 0) with η > 0
Ψt(t̄, 0) + FA(Ψx(t̄, 0−), Ψx(t̄, 0+)) = θ with θ > 0.

(6.2)

According to [9], we may assume that the test function has the following form

Ψ(t, x) = g(t) + p1x1{x<0} + p2x1{x>0} on Qr̄,2r̄(t̄, 0), (6.3)

The last line in condition (6.2) becomes

g′(t̄) + FA(p1, p2) = g′(t̄) + A = θ. (6.4)

Let us consider w the solution of (4.3) provided by Theorem3, and let us denote

Ψε(t, x) =
{

g(t) + wε(x) on Qr̄,2r̄(t̄, 0),
Ψ(t, x) outside Qr̄,2r̄(t̄, 0). (6.5)

We claim that Ψε is a viscosity solution on Qr̄,r̄(t̄, 0) of the following problem,

Ψε
t +

(
M̃ε

1

[
Ψε

ε
(t, ·)

]
(x)ϕ

(x

ε

)
+ M̃ε

2

[
Ψε

ε
(t, ·)

]
(x)

(
1 − ϕ

(x

ε

)))
· |Ψε

x | ≥ θ

2
.

Indeed, let h be a test function touching ϕε from below at (t1, x1) ∈ Qr̄,r̄(t̄, 0),

so we have that the function χ(y) =
1
ε

(h(t1, εy) − g(t1)) touches w from below

at
x1

ε
which implies that

(
M̃1 [w]

(x1

ε

)
ϕ

(x1

ε

)
+ M̃2 [w]

(x1

ε

)(
1 − ϕ

(x1

ε

)))
· |hx(t1, x1)| ≥ A.(6.6)

Using (6.4) and the fact that ht(t1, x1) = g′(t1) and computing (6.6), we get the
desired result.
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Getting the Contradiction. We have that for ε small enough

uε + η ≤ Ψ = g(t) + p1x1{x<0} + p2x1{x>0} on Qr̄,2r̄(t̄, 0)\Qr̄,r̄(t̄, 0).

Using the fact that wε → W , and using (4.8), we have for ε small enough

uε +
η

2
≤ Ψε on Qr̄,2r̄(t̄, 0)\Qr̄,r̄(t̄, 0).

Combining this with (6.5), we get that

uε +
η

2
≤ Ψε outside Qr̄,r̄(t̄, 0).

By the comparison principle on bounded subsets the previous inequality holds
in Qr̄,r̄(t̄, 0). Passing to the limit as ε → 0 and evaluating the inequality at (t̄, 0),
we obtain the following contradiction

u(t̄, 0) +
η

2
≤ Ψ(t̄, 0) = u(t̄, 0).
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Abstract. In this paper the well-posedness of some degenerate par-
abolic equations with a dynamic boundary condition is considered.
To characterize the target degenerate parabolic equation from the
Cahn–Hilliard system, the nonlinear term coming from the convex part
of the double-well potential is chosen using a suitable maximal monotone
graph. The main topic of this paper is the existence problem under an
assumption for this maximal monotone graph for treating a wider class.
The existence of a weak solution is proved.

Keywords: Degenerate parabolic equation · Dynamic boundary
condition · Weak solution · Cahn–Hilliard system
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1 Introduction

The relationship between the Allen–Cahn equation [2] and the motion by mean
curvature is interesting as the singular limit of the following form:

∂u

∂t
− Δu +

1
ε2

(u3 − u) = 0 in Q := (0, T ) × Ω,

as ε ↘ 0, where 0 < T < +∞ and Ω ⊂ R
d for d = 2, 3, which is a bounded

domain with smooth boundary Γ. For example, Bronsard and Kohn presented
a pioneering result in [5], and subsequently many related results have been
obtained. A similar concept in this framework, the Cahn–Hilliard system [7],
is connected to motion by the Mullins–Sekerka law [19] in the limit of

∂u

∂t
− Δμ = 0 in Q,

μ = −εΔu +
1
ε
(u3 − u) in Q (1.1)

as ε ↘ 0. For both of these, the target problems are sharp interface models in a
classical sense and a powerful analysis tool seems to be the method of matched
asymptotic expansions (see [1,6,20] and the references in these papers).
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L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 282–291, 2016.
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In this paper, we discuss this relation from a different view point. To do so,
we begin with the following degenerate parabolic equation:

∂u

∂t
− Δβ(u) = g in Q, (1.2)

where g : Ω → R is a given source. This equation is characterized by the choice
of β : R → R. For example, if we choose β to be a piecewise linear function of
the form

β(r) :=

⎧⎪⎨
⎪⎩

ksr r < 0,

0 0 ≤ r ≤ L,

k�(r − L) r > L;
(1.3)

where ks and k� > 0 represent the heat conductivities of the solid and liquid
regions, respectively, and L > 0 is the latent heat constant, then (1.2) is the
weak formulation of the Stefan problem, or the “enthalpy formulation,” where
the unknown u denotes the enthalpy and β(u) denotes the temperature. The
informant of the sharp interface, in other words the Stefan condition, is hid-
den in the weak formulation. Another example is the weak formulation of the
Hele-Shaw problem. If we choose β to be the inverse of the Heaviside function

H(r) :=

⎧⎪⎨
⎪⎩

0 if r < 0,

[0, 1] if r = 0,

1 if r > 0
for all r ∈ R,

so that β is the multivalued function β(r) := H−1(r) = ∂I[0,1](r) for all r ∈ [0, 1],
then (1.2) can be stated as

ξ ∈ β(u),
∂u

∂t
− Δξ = g in Q,

where ∂I[0,1] is the subdifferential of the indicator function I[0,1] on the interval
[0, 1], the unknown u denotes the order parameter. Details about weak formu-
lations may be found in Visintin [22]. Weak formulations for this kind of sharp
interface model are the focus of this paper. Therefore, we use the terms “Stefan
problem” and “Hele-Shaw problem” in the sense of weak formulations through-
out this paper.

Recently, the author considered the approach to the following Cahn–Hilliard
system for the Stefan problem in [13]:

∂u

∂t
− Δμ = 0 in Q, (1.4)

μ = −εΔu + β(u) + επ(u) − f in Q, (1.5)

with a dynamic boundary condition of the form

∂u

∂t
+ ∂νμ − ΔΓμ = 0 on Σ := (0, T ) × Γ, (1.6)

μ = ε∂νu − εΔΓu + β(u) + επ(u) − fΓ on Σ, (1.7)
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where the symbol ∂ν denotes the normal derivative on the boundary Γ outward
from Ω, the symbol ΔΓ stands for the Laplace–Beltrami operator on Γ (see, e.g.,
[15, Chap. 3]), β is defined by (1.3), and π : R → R is a piecewise linear function
defined by π(r) := L/2 if r < 0, π(r) := L/2 − r if 0 ≤ r ≤ L and π(r) := −L/2
if r > L. Thanks to this choice, system (1.4)–(1.7) has the structure of a Cahn–
Hilliard system. This problem originally comes from [14]. Formally, if we let
ε ↘ 0 in (1.4)–(1.7), then we can see that the Cahn–Hilliard system (1.4)–(1.7)
converges in a suitable sense to the following Stefan problem with a dynamic
boundary condition:

∂u

∂t
− Δβ(u) = −Δf in Q,

∂u

∂t
+ ∂νβ(u) − ΔΓβ(u) = ∂νfΓ − ΔΓfΓ on Σ.

Here, we should take care of the difference between the order and position of ε
in (1.1) and (1.5) even when β(u) = u3 and π(u) = −u. In [13], β is assumed to
satisfy the following condition:

β is a maximal monotone graph in R×R, and is a subdifferential β = ∂β̂ of
some proper, lower semicontinuous, and convex function β̂ : R → [0,+∞]
satisfying β̂(0) = 0 with some effective domain D(β). This implies β(0) =
0. Moreover, there exist two constants c, c̃ > 0 such that

β̂(r) ≥ c|r|2 − c̃ for all r ∈ R. (1.8)

It is easy to see that (1.2) represents a large number of problems, including the
porous media equation, the nonlinear diffusion equation of Penrose–Fife type,
the fast diffusion equation, and so on. However, to apply this approach from the
Cahn–Hilliard system to these wider classes of the degenerate parabolic equation,
the growth condition (1.8) is too strong (see, e.g. [12]). Therefore, in this paper
based on the essential idea from [10], we relax the assumption in (1.8). This is
the different point from the previous work [13]. See also [3,16,17] for related
problems of interest.

Notation. Let H : =L2(Ω), V := H1(Ω), HΓ : =L2(Γ) and VΓ : =H1(Γ) with
the usual norms | · |H , | · |V , | · |HΓ , | · |VΓ and inner products (·, ·)H , (·, ·)V ,
(·, ·)HΓ , (·, ·)VΓ , respectively, and let H := H × HΓ, V := {(z, zΓ) ∈ V × VΓ :
zΓ = z|Γ a.e. on Γ} and W := H2(Ω) × H2(Γ). Then H, V and W are Hilbert
spaces with the inner product

(u,z)H : =(u, z)H + (uΓ, zΓ)HΓ for all u,z ∈ H,

and the related norm is analogously defined as one of V or W . Define m : H →
R by

m(z) :=
1

|Ω| + |Γ|
{∫

Ω

zdx +
∫

Γ

zΓdΓ
}

for all z ∈ H,
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where |Ω| : =
∫
Ω

1dx and |Γ| : =
∫
Γ

1dΓ. The symbol V ∗ denotes the dual space
of V , and the pair 〈·, ·〉V ∗,V denotes the duality pairing between V ∗ and V .
Moreover, define the bilinear form a(·, ·) : V × V → R by

a(u,z) : =
∫

Ω

∇u · ∇zdx +
∫

Γ

∇ΓuΓ · ∇ΓzΓdΓ for all u,z ∈ V ,

where ∇Γ denotes the surface gradient on Γ (see, e.g., [15, Chap. 3]). We intro-
duce the subspace H0:={z ∈ H : m(z) = 0} of H and V 0:=V ∩ H0,
with their norms |z|H0 :=|z|H for all z ∈ H0 and |z|V 0 :=a(z,z)1/2 for
all z ∈ V 0. Then the duality mapping F : V 0 → V ∗

0 is defined by
〈Fz, z̃〉V ∗

0 ,V 0 := a(z, z̃) for all z, z̃ ∈ V 0 and the inner product in V ∗
0 is

defined by (z∗
1,z

∗
2)V ∗

0
:=〈z∗

1, F
−1z∗

2〉V ∗
0 ,V 0 for all z∗

1,z
∗
2 ∈ V ∗

0. Moreover, define
P : H → H0 by Pz := z − m(z)1 for all z ∈ H, where 1 := (1, 1). Thus we
obtain the dense and compact embeddings V 0 ↪→↪→ H0 ↪→↪→ V ∗

0. See [8,9] for
further details.

2 Existence of the Weak Solution

In this section, we state an existence theorem for the weak solution of a degen-
erate parabolic equation with a dynamic boundary condition of the following
form:

ξ ∈ β(u),
∂u

∂t
− Δξ = g a.e. in Q,

ξΓ ∈ β(uΓ), ξΓ = ξ|Γ ,
∂uΓ

∂t
+ ∂νξ − ΔΓξΓ = gΓ a.e. on Σ,

u(0) = u0 a.e. in Ω, uΓ(0) = u0Γ a.e. on Γ,

where β, g, gΓ, u0 and u0Γ satisfy the following assumptions:

(A1) β is a maximal monotone graph in R×R, and is a subdifferential β = ∂β̂ of
some proper, lower semicontinuous, and convex function β̂ : R → [0,+∞]
satisfying β̂(0) = 0 in some effective domain D(β). This implies that
β(0) = 0;

(A2) g ∈ L2(0, T ;H0);
(A3) u0 := (u0, u0Γ) ∈ H with m0 ∈ intD(β), and the compatibility conditions

β̂(u0) ∈ L1(Ω), β̂(u0Γ) ∈ L1(Γ) hold.

We remark that the growth condition of β̂ in (A1) and the regularity of u0 in
(A3) are relaxations from a previous related result [13] (cf. (1.8)).

Theorem 2.1. Under assumptions (A1)–(A3), there exists at least one pair
(u, ξ) of functions u ∈ H1(0, T ;V ∗) ∩ L2(0, T ;H) and ξ ∈ L2(0, T ;V ) such
that ξ ∈ β(u) a.e. in Q, ξΓ ∈ β(uΓ) and ξΓ = ξ|Γ a.e. on Σ, and that satisfy

〈
u′(t), z

〉
V ∗,V

+
〈
u′

Γ(t), zΓ

〉
V ∗

Γ ,VΓ
+

∫
Ω

∇ξ(t) · ∇zdx +
∫

Γ

∇ΓξΓ(t) · ∇ΓzΓdΓ

=
∫

Ω

g(t)zdx +
∫

Γ

gΓ(t)zΓdΓ for all z := (z, zΓ) ∈ V (2.1)

for a.a. t ∈ (0, T ) with u(0) = u0 a.e. in Ω and uΓ(0) = u0Γ a.e. on Γ.
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The continuous dependence is completely the same as in a previous result
[13, Theorem 2.2]. Therefore, we devolve the uniqueness problem on [13].

3 Proof of the Main Theorem

In this section, we prove the main theorem. The strategy of the proof is similar
to that of [13, Theorem 2.1]. However, to relax the assumption we use a different
uniform estimate. Let us start with an approximate problem. Recall the Yosida
approximation βλ : R → R and the related Moreau–Yosida regularization β̂λ of
β̂ : R → R (see, e.g., [4]). We see that 0 ≤ β̂λ(r) ≤ β̂(r) for all r ∈ R. Moreover,
we define the following proper, lower semicontinuous, and convex functional
ϕ : H0 → [0,+∞]:

ϕ(z) :=

⎧⎨
⎩

1
2

∫
Ω

|∇z|2dx +
1
2

∫
Γ

|∇ΓzΓ|2dΓ if z ∈ V 0,

+∞ otherwise.

The subdifferential ∂ϕ on H0 is characterized by ∂ϕ(z) = (−Δz, ∂νz − ΔΓzΓ)
with z ∈ D(∂ϕ) = W ∩ V 0 (see, e.g., [9, Lemma C]). By virtue of the well-
known theory of evolution equations (see, e.g., [8,9,11,18]), for each ε ∈ (0, 1]
and λ ∈ (0, 1], there exist vε,λ ∈ H1(0, T ;H0) ∩ L∞(0, T ;V 0) ∩ L2(0, T ;W )
and με,λ ∈ L2(0, T ;V ) such that

λv′
ε,λ(t) + F −1

(
v′

ε,λ(t)
)

+ ε∂ϕ
(
vε,λ(t)

)
= P

(−βλ

(
uε,λ(t)

) − επ
(
uε,λ(t)

)
+ f(t)

)
in H0 (3.1)

for a.a. t ∈ (0, T ) with vε,λ(0) = v0ε in H0, where v0ε ∈ V 0 solves the auxiliary
problem v0ε + ε∂ϕ(v0ε) = v0 := u0 −m01 in H0 so that there exists a constant
C > 0 such that

|v0ε|2H0
≤ C, ε|v0ε|2V 0

≤ C,∫
Ω

β̂(v0ε + m0)dx ≤ C,

∫
Γ

β̂(v0ε + m0)dΓ ≤ C. (3.2)

Moreover, uε,λ := vε,λ + m01, m0 := m(u0) and 1 := (1, 1), and βλ(z) :=
(βλ(z), βλ(zΓ)) and π(z) := (π(z), π(zΓ)) for all z ∈ H , where π : D(π) = R →
R is a Lipschitz continuous function with a Lipschitz constant Lπ that breaks the
monotonicity in β + επ; f ∈ L2(0, T ;D(∂ϕ)) is the solution of g(t) = ∂ϕ(f(t))
in H0 for a.a. t ∈ (0, T ). Namely, from [9, Lemma C], we can choose f(t) :=
(f(t), fΓ(t)) to satisfy{

−Δf(t) = g(t) a.e. in Ω,

∂νf(t) − ΔΓfΓ(t) = gΓ(t) a.e. on Γ,
for a.a. t ∈ (0, T ). (3.3)

3.1 Uniform Estimates for Approximate Solutions

The key strategy in the proof is to obtain uniform estimates independent of
ε > 0 and λ > 0, after which we consider the limiting procedures λ ↘ 0 and
ε ↘ 0. Recall (3.1) in the equivalent form
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v′
ε,λ(s) + F

(
P με,λ(s)

)
= 0 in V ∗

0, (3.4)
με,λ(s) = λv′

ε,λ(s) + ε∂ϕ
(
vε,λ(s)

)
+ βλ

(
uε,λ(s)

)
+ επ

(
uε,λ(s)

)− f (s) in H (3.5)

for a.a. s ∈ (0, T ). Moreover, if we put ε0 := min{1, 1/(4L2
π)}, then we have:

Lemma 3.1. There exist positive constants M1, M2 independent of ε ∈ (0, ε0]
and λ ∈ (0, 1] such that

λ
∣
∣vε,λ(t)

∣
∣2
H0

+
∣
∣vε,λ(t)

∣
∣2
V ∗

0
≤ M1,

ε

2

∫ t

0

∣
∣vε,λ(s)

∣
∣2
V 0

ds + 2

∫ t

0

∣
∣β̂λ

(
uε,λ(s)

)∣∣
L1(Ω)

ds + 2

∫ t

0

∣
∣β̂λ

(
uΓ,ε,λ(s)

)∣∣
L1(Γ)

ds ≤ M2

for all t ∈ [0, T ].

Proof. Multiplying (3.1) by vε,λ(s) ∈ V 0, we have

λ
(
v′

ε,λ(s), vε,λ(s)
)

H0
+
(
v′

ε,λ(s), vε,λ(s)
)

V ∗
0

+ ε
(
∂ϕ
(
vε,λ(s)

)
, vε,λ(s)

)
H0

+
(
P βλ

(
vε,λ(s) + m01

)
, vε,λ(s)

)
H0

=
(
f (s) − εP π

(
vε,λ(s) + m01

)
, vε,λ(s)

)
H0

for a.a. s ∈ (0, T ). Using the definition of the subdifferential, we see that
λ

2

d

ds

∣
∣vε,λ(s)

∣
∣2
H0

+
1

2

d

ds

∣
∣vε,λ(s)

∣
∣2
V ∗

0
+

ε

2

∣
∣vε,λ(s)

∣
∣2
V 0

+
∣
∣β̂λ

(
uε,λ(s)

)∣∣
L1(Ω)

+
∣
∣β̂λ

(
uΓ,ε,λ(s)

)∣∣
L1(Γ)

≤ (|Ω| + |Γ|)β̂(m0) +
1

2

∣
∣vε,λ(s)

∣
∣2
V ∗

0
+
∣
∣f (s)

∣
∣2
V 0

+ L2
πε2
∣
∣vε,λ(s)

∣
∣2
V 0

for a.a. s ∈ (0, T ).

Taking ε ∈ (0, ε0] and using the Gronwall inequality, we obtain the existence of
M1 and M2 independent of ε ∈ (0, ε0] and λ ∈ (0, 1] satisfying the conclusion. �
Lemma 3.2. There exists a positive constant M3, independent of ε ∈ (0, ε0]
and λ ∈ (0, 1], such that

2λ

∫ t

0

∣∣v′
ε,λ(s)

∣∣2
H0

ds +
∫ t

0

∣∣v′
ε,λ(s)

∣∣2
V ∗

0
ds + ε

∣∣vε,λ(t)
∣∣2
V 0

+ 2
∣∣β̂λ

(
uε,λ(t)

)∣∣
L1(Ω)

+ 2
∣∣β̂λ

(
uΓ,ε,λ(t)

)∣∣
L1(Γ)

≤ M3,

∫ t

0

∣∣Pμε,λ(s)
∣∣2
V 0

ds ≤ M3 for all t ∈ [0, T ].

Proof. Multiplying (3.1) by v′
ε,λ(s) ∈ H0, we have

λ
∣∣v′

ε,λ(s)
∣∣2
H0

+
1
2

∣∣v′
ε,λ(s)

∣∣2
V ∗

0
+ ε

d

ds
ϕ
(
vε,λ(s)

)
+

d

ds

∫
Ω

β̂λ

(
uε,λ(s)

)
dx

+
d

ds

∫
Γ

β̂λ

(
uΓ,ε,λ(s)

)
dΓ ≤ L2

πε2
∣∣vε,λ(s)

∣∣2
V 0

+
∣∣f(s)

∣∣2
V 0

for a.a. s ∈ (0, T ).

Integrating this over (0, t) with respect to s, we see that there exists a positive
constant M3, independent of ε ∈ (0, ε0] and λ ∈ (0, 1], such that the first estimate
holds. Next, multiplying (3.4) by Pμε,λ(s) ∈ V 0 and integrating the resultant
over (0, t) with respect to s, we obtain the second estimate. �
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The previous two lemmas are essentially the same as [13, Lemmas 3.1 and
3.2]. The next uniform estimate is the point of emphasis in this paper.

Lemma 3.3. There exists positive constant M4, independent of ε ∈ (0, 1] and
λ ∈ (0, 1], such that

∣∣uε,λ(t)
∣∣2
H

≤ M4

(
1 +

λ

ε

)
,

∣∣vε,λ(t)
∣∣2
H0

≤ M4

(
1 +

λ

ε

)
,

λ
∣∣vε,λ(t)

∣∣2
V 0

+ ε

∫ t

0

∣∣∂ϕ
(
vε,λ(s)

)∣∣2
H0

ds ≤ M4

(
1 +

λ

ε

)
for all t ∈ [0, T ].

Proof. Multiplying (3.4) by vε,λ(s) ∈ V 0 and using the fact (d/ds)m(uε,λ(s)) =
0, we have (

u′
ε,λ(s),uε,λ(s)

)
H

+ a
(
με,λ(s),uε,λ(s)

)
= 0

for a.a. s ∈ (0, T ) (see [13, Remark 3]). On the other hand, multiplying (3.5) by
∂ϕ(vε,λ(s)) ∈ H0 and integrating by parts, we have

a
(
με,λ(s), uε,λ(s)

)
=

λ

2

d

ds
a
(
uε,λ(s), uε,λ(s)

)
+ ε
∣∣∂ϕ
(
vε,λ(s)

)∣∣2
H0

+

∫
Ω

β′
λ

(
uε,λ(s)

)∣∣∇uε,λ(s)
∣∣2dx +

∫
Γ

β′
λ

(
uΓ,ε,λ(s)

)∣∣∇ΓuΓ,ε,λ(s)
∣∣2dΓ

+ ε
(
π
(
uε,λ(s)

)
, ∂ϕ
(
uε,λ(s)

))
H

+
(
∂ϕ
(
f(s)

)
, uε,λ(s)

)
H

for a.a. s ∈ (0, T ). Using the Lipschitz continuity of π and (3.3), we see that
there exists a positive constant Cπ such that

d

ds

∣
∣uε,λ(s)

∣
∣2
H

+ λ
d

ds

∣
∣vε,λ(s)

∣
∣2
V 0

+ ε
∣
∣∂ϕ
(
vε,λ(s)

)∣∣2
H0

≤ Cπ

(∣∣uε,λ(s)
∣
∣2
H

+ 1
)

+
∣
∣g(s)

∣
∣2
H0

for a.a. s ∈ (0, T ). Then, using (3.2) and the Gronwall inequality, we deduce that
∣∣uε,λ(t)

∣∣2
H

+ λ
∣∣vε,λ(t)

∣∣2
V 0

≤
{

|v0ε + m01|2H + λ|v0ε|2V 0
+ CπT + |g|2

L2(0,T ;H0)

}
eCπT

≤
{

2C + 2|m0|2(|Ω| + |Γ|)+
λ

ε
C + CπT + |g|2

L2(0,T ;H0)

}
eCπT

for all t ∈ [0, T ]. That is, there exists a positive constant M4 independent of
ε ∈ (0, 1] and λ ∈ (0, 1] such that the uniform estimates hold. �
Lemma 3.4. There exists positive constant M5, independent of ε ∈ (0, 1] and
λ ∈ (0, 1], such that

∫ t

0

∣∣με,λ(s)
∣∣2
V 0

ds ≤ M5

(
1 +

λ

ε

)
,

∫ t

0

∣∣βλ

(
uε,λ(s)

)∣∣2
H

ds ≤ M5

(
1 +

λ

ε

)
for all t ∈ [0, T ].

Using Lemmas 3.1 to 3.3, the proofs of these uniform estimates are com-
pletely the same as those for [9, Lemmas 4.3 and 4.4]. Therefore, we omit the
proof.
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3.2 Limiting Procedure

From the previous uniform estimates, we can consider the limit as λ ↘ 0. More
precisely, for each ε ∈ (0, ε0], there exists a subsequence {λk}k∈N with λk ↘ 0 as
k → +∞ and a quadruplet (vε,v

∗
ε,με, ξε) of vε ∈ H1(0, T ;V ∗

0)∩ L∞(0, T ;V 0)
∩L2(0, T ;W ), v∗

ε ∈ L2(0, T ;H0), με ∈ L2(0, T ;V ), ξε ∈ L2(0, T ;H), such that

vε,λk → vε weakly star in L∞(0, T ; H0), vε,λk → vε weakly in L2(0, T ; V 0),

λkv′
ε,λk

→ 0 in L2(0, T ; H0), v′
ε,λk

→ v′
ε weakly in L2(0, T ; V ∗

0),

uε,λk → uε := vε + m01 weakly star in L∞(0, T ; V ),

∂ϕ(vε,λk) → v∗
ε weakly in L2(0, T ; H0), με,λk

→ με weakly in L2(0, T ; V ),

βλk
(uε,λk) → ξε weakly in L2(0, T ; H) as k → +∞.

From the compactness theorem (see, e.g., [21, Sect. 8, Corollary 4]), this gives

vε,λk
→ vε in C

(
[0, T ];H0

)
, uε,λk

→ uε in C
(
[0, T ];H

)
,

π(uε,λk
) → π(uε) in C

(
[0, T ];H

)
as k → +∞.

Moreover, from the demi-closedness of ∂ϕ and [4, Proposition 2.2], we see that
v∗

ε = ∂ϕ(vε) in L2(0, T ;H0) and ξε ∈ β(uε) in L2(0, T ;H). From these facts,
we deduce from (3.4) and (3.5) that

v′
ε(t) + F

(
Pμε(t)

)
= 0 in V ∗

0, (3.6)

ξε(t) ∈ β
(
uε(t)

)
, με(t) = ε∂ϕ

(
vε(t)

)
+ ξε(t) + επ

(
uε(t)

) − f(t) in H (3.7)

for a.a. t ∈ (0, T ), with vε(0) = v0ε in H. We also have the regularity uε ∈
H1(0, T ;V ∗)∩ L∞(0, T ;V )∩ L2(0, T ;W ). Now, taking the limit inferior as λ ↘
0 on the uniform estimates, λ/ε ↘ 0 for all ε ∈ (0, ε0], and we therefore obtain
the same kind of uniform estimates as in the previous lemmas independent of
ε ∈ (0, ε0].

Proof of Theorem 2.1. By using the estimates for vε,uε,με and ξε, there
exist a subsequence {εk}k∈N with εk ↘ 0 as k → +∞ and functions v ∈
H1(0, T ;V ∗

0)∩L∞(0, T ;H0), u ∈ H1(0, T ;V ∗)∩L∞(0, T ;H), μ ∈ L2(0, T ;V )
and ξ ∈ L2(0, T ;H) such that

vεk → v weakly star in L∞(0, T ; H0),

uεk → u = v + m01 weakly star in L∞(0, T ; H), εkvεk → 0 in L∞(0, T ; V 0),

v′
εk

→ v′ weakly in L2(0, T ; V ∗
0), u′

εk
→ u′ weakly in L2(0, T ; V ∗),

μεk
→ μ weakly in L2(0, T ; V ), ξεk

→ ξ weakly in L2(0, T ; H),

εkπ(uεk) → 0 in L∞(0, T ; H) as k → +∞.

From the Ascoli–Arzelà theorem, we also have

vεk
→ v in C

(
[0, T ];V ∗

0

)
, uεk

→ u in C
(
[0, T ];V ∗) as k → +∞.
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Now, multiplying (3.7) by η ∈ L2(0, T ;V ) and integrating over (0, T ), we obtain
∫ T

0

(
μεk

(t),η(t)
)
H

dt = εk

∫ T

0

a
(
vεk

(t),η(t)
)
dt +

∫ T

0

(
ξεk

(t),η(t)
)
H

dt

+ εk

∫ T

0

(
π

(
uεk

(t)
)
,η(t)

)
H

dt −
∫ T

0

(
f(t),η(t)

)
H

dt.

(3.8)

Letting k → ∞, we obtain
∫ T

0

(
μ(t),η(t)

)
H

dt =
∫ T

0

(
ξ(t) − f(t),η(t)

)
H

dt for all η ∈ L2(0, T ;V ),

namely, μ = ξ−f in L2(0, T ;H). This implies the regularity of ξ ∈ L2(0, T ;V ),
that is, ξΓ = ξ|Γ a.e. on Σ. Next, we take η := uεk

∈ L2(0, T ;V ) in (3.8), so
that

lim sup
k→+∞

∫ T

0

(
ξεk

(t),uεk
(t)

)
H

dt ≤
∫ T

0

〈
u(t),μ(t)

〉
V ∗,V

dt +
∫ T

0

(
f(t),u(t)

)
H

dt

=
∫ T

0

(
ξ(t),u(t)

)
H

dt.

Thus, applying [4, Proposition 2.2] we have ξ ∈ β(u) in L2(0, T ;H), and so we
obtain ξ ∈ β(u) a.e. in Q. ξΓ ∈ β(uΓ) a.e. on Σ. Finally, letting k → +∞ and
applying Hahn–Banach extension theorem of bounded linear functional on V to
V × VΓ, then we see that (3.6) gives (2.1) for a.a. t ∈ (0, T ), with u(0) = u0 a.e.
in Ω and uΓ(0) = u0Γ a.e. on Γ. �
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Abstract. We prove that the domain obtained by small perturbation
of a Lipschtz domain is the union of a star-shaped domains with respect
to every point of balls, such that the radius of the balls is independent of
the perturbation. This result is useful in order to get uniform estimation
for a fluid-structure interaction problem.

Keywords: Star-shaped domains · Fluid-structure interaction ·
Fictitious domain

1 Introduction

In [4,5] the existence of a solution is studied for an elastic structure immersed
in an incompressible fluid.

Let D ⊂ R
2 be a bounded open domain. We denote by ΩS

0 the undeformed
structure domain and by u = (u1, u2) : Ω

S

0 → R
2 its displacement. A particle

of the structure with initial position at the point X will occupy the position
x = Φ (X) = X+ u (X) in the deformed domain Ω

S

u = Φ
(
Ω

S

0

)
. In [5], we have

assumed that ∂ΩS
u has the uniform cone property and the geometry of the cone

is independent of u. The fluid occupies the domain ΩF
u = D \ Ω

S

u , see Fig. 1.
It is possible to construct an uniform extension operator E from {v ∈(

H1
(
ΩS

u

))2 ; ∇ · v = 0 in ΩS
u } to

(
H1

0 (D)
)2 such that

∇ · E(v) = 0, in D (1)
E(v) = v, in ΩS

u (2)
‖E(v)‖1,D ≤ K ‖v‖1,ΩS

u
(3)

where the constant K > 0 is independent of ΩS
u , but it depends on the geometry

of the cone.
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
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D

u

Ω u
F

Ω u
S

Fig. 1. Fluid and structure domains.

This construction is obtained by solving the Bogowskii problem in ΩF
u , see

for example [3], Lemma 3.1, page 121. There exists w ∈ (
H1

0

(
ΩF

u

))2 such that

∇ · w = f , in ΩF
u (4)

w = 0, on ∂D (5)
w = 0, on ∂ΩS

u (6)
|w|1,ΩF

u
≤ K1 ‖f‖0,ΩF

u
(7)

where
∫

ΩF
u
f dx = 0. If ΩF

u is star-shaped with respect to any point of a ball of
radius Ru, we have the following estimation of K1 > 0:

K1 ≤ c0

(
diam(ΩF

u )
Ru

)2 (
1 +

diam(ΩF
u )

Ru

)
(8)

where diam(ΩF
u ) is the diameter of ΩF

u . A similar result holds if the domain ΩF
u

is union of star-shaped domains with respect to any point of a ball, see Theorem
3.1, p. 129, [3]. We have diam(ΩF

u ) ≤ diam(D), for all u such that ΩF
u ⊂ D.

The aim of this paper is to prove that, under some geometrical assumptions,
one can choose Ru = R = constant, for small u.

2 Small Perturbation of the Boundary of a Star-Shaped
Domain with Respect to Any Point of a Ball

We denote by BR(x0) the open ball of radius R centered at x0, i.e. BR(x0) =
{x ∈ R

2; |x0 − x| < R}, where | · | is the euclidean norm. A domain Ω is star-
shaped with respect to every point of a ball BR(x0) such that BR(x0) ⊂ Ω, if
and only if, for every x ∈ BR(x0) and y ∈ Ω, the segment with ends x, y is
included in Ω. A characterization of such a domain is that every ray starting
from a point x ∈ BR(x0) intersects the boundary of the domain at only one
point.

Proposition 1. Let a, r > 0 be two constants such that

a ≥ 4r (9)
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O

−r

a

x1

−r r

a+η

a−η

R

x2

ϕ

Fig. 2. A star-shaped domain with respect to every point of a ball.

and ϕ ∈ W 1,∞(−r, r) be such that

∃η ∈ (0, r), sup
x∈(−r,r)

|ϕ(x)| ≤ η (10)

∃L > 0, sup
x∈(−r,r)

|ϕ′(x)| ≤ L. (11)

We define the domain, see Fig. 2

Ωϕ =
{
(x1, x2) ∈ R

2; −r < x1 < r, −r < x2 < a + ϕ(x1)
}

. (12)

Let R ∈ (0, r). If L < a−2r
2r , then the domain Ωϕ is star-shaped with respect to

every point of the ball BR(0).

Proof. Since R < r, then BR(0) ⊂ Ωϕ. Let x ∈ BR(0). We suppose that a ray
starting from this point cuts ∂Ωϕ in two points y and z and y ∈ (x, z), i.e. y is
on the segment with ends x and z.

Let us denote the top boundary of Ωϕ by

Γϕ =
{
(x1, a + ϕ(x1)) ∈ R

2; −r < x1 < r
}

.

If y, z ∈ ∂Ωϕ \ Γϕ it follows that the ray cuts the boundary of the strip

C =
{
(x1, x2) ∈ R

2; −r < x1 < r, −r < x2

}
,

twice, which is not true because the C is a convex set and a convex set is star-
shaped with respect to every interior point.

If we have only y ∈ ∂Ωϕ \ Γϕ, then z belongs to the exterior of the strip C,
consequently z /∈ Γϕ.
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Fig. 3. Case (i) at the left and case (ii) at the right

So, we will study only two cases:

(i) y, z ∈ Γϕ;
(ii) y ∈ Γϕ and z ∈ ∂Ωϕ \ Γϕ (Fig. 3).

Case (i): y, z ∈ Γϕ.
Let ξ = (ξ1, ξ2) be the point in the plane, such that the line passing throw ξ

and x is parallel to the axis Ox1 and the line passing throw ξ and z is parallel
to the axis Ox2.

We denote by α the angle x̂zξ. Since x ∈ BR(0) using (10), we get |z− ξ| ≥
a − 2r and |x − ξ| ≤ 2r, then

tanα =
|x − ξ|
|z − ξ| ≤ 2r

a − 2r
.

By assumption we have y, z ∈ Γϕ, then y = (y1, a + ϕ(y1)) and z =
(z1, a + ϕ(z1)) with −r < y1, z1 < r. We have also, tanα = |y1−z1|

|ϕ(y1)−ϕ(z1)| and
using (11) we get

tanα ≥ 1
L

.

This implies that
2r

a − 2r
≥ 1

L

which is in contradiction with the hypothesis L < a−2r
2r .

Case (ii): y ∈ Γϕ and z ∈ ∂Ωϕ \ Γϕ.
As in the Case (i), we construct ξ, we denote by α the angle x̂zξ and we get

tanα =
|x − ξ|
|z − ξ| ≤ 2r

a − 2r
.
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Since z cannot belong to the bottom boundary of C, we assume that z belongs
to the right boundary of C, so z = (r, z2). We denote by q the point at the right
top corner of Ωϕ, so q = (r, a + ϕ(r)). We have W 1,∞(−r, r) ⊂ C0([−r, r]) (see
[1], Theorem VIII.7, page 129), so ϕ(r) is well defined.

Let α′ be the angle ŷqξ. Then

tanα′ =
|y1 − r|

|ϕ(y1) − ϕ(r)| ≥ 1
L

.

If z2 > a + ϕ(r) it follows that z belongs to the exterior of Ωϕ not to ∂Ωϕ,
so z2 ≤ a + ϕ(r). In this case α ≥ α′ and we get

1
L

= tanα′ < tanα ≤ 2r
a − 2r

which is in contradiction with the hypothesis L < a−2r
2r .

Proposition 2. Let ζ : [−r, r] → R be a Lipschitz function of constant L, i.e.

∀x, y ∈ [−r, r], |ζ(x) − ζ(y)| ≤ L|x − y|.
Denote by Γζ = {(x, ζ(x)) ∈ R

2, x ∈ [−r, r]}, the graph of ζ.
Let u = (u1, u2) : Γζ → R

2 be such that

∃η1 ∈
(
0,

r

2

)
, sup

x∈Γζ

|u(x)| ≤ η1 (13)

∃η2 ∈
(
0,

1√
1 + L2

)
, ∀x,y ∈ Γζ , |u(x) − u(y)| ≤ η2|x − y|. (14)

Then there exits a Lipschitz function ϕ :
(− r

2 , r
2

) → R of constant less than
L+η2

√
1+L2

1−η2
√
1+L2 , such that its graph is included in (Id+ u) (Γζ). If ζ(0) = 0, then

∀z ∈
(
−r

2
,
r

2

)
, |ϕ(z)| ≤ r

(√
1 + L2 +

1
2

)
.

Proof. Let us introduce the function

φ : [−r, r] → R, φ(x) = x + u1(x, ζ(x)).

We will prove that φ is strictly increasing, so it is injective. To simplify, we
assume that ζ and u are of class C1. We get

φ′(x) = 1 +
∂u1

∂x1
(x, ζ(x)) +

∂u1

∂x2
(x, ζ(x))ζ ′(x).

Since ζ is Lipschitz function of constant L, |ζ ′(x)| ≤ L. Similary, we have
|∇u(x)| ≤ η2. Using Cauchy-Schwarz we get

∣∣∣∣∂u1

∂x1
(x, ζ(x)) +

∂u1

∂x2
(x, ζ(x))ζ ′(x)

∣∣∣∣ ≤
√(

∂u1

∂x1

)2

+
(

∂u1

∂x2

)2√
1 + L2

≤ η2
√

1 + L2.
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It follows that
φ′(x) ≥ 1 − η2

√
1 + L2 > 0,

and then φ is strictly increasing, so φ is a bijection from [−r, r] to [φ(−r), φ(r)].
From (13), we obtain φ(−r) < − r

2 and φ(r) > r
2 .

r rr r 2/2/−−

u

u

u

x z

(z)

(x)ζ

ϕ

Fig. 4. The graphs of ζ and ϕ.

Let us introduce the function ϕ :
(− r

2 , r
2

) → R (Fig. 4),

ϕ(z) = ζ(x) + u2(x, ζ(x)),

where x = φ−1(z). The function is well defined because if z is in
(− r

2 , r
2

)
, then

x = φ−1(z) is in (−r, r).
We will prove that ϕ is a Lipschitz function. Let z, w ∈ (− r

2 , r
2

)
and x =

φ−1(z), y = φ−1(w).

|ϕ(z) − ϕ(w)| = |ζ(x) − ζ(y) + u2(x, ζ(x)) − u2(y, ζ(y))|
≤ |ζ(x) − ζ(y)| + |u2(x, ζ(x)) − u2(y, ζ(y))|
≤ L|x − y| + η2 |(x, ζ(x)) − (y, ζ(y))|
= L|x − y| + η2

√
(x − y)2 + (ζ(x) − ζ(y))2

≤
(
L + η2

√
1 + L2

)
|x − y|.

We have

|z − w| = |x − y + u1(x, ζ(x)) − u1(y, ζ(y))|
≥ |x − y| − |u1(x, ζ(x)) − u1(y, ζ(y))|
≥ |x − y| − η2 |(x, ζ(x)) − (y, ζ(y))|
≥ |x − y| − η2

√
(x − y)2 + (ζ(x) − ζ(y))2

≥
(
1 − η2

√
1 + L2

)
|x − y|.

We deduce that for all z, w ∈ (− r
2 , r

2

)

|ϕ(z) − ϕ(w)|
|z − w| ≤

(
L + η2

√
1 + L2

)
(
1 − η2

√
1 + L2

) .
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Let (z, ϕ(z)) be a point on the graph of ϕ, where z ∈ (− r
2 , r

2

)
. Then there

exits x = φ−1(z) ∈ (−r, r). From the definition of φ and ϕ, we have

(z, ϕ(z)) = (x + u1(x, ζ(x)), ζ(x) + u2(x, ζ(x)))
= (x, ζ(x)) + (u1(x, ζ(x)), u2(x, ζ(x)))
= (Id+ u) (x, ζ(x))

which proves that the graph of ϕ is included in (Id+ u) (Γζ). Also

|ϕ(z)| ≤ |(z, ϕ(z))|
= |(x + u1(x, ζ(x)), ζ(x) + u2(x, ζ(x)))|
≤ |(x, ζ(x))| + |(u1(x, ζ(x)), u2(x, ζ(x)))|
≤

√
x2 + (ζ(x))2 + η1 ≤

√
r2 + (ζ(x))2 +

r

2

If ζ(0) = 0, since ζ is a Lipschitz function of constant L, we have

|ζ(x)| = |ζ(x) − ζ(0)| ≤ L|x − 0| < Lr.

Then |ϕ(z)| ≤ r
(√

1 + L2 + 1
2

)
.

3 Uniform Estimation of the Radius of the Ball for Small
Perturbation of Lipschitz Domain

Definition 1 (see [2]). Let r, a, L be three positive numbers and Ω an open
bounded set of R

2. We say that the boundary ∂Ω is uniform Lipschitz if, for
every x0 ∈ ∂Ω, there exits a Cartezian coordinates system {x1, x2} of origin x0

and a Lipschitz function ζ : (−r, r) → (−a, a) of constant L, such that ζ(0) = 0,

∂Ω ∩ P (x0) = {(x1, ζ(x1)), x1 ∈ (−r, r)},

Ω ∩ P (x0) = {(x1, x2), x1 ∈ (−r, r), ζ(x1) < x2 < a},

where P (x0) = (−r, r) × (−a, a).

We will use the same notation as in the first section. We will prove a result
similar to the Lemma 3.2, p. 40, from [3], but the radius of the balls is the same
for all admissible displacements.

Theorem 1. Let ∂ΩS
0 be an uniform Lipschitz boundary of parameters r, a, L.

We set R ∈ (
0, r

2

)
. There exists two constants η1 ∈ (

0, r
2

)
, η2 ∈

(
0, 1√

1+L2

)
and

two natural numbers m,n ∈ N
∗, such that for all u : ∂ΩS

0 → R
2, such that

sup
x∈∂ΩS

0

|u(x)| ≤ η1 (15)

∀x,y ∈ ∂ΩS
0 , |u(x) − u(y)| ≤ η2|x − y| (16)
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we have the decomposition

ΩF
u =

(
m⋃

i=1

Ωi

)⋃ ⎛
⎝ m+n⋃

j=m+1

Bη1(xj)

⎞
⎠

where Ωi = ΩF
u ∩ Q(xi) for 1 ≤ i ≤ m are star-shaped domains with respect to

every point of a ball Bi of radius R, Bi ⊂ Ωi, Q(xi) are rectangles of center
xi ∈ ∂ΩS

0 congruent to
(− r

2 , r
2

) × (−a, a) and Bη1(xj) for m + 1 ≤ j ≤ m + n

are balls of center xj ∈ ΩF
u and radius η1, Bη1(xj) ⊂ ΩF

u .

Proof. Let us remark that if ΩS
0 is Lipschitz of parameters r, a, L, then it is

also for the parameters r′, a, L, for r′ < r. Consequently, we can choose r small
enough such that 2L +

√
1 + L2 + 5

2 < a
r .

Let P (x) be the rectangle of center x ∈ ∂ΩS
0 given by the Definition 1. We

denote by Q(x) the rectangle
(− r

2 , r
2

)×(−a, a) using the same local coordinates.
We have ∂ΩS

0 ⊂ ∪x∈∂ΩS
0
Q(x) and since ∂ΩS

0 is compact, then there exits m ∈ N
∗

and xi ∈ ∂ΩS
0 , 1 ≤ i ≤ m, such that

∂ΩS
0 ⊂

m⋃
i=1

Q(xi).

We will use the notation

Oη = {x ∈ R
2; d(x, ∂ΩS

0 ) ≤ η},

ΩF
0,η = {x ∈ ΩF

0 ; d(x, ∂ΩS
0 ) > η}

where d(x, A) = infy∈A |x − y| is the distance function. There exists η0 > 0,
such that

Oη0 ⊂
m⋃

i=1

Q(xi). (17)

Set η1 = min(η0
2 , r

2 ) (Fig. 5).
Let u : ∂ΩS

0 → R
2 be such that (15) holds. Then (Id+u)(∂ΩS

0 ) ⊂ Oη1 ⊂ Oη0 ,
for all admissible u and it follows that

ΩF
u ⊂ Oη0 ∪ ΩF

0,η0
. (18)

Since ΩF
0,η0

is bounded, then there exists n ∈ N
∗ and xj ∈ ΩF

0,η0
for m+1 ≤ j ≤

m + n, such that

ΩF
0,η0

⊂
m+n⋃

j=m+1

Bη1(xj). (19)

But η1 ≤ η0
2 , so Bη1(xj) ⊂ ΩF

u . From (17), (18), (19), we get

ΩF
u =

(
m⋃

i=1

(
ΩF

u ∩ Q(xi)
))⋃ ⎛

⎝ m+n⋃
j=m+1

Bη1(xj)

⎞
⎠ .
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x2

x1

R

η

η

η

η
1

1

1

0

Fig. 5. The rectangle
(− r

2
, r
2

)× (−a, a) is of center xi ∈ ∂ΩS
0 , the ball of radius η1 is

of center xj ∈ ΩF
0,η0 .

Using the Proposition 2, (Id + u)(∂ΩS
0 ) ∩ Q(xi) is the graph of a Lipschitz

function ϕ :
(− r

2 , r
2

) → (−a, a) of constant

L′ =
L + η2

√
1 + L2

1 − η2
√
1 + L2

and |ϕ| ≤ r
(√

1 + L2 + 1
2

)
. If η2 ∈ [0, 1

2
√
1+L2 ), then L′ ∈ [L, 2L + 1).

We have 2L + 1 <
a−r(

√
1+L2+ 3

2 )

r by the choice of r at the begining of the
proof. Using a similar argument as in the Proposition 1, we get that Ωi =
ΩF

u ∩ Q(xi) is a star-shaped domain with respect to every point of the ball of
radius R and center (0,−a + r

2 ).

Corollary 1. Using the Theorem 3.1, p. 129, from [3], we get that the con-
stant K1 from the inequality (7) depends on min(η1, R) and diam(D), but it is
independent on the displacement u.
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Abstract. The present paper represents a continuation of [3]. There,
we studied a new class of variational inequalities involving a
pseudomonotone univalued operator and a multivalued operator, for
which we obtained an existence result, among others. In the current
paper we prove that this result remains valid under significantly weaker
assumption on the multivalued operator. Then, we consider a new
mathematical model which describes the equilibrium of an elastic body
attached to a nonlinear spring on a part of its boundary. We use our
abstract result to prove the weak solvability of this elastic model.

Keywords: Multivalued operator · Variational inequality · Cut-off
operator · Elastic material unilateral constraint · Weak solution

1 Introduction

The theory of variational inequalities plays an important role in the study of
nonlinear boundary value problems arising in Mechanics, Physics and Engineer-
ing Sciences. Based on arguments of monotonicity and convexity, it started in
early sixties and has gone through substantial development since then, as illu-
strated in the books [1,4,9,10], for instance. There, the inequalities have been
formulated in terms of univalued operators and subgradient of a convex function.

Variational inequalities with multivalued operators represent a more recent
and challenging topic of nonlinear functional analysis. In particular, they repre-
sent a powerful instrument which allows to obtain new and interesting results in
the study of various classes of variational-hemivariational inequalities. Such kind
of inequalities involve both convex and nonconvex functions, have been intro-
duced in [8] and have been investigated in various other works, as explained
in [6,7] and the references therein.

Recently, in [3], we considered a class of stationary variational inequali-
ties with multivalued operators, for which we proved an existence result, under
a smallness assumption on the data. The proof was based on standard arguments
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 302–311, 2016.
DOI: 10.1007/978-3-319-55795-3 28
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of variational inequalities followed by a version of the Kakutani-Fan-Glicksberg
fixed point theorem. Then, we considered a dual variational formulation of the
problem, studied the link between the primal and dual formulations and pro-
vided an equivalence result. Finally, we applied this abstract formalism to the
study of a frictional elastic contact model with normal compliance, for which we
obtained existence and equivalence results.

The present paper represents a continuation of [3]. Our aim is twofold. The
first one is to prove that the existence result of [3] remains valid under sig-
nificantly weaker assumption on the corresponding multivalued operators. The
second aim is to illustrate the use of this result in the study of a new mathe-
matical model which describes the equilibrium of an elastic body attached to a
nonlinear spring.

The manuscript is organized as follows. In Sect. 2 we recall the statement of
the problem together with the existence result obtained in [3]. In Sect. 3, we state
and prove our main abstract result, Theorem 2. Next, in Sect. 4, we introduce
the elastic problem, list the assumption on the data and state its variational
formulation. Finally, in Sect. 5, we apply Theorem 2 to prove its weak solvability.

2 Problem Statement

Everywhere in this paper, we assume that (V, ‖ · ‖) is a reflexive Banach space,
we denote by V ∗ its topological dual, and 〈·, ·〉 will represent the duality pairing
between V and V ∗. We use 0V for the zero element of the space V and ‖ · ‖∗
for the norm on V ∗. Assume in addition that (U, ‖ · ‖U ) is a reflexive Banach
space of topological dual U∗. We denote by ‖ · ‖U∗ the norm on U∗ and by
〈·, ·〉U∗×U the duality pairing between U and U∗. The symbol w-U will represent
the space U endowed with the weak topology while s-U∗ will represent the space
U∗ endowed with the strong topology. For a set D in a Banach space E, we define
‖D‖E = sup{ ‖u‖E | u ∈ D }.

Consider a set K ⊂ V , a single-valued operator A : V → V ∗, a multivalued
operator B : U → 2U∗

, a linear, continuous and compact operator ι : V → U ,
and a functional f ∈ V ∗. We denote by ‖ι‖ the norm of ι in the space of
linear continuous operators from V to U . With these data we state the following
inequality problem.

Problem 1. Find u ∈ V and ξ ∈ U∗ such that

u ∈ K, 〈Au − f, v − u〉 + 〈ξ, ι(v − u)〉U∗×U ≥ 0 for all v ∈ K,

ξ ∈ B(ιu).

Note that, since the operator B is multivalued, we refer to Problem 1 as
a multivalued variational inequality. Let ι∗ : U∗ → V ∗ be the adjoint operator
to ι. Then, using the definition of the subgradient of the indicator function of
the set K, denoted ∂cIK , it is easy to see that Problem 1 is equivalent with the
following subdifferential inclusion: find u ∈ V such that

Au + ι∗B(ιu) + ∂cIK(u) 	 f in V ∗.



304 P. Kalita et al.

In the study of Problem 1 we need the following assumptions.

H(A) : A : V → V ∗ is an operator such that

(1) A is coercive, i.e., 〈Au, u〉 ≥ α‖u‖2 − β for all u ∈ V with α, β > 0.
(2) ‖Au‖V ∗ ≤ a1 + a2 ‖u‖ for all u ∈ V with a1, a2 > 0.
(3) A is pseudomonotone, i.e. it is bounded and un → u weakly in V and

lim sup 〈Aun, un − u〉 ≤ 0 imply 〈Au, u − v〉 ≤ lim inf 〈Aun, un − v〉 for all
v ∈ V .

(4) A is strictly monotone on K, i.e., for all u, v ∈ K such that u �= v, we have
〈Au − Av, u − v〉 > 0.

H(B) : B : U → 2U∗
is an operator such that

(1) B has nonempty and convex values.
(2) the graph of B is sequentially closed in (s-U) × (w-U∗) topology.
(3) ‖Bw‖U∗ ≤ b1 + b2 ‖w‖U for all w ∈ U with b1, b2 > 0.
(4) the smallness condition b2 ‖ι‖2 < α holds.

H(K) : K is a nonempty, convex and closed subset of V .

The following result, obtained in [3], provides the solvability of Problem 1.

Theorem 1. Under hypotheses H(A), H(B) and H(K) Problem 1 has at least
one solution.

The proof of Theorem 1 is based on arguments of elliptic variational inequal-
ities, various estimates and a version of the Kakutani-Fan-Glicksberg fixed point
theorem.

3 An Abstract Existence Result

We now consider the following assumptions on the data of the Problem 1.

H(B) : B : U → 2U∗
is an operator such that

(5) the operator B : U → 2U∗
is bounded, i.e., it maps bounded sets in U into

bounded sets in U∗.
(6) there exist constants b3, b4 ≥ 0 with b4 ‖ι‖2 < α such that for all u ∈ U and

all ξ ∈ Bu we have

〈ξ, u〉U∗ × U ≥ −b3 − b4 ‖u‖2U .

Our main abstract existence result in the study of Problem 1 is the following.

Theorem 2. Assume hypotheses H(A), H(B)(1), (2), (5) and (6), H(K) and
0V ∈ K. Then Problem 1 has a solution.
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Proof. Fix N ≥ 1 and define a cut-off operator BN : U → 2U∗
by

BN (v) =

{
Bv if ‖v‖U ≤ N

B
(

Nv
‖v‖U

)
otherwise

for v ∈ U . Since B satisfies assumptions H(B)(1) and (2), it is straightforward
to verify that the operator BN satisfies these two assumptions as well. Moreover,
since B satisfies H(B)(5), it follows that BN satisfies H(B)(3) with a constant
b1 > 0 which depends on N and b2 > 0 arbitrary small and independent of N .
It is also clear that BN satisfies H(B)(4). We are now in a position to apply
Theorem 1. Thus, we deduce that there exists (uN , ξN ) ∈ V × U∗ such that

uN ∈ K, 〈AuN − f, v − uN 〉 + 〈ξN , ι(v − uN )〉U∗ × U ≥ 0 for all v ∈ K, (1)
ξN ∈ BN (ιuN ).

The hypothesis 0V ∈ K allows to test (1) with v = 0V . As a result, we obtain

〈AuN , uN 〉 + 〈ξN , ιuN 〉U∗ × U ≤ ‖f‖V ∗‖uN‖. (2)

We estimate from below the expression 〈ξN , ιuN 〉U∗ ×U . If ‖ιuN‖U ≤ N , then
ξN ∈ BuN and

〈ξN , ιuN 〉U∗ × U ≥ −b3 − b4 ‖ι‖2‖uN‖2.
If, in contrast, ‖ιuN‖U > N , then ξN ∈ B

(
NιuN

‖ιuN‖U

)
, and assumption H(B)(6)

yields

〈ξN , ιuN 〉U∗ × U =
〈
ξN ,

NιuN

‖ιuN‖U

〉
U∗×U

‖ιuN‖U

N
≥ (−b3 − b4 N2)

‖ιuN‖U

N

≥ −b3 ‖ι‖‖uN‖ − b4 ‖ι‖2‖uN‖2.
In either case, we have

〈ξN , ιuN 〉U∗ × U ≥ −b3 − b3 ‖ι‖‖uN‖ − b4 ‖ι‖2‖uN‖2. (3)

Combining inequality (3) with H(A)(1) and (2) implies

(α − b4‖ι‖2)‖uN‖2 ≤ b3 + (‖f‖V ∗ + b3‖ι‖) ‖uN‖. (4)

Next, using (4) and H(B)(6), we deduce that ‖uN‖ is bounded by a constant
independent of N . Therefore, since ‖ιuN‖U ≤ ‖ι‖‖uN‖, it follows that ‖ιuN‖U

is also bounded by a constant independent of N . We now take N large enough
so that the truncation in the definition of the operator BN is inactive. It follows
that uN also solves Problem 1, which completes the proof. �

We end this section with some comments on the assumptions on the multi-
valued operator B. First, we note that, clearly, condition H(B)(5) is significantly
weaker than H(B)(3). Moreover, we stress that assumption H(B)(6) is weaker
than H(B)(3) and H(B)(4). In addition, condition H(B)(6) has various physi-
cal interpretations, when dealing with examples arising in mechanics. We also
mention that if 〈ξ, u〉U∗ × U ≥ 0 for all u ∈ U and ξ ∈ Bu, then this condition
is satisfied.
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4 Contact Problem in Elasticity

In this section we consider a boundary value problem which models a contact
problem for elastic material and for which the abstract result of Sect. 3 can be
applied.

The physical setting is the following. An elastic body occupies an open,
bounded and connected set in Ω ⊂ R

d (d = 2, 3) with a Lipschitz boundary
∂Ω = Γ . The concept of measurability, used below, is considered with respect to
the d-1 dimensional Hausdorff measure, denoted by m. The set Γ is partitioned
into three disjoint and measurable parts Γ1, Γ2 and Γ3 such that m(Γ1) > 0. The
body is clamped on Γ1, is submitted to surface tractions on Γ2 and is attached
to a nonlinear spring on Γ3.

We use the symbol Sd for the space of second order symmetric d × d matri-
ces. The canonical inner product on R

d and S
d will be denoted by “·” and the

Euclidean norm on the space S
d will be denote by ‖ · ‖Sd . We also use the nota-

tion ν for the outward unit normal at Γ and, for a vector field v, vν and vτ will
represent the normal and tangential components of v on Γ given by vν = v · ν
and vτ = v − vνν, respectively. The normal and tangential components of the
stress field σ on the boundary are defined by σν = (σν) · ν and στ = σν − σνν.
The mathematical model which describe the equilibrium of the elastic body in
the physical setting above is the following.

Problem 2. Find a displacement field u : Ω → R
d, a stress field σ : Ω → S

d and
the reactive interface force ξ : Γ3 → R such that

σ = Fε(u) in Ω, (5)
Div σ + f0 = 0 in Ω, (6)

u = 0 on Γ1, (7)
σν = f2 on Γ2, (8)

−g1 ≤ uν ≤ g2, ξ ∈ h(uν)
uν = −g1 =⇒ −σν ≤ ξ,
uν = g2 =⇒ −σν ≥ ξ,
g1 < uν < g2 =⇒ −σν = ξ

⎫⎪⎪⎬
⎪⎪⎭

on Γ3, (9)

στ = 0 on Γ3. (10)

Equation (5) is the constitutive law for elastic materials in which F represents
the elasticity operator and ε(u) denotes the linearized strain tensor. Equation
(6) is the equilibrium equation in which f0 represents the density of body forces.
Conditions (7) and (8) are the displacement and traction conditions, respectively,
in which f2 denotes the density of surface tractions. Condition (9) represents the
interface law in which h is a multivalued function which will be described below
and, finally, condition (10) shows that the shear on the surface Γ3 vanishes.

We now provide additional comments on the conditions (9) which represent
the novelty of our elastic model. First, this condition shows that spring prevents
the normal displacement of the body in such a way that −g1 ≤ uν ≤ g2. When
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−g1 < uν < g2 the spring is active and exerts a normal reaction on the body,
denoted ξ, which depends on the normal displacement, i.e., −σν = ξ ∈ h(uν).
Note that, for physical reason, h must be negative for a positive argument (since,
in this case the spring is in compression and, therefore, its reaction is towards
the body) and positive for a negative argument (since, in this case the spring is
in extension and, therefore, it pulls the body). A typical example is the function
h(r) = kr which models the behavior of a linear spring of stiffness k > 0.
Nevertheless, from mathematical point of view, we do not need this restriction,
as shown in assumption H(h) below. When uν = g2 the spring is completely
compressed, thus, besides its reaction, an additional force oriented towards the
body becomes active and blocks the normal displacements uν . Therefore, in this
case we have −σν ≥ ξ. When uν = −g1 the spring is completely extended and,
besides its reaction, an extra force pulling body becomes active, which implies
that −σν ≤ ξ.

In the study of Problem 2, we use standard notation for Lebesgue and Sobolev
spaces. For the displacement we use the space

V = {u ∈ H1(Ω;Rd) | u = 0 on Γ1 }.

It is well known that the trace operator γ : V → L2(∂Ω;Rd) is compact. More-
over, we put U = L2(Γ3) and define the operator ι : V → U by ι(u) = uν |Γ3 for
all u ∈ V . For the spaces V and U , we use the notation already used for the
corresponding abstract spaces in Sects. 2 and 3. In particular, ‖ · ‖ and ‖ · ‖∗ will
represent the norm on V and V ∗, respectively, 〈·, ·〉 denotes the duality pairing
between V and V ∗, ‖ · ‖U and ‖ · ‖U∗ are the norms on U and U∗.

We also need the following assumptions on the problem data.

H(g) : g1, g2 ≥ 0 are two real constants.

H(F) : F : Ω × S
d → S

d is such that

(1) there exists LF > 0 such that ‖F(x, ε1) − F(x, ε2)‖Sd ≤ LF‖ε1 − ε2‖Sd for
all ε1, ε2 ∈ S

d, a.e. x ∈ Ω.
(2) there exists mF > 0 such that (F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥

mF ‖ε1 − ε2‖2Sd for all ε1, ε2 ∈ S
d, a.e. x ∈ Ω.

(3) F(x, ε) is measurable on Ω for all ε ∈ S
d.

(4) F(x, 0Sd) = 0Sd a.e. x ∈ Ω.

H(h) : h : Γ3 × [−g1, g2] → 2R is a multifunction such that

(1) the sets h(x, r) are nonempty and convex for all r ∈ [−g1, g2], a.e. x ∈ Γ3.
(2) h(·, r) has a measurable selection for all r ∈ [−g1, g2].
(3) the graph of multifunction h(x, ·) is closed in R

2 for a.e. x ∈ Γ3.
(4) |h(x, r)| ≤ h̄ for all r ∈ [−g1, g2] and a.e. x ∈ Γ3 with h̄ ≥ 0.

H(f) : the densities of body forces and surface tractions are such that

(1) if d = 2, then f0 ∈ Lp′
(Ω;R2), f2 ∈ Lp′

(Γ2;R2) for some p′ ∈ (1,∞).
(2) if d = 3, then f0 ∈ L

6
5 (Ω;R3), f2 ∈ L

4
3 (Γ2;R3).



308 P. Kalita et al.

We now turn to the variational formulations of Problem 2. To this end, we
introduce the set of admissible displacements fields

K = {u ∈ V | uν ∈ [−g1, g2] a.e. on Γ3 }. (11)

Also, we define the operator A : V → V ∗ by the formula

〈Au,v〉 =
∫

Ω

Fε(u) · ε(v) dx for all u,v ∈ V. (12)

Note that, since H(F) holds, the operator A is well defined. Next, we note that
the hypothesis H(f) implies that the mapping

V 	 v �→
∫

Ω

f0(x) · v(x) dx +
∫

Γ2

f2(x) · v(x) dΓ ∈ R

is linear and continuous. Indeed, if d = 2, then the embedding V ⊂ Lr(Ω;R2)
and the restriction of the trace operator γΓ2 : V → Lr(Γ2;R2) is linear and
continuous, for any r ∈ (1,∞). On the other hand, if d = 3, then the embedding
V ⊂ L6(Ω;R3) and the restriction of the trace operator γΓ2 : V → L4(Γ2;R3) is
linear and continuous. Hence, we can define f ∈ V ∗ by the formula

〈f ,v〉 =
∫

Ω

f0(x) · v(x) dx +
∫

Γ2

f2(x) · v(x) dΓ.

Next, with a slight abuse of notation, we extend the multifunction h to Γ3 × R

by setting h(x, s) = h(x,−g1) and h(x, s) = h(x, g2) for s < −g1 and s > g2,
respectively. We use the same symbol h to denote this extended multifunction
and we introduce the multifunction B : U → 2U∗

by the formula

B(u) = { ξ ∈ U∗ | ξ(x) ∈ h(x, u(x)) a.e. on Γ3 } for all u ∈ U. (13)

The variational formulation for Problem 2, obtained by using standard argu-
ments, reads as follows.

Problem 3. Find a displacement field u ∈ V and a contact interface force ξ ∈ U
such that

u ∈ K, 〈Au,v − u〉 + 〈ξ, ι(v − u)〉U∗ × U ≥ 〈f ,v − u〉 for all v ∈ K,

ξ ∈ B(ιu).

Note that Problem 3 represents a multivaled variational inequality. Its solva-
bility will be proved in the next section, based on the abstract existence result
provided by Theorem 2.

5 Existence of the Solution

The main result in this section is the following.



A Multivalued Variational Inequality with Unilateral Constraints 309

Theorem 3. Under hypotheses H(g), H(F), H(h) and H(f), Problem 3 has at
least one solution.

The proof of the theorem is carried out in several steps, based on two lemmas
that we state and prove in what follows. The first lemma, already proved in [3],
is given here for the convenience of the reader.

Lemma 1. Assume H(F). Then, the operator A : V → V ∗ defined by (12) sa-
tisfies conditions H(A)(1)–(4) with α = mF in H(A)(1).

Proof. By conditions H(F)(1) and (3), we have
∣∣∣
∫

Ω

Fε(u) · ε(v) dx
∣∣∣ ≤ LF‖u‖‖v‖ for all u, v ∈ V.

This implies that ‖Au‖∗ ≤ LF‖u‖ for all u ∈ V , which proves H(A)(2). In
addition, assumption H(F)(2) yields 〈Au−Av,u−v〉 ≥ mF‖u−v‖2 for all u,
v ∈ V . This shows that condition H(A)(4) is satisfied. Furthermore, for u, v,
w ∈ V , by H(F)(1), we have 〈Au−Av,w〉 ≤ LF‖u−v‖V ‖w‖ for all u, v ∈ V.
This proves that ‖Au − Av‖∗ ≤ LF‖u − v‖V for all u, v ∈ V , which implies
that A is Lipschitz continuous and hence hemicontinuous. Since we already know
that A is bounded and monotone, by Proposition 27.6 in [11], it follows that A
is pseudomonotone and H(A)(3) holds. By H(F)(4), we have A0V = 0V . Thus,
from (5), we get 〈Au,u〉 ≥ mF‖u‖2 for all u ∈ V . Therefore, H(A)(1) holds,
which completes the proof. �

Next, we proceed with the following result.

Lemma 2. Assume H(g) and H(h). Then, the multivalued operator B defined
by (13) satisfies H(B)(1), (2), (5) and (6).

Proof. First we prove H(B)(1). Convexity of values of B is a simple consequence
of the convexity in H(h)(1). To prove nonemptiness, let u ∈ U and (un)∞

n=1 be
a sequence of simple (i.e. piecewise constant) functions converging to u for a.e.
x ∈ Γ3. The hypothesis H(h)(2) implies that the multifunction Γ3 	 x →
h(x, un(x)) ⊂ R has a measurable selection ξn for all n ∈ N. From H(h)(4), it
follows that ‖ξn‖2U∗ =

∫
Γ3

ξn(x)2 dΓ ≤ h̄2m(Γ3), so passing to a subsequence, if
necessary, we may assume that ξn → ξ weakly in U∗ with ξ ∈ U∗. As ξn(x) ∈
[−h̄, h̄] for a.e. x ∈ Γ3, we are in a position to apply Proposition 3.16 of [5] to
obtain ξ(x) ∈ conv lim supn→∞(ξn(x)) for a.e. x ∈ Γ3, where lim supn→∞ is the
Kuratowski-Painlevé upper limit of sets defined by

lim sup
n→∞

An = { s ∈ R | snk
→ s, snk

∈ Ank
}

for a sequence of sets An ⊂ R. Hence ξ(x) ∈ conv lim supn→∞ h(x, un(x)) for
a.e. x ∈ Γ3. From H(h)(1), (3) and the pointwise convergence un(x) → u(x)
a.e. on Γ3, it follows that

ξ(x) ∈ conv lim sup
n→∞

h(x, un(x)) ⊂ conv h(x, u(x)) = h(x, u(x)),
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for a.e. x ∈ Γ3 and ξ is the sought measurable selection.
We pass to the proof of H(B)(2). Let un → u strongly in U and ξn → ξ

weakly in U∗ be such that ξn ∈ B(un). We show that ξ ∈ B(u). At least for a
subsequence, not relabeled, we have un(x) → u(x) for a.e. x ∈ Γ3. The proof
that ξ(x) ∈ h(x, u(x)) for a.e. x ∈ Γ3 follows the line of the corresponding proof
of condition H(B)(1).

By a straightforward calculation and H(h)(4), we deduce that hypothesis
H(B)(5) holds. To prove H(B)(6), let u ∈ U and ξ ∈ Bu. From the following
inequality

〈ξ, u〉U∗ × U =
∫

Γ3

ξ(x)u(x) dΓ ≥ −h̄

∫
Γ3

|u(x)| dΓ ≥ −h̄m(Γ3)
1
2 ‖u‖U

≥ − α

2‖ι‖2 ‖u‖2U − ‖ι‖2h̄2m(Γ3)
2α

,

we deduce that H(B)(6). The proof is complete. �
We are now in a position to provide the proof of Theorem 3.

Proof. Note that Problem 3 is a particular case of Problem 1. Indeed, both V
and U are reflexive Banach spaces, and the normal trace operator ι is linear,
continuous and compact. Moreover, the set K defined by (11) is nonempty,
convex, closed in V , and 0V ∈ K. In addition, from Lemma 1, it follows that
H(A)(1)–(4) hold, and Lemma 2 shows that the operator B satisfies H(B)(1),
(2), (5) and (6). Theorem 3 is now a direct consequence of Theorem 2. �

Theorem 3 provides the weak solvability of the contact Problem 2, since once
the displacement field is obtained by solving Problem 3, then the stress field σ
is determined by using the constitutive law (5). The question of the uniqueness
of the solution is left open.

Remark 1. Note that because of H(h)(4), the multivalued map given by (13)
satisfies hypothesis H(B)(4), and Theorem 1 is sufficient to obtain the exis-
tence result in Theorem 3. However, if in the place of (9), we consider the law
−σν = kuν with k > 0, and set K = V , then to apply Theorem 1, we need
a smallness assumption on the constant k. On the other hand, the above law
satisfies H(B)(5)–(6) without any limitations on the value of k.
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Abstract. In the present paper we investigate nonlinear tracking prob-
lem under boundary control for the oscillation processes described by
Fredholm integro-differential equations. When we investigate this prob-
lem we use notion of a weak generalized solution of the boundary value
problem. Based on the maximum principle for distributed systems we
obtain optimality conditions from which follow the nonlinear integral
equation of optimal control and the differential inequality. We have devel-
oped an algorithm to construct the optimization problem solution. This
solving method of a nonlinear tracking problem is constructive and can
be used in applications.

Keywords: Weak generalized solution · Boundary control · Functional ·
Maximum principle · Nonlinear integral equation · Optimization

1 Introduction

With the emergence the theory control for the systems with distributed parame-
ters, a lot of applied problems described by integral-partial differential equations,
integral equations, differential and integral-functional equations ([1], Chap. 5,
pp. 193–197), [2], ([3], Chap. 16, pp. 410–414), ([4], Chap. 1, pp. 30–76), became
investigate by methods of optimal control theory ([4], Chap. 6, pp. 356–383),
([5], Chap. 2, pp. 45–78), ([6], Chap. 4, pp. 281–309),[7–9]. However, the control
problems described by the integral-differential equations are little learned. In
this paper we investigate the boundary tracking control problem for the elastic
oscillations described by the partial Fredholm integral-differential equations in
partial derivatives. This problem has a number of specific properties: according
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to the method of [10] the generalized solution of the problem is built by the
solving of countable number of integral equations; the optimal control simulta-
neously satisfies the two relations in the form of equality and inequality, where
the relation in the form of equality leads to a nonlinear integral equation, and
the relation in the form of inequality is a differential with regards to the function
of the external source.

The sufficient conditions for the unique solvability of specific problems
were found, and algorithm was indicated for constructing solutions of nonlin-
ear optimization problems with arbitrary precision in the form of the triple(
u0(t), V 0(t, x), J [u0(t)]

)
, where u0(t) is the optimal control, V 0(t, x) is the opti-

mal process, J [u0(t)] is the functional’s minimum value.

2 Formulation of the Optimal Control Problem and
Optimality Conditions

We consider the optimization problem where it is required to minimize the inte-
gral functional

J [u(t)] =
∫ T

0

∫
Q

[V (t, x) − ξ(t, x)]2 dxdt + 2β

∫ T

0

M [t, u(t)]dt, β > 0 (1)

on the set of solutions of the boundary value problem

Vtt − AV = λ

∫ T

0

K(t, τ)V (τ, x)dτ + g(t, x), x ∈ Q ⊂ Rn, 0 < t ≤ T, (2)

V (0, x) = ψ1(x), Vt(0, x) = ψ2(x), x ∈ Q, (3)

ΓV (t, x) =
n∑

i,j=1

ai,j(x)Vxj
(t, x)cos(δ, xi) + a(x)V (t, x) (4)

= b(t, x)f [t, u(t)], x ∈ γ, 0 < t < T.

Here A is the elliptic operator defined by the formula

AV (t, x) =
n∑

i,j=1

(
ai,j(x)Vxj

(t, x)
)
xi

− c(x)V (t, x), ai,j(x) = aj,i(x),

n∑
i,j=1

ai,j(x)αiαj ≥ c0

n∑
i=1

α2
i , c0 > 0

δ is a normal vector, emanating from the point x ∈ γ; K(t, τ) is a given function
defined in the region D = {0 ≤ t ≤ T, 0 ≤ τ ≤ T} and satisfying the condition∫ T

0

∫ T

0
K2(t, τ)dtdτ < K0 < ∞, i.e. K(t, τ) ∈ H(D);

ψ1(x) ∈ H1(Q), ψ2(x) ∈ H(Q), fu[t, u(t)] �= 0,∀t ∈ (0, T ),
ξ(t, x) ∈ H(QT ), M [t, u(t)] ∈ H(0, T ), QT = Q × (0, T ), (5)
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are given functions, a(x) ≥ 0, c(x) ≥ 0 are known measurable functions; H(X)
is Hilbert space of functions defined on the set of X; H1(X) is the first order
Sobolev space; fu[t, u(t)] is the function of boundary source which nonlinearly
depends on the control function u(t) ∈ H(0, T ) and it is an element of H(0, T );
λ is a parameter, T is a fixed moment of time; Mu[t, u(t)] �= 0 and satisfies the
Lipschitz condition with respect to functional argument u(t) ∈ H(0, T ).

This problem is to find a control u0(t) ∈ H(0, T ), for which the appropriate
solution V 0(t, x) of the boundary value problem (2)–(4) deviates little from the
given trajectory ξ(t, x) ∈ H(QT ) during the entire time t ∈ [0, T ] of the control.

At the same time u0(t) is called optimal control and V 0(t, x) is the optimal
process.

We are looking for a solution of the boundary value problem (2)–(4) in the
form of the series

V (t, x) =
∞∑

n=1

Vn(t)zn(x), (6)

where zn(x) are generalized eigenfunctions of the boundary value problem [10]

Dn(Φ, zn) =

∫
Q

(
n∑

i,j=1

ai,j(x)Φxj znxi + c(x)zn(x)Φ(t, x)

)
dx +

∫
γ

a(x)zn(x)Φ(t, x)dx

= λ2
n

∫
Q

zn(x)Φ(t, x)dx;

Γzn(x) = 0, x ∈ γ, 0 < t < T, n = 1, 2, . . . ,

and they form complete orthonormal system in the Hilbert space H(Q), and the
corresponding eigenvalues λn satisfy the following conditions

λn ≤ λn+1, ∀n = 1, 2, 3, . . . , lim
n→∞ λn = ∞.

The Fourier coefficients Vn(t) for each fixed n = 1, 2, 3, . . . , satisfy the linear
nonhomogeneous Fredholm integral equation of the second type

Vn(t) = λ

∫ T

0

Kn(t, s)Vn(s)ds + an(t), (7)

where

Kn(t, s) =
1
λn

∫ t

0

sinλn(t − τ)K(τ, s)dτ,

an(t) = ψ1ncosλnt+
ψ2n

λn
sinλnt+

1
λn

∫ t

0

sinλn(t− τ)[qn(τ)+ bn(τ)f [τ, u(τ)]]dτ.

(8)
The solution of equation (7) we find ([11], chap. 2, pp. 98–110) by the follow-

ing formula

Vn(t) = λ

∫ T

0

Rn(t, s, λ)an(s)ds + an(t), (9)
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where the resolvent Rn(t, s, λ) of the kernel Kn(t, s) is given by

Rn(t, s, λ) =
∞∑

i=1

λi−1Kn,i(t, s), Kn,1(t, s) = Kn(t, s)

and the iterated kernels Kn,i(t, s) for each n = 1, 2, . . . are defined by the
formulas

Kn,i+1(t, s) =
∫ T

0

Kn(t, η)Kn,i(η, s)dη, i = 1, 2, 3, . . . , Kn,1(t, s) = Kn(t, s).

Resolvent Rn(t, s, λ) is a continuous function when |λ| < λ1
T

√
K0

and satisfy the
following estimate

∫ T

0

R2
n(t, s, λ)ds ≤ TK0(

λn − |λ|T√
K0

)2 . (10)

Further, taking into account (8) and (9) solution of the boundary value problem
(2)–(5) can be written as

V (t, x) =
∞∑

n=1

(ψn(t, λ) +
1
λn

∫ T

0

εn(t, η, λ)bn(η)f(η, u(η))dη)zn(x), (11)

where

ψn(t, λ) = ψ1n(cos λnt + λ

∫ T

0

Rn(t, s, λ) cos λnsds)

+
ψ2n

λn
(sin λnt + λ

∫ T

0

Rn(t, s, λ) sin λnsds) +
1
λn

∫ T

0

εn(t, η, λ)gn(η)dη, (12)

εn(t, η, λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin λn(t − η) + λ

∫ T

η

Rn(t, s, λ)sinλn(s − η)ds, 0 ≤ η ≤ t,

λ

∫ T

η

Rn(t, s, λ) sin λn(s − η)ds, t ≤ η ≤ T.

(13)

The function (11) is an element of Gilbert space H(QT ) and weak generalized
solution of boundary problem (2)–(5).

According to condition (5) each control u(t) uniquely defines the controlled
process V (t, x). Therefore for the solution V (t, x) + ΔV (t, x) of boundary value
problem (2)–(4) corresponds the control u(t)+Δu(t), where ΔV (t, x) is the incre-
ment corresponding to the increment Δu(t). By the method of to the maximum
principle ([4], Chap. 6, pp. 356–383), ([5], Chap. 2, pp. 45–78) the increment of
functional (1) can be written as

ΔJ [u] = J [u+Δu]−J [u] = −
∫ T

0

ΔΠ[t, V (t, x), ω(t, x), u(t)]dt+

∫ T

0

∫

Q

ΔV 2(t, x)]dxdt;
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where

Π[t, V (t, x), ω(t, x), u(t)] =
∫

γ

ω(t, x)b(t, x)dxf [t, u(t)] − 2βM [t, u(t)],

and the function ω(t, x) is the solution of the adjoint boundary value problem

ωtt − Aω = λ

∫ T

0

K(τ, t)ω(τ, x)dτ − 2[V (t, x) − ξ(t, x)], x ∈ Q, 0 < t < T,

ω(T, x) = 0, ωt(T, x) = 0, x ∈ Q, (14)
Γw(t, x) = 0, x ∈ γ, 0 < t < T.

According to the maximum principle for systems with distributed parameters
([4], Chap. 6, pp. 356–383), ([5], Chap. 2, pp. 45–78), the optimal control is deter-
mined by the relations

2β
Mu[t, u(t)]
fu[t, u(t)]

=
∞∑

n=1

bn(t)ωn(t), (15)

fu[t, u(t)]
(

Mu[t, u(t)]
fu[t, u(t)]

)
u

> 0, (16)

which are called optimality conditions.

3 Solution of the Adjoint Boundary-Value Problem

We are looking for a solution of the adjoint boundary value problem (14) in the
form of the series

ω(t, x) =
∞∑

n=1

ωn(t)zn(x). (17)

The Fourier coefficients ωn(t) for each fixed n = 1, 2, 3, . . . , satisfy the linear
nonhomogeneous Fredholm integral equation of the second type

ωn(t) = λ

∫ T

0

Bn(s, t)ωn(s)ds − 2
λn

∫ T

t

sinλn(τ − t)[Vn(τ) − ξn(τ)]dτ, (18)

where

Bn(s, t) =
1
λn

∫ T

t

sinλn(τ − t)K(s, τ)dτ.

The solution of equation (18) we find ([11],chap. 2, pp. 98–110) by the fol-
lowing formula

ωn(t) = λ

∫ T

0

Pn(s, t, λ)

(
− 2

λn

∫ T

s

sinλn(τ − s)[Vn(τ) − ξn(τ)]dτ

)
ds
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− 2
λn

∫ T

t

sinλn(τ − t)[Vn(τ) − ξn(τ)]dτ, (19)

where the resolvent Pn(s, t, λ) of the kernel Bn(s, t) is given by

Pn(s, t, λ) =
∞∑

i=1

λi−1Bn,i(s, t), Bn,1(s, t) = Bn(s, t),

Bn,i+1(s, t) =
∫ T

0

Bn(η, t)Bn,i(s, η)dη, i = 1, 2, 3, ...

and it is continuous function when |λ| < λ1
T

√
K0

and satisfy the following estimate

∫ T

0

P 2
n(s, t, λ)dτ ≤ TK0(

λn − |λ|T√
K0

)2 . (20)

Further, taking into account (17) and (19) solution of the adjoint boundary value
problem can be written as

ω(t, x) = −2{−h(t, x) + E(t, x)}, (21)

where

h(t, x) =
∞∑

n=1

1
λn

∫ T

0

bn(t)En(t, τ, λ)ln(τ, λ)dτzn(x),

E(t, x) =
∞∑

n=1

1
λn

∫ T

0

(∫ T

0

bn(t)En(t, τ, λ)εn(τ, η, λ)bn(η)dτ

)
f(η, u(η))dηzn(x),

En(t, τ, λ) =

⎧⎪⎪⎨
⎪⎪⎩

λ

∫ τ

0

1
λn

Pn(s, t, λ)sinλn(τ − s)ds, 0 ≤ τ ≤ t,

1
λn

sinλn(τ − t) + λ

∫ τ

0

1
λn

Pn(s, t, λ)sinλn(τ − s)ds, t ≤ τ ≤ T,

ln(t, λ) = ξn(t) − ψn(t, λ).

By means of the direct calculations we have proved the following lemmas:

Lemma 1. The function h(t, x) is an element of the space H(QT ).

Lemma 2. Function E(t, x) is an element of H(QT ).

Based on the Lemmas 1 and 2 from (21) it follows that solution of adjoint bound-
ary value problem (14) ω(t, x) is an element of the Hilbert space H(QT ).
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4 Nonlinear Integral Equation of Optimal Control

We find the optimal control according to optimality conditions (15) and (16). We
substitute in (15) the solution of adjoint boundary-value problem (14) defined
by (21).

We rewrite the equality (15) in the form of

β
Mu(t, u)
fu(t, u)

+
∞∑

n=1

1
λn

bn(t)
∫ T

0

∫ T

0

En(t, τ, λ)εn(τ, η, λ)dτbn(η)f(η, u(η))dη

=
∞∑

n=1

1
λn

bn(t)
∫ T

0
En(t, τ, λ)ln(τ, λ)dτ. (22)

Thus, the optimal control is defined as the solution of a nonlinear integral equa-
tion (22) and at the same time (15) and (16) should be carried out. Condition
(5) restricts the class of functions f [t, u(t)] of external influences. Therefore, we
assume that the function f [t, u(t)] satisfies (16) for any control u(t) ∈ H(0, T ),
i.e. the optimization problem is considered in class {f(t, u(t))} of functions satis-
fying (16). Nonlinear integral equation (22) is solved according to the procedure
of work [7,9]. We set

β
Mu(t, u)
fu(t, u)

= p(t). (23)

According to condition (16) control function u(t) is uniquely determined from
equality (23), i.e. there is a such function ϕ that ([12], Chap. 8, pp. 467–480)

u(t) = ϕ(t, p(t), β). (24)

By (23) and (24) we rewrite the equation (22) in the operator form

p(t) + G[p, λ] = h(t, λ) (25)

where

G[p, λ] =
∞∑

n=1

1

λn
bn(t)

∫ T

0

(∫ T

0

En(t, τ, λ)ε(τ, η, λ)dτ

)
× bn(η)f [η, ϕ(η, p(η), β)]dη,

h(t, λ) =
∞∑

n=1

1
λn

bn(t)
∫ T

0

En(t, τ, λ)ln(τ, λ)dτ.

Now we investigate the questions of unique solvability of the operator
equation (25).

Lemma 3. The function p(t) is an element of the space H(0, T ).

Proof. By (23) we have the estimate

sup

∣∣∣∣Mu(t, u)
fu(t, u)

∣∣∣∣ ≤ N, ∀t ∈ [0, T ].
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Since u(t) ∈ H(0, T ), the statement of the lemma follows by the inequality

∫ T

0

|p(t)|2dt ≤ β2

∫ T

0

∣∣∣∣Mu(t, u)
fu(t, u)

∣∣∣∣
2

dt ≤ β2N2T 2 < ∞.

Lemma 4. The operator G[p(t)] which defined by the formula (25) maps the
space H(0,T) into itself, i.e. it is an element of the space H(0, T ).

Proof. Taking into account the following estimations

∫ T

0

ε2n(t, η, λ)dη ≤ 2T

(
1 +

λ2T 2K0(
λ1 − |λ|√T 2K0

)2
)

,

∫ T

0

En(t, τ, λ)dτ ≤ 2T

λ2
n

(
1 +

λ2T 2K0(
λ1 − |λ|√T 2K0

)2
)

,

we obtain the assertion of lemma from following inequality

∫ T

0

G2[p, λ] =
∫ T

0

{ ∞∑
n=1

1
λn

bn(t)
∫ T

0

(∫ T

0

En(t, τ, λ)εn(τ, η, λ)dτ

)

× bn(η)f [η, ϕ(η, p(η), β)]dη

}2

dt ≤
∫ T

0

∞∑
n=1

1
λ2

n

b2n(t)

×
∞∑

n=1

{∫ T

0

∫ T

0

En(t, τ, λ)εn(τ, η, λ)dτbn(η)f [η, ϕ(η, p(η), β)]dη

}2

dt

≤
∫ T

0

∞∑
n=1

1
λ2

n

b2n(t)
∞∑

n=1

∫ T

0

∫ T

0

E2
n(t, τ, λ)dτ

∫ T

0

ε2n(τ, η, λ)dτb2n(η)dη

×
∫ T

0

f2[η, ϕ(η, p(η), β)]dηdt ≤
∫ T

0

∞∑
n=1

1
λ2

n

b2n(t)

×
∞∑

n=1

∫ T

0

2T

λ2
n

{
1 +

λ2T 2K0(
λ1 − |λ|√T 2K0

)2
}

2T

{
1 +

λ2T 2K0(
λn − |λ|√T 2K0

)2
}

b2n(η)dη

×
∫ T

0

f2[η, ϕ(η, p(η), β)]dηdt ≤ 1
λ2
1

(∫ T

0

∞∑
n=1

b2n(t)dt

)2 (2T )2

λ2
1

×
{

1 +
λ2T 2K0(

λ1 − |λ|√T 2K0

)2
}2

‖f [η, ϕ(η, p(η), β)]‖2H(0,T ) < ∞.
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Lemma 5. Suppose that the conditions

‖f [t, u(t)] − f [t, ū(t)]‖H(0,T ) ≤ f0‖u(t) − ū(t)‖H(0,T ), f0 > 0,

‖ϕ[t, p(t), β] − ϕ[t, p̄(t), β]‖H(0,T ) ≤ ϕ0(β)‖p(t) − p̄(t)‖H(0,T ), ϕ0(β) > 0

are satisfied. Then if the condition

γ = C0f0ϕ0(β) < 1,

is met, the operator G[p, λ] is contractive. Here

C0 =
2T

λ2
1

(
1 +

λ2T 2K0(
λ1 − |λ|√T 2K0

)2
)

‖b(t, x)‖2H(γT ).

Proof. The proof of this theorem follows from Lemma 4 by the following inequal-
ity, i.e. the following inequality is fulfilled

‖G[p, λ] − G[p, p̃, λ]‖2H(0,T ) ≤ C2
0‖f [t, u(t)] − f [t, ũ(t)]‖2H(0,T )

≤ C2
0f2

0 ‖ϕ[t, p(t), β] − ϕ[t, p̃(t), β]‖2H(0,T ) ≤ C2
0f2

0ϕ2
0(β)‖p(t) − p̃(t)‖2H(0,T )

.

Theorem 1. Suppose that conditions (5), Lemma 5 and |λ| < λ1
T

√
K0

are satis-
fied. Then operator equation (25) has a unique solution in the space H(0, T ).

Proof. According to Lemmas 3 and 4, operator equation (25) can be considered
in the space H(0, T ). According to Lemma 5 operator G(p) is contractive. Since
the Hilbert space H(0, T ) is a complete metric space, by the theorem on principle
of contracting mappings ([12], Chap. 1, pp. 43–53) the operator G(p) has a unique
fixed point, i.e. operator equation (25) has unique solution.

The solution of operator equation (25) can be found by the method of successive
approximations, i.e. n th approximation of the solution is found by the formula

pn = h − G[pn−1], n = 1, 2, 3, . . . ,

where p0(t) is an arbitrary element of the space H(0, T ). For the exact solution
p̄(t) = lim

n→∞ pn(t) we have the following estimate

‖p̄(t) − pn(t)‖ ≤ γn

1 − γ
‖h − G[p0(t)] − p0(t)‖H(0,T )

or when h = p0(t)

‖p̄(t) − pn(t)‖H(0,T ) ≤ γn

1 − γ
‖G[p0(t)]‖H(0,T ) ,

where 0 < γ < 1 is the contraction constant. The exact solution can be found
as the limit of the approximate solutions, i.e. substituting this solution in (24)
we find the optimal control

u0(t) = ϕ[t, p̄(t), β].



On the Solvability of a Nonlinear Tracking Problem 321

We find the optimal process V 0(t, x), i.e. the solution of boundary value problem
(2)–(4), corresponding to the optimal control u0(t, x), according to (6) from the
formula

V 0(t, x) =
∞∑

n=1

(
λ

∫ T

0

Rn(t, s, λ)a0
n(s)ds − a0

n(t)

)
zn(x),

a0
n(t) = ψ1ncosλnt+

ψ2n

λn
sinλnt+

1
λn

∫ t

0

sinλn(t−τ)[qn(τ)+bn(τ)f [τ, u0(τ)]]dτ.

The minimum value of the functional (1) is calculated by the formula

J [u0(t)] =
∫ T

0

∫
Q

[
V 0(t, x) − ξ(t, x)

]2
dxdt + 2β

∫ T

0

M [t, u0(t)]dt.

The found triple (u0(t), V 0(t, x), J [u0(t)] is a solution of the nonlinear optimiza-
tion problem.
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Abstract. We study the inverse Ingham type inequality for a wave equa-
tion in a ring. This leads to a conjecture on the zeros of Bessel cross
product functions. We motivate the validity of the conjecture through
numerical results. We do a complete analysis in the particular case of
radial initial data, where an improved time of observability is available.

1 Introduction

We study the solution u = u(t, r, θ) of the wave equation in an annulus Ω of
small radius a and big radius b:⎧⎨

⎩
u′′ = Δu, 0 < t < T, x ∈ Ω
u = 0, 0 < t < T, x ∈ Γ = ∂Ω
u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Ω.

(1)

a

b

Ω

We have the following classical observability estimate (see [7] for example):

Proposition 1. There exists T0 > 0 such that for T > T0 the system (1) is
observable: there exists a constant c > 0 such that we have

‖u0‖2H1
0 (Ω) + ‖u1‖2L2(Ω) ≤ c

∫ T

0

∫
Γ

|∂νu(t, x)|2 dΓdt, (2)

for all (u0, u1) ∈ H1
0 (Ω) × L2(Ω).

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 322–330, 2016.
DOI: 10.1007/978-3-319-55795-3 30
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This proposition is a special case of a general result, which can be proved by
micro-local analysis [2] with the critical time T0 = 2

√
b2 − a2, according to the

geometrical ray condition.

2
√

b2 − a2

Our aim here is to study this problem using a Fourier series approach [5,6]
Note that such an approach has been tackled for the whole disk (see [7]); the
case of an annulus leads to new difficulties. In particular, we are not able to
treat the general case, as it relies on very precise estimates of the location of the
zeros of Bessel cross product functions, that we did not find in the literature.
Instead, we state a conjecture on these zeros and give some numerical results to
support the conjecture. In the case of radial functions or more generally functions
with a limited number of modes in the angle direction, we are able to get the
observability estimates with this method, even for smaller times T > 2(b − a),
using an asymptotic result of MacMahon (see [1], p. 374).
In Sect. 2, we give the expression of the solution. In Sect. 3, we formulate a theo-
rem for the special case of radial functions. Section 4 is devoted to the statement
of the conjecture and its numerical illustration. Finally, we prove in Sect. 5 the
theorem of Sect. 3.

2 Expression of the Solution

Let Jν (resp. Yν) be the Bessel functions of first (resp. second) kind of order ν.
We recall the following proposition (see [7,8]).

Proposition 2. (i) Let ν ∈ R
∗ and 0 < α < 1. The nonnegative zeros γν,k, k ∈

N
∗ of the Bessel cross product function

Hν,α(x) = Yν(x)Jν(αx) − Jν(x)Yν(αx),

form a strictly increasing sequence:

0 < γν,α,1 < γν,α,2 < . . . γν,α,k < . . . , k ∈ N
∗.

(ii) The eigenfunctions of the Laplacian corresponding to (1) are Rk,m(r)eimθ

for k ∈ N
∗ and m ∈ N, where

Rk,m(r) = Ym(γm,α,k)Jm(
r

b
γm,α,k) − Jm(γm,α,k)Ym(

r

b
γm,α,k). (3)
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(iii) For a dense set of initial data the solution of (1) is given by the formula

u(t, r, θ) =
∞∑

m=0

∞∑
k=1

Rk,m(r)
(
c+k,meimθei

γm,α,k
b t + c−

k,me−imθe−i
γm,α,k

b t
)

(4)

with complex coefficients c±
k,m, all but finitely of which vanish.

3 Observability Estimates for Radial Solutions

We recall from [1] the following estimate of MacMahon (1894):

γν,α,k =
πk

1 − α
+

4ν2 − 1
8πα

1 − α

k
+ O

(
1 − α

k

)3

. (5)

Thanks to this estimation, we can obtain the following theorem.

Theorem 1. Let T > 2(b − a). For each positive integer M there exists a con-
stant cM > 0 such that

‖u0‖2H1
0 (Ω) + ‖u1‖2L2(Ω) ≤ cM

∫ T

0

∫
Γ

|∂νu(t, x)|2 dΓdt, (6)

for all solutions of (1) of the form (4) with c±
k,m = 0 whenever m ≥ M .

Remark 1. – This theorem covers the case of radial initial data, corresponding
to the case M = 1.

– If 2
√

b2 − a2 > T > 2(b − a), then the constant cM tends to zero as M → ∞
because T0 = 2

√
b2 − a2 is the critical observability time for general initial

data.
– The theorem remains true if the integral in (6) is taken only over the outer

boundary (the circle of radius b: see the estimate (16)) below.
– We may obtain similar results by changing the boundary conditions. For exam-

ple, we may take homogeneous Neumann condition on the inner boundary, and
observe the solution only on the outer boundary (see [4] for the corresponding
asymptotic gap estimate that is needed).

4 Conjecture and Numerical Illustration

We then state the following conjecture.

Conjecture 1. Let 0 < α < 1 and ν > 1/2.

– There exists a positive integer kν(α) such that γν,α,k+1 − γν,α,k is decreasing
for k ≤ kν(α) and increasing for k ≥ kν(α).

– We have γν,α,kν(α)+1 − γν,α,kν(α) ≥ π
(
1 − α2

)−1/2.
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Using a Bessel Zeros Computer [3] we can evaluate the zeros γν,α,k for several
parameters ν, α and k.
We plot on Fig. 1 (top and bottom left) the values kν(α) versus ν for different
values of α. We observe that kν(α) increases with ν for a fixed α. The dependence
seems to be almost linear, except for small values of α where the dependence
seems to be quadratic (see Fig. 1, bottom left). On Fig. 1 (bottom right), we
see the relative difference with the gap π√

1−α2 (corresponding to the optimal
value of Proposition 1). We observe that γν,α,kν(α)+1 − γν,α,kν(α) decreases and
approaches to this gap as ν increases.

Fig. 1. Index kν(α) where minimal gap occurs versus ν ≥ 1/2 (top left, logarithmic
plot for α ∈ {0.001, 0.1, 0.2, 0.3, 0.5, 0.8}; top right, standard plot for α = 0.1 and
α = 0.2; bottom left, α = 0.001 and comparison with function 0.25 ν2). Difference
γν,α,kν (α)+1−γν,α,kν (α)

π/
√

1−α2
− 1 versus ν in logarithmic scale (bottom right).

5 Proof of Theorem1

We first express the norm in terms of the Fourier coefficients. We have

u(t, r, θ) =
∞∑

m=0

∞∑
k=1

Rk,m(r)
(
c+k,meimθei

γm,α,k
b t + c−

k,me−imθe−i
γm,α,k

b t
)

with

Rk,m(r) = Ym(γm,α,k)Jm(
r

b
γm,α,k) − Jm(γm,α,k)Ym(

r

b
γm,α,k).
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This leads to the equalities

u0(r, θ) = u(0, r, θ) =
∞∑

m=0

∞∑
k=1

Rk,m(r)
(
c+k,meimθ + c−

k,me−imθ
)
.

and

u1(r, θ) = ∂tu(0, r, θ) =
∞∑

m=0

∞∑
k=1

iγm,α,k

b
Rk,m(r)eimθ

(
c+k,meimθ − c−

k,me−imθ
)
.

Now, using the orthogonality of the eigenvectors of the Laplacian operator we
obtain

‖u1‖2L2(Ω) =
∫ b

r=a

∫ 2π

θ=0

|u1(r, θ)|2 rdrdθ

= 2π

∞∑
m=1

∞∑
k=1

∣∣∣γm,α,k

b

∣∣∣2
(∣∣∣c+k,m

∣∣∣2 +
∣∣∣c−

k,m

∣∣∣2
) ∫ b

a

|Rk,m(r)|2 rdr

+ 2π

∞∑
k=1

∣∣∣γ0,α,k

b

∣∣∣2
∣∣∣c+k,0 − c−

k,0

∣∣∣2
∫ b

a

|Rk,0(r)|2 rdr,

and a similar computation gives

∫
Ω

|u0|2 dΩ = 2π

∞∑
m=1

∞∑
k=1

(∣∣∣c+k,m

∣∣∣2 +
∣∣∣c−

k,m

∣∣∣2
)∫ b

a

|Rk,m(r)|2 rdr

+ 2π

∞∑
k=1

(∣∣∣c+k,0 + c−
k,0

∣∣∣2
)∫ b

a

|Rk,0(r)|2 rdr.

Since
‖u0‖2H1

0 (Ω) =
∫

Ω

|∇u0|2 dΩ +
∫

Ω

|u0|2 dΩ,

we have to compute also the first integral on the right side. We have

∫
Ω

|∇u0|2 dΩ =
∫ b

r=a

∫ 2π

θ=0

|∂ru0|2 rdrdθ +
∫ b

r=a

∫ 2π

θ=0

1
r

|∂θu0|2 drdθ.

Since

∂ru0(r, θ) = ∂ru(0, r, θ) =
∞∑

m=0

∞∑
k=1

R′
k,m(r)

(
c+k,meimθ + c−

k,me−imθ
)

and

∂θu0(r, θ) = ∂θu(0, r, θ) =
∞∑

m=0

∞∑
k=1

imRk,m(r)
(
c+k,meimθ − c−

k,me−imθ
)
,
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using the orthogonality of the eigenfunctions, we get

∫ b

r=a

∫ 2π

θ=0

|∂ru0|2 rdrdθ = 2π

∞∑
m=1

∞∑
k=1

(∣∣∣c+k,m

∣∣∣2 +
∣∣∣c−

k,m

∣∣∣2
)∫ b

a

∣∣R′
k,m(r)

∣∣2 rdr,

+ 2π

∞∑
k=1

(∣∣∣c+k,0 + c−
k,0

∣∣∣2
)∫ b

a

∣∣R′
k,0(r)

∣∣2 rdr

and
∫ b

r=a

∫ 2π

θ=0

1
r

|∂θu0|2 drdθ=2π
∞∑

m=1

∞∑
k=1

(∣∣∣c+k,m

∣∣∣2 +
∣∣∣c−

k,m

∣∣∣2
)

m2

∫ b

a

1
r

|Rk,m(r)|2 dr.

Using all these results we obtain the equalities

E0 := ‖u0‖2H1
0 (Ω) + ‖u1‖2L2(Ω) = 2π

∞∑
m=1

∞∑
k=1

(∣∣∣c+k,m

∣∣∣2 +
∣∣∣c−

k,m

∣∣∣2
)

(∫ b

a

(
1 +

∣∣∣γm,α,k

b

∣∣∣2 +
m2

r2

)
|Rk,m(r)|2 rdr +

∫ b

a

∣∣R′
k,m(r)

∣∣2 rdr

)

+ 2π
∞∑

k=1

(
∫ b

a

(∣∣∣c+k,0 + c−
k,0

∣∣∣2 +
∣∣∣c+k,0 − c−

k,0

∣∣∣2
∣∣∣γ0,α,k

b

∣∣∣2
)

|Rk,0(r)|2 rdr

+
∣∣∣c+k,0 + c−

k,0

∣∣∣2
∫ b

a

∣∣R′
k,0(r)

∣∣2 rdr) (7)

and
∫

Γ
|∂νu(t, x)|2 dΓ =

∑

�∈{a,b}

∫ 2π

0
|∂ru(t, �, θ)|2 dθ

= 2π
∑

�∈{a,b}

∞∑

m=1

⎛

⎝

∣
∣
∣∣
∣

∞∑

k=1

c+k,mR′
k,m(�)ei

γm,α,k
b t

∣
∣
∣∣
∣

2

+

∣
∣
∣∣
∣

∞∑

k=1

c−
k,mR′

k,m(�)e−i
γm,α,k

b t

∣
∣
∣∣
∣

2
⎞

⎠

+2π
∑

�∈{a,b}

⎛

⎝

∣
∣∣
∣
∣

∞∑

k=1

c+k,0R
′
k,0(�)e

i
γ0,α,k

b t +
∞∑

k=1

c−
k,0R

′
k,0(�)e

−i
γ0,α,k

b t

∣
∣∣
∣
∣

2
⎞

⎠ .

Since asymptotic gap is 1
b

π
1−α = π

b−a by the formula (5), we may apply Ingham’s
theorem (more precisely its version due to Haraux, see, e.g., [7]) to deduce from
the last equality the existence of C1,M > 0 such that

∫
Γ

|∂νu(t, x)|2 dΓ ≥ C1,M

∞∑
m=0

∞∑
k=1

(∣∣∣c+k,m

∣∣∣2 +
∣∣∣c−

k,m

∣∣∣2
) ∑

�∈{a,b}

∣∣R′
k,m(�)

∣∣2 ,

for all complex sequences (c±
k,m) with c±

k,m = 0 whenever m ≥ M .
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Now it remains to prove that there exists another constant C2,M > 0 such that
∑

�∈{a,b}

∣∣R′
k,m(�)

∣∣2

≥ C2,M

(∫ b

a

(
1 +

∣∣∣γm,α,k

b

∣∣∣2 +
m2

r2

)
|Rk,m(r)|2 rdr +

∫ b

a

∣∣R′
k,m(r)

∣∣2 rdr

)
, (8)

for m ≥ 1, and a similar inequality for m = 0.
We adapt an argument used in [7], p. 107. Let y satisfy the Bessel equation

x2y′′ + xy′ + (x2 − m2)y = 0. (9)

Let c > 0. Multiplying the equation by 2y′ and integrating over (ca, cb) (instead
of (0, c) as in [7]), we get

∫ cb

ca

(2x2y′y′′ + 2x(y′)2 + 2(x2 − m2)yy′)dx = 0.

Integrating by parts the first and third terms, we obtain
∫ cb

ca

(−2x(y′)2 + 2x(y′)2 + 2xy2)dx = [x2y′2 + (x2 − m2)y2]cb
ca,

so that

2
∫ cb

ca

xy2dx = [x2y′2 + (x2 − m2)y2]cb
ca.

The change of variable x = cr transforms this into

2c2
∫ b

a

ry2(cr)dr = [x2y′2 + (x2 − m2)y2]cb
ca. (10)

Recall that

Rk,m(r) = Ym(γm,α,k)Jm(
r

b
γm,α,k) − Jm(γm,α,k)Ym(

r

b
γm,α,k).

Now, we define

yk,m(x) = Ym(γm,α,k)Jm(x) − Jm(γm,α,k)Ym(x)

which satisfies (9), and thus we have (10) with y = yk,m and c = γm,α,k

b .
We have

y(cr) = Rk,m(r), y(ca) = Rk,m(a) = 0, y(cb) = Rk,m(b) = 0,
cy′(cr) = R′

k,m(r)

and thus

2c2
∫ b

a

rRk,m(r)2dr = b2R′
k,m(b)2 − a2R′

k,m(a)2. (11)



Observability of a Ring Shaped Membrane via Fourier Series 329

From (3) we have the relation

r2R′′
k,m(r) + rR′

k,m(r) − m2Rk,m(r) = −c2r2Rk,m(r). (12)

Integrating by parts and using the relations Rk,m(b) = Rk,m(a) = 0 we obtain
that ∫ b

a

R′
k,m(r)2rdr = −

∫ b

a

rRk,m(r)
(

R′′
k,m(r) +

1
r
R′

k,m(r)
)

dr.

Using the relation (12) hence we conclude that
∫ b

a

R′
k,m(r)2rdr = −

∫ b

a

rRk,m(r)2
(

−c2 +
m2

r2

)
dr. (13)

Setting

A =
∫ b

a

(
1 + c2 +

m2

r2

)
|Rk,m(r)|2 rdr +

∫ b

a

∣∣R′
k,m(r)

∣∣2 rdr

we deduce from the above relations that

A = (1 + 2c2)
∫ b

a

|Rk,m(r)|2 rdr

=
1 + 2c2

2c2
(
b2R′

k,m(b)2 − a2R′
k,m(a)2

)
. (14)

Since

inf
k,|m|≤M

|γk,α,m| > 0 (15)

by (5) and the inequalities γk,α,m > 0, we conclude that

A ≤ C3,MR′
k,m(b)2 ≤ C3,M

(
R′

k,m(b)2 + R′
k,m(a)2

)
(16)

for a suitable constant C3,M > 0. This proves (8) for m ≥ 1.
For m = 0, using (13) we deduce from (7) that

2π

∞∑
k=1

(
∫ b

a

(∣∣∣c+k,0 + c−
k,0

∣∣∣2 +
∣∣∣c+k,0 − c−

k,0

∣∣∣2
∣∣∣γ0,α,k

b

∣∣∣2
)

|Rk,0(r)|2 rdr

+
∣∣∣c+k,0 + c−

k,0

∣∣∣2
∫ b

a

∣∣R′
k,0(r)

∣∣2 rdr)

= 2π

∞∑
k=1

(
∫ b

a

(∣∣∣c+k,0 + c−
k,0

∣∣∣2 +
∣∣∣c+k,0 − c−

k,0

∣∣∣2
∣∣∣γ0,α,k

b

∣∣∣2
)

|Rk,0(r)|2 rdr

+
∣∣∣c+k,0 + c−

k,0

∣∣∣2
∣∣∣γ0,α,k

b

∣∣∣2
∫ b

a

|Rk,0(r)|2 rdr)



∞∑

k=1

(∣∣∣c+k,0|2 + |c−
k,0

∣∣∣2
) ∣∣∣γ0,α,k

b

∣∣∣2
∫ b

a

|Rk,0(r)|2 rdr,

and we conclude as before.
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A Mixed Approach to Adjoint Computation
with Algorithmic Differentiation
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Abstract. Various algorithmic differentiation tools have been developed
and applied to large-scale simulation software for physical phenomena.
Until now, two strictly disconnected approaches have been used to imple-
ment algorithmic differentiation (AD), namely, source transformation
and operator overloading. This separation was motivated by different
features of the programming languages such as Fortran and C++. In
this work we have for the first time combined the two approaches to
implement AD for C++ codes. Source transformation is used for core
routines that are repetitive, where the transformed source can be opti-
mized much better by modern compilers, and operator overloading is
used to interconnect at the upper level, where source transformation is
not possible because of complex language constructs of C++. We have
also devised a method to apply the mixed approach in the same appli-
cation semi-automatically. We demonstrate the benefit of this approach
using some real-world applications.

Keywords: Algorithmic differentiation · Adjoint computation

1 Introduction

Solution techniques for optimal control and optimal design problems rely on
the correct and efficient computation of the adjoint state. Various analytical and
numerical techniques have been devised to compute these derivatives in the past.
One of the emerging techniques for the computation of derivatives on modern
computers is algorithmic differentiation (AD) [6]. Despite differentiation being a
badly conditioned operation in general, research has shown [3] that the process
of algorithmic differentiation is well behaved and the derivatives obtained are
accurate to within round-off errors. This situation is in contrast to numerical
derivatives computed by using finite-differencing techniques, where the difference
step size is of critical importance.

Algorithmic differentiation assumes that functions are evaluated by using a
finitely terminating evaluation procedure consisting of simple arithmetic opera-
tions {+,−, /, ∗} and elementary function evaluations {√ , sin, cos, exp, log, . . .}.
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 331–340, 2016.
DOI: 10.1007/978-3-319-55795-3 31



332 K. Kulshreshtha et al.

Since the analytical derivatives of such arithmetic operations and elementary
functions are well known, these can be introduced in the evaluation procedure
almost mechanically, and the chain rule of differentiation can be applied to prop-
agate the derivatives from one variable to another in the evaluation. In [6] various
modes of propagation of derivatives as well as methods to implement tools are
discussed in great detail. Here we present two techniques of AD, namely, source
transformation and operator overloading.

Source transformation: Source transformation AD tools generate a new source
code that computes the derivatives of an input source code. The output code
must be compiled and executed in order to compute the derivatives. Tools such as
ADIFOR [2], Tapenade [7], and OpenAD [11] can be used to generate derivative
code for functions written in Fortran. Tapenade and ADIC [9] are examples of
source transformation AD tools for C. In this work, we use ADIC to differentiate
input source code portions written in C. In the output code, active variables are
declared as objects of DERIV TYPE, and runtime functions are used to propagate
derivatives between them. When the output code is compiled with an appropri-
ate driver and runtime library provided by ADIC, the Jacobian matrix can be
computed.

Because such tools perform source code analysis, they can identify algorith-
mically active and passive variables and portions of the code. Furthermore, com-
pilers can optimize the output code, resulting in high performance. However, no
tool can generate derivative code for complete C++ input. C++ contains fea-
tures such as polymorphism, inheritance, and templates that cannot be resolved
statically, precluding the generation of correct derivative code.

Operator overloading: In an object-oriented language such as C++ the concept
of operator overloading is well known. Several tools have been developed in
recent years for AD using C++ operator overloading. ADOL-C [13] is a well-
known open source AD tool with many features and high flexibility and has
been successfully used to compute derivatives in a large number of simulation
codes. The most important manual change required for using ADOL-C in any
simulation is to convert the datatype of the real values to the special datatype
adouble defined in the ADOL-C library. All operations executed after a call
to trace on() and before a call to trace off() are recorded in an internal
representation called the trace. Before the actual computation takes place, the
independent variables are marked by assigning them values using the special
<<= operator. Similarly the final dependent variables are marked by extracting
their values using the special >>= operator. The trace can then be used in
any mode of AD (i.e., forward or reverse) in order to compute first or higher
derivatives. Several easy-to-use drivers for computing the derivative information
from the trace are available. The most-used drivers are gradient(), jacobian(),
and hessian(). For further usage details see [13].

The creation of the trace is the most crucial part of the whole program; and
depending on the complexity of the functions being traced, the trace can become
large and thus has the most impact on the memory consumption of the program.
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Where the trace does not fit into a prescribed amount of memory (RAM), it spills
over automatically to the disk as trace files, thereby reducing the performance of
the implementation severely. Past attempts at reducing the memory requirement
for certain applications include using checkpointing strategies [4,5]. For a number
of problems, however, checkpointing is not applicable.

We propose a mixed approach that uses both operator overloading and source
transformation to differentiate an input code that is largely written in C++ but
whose computationally intensive portions are written in a C-like manner. Our
approach employs operator overloading for most of the application and source
transformation for the C-like portions. Because the computationally intensive
portions contribute most to the trace, using source transformation instead for
these portions leads to a smaller trace and better performance. We have made
changes to both ADIC and ADOL-C and written a preprocessor that enables
the approach to be semi-automated. The rest of the paper is organized as fol-
lows. Section 2 presents the details of the mixed approach. Section 3 presents
experimental results on two applications and, Sect. 4 discusses future work.

2 Mixed Approach

The process of converting an ADOL-C instrumented application to use ADIC in
certain parts is the following: (1) The user identifies a computationally intensive
and C-like function from the input based on performance analysis or experi-
ence. (2) This function must be treated as an externally differentiated function
(EDF) by ADOL-C. For this purpose, annotations are added to the input to
support extraction of the EDF and its callees for differentiation by ADIC. Addi-
tional annotations are used to generate wrappers functions and files to copy data
between ADOL-C data structures and the EDF. (3) ADIC is used to differentiate
the EDF and provide forward- and reverse-mode differentiated code for it. (4)
The EDF input, output, wrapper files, and original ADOL-C code are then built
together. The rest of this section elaborates on the concepts of the EDF and the
changes we made to ADOL-C and ADIC to support the mixed approach.

Externally differentiated functions in ADOL-C: The individual arithmetic oper-
ations and mathematical function evaluations of an EDF are not recorded on the
ADOL-C trace. Instead the actual implementation of the differentiated EDF is
provided via user defined function pointers that implement a certain predefined
signature. As one can see in Fig. 1 the EDF replaces a large part of the trace
by repeated calls to itself, which reduces the size of the trace. When ADOL-C
processes the trace and arrives at a call to the EDF, ADOL-C calls the corre-
sponding user-provided forward mode- or reverse mode- derivative code to obtain
the derivatives.

ADOL-C previously maintained the EDF interface using a special structure
struct ext diff fct that is registered to the ADOL-C core on a per func-
tion basis. Implementations for the forward- and reverse-mode first-order deriv-
ative computations are set up in this structure as function pointers that have a
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Fig. 1. ADOL-C trace of a simple and externally differentiated function (left).
Repeated evaluation of an external function in forward and reverse mode (right)

particular signature as defined in the header file <adolc/externfcts.h>. The
limitation of this interface is that it expects all inputs as well as all outputs to
the EDF to be passed as two contiguously allocated arrays.

The design of the adouble type in ADOL-C creates an internal representa-
tion of the executed code at runtime. In order to do so most efficiently, adouble
objects are allocated in a memory pool whereever there is unused space. Unless
the pool is exhausted, new memory is not allocated. This design makes the
allocation of large contiguous arrays an expensive operation, because of the
need for finding a suitable chunk of unused space in the memory pool. Sev-
eral smaller contiguous arrays, on the other hand, can be allocated more easily.
Therefore we designed a second version of the EDF interface structure struct
ext diff fct v2 that supports providing several input arrays and several output
arrays, each not necessarily of the same size. We also added extra integer-valued
input parameters and an opaque object-valued input/output parameter that do
not have an effect on the differentiation process outside the EDF. These changes
required adjusting the signatures of the forward- and reverse-mode implemen-
tations for the EDF. The signatures now contain the number of input and out-
put vectors, the sizes of each of these, their values, the corresponding tangents
or adjoints, extra integer-valued input arrays, and an opaque context object if
needed (see Fig. 2(a)). However, the process of registration and setup of the func-
tion pointers stays the same as in the original EDF interface and can even be
encapsulated in a separate routine (see Fig. 2(b)), which is called once before the
function is required to be evaluated. The ADOL-C evaluation of the complete
structure would then look something like the code in Fig. 2(c).The user-provided
functions edf->fov forward() or edf->fov reverse() are called during the
evaluation of the jacobian() at the appropriate point.

Runtime support for ADIC generated code: To support the mixed approach’s
use of forward-and-reverse mode AD in a single execution instance, we recoded
ADIC’s runtime library in C++ and used namespaces to separate forward- and
reverse-mode derivative manipulation routines. The namespace usage is inserted
into the ADIC-generated code by using simple postprocessing scripts. The
DERIV TYPE structure was rewritten to be a class that supports both dynamic
and static allocation of the grad array within DERIV TYPE. Because dynamic
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Fig. 2. (a) Signatures of the forward- and reverse-mode wrapper routines; (b) per-
routine registration of EDF; (c) calling an EDF in ADOL-C instrumented code

allocation for every DERIV TYPE object can be expensive, we created a memory
manager that allocates a large amount of memory from the heap and then allo-
cates the grad array of an object from this pool. We matched ADIC’s layout
of grad array to ADOL-C’s layout of tangents and adjoints for the input and
output vectors. Therefore only pointers are copied, and ADIC reuses memory
already allocated in ADOL-C.

User annotations and preprocessing: User annotations have two purposes: First,
they identify an EDF and its callees for extraction and subsequent differentia-
tion by ADIC. The annotations surround the EDF and its callees, as shown in
Fig. 3(a). The extraction of code is necessary because ADIC requires the C code
to be isolated from the C++ code that it does not differentiate. Additional user
editing may be required to obtain code that is appropriate for differentiation
by ADIC. Second, annotations are used to generate the interface code for argu-
ments of the EDF. The annotation identifies inputs, outputs, and their respective
sizes or extra integers required for the computation, as well as the position of
each formal parameter in the argument list of the EDF. This information helps
generate wrapper code to transfer data between ADOL-C data structures and
ADIC-generated code. These annotations are written directly as Python tuples,
as seen in Fig. 3(b). Each tuple contains the name of the formal argument, fol-
lowed by its size and the position in the formal argument list. The size itself is a
list of length 0, 1, or 2, depending on whether the argument represents a scalar, a
vector, or a matrix. Integer arguments are always scalars. The size may also con-
tain references to values stored in the integers list. Several interface definitions,
and thus multiple EDF structures, may also be used in any application.
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Fig. 3. (a) Annotations for extracting code for ADIC processing; (b) annotations
describing the interface routine to generate wrapper code

3 Applications

We have tested the mixed approach on two applications. The following describes
each application briefly and provides the results obtained by using the mixed
approach.

Periodic adsorption process: The periodic adsorption process was studied from
an optimization point of view in [8,12]. A system of PDAEs in time and space
with periodic boundary conditions models the cyclic steady state of a process,
where a fluid is preferentially absorbed on the surface of a sorbent bed. This
leads to dense Jacobians that dominate the computation time (see [8]). There-
fore, previous works have used inexact Jacobians (for example, [12]). Using AD,
however, we compute the equality and inequality constraint Jacobians as well as
the objective gradient exactly up to machine precision.

The PDAE system is discretized in space by using a finite-volume approach,
and the resulting system of ODEs is then integrated in time by using a Runge-
Kutta method. This Runge-Kutta iteration in the implementation was deter-
mined to be a suitable EDF for differentiation by ADIC, particularly because
this routine is repeatedly called at each time step of the simulation and has
a C-like implementation. The annotations for declaring this interface routine
are shown in Fig. 3(b). Two other lower-level routines for computing the right-
hand side of the ODE system are also processed by ADIC. The overall problem
size depends on the spatial and temporal discretization (Nspace and Ntime). In
Table 1 we show the memory required by the trace files created on disk in a
purely ADOL-C implementation for various problem sizes, which are absent
in the mixed approach. Both approaches preallocate memory of size 2.3 GB
in all cases. The absence of trace files on disk in the mixed approach shows
that the trace was small enough in all cases to fit into the preallocated memory.
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Table 1. Sizes of trace files created on disk in a purely ADOL-C implementation of
periodic adsorbtion process that are not present in a mixed approach

Nspace Ntime

2000 3000 5000

20 576 MB 863MB 2511 MB

30 856 MB 2240MB 3734 MB

50 2472 MB 3707MB 7146 MB

Fig. 4. Time required (in seconds) to compute (a) Jacobian of equality constraints
in forward mode; (b) Jacobian of inequality constraints and gradient of objective in
reverse mode

Additionally, the runtimes of the mixed approach show improvement over a pure
ADOL-C implementation. In Fig. 4(a) the runtimes required in the computation
of a equality constraint Jacobian with forward mode are plotted in the left figure
for certain problem sizes. In the right side is the time required in the mixed app-
roach is divided into the time required in the wrapper code of the EDF and the
ADIC-processed part of the EDF. The same runtimes for the computation of the
inequality constraint Jacobian and the objective gradient are shown in Fig. 4(b).
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Fluid dynamics – airfoil simulation: Recently, AD was successfully applied to
the open source multiphysics suite SU2 [10], which uses a highly modular C++
code structure, to design an efficient adjoint solver [1] for optimization. The
implementation is based on the fixed-point formulation of the underlying solver
and requires only the recording of one iteration using the converged flow solution.
Therefore, at least for steady-state problems, the necessity for checkpointing is
eliminated. Still, because of the nature of operator overloading, the memory
requirements increase by approximately a factor of 10 compared with the direct
flow solver.

SU2 is based on a finite-volume method and offers several well-established
combinations of spatial and temporal methods for discretizing the flow equations.
Either the steady Euler or the Navier-Stokes equation can be used as the physical
model. For this work we have used a second-order central discretization plus
an artificial dissipation term (Jameson-Schmidt-Turkel scheme, JST) for the
convective terms and a least-squares method for evaluating the gradients needed
for the viscous terms. The explicit Euler method is used to advance in pseudo-
time until convergence. The following two routines were identified as promising
use cases for the mixed approach:

1. CCentJST Flow::ComputeResidual(su2double*val residual):
per edge convective residual, projects convective flux on the cell-face normal.

2. CEulerSolver::SetPrimitive Gradient LS(CGeometry *geometry):
per node gradient of non-conservative variables using least-squares (only Navier-Stokes).

Both routines contain mainly C-like code, which can be processed by ADIC.
A potential drawback, however, is that they use mainly class member variables
as input. Another difficulty is posed by calls of routines that return variables
from other class objects. In such cases we manually copy the data back and forth
into simple arrays and define interface routines that take extra inputs.

Figure 5(a) shows the runtime and memory requirements for the Euler solver
with a 2D airfoil in transonic flow with 10,216 elements. While the time for
tracing is clearly reduced, the evaluation time has significantly increased. This
indicates that ADIC-generated derivative code is slower for that case compared
with ADOL-C. However there is a decrease of disk usage, solely due to trace
files, and an increase in the used RAM. For a 3D airfoil with 582,752 elements
the workload for each element is much higher. In that case the total runtime for
tracing plus evaluation decreases in the mixed approach as shown in Fig. 5(b).
Still, a large fraction of the evaluation time is in the ADIC-generated code. Disk
usage reduces by approximately 10% while the used RAM increases insignifi-
cantly. For the Navier-Stokes solver with a 2D airfoil with 13937 elements, as
shown in Fig. 5(c), the time for tracing reduces by 36%, and the evaluation time
increases slightly, resulting in a total reduction by 16%. Furthermore, the total
memory usage decreases by 15%.
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Fig. 5. Runtime and memory requirements for a 2D Euler case (a), 3D Euler case (b)
and 2D Navier-Stokes case (c).

4 Conclusions and Future Work

We have implemented a mixed approach to AD that uses the operator overload-
ing approach to differentiate most of an application and source transformation
to differentiate just the computationally intensive portions. The user identifies
these portions to be processed by ADIC and uses annotations and a preprocessor
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to generate code that interfaces ADOL-C’s internal data structures with ADIC
generated code. The mixed approach has been applied successfully to medium-
sized and large-sized applications, resulting in lower memory usage. We plan to
apply the mixed approach to more applications. We will also study the benefit
of differentiating most of an application using source transformation and only
some C++ portions using ADOL-C.
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Abstract. Image restoration under sparsity constraints has received
increased attention in recent years. This problem can be formulated
as a nondifferentiable convex optimization problem whose solution is
challenging. In this work, the non-differentiability of the objective is
addressed by reformulating the image restoration problem as a nonnega-
tively constrained quadratic program which is then solved by a speciali-
zed Newton projection method where the search direction computation
only requires matrix-vector operations. A comparative study with state-
of-the-art methods is performed in order to illustrate the efficiency and
effectiveness of the proposed approach.

Keywords: �1-norm based regularization · Newton projection method ·
Image restoration · Inverse problems

1 Introduction

This work is concerned with the general problem of image restoration under
sparsity constraints formulated as

min
x

φ(x) =
1
2
‖Ax − b‖22 + λ‖x‖1 (1)

where A is a m × n real matrix (usually m ≤ n), x ∈ R
n, b ∈ R

m and λ is
a positive parameter. (Throughout the paper, ‖ · ‖ will denote the Euclidean
norm). In some image restoration applications, A = KW where K ∈ R

m×n is
a discretized linear operator and W ∈ R

n×n is a transformation matrix from a
domain where the image is a priori known to have a sparse representation. The
variable x contains the coefficients of the unknown image and the data b is the
measurements vector which is assumed to be affected by Gaussian white noise
intrinsic to the detection process. The formulation (1) is usually referred to as
synthesis formulation since it is based on the synthesis equation of the unknown
image from its coefficients x.

The penalization of the �1-norm of the coefficients vector x in (1) simultane-
ously favors sparsity and avoids overfitting. For this reason, sparsity constrained
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image restoration has received considerable attention in the recent literature and
has been successfully used in various areas. The efficient solution of problem (1)
is a critical issue since the nondifferentiability of the �1-norm makes standard
unconstrained optimization methods unusable. Among the current state-of-the-
art methods there are gradient descent-type methods as TwIST [5], SparSA [14],
FISTA [2] and NESTA [3]. GPSR [6] is a gradient-projection algorithm for the
equivalent convex quadratic program obtained by splitting the variable x in its
positive and negative parts. Fixed-point continuation methods [9], as well as
methods based on Bregman iterations [7] and variable splitting, as SALSA [1],
have also been recently proposed. In [12], the classic Newton projection method
is used to solve the bound-constrained quadratic program formulation of (1)
obtained by splitting x. A Modified Newton projection (MNP) method has been
recently proposed in [11] for the analysis formulation of the �1-regularized least
squares problem where W is the identity matrix and x represents the image
itself. The MNP method uses a fair regularized approximation to the Hessian
matrix so that products of its inverse and vectors can be computed at low com-
putational cost. As a result, the only operations required for the search direction
computation are matrix-vector products.

The main contribution of this work is to extend the MNP method of [11],
developed for the case W = In, to the synthesis formulation of problem (1)
where W �= In. In the proposed approach, problem (1) is firstly formulated as
a nonnegatively constrained quadratic programming problem by splitting the
variable x into the positive and negative parts. Then, the quadratic program is
solved by a special purpose MNP method where a fair regularized approximation
to the Hessian matrix is proposed so that products of its inverse and vectors
can be computed at low computational cost. As a result, the search direction
can be efficiently obtained. The convergence of the proposed MNP method is
analyzed. Even if the size of the problem is doubled, the low computational cost
per iteration and less iterative steps make MNP quite efficient. The performance
of MNP is evaluated on several image restoration problems and is compared with
that of some state-of-the-art methods. The results of the comparative study show
that MNP is competitive and in some cases is outperforming some state-of-the-
art methods in terms of computational complexity and achieved accuracy.

The rest of the paper can be outlined as follows. In Sect. 2, the quadratic
program formulation of (1) is derived. The MNP method is presented and its
convergence is analyzed in Sect. 3. In this section, the efficient computation of the
search direction is also discussed. In Sect. 4, the numerical results are presented.
Conclusions are given in Sect. 5.

2 Nonnegatively Constrained Quadratic Program
Formulation

The proposed approach firstly needs to reformulate (1) as a nonnegatively con-
strained quadratic program (NCQP). The NCQP formulation is obtained by
splitting the variable x into its positive and negative parts [6], i.e.
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x = u − v, u = max(x, 0), v = max(−x, 0).

Problem (1) can be written as the following NCQP:

min
(u,v)

F(u,v) =
1
2
‖A(u − v) − b‖2 + λ1Hu + λ1Hv

s.t. u ≥ 0, v ≥ 0
(2)

where 1 denotes the n-dimensional column vector of ones. The gradient g and
Hessian H of F(u,v) are respectively defined by

g =
[
AHA(u − v) − AHb + λ1

−AHA(u − v) + AHb + λ1

]
, H =

[
AHA −AHA

−AHA AHA

]
. (3)

We remark that the computation of the objective function and its gradient values
requires only one multiplication by A and one by AH , nevertheless the double
of the problem size. Since H is positive semidefinite, we propose to approximate
it with the positive definite matrix Hτ :

Hτ =
[
AHA + τIn −AHA

−AHA AHA + τIn

]
(4)

where τ is a positive parameter and I is the identity matrix of size n.

Proposition 21. Let σ1, σ2, . . . , σn be the nonnegative eigenvalues of A in non-
increasing order:

σ1 ≥ σ2 ≥ . . . ≥ σm ≥ σm+1 = . . . = σn = 0. (5)

Then, Hτ is a positive definite matrix whose eigenvalues are

2σ1 + τ, 2σ2 + τ, . . . , 2σn + τ, τ, . . . , τ. (6)

The proof is immediate since the spectrum of Hτ is the union of the spectra of
AHA + τI + AHA and AHA + τI − AHA.

The following proposition shows that an explicit formula for the inverse of
Hτ can be derived.

Proposition 22. The inverse of the matrix Hτ is the matrix Mτ defined as

Mτ =
1
τ
M1M2 (7)

where

M1 =
[
AHA + τI AHA

AHA AHA + τI

]
, M2 =

[
(2AHA + τI)−1 0

0 (2AHA + τI)−1

]
.
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Proof. We have

1
τ
HτM1 =

1
τ

[
(AHA + τI)2 − (AHA)2 0

0 (AHA + τI)2 − (AHA)2

]

=
1
τ

[
2τAHA + τ2I 0

0 2τAHA + τ2I

]
= M−1

2 . (8)

Similarly, we can prove that

1
τ
M1Hτ = M−1

2 . (9)

We now show that M1M2 = M2M1. We have

M1M2 =
[
(AHA)(2AHA + τI)−1 (AHA)(2AHA + τI)−1

(AHA)(2AHA + τI)−1 (AHA)(2AHA + τI)−1

]

+
[
τ(2AHA + τI)−1 0

0 τ(2AHA + τI)−1

]

M2M1 =
[
(2AHA + τI)−1(AHA) (2AHA + τI)−1(AHA)
(2AHA + τI)−1(AHA) (2AHA + τI)−1(AHA)

]

+
[
τ(2AHA + τI)−1 0

0 τ(2AHA + τI)−1

]
.

After some simple algebra, it can be proved that

(AHA)(2AHA + τI)−1 = (2AHA + τI)−1(AHA).

and thus
M1M2 = M2M1. (10)

From (8), (9) and (10), it follows

HτMτ =
1
τ
HτM1M2 = M−1

2 M2 = I2n

MτHτ =
1
τ
M1M2Hτ =

1
τ
M2M1Hτ = M−1

2 M−1
2 = I2n.

3 The Modified Newton Projection Method

The Algorithm. The Newton projection method [4] for problem (2) can be
written as

[
u(k+1)

v(k+1)

]
=

[[
u(k)

v(k)

]
− α(k)p(k)

]+

, p(k) = S(k)g(k), g(k) =

[
g(k)
u

g(k)
v

]
(11)

where [·]+ denotes the projection on the positive orthant, g(k)
u and g(k)

v respec-
tively indicate the partial derivatives of F with respect to u and v at the current
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iterate. The scaling matrix S(k) is a partially diagonal matrix with respect to
the index set A(k) defined as

A(k) =
{

i | 0 ≤ y
(k)
i ≤ ε(k) and g

(k)
i > 0

}

y(k) =
[
u(k)

v(k)

]
, ε(k) = min{ε, w(k)}, w(k) = ‖y(k) − [y(k) − g(k)]+‖

and ε is a small positive parameter.
The step-length α(k) is computed with the Armijo rule along the projection

arc [4]. Let E(k) and F(k) be the diagonal matrices [13] such that

{E(k)}ii =
{

1, i /∈ A(k);
0, i ∈ A(k);

, F(k) = I2n − E(k).

In MNP, we propose to define the scaling matrix S(k) as

S(k) = E(k)MτE(k) + F(k). (12)

Therefore, the complexity of computation of the search direction p(k) = S(k)g(k)

is mainly due to one multiplication of the inverse Hessian approximation Mτ

with a vector since matrix-vector products involving E(k) and F(k) only extracts
some components of the vector and do not need not to be explicitly performed.
We remark that, in the Newton projection method proposed in [4], the scaling
matrix is S(k) =

(
E(k)HτE(k) + F(k)

)−1
which requires to extract a submatrix

of Hτ and then to invert it.

Convergence Analysis. As proved in [4], the convergence of Newton-type
projection methods can be proved under the general following assumptions which
basically require the scaling matrices S(k) to be positive definite matrices with
uniformly bounded eigenvalues.

A1 The gradient g is Lipschitz continuous on each bounded set of R2n.
A2 There exist positive scalars c1 and c2 such that

c1‖y‖2 ≤ yHS(k)y ≤ c2‖y‖2, ∀y ∈ R
2n, k = 0, 1, . . .

The key convergence result is provided in Proposition 2 of [4] which is restated
here for the shake of completeness.

Proposition 31. [4, Proposition 2] Let {[u(k),v(k)]} be a sequence generated by
iteration (11) where S(k) is a positive definite symmetric matrix which is diago-
nal with respect to A(k) and αk is computed by the Armijo rule along the projec-
tion arc. Under assumptions A1 and A2 above, every limit point of a sequence
{[u(k),v(k)]} is a critical point with respect to problem (2).

Since the objective F of (2) is twice continuously differentiable, it satisfies
assumption A1. From Propositions 21 and 22, it follows that Mτ is a symmetric
positive definite matrix and hence, the scaling matrix S(k) defined by (12) is a
positive definite symmetric matrix which is diagonal with respect to A(k). The
global convergence of the MNP method is therefore guaranteed provided S(k)

verifies assumption A2.
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Proposition 32. Let S(k) be the scaling matrix defined as S(k) = E(k)HτE(k)+
F(k). Then, there exist two positive scalars c1 and c2 such that

c1‖y‖2 ≤ yHS(k)y ≤ c2‖y‖2, ∀y ∈ R
2n, k = 0, 1, . . .

Proof. Proposition 21 implies that the largest and smallest eigenvalue of Mτ are
respectively 1/τ and 1/(2σ1 + τ), therefore

1
2σ1 + τ

‖y‖2 ≤ yHMτy ≤ 1
τ

‖y‖2, ∀y ∈ R
2n. (13)

We have yHS(k)y=
(
E(k)y

)H
Mτ

(
E(k)y

)
+yHF(k)y. From (13) it follows that

‖E(k)y‖2
2σ1 + τ

+ yHF(k)y ≤ (
E(k)y

)H
Mτ

(
E(k)y

)
+yHF(k)y≤ ‖E(k)y‖2

τ
+yHF(k)y.

Moreover we have yHF(k)y =
∑

i∈A(k) y2
i , ‖E(k)y‖2 =

∑
i/∈A(k) y2

i ; hence:

1
2σ1 + τ

∑
i/∈A(k)

y2
i +

∑
i∈A(k)

y2
i ≤ yHS(k)y ≤ 1

τ

∑
i/∈A(k)

y2
i +

∑
i∈A(k)

y2
i

and
min{ 1

2σ1 + τ
, 1}‖y‖2 ≤ yHS(k)y ≤ max{1

τ
, 1}‖y‖2.

The thesis follows by setting c1 = min{ 1
2σ1+τ , 1} and c2 = max{ 1

τ , 1}.

Computing the Search Direction. We suppose that K is the matrix repre-
sentation of a spatially invariant convolution operator with periodic boundary
conditions so that K is a block circulant with circulant blocks (BCCB) matrix
and matrix-vector products can be efficiently performed via the FFT. More-
over, we assume that the columns of W form an orthogonal basis for which fast
sparsifying algorithms exist, such as a wavelet basis, for example. Under these
assumptions, A is a full and dense matrix but the computational cost of matrix-
vector operations with A and AH is relatively cheap. As shown by (12), the
computation of the search direction p(k) = S(k)g(k) requires the multiplication
of a vector by Mτ . Let

[
z,w

] ∈ R
2n be a given vector, then it immediately

follows that

Mτ

[
z
w

]
=

1
τ

[
AHA

(
2AHA + τI

)−1(z + w) + τ
(
2AHA + τI

)−1
z

AHA
(
2AHA + τI

)−1(z + w) + τ
(
2AHA + τI

)−1
w

]
. (14)

Formula (14) needs the inversion of 2AHA+ τI. Our experimental results indi-
cate that the search direction can be efficiently and effectively computed as
follows. Using the Sherman-Morrison-Woodbury formula, we obtain
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(
2AHA + τI

)−1
=

1

τ

(
I−WHKH(KKH +

τ

2

)−1
KW

)
(15)

AHA
(
2AHA + τI

)−1
=

1

τ

(
WH(KHK−KHKKH(KKH +

τ

2
)−1K

)
W
)
. (16)

Substituting (15) and (16) in (14), we obtain

AHA
(
2AHA + τI

)−1(z + w) + τ
(
2AHA + τI

)−1
z =

1
τ
WH

(
KHK − KHKKH(KKH +

τ

2
)−1K

)
(Wz + Ww)

− WHKH(KKH +
τ

2
)−1K)Wz + z (17)

AHA
(
2AHA + τI

)−1
(z + w) + τ

(
2AHA + τI

)−1
w =

1

τ
WH(KHK−KHKKH(KKH +

τ

2
)−1K

)
(Wz + Ww)

−WHKH(KKH +
τ

2
)−1K)Ww + w. (18)

Since K is BCCB, it is diagonalized by the Discrete Fourier Transform (DFT),
i.e. K = UHDU where U denotes the unitary matrix representing the DFT and
D is a diagonal matrix. Thus, we have:

KH(KKH +
τ

2
)−1K = UH

( |D|2
|D|2 + τ

2

)
U (19)

KHK − KHKKH(KKH +
τ

2
)−1K = UH

(
|D|2 − |D|4

|D|2 + τ
2

)
U. (20)

Substituting (19) and (20) in (17) and (18), we obtain

AHA
(
2AHA + τI

)−1(z + w) + τ
(
2AHA + τI

)−1
z =

1
τ
WHUH

((|D|2 − |D|4
|D|2 + τ

2

)
(UWz + UWw) − ( |D|2

|D|2 + τ
2

)
UWz

)
+ z (21)

AHA
(
2AHA + τI

)−1(z + w) + τ
(
2AHA + τI

)−1
w =

1
τ
WHFH

((|D|2 − |D|4
|D|2 + τ

2

)
(UWz + UWw) − ( |D|2

|D|2 + τ
2

)
UWw

)
+ w.

(22)

Equations (14), (21) and (22) show that, at each iteration, the computation of
the search direction p(k) requires two products by W, two products by WH , two
products by U and two products by UH . The last products can be performed
efficiently by using the FFT algorithm.
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Fig. 1. Top line: exact image (left), Gaussian blurred image (middle) and MNP recon-
struction (right). Bottom line: out-of-focus blurred blurred image (left) and MNP recon-
struction (right). The noise level is NL= 7.5 · 10−3.

4 Numerical Results

In this section, we present the numerical results of some image restoration test
problems. The numerical experiments aim at illustrating the performance of
MNP compared with some state-of-the-art methods as SALSA [1], CGIST [8],
the nonmonotonic version of GPSR [6], and the Split Bregman method [7]. Even
if SALSA has been shown to outperform GPSR [1], we consider GPSR in our
comparative study since it solves, as MNP, the quadratic program (2). The
Matlab source code of the considered methods, made publicly available by the
authors, has been used in the numerical experiments. The numerical experiments
have been executed in Matlab R2012a on a personal computer with an Intel Core
i7-2600, 3.40 GHz processor.

The numerical experiments are based on the well-known Barbara image
(Fig. 1), whose size is 512 × 512 and whose pixels have been scaled into the
range between 0 and 1. In our experiments, the matrix W represents an orthog-
onal Haar wavelet transform with four levels. For all the considered methods,
the initial iterate x(0) has been chosen as x(0) = WHb; the regularization para-
meter λ has been heuristically chosen. In MNP, the parameter τ of the Hessian
approximation has been fixed at τ = 100λ. This value has been fixed after a wide
experimentation and has been used in all the presented numerical experiments.

The methods iteration is terminated when the relative distance between two
successive objective values becomes less than a tolerance tolφ. A maximum num-
ber of 100 iterations has been allowed for each method.

In the first experiment, the Barbara image has been convolved with a
Gaussian PSF with variance equal to 2, obtained with the code psfGauss from
[10], and then, the blurred image has been corrupted by Gaussian noise with
noise level equal to 7.5 · 10−3 and 1.5 · 10−2. (The noise level NL is defined as
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Fig. 2. MSE (left column) and obiective function (right column) histories of MNP
(blue solid line), SALSA (magenta dashed line), GPSR (red dotted line), CGIST (black
dashdotted line) and Split Bregman (cyan dashdotted line) methods. Top line: Guassian
blur; bottom line: out-of-focus blur. The noise level is NL= 1.5 · 10−2. (Color figure
online)

Table 1. Restoring the noised and blurred Barbara image: numerical results.

tolφ Method Gaussian blur Out-of-focus blur

NL=0.0075 NL=0.015 NL=0.0025 NL=0.0075

MSE Obj Time MSE Obj Time MSE Obj Time MSE Obj Time

10−1 MNP 4.18·10−3 7.33 1.15 4.25·10−3 13.26 1.17 2.99·10−3 3.04 2.68 3.79·10−3 7.73 1.42

SALSA 4.34·10−3 7.86 0.47 4.45·10−3 15.05 0.36 4.35·10−3 3.96 0.47 4.85·10−3 9.78 0.47

GPSR 4.31·10−3 7.49 0.89 4.35·10−3 13.76 0.89 4.83·10−3 5.41 0.66 4.86·10−3 9.90 0.64

CGIST 4.37·10−3 8.09 0.72 4.46·10−3 14.92 0.56 4.90·10−3 5.33 0.90 5.00·10−3 10.36 0.72

Breg. 4.34·10−3 7.50 0.72 4.43·10−3 14.32 0.75 3.61·10−3 3.03 0.48 4.58·10−3 8.81 0.72

10−2 MNP 4.17·10−3 7.03 1.68 4.25·10−3 13.00 1.70 2.47·10−3 2.54 5.66 3.45·10−3 7.29 2.48

SALSA 4.21·10−3 7.04 1.19 4.31·10−3 13.55 0.92 3.25·10−3 2.78 2.07 4.20·10−3 7.98 1.62

GPSR 4.22·10−3 6.84 1.62 4.34·10−3 13.67 1.00 3.94·10−3 3.16 2.39 4.03·10−3 7.74 1.59

CGIST 4.24·10−3 7.19 1.84 4.32·10−3 13.61 1.51 3.87·10−3 3.28 4.82 4.34·10−3 8.22 2.82

Breg. 4.23·10−3 6.98 1.31 4.33·10−3 13.49 1.22 2.85·10−3 2.58 1.33 4.15·10−3 7.85 1.56

10−3 MNP 4.21·10−3 6.54 3.42 4.35·10−3 12.77 3.26 2.34·10−3 2.49 8.92 3.16·10−3 6.88 6.38

SALSA 4.14·10−3 6.60 4.09 4.22·10−3 12.79 3.46 2.45·10−3 2.46 6.74 3.46·10−3 7.05 6.27

GPSR 4.20·10−3 6.84 1.90 4.22·10−3 124 2.04 3.81·10−3 2.57 5.19 3.40·10−3 6.94 4.24

CGIST 4.14·10−3 6.65 7.13 4.22·10−3 12.82 5.71 2.86·10−3 2.59 18.81 3.52·10−3 7.11 11.65

Breg. 4.16·10−3 6.57 4.38 4.23·10−3 12.79 3.76 2.21·10−3 2.41 4.15 3.44·10−3 7.02 6.01

NL := ‖η‖/‖Axoriginal‖ where xoriginal is the original image and η is the noise
vector.) In the second experiment, the Barbara image has been corrupted by
out-of-focus blur, obtained with the code psfDefocus from [10] and by Gaussian
noise with noise level equal to 2.5 · 10−3 and 7.5 · 10−3. The degraded images
and the MNP restorations are shown in Fig. 1 for NL = 7.5 · 10−3. Table 1
reports the Mean Squared Error (MSE) values, the objective function values
and the CPU times in seconds obtained by using the stopping tolerance values
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tolφ = 10−1, 10−2, 10−3. In Fig. 2, the MSE behavior and the decreasing of the
objective function versus time (in seconds) are illustrated.

The reported numerical results indicate that MNP is competitive with the
considered state-of-the-art and, in terms of MSE reduction, MNP reaches the
minimum MSE value very early.

5 Conclusions

In this work, the MNP method has been proposed for sparsity constrained image
restoration. In order to gain low computational complexity, the MNP method
uses a fair approximation of the Hessian matrix so that the search direction can
be computed efficiently by only using FFTs and fast sparsifying algorithms. The
results of numerical experiments show that MNP may be competitive with some
state-of-the-art methods both in terms of computational efficiency and accuracy.
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Abstract. The Hilbert Uniqueness Method introduced by J.-L. Lions
in 1988 has great interest among scientists in the control theory, because
it is a basic tool to get controllability results for evolutive systems. Our
aim is to outline the Hilbert Uniqueness Method for first order coupled
systems in the presence of memory terms in general Hilbert spaces. At
the end of the paper we give some applications of our general results.

Keywords: Coupled systems · Convolution kernels · Reachability

1 Introduction

It is well known that heat equations with memory of the following type

yt = α�y +
∫ t

0

K(t − s)�y(s)ds, (1)

with α > 0, cannot be controlled to rest for large classes of memory kernels
and controls, see e.g. [3,4]. The motivation for that kind of results is due to the
smoothing effect of the solutions, because (1) is a parabolic equation when the
constant α before the Laplacian is positive.

On the other hand the class of the partial integro-differential equations
changes completely if in the Eq. (1) one takes α = 0. The physical model relies
on the Cattaneo’s paper [1]. Indeed, in [1] to overcome the fact that the solu-
tions of the heat equation propagate with infinite speed, Cattaneo proposed the
following equation

yt =
∫ t

0

K(t − s)�y(s)ds, (2)

with K(t) = e−γt, γ being a positive constant. The interest for equations of the
type (2) is in the property of the solutions to have finite propagation speed, the
same property of the solutions of wave equations.
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L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 351–359, 2016.
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From a mathematical point of view, a natural question is to study integro-
differential equations of the type

ut +
∫ t

0

M(t − s)�2u(s)ds = 0 ,

where M(t) is a suitable kernel, locally integrable on (0,+∞), and �2 denotes
the biharmonic operator, that is in the N -dimensional case

�2u =
N∑

i=1

N∑
j=1

∂2
ii∂

2
jju .

The Hilbert Uniqueness Method has been introduced by Lions, see [7,8], to
study control problems for partial differential systems. That method has been
largely used in the literature, see e.g. [5].

Inspired by those problems, the goal of the present paper is to describe the
Hilbert Uniqueness Method, for coupled hyperbolic equations of the first order
with memory in a general Hilbert space, when the integral kernels involved are
general functions k1, k2 ∈ L1(0, T ) and integral terms also occur in the coupling:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1t +
∫ t

0

k1(t − s)Au1(s)ds + L1(1 ∗ u2) = 0

in (0, T ) ,

u2t +
∫ t

0

k2(t − s)A2u2(s)ds + L2(1 ∗ u1) = 0

In another context, in [2] the authors study the exact controllability of the
equation

yt =
∫ t

0

K(t − s)�y(s)ds + uχω in (0, T ) × Ω, (3)

where ω is a given nonempty open subset of Ω. The hyperbolic nature of (3)
allows to show its exact controllability under suitable conditions on the waiting
time T and the controller ω, thanks to observability inequalities for the solutions
of the dual system obtained by means of Carleman estimates.

For a different approach leading to solve control problems for hyperbolic
systems, we refer to [6,11].

2 The Hilbert Uniqueness Method

Let H be a real Hilbert space with scalar product 〈· , ·〉 and norm ‖ · ‖.
We consider a linear operator A : D(A) ⊂ H → H with domain D(A),

k1, k2 ∈ L1(0, T ) and Li (i = 1, 2) linear operators on H with domain D(Li) ⊃
D(A). We assume that L2 is self-adjoint and L1 is self-adjoint on a subset of its
domain that will be precised later.

Moreover, let H1 be another real Hilbert space with scalar product 〈· , ·〉H1

and norm ‖ · ‖H1 and B ∈ L(H0;H1), where H0 is a space such that D(A) ⊂
H0 ⊂ H. In the applications B could be, for example, a trace operator.
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We take into consideration the following first order coupled system with
memory⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1t +
∫ t

0

k1(t − s)Au1(s)ds + L1(1 ∗ u2) = 0

in (0, T ),

u2t +
∫ t

0

k2(t − s)A2u2(s)ds + L2(1 ∗ u1) = 0

(4)

with null initial conditions
u1(0) = u2(0) = 0, (5)

and satisfying

Bu1(t) = g1(t), Bu2(t) = 0, BAu2(t) = g2(t), t ∈ (0, T ). (6)

For a reachability problem we mean the following.

Definition 1. Given T > 0 and u10 , u20 ∈ H, a reachability problem consists
in finding gi ∈ L2(0, T ;H1), i = 1, 2 such that the weak solution u of problem
(4)–(6) verifies the final conditions

u1(T ) = u10, u2(T ) = u20. (7)

One can solve such reachability problems by means of the Hilbert Uniqueness
Method. To show that, we proceed as follows.

To begin with, we assume the following conditions.

Assumptions (H1)

1. There exists a self-adjoint positive linear operator A on H with dense domain
D(A) satisfying

D(A) ⊂ D(A), Ax = Ax ∀x ∈ D(A), D(
√

A) = Ker(B).

2. L2 is self-adjoint and L1 is self-adjoint on D(A) ∩ Ker(B), that is

〈L1ϕ, ξ〉 = 〈ϕ,L1ξ〉, ∀ϕ, ξ ∈ D(A) ∩ Ker(B). (8)

3. There exists Dν ∈ L(H0;H1) such that the following identity holds
〈Aϕ, ξ〉 = 〈ϕ,Aξ〉 − 〈Bϕ,Dνξ〉H1 , ∀ϕ ∈ D(A), ξ ∈ D(A). (9)

Now, we consider the adjoint system of (4), that is, the following coupled
system ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z1t −
∫ T

t

k1(s − t)Az1(s)ds −
∫ T

t

L2z2(s)ds = 0

in (0, T ),

z2t −
∫ T

t

k2(s − t)A2z2(s)ds −
∫ T

t

L1z1(s)ds = 0

(10)

with given final data

z1(T ) = z1T , z2(T ) = z2T . (11)

We assume that for final data sufficiently regular an existence and regularity
result for the solution of (10)–(11) holds. Precisely:
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Theorem 1. For any z1T ∈ D(A) and z2T ∈ D(A2) there exists a unique solu-
tion (z1, z2) of (10)–(11) such that z1 ∈ C1([0, T ],H) ∩ C([0, T ],D(A)) and
z2 ∈ C1([0, T ],H) ∩ C([0, T ],D(A2)).

That type of result will be true in the applications, taking into account that
backward problems are equivalent to forward problems by means of a change of
the variable t into t − T .

If Theorem 1 holds true, then the regularity of the solution (z1, z2) of (10)–
(11) and assumption (H1)-3 allow to obtain the following properties: the func-
tions Dνzi, i = 1, 2, belong to C(0, T ;H1), because D(A) ⊂ D(A) ⊂ H0. So, we
can consider the nonhomogeneous problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ′
1(t) +

∫ t

0

k1(t − s)Aφ1(s)ds + L1(1 ∗ φ2) = 0

φ′
2(t) +

∫ t

0

k2(t − s)A2φ2(s)ds + L2(1 ∗ φ1) = 0

in (0, T )

Bφ1(t) =
∫ T

t

k1(s − t)Dνz1(s)ds,

Bφ2(t) = 0, BAφ2(t) =
∫ T

t

k2(s − t)Dνz2(s)ds

φ1(0) = φ2(0) = 0.

(12)

If (φ1, φ2) denotes the solution of problem (12), then we can introduce the fol-
lowing linear operator on H × H:

Ψ(z1T , z2T ) = (φ1(T ), φ2(T )), (z1T , z2T ) ∈ D(A) × D(A2).

We will prove the next result.

Theorem 2. If (ξ1, ξ2) is the solution of the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ′
1(t) −

∫ T

t

k1(s − t)Aξ1(s)ds −
∫ T

t

L2ξ2(s)ds = 0,

in (0, T )

ξ′
2(t) −

∫ T

t

k2(s − t)A2ξ2(s)ds −
∫ T

t

L1ξ1(s)ds = 0,

ξ1(T ) = ξ1T , ξ2(T ) = ξ2T ,

where (ξ1T , ξ2T ) ∈ D(A) × D(A2), then the identity

〈Ψ(z1T , z2T ), (ξ1T , ξ2T )〉

=
∫ T

0

〈Bφ1(t),
∫ T

t

k1(s − t)Dνξ1(s) ds〉H1 dt

+
∫ T

0

〈BAφ2(t),
∫ T

t

k2(s − t)Dνξ2(s) ds〉H1 dt,

(13)

holds true.



The Hilbert Uniqueness Method 355

Proof. We multiply the first equation in (12) by ξ1(t) and integrate on [0, T ], so
we have ∫ T

0

〈φ′
1, ξ1〉 dt +

∫ T

0

〈
∫ t

0

k1(t − s)Aφ1(s) ds, ξ1〉 dt

+
∫ T

0

〈L1(1 ∗ φ2), ξ1〉 dt = 0. (14)

In the second term of the above identity we change the order of integration and,
since ξ1(t) ∈ D(A), we can use (9) to get
∫ T

0

〈
∫ t

0

k1(t − s)Aφ1(s) ds, ξ1(t)〉dt =

∫ T

0

∫ T

s

k1(t − s)〈Aφ1(s), ξ1(t)〉 dt ds

=

∫ T

0

〈φ1(s),

∫ T

s

k1(t − s)Aξ1(t) dt〉 ds

−
∫ T

0

〈Bφ1(s),

∫ T

s

k1(t−s)Dνξ1(t) dt〉H1 ds.

Note that, in virtue of assumption (H1)-1, one has D(A) ⊂ D(A) ∩ Ker(B); so,
changing again the order of integration and applying (8), we obtain

∫ T

0

〈L1(1 ∗ φ2), ξ1〉 dt =
∫ T

0

〈φ2(s),
∫ T

s

L1ξ1(t) dt〉 ds.

If we integrate by parts the first term in (14) and take into account the previous
two identities, then, in view also of φ1(0) = 0, we get

〈φ1(T ), ξ1(T )〉 −
∫ T

0

〈φ1(t), ξ′
1(t)〉 dt +

∫ T

0

〈φ1(t),
∫ T

t

k1(s − t)Aξ1(s) ds〉 dt

−
∫ T

0

〈Bφ1(t),
∫ T

t

k1(s − t)Dνξ1(s) ds〉H1 dt

+
∫ T

0

〈φ2(t),
∫ T

t

L1ξ1(s) ds〉 dt = 0.

As a consequence of the former equation and

ξ′
1(t) −

∫ T

t

k1(s − t)Aξ1(s)ds =
∫ T

t

L2ξ2(s)ds,

we obtain

〈φ1(T ), ξ1T 〉 −
∫ T

0

〈Bφ1(t),
∫ T

t

k1(s − t)Dνξ1(s) ds〉H1 dt

+
∫ T

0

〈φ2(t),
∫ T

t

L1ξ1(s) ds〉 dt −
∫ T

0

〈φ1(t),
∫ T

t

L2ξ2(s)ds〉 dt = 0.

(15)

In a similar way, we multiply the second equation in (12) by ξ2(t) and inte-
grate on [0, T ]: if we integrate by parts the first term, take into account that
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φ2(0) = 0 and change the order of integration in the other two terms, then we
have

〈φ2(T ), ξ2T 〉 −
∫ T

0

〈φ2(t), ξ′
2(t)〉 dt

+
∫ T

0

∫ T

s

k2(t − s)〈 A2φ2(s), ξ2(t)〉 dt ds

+
∫ T

0

∫ T

s

〈L2φ1(s), ξ2(t)〉 dt ds = 0.

(16)

Now, we observe that from (9) it follows for any ϕ ∈ D(A2) and ξ ∈ D(A2)

〈A2ϕ, ξ〉 = 〈ϕ,A2ξ〉 − 〈Bϕ,DνAξ〉H1 − 〈BAϕ,Dνξ〉H1 .

Putting the above equation into (16) and taking into account that the operator
L2 is self-adjoint yield

〈φ2(T ), ξ2T 〉 −
∫ T

0

〈φ2(t), ξ′
2(t)〉 dt

+
∫ T

0

〈φ2(s),
∫ T

s

k2(t − s)A2ξ2(t) dt〉 ds

−
∫ T

0

〈BAφ2(s),
∫ T

s

k2(t − s)Dνξ2(t) dt〉H1 ds

+
∫ T

0

〈φ1(s),
∫ T

s

L2ξ2(t) dt〉 ds = 0.

In virtue of

ξ′
2(t) −

∫ T

t

k2(s − t)A2ξ2(s)ds =
∫ T

t

L1ξ1(s)ds,

we get

〈φ2(T ), ξ2T 〉 −
∫ T

0

〈BAφ2(s),
∫ T

s

k2(t − s)Dνξ2(t) dt〉H1 ds

+
∫ T

0

〈φ1(t),
∫ T

t

L2ξ2(s)ds〉 dt −
∫ T

0

〈φ2(t),
∫ T

t

L1ξ1(s)ds〉 dt = 0.

(17)

If we sum Eqs. (15) and (17), then we have

〈Ψ(z1T , z2T ), (ξ1T , ξ2T )〉 = 〈φ1(T ), ξ1T 〉 + 〈φ2(T ), ξ2T 〉

=
∫ T

0

〈Bφ1(t),
∫ T

t

k1(s − t)Dνξ1(s) ds〉H1 dt

+
∫ T

0

〈BAφ2(t),
∫ T

t

k2(s − t)Dνξ2(s) ds〉H1 dt,

(18)

that is, (13) holds true. �
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If we take (ξ1T , ξ2T ) = (z1T , z2T ) in (13), then we have

〈Ψ(z1T , z2T ), (z1T , z2T )〉

=
∫ T

0

(∣∣∣
∫ T

t

k1(s − t)Dνz1(s) ds
∣∣∣2
H1

+
∣∣∣
∫ T

t

k2(s − t)Dνz2(s) ds
∣∣∣2
H1

)
dt.

Consequently, we can introduce a semi-norm on the space D(A) × D(A2). Pre-
cisely, if we consider, for any (z1T , z2T ) ∈ D(A) × D(A2), the solution (z1, z2) of
the system (10)–(11), then we define

‖(z1T , z2T )‖2F :=
∫ T

0

(∣∣∣
∫ T

t

k1(s − t)Dνz1(s) ds
∣∣∣2
H1

+
∣∣∣
∫ T

t

k2(s − t)Dνz2(s) ds
∣∣∣2
H1

)
dt.

(19)

We observe that ‖ · ‖F is a norm if and only if the following uniqueness theorem
holds.

Theorem 3. If (z1, z2) is the solution of problem (10)–(11) such that

∫ T

t

k1(s − t)Dνz1(s) ds =
∫ T

t

k1(s − t)Dνz2(s) ds = 0, on [0, T ],

then

z1 = z2 = 0 in [0, T ].

The validity of Theorem3 is the starting point for the application of the Hilbert
Uniqueness Method. Indeed, if we assume that Theorem 3 holds true, then we
can define the Hilbert space F as the completion of D(A) × D(A2) for the norm
‖ · ‖F . Thanks to (13) and (19) we have

〈Ψ(z1T , z2T ), (ξ1T , ξ2T )〉 = 〈(z1T , z2T ), (ξ1T , ξ2T )〉F

∀(z1T , z2T ), (ξ1T , ξ2T ) ∈ D(A) × D(A2),
(20)

where 〈·, ·〉F denotes the scalar product associated with the norm ‖ · ‖F .
Consequently,

∣∣〈Ψ(z1T , z2T ), (ξ1T , ξ2T )〉∣∣ ≤ ‖(z1T , z2T )‖F ‖(ξ1T , ξ2T )‖F

∀(z1T , z2T ), (ξ1T , ξ2T ) ∈ D(A) × D(A2).

Thanks to the above inequality, the operator Ψ can be extended uniquely to a
linear continuous operator, denoted again by Ψ , from F into its dual space F ′.
By (20) it follows that

〈Ψ(z1T , z2T ), (ξ1T , ξ2T )〉 = 〈(z1T , z2T ), (ξ1T , ξ2T )〉F

∀(z1T , z2T ), (ξ1T , ξ2T ) ∈ F,
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and, as a consequence, we have that the operator Ψ : F → F ′ is an isomorphism.
Moreover, the key point to characterize the space F is to establish observ-

ability estimates of the following type

∫ T

0

(∣∣∣
∫ T

t

k1(s − t)Dνz1(s) ds
∣∣∣2
H1

+
∣∣∣
∫ T

t

k2(s − t)Dνz2(s) ds
∣∣∣2
H1

)
dt

� ‖z1T ‖2F1
+ ‖z2T ‖2F2

(21)

for suitable spaces F1 , F2. In that case, the uniqueness result stated by Theorem 3
holds true, so the operator Ψ : F → F ′ is an isomorphism, and in virtue of (19)
and (21) we get

F = F1 × F2

with the equivalence of the respective norms. Finally, we are able to solve the
reachability problem (4)–(7) for (u10, u20) ∈ F ′

1 × F ′
2.

3 Applications

Example 1. Let H = L2(0, π) be endowed with the usual scalar product and
norm. In [9] we take A = d2

dx2 with null Dirichlet boundary conditions, k1(t) =
β
η e−ηt + 1 − β

η , k2 ≡ 1. We examine the case in which Li = aiI, with ai ∈ R,
i = 1, 2 and I the identity operator on H.

By writing the solutions as Fourier series, we are able to prove Theorems 1
and 3, thanks also to some properties of the solutions of integral equations. In
particular, by showing suitable Ingham type estimates, we prove observability
estimates of the type (21) where F = H1

0 (0, π) × H1
0 (0, π). Therefore, we can

deduce reachability results by means of the Hilbert Uniqueness Method.

Example 2. We consider H = L2(0, π) endowed with the usual scalar product
and norm. In [9] we take A = d2

dx2 with null Dirichlet boundary conditions,
k1(t) = β

η e−ηt + 1 − β
η , k2 ≡ 1, L1 = a1

d2

dx2 and L2 = a2I with ai ∈ R, i = 1, 2.

Example 3. Let H = L2(Ω) be endowed with the usual scalar product and
norm. In [10] we take A = � with null Dirichlet boundary conditions, k1(t) =
β
η e−ηt + 1 − β

η , k2 ≡ 1, L1 = a1� and L2 = a2I with ai ∈ R, i = 1, 2.
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Abstract. We consider a game problem of guaranteed positional con-
trol for a distributed system described by the phase field equations under
incomplete information on system’s phase states. This problem is investi-
gated from the viewpoint of the first player (the partner). For this player,
a procedure for forming feedback controls is specified. This procedure is
stable with respect to informational noises and computational errors and
is based on the method of extremal shift and the method of stable sets
from the theory of guaranteed positional control. It uses the idea of stable
dynamical inversion of controlled systems.

Keywords: Guaranteed control · Phase field equations

1 Introduction

The control theory for distributed systems has been intensively developed in
recent time as a part of mathematical control theory. At present, there exists
a number of monographs devoted to control problems for distributed systems
[1–3]. As a rule, the emphasis is on program control problems in the case when
all system’s parameters are precisely specified. Along with this, the investigation
of control problems for systems with uncontrollable disturbances (the problems
of game control) is also reasonable. Similar problems have been poorly inves-
tigated. In the early 70es, N.N. Krasovskii suggested an effective approach to
solving game (guaranteed) control problems, which is based on the formalism
of positional strategies. The detailed description of this approach for dynamical
systems described by ordinary differential equations is given in [4]. The goal of
the present work is to illustrate possibilities of this approach for investigating a
game problem for systems described by the phase field equations.

We consider a system modeling the solidification process and governed by
the phase field equations (introduced in [5])

∂

∂t
ψ + l

∂

∂t
ϕ = kΔLψ + Bu − Cv in Q = Ω × (t0, ϑ],

τ
∂

∂t
ϕ = ξ2ΔLϕ + g(ϕ) + ψ, ϑ = const < +∞,

(1)
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with the boundary condition ∂
∂nψ = ∂

∂nϕ = 0 on ∂Ω × (t0, ϑ] and the initial
condition ψ(t0) = ψ0, ϕ(t0) = ϕ0 in Ω. Here, Ω ⊂ R

n is a bounded domain
with the sufficiently smooth boundary ∂Ω, ΔL is the Laplace operator, ∂/∂n
is the outward normal derivative, (U, | · |U ) and (V, | · |V ) are Banach spaces,
B ∈ L(U ;H) and C ∈ L(V ;H) are linear continuous operators, H = L2(Ω),
and the function g(z) is the derivative of a so-called potential G(z). We assume
that g(z) = az + bz2 − cz3.

Systems of form (1) have been investigated by many authors. In what follows,
for the sake of simplicity, we assume that k = ξ = τ = c = 1. Further, we assume
that the following conditions are fulfilled: (A1) the domain Ω ⊂ R

n, n = 2, 3,
has the boundary of C2-class; (A2) the coefficients a and b are elements of the
space L∞(T ×Ω), T = [t0, ϑ], and vrai sup c(t, η) > 0 for (t, η) ∈ [t0, ϑ]×Ω; (A3)
the initial functions ψ0 and ϕ0 are such that {ψ0, ϕo} ∈ R = {ψ,ϕ ∈ W 2

∞(Ω) :
∂

∂nψ = ∂
∂nϕ = 0 on ∂Ω}.

Introduce the notation: W 2,1
p (Q) =

{
u | u, ∂u

∂ηi
, ∂2u

∂ηi∂ηj
, ∂u

∂t ∈ Lp(Q)
}

for
p ∈ [1,∞) is the standard Sobolev space with the norm ‖u‖W 2,1

p (Q); (·, ·)H

and | · |H are the scalar product and the norm in H, respectively. Let
some initial state x0 = {ψ0, ϕ0} and functions u(·) ∈ L∞(T ;U) and
v(·) ∈ L∞(T ;V ) be fixed. A solution of system (1), x(·; t0, x0, u(·), v(·)) =
{ψ(·; t0, ψ0, u(·), v(·)), ϕ(·; t0, ϕ0, u(·), v(·))}, is a unique function x(·) =
x(·; t0, x0, u(·), v(·)) ∈ V

(1)
T = V1 × V1, V1 = W 2,1

2 (Q) satisfying relations (1).
By virtue of the corresponding embedding theorem, without loss of generality,
one can assume that the space V

(1)
T is embedded into the space C(T ;H × H).

Therefore, the element x(t) = {ψ(t), ϕ(t)} ∈ H × H is the phase state of system
(1) at the time t. The following theorem takes place

Theorem 1. [6, p. 25, Assertion 5] Let conditions (A1)–(A3) be fulfilled. Then
for any u(·) ∈ L∞(T ;U) and v(·) ∈ L∞(T ;V ) there exists a unique solution of
system (1).

The paper is devoted to the investigation of the game control problem.
Let us give the informal formulation of this problem. Let a uniform net Δ =
{τi}m

i=0, τi = τi−1 + δ, τ0 = t0, τm = ϑ with a diameter δ = τi − τi−1 be
fixed on a given time interval T . Let a solution of system (1) be unknown. At
the times τi ∈ Δ, a part of the phase states x(τi) (namely φ(τi)) is inaccurately
measured. The results of measurements ξh

i ∈ H, i ∈ [1 : m − 1], satisfy the
inequalities

|ξh
i − φ(τi)|H ≤ h. (2)

Here, h ∈ (0, 1) is a level of informational noise. Let the following quality criterion

be given: I(x(·), u(·)) = σ(x(ϑ)) +
ϑ∫

t0

χ(t, x(t), u(t)) dt, where σ : H × H → R

and χ : T × H × H × U → R are given functions satisfying the local Lipschitz
conditions. Let also a prescribed value of the criterion, number I∗, be fixed.
The control problem under consideration consists in the following. There are
two players-antagonists controlling system (1) by means of u and v, respectively.
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One of them is called a partner; another, an opponent. Let P ⊂ U and E ⊂ V be
given convex bounded and closed sets. The problem undertaken by the partner is
as follows. It is necessary to construct a law (a strategy) for forming the control
u (with values from P ) by the feedback principle (on the base of measurements
of ϕ(τi)) in order to provide the prescribed value of the quality criterion for any
(unknown) realization v = v(·).

To form the control u providing the solution of the problem, along with the
information on the “part” of coordinates of the solution of system (1) (namely, on
the values ξh

i satisfying inequalities (2)), it is necessary to obtain some additional
information on the coordinate ψ(·), which is missing. To get such a piece of
information during the control process, it is reasonable, following the approach
developed in [7–9], to introduce an auxiliary controlled system. This system is
described by a parabolic equation (the form is specified below). The equation has
an output w∗(t), t ∈ T , and an input ph(t), t ∈ T . The input ph(·) is some new
auxiliary control; it should be formed by the feedback principle in such a way that
ph(·) “approximates” the unknown coordinate ψ(·) in the mean square metric.
Thus, along with the block of forming the control in the real system (it is called
an controller), we need to incorporate into the control contour one more block
(it is called an identifier) allowing to reconstruct the missing coordinate ψ(·) in
real time. Note that, in essence, the identifier block solves a dynamical inverse
problem, namely, the problem of (approximate) reconstruction of the unknown
coordinate ψ(·). In he recent time, the theory of inverse problems for distributed
systems has been intensively developed. Among the latest investigations, it is
possible to mark out the research [10].

2 Problem statement

Before passing to the problem formulation, we give some definitions. Further-
more, we denote by ua,b(·) the function u(t), t ∈ [a, b], considered as a whole.
The symbol Pa,b(·) stands for the restriction of the set PT (·) onto the segment
[a, b] ⊂ T . Any strongly measurable functions u(·) : T → P and v(·) : T → E
are called program controls of the partner and opponent, respectively. The sets
of all program controls of the partner and opponent are denoted by the sym-
bols PT (·) and ET (·) : PT (·) = {u(·) ∈ L2(T ;U) : u(t) ∈ P a.e. t ∈ T},
ET (·) = {v(·) ∈ L2(T ;V ) : v(t) ∈ E a.e. t ∈ T}. Elements of the product
T ×H are called positions, H = H ×H ×R×H ×H ×R. Any function (perhaps,
multifunction) U : T × H → P is said to be a positional strategy of the partner.
The positional strategy corrects the controls at discrete times given by some
partition of the interval T . Any function V : T × H × H → H is said to be a
strategy of reconstruction. The strategy V is formed in order to reconstruct the
unknown component ψ(·).

Consider the following ordinary differential equation

q̇(t) = χ(t, x(t), u(t)), q(t0) = 0. (3)

Introducing this new variable q, we reduce the control problem of Bolza type to a
control problem with a terminal quality criterion of the form I = σ(x(ϑ))+q(ϑ).
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In this case, the controlled system consists of phase field Eq. (1) and ordinary
differential Eq. (3).

The scheme of an algorithm for solving the problem undertaken by the part-
ner is as follows. In the beginning, auxiliary systems M1 and M2 (models) are
introduced. The system M1 has an input u∗(·) and an output w(·); the sys-
tem M2, an input ph(·) and an output w∗(·), respectively. The model M2 with
its control law V forms the identifier, whereas the model M1 and system (1)
(with their control laws) form the controller. The process of synchronous feed-
back control of systems (1), (3), M1, and M2 is organized on the interval T .
This process is decomposed into m − 1 identical steps. At the ith step car-
ried out during the time interval [τi, τi+1), the following actions are fulfilled.
First, at the time τi, according to some chosen rules V and U , the elements
ph

i ∈ V(τi, ξ
h
i , w∗(τi)), uh

i ∈ U(τi, ξ
h
i , ph

i , ψh
i , w(τi)) are calculated. Here, ψh

i is
the result of measuring q(τi). Then (till the moment τi+1), the control ph(t) = ph

i ,
τi ≤ t < τi+1, is fed onto the input of the system M2; the control uh(t) = uh

i ,
τi ≤ t < τi+1, onto the input of system (1), (3). Under the action of these
controls, as well as of the given control u∗(t), τi ≤ t < τi+1, and the unknown
control of the opponent v(t), τi ≤ t < τi+1, the states x(τi+1), q(τi), w(τi+1),
and w∗(τi+1) are realized at the time τi+1. The procedure stops at the time ϑ.

Let models M1 and M2 with phase trajectories w(·) and w∗(·) be fixed.
A solution x(·) of system (1) starting from an initial state (t∗, x∗) and cor-
responding to piecewise constant controls uh(·) and ph(·) (formed by the
feedback principle) and to a control vt∗,ϑ(·) ∈ Et∗,ϑ(·) is called an (h,Δ)-
motion xh

Δ,w(·) = xh
Δ,w(·; t∗, x∗,U ,V, vt∗,ϑ(·)). This motion is generated by

the positional strategies U and V. Thus, the motions xh
Δ,w(·), qh

Δ(·),w(·), and
w∗(·) are formed simultaneously. So, for t ∈ [τi, τi+1), we define xh

Δ,w(t) =
x(t; τi, x

h
Δ,w(τi), uh

τi,τi+1
(·), vτi,τi+1(·)), qh

Δ(t) = q(t; τi, q
h
Δ(τi), uh

τi,τi+1
(·)),

w(t) = w(t; τi, w(τi), u∗
τi,τi+1

(·)), w∗(t) = w∗(t; τi, w∗(τi), ph
τi,τi+1

(·)), where

uh(t) = uh
i ∈ U(τi, ξ

h
i , ph

i , qh(τi), w(τi)), ph(t) = ph
i ∈ V(τi, ξ

h
i , w∗(τi)) (4)

for t ∈ [τi, τi+1),

i ∈ [i(t∗) : m − 1], |ξh
i − φh

Δ,w(τi)|H ≤ h, |ψh
i − gh

Δ(τi)| ≤ h, (5)

i(t∗) = min{i : τi > t∗}, uh(t) = uh
∗ ∈ P, ph(t) = ph

∗ ∈ H for t ∈ [t∗, τi(t∗)).

The set of all (h,Δ)-motions is denoted by Xh(t∗, x∗,U ,V,Δ,w).

Problem. It is necessary to construct a positional strategy U : T ×H → P of the
partner and a positional strategy V : T ×H ×H → H of reconstruction with the
following properties: whatever a value ε > 0 and a disturbance vT (·) ∈ ET (·),
one can find (explicitly) numbers h∗ > 0 and δ∗ > 0 such that the inequalities

|I(xh
Δ,w(·), uh

T (·)) − I∗| ≤ ε ∀xh
Δ,w(·) ∈ Xh(t0, x0,U ,V,Δ,w) (6)

are fulfilled uniformly with respect to all measurements ξh
i and ψh

i with proper-
ties (5), if h ≤ h∗ and δ = δ(Δ) ≤ δ∗.
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3 Algorithm for Solving the Problem

To solve the Problem, we use ideas from [4], namely, the method of a priori
stable sets. In our case, this method consists in the following. Let a trajectory
of model M1, w(·), possessing the property σ(w1(ϑ)) + w2(ϑ) = I∗ be known.
Then, a feedback strategy U providing tracking the prescribed trajectory of M1

by the trajectory of real system (1) is constructed. This means that the (h,Δ)-
motion xh

Δ(·) formed by the feedback principle (see (4)) remains at a “small”
neighborhood of the trajectory w(·) during the whole interval T . This property
of the (h,Δ)-motion allows us to conclude that the chosen strategy solves the
considered control problem.

Let us pass to the realization of this scheme. Define Φ(t, x, u, v) = {Bu −
Cv, χ(t, x, u)} ∈ H × R, Φu(t, x, v) =

⋃
u∈P

Φ(t, x, u, v), H∗(t;x) =
⋂

v∈E

Φu(t, x, v),

H∗(·;x) = {u(·) ∈ L2(T ;H × R) : u(t) ∈ H∗(t;x) for a. a. t ∈ T}. As a model
M1, we take the system including two subsystems, i.e., the phase field equation

∂

∂t
w(1) + l

∂

∂t
w(2) = ΔLw(1) + u1 in Ω × (t0, ϑ], (7)

∂

∂t
w(2) = ΔLw(2) + g(w(2)) + w(1)

with the boundary condition ∂
∂nw(1) = ∂

∂nw(2) = 0 on ∂Ω × (t0, ϑ] and the
initial condition w(1)(t0) = ψ0, w(2)(t0) = ϕ0 in Ω , as well as the ordinary
differential equation

ẇ(3)(t) = u2(t), w(3) ∈ R, w(3)(0) = 0. (8)

By the symbol w(·), we denote the solution of system (7), (8). Then, the model
M1 has the control u(·) = {u1(·), u2(·)}. As a model M2, we use the equation

∂

w ∗
∂t = ΔLw∗ + ph + g(w∗) in Ω × (t0, ϑ] (9)

with the boundary condition ∂w∗
∂n = 0 on ∂Ω×(t0, ϑ] and the initial condition

w∗(t0) = ϕ0 in Ω.

Condition 1. There exists a control u(·) = u∗(·) = {u∗
1(·), u∗

2(·)} ∈
H(t;w(1)(t), w(2)(t)) for a.a. t ∈ T such that I∗ = σ(w(1)(ϑ)) + w(2)(ϑ).

The strategies U and V (see (4)) are defined in such a way:

U(t, ξ, p, ψ, w) = arg min{L(u, y) + (ψ − w(3))χ(t, ξ, p, u) : u ∈ P}, (10)

V(t, ξ, w∗) = arg min{l(t, α, u, s) : u ∈ Ud}, (11)

where w = {w(1), w(2), w(3)}, L(u, y) = (−y,Bu)H , y = w(1) − p + l(w(2) − ξ),
l(t, α, u, s) = exp(−2b∗t)(s, u)H + α|u|2H , s = w∗ − ξ, b∗ = |a + 1/3b|L∞(Q),
α = α(h), Ud = {p(·) ∈ L2(T ;H) : |p(t)|H ≤ d for a.a. t ∈ T}, d ≥
supt∈T {|ψ(t; t0, x0, u(·), v(·))|H : u(·) ∈ PT (·), v(·) ∈ ET (·)}.
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Condition 2. Let h, δ(h), and α(h) satisfy the conditions: α(h) → 0, δ(h) →
0, (h + δ(h))α−1(h) → 0 as h → 0.

Let us pass to the description of the algorithm for solving the Problem.
Namely, we describe the procedure of forming the (h,Δ)-motion xh

Δ,w(·) =
{ψh

Δ,w(·), ϕh
Δ,w(·)} and trajectory gh

Δ(·) corresponding to some fixed partition
Δ and the strategies U and V, see (10) and (11). Before the algorithm starts,
we fix a value h ∈ (0, 1), a function α = α(h): (0, 1) → (0, 1), and a partition
Δh = {τh,i}mh

i=0 with diameter δ = δ(h) = τi+1−τi, τi = τh,i, τh,0 = t0, τh,mh
= ϑ.

The work of the algorithm is decomposed into mh −1 identical steps. We assume
that

uh(t) = uh
0 ∈ U(t0, ξh

0 , ph
0 , 0, w(t0)), ph(t) = ph

0 ∈ V(t0, ξh
0 , ϕ0)

(|ξh
0 − ϕ0|H ≤ h) on the interval [t0, τ1). Under the action of these piecewise-

constant controls as well as of an unknown disturbance vt0,τ1(·), the
(h,Δ)-motion {xh

Δ,w(·)}t0,τ1 = {ψh
Δ,w(·; t0, ψ0, u

h
t0,τ1(·), vt0,τ1(·)), ϕh

Δ,w(·, t0, ϕ0,

uh
t0,τ1(·), vt0,τt(·))}t0,τ1 of system (1), the trajectory {qh

Δ(·)}t0,τ = {q(·; t0, q(t0)),
uh

t0,τ1(·))}t0,τ1 of Eq. (3), the trajectory {w∗(·)}t0,τ1 = {w∗(·; t0, φ0, p
h
t0,τ1(·))}t0,τ1

of the model M2, and the trajectory {w(·)}t0,τ1 = {w(·; t0, x0, u
∗
t0,τ1(·))}t0,τ1 of

the model M1 are realized. At the time t = τ1, we determine uh
1 and ph

1 from the
conditions

uh
1 ∈ U(τ1, ξh

1 , ph
1 , ψh

1 , w(τ1)), ph
1 ∈ V(τ1, ξh

1 , w∗(τ1))

(|ξh
1 − ϕh

Δ,w(τ1)|H ≤ h, |ψh
1 − gh

Δ(τ1)| ≤ h), i.e., we assume that uh(t) = uh
1 and

ph(t) = ph
1 for t ∈ [τ1, τ2). Then, we calculate the realization of the (h,Δ)-motion

{xh
Δ,w(·)}τ1,τ2 = {ψh

Δ,w(·; τ1, ψh
Δ,w(τ1), uh

τ1,τ2(·), vτ1,τ2(·)),
ϕh

Δ,w(·; τ1, ϕh
Δ,w(τ1), uh

τ1,τ2(·), vτ1,τ2(·))}τ1,τ2 ,

the trajectory {qh
Δ(·)}τ1,τ2 = {q(·; τ1, qh

Δ(τ1), ph
τ1,τ2(·))}τ1,τ2 of Eq. (3), the tra-

jectory {w∗(·)}τ1,τ2 = {w∗(·; τ1, w∗(τ1), ph
τ1,τ2(·))}τ1,τ2 of the model M2, and the

trajectory {w(·)}τ1,τ2 = {w(·; τ1, w(τ1), u∗
τ1,τ2(·)}τ1,τ2 of the model M1.

Let the (h,Δ)-motion xh
Δ,w(·), the trajectory qh

Δ(·) of Eq. (3), the trajectory
w∗(·) of the model M2, and the trajectory w(·) of the model M1 be defined on
the interval [t0, τi]. At the time t = τi, we assume that

uh
i ∈ U(τi, ξ

h
i , ph

i , ψh
i , w(τi)), ph

i ∈ V(τi, ξ
h
i , w∗(τi)) (12)

(|ξh
i − ϕh

Δ,w(τi)|H ≤ h, |ψh
i − gh

Δ(τi)| ≤ h), i.e., we set uh(t) = uh
i and ph(t) =

ph
i for t ∈ [τi, τi+1). As a result of the action of these controls and an unknown

disturbance vτi,τi+1(·), the (h,Δ)-motion

{xh
Δ,w(·)}τi,τi+1 = {ψh

Δ,w(·; τi, ψ
h
Δ,w(τi), uh

τi,τi+1
(·), vτi,τi+1(·)),

ϕ(·; τi, ϕ
h
Δ,w(τi), uh

τi,τi+1
(·), vτi,τi+1(·))}τi,τi+1 ,
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the trajectory {qh
Δ(·)}τi,τi+1 = {q(·; τi, q

h
Δ(τi), ph

τi,τi+1
(·)}τi,τi+1 of Eq. (3), the

trajectory {w∗(·)}τi,τi+1 = {w∗(·; τi, w∗(τi), ph
τi,τ1+1

(·))}τi,τi+1 of the model M2,
and the trajectory {w(·)}τi,τi+1 = {w(·; τi, w(τi), u∗

τi,τi+1
(·))}τi,τi+1 of the model

M1 are realized on the interval [τi, τi+1]. This procedure stops at the time ϑ.

Theorem 2. Let Conditions 1 and 2 be fulfilled. Let also the models M1 and
M2 be specified by relations (7), (8), and (9), respectively. Then, the strategies
U and V of form (10) and (11) solve the Problem.

Proof. To prove the theorem, we estimate the variation of the functional

Λ(t, xh
Δ,w(·), qh

Δ(·), w(·)) = Λ0(xh
Δ,w(t), qh

Δ(t), w(t))

+ 0.5

t∫

0

{∫

Ω

|∇πh(�, η)|2 dη + l2
∫

Ω

|∇νh(�, η)|2 dη
}

d�,

where xh
Δ,w(·) = {ψh

Δ,w(·), φh
Δ,w(·)}, w(·) = {w(1)(·), w(2)(·), w(3)(·)}, πh(t) =

w(1)(t) − ψh
Δ,w(t), νh(t) = w(2)(t) − ϕh

Δ,w(t), gh(t) = πh(t) + lνh(t),
Λ1(xh

Δ,w(t), w(t)) = 0.5|gh(t)|2H + 0.5l2|νh(t)|2H , λ(qh
Δ(t), w(3)(t)) = 0.5|qh

Δ(t) −
w(3)(t)|2, Λ0(xh

Δ,w(t), qh
Δ(t), w(t)) = Λ1(xh

Δ,w(t), w(t)) + λ(qh
Δ(t), w(3)(t). It is

easily seen that the functions πh(·) and νh(·) are solutions of the system

∂πh(t, η)
∂t

+ l
∂νh(t, η)

∂t
= ΔLπh(t, η) + u∗

1(t, η) − (Buh)(t, η) + (Cv)(t, η), (13)

∂νh(t, η)
∂t

= ΔLνh(t, η) + Rh(t, η)νh(t, η) + πh(t, η) in Ω × (t0, ϑ],

with the initial condition πh(t0) = νh(t0) = 0 in Ω and with the boundary condi-

tion
∂πh

∂n
=

∂νh

∂n
= 0 on ∂Ω × (t0, ϑ]. Here, Rh(t, η) = a(t, η)+b(t, η)(w(1)(t, η)+

ϕh
Δ,w(t, η)) − ((w(1)(t, η))2 + w(1)(t, η)ϕh

Δ,w(t, η) + (ϕh
Δ,w)2(t, η)). Multiplying

scalarly the first equation of (13) by gh(t), and the second one, by νh(t), we
obtain

(gh(t), gh
t (t))H +

∫

Ω

{|∇πh(t, η)|2 + l∇πh(t, η)∇νh(t, η)}dη

= (gh(t), u∗
1(t) − Buh(t) + Cv(t))H , (14)

(νh(t), νh
t (t))H +

∫

Ω

|∇νh(t, η)|2 dη ≤ (πh(t), νh(t))H + b|νh(t)|2H for a.a. t ∈ T.

Here, we use the inequality vrai max
(t,η)∈T×Ω

{a(t, η)+b(t, η)(v1+v2)−(v2
1+v1v2+v2

2)} ≤
b, which is valid for any v1, v2 ∈ R. It is evident that the inequality∫

Ω

l(∇πh(t, η),∇νh(t, η)) dη ≥ −0.5
∫

Ω

{|∇πh(t, η)|2 + l2|∇νh(t, η)|2}dη (15)
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is fulfilled for a.a. t ∈ T . Let us multiply the first inequality of (14) by l2 and
add to the second one. Taking into account (15), we have for a.a. t ∈ T

(gh(t), gh
t (t))H +l2(νh(t), νh

t (t))H +0.5
∫

Ω

{|∇πh(t, η)|2+l2|∇νh(t, η)|2}dη (16)

≤ (gh(t), u∗
1(t) − Buh(t) + Cv(t))H + l2(πh(t), νh(t))H + bl2|νh(t)|2H .

Note that πh(t) = gh(t) − lνh(t). In this case, for a.a. t ∈ T

(πh(t), νh(t))H + b|νh(t)|2H = (gh(t) − lνh(t), νh(t))H + b|νh(t)|2H (17)

= (gh(t), νh(t))H + (b − l)|νh(t)|2H ≤ 0.5(|gh(t)|2H + (0.5 + |b − l|)|νh(t)|2H .

Combining (16) and (17), we obtain

d
dt

Λ0(xh
Δ,w(t), qh

Δ(t), w(t)) + 0.5
∫

Ω

{|∇πh(t, η)|2 + l2|∇νh(t, η)|2}dη (18)

≤ 2l2λ2Λ0(xh
Δ,w(t), qh

Δ(t), w(t)) + γ
(1)
t + γ

(2)
t ,

where γ
(1)
t = (qh

Δ(t)−w(3)(t))(χ(t, xh
Δ,w(t), uh(t))−u∗

2(t)), γ
(2)
t = (gh(t), u∗

1(t)−
Buh(t) + Cv(t))H for a.a. t ∈ T . For a.a. t ∈ δi = [τi, τi+1], it is easily seen that

γ
(1)
t ≤ (qh

Δ(τi) − w(3)(τi))(χ(t, xh
Δ,w(t), uh(t) − u∗

2(t)) + k0(t − τi)1/2, (19)

|χ(t, xh
Δ,w(t), uh(t))−χ(τi, ξ

h
i , ph

i , uh(t))| ≤ k1{h+(t− τi)1/2 + |ph
i −ψh

Δ,w(t)|2H}.
(20)

From (19) and (20) we have for a.a. t ∈ δi

γ
(1)
t ≤ (qh

Δ(τi) − w(3)(τi))(χ(τi, ξ
h
i , ψh

i , uh(t)) − u∗
2(t)) (21)

+k2|qh
Δ(τi) − w(3)(τi)|{h + (t − τi)1/2 + |ph

i − ψh
Δ,w(t)|H}.

Estimate the last term in the right-hand side of inequality (18). For a.a. t ∈
[τi, τi+1]

|gh(t) − yh
i |H = |πh(t) + lνh(t) − yh

i |H ≤ λ1,i(t) + λ2,i(t), (22)

where yh
i = w(1)(τi)−ph

i −l(w(2)(τi)−ξh
i ), λ1,i(t) = |w(1)(t)−ψh

Δ,w(t)−w(1)(τi)+
ph

i |H , λ2,i(t) = l|w(2)(t) − ϕh
Δ,w(t) − w(2)(τi) + ξh

i |H . For a.a. t ∈ δi = [τi, τi+1],

it is easily seen that λ1,i(t) ≤ |ph
i − ψh

Δ,w(t)|H +
t∫

τi

|ẇ(1)(τ)|H dτ , λ2,i(t) ≤ lh +

l
t∫

τi

{|ϕ̇h
Δ,w(τ)|H + |ẇ(2)(τ)|H}dτ . From this equation and (22), for a.a. t ∈ δi, it

follows that

|gh(t)−yh
i |H ≤ lh+

t∫

τi

{l|ϕ̇h
Δ,w(τ)|H+|ẇ(1)(τ)|H+|ẇ(2)(τ)|H}dτ+|ph

i −ψh
Δ,w(t)|H .

(23)
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By virtue of (11), taking into account results of [8,9], from estimate (23) we
derive

m−1∑
i=0

τi+1∫

τi

M(t; τi) dt ≤ k3(h+δ)+k4

ϑ∫

t0

|ph(τ)−ψh
Δ,w(τ)|H dτ ≤ k5ν

1/2(h), (24)

where M(t; τi) = |gh(t) − yh
i |H{|Buh

i |H + |Cv(t)|H + |u∗
1(t)|H} for a.a. t ∈ δi,

ν(h) = (h + δ(h) + α(h))1/2 + (h + δ(h))α−1(h). Note that, for a.a. t ∈ δi,

γ
(2)
t ≤ (yh

i , u∗
1(t) − Buh

i + Cv(t))H + M(t; τi). (25)

Let the symbol (·, ·)H×R denote the scalar product in the space H × R. Let us
define elements ve

i from the conditions

inf
u∈P

(si, Φ(τi, p
h
i , ξh

i , u, ve
i ))H×R ≥ sup

v∈E
inf
u∈P

(si, Φ(τi, ξ
h
i , u, v))H×R − h, (26)

where Φ(τi, p
h
i , ξh

i , uh
i , v(t)) = {Buh

i − Cv(t), χ(τi, ξ
h
i , ph

i , uh
i )}, si = {−yh

i , ψh
i −

w(3)(τi)}. It is obvious (see Condition 1) that u∗(t) ∈ H(t, w(1)(t), w(2)(t)) ⊂⋃
u∈P

Φ(t, w(1)(t), w(2)(t), u, ve
i ) for a. a. t ∈ [τi, τi+1). Then, for a.a. t ∈ δi, there

exists a control u(1)(t) ∈ P such that

Φ(t, w(1)(t), w(2)(t), u(1)(t), ve
i ) = u∗(t) for a. a. t ∈ [τi, τi+1]. (27)

Using the rule of definition of the strategy U , we deduce that

(si, Φ(τi, p
h
i , ξh

i , uh
i , v(t)))H×R ≤ inf

u∈P
sup
v∈E

(si, Φ(τi, p
h
i , ξh

i , u, v))H×R + h. (28)

Here (see (12)), uh
i ∈ U(τi, ξ

h
i , ph

i , ψh
i , w(τi)); vτi,τi+1(·) is an unknown realization

of the control of the opponent. In turn, from (26) we have

sup
v∈E

inf
u∈P

(si, Φ(τi, p
h
i , ξh

i , u, v))H×R ≤ inf
u∈P

(si, Φ(τi, p
h
i , ξh

i , u, ve
i ))H×R + h. (29)

Moreover, it is evident that the equality

inf
u∈P

sup
v∈E

(si, Φ(τi, p
h
i , ξh

i , u, v))H×R = sup
v∈E

inf
u∈P

(si, Φ(τi, p
h
i , ξh

i , u, v))H×R (30)

is valid. From (28)–(30) we have

(si, Φ(τi, p
h
i , ξh

i , uh
i , v(t)))H×R ≤ inf

u∈P
(si, Φ(τi, p

h
i , ξh

i , u, ve
i ))H×R + 2h (31)

≤ (si, Φ(t, ph
i , ξh

i , u(1)(t), ve
i ))H×R + 2h + L|ψh

i − w(3)(τi)|(t − τi).

Here, L is the Lipschitz constant of the function χ(·) in the corresponding
domain. In this case, for a.a. t ∈ δi, it follows from (27), (31) that

(si, Φ(τi, p
h
i , ξh

i , uh
i , v(t)) − u∗(t))H×R (32)
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≤ 2h + L|ψh
i − w(3)(τi)|{t − τi + |ξh

i − w(1)(t)|H + |ph
i − w(2)(t)|H}.

By virtue of (32) and (21), for the interval [τi, τi+1], we derive

γ
(1)
t + γ

(2)
t (33)

≤ π∗
i (t) + k6{h2 + t − τi + Λ0(xh

Δ,w(t), qh
Δ(t), w(t)) + |ph

i − ψh
Δ,w(t)|2H},

where
π∗

i (t) = (si, Φ(τi, p
h
i , ξh

i , uh
i , v(t)) − u∗(t))H×R.

We deduce from inequalities (18) and (33) that

dΛ(t, xh
Δ,w(·), qh

Δ(·), w(·))
dt

≤ M(t; τi) (34)

+k6Λ(t, xh
Δ,w(·), qh

Δ(·), w(·)) + k7{h2 + t − τi + |ph
i − ψh

Δ,w(t)|2H} for a.a. t ∈ δi.

Using (34) and (24), by virtue of the Gronwall lemma, we obtain for t ∈ T

Λ(t, xh
Δ,w(·), qh

Δ,w(·), w(·)) ≤ k8

m−1∑
i=0

{ τi+1∫

τi

M(t; τi) dt + δ(h2 + δ)
}

≤ k9ν
1/2(h).

The statement of the theorem follows from the last inequality.
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Abstract. In the present work we consider a frictional contact model
with normal compliance. Firstly, we discuss the weak solvability of the
model by means of two variational approaches. In a first approach the
weak solution is a solution of a quasivariational inequality. In a second
approach the weak solution is a solution of a mixed variational problem
with solution-dependent set of Lagrange multipliers. Nextly, the paper
focuses on the boundary optimal control of the model. Existence results,
an optimality condition and some convergence results are presented.

Keywords: Contact model · Friction · Normal compliance · Weak
solutions · Optimal control · Optimality condition · Convergences

1 Introduction

The present paper focuses on the weak solvability and the boundary optimal
control of the following contact model.

Problem 1. Find a displacement field u : Ω → R
3 and a stress field σ : Ω → S

3

such that

Div σ + f 0 = 0 in Ω,

σ = Fε(u) in Ω,

u = 0 on Γ1,

σν = f 2 on Γ2,

−σν = pν(uν − ga) on Γ3,

‖στ‖ ≤ pτ (uν − ga),
στ = − pτ (uν − ga) uτ

‖uτ ‖ if uτ �= 0

}
on Γ3.
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Notice that Ω is a bounded domain of R
3 with smooth enough boundary,

partitioned in three measurable part Γ1, Γ2 and Γ3; uν = u · ν, uτ = u − uνν,
σν = (σν) · ν, στ = σν − σνν, “·” denotes the inner product of two vectors, ‖ · ‖
denotes the Euclidean norm, ν is the unit outward normal vector.

Problem 1 is a contact problem with the normal compliance condition, asso-
ciated to the Coulomb’s law of dry friction. A normal compliance condition was
firstly proposed in [17]. Then, such a contact condition was used in many models,
see e.g. the papers [2,7–9,20].

In the normal compliance contact condition

−σν = pν(uν − ga) on Γ3,

pν is a nonnegative prescribed function which vanishes for negative argument
and ga > 0 denotes the gap (the distance between the body and the obstacle on
the normal direction). When uν < ga there is no contact and the normal pressure
vanishes. When there is contact then uν −ga is positive and represents a measure
of the interpenetration of the asperities. Then, the normal compliance condition
shows that the foundation exerts a pressure on the body which depends on the
penetration. For details on the physical significance of the model we refer to [22].

The rest of the paper has the following structure. Section 2 is devoted to the
weak solvability of the model by means of two variational approaches. In Sect. 3
we discuss an optimal control problem which consists of leading the stress tensor
as close as possible to a given target, by acting with a control on a part of the
boundary.

There are several works concerning the optimal control of variational inequal-
ities, see for instance [3,4,6,10,15,16,18,23]. Nevertheless, only few works are
devoted to the optimal control of contact problems, see [1,5,14]. The present
paper adds a new contribution.

2 On the Weak Solvability of the Model

In this section we shall indicate two variational approaches in the study of Prob-
lem 1. Let us make the following assumptions.

Assumption 1. F : Ω×S
3 → S

3, F(x, ε) = (Fijkl(x)εjk) for all ε = (εij) ∈ S
3,

a.e. x ∈ Ω. Fijkl = Fjikl = Fklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ 3. There exists
mF > 0 such that F(x, τ ) : τ ≥ mF‖τ‖2 for all τ ∈ S

3, a.e. x in Ω.

Assumption 2. f0 ∈ L2(Ω)3, f2 ∈ L2(Γ2)3.

Assumption 3. pe : Γ3 × R → R+ (e ∈ {ν, τ}). There exists Le > 0 such that
|pe(x, r1) − pe(x, r2)| ≤ Le |r1 − r2| for all r1, r2 ∈ R a.e. x ∈ Γ3. The mapping
x �→ pe(x, r) is measurable on Γ3, for any r ∈ R and pe(x, r) = 0 for all r ≤ 0,
a.e. x ∈ Γ3.

Assumption 4. ga ∈ L2(Γ3), ga(x) ≥ 0, a.e. x ∈ Γ3.
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Assumption 5. mF > c20(Lν + Lτ ).

Assumption 5 is a smallness assumption which was introduced mainly for mathe-
matical reasons. However, for some materials and frictional contact conditions
we have appropriate constants mF , Lν and Lτ which fulfill Assumption 5. Notice
that “ :” denotes the inner product of two tensors and c0 = c0(Ω, Γ1, Γ3)> 0 is
a “trace constant” such that:

‖v‖L2(Γ3)3 ≤ c0 ‖v‖V for all v ∈ V, (1)

where
V = { v ∈ H1(Ω)3 | v = 0 a.e. on Γ1 }.

In a first approach the weak solution is a solution of a quasivariational
inequality having as unknown the displacement field.

Problem 2. Find a displacement field u ∈ V such that

(Au , v − u)V + j(u , v) − j(u ,u) ≥ (f , v − u)V for all v ∈ V. (2)

Herein,
A : V → V (Au , v)V = (Fε(u), ε(v))L2(Ω)3×3

s
,

j : V × V → R j(u , v) =
∫

Γ3

pν(uν − ga)|vν | dΓ +
∫

Γ3

pτ (uν − ga)‖vτ‖ dΓ,

(f , v)V =
∫

Ω

f 0 · v dx +
∫

Γ2

f 2 · v dΓ. (3)

We have the following existence and uniqueness result.

Theorem 1. Under Assumptions 1–5, Problem 2 has a unique weak solution.

For the proof we refer to Theorem 5.30 in [22].
The second approach is a mixed variational approach. The mixed variational

formulations are related to modern numerical techniques in order to approxi-
mate the weak solutions of contact models. Referring to numerical techniques
for approximating weak solutions of contact problems via saddle point technique,
we send the reader to, e.g., [19,24,25]. The functional frame is the following one.

V = {v ∈ H1(Ω)3 | v = 0 a.e. on Γ1};
S = {w |Γ3 |w ∈ V };
D = S′.

Notice that w |Γ3 denotes the restriction of the trace of the element w ∈ V to
Γ3. Thus, S ⊂ H1/2(Γ3;R3) where H1/2(Γ3;R3) is the space of the restrictions
on Γ3 of traces on Γ of functions of H1(Ω)3. We use the Sobolev-Slobodeckii
norm

‖ζ‖S =
( ∫

Γ3

∫
Γ3

‖ζ(x) − ζ(y)‖2

‖x − y‖3
dsx dsy

)1/2

.
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For each ζ ∈ S, ζν = ζ · ν and ζτ = ζ − ζνν a.e. on Γ3.
Let us consider f ∈ V , see (3), and let us define two bilinear forms a(·, ·) and

b(·, ·) as follows:

a(·, ·) : V × V → R, a(u , v) =
∫

Ω

Fε(u(x )) : ε(v(x )) dx;

b(·, ·) : V × D → R b(v , μ) = 〈μ, v |Γ3〉.
Also, we define a variable set Λ = Λ(ϕ),

Λ(ϕ) = {μ ∈ D | 〈μ, v |Γ3〉
≤

∫
Γ3

(pν(x , ϕν(x ) − ga)|vν(x )| + pτ (x , ϕν(x ) − ga)‖v τ (x )‖)dΓ v ∈ V }.

Notice that 〈·, ·〉 denotes the duality pairing between D and S.
The second variational formulation of Problem 1 is the following one.

Problem 3. Find u ∈ V and λ ∈ Λ(u) ⊂ D such that

a(u , v) + b(v , λ) = (f , v)V for all v ∈ V,

b(u , μ − λ) ≤ 0 for all μ ∈ Λ(u).

In this second approach, a weak solution is a pair consisting of the displacement
field and a Lagrange multiplier related to the friction force.

Theorem 2. Under Assumptions 1–4, Problem 3 has at least one solution.

The proof of Theorem 2, based on the abstract results we have got in [11],
can be found in the very recent paper [12].

Remark 1. Treating the model in the first approach we can prove the existence
and the uniqueness of the weak solution. But, the approximation of the weak
solution is based on a regularization/penalization technique. Treating the model
in the second approach we are led to a generalized saddle point problem. Recall
that, for weak formulations in Contact Mechanics via saddle point problems,
efficient algorithms can be written in order to approximate the weak solution
(see primal-dual active set strategies). But, there are a few open questions here:

– the study of the uniqueness of the weak solution of the mixed variational
formulation Problem 3;

– a priori error estimates; algorithms.

3 Boundary Optimal Control

Let us discuss in this section a boundary optimal control problem related to our
contact problem.

For a fixed function f 0 ∈ L2(Ω)3, we consider the following state problem.
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(PS1) Let f 2 ∈ L2(Γ2)3 (called control) be given. Find u ∈ V such that

(Au , v − u)V + j(u , v) − j(u ,u) ≥
∫

Ω

f 0(x ) · (v(x ) − u(x )) dx (4)

+
∫

Γ2

f 2(x ) · (v(x ) − u(x )) dΓ for all v ∈ V.

According to Theorem 1, for every control f 2 ∈ L2(Γ2)3, the state problem
(PS1) has a unique solution u ∈ V, u = u(f 2). In addition, the following
estimation takes place:

‖u‖V ≤ 1
mF

(‖f 0‖L2(Ω)3 + c0‖f 2‖L2(Γ2)3),

where mF is the constant in Assumption 1 and c0 appears in (1).
Now, we would like to act a control on Γ2 such that the resulting stress σ be

as close as possible to a given target

σd = Fε(ud)

where ud is a given function.
Let Q∞ be the real Banach space

Q∞ = {F = Fijkl | Fijkl = Fjikl = Fklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ 3}
endowed with the norm ‖F‖∞ = max1≤i,j,k,l≤3 ‖Fijkl‖L∞(Ω). According to [22],
page 97,

‖Fτ‖L2(Ω)3×3
s

≤ 3 ‖F‖∞‖τ‖L2(Ω)3×3
s

for all τ ∈ L2(Ω)3×3
s .

Therefore,

‖σ − σd‖L2(Ω)3×3
s

≤ 3 max
1≤i,j,k,l≤ 3

‖Fijkl‖L∞(Ω) ‖u − ud‖V .

Thus, σ and σd will be close to one another if the difference between the functions
u and ud is small in the sense of V −norm.

To give an example of a target of interest, ud, we can consider ud = 0. In
this situation, by acting a control on Γ2, the tension σ is small in the sense of
L2− norm, even if the volume forces f 0 does not vanish in Ω.

Let α, β > 0 be two positive constants and let us define the following func-
tional

L : L2(Γ2)3 × V → R, L(f 2,u) =
α

2
‖u − ud‖2V +

β

2
‖f 2‖2L2(Γ2)3

.

Furthermore, we denote

Vad = {[u , f 2] | [u , f 2] ∈ V × L2(Γ2), such that (4) is verified}.

(POC1) Find [u∗, f ∗
2] ∈ Vad such that L(f ∗

2,u
∗) = min

[u,f 2]∈Vad

{
L(f 2,u)

}
.

A solution of (POC1) is called an optimal pair. The second component of the
optimal pair is called an optimal control.
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Theorem 3. Problem (POC1) has at least one solution (u∗, f∗2).

Let us fix ρ > 0 and f 0 ∈ L2(Ω)3.
We introduce the following regularized state problem.
(PS2) Let f 2 ∈ L2(Γ2)3 (called regularized control) be given. Find u ∈ V

such that

(Au , v − u)V + jρ(u , v) − jρ(u ,u) ≥ (f 0, v − u)L2(Ω)3 (5)
+(f 2, v − u)L2(Γ2)3 for all v ∈ V.

Herein, jρ : V × V → R is defined as follows,

jρ(u , v) =
∫

Γ3

pρ
ν(x , uν(x ) − ga(x ))(

√
(vν(x ))2 + ρ2 − ρ)dΓ

+
∫

Γ3

pρ
τ (x , uν(x ) − ga(x ))(

√
‖v τ (x )‖2 + ρ2 − ρ)dΓ for all u , v ∈ V,

where pρ
e , e ∈ {ν, τ}, satisfies the following assumptions.

Assumption 6 pρ
e : Γ3 ×R → R+. The mapping x �→ pρ

e(x, r) is measurable on
Γ3 for any r ∈ R, and pρ

e(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

Assumption 7 pρ
e(x, ·) ∈ C1(R) a.e. on x ∈ Γ3. There exists Me > 0 such that

|pρ
e(x, r)| ≤ Me for all r ∈ R, a.e. x ∈ Γ3. In addition |∂2 pρ

e(x, r)| ≤ Le for all
r ∈ R, a.e. x ∈ Γ3.

Assumption 8. There exists Ge : R+ → R+ (e ∈ {ν, τ)} such that |pρ
e(x, r) −

pe(x, r)| ≤ Ge(ρ) for all r ∈ R, a.e. x ∈ Γ3 and limρ→0 Ge(ρ) = 0.

Notice that the functional jρ(·, ·) has the following properties:

• for all u , v ∈ V , jρ(u , v) ≥ 0; jρ(u , 0V ) = 0;
• for all u ∈ V, jρ(u , ·) : V → R is a convex and Gâteaux differentiable func-

tional;
• jρ(η1, v2)− jρ(η1, v1)+ jρ(η2, v1)− jρ(η2, v2) ≤ c20(Lν +Lτ )‖η1 − η2‖V ‖v1 −

v2‖V for all η1, η2, v1, v2 ∈ V.
• for all u , v ∈ V , there exists ∇2jρ(u , v) ∈ V such that

lim
h→0

jρ(u , v + hw) − jρ(u , v)
h

= (∇2jρ(u , v),w)V for all w ∈ V.

(∇2jρ(u , v),w)V =
∫

Γ3

pρ
ν(x , uν(x ) − ga(x ))

vν(x )wν(x )√
(vν(x ))2 + ρ2

dΓ

+
∫

Γ3

pρ
τ (x , uν(x ) − ga(x ))

v τ (x ) · w τ (x )√‖v τ (x )‖2 + ρ2
dΓ.
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The regularized state problem has a unique solution uρ ∈ V that depends
Lipschitz continuously on f . This is a straightforward consequence of an abstract
result in the theory of the quasivariational inequalities, see e.g. Theorem 3.7, in
[21].

For every f 2 ∈ L2(Γ2)3, the problem (PS2) has a unique solution u ∈ V,
u = u(f 2). In addition,

‖u‖V ≤ 1
mF

(‖f 0‖L2(Ω)3 + c0‖f 2‖L2(Γ2)3).

There exists an unique z ∈ V such that

(z , v)V =
∫

Ω

f 0 · v dx for all v ∈ V.

Furthermore, there exists an unique y(f 2) ∈ V such that

(y(f 2), v)V =
∫

Γ2

f 2 · v dΓ for all v ∈ V.

Let u ∈ V be the unique solution of (PS2).
Let us define

∂2jρ(u, u) = {ζ ∈ V | jρ(u, v) − jρ(u, u) ≥ (ζ, v − u)V for all v ∈ V }.

Therefore,
z + y(f 2) − Au ∈ ∂2jρ(u ,u).

Since jρ(·, ·) is convex and Gâteaux differentiable in the second argument,
we can write

∂2jρ(u ,u) = {∇2jρ(u ,u)}.

Thus, we are led to the following operatorial equation

Au + ∇2 jρ(u ,u) = z + y(f 2).

Let us define the admissible set,

Vρ
ad = {[u , f 2] | [u , f 2] ∈ V × L2(Γ2)3, such that (5) is verified}.

Using the functional L, we introduce the regularized optimal control problem,
(POC2) Find [ū , f̄ 2] ∈ Vρ

ad such that L(f̄ 2, ū) = min
[u,f 2]∈Vρ

ad

{
L(f 2,u)

}
.

Theorem 4. The problem (POC2) has at least one solution (ū, f̄2).

A solution of (POC2) is called a regularized optimal pair and the second
component f̄ 2 is called a regularized optimal control.

The following result hold true.
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Theorem 5 (An optimality condition). Any regularized optimal control f̄2 ver-
ifies

f̄2 = − 1
β

γ(p(f̄2)),

where γ is the trace operator and p(f̄2) is the unique solution of the variational
equation

α(u(f̄2) − ud,w)V = (p(f̄2), Aw + D2
2jρ(u(f̄2),u(f̄2))w)V for all w ∈ V,

u(f̄2) being the solution of (PS2) with f2 = f̄2.

Herein, for all v ∈ V, writing u instead of u(f̄ 2),

(D2
2jρ(u ,u)v ,w)V =

∫
Γ3

∂2p
ρ
ν(x , uν(x ) − ga(x ))

uν(x )vν(x )wν(x )√
uν(x )2 + ρ2

dΓ

+
∫

Γ3

∂2p
ρ
τ (x , uν(x ) − ga(x ))

uτ (x ) · w τ (x )vν(x )√‖uτ (x )‖2 + ρ2
dΓ

+
∫

Γ3

+pρ
ν(x , uν(x ) − ga(x ))

vν(x )wν(x )ρ2

(uν(x )2 + ρ2)3/2
dΓ

+
∫

Γ3

pρ
τ (x , uν(x ) − ga(x ))

v τ (x ) · w τ (x )(‖uτ‖2 + ρ2) − (uτ · w τ )(uτ · v τ )
(‖uτ (x )‖2 + ρ2)3/2

dΓ.

The main tool in the proof of Theorem 5 is a Lions’s Theorem, which we
recall here for the convenience of the reader.

Theorem 6. Let B be a Banach space, X and Y two reflexive Banach spaces.
Let also be given two C1 functions F : B × X → Y, L : B × X → R. We suppose
that, for all β ∈ B,

(i) There exists a unique ũ(β) such that F (β, ũ(β)) = 0,
(ii) ∂2F (β, ũ(β)) is an isomorphism from X onto Y.
Then, J(β) = L(β, ũ(β)) is differentiable and, for every ζ ∈ B,

dJ

dβ
(β)ζ = ∂1L(β, ũ(β))ζ − 〈p(β), ∂1F (β, ũ(β))ζ〉Y ′,Y ,

where p(β) ∈ Y ′ is the adjoint state, unique solution of
[
∂2F (β, ũ(β))

]∗
p(β) = ∂2L(β, ũ(β)) in X ′.

For the proof of Theorem 6 we refer to, e.g., [1].
Let us indicate in the last part of this section two convergence results. The

first one involves the unique solution of the regularized state problem (PS2) and
the unique solution of the state problem (PS1).
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Theorem 7. Let ρ > 0, f0 ∈ L2(Ω)3 and f2 ∈ L2(Γ2)3 be given. If uρ, u ∈ V
are the solutions of problems (PS2) and (PS1), respectively, then,

uρ → u in V as ρ → 0.

Next, we have a convergence result involving the solutions of the problems
(POC2) and (POC1).

Theorem 8. Let [ūρ, f̄2
ρ] be a solution of the problem (POC2). Then, there

exists a solution of the problem (POC1), [u∗, f∗2] , such that

ūρ → u∗ in V as ρ → 0,

f̄2
ρ

⇀ f ∗
2 in L2(Γ2)3 as ρ → 0.

Theorems 3–8 are new results; their proofs will be published in [13].
Let us mention here some open questions:

• f̄ 2
ρ → f ∗

2 in L2(Γ2)3 as ρ → 0;
• an optimality condition for (PS1);
• to study the boundary optimal control of the model by means of the mixed
variational formulation.

References

1. Amassad, A., Chenais, D., Fabre, C.: Optimal control of an elastic contact problem
involving Tresca friction law. Nonlinear Anal. 48, 1107–1135 (2002)

2. Andersson, L.-E.: A quasistatic frictional problem with normal compliance.
Nonlinear Anal. TMA 16, 347–370 (1991)

3. Barbu, V.: Optimal Control of Variational Inequalities. Pitman Advanced Publish-
ing, Boston (1984)

4. Bonnans, J.F., Tiba, D.: Pontryagin’s principle in the control of semiliniar elliptic
variational inequalities. Appl. Math. Optim. 23(1), 299–312 (1991)

5. Capatina, A., Timofte, C.: Boundary optimal control for quasistatic bilateral fric-
tional contact problems. Nonlinear Anal. Theory Methods Appl. 94, 84–99 (2014)

6. Friedman, A.: Optimal control for variational inequalities. SIAM J. Control Optim.
24(3), 439–451 (1986)

7. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational
Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)
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Systems Research Institute, ul. Newelska 6, 01-447 Warsaw, Poland
andrzej.myslinski@ibspan.waw.pl

Abstract. The paper is concerned with the analysis and the numerical
solution of the multimaterial topology optimization problems for bodies
in unilateral contact. The contact phenomenon with Tresca friction is
governed by the elliptic variational inequality. The structural optimiza-
tion problem consists in finding such topology of the domain occupied by
the body that the normal contact stress along the boundary of the body
is minimized. The original cost functional is regularized using the multi-
phase volume constrained Ginzburg-Landau energy functional. The first
order necessary optimality condition is formulated. The optimal topol-
ogy is obtained as the steady state of the phase transition governed
by the generalized Allen-Cahn equation. The optimization problem is
solved numerically using the operator splitting approach combined with
the projection gradient method. Numerical examples are provided and
discussed.

Keywords: Topology optimization · Unilateral contact problems ·
Phase field regularization · Operator splitting method

1 Introduction

Multimaterial topology optimization aims to find the optimal distribution of sev-
eral elastic materials in a given design domain to minimize a criterion describing
the mechanical or the thermal properties of the structure or its cost under con-
straints imposed on the volume or the mass of the structure [1]. In recent years
multiple phases topology optimization problems have become subject of the
growing interest [1,5,15]. The use of multiple number of phases during design
of engineering structures opens a new opportunities in the design of smart and
advanced structures in material science and/or industry. In contrast to single
material design the use of multiple number of materials extends the design space
and may lead to better design solutions.

Analytical and numerical aspects of the multimaterial structural optimiza-
tion are subject of intensive research (see references in [1,15]). Many methods
including the homogenization method [2], the Solid Isotropic Material Penaliza-
tion (SIMP) method [3] or different methods based on the level set approach
[8,11,12], successful in single material optimization, have been extended to deal
c© IFIP International Federation for Information Processing 2016
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with the multimaterial optimization. The extension of these methods faces sev-
eral challenges. A crucial issue in the solution of the multimaterial optimization
problems is the lack of physically based parametrization of the phases mixture
[1,15]. Although in the literature are proposed different material interpolation
schemes, in general, they may influence the optimization path in terms of the
computational efficiency and the final design. The level set methods can elim-
inate the need of the material interpolation schemes provided that interphase
interfaces are actually tracked explicitly [1]. Among others, in [1] a multima-
terial topology optimization problem for the elliptic equation has been solved
using the level set method. The elasticity tensor has been smeared out using the
signed distance function. In [15] similar optimization problem has been solved
numerically using a generalized Allen–Cahn equation.

The paper is concerned with the structural topology optimization of sys-
tems governed by the variational inequalities. The class of such systems includes
among others unilateral contact phenomenon [9] between the surfaces of the elas-
tic bodies. This optimization problem consists in finding such topology of the
domain occupied by the body that the normal contact stress along the boundary
of the body is minimized. In literature [11] this problem usually is considered
as two-phase material optimization problem with voids treated as one of the
materials. In the paper the domain occupied by the body is assumed to consist
from several elastic materials rather than two materials. Material fraction func-
tion is a variable subject to optimization. The regularization of the objective
functional by the multiphase volume constrained Ginzburg-Landau energy func-
tional is used. The derivative formula of the cost functional with respect to the
material fraction function is calculated and is employed to formulate a necessary
optimality condition for the topology optimization problem. The cost functional
derivative is also used to formulate a gradient flow equation for this functional
in the form of the generalized Allen–Cahn equation governing the evolution of
the material phases. Two step operator splitting approach [15] is used to solve
this gradient flow equation. The optimal topology is obtained as a steady state
solution to this equation. Finite difference and finite element methods are used
as the approximation methods. Numerical examples are reported and discussed.

2 Problem Formulation

Consider deformations of an elastic body occupying two–dimensional bounded
domain Ω with the smooth boundary Γ (see Fig. 1). The body is subject to
body forces f(x) = (f1(x), f2(x)), x ∈ Ω. Moreover, the surface tractions p(x) =
(p1(x), p2(x)), x ∈ Γ , are applied to a portion Γ1 of the boundary Γ . The body
is clamped along the portion Γ0 of the boundary Γ and the contact conditions
are prescribed on the portion Γ2. Parts Γ0, Γ1, Γ2 of the boundary Γ satisfy:
Γi ∩ Γj = ∅, i �= j, i, j = 0, 1, 2, Γ = Γ̄0 ∪ Γ̄1 ∪ Γ̄2.

The domain Ω is assumed to be occupied by s ≥ 2 distinct isotropic elas-
tic materials. Each material is characterized by Young modulus. The voids are
considered as one of the phases, i.e., as a weak material characterized by low
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Fig. 1. Elastic body occupying domain Ω in unilateral contact with the foundation.

value of Young modulus [2]. The materials distribution is described by a phase
field vector ρ = {ρm}s

m=1 where the local fraction field ρm = ρm(x) : Ω → R,
m = 1, ..., s, corresponds to the contributing phase. The phase field approach
allows for a certain mixing between different materials. This mixing is restricted
only to a small interfacial region. In order to ensure that the phase field vec-
tor describes the fractions the following pointwise bound constraints called in
material science the Gibbs simplex [5,15] are imposed on every ρm

αm ≤ ρm ≤ βm, for m = 1, ..., s, and
s∑

m=1

ρm = 1, (1)

where the constants 0 ≤ αm ≤ βm ≤ 1 are given and the summation operator is
understood componentwise. The second condition in (1) ensures that no overlap
and gap of fractions are allowed in the expected optimal domain. Moreover the
total spatial amount of material fractions satisfies

∫
Ω

ρm(x)dx = wm | Ω |, 0 ≤ wm ≤ 1, for m = 1, ..., s, and
s∑

m=1

wm = 1. (2)

The parameters wm are user defined and | Ω | denotes the volume of the domain
Ω. From the equality (1) it results that ρs = 1 − ∑s−1

m=1 ρm and the fraction ρs

may be removed from the set of the design functions. Therefore from now on the
unknown phase field vector ρ is redefined as ρ = {ρm}s−1

m=1. Due to the simplicity
and robustness the SIMP material interpolation model [3,4] is used. Following
this model the elastic tensor A(ρ) = {aijkl(ρ)}2i,j,k,l=1 of the material body is
assumed to be a function depending on the fraction function ρ:

A(ρ) =
s∑

m=1

g(ρm)Am =
s−1∑
m=1

g(ρm)Am + g(1 −
s−1∑
m=1

ρm)As, (3)

with g(ρm) = ρ3m. The constant stiffness tensor Am = {ãm
ijkl}2i,j,k,l=1 character-

izes the m-th elastic material of the body. For detailed discussion of the interpo-
lation of the material elasticity tensor see [1,4,7]. It is assumed, that elements
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aijkl and ãm
ijkl(x), i, j, k, l = 1, 2, m = 1, ..., s, of the elasticity tensors A and Am,

respectively, satisfy [9] usual symmetry, boundedness and ellipticity conditions.
Denote by u = (u1, u2), u = u(x), x ∈ Ω, the displacement of the body and
by σ(x) = {σij(u(x))}, i, j = 1, 2, the stress field in the body. Consider elastic
bodies obeying Hooke’s law, i.e., for x ∈ Ω and i, j, k, l = 1, 2,

σij(u(x)) = aijkl(ρ)ekl(u(x)), ekl(u(x))
def
=

1
2
(uk,l(x) + ul,k(x)), (4)

where uk,l(x) = ∂uk(x)
∂xl

. We use here and throughout the paper the summation
convention over repeated indices [9]. The stress field σ satisfies the system of
equations in the domain Ω [9]

− σij(x),j = fi(x) σij(x),j =
∂σij(x)

∂xj
, x ∈ Ω, i, j = 1, 2. (5)

The following boundary conditions are imposed on the boundary ∂Ω

ui(x) = 0 on Γ0, σij(x)nj = pi on Γ1, i, j = 1, 2, (6)
(uN + v) ≤ 0, σN ≤ 0, (uN + v)σN = 0 on Γ2, (7)

| σT |≤ 1, uT σT + | uT |= 0 on Γ2, (8)

where n = (n1, n2) is the unit outward versor to the boundary Γ . Here uN = uini

and σN = σijninj , i, j = 1, 2, represent [9] the normal components of displace-
ment u and stress σ, respectively. The tangential components of displacement
u and stress σ are given [9] by (uT )i = ui − uNni and (σT )i = σijnj − σNni,
i, j = 1, 2, respectively. | uT | denotes the Euclidean norm in R2 of the tangent
vector uT . A gap between the bodies is described by a given function v.

Let us formulate contact problem (5)–(8) in the variational form. Denote by
Vsp = {z ∈ H1(Ω;R2) : zi = 0 on Γ0, i = 1, 2} and K = {z ∈ Vsp : zN + v ≤
0 on Γ2} the space and the set of kinematically admissible displacements and
by Λ = {ζ ∈ L2(Γ2;R2) : | ζ | ≤ 1} the set of tangential tractions on Γ2.
Variational formulation of problem (5)–(8) has the form: for a given (f, p, ρ) ∈
L2(Ω;R2)×L2(Γ2;R2)×L∞(Ω;Rs−1)∩H1(Ω;Rs−1) find a pair (u, λ) ∈ K ×Λ
satisfying for i, j, k, l = 1, 2

∫
Ω

aijkl(ρ)eij(u)ekl(ϕi − ui)dx −
∫

Ω

fi(ϕi − ui)dx −
∫

Γ1

pi(ϕi − ui)ds +
∫

Γ2

λi(ϕTi − uTi)ds ≥ 0 ∀ϕi ∈ K, (9)
∫

Γ2

(ζi − λi)uTids ≤ 0 ∀ζi ∈ Λ. (10)

The function λ is interpreted as a Lagrange multiplier corresponding to the term |
uT | in equality constraint in (8) [9]. This function is equal to tangent stress along
the boundary Γ2, i.e., λ = −σT|Γ2

and belongs to space H−1/2(Γ2;R2). Here
following [9] function λ is assumed to be more regular, i.e., λ ∈ L2(Γ2;R2). Recall
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from [9,14] under assumptions imposed on the elasticity tensors by standard
arguments for a given (f, p, ρ) ∈ L2(Ω;R2) × L2(Γ2;R2) × L∞(Ω;Rs−1) there
exists a unique solution (u, λ) ∈ K × Λ to the system (9)–(10).

3 Phase Field Based Topology Optimization Problem

Before formulating a structural optimization problem for the system (9)–(10) let
us introduce a set Uρ

ad of the admissible fraction functions:

Uρ
ad = {ρ ∈ L∞(Ω;Rs−1) ∩ H1(Ω;Rs−1) : 1 − βs ≤

s−1∑
m=1

ρm ≤ 1 − αs,

αm ≤ ρm ≤ βm,

∫
Ω

ρmdx = wm | Ω | for m = 1, ..., s − 1}. (11)

The set Uρ
ad is assumed to be nonempty. The aim of the structural optimization

of the bodies in contact is to reduce the normal contact stress responsible for
wear, vibrations of the contacting surfaces or generated noise. The structural
optimization problem with normal contact stress functional is difficult to analyze
it and to solve it numerically. Therefore following [11] we shall use the cost
functional Jη : H1(Ω) → R approximating the normal contact stress on the
contact boundary Γ2

Jη(u(ρ)) =
∫

Γ2

σN (u(ρ))ηN (x)ds, (12)

depending on a given auxiliary bounded function η(x) ∈ Mst. The set Mst =
{η = (η1, η2) ∈ H1(Ω;R2) : ηi ≤ 0 on Ω, i = 1, 2, ‖ η ‖H1(Ω;R2) ≤ 1}.
Functions σN and ηN are the normal components of the stress field σ and the
function η, respectively. The optimization problem consisting in finding such
ρ ∈ Uρ

ad to minimize the functional Jη(u(ρ)) in general has no solutions [2,6,7,9,
14,15]. In order to ensure the existence of optimal solutions let us regularize the
cost functional (12) by adding to it a regularizing term E(ρ) : Uρ

ad → R rather
than the standard perimeter term [2,7,14]

J(ρ, u(ρ)) = Jη(u(ρ)) + E(ρ). (13)

The Ginzburg-Landau free energy functional E(ρ) is expressed as [7,15]

E(ρ) =
s−1∑
m=1

∫
Ω

ψ(ρm)dΩ, ψ(ρm) =
γε

2
| ∇ρm |2 +

γ

ε
ψB(ρm), (14)

where ε > 0 is a real constant governing the width of the intrefaces, γ > 0 is a
real parameter related to the interfacial energy density. Moreover ∇ρm ·n = 0 on
Γ for each m. The function ψB(ρm) = ρ2m(1−ρm)2 is a double-well potential [7]
which characterizes the concentration of the material phases [15]. The structural
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optimization problem for the system (9)–(10) takes the form: find ρ� ∈ Uρ
ad such

that
J(ρ�, u�) = min

ρ∈Uρ
ad

J(ρ, u(ρ)), (15)

where u� = u(ρ�) denotes a solution to the state system (9)–(10) depending
on ρ� ∈ L∞(Ω;Rs−1) ∩ H1(Ω;Rs−1) and the set Uρ

ad is given by (11). The
existence of an optimal solution ρ� ∈ Uρ

ad to the problem (15) follows by classical
arguments (see [5,6,14]).

4 Necessary Optimality Condition

Let us apply the Lagrangian approach to compute the derivative of the cost func-
tional (13) with respect to the function ρ. The Lagrangian L(ρ) = L(ρ, u, λ, pa,
qa) : L∞(Ω;Rs−1) ∩ H1(Ω;Rs−1) ∩ Uρ

ad × H1(Ω;R2) × L2(Γ2;R2) × K1 × Λ1

associated to the problem (15) is expressed for i, j, k, l = 1, 2 as

L(ρ, u, λ, pa, qa) = Jη(u(ρ)) + E(ρ) +
∫

Ω

aijkl(ρ)eij(u)ekl(pa)dx −
∫

Ω

fip
a
i dx −

∫
Γ1

pip
a
i ds +

∫
Γ2

λip
a
Tids +

∫
Γ2

qa
i uTids. (16)

Using the same approach as in proof of [14, Theorem 4.35, p. 219] an adjoint
state (pa, qa) ∈ K1×Λ1 for i, j, k, l = 1, 2 is defined as the solution to the system

∫
Ω

aijkl(ρ)eij(η + pa)ekl(ϕ)dx +
∫

Γ2

qa
i ϕTids = 0 ∀ϕi ∈ K1, (17)

∫
Γ2

ζi(pa
Ti + ηTi)ds = 0 ∀ζi ∈ Λ1. (18)

The sets K1 and Λ1 are given by K1 = {ξ ∈ Vsp : ξN = 0 on Ast } as well
as Λ1 = {ζ ∈ Λ : ζ(x) = 0 on B1 ∪ B2 ∪ B+

1 ∪ B+
2 }, while the coincidence

set Ast = {x ∈ Γ2 : uN + v = 0}. Moreover the other sets are determined
as B1 = {x ∈ Γ2 : λ(x) = −1}, B2 = {x ∈ Γ2 : λ(x) = +1}, B̃i = {x ∈ Bi :
uN (x) + v = 0}, i = 1, 2, B+

i = Bi \ B̃i, i = 1, 2. From [12], [14, Theorems 4.16,
4.27] it follows the mapping ρ → u(ρ) is Gâteaux differentiable. Using (9)–(10)
and (16)–(18) the derivative of the Lagrangian L with respect to ρ is determined
for all ζ ∈ H1(Ω;Rs−1) and i, j, k, l = 1, 2 as

∫
Ω

∂J

∂ρ
(ρ, u)ζdx =

∫
Ω

∂L

∂ρ
(ρ, u, λ, pa, qa)ζdx =

s−1∑
m=1

∫
Ω

[γε∇ρm · ∇ζm +

γ

ε
ψ′

B(ρm)ζm]dx +
∫

Ω

[a′
ijkl(ρm)eij(u)ekl(pa + η) − fi(pa

i + ηi)]ζmdx. (19)

From (1) and (3) it results the derivatives of the function ψB(ρm) and the tensor
element aijkl(ρm) with respect to ρm are equal to ψ′

B(ρm) = 4ρ3m−6ρ2m+2ρm and
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a′
ijkl(ρ) = 3ρ2mãm

ijkl − 3ρ2sã
s
ijkl, respectively. Using (19) the necessary optimality

condition to the optimization problem (15) takes the form [2], [13, Lemma 2.21]:

Theorem 1. Let Uρ
ad be a nonempty closed convex subset of H1(Ω;Rs−1) and

ρ� ∈ Uρ
ad be an optimal solution to the structural optimization problem (15).

Then ∫
Ω

∂J

∂ρ
(ρ�, u�)(ρ − ρ�)dx ≥ 0 ∀ρ ∈ Uρ

ad. (20)

The functions (u�, λ�) ∈ K×Λ and (pa�, qa�) ∈ K1×Λ1 in the derivative formula
(19) denote the solutions to the systems (9)–(10) and (17)–(18) for ρ = ρ�.

Using the orthogonal projection operator PUρ
ad

: L2(Ω;Rs−1) → Uρ
ad from

L2(Ω;Rs−1) on the set Uρ
ad condition (20) can be written [15] in the form: if

ρ� ∈ Uρ
ad is an optimal solution to the structural optimization problem (15),

then for μ ∈ R and μ > 0

PUρ
ad

[ρ� − μ
∂J(ρ�, u�)

∂ρ
] − ρ� = 0. (21)

Recall [7] the structural optimization problem (15) can be considered as a phase
transition setting problem consisting in such evolution of the phases to minimize
the cost functional (13) with respect to the initial configuration. In order to
describe the evolution of phases in time let us assume that the phase field vector
ρ depends not only on x ∈ Ω but also on time variable t ∈ [0, T ], T > 0 is a given
constant, i.e., ρ = ρ(x, t) = {ρm(x, t)}s−1

m=1. The variable t may be interpreted
as an artificial time or iteration number in the computational algorithm [7,15].
Using the right hand side of (21) let us formulate the constrained gradient flow
equation of Allen-Cahn type [5,7,15] for the cost functional (13): find function
ρ ∈ Uρ

ad satisfying the initial boundary value problem:

∂ρ
∂t = −PUρ

ad
[ρ − μ∂J(ρ,u)

∂ρ ] + ρ in Ω, ∀t ∈ [0, T ), (22)

∇ρ · n = 0 on ∂Ω, ∀t ∈ [0, T ), (23)
ρ(0, x) = ρ0(x) in Ω, t = 0, (24)

with ρ0(x) = {ρ0m(x)}s−1
m=1 denoting a given H1(Ω;Rs−1) regular function. For

ρ0 ∈ H1(Ω;Rs−1) the system (22)–(24) possesses a solution ρ ∈ L∞(0, T ;H1

(Ω)) ∩H1(0, T ;L2(Ω;Rs−1)) (see [10]). The stationary solutions of (22)–(24)
fulfill the first order necessary optimality conditions (20) or (21) for the problem
(15) [5,7]. For ∂ρ

∂t = 0 the right hand side of the Eq. (22) vanishes and ρ(x, t) =
ρ�(x, t) is an optimal solution to the problem (15).

For the sake of numerical calculations we reformulate the initial boundary
value problem (22)–(24) using the operator splitting approach [5,15]. Remark,
the cost functional (13) may be represented as a sum of two functionals, i.e.,
J(ρ, u) = J1(ρ, u) + J2(ρ) given by J1(ρ, u) = Jη(u(ρ)) +

∑s−1
m=1

∫
Ω

γ
ε ψB(ρm)dΩ

and J2(ρ) =
∑s−1

m=1

∫
Ω

γε
2 | ∇ρm |2 dΩ. The derivatives of these functionals result
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from formula (19). Assume the time interval [0, T ] is divided into N subintervals
with stepsize Δt = tk+1 − tk, k = 1, ..., N and ρk = ρ(tk) is known. The design
variable ρk+1 at the next time step tk+1 is calculated in two substeps. First the
trial value ρ̃ is calculated from the gradient flow Eq. (22) for the functional J1

only. Next this solution is updated to ensure its H1(Ω) regularity [5] by solving
the gradient flow Eq. (22) for the functional J2 only with the boundary condition
(23), i.e.,

∂ρ̃

dt
= −PUρ

ad
[ρ̃ − ∂J1(ρ̃, u)

∂ρ
] + ρ̃, ρ̃(tk) = ρk, tk < t ≤ tk+1. (25)

∂ρ

dt
= −∂J2(ρ)

∂ρ
, ρ(tk) = ρ̃k+1, tk < t ≤ tk+1. (26)

5 Numerical Results

The topology optimization problem (15) has been discretized and solved numer-
ically. Time derivatives are approximated by the forward finite difference. Piece-
wise constant and piecewise linear finite element method is used as discretiza-
tion method in space variables. The derivative of the double well potential is
linearized with respect to ρm. Primal-dual active set method has been used to
solve the state and adjoint systems (5)–(8) and (17)–(18). The initial boundary
value problem (22)–(24) has been solved in two steps according to scheme (25)–
(26). The algorithms are programmed in Matlab environment. As an example a
body occupying 2D domain

Ω = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ 0 < v(x1) ≤ x2 ≤ 4}, (27)

is considered. The boundary Γ of the domain Ω is divided into three disjoint
pieces Γ0 = {(x1, x2) ∈ R2 : x1 = 0, 8 ∧ 0 < v(x1) ≤ x2 ≤ 4}, Γ1 = {(x1, x2) ∈
R2 : 0 ≤ x1 ≤ 8 ∧ x2 = 4}, Γ2 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ v(x1) = x2}. The
domain Ω and the boundary Γ2 depend on the function v(x1) = 0.125 ·(x1−4)2.
Domain Ω is filled with s = 3 elastic materials. The Poisson’s ratio of each
material is ν = .3. The Young’s moduli of materials are: E1 = 6 · E0, E2 =
3 · E0 and E3 = E0, E0 = 2.1 · 1011 Pa. The parameters w1, w2, w3 are equal
to .25, .5 and .25 respectively. As an initial design ρ0 a feasible design with
the uniform material distribution has been taken. The body is loaded by the
boundary traction p1 = 0, p2 = −5.6 · 106 N along the boundary Γ1, the body
forces fi = 0, i = 1, 2. The auxiliary function η is selected as a piecewise linear on
Ω and is approximated by a piecewise linear function. The domain Ω is divided
into 80 × 40 grid. The parameters ε and γ are equal to the mesh size and to 0.5,
respectively. The total number of iterations kmax in the optimization algorithm
has been set to 90. It is approximately equivalent to final time T = 125 s.

Figure 2 presents the optimal topology domain obtained by solving structural
optimization problem (15) using the necessary optimality condition (22)–(24).
The areas with the weak phases appear in the central part of the body and near
the fixed edges. The areas with the strong phases appear close to the contact
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Fig. 2. Optimal material distribution
in domain Ω�.
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tional gradient.

zone and along the edges. The rest of the domain is covered with the inter-
mediate phase. The obtained normal contact stress for the optimal topology is
almost constant along the contact boundary and has been significantly reduced
comparing to the initial one (see Fig. 3). The convergence of the cost functional
value and its gradient as a function of the number of iterations are shown on
Figs. 4 and 5, respectively. The cost functional value decreases almost monoton-
ically when the number of iterations increases. At the beginning this decrease is
significant and finally the cost functional value is almost steady. The regularized
functional value at first is increasing and next rapidly decreasing (see Fig. 4).
Similarly, after a few initial iterations the gradient of the cost functional also
almost monotonically decreases to reach the steady state (Fig. 5).

6 Conclusions

The topology optimization problem for elastic contact problem with Tresca
friction has been solved numerically in the paper. Obtained numerical results
indicate that the optimal topologies are qualitatively comparable to the results
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reported in other phase-field topology optimization methods. Since the optimiza-
tion problem is non-convex it has possibly many local solutions dependent on
initial estimate. Gradient flow method employed in H1 space is more regular
and efficient than standard Allen-Cahn approach.

References

1. Allaire, G., Dapogny, C., Delgado, G., Michailidis, G.: Multi-phase structural opti-
mization via a level set method. ESAIM - Control Optimisation Calc. Var. 20,
576–611 (2014)

2. Allaire, G.: Shape optimization by the homogenization method. Springer,
New York (2001)

3. Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Appli-
cations. Springer, Berlin (2004)

4. Blank, L., Butz, M., Garcke, H., Sarbu, L., Styles, V.: Allen-Cahn and Cahn-
Hiliard variational inequalities solved with optimization techniques. In: Leugering,
G., Engell, S., Griewank, A., Hinze, M., Rannacher, R., Schulz, V., Ulbrich, M.,
Ulbrich, S. (eds.) Constrained Optimization and Optimal Control for Partial Dif-
ferential Equations, International Series of Numerical Mathematics, vol. 160, pp.
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Abstract. We discuss recent constructive parametrizations approaches
for implicit systems, via systems of ordinary differential equations. We
also present the notion of generalized solution, in the critical case and
indicate some numerical examples in dimension two and three, using
MatLab. In shape optimizations problems, using this method, we intro-
duce general optimal control formulations in the boundary observation
case. This extends previous work of the authors on optimal design prob-
lems with distributed cost functional.

Keywords: Implicit systems · Local parametrization · Shape
optimization · Boundary observation

1 Introduction

The implicit function theorem or the inverse function theorem ensure as well the
local existence of implicit parametrizations for the solution of implicit systems,
under classical assumptions, [2,3]. Recently, in authors’ papers, [8,14], explicit
constructions (via iterated ordinary differential equations) of implicit parame-
trizations, in dimensions two and three, have been discussed. A possible extension
of such constructions to arbitrary dimension is investigated in the preprint [15].
Moreover, this new approach allows the introduction of the notion of generalized
solution, solving implicit systems under C1 hypotheses, in the critical case.

Such considerations have impact in shape optimization problems (fixed
domain methods) where implicit representations of domains play an essential
role. The aim is to obtain a general method to solve optimal design problems
via optimal control theory. In the case of Dirichlet boundary conditions, a the-
oretical analysis together with numerical experiments are reported in [5,7]. For
a general background, we quote [6]. Notice that this method is essentially dif-
ferent from the level set method (for instance, no Hamilton-Jacobi equation is
necessary in [5,7]).

This paper is organized as follows. In Sect. 2, we recall briefly the implicit
parametrization approach. Some numerical examples in the critical case, in
dimension two and three are outlined in Sect. 3. The last section discusses pos-
sible applications in shape optimization.
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Published by Springer International Publishing AG 2016. All Rights Reserved
L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 390–398, 2016.
DOI: 10.1007/978-3-319-55795-3 37



Implicit Parametrizations and Applications 391

2 Implicit Parametrizations and Generalized Solution

We limit the presentation to the case of one implicit equation in dimension three:

f(x, y, z) = 0, in Ω ⊂ R
3, (1)

Ω an open connected subset. We assume that f ∈ C1(Ω) and there is
(x0, y0, z0) ∈ Ω such that (1) is satisfied. We also impose, for the moment, that
(x0, y0, z0) is noncritical for f , i.e. ∇f(x0, y0, z0) �= 0. To fix ideas, we assume:

fx(x0, y0, z0) �= 0. (2)

Later, we shall remove this hypothesis and discuss the critical case. For the
general situation, we quote [15].

We associate to (1) the following systems of first order partial differential
equations (with independent variables t and s) of iterated type:

x′(t) = −fy(x(t), y(t), z(t)), t ∈ I1,

y′(t) = fx(x(t), y(t), z(t)), t ∈ I1, (3)
z′(t) = 0, t ∈ I1,

x(0) = x0, y(0) = y0, z(0) = z0; (4)

ϕ̇(s, t) = −fz(ϕ(s, t), ψ(s, t), ξ(s, t)), s ∈ I2(t),
ψ̇(s, t) = 0, s ∈ I2(t), (5)
ξ̇(s, t) = fx(ϕ(s, t), ψ(s, t), ξ(s, t)), s ∈ I2(t),
ϕ(0, t) = x(t), ψ(0, t) = y(t), ξ(0, t) = z(t), t ∈ I1. (6)

The iterated character of the PDE system (3)–(6) consists in the fact that
the coupling between (3)–(6) is made just via the initial conditions (6). This very
weak coupling, together with the presence of just one derivative in each equation
create the possibility to solve (3)–(6) as ODE systems. Namely, the system (3)–
(4) is indeed of ODE type. The system (5)–(6) has the t independent variable as a
parameter, entering via the initial conditions and may be interpreted as an ODE
system with parameters. The existence may be obtained via the Peano theorem
since f ∈ C1(Ω). Moreover, one may infer via this theorem and some simple
calculations that the local existence interval I2(t) may be chosen independently
of t ∈ I1, i.e. I2(t) = I2. Under slightly stronger regularity assumptions, for
instance ∇f locally Lipschitzian, we also obtain uniqueness for (3)–(6). For very
weak assumptions in this sense, see [18] or [1], since the system (3)–(6) has
divergence free right-hand side.

The fact that (3)–(6) provides a parametrization of the solution of (1), around
(x0, y0, z0) is stated in the following theorem, proved in [8]:

Theorem 1. Assume that f ∈ C2(Ω) and I1, I2 are sufficiently small. Then,
(ϕ,ψ, ξ) : I1 × I2 → Ω is a regular transformation on its image.
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Remark 1. The systems (3)–(4), respectively (5)–(6) are of Hamiltonian type, in
fact. In dimension two, for the implicit equation g(x, y) = 0, just one Hamiltonian
system may be used, to obtain the parametrization (see [13,14]):

a′(t) = −gy(a(t), b(t)), t ∈ I1,

b′(t) = gx(a(t), b(t)), t ∈ I1, (7)
a(0) = a0, b(0) = b0,

In arbitrary dimension, the solution is more involved [15].

Remark 2. The advantage of Theorem 1 or other implicit parametrization
results, is exactly their explicit character. Moreover, the fact that the solution
is obtained via systems of ordinary differential equations makes it possible to
use maximal solutions. Theorem 1 has a local character, but in applications, the
maximal existence intervals I1, I2 may be very large. In many cases, one may
obtain even global solutions [8]. In comparison with implicit function theorems,
removing the restrictive requirement that the solution is in function form, allows
to obtain a more complete description of the manifold corresponding to (1).

The above construction provides the basis for the introduction of the gener-
alized solution of (1), in the critical case and we recall it briefly here, for reader’s
convenience. We remove hypothesis (2), that is the point (x0, y0, z0) may be
critical. We notice that the following weaker property is valid in general: there
is (xn, yn, zn) ∈ Ω such that

(xn, yn, zn) → (x0, y0, z0) such that ∇f(xn, yn, zn) �= 0. (8)

If (8) is not valid, then ∇f(x0, y0, z0)=0 in a neighborhood V of (x0, y0, z0)
and, consequently, f(x, y, z) = 0 in V . This is a trivial situation of no interest.
For general implicit systems, a similar property may be stated, expressing the
fact that the equations of the system have to be functionally independent [15].

Due to (8), one can construct the solution of (3)–(6) with initial condition in
(xn, yn, zn). We denote by Tn ⊂ Ω, the set described by (ϕn, ψn, ξn) obtained in
(5), in this case. Since f is in C1(Ω), Tn may be assumed compact. By truncation
(or imposing Ω to be bounded), we get {Tn} bounded with respect to n. On a
subsequence denoted by α, we have:

Tn → Tα

in the Hausdorff-Pompeiu metric, where Tα ⊂ Ω is some compact subset, [6].

Definition 1. In the general (critical) case, we call T = ∪Tα to be the gen-
eralized solution of (1), where the union is taken after all the sequences and
subsequences as above.

It can be shown that (x0, y0, z0) ∈ T , any point in T satisfies (1) and that Def-
inition 1 provides the usual solution in the classical nonsingular case, [15]. That
is, Definition 1 is an extension of the classical notion of solution. If (x0, y0, z0)
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is an isolated critical point, then again T coincides (locally) with the solution of
(1). Otherwise, T may be just the boundary of the solution set of (1), according
to [15]. A complete description of the level sets (even of positive measure) of a
function, may be obtained in this way.

An algorithm for the approximation of generalized solutions is detailed in [9].
In the next section we indicate some computational examples in this sense.

3 Numerical Examples

All the examples in this section were performed with MatLab. We consider just
the critical case.

Example 1. Let g(x, y) = x3 − siny, with the critical point (x0, y0) =
(
0,

π

2

)
.

We are in the critical case: g(x0, y0) = 0, ∇g(x0, y0) = (0, 0). According to
Definition 1, we have to solve (7) with approximating initial conditions

(
0,

π

2

)
+(

± 1
100

,∓ 1
100

)
,
(
0,

π

2

)
+

(
± 1

100
,± 1

100

)
. The result is shown in Fig. 1. In Fig. 2

we perform a zoom around the critical point. The four curves corresponding to
these initial conditions cannot be distinguished visually, from each other.

Fig. 1. g(x, y)=x3−sin y,(x0, y0)=(0,
π

2
) Fig. 2. Zoom around (x0, y0) = (0,

π

2
)

Example 2. Let f(x, y, z) = xyz, with the initial point (x0, y0, z0) = (0, 0, 0).

We are in the critical case: f(x0, y0, z0) = 0 and ∇f(x0, y0, z0) = 0.

Consider the approximating initial conditions
(

1
50

,
1
50

,
1
50

)
,

(
− 1

50
,− 1

50
,

1
50

)
,(

− 1
50

,
1
50

,
1
50

)
,
(

1
50

,− 1
50

,
1
50

)
.

In Fig. 3 we show the results for the system (3)–(4), the four curves cor-
responding to the four initial conditions. In Fig. 4 we superpose the results,
corresponding to each of the previous four curves as initial conditions, obtained
for the system (5)–(6) together with the following alternative (see [9]) system:
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ϕ̇ = 0, s ∈ I2

ψ̇ = −fz(ϕ,ψ, ξ), s ∈ I2, (9)
ξ̇ = fy(ϕ,ψ, ξ), s ∈ I2,

ϕ(0) = x(t), ψ(0) = y(t), ξ(0) = z(t),

The dark colours correspond to the points where both systems produce solutions.

Fig. 3. Ex. 2: the first system Fig. 4. Ex. 2: the second systems

Using the symmetry, the result can be extended for z < 0.

Example 3. Let f(x, y, z) = (10x2 −y2 −z)(x2 −10y2 −z), with the initial point
(x0, y0, z0) = (0, 0, 0).

We are again in the critical case: f(x0, y0, z0) = 0 and ∇f(x0, y0, z0) = 0.

Consider the approximating initial conditions
(

1
10

,
1
10

,
9

100

)
,
(

− 1
10

,
1
10

,
9

100

)
,(

1
10

,
1
10

,− 9
100

)
,
(

− 1
10

,
1
10

,− 9
100

)
,
(

1
10

,− 1
10

,− 9
100

)
,
(

− 1
10

,− 1
10

,− 9
100

)
.

In Fig. 5 we represent the solutions of the systems (3)–(4), respectively (5)–

(6) for the initial condition
(

1
10

,
1
10

,
9

100

)
. In Fig. 6 we have put together the

solutions of the second system corresponding to all the six approximating initial
conditions. In fact, for the initial conditions with negative third coordinate we
have used the variant (9) of the system (5)–(6) that avoids y = ct, specific to (5)–
(6), and improves the graphical representation. We have intendedly represented,
for clarity, just a small number of integral curves.

4 Applications in Shape Optimization

A typical shape optimization problem has the form:

min
Ω

∫
Λ

j(yΩ(x), x)dx (10)
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Fig. 5. The initial condition
(1/10, 1/10, 9/100)

Fig. 6. The solution corresponding to
the six initial conditions

subject to

− ΔyΩ = f in Ω (11)
yΩ = 0 on ∂Ω (12)

Here E ⊂ Ω ⊂ D ⊂ R
d, d ∈ N, are bounded Lipschitzian domains, with E

and D given and Ω unknown, f ∈ L2(D), Λ is either E or Ω and j : R×D → R

satisfies appropriate measurability and other hypotheses [6]. More general state
equation, other boundary conditions may be considered as well. Traditional solu-
tion methods are boundary variations, speed method, topological asymptotics,
the mapping method, the level set method etc., [11,12]. In the papers [5,7,10]
functional variations for domains are introduced and studied. The idea is to
assume that the admissible domains for (10)–(12) are defined implicitly by

Ω = Ωg = int{x ∈ D; g ∈ C(D̄); g(x) ≥ 0} (13)

Here g is in some subset of admissible functions Gad, corresponding to the
family of admissible domains Ω = Ωg. For instance, since we impose that E ⊂
Ω = Ωg, then we have to require

g(x) ≥ 0, ∀x ∈ E. (14)

Other constraints may be added according to the envisaged applications.
Due to the representation (13), one may use the functional variations of Ω,

in the direction of h ∈ C(D̄):

Ωg+λh = int{x ∈ D; g + λh ≥ 0}, (15)

where λ > 0 is a scalar and h satisfies similar conditions as in (13), (14). Notice
that the variations (15) of Ω = Ωg may be very complex, combining boundary
and topological variations. The function g is a shape (or level) function, but the
approach (13)–(15) is not to be confused with the level set method (we have
no artificial time in the definition of Ωg or in g, we need no Hamilton-Jacobi
equation, etc.).
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An essential ingredient in using general functional variations in the problem
(10)–(12) is the following approximation of (11), (12):

− Δyε +
1
ε

(1 − Hε(g)) yε = f, in D, (16)

yε = 0, on ∂D, (17)

where H is the Heaviside function and Hε is some regularization. Such penaliza-
tion/regularization approaches were used already in [4]. The basic approximation
result in this case, according to [5], is the following:

Theorem 2. If Ω = Ωg is of class C, then yε/Ωg
→ yΩg

weakly in H1(Ωg), on
a subsequence.

Domains of class C, roughly speaking, have just continuous boundary. A
thorough presentation with applications can be found in [16].

Based on Theorem 2, one can approximate the problem (10)–(12) by the
problem (10), (16), (17). If Λ = E, this formulation is already a self-contained
optimal control problem with unknown g. If Λ = Ω, then we approximate as
well (10) by

∫
D

Hε(g(x))j(yε(x), x)dx. (18)

Notice that the formulation (16)–(18) excludes the explicit presence of the
unknown geometry of Ω and is in fact an optimal control problem with the
control g acting in the coefficients of the lower order terms of the state equation
(16). Solving for the optimal gε immediately yields the optimal geometry Ωgε

as
a level set. In the formulation (16)–(18) one can easily use functional variations
as in (15). See [5,7,10] for numerical examples as well.

The case of boundary observation (cost) needs a special treatment based
on the developments from Sect. 2 and we shall briefly comment on this, just in
dimension 2.

We also fix, without loss of generality, some point x0 = (x1
0, x

2
0) ∈ D\E ⊂ R

2

such that g(x0) = 0 for any admissible g ∈ C1(D). We assume as well that

g(x) = 0 ⇒ ∇g(x) �= 0, (19)
g(x) �= 0, on ∂D, (20)

to avoid the presence of critical points on ∂Ωg and the corresponding admissible
domains will not “touch” ∂D. We shall denote by Λg, the connected component
of ∂Ωg, containing x0 (the presence of multiply connected domains Ωg is allowed
in our setting).

The above setting together with the condition (14) defines the set Gad of
admissible controls in (16)–(18). It is possible to work without (20), but this
would complicate the exposition. Finally, we impose that Gad ⊂ W 3,∞(D).
Notice that the obtained class of admissible geometries remains very rich.
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Then, by Sect. 2, relation (7), we know that Λg can be parametrized by the
solution of the Hamiltonian system:

x′
1(t) = − ∂g

∂x2
(x1(t), x2(t)), t ∈ Ig, (21)

x′
2(t) =

∂g

∂x1
(x1(t), x2(t)), t ∈ Ig,

(x1(0), x2(0)) = x0. (22)

By Proposition 3 in [14], due to the boundedness of D and (19), (20), we may
assume that the solution of (21), (22) is periodic and Λg is a closed curve, for
any g ∈ Gad. The interval Ig may be assumed to start in 0 and have the period
length (that can be easily determined numerically in applications).

We comment now the following example:

J(g) =
∫

Λg

(
∂yε

∂n

)2

dσ =
∫

Ig

[
∂yε

∂n
(x1(t), x2(t))

]2 √
x′
1(t)2 + x′

2(t)2dt, (23)

which is a typical case in boundary observation problems and yε solves (16),
(17). By (21), (22) and simple computations, we have:

J(g) =
∫

Ig

[∇yε(x1(t), x2(t)) · ∇g(x1(t), x2(t))]2 |∇g(x1(t), x2(t))|−1
dt. (24)

Notice that the cost functional in (23)–(24) makes sense since Gad ⊂
W 3,∞(D) which ensures the regularity of Λg. Together with (19), (20) and (16),
(17), we have that yε ∈ H2(D). The formulation (16), (17), (24) again removes
any direct reference to the geometric unknowns. Under regularity assumptions,
one can consider functional variations (15) and compute directional derivatives
(by the chain rule). In the case of thickness optimization problems for shells, a
numerical approach based on directional derivatives is used in [17]. A detailed
study of shape optimization problems with boundary observation, including the
adjoint equation method and computational examples will be performed in a
forthcoming paper based on the above approach. The computation of the adjoint
equation, in the simpler case of distributed observation in E, is performed in [5].

Remark 3. The advantage of our approach is given by the generality of the
admissible variations (combining boundary and topological perturbations with-
out “prescribing” their topological type) and the fact that optimal control theory,
in the fixed domain D, may be applied.
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Abstract. We study finite element approximations of Riesz representa-
tives of shape gradients. First, we provide a general perspective on its
error analysis. Then, we focus on shape functionals constrained by ellip-
tic boundary value problems and H1-representatives of shape gradients.
We prove linear convergence in the energy norm for linear Lagrangian
finite element approximations. This theoretical result is confirmed by
several numerical experiments.

Keywords: Shape gradients · Finite element approximations

1 Introduction

A shape functional is a real map defined on a set of admissible shapes. The goal of
shape optimization is to modify an initial shape so that a shape functional attains
an extremal value. A common approach is to employ steepest descent algorithms
[8, Chap. 3.4]. Shapes may be parameterized by C1-mappings acting on reference
configurations. Then the shape gradient is a linear continuous operator on the
non-reflexive Banach space C1, and the concept of steepest descent may not
be well-defined; see [7, P. 103]. A compromise is to replace “steepest descents”
with Riesz representatives of shape gradients with respect to a Hilbert space X.
Henceforth, we refer to these representatives as X-representatives.

After recalling basic definitions of shape calculus, we provide a general per-
spective on error analysis in the energy norm for finite element approximations
of X-representatives of shape gradients. Then, we zero in on shape function-
als constrained to elliptic boundary value problems. For this case, insight into
shape Hessians [12,14] suggests to select representatives of shape gradients with
respect to X = H1

0 (D), where D is a hold-all domain that encloses the initial
guess Ω; see Fig. 1. For the choice X = H1

0 (D), it is natural to consider dis-
cretization by means of linear Lagrangian finite elements [2,14,15]. We show
that linear Lagrangian finite element approximations of H1-representatives of
shape gradients converge linearly with respect to the mesh width. Additionally,
this convergence rate does not deteriorate when state and adjoint variables are
replaced by linear Lagrangian finite elements solutions. This is an improvement
on the result presented in [2], which involves approximations of state and adjoint

c© IFIP International Federation for Information Processing 2016
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variables with quadratic finite elements. Finally, we provide numerical evidence
of the linear convergence rate predicted.

Ω

D

Fig. 1. The hold-all domain D encloses the domain Ω.

2 Shape Functionals and Shape Gradients

Let Ω ⊂ R
d, d = 2, 3, be an open bounded domain with piecewise smooth

boundary ∂Ω, and let J (Ω) ∈ R be a real-valued quantity of interest associated
to it. One is often interested in shape sensitivity, which quantifies the impact of
small perturbations of ∂Ω on the value J (Ω).

We model perturbations of the domain Ω through maps of the form

TV(x) := x + V(x), x ∈ R
d, (1)

where V is a vector field in C1(Rd;Rd). It can easily be proved that the map (1)
is a diffeomorphism for ‖V‖C1 < 1 [8, Lemma 6.13].

The value J (Ω) is interpreted as the realization of a shape functional, a real
map

J : V �→ J (TV(Ω))

defined on the ball {V ∈ C1(Rd;Rd); ‖V‖C1 < 1}. Clearly, J (Ω) = J (T0(Ω)).
The sensitivity of J (Ω) with respect to the perturbation direction V is given

by the Eulerian derivative of the shape functional J in the direction V, that is,

dJ (Ω;V) := lim
s↘0

J (Ts·V(Ω)) − J (Ω)
s

. (2)

We say that the shape functional is shape differentiable if Formula (2) defines
a linear and bounded operator V �→ dJ (Ω;V). In literature, this operator is
called shape gradient [9, Chap. 9, Sect. 3.4]. As mentioned in the introduction,
X-representatives of shape gradients can be employed to solve shape optimiza-
tion problems, that is, to find

Ω∗ ∈ argmin
Ω∈Uad

J (Ω),

where Uad denotes a set of admissible shapes.
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Often, the quantity of interest takes the form

J (Ω) =
∫

B

α∇(u − g) · ∇(u − g) + β(u − g)2 dx , (3)

where the state function u is the solution of a boundary value problem stated on
Ω, B ⊂ Ω, α and β are two real constants and g is a sufficiently smooth target
function. In this work, u ∈ H1

0 (Ω) is the (weak) solution of the elliptic boundary
value problem with homogeneous Dirichlet boundary conditions

− Δu + u = f in Ω, u = 0 on ∂Ω, (4)

that is, ∫
Ω

∇u · ∇v + uv dx =
∫

Ω

fv dx for all v ∈ H1
0 (Ω), (5)

where f ∈ H1(Ω). For the sake of brevity, we set g = 0. Then, the shape
gradient of the shape functional associated to (3) and constrained to (5) reads
[4, Formula (2.9)]

dJ (Ω;V) =
∫

Ω

(
(∇f · V)p + ∇u · (DV + DVT )∇p

+ div V(fp + χB(α∇u · ∇u + βu2) − ∇u · ∇p − up)
)

dx , (6)

where the adjoint function p ∈ H1
0 (Ω) is the solution of∫

Ω

∇p · ∇v + pv dx =
∫

B

α∇u · ∇v + βuv dx for all v ∈ H1
0 (Ω). (7)

Formula (3) is a prototypical PDE-constrained shape functional. In this work,
Formula (6) is used as test case for proving convergence estimates and performing
numerical experiments.

Remark 1. Formula (6) holds even if homogeneous Dirichlet boundary conditions
in (4) are replaced by homogeneous Neumann boundary conditions, in which case
the test and the trial spaces in (5) and (7) are replaced with H1(Ω).

Remark 2. For the sake of simplicity, we restrict our considerations to homo-
geneous boundary conditions. However, we expect that the results of this work
hold true for (sufficiently regular) inhomogeneous boundary conditions, too. Note
that Formula (6) should be adjusted accordingly; see [4, Sect. 2].

3 Error Analysis for Finite Element Representatives

3.1 The General Case

Let (·, ·)X denote the inner product of a Hilbert space X, and let us assume that
the shape gradient dJ is well-defined on X. The X-representative VX of dJ can
be computed by solving

(VX ,W)X = dJ (Ω;W) for all W ∈ X.
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Next, for an index set N , we introduce a family {Xn}n∈N of finite-dimensional
subspaces of X. Let

{VXn
}

n∈N be a sequence of approximate X-representatives
of dJ defined by

(VXn ,Wn)X = dJ (Ω;Wn) for all Wn ∈ Xn.

By Cea’s Lemma [11, Theorem 2.4.1], there exists a constant C > 0 independent
of n such that

‖VX − VXn‖X ≤ C inf
Wn∈Xn

‖VX − Wn‖X . (8)

By and large, the shape gradient of a PDE-constrained shape functional
depends also on the state and the adjoint variables u and p. These functions are
solutions of boundary value problem. Usually, only numerical approximations uh

and ph are available. In that case, the approximate X-representative VXn has to
be replaced with the solution VXn

h of

(VXn

h ,Wn)X = dJh(Ω;Wn) for all Wn ∈ Xn, (9)

where dJh is an approximation of the operator dJ obtained by replacing the
functions u and p with their numerical approximations uh and ph.

By Strang Lemma [11, Theorem 4.1.1], the estimate (8) should be corrected
by adding a consistency term, that is,

‖VX − VXn

h ‖X ≤ C

(
inf

Wn∈Xn

‖VX − Wn‖X

+ sup
Wn∈Xn

|dJ (Ω;Wn) − dJh(Ω;Wn)|
‖Wn‖X

)
(10)

for a constant C > 0 independent of n and h.

3.2 H1-Representatives and Linear Lagrangian Finite Elements

A popular approach in shape optimization consists of replacing the initial domain
Ω with a polygon/polyhedron equipped with a finite element mesh Ωh. This
mesh is used to compute linear Lagrangian finite element approximations of the
functions u and p. Then, the coordinates of the mesh nodes are (iteratively)
updated according to the shape gradient [8, Chap. 6.5]. This is equivalent to
extending Ωh to a mesh Dh that covers a hold-all domain D and choosing lin-
ear Lagrangian finite elements to construct the finite-dimensional subspace Xn.
Formula (10), standard finite element estimates, and Proposition 1 readily imply
that, for this discretization, the approximate H1-representative of (6) satisfies

‖VX − VXn

h ‖H1(D) = O(h), (11)

which is the main result of this work.
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Proposition 1. Let Ω ⊂ R
d be a polyhedral domain, let f ∈ W 1,4(Ω) in (5),

and let us assume that the solution u of (5) satisfies

‖u‖W 2,4(Ω) ≤ C‖f‖L4(Ω). (12)

Let (Vh)h∈(0,1] be a family of H1
0 (Ω)-conforming piecewise linear Lagrangian

finite element spaces built on a quasi-uniform family of simplicial meshes
(T h)h∈(0,1], that is, a family of meshes such that

max{diam(T ) : T ∈ T h} ≤ h diam(Ω)

and
min{diam(BT ) : T ∈ T h} ≥ ρh diam(Ω) for all h ∈ (0, 1] ,

for a ρ > 0, where BT is the largest ball contained in the simplex T [10, Defini-
tion 4.4.13]. Let uh, ph ∈ Vh be solutions of

∫
Ω

∇uh · ∇vh + uhvh dx =
∫

Ω

fvh dx for all vh ∈ Vh, (13)
∫

Ω

∇ph · ∇vh + phvh dx =
∫

B

α∇uh · ∇vh + βuhvh dx for all vh ∈ Vh, (14)

where α, β ∈ R, B ⊂ Ω, and α = 0 or B = Ω, if d = 3. Let dJh(Ω;Wn)
denote the operator defined by Formula (6) with u and p replaced by uh and ph,
respectively. Then,

sup
Wn∈Xn

|dJ (Ω;Wn) − dJh(Ω;Wn)|
‖Wn‖H1(D)

≤ C(Ω, f, u, p)h (15)

for a constant C(Ω, f, u, p) > 0 independent of n and h.

Proof. First of all, note that

dJ (Ω;Wn) − dJh(Ω;Wn) =
∫

Ω

(∇f · Wn + f div Wn)(p − ph) dx

+
∫

Ω

∇u · (DWn + DWT
n )∇p − ∇uh · (DWn + DWT

n )∇ph dx

+
∫

Ω

div Wn (∇uh · ∇ph + uhph − ∇u · ∇p − up) dx

+
∫

B

div Wn

(
α(∇u · ∇u − ∇uh · ∇uh) + β(u2 − u2

h)
)

dx . (16)

We recall that, for generic functions q0 ∈ L2(Ω) and q1, q2 ∈ L4(Ω), the Cauchy-
Schwarz inequality implies

‖q0q1q2‖L1(Ω) ≤ ‖q0‖L2(Ω)‖q1q2‖L2(Ω) ≤ ‖q0‖L2(Ω)‖q1‖L4(Ω)‖q2‖L4(Ω). (17)



404 A. Paganini and R. Hiptmair

Thus, the first integral in (16) may be estimated as follows1

|
∫

Ω

(∇f · Wn + f div Wn)(p − ph) dx | ≤ C‖Wn‖H1(Ω)‖f‖W 1,4(Ω)‖p − ph‖L4(Ω).

The second integral in (16) may be estimated as follows

|
∫

Ω

∇u · (DWn + DWT
n )∇p − ∇uh · (DWn + DWT

n )∇ph dx |

= |
∫

Ω

∇(u − uh) · (DWn + DWT
n )∇p + ∇uh · (DWn + DWT

n )∇(p − ph) dx |
≤ C‖Wn‖H1(Ω)

(‖u − uh‖W 1,4(Ω)‖p‖W 1,4(Ω) + ‖uh‖W 1,4(Ω)‖p − ph‖W 1,4(Ω)

)
.

The third and the fourth integral in (16) may be estimated similarly.
Stability of the Ritz projection with respect to W 1,4(Ω) [3]2

‖uh‖W 1,4(Ω) ≤ C‖u‖W 1,4(Ω) (18)

implies ‖u − uh‖W 1,4(Ω) = O(h). To show

‖ph‖W 1,4(Ω) ≤ C‖p‖W 1,4(Ω), (19)

which in turn implies ‖p−ph‖W 1,4(Ω) = O(h), it is necessary to repeat the proof
of (18) given in [3] tracking the consistency term

∫
Ω

∇(p−ph)·∇gz
h+(p−ph)gz

h dx =
∫

B

α∇(u−uh)·∇gz
h+β(u−uh)gz

h dx . (20)

The discrete Green’s function gz
h ∈ Vh is given in [3] and satisfies ‖gz

h‖H1(Ω) =
O(h−d/2). By the Cauchy-Schwarz inequality and standard finite element esti-
mates,

|
∫

B

α∇(u − uh) · ∇gz
h + β(u − uh)gz

h dx | = O
(
(|α|h + |β|h2)h−d/2

)
. (21)

The stability result (19) holds if (21) is bounded independently of h. For this
reason, we need to set α = 0 when d = 3, unless B = Ω. In this latter case, by
Galerkin orthogonality, (20) is bounded by ‖(β − α)(u − uh)gz

h‖L1(Ω). 
�
Remark 3. In Proposition 1, we assume W 2,4-regularity of the solution u of (5).
This assumption is made to achieve linear convergence with respect to h in
the estimate (15). However, a three-dimensional polyhedral domain must satisfy
tight geometric conditions for u to be in W 2,4 [6, Theorem 7.1]. Nevertheless,
in [5] the authors show W 1,∞-stability of the Ritz projection for general convex
polyhedral domains. Therefore, we expect that (in the latter case) the right-
hand side of (15) can be replaced with a term of order O(hα), where the rate α
depends on the regularity of u and satisfies 0 < α ≤ 1.
1 Henceforth, C denotes a positive generic constant independent of n and h.
2 The assumption Ω ⊂ R

2 made in [3] can be replaced by Ω ⊂ R
3; cf. [10, Chap. 8].
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Remark 4. In [4,13], the authors show that one can expect superconvergence in
the approximation of the shape gradient dJ . In particular, they show that

|dJ (Ω;W) − dJh(Ω;W)| ≤ C‖W‖W 2,4(Ω)h
2. (22)

However, in the right-hand side of (22) appears the W 2,4(Ω)-norm of W. Note
that to prove convergence in the approximation of a H1-representative of dJ ,
the upper bound of

|dJ (Ω;W) − dJh(Ω;W)|
cannot involve a norm stronger than the H1-norm; see Eq. (10).

Remark 5. By the Hadamard structure theorem [9, Chap. 9, Theorem 3.6], most
shape gradients admit representatives g(Ω) in the space of distributions Dk(∂Ω),
that is,

dJ (Ω;V) = 〈g(Ω), γ∂ΩV · n〉Dk(∂Ω), (23)

where γ∂ΩV ·n is the normal component of V on the boundary ∂Ω. For instance,
if u, p ∈ H2(Ω), Formula (6) is equivalent to [4, Formula (2.10)]

dJ (Ω;V) =
∫

∂Ω

(V · n)
(

α∇u · ∇u + βu2 +
∂p

∂n
∂u

∂n

)
dS. (24)

We advise against the use of g(Ω) (which corresponds to the L2(∂Ω)-
representative of dJ ) to define descent directions because L2-representatives
might bristle with undesirable oscillations [1].

4 Numerical Experiments

We provide numerical evidence of the estimate (11). We employ linear
Lagrangian finite elements on quasi-uniform triangular meshes. The experi-
ments are performed in MATLAB and are partly based on the library LehrFEM
developed at ETHZ. Mesh generation and uniform refinement are performed
with the functions initmesh and refinemesh of the MATLAB PDE Toolbox
[16]. The boundary of computational domains is approximated by a polygon,
which is generally believed not to affect the convergence of linear finite elements
[10, Sect. 10.2]. For domains with curved boundaries, the refined mesh is always
adjusted to fit the boundary. Integrals in the domain are computed with a
3-point quadrature rule of order 3 in each triangle and line integrals with a
6-point Gauss quadrature on each segment.

We consider three different geometries for the domain Ω (see Fig. 2):

1. A disc of radius
√

6/5 centered in (0.01,0.02).
2. A triangle with corners located at

(−
√

6/5,−
√

6/5), (
√

6/5,−
√

6/5), (−
√

6/5,
√

6/5).

3. A circular sector of radius
√

6/5 centered in (0.01, 0.02) of angle 0.9 · 2π.
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Fig. 2. The domain Ω is chosen to be either a disc or a triangle or a sector.

The source function in (5) is

f(x, y) = cos(x + π/4).

The hold-all domain D is a square with edges of length 3 centered in the origin.
The region of interest B is the whole domain Ω. We set α = 0 and β = 1 in (3).

The reference value VX is approximated by computing VXn

h on a mesh with
an extra level of refinement. In light or Remark 5, we employ both Formula (6)
and Formula (24) to evaluate the right-hand side dJh in (9). To avoid biased
results, we display convergence history of ‖VX − VXn

h ‖H1(D) both with self- and
cross-comparison.

In Fig. 3, we plot the convergence history when the domain Ω is either a
disc (first row) or a triangle (second row). As predicted by (11), we observe
linear convergence when the right-hand side in (9) is evaluated according to (6).
Interestingly, using Formula (24) seems not to affect the convergence rate. The
same behavior is observed when homogeneous Dirichlet boundary conditions
are replaced by homogeneous Neumann boundary conditions. Note that, in this
latter case, the boundary-integral counterpart of Formula (6) reads [4]

dJ (Ω;V) =
∫

∂Ω

V · n (∇u · ∇(αu − p) + u(βu − p) + fp) dS. (25)

For the sake of brevity, we omit these plots.
In Fig. 4 (first row), we plot the convergence history when the domain Ω is

a sector. This domain does not guarantee that u and p are in H2(Ω) because it
has a re-entrant corner. We observe that the convergence rates decrease to frac-
tional values. This is a consequence of the lower regularity of the functions u and
p. Additionally, the convergence rates depend on the formula used to evaluate
dJh. In particular, in the cross-comparison, the convergence line saturates when
Formula (6) is used. This may be due to a poor accuracy of the reference solu-
tion. However, we point out that Formulas (6) and (24) may not be equivalent
due to the lack of regularity of the functions u and p; cf. Remark 5. Curiously,
for homogeneous Neumann boundary conditions, the presence of the re-entrant
corner seems to have a milder impact on convergence rates; see Fig. 4 (second
row). However, note that the approximate algebraic convergence rates of

‖u − uh‖H1(Ω) and ‖p − ph‖H1(Ω)

with respect to h drop to 0.67 and 0.62, respectively.
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Fig. 3. Convergence history when Ω is a disc (first row) and a triangle (second row).
Line refers to evaluation of dJh according to Formula (6); line to Formula
(24). We observe the linear convergence rate predicted by (11).

By the Hadamard structure theorem (see Remark 5), vector fields Wn asso-
ciated to interior nodes of the mesh Ωh lie in the kernel of dJ . However, these
vector fields are not in the kernel of dJh because u and p are replaced by finite
element approximations. Schulz et al. [14] report that this numerical error might
largely affect the computation of the Riesz representative. Although we have not
experienced this issue, we have repeated the numerical experiments by setting to
zero the values of dJh(Ω;Wn) for all Wn associated to interior nodes of Ωh. We
have not observed any significative difference in the results. Thus, we acknowl-
edge that computational resources might be saved by dropping the evaluation
of dJh(Ω;Wn) for vector fields associated to interior nodes of Ωh.
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Circular Sector (Dirichlet BC)
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Circular Sector (Neumann BC)
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Fig. 4. Convergence history when Ω is a sector. Line refers to evaluation of dJh

according to Formula (6); line to Formula (24)(in the first row) and to Formula
(25) (in the second row). For Dirichlet boundary conditions, convergence rates decay
to fractional values.

5 Conclusion

Most shape optimization algorithms rely on Riesz representatives of shape gradi-
ents with respect to a chosen Hilbert space. Numerical discretization is inevitable
when the shape functional is constrained to a boundary value problem. Formula
(10) indicates how to estimate the discretization error when the Riesz represen-
tative is computed on a finite-dimensional trial space and the shape gradient can
be evaluated only approximately.

For linear Lagrangian approximations of H1-representatives, Proposition 1
implies that the discretization error decays linearly with respect to the mesh
width h. This convergence behavior is observed in several numerical experiments.

As a consequence of the Hadamard structure theorem, most shape gradi-
ents can be equivalently formulated as boundary or volume integrals. Although
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Proposition 1 relies on the volume formulation of the shape gradient, we have
observed linear convergence independently of the formula employed to evaluate
dJ . However, we advise to rely on the volume-based formula because it imposes
lower regularity assumptions on the state and the adjoint variables [4,9,15].

Acknowledgments. The work of A. Paganini was partly supported by ETH Grant
CH1-02 11-1.
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Abstract. The paper discusses a class of bilevel optimal control prob-
lems with optimal control problems at both levels. The problem will be
transformed to an equivalent single level problem using the value function
of the lower level optimal control problem. Although the computation of
the value function is difficult in general, we present a pursuit-evasion
Stackelberg game for which the value function of the lower level prob-
lem can be derived even analytically. A direct discretization method is
then used to solve the transformed single level optimal control problem
together with some smoothing of the value function.

Keywords: Bilevel optimal control · Value function · Pursuit-evasion
Stackelberg game

1 Introduction

Bilevel optimization problems occur in various applications, e.g. in locomotion
and biomechanics, see [1,2,15,20], in optimal control under safety constraints,
see [12,18,19], or in Stackelberg dynamic games, compare [10,24]. An abstract
bilevel optimization problem (BOP) reads as follows:

Minimize F (x, y) with respect to (x, y) ∈ X × Y subject to the constraints

G(x, y) ∈ K, H(x, y) = 0, y ∈ M(x),

where M(x) is the set of minimizers of the lower level optimization problem

Minimize f(x, y) w.r.t. y ∈ Y s.t. g(x, y) ∈ C, h(x, y) = 0.

Herein, X, Y are (finite or infinite) Banach spaces, F, f : X × Y → R,
H : X × Y → V u, h : X × Y → V �, G : X × Y → Wu, g : X × Y → W � are
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sufficiently smooth functions into Banach spaces V u, V �,Wu,W �, and K ⊂ Wu,
C ⊂ W � are convex and closed cones.

Bilevel optimization problems turn out to be very challenging with regard to
both, the investigation of theoretical properties and numerical methods, compare
[8]. Necessary conditions have been investigated, e.g., in [9,25]. Typical solution
approaches aim at reducing the bilevel structure into a single stage optimization
problem. In the MPCC approach a single level optimization problem subject to
complementarity constraints (MPCC) is obtained by replacing the lower level
problem by its first order necessary conditions, compare [1]. However, if the
lower level problem is non-convex, the MPCC is not equivalent in general to
the original bilevel problem since non-optimal stationary points or non-global
solutions may satisfy the necessary conditions as well. Still, the approach is
often used owing to a well-established theory and the availability of numerical
methods for MPCCs, especially for finite dimensional problems.

In this paper we focus on an equivalent transformation of the bilevel problem
to a single level problem (see [7] for an alternative way). The equivalence can be
guaranteed by exploitation of the value function V : X → R of the lower level
problem, which is defined as

V (x) := inf
y∈Y

{f(x, y) | g(x, y) ∈ C, h(x, y) = 0}.

An equivalent reformulation of the bilevel optimization problem is then given by
the following single level problem, compare [22,25,26]:

Minimize F (x, y) w.r.t. (x, y) ∈ X × Y subject to the constraints

G(x, y) ∈ K, H(x, y) = 0, g(x, y) ∈ C, h(x, y) = 0, f(x, y) ≤ V (x).

The advantage of the value function approach is its equivalence with the
bilevel problem. On the downside one has to be able to compute the value func-
tion, which in general might be intractable. Moreover, the value function is non-
smooth in general (often Lipschitz continuous) and hence suitable methods from
non-smooth optimization are required to solve the resulting single level problem.
In Sect. 2 we discuss a class of bilevel optimal control problems that fit into the
problem class BOP. In Sect. 3 we we are able to derive an analytical expression
for the value function for an example and present numerical results. The new
contribution of this paper is the discussion of a particular example, which com-
bines the analytical expression of the value function of the lower level problem
and a direct discretization method for the reformulated single level problem. This
problem may serve as a test problem for theoretical and numerical investigations.
The problem exhibits already most features of more challenging problems such
as non-convexity, pure state constraints on the upper level problem as well as
control constraints on both levels.

2 A Class of Bilevel Optimal Control Problems

Let T > 0, be the fixed final time, X := W 1,∞([0, T ],Rnx) × L∞([0, T ],Rnu) ×
R

np , nx, nu, np ∈ N0, Y := W 1,∞([0, T ],Rny ) × L∞([0, T ],Rnv ) × R
nq ,
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ny, nv, nq ∈ N0, where L∞([0, T ],Rn) denotes the Banach space of essentially
bounded vector-valued functions from [0, T ] into R

n and W 1,∞([0, T ],Rn) is the
Banach space of absolutely continuous vector-valued functions from [0, T ] into
R

n with essentially bounded first derivatives. Moreover, let the Banach spaces
V u := L∞([0, T ],Rnx) × R

nH , V � := L∞([0, T ],Rny ) × R
nh , nH , nh ∈ N0, and

the closed convex cones Wu := {k ∈ L∞([0, T ],RnG) | k(t) ≤ 0 a.e. in [0, T ]},
W � := {k ∈ L∞([0, T ],Rng ) | k(t) ≤ 0 a.e. in [0, T ]}, nG, ng ∈ N0, be given.
Let

J, j :Rnx × R
ny × R

np × R
nq → R,

F :Rnx × R
ny × R

nu × R
nv × R

np × R
nq → R

nx ,

f :Rny × R
nv × R

np × R
nq → R

ny ,

Ψ :Rnx × R
ny × R

nx × R
ny × R

np × R
nq → R

nH ,

ψ :Rnx × R
ny × R

nx × R
ny × R

np × R
nq → R

nh ,

S :Rnx × R
ny × R

nu × R
nv × R

np × R
nq → R

nG ,

s :Rny × R
nv × R

np × R
nq → R

ng .

be sufficiently smooth mappings. With these definitions the following class of
bilevel optimal control problems (BOCP) subject to control-state constraints
and boundary conditions fits into the general bilevel optimization problem BOP.

Minimize J(x(T ), y(T ), p, q) w.r.t. (x, u, p, y, v, q) ∈ X × Y subject to the
constraints

x′(t) = F (x(t), y(t), u(t), v(t), p, q), (1)
0 = Ψ(x(0), y(0), x(T ), y(T ), p, q), (2)
0 ≥ S(x(t), y(t), u(t), v(t), p, q), (3)

(y, v, q) ∈ M(x(0), x(T ), p)

where M(x(0), x(T ), p) is the set of minimizers of the lower level problem
OCPL(x(0), x(T ), p):

Minimize j(x(T ), y(T ), p, q) w.r.t. (y, v, q) ∈ Y subject to the constraints

y′(t) = f(y(t), v(t), p, q), (4)
0 = ψ(x(0), y(0), x(T ), y(T ), p, q), (5)
0 ≥ s(y(t), v(t), p, q). (6)

Herein, (x, u, p) ∈ X are the state, the control, and the parameter vector
of the upper level problem and (y, v, q) ∈ Y are the state, the control, and
the parameter vector of the lower level problem. Please note that the lower
level problem only depends on the initial and terminal states x(0), x(T ) and the
parameter vector p of the upper level problem. The value function V is then a
mapping from R

nx × R
nx × R

np into R defined by

V (x0, xT , p) := inf
(y,v,q)∈Y

⎧⎨
⎩j(xT , y(T ), p, q)

∣∣∣∣∣
y′(t) = f(y(t), v(t), p, q),

0 = ψ(x0, y(0), xT , y(T ), p, q),
0 ≥ s(y(t), v(t), p, q)

⎫⎬
⎭ .
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Remark 1. In a formal way the problem class can be easily extended in such a
way that the lower level dynamics f and the lower level control-state constraints s
depend on x, u as well. However, in the latter case the value function of the lower
level problem would then be a functional V : X → R, i.e. a functional defined on
the Banach space X rather than a functional defined on the finite dimensional
space R

nx ×R
nx ×R

np . Computing the mapping V : X → R numerically would
be computationally intractable in most cases.

Using the value function V we arrive at the following equivalent single level
optimal control problem subject to control-state constraints, smooth boundary
conditions, and an in general non-smooth boundary condition with the value
function.

Minimize J(x(T ), y(T ), p, q) w.r.t. (x, u, p, y, v, q) ∈ X × Y subject to the
constraints (1)-(3), (4)-(6), and

j(x(T ), y(T ), p, q) ≤ V (x(0), x(T ), p). (7)

It remains to compute the value function V and to solve the potentially non-
smooth single level optimal control problem. Both are challenging tasks owing to
non-smoothness and non-convexity. The value function sometimes can be derived
analytically as we shall demonstrate in Sect. 3. Otherwise, if Bellman’s optimality
principle applies, the value function satisfies a Hamilton-Jacobi-Bellman (HJB)
equation, see [3]. Various methods exist for its numerical solution, compare [4,11,
14,17,21]. The HJB approach is feasible if the state dimension ny does not exceed
5 or 6. If no analytical formula is available and if the HJB approach is not feasible,
then a pointwise evaluation of V at (x(0), x(T ), p) can be realized by using
suitable optimal control software, e.g. [13]. However, if the lower level problem
is non-convex, then it is usually not possible to guarantee global optimality by
such an approach. The single level problem can be approached by the non-smooth
necessary conditions in [5,6]. Alternatively, direct discretization methods may
be applied. The non-smoothness in V in (7) has to be taken into account by,
e.g., using bundle type methods, see [23], or by smoothing the value function and
applying standard software. Finally, the HJB approach could also be applied to
the single level problem again.

3 A Follow-the-leader Application

We consider a pursuit-evasion dynamic Stackelberg game of two vehicles moving
in the plane. Throughout we assume that the evader knows the optimal strategy
of the pursuer and can optimize its own’s strategy accordingly. This gives rise
to a bilevel optimal control problem. The lower level player (=pursuer P) aims
to capture the upper level player (=evader E) in minimum time T . The evader
aims to minimize a linear combination of the negative capture time −T and
its control effort. The players have individual dynamics and constraints. The
coupling occurs through capture conditions at the final time.
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3.1 The Bilevel Optimal Control Problem

The evader E aims to solve the following optimal control problem, called the
upper level problem (OCPU ):

Minimize

− T +
∫ T

0

α1

2
w(t)2 +

α2

2
a(t)2dt (8)

subject to the constraints

x′
E(t) = vE(t) cos ψ(t), xE(0) = xE,0, xE(T ) = xP (T ), (9)

y′
E(t) = vE(t) sin ψ(t), yE(0) = yE,0, yE(T ) = yP (T ), (10)

ψ′(t) =
vE(t)

�
tan δ(t), ψ(0) = ψ0, (11)

δ′(t) = w(t), δ(0) = δ0, (12)
v′

E(t) = a(t), vE(0) = vE,0, (13)
vE(t) ∈ [0, vE,max], w(t) ∈ [−wmax, wmax], a(t) ∈ [amin, amax], (14)
(xP , yP , T ) ∈ M(xE(T ), yE(T )),

where M(xE(T ), yE(T )) denotes the set of minimizers of the lower level
problem OCPL(xE(T ), yE(T )) below.

The equations of motion of E describe a simplified car model of length
� > 0 moving in the plane. The controls are the steering angle velocity w
and the acceleration a with given bounds ±wmax, amin, and amax, respec-
tively. The velocity vE is bounded by the state constraint vE(t) ∈ [0, vE,max]
with a given bound vE,max > 0. The position of the car’s rear axle is given by
zE = (xE , yE)� and its velocity by vE . ψ denotes the yaw angle and α1, α2 ≥ 0
are weights in the objective function. The initial state is fixed by the values
xE,0, yE,0, ψ0, δ0, vE,0. The final time T is determined by the lower level player
P, who aims to solve the following optimal control problem, called the lower level
problem OCPL(xE,T , yE,T ) with its set of minimizers denoted by M(xE,T , yE,T ):

Minimize T =
∫ T

0
1dt subject to the constraints

z′
P (t) = vP (t), zP (0) = zP,0, zP (T ) = (xE,T , yE,T )�, (15)

v′
P (t) = uP (t), vP (0) = vP (T ) = 0, (16)

uP,i(t) ∈ [−umax, umax], i = 1, 2. (17)

Herein, zP = (xP , yP )�, vP = (vP,1, vP,2)�, and uP = (uP,1, uP,2)� denote
the position vector, the velocity vector, and the acceleration vector, respectively,
of P in the two-dimensional plane. zP,0 = (xP,0, yP,0)� ∈ R

2 is a given initial
position. umax > 0 is a given control bound for the acceleration. The dynamics
of the pursuer allow to move in x and y direction independently, which models,
e.g., a robot with omnidirectional wheels.
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3.2 The Lower-Level Problem and Its Value Function

The lower level problem admits an analytical solution. To this end, the Hamilton
function (regular case only) reads as

H(zP , vP , uP , λz, λv) = 1 + λ�
z vP + λ�

v uP .

The first order necessary optimality conditions for a minimum (ẑP , v̂P , ûP , T̂ )
are given by the minimum principle, compare [16]. There exist adjoint multipliers
λz, λv with

λ′
z(t) = −∇zP

H[t] = 0, λ′
v(t) = −∇vP

H[t] = −λz(t),

and

H(ẑP (t), v̂P (t), ûP (t), λz(t), λv(t)) ≤ H(ẑP (t), v̂P (t), uP , λz(t), λv(t))

for all uP ∈ [−umax, umax]2 for almost every t ∈ [0, T̂ ]. The latter implies

ûP,i(t) =

⎧⎨
⎩

umax, if λv,i(t) < 0
−umax, if λv,i(t) > 0

singular, if λv,i(t) = 0 on some interval,
i = 1, 2.

The adjoint equations yield λz(t) = cz and λv(t) = −czt + cv with constants
cz, cv ∈ R

2. A singular control component ûP,i with i ∈ {1, 2} can only occur
if cz,i = cv,i = 0. In this case, the minimum principle provides no information
on the singular control except feasibility. Notice furthermore that not all control
components can be singular since this would lead to trivial multipliers in contra-
diction to the minimum principle. Hence, there is at least one index i for which
the control component ûP,i is non-singular. In the non-singular case there can
be at most one switch of each component ûP,i, i ∈ {1, 2}, in the time interval
[0, T̂ ], since λv,i is linear in time. The switching time t̂s,i for the i-th control
component computes to t̂s,i = cv,i/cz,i if cz,i �= 0. We discuss several cases for
non-singular controls.

Case 1: No switching occurs in ûP,i, i.e. ûP,i(t) ≡ ±umax for i ∈ {1, 2}.
By integration we obtain v̂P,i(t) = ±umaxt and thus v̂P,i(T̂ ) �= 0 in contra-
diction to the boundary conditions. Consequently, each non-singular control
component switches exactly once in [0, T̂ ].
Case 2: The switching structure for control component i ∈ {1, 2} is

ûP,i(t) =
{

umax, if 0 ≤ t < t̂s,i,
−umax, otherwise.

By integration and the boundary conditions we find

v̂P,i(t) =
{

umaxt, if 0 ≤ t < t̂s,i

umax(2t̂s,i − t), otherwise

ẑP,i(t) =
{

ẑP,i(0) + 1
2umaxt2, if 0 ≤ t < t̂s,i

ẑP,i(0) + umax

(
t̂2s,i − 1

2 (2t̂s,i − t)2
)
, otherwise.
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The boundary conditions for v̂P,i(T̂ ) and ẑP,i(T̂ ) yield

T̂i = 2t̂s,i and t̂s,i =

√
ẑP,i(T̂ ) − ẑP,i(0)

umax
if ẑP,i(T̂ ) − ẑP,i(0) ≥ 0.

Case 3: The switching structure for control component i ∈ {1, 2} is

ûP,i(t) =
{−umax, if 0 ≤ t < t̂s,i,

umax, otherwise.

This case can be handled analogously to Case 2 and we obtain

T̂i = 2t̂s,i and t̂s,i =

√
ẑP,i(0) − ẑP,i(T̂ )

umax
if ẑP,i(0) − ẑP,i(T̂ ) ≥ 0.

The above analysis reveals the shortest times T̂i, i ∈ {1, 2}, in which the i-th
state can reach its terminal boundary condition. The minimum time T̂ for a given
terminal position is thus given by the value function V of OCPL(xE,T , yE,T )
(=minimum time function) with

V (xE,T , yE,T ) = max{T̂1, T̂2} = 2max

⎧⎨
⎩

√
|xP,0 − xE,T |

umax
,

√
|yP,0 − yE,T |

umax

⎫⎬
⎭ .

(18)
That is, the final time is defined by the component i with the largest distance
|ẑP,i(T̂ ) − ẑP,i(0)|. For this component, the control is of bang-bang type with
one switch at the midpoint of the time interval. The remaining control can be
singular and it is not uniquely defined. The value function is locally Lipschitz
continuous except at the point (xE,T , yE,T ) = (xP,0, yP,0), compare Fig. 1. This
point, however, is of minor interest because interception takes place immediately.
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Fig. 1. Value function of lower level problem with data xP,0 = yP,0 = 0, umax = 1.

The equivalent single level problem (SL-OCP) reads as follows:

Minimize (8) subject to the constraints (9)-(14), (15)-(17) with (xE,T , yE,T )�

= (xE(T ), yE(T ))� and the non-smooth constraint

T ≤ V (xE(T ), yE(T )). (19)
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3.3 Numerical Results

For the numerical solution of the single level problem SL-OCP we applied
the direct shooting method OCPID-DAE1, [13]. The non-smooth constraint
T ≤ V (xE(T ), yE(T )) with V from (18) was replaced by a continuously dif-
ferentiable constraint which was obtained by smoothing the maximum function
and the absolute value function in (18). Figure 2 shows a numerical solution
of the pursuit-evasion Stackelberg bilevel optimal control problem for the data
vE,0 = 10, ψE(0) = π/4, α1 = 10, α2 = 0, wmax = 0.5, vE,max = 20, amin = −5,
amax = 1, umax = 5, N = 50, T ≈ 18.01. Figure 3 shows several trajectories for

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

co
nt

ro
l 1

t (normalized)

Control 1 vs time

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6  0.8  1

co
nt

ro
l 2

t (normalized)

Control 2 vs time

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0  0.2  0.4  0.6  0.8  1

co
nt

ro
l 3

t (normalized)

Control 3 vs time

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

co
nt

ro
l 4

t (normalized)

Control 4 vs time

Fig. 2. Numerical results for the bilevel optimal control problem: Trajectories of pur-
suer (lines with ‘+’) and evader (lines with boxes, top), controls of the pursuer (middle),
controls of the evader (bottom).
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Fig. 3. Left picture: Trajectories of pursuer (lines with ‘+’) and evader (lines with
boxes) for ψE(0) = π/4. Right picture: Trajectories of the pursuer (lines with ‘+’) and
the evader (lines with boxes) for different initial yaw angles of the evader.
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the pursuer and the evader for different initial yaw angles covering the interval
[0, 2π).

Remark 2. The constraint (19) may become infeasible under discretization.
Instead, the value function Vh of the discretized lower level optimal control
problem should be used. However, since Vh is hardly available for all kinds of
discretizations, we use instead the relaxed constraint T ≤ V (xE(T ), yE(T )) + ε
with some ε > 0.

4 Conclusions and Outlook

The paper discusses a specific bilevel optimal control problem and its reformu-
lation as an equivalent single level problem using the value function of the lower
level problem. For a sample problem it is possible to compute the value func-
tion analytically and to solve the overall bilevel problem numerically using a
direct discretization method. This first numerical study leaves many issues open
that have to be investigated in future research for the general problem setting.
Amongst them are smoothness properties of the value function, representation
of subdifferentials, the development of appropriate solution methods for non-
smooth problems, and the derivation of necessary (and sufficient) conditions of
optimality for the class of bilevel optimal control problems.
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Abstract. We consider a system of rigid bodies subjected to unilat-
eral constraints with soft contact and dry friction. When the constraints
are saturated, velocity jumps may occur and the dynamics is described
in generalized coordinates by a second-order measure differential inclu-
sion for the unknown configurations. Observing that the right velocity
obeys a minimization principle, a time-stepping algorithm is proposed.
It allows to construct a sequence of approximate solutions satisfying at
each time-step a discrete contact law which mimics the behaviour of the
system in case of collision. In case of tangential contact, dry friction may
lead to indeterminacies such as the famous Painlevé’s paradoxes. By a
precise study of the asymptotic properties of the scheme, it is shown
that the limit of the approximate trajectories exhibits the same kind of
indeterminacies.

Keywords: Unilateral constraints · Coulomb’s law · Measure differen-
tial inclusion · Time-stepping scheme

1 Description of the Problem

We consider a discrete mechanical system with d degrees of freedom. We denote
by q ∈ R

d its representative point in generalized coordinates and by M(q) its
inertia operator. We assume that the system is subjected to unilateral constraints
characterized by the geometrical inequality

g(q) ≤ 0 (non penetration condition)

with a smooth (at least C1) function g such that ∇g does not vanish in a
neighborhood of

{
q ∈ R

d; g(q) = 0
}
. Let us denote by 〈·, ·〉 the Euclidean

inner product in R
d. If for some instant t > 0 the constraints are saturated, i.e.

g
(
q(t)

)
= 0, then

〈
q̇−(t),∇g

(
q(t)

)〉 ≥ 0,
〈
q̇+(t),∇g

(
q(t)

)〉 ≤ 0

c© IFIP International Federation for Information Processing 2016
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L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 420–429, 2016.
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and the velocity may be discontinuous. It follows that u = q̇ is a function of
Bounded Variations and the dynamics is described by the Measure Differential
Equation

M(q)du = f(t, q, u)dt + r (1)

where du is the Stieljes measure associated to u and r is the reaction due to the
constraints. Of course a reaction is applied to the system only when a contact
occurs and we have a complementarity condition

g
(
q(t)

)
< 0 =⇒ r = 0.

Furthermore, we assume that the contact is non-adhesive which yields
〈
r,∇g

(
q(t)

)〉 ≤ 0 if g
(
q(t)

)
= 0.

In the frictionless case we get

r ∈ −N
(
q(t)

)
if g

(
q(t)

)
= 0

where N
(
q(t)

)
is the normal cone to the set of admissible configurations at q(t)

and in the frictional case

r ∈ C
(
q(t)

)
if g

(
q(t)

)
= 0

where C
(
q(t)

)
is the so-called friction cone at q(t). Hence we may rewrite (1) as

a Measure Differential Inclusion ([10,17])

M(q)du − f(t, q, u)dt ∈ R(q) (2)

where

R(q) =
{{0} if g(q) < 0,
R

+
(
n(q) + D1(q)

)
if g(q) ≥ 0,

and n(q) = − ∇g(q)∥∥∇g(q)
∥∥ and D1(q) is the disc of center 0 and radius μ in

(
Rn(q)

)⊥

with μ = 0 (frictionless constraints) or μ > 0 (Coulomb’s friction).
Let us assume also soft contact i.e.

u+(t) ∈ T
(
q(t)

)
=

(
Rn

(
q(t)

))⊥ if g
(
q(t)

)
= 0. (3)

We infer that

u+(t) ∈ (
u−(t) + M−1

(
q(t)

)R(
q(t)

)) ∩ T
(
q(t)

))
if g

(
q(t)

)
= 0. (4)

In the frictionless case we may decompose u±(t) as

u±(t) = u±
N (t) + u±

T (t), u±
N (t) ∈ RM−1

(
q(t)

)
n
(
q(t)

)
, u±

T (t) ∈ T
(
q(t)

)
,
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with

u±
N (t) =

〈
u±(t), n

(
q(t)

)〉
〈
n
(
q(t)

)
,M−1

(
q(t)

)
n
(
q(t)

)〉 .

With (3)–(4) we get

u+
N (t) = 0, u+

T (t) = u−
T (t)

which is equivalent to

u+(t) = Projq(t)
(
0,

(
u−(t) + M−1

(
q(t)

)R(
q(t)

)) ∩ T
(
q(t)

))
if g

(
q(t)

)
= 0

where Projq(t) denotes the projection relatively to the kinetic metric at q(t).
In the frictional case, when M(q) ≡ mIdRd , m > 0, Coulomb’s law ([3,11,12])

yields

− u+(t) ∈ ∂ψrN D1(q(t))(rT ) if g
(
q(t)

)
= 0 (5)

where rN and rT are respectively the projection relatively to the Euclidean
metric of r on Rn

(
q(t)

)
and T

(
q(t)

)
and ∂ψrN D1(q(t)) is the indicatrix function

of the disc of radius μrN and center 0 in T
(
q(t)

)
. Reminding that R(

q(t)
)

=
R

+
(
n
(
q(t)

)
+ D1

(
q(t)

))
, (5) is equivalent to

−u+(t) ∈ Proj
(
T

(
q(t)

)
, ∂ψR(q(t))(r)

)

which can be rewritten as

u+(t) = Proj
(
0,

(
u−(t) + M−1

(
q(t)

)R(
q(t)

)) ∩ T
(
q(t)

))
if g

(
q(t)

)
= 0. (6)

Let us emphasize that (4) and (6) imply that u+(t) �= u−(t) only if g
(
q(t)

)
=

0 and
〈
u−(t), n

(
q(t)

)〉
< 0, i.e. only in case of collision. Moreover u+(t) is defined

as the Argmin of the kinematically admissible right velocities. The same property
holds when M(q) �≡ mIdRd and μ > 0 and we still have ([6,12])

u+(t) = Projq(t)
(
0,

(
u−(t) + M−1

(
q(t)

)R(
q(t)

)) ∩ T
(
q(t)

))
(7)

if g
(
q(t)

)
= 0 and

〈
u−(t), n

(
q(t)

))〉
< 0. On the contrary, when g

(
q(t)

))
= 0

and
〈
u−(t), n

(
q(t)

))〉
= 0, (4) yields

u+(t) ∈ u−(t) +
(
M−1

(
q(t)

)R(
q(t)

) ∩ T
(
q(t)

))

and velocity jumps without collision may occur if M−1
(
q(t)

)R(
q(t)

)∩T
(
q(t)

) �=
{0}. Such phenomena can easily be observed when we consider the model prob-
lem of a slender rod in contact at one edge with an horizontal obstacle, leading to
the famous Painlevé’s paradoxes ([13,14]): there exists a subset A(

q(t), u−(t)
)
,

containing u−(t) but not reduced to this single point, such that any value of
u+(t) ∈ A(

q(t), u−(t)
)

solves the problem (see for instance [1,4,8] or more
recently [2,7,12]). Hence, in case of tangential contact with dry friction and
non-trivial inertia operator, the dynamics exhibits indeterminacies.



Unilateral Constraints, Soft Contact and Dry Friction 423

2 Computational Modelling: The Contact Dynamics
Approach

In order to solve numerically the problem, the Contact Dynamics approach has
been introduced by Moreau in the mid 80’s ([10–12]). The core idea is to avoid
any regularization of the unilateral constraints and to build a time-stepping
scheme by combining an Euler discretization of the measure differential inclusion
(2) on each interval [ti, ti+1] with an impulsional form of the contact law at ti+1.
More precisley the approximate position is updated as

qi+1 = qi + hui, h = ti+1 − ti

and a “free” left velocity at ti+1 is defined by

vi+1 = ui + hM−1(qi+1)f(ti+1, qi+1, ui).

Then ui+1 is the right velocity at ti+1 given by

M(qi+1)(ui+1 − ui) − hf(ti+1, qi+1, ui) ∈ R(qi+1), ui+1 ∈ T (qi+1)

and

ui+1 = S(qi+1, vi+1)

where S is a discrete analogous of the contact law. Starting from the definition
of R(qi+1), we get immediately

S(qi+1, vi+1) = vi+1 if g(qi+1) < 0.

If g(qi+1) ≥ 0 and
〈
vi+1, n(qi+1)

〉
> 0, the left velocity vi+1 points inward and

S(qi+1, vi+1) = vi+1.

If g(qi+1) ≥ 0 and
〈
vi+1, n(qi+1)

〉
< 0, we may interpret ti+1 as a collision

instant and with (6) we get

S(qi+1, vi+1) = Projqi+1

(
0,

(
vi+1 + M−1(qi+1)R(qi+1)

) ∩ T (qi+1)
)
.

Finally, if g(qi+1) ≥ 0 and
〈
vi+1, n(qi+1)

〉
= 0, we get

ui+1 ∈ vi+1 +
(
M−1(qi+1)R(qi+1) ∩ T (qi+1)

)
.

Hence ui+1 is uniquely defined if M−1(qi+1)R(qi+1)∩T (qi+1) = {0} and we have
ui+1 = S(qi+1, vi+1) = vi+1. On the contrary, if M−1(qi+1)R(qi+1) ∩ T (qi+1) �=
{0}, ti+1 may be interpreted as a discrete tangential contact with possible inde-
terminacies and there is not any natural choice for ui+1.

In [10–12] Moreau proposed ui+1 = S(qi+1, vi+1) = vi+1 if g(qi+1) ≤ 0,〈
vi+1, n(qi+1)

〉
= 0 and M−1(qi+1)R(qi+1) ∩ T (qi+1) �= {0}. It follows that S is

defined as

S(q, u−) =
{

v if v ∈ V (q),
Projq

(
0,

(
v + M−1(q)R(q)

) ∩ T (q)
)

otherwise,
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with

V (q) =
{
R

d if g(q) < 0,{
v ∈ R

d;
〈
v, n(q)

〉 ≥ 0
}

if g(q) ≥ 0.

For this scheme the following stability property holds.

Proposition 1. For all i ≥ 0, let ri+1 = M(qi+1)(ui+1 −ui)−hf(ti+1, qi+1, ui)
and ‖ · ‖qi+1 be the kinetric norm at ti+1 defined by ‖v‖qi+1 = 〈v,M(qi+1)v〉1/2

for all v ∈ R
d. Then, ri+1 ∈ R(qi+1), 〈ui+1, ri+1〉 ≤ 0 and

‖ui+1‖qi+1 ≤ ‖ui‖qi+1 + h
∥∥M−1/2(qi+1)

∥∥∥∥f(ti+1, qi+1, ui)
∥∥.

Proof. If ri+1 = 0 the result is obvious.
Otherwise, vi+1 �∈ V (qi+1) and

〈
vi+1, n(qi+1)

〉
< 0. By definition of S we get

ui+1 = Projqi+1

(
0,

(
vi+1 + M−1(qi+1)R(qi+1)

) ∩ T (qi+1)
)
.

Hence〈−ui+1,M(qi+1)(v − ui+1)
〉 ≤ 0 ∀v ∈ (

vi+1 + M−1(qi+1)R(qi+1)
) ∩ T (qi+1).

By choosing v = vi+1 + λM−1(qi+1)n(qi+1) with

λ = −
〈
vi+1, n(qi+1)

〉
〈
n(qi+1),M−1(qi+1)n(qi+1)

〉
we obtain 〈−ui+1,M(qi+1)(vi+1 − ui+1)

〉
= 〈ui+1, ri+1〉 ≤ 0.

Furthermore

‖ui+1‖qi+1 ≤ ‖v‖qi+1 ≤ ‖vi+1‖qi+1 =
∥∥ui + hM−1(qi+1)f(ti+1, qi+1, ui)

∥∥
qi+1

≤ ‖ui+1‖qi+1 + h
∥∥M−1(qi+1)f(ti+1, qi+1, ui)

∥∥
qi+1

≤ ‖ui+1‖qi+1 + h
∥∥M−1/2(qi+1)

∥∥∥∥f(ti+1, qi+1, ui)
∥∥.

Observing that the inequality 〈ui+1, ri+1〉 ≤ 0 corresponds to a dissipativity
property, we infer that the scheme reproduces at the discrete level the main
features of the dynamics except the indeterminacies of Coulomb’s law. Indeed,
S(q, v) = v if g(q) = 0,

〈
v, n(q)

〉
= 0 and the discrete contact law does not lead

to any velocity jump in case of tangential contact.
Starting from Proposition 1, the convergence of the scheme has been estab-

lished by Monteiro-Marques in [9] when M(q) ≡ mIdRd (m > 0) and μ ≥ 0 and
by Dzonou and Monteiro-Marques in [5] when M(q) �≡ mIdRd and μ = 0. In
both cases we have M−1(q)R(q) ∩ T (q) = {0} for all q ∈ R

d such that g(q) = 0
and the difficulty due to indeterminacies is avoided. Nevertheless the conver-
gence has also been proved recently when M(q) �≡ mIdRd and μ > 0 ([15]), so
a natural question arises: is it possible to recover with such a scheme velocity
jumps without collisions at the limit when h tends to zero? A first answer has
been given by Moreau in [12]: numerical simulations show that the approximated
trajectories exhibit the plurality of solutions given by Coulomb’s law.
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3 Asymptotic Properties of the Discrete Contact Law

Let us assume from now on that M(q) �≡ mIdRd (m > 0) and μ > 0. Then the
limit trajectory will satisfy in case of convergence the following property

u+(t) ∈ lim
ε→0

{S(qε, u
−
ε ); qε ∈ B(q, ε), u−

ε ∈ B
(
u−(t), ε

)}

We may recover the indeterminacies of Coulomb’s law if, for all (q, u−) such that
g(q) = 0,

〈
u−, n(q)

〉
= 0 and M−1(q)R(q) ∩ T (q) �= {0}, we have

lim
ε→0

dH

(Aε(q, u−),A(q, u−)
)

= 0 (8)

with

Aε(q, u−) =
{S(qε, u

−
ε ); qε ∈ B(q, ε), u−

ε ∈ B
(
u−, ε

)}
.

Let us recall that the Hausdorff distance between two subsets A and B of Rd is
defined as

dH(A,B) = max
(
e(A,B), e(B,A)

)

where

e(A,B) = sup
a∈A

dist(a,B) = sup
a∈A

inf
b∈B

‖a − b‖ (the excess of A from B),

e(B,A) = sup
b∈B

dist(b, A) = sup
b∈B

inf
a∈A

‖b − a‖ (the excess of B from A).

Hence (8) can be decomposed as

lim
ε→0

sup
{
dist

(S(qε, u
−
ε ),A(q, u−)

)
; qε ∈ B(q, ε), u−

ε ∈ B
(
u−, ε

)}
= 0 (9)

which can be interpreted as an asymptotic consistency property of the discrete
contact law S and

lim
ε→0

sup
{
dist

(
v,Aε(q, u−)

)
; v ∈ A(q, u−)

}
= 0 (10)

which can be interpreted as an asymptotic indeterminacy of the scheme.

In the one-dimensional friction case, i.e. when Dim
(
Span

(
D1(q)

))
= 1, then

A(q, u−) =
{{u−, ũ} if minw∈D1(q)

〈
n(q),M−1(q)

(
n(q) + w

)〉
< 0,

[u−, ũ] if minw∈D1(q)

〈
n(q),M−1(q)

(
n(q) + w

)〉
= 0

with

ũ = Projq
(
0,

(
u− + M−1(q)R(q)

) ∩ T (q)
)

(see [12]). Then we can prove that (9) is satisfied while (10) is not always true
and depends on the evolution of the mappings qε �→ R(qε) and qε �→ n(qε) in a
neighborhood of the contact point. More precisely let us assume that
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(H1) the mapping M is of class C1 from R
d to the set of symmetric positive

definite d × d matrices;
(H2) the function g belongs to C1(Rd), ∇g is locally Lipschitz continuous and

does not vanish in a neighbourhood of {q ∈ R
d; g(q) = 0};

(H3) for all q ∈ R
d, D1(q) is a closed, bounded, convex subset of Rd such that

0 ∈ D1(q) and the multivalued mapping q �→ D1(q) is Hausdorff continuous.
Furthermore, ∇g(q) �∈ Span

(
D1(q)

)
for all q ∈ R

d such that ∇g(q) �= 0.

We denote by K the set of admissible configurations i.e.

K =
{
q ∈ R

d; g(q) ≤ 0
}
.

Now let (q, u−) ∈ R
d × R

d such that g(q) ≥ 0,
〈
u−, n(q)

〉
= 0 and

M−1(q)R(q) ∩ T (q) �= {0}. With assumption (H2) there exists rq > 0 such
that the mapping

n :

⎧⎨
⎩

B(q, rq) → R
d

q′ �→ n(q′) = − ∇g(q′)∥∥∇g(q′)
∥∥

is well defined and Lipschitz continuous. Let us assume moreover that, pos-
sibly reducing rq, we have

(H4) dim
(
Span

(
D1(q′)

))
= 1 for all q′ ∈ B(q, rq).

We may observe that M−1(q)R(q) ∩ T (q) �= {0} if and only if there exists
w ∈ D1(q) such that

〈
n(q),M−1(q)

(
n(q) + w

)〉
= 0. Hence we introduce the

mapping γ : B(q, rq) → R defined by

γ(q′) = min
w′∈D1(q′)

〈
n(q′),M−1(q′)

(
n(q′) + w′)〉 ∀q′ ∈ B(q, rq).

With the previous assumptions we obtain that γ is continuous at q and γ(q) ≤ 0.
Then we have the following result:

Theorem 1. [16] If γ(q) < 0 or γ(q) = 0 and for all ε ∈ (0, rq) there exists
qε ∈ B(q, ε) \ (

Int(K) ∪ {q}) such that γ(qε) > 0, we have

lim
ε→0

dH

(A(q, u−),Aε(q, u−)
)

= 0.

Otherwise, if γ(q) = 0 and there exists εq ∈ (0, rq) such that γ(q′) ≤ 0 for all
q′ ∈ B(q, εq) \ Int(K), then dH

(A(q, u−),Aε(q, u−)
)
does not tend to zero as ε

tends to zero if ũ �= u− and we only have

lim
ε→0

dH

({u−, ũ},Aε(q, u−)
)

= 0.

Idea of the proof: For all ε ∈ (0, rq) and (qε, u
−
ε ) ∈ B(q, ε) × B(u−, ε) such that

u+
ε = S(qε, u

−
ε ) �= u−

ε we have

g(qε) ≥ 0,
〈
u−

ε , n(qε)
〉

< 0
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and u+
ε = ũε with

ũε = projqε

(
0,

(
u−

ε + M−1(qε)R(qε)
) ∩ T (qε)

)
.

By using the same kind of arguments as in Proposition 1, we obtain that
(ũε)rq>ε>0 is bounded. Moreover we can decompose ũε as follows

ũε = u−
ε + λεM

−1(qε)
(
n(qε) + wε

)
,

with λε > 0 and wε ∈ D1(qε) such that
〈
n(qε),M−1(qε)

(
n(qε) + wε

)〉
= 0

for all ε ∈ (0, rq). Using assumption (H4) (or assumption (H’4) see below) we
infer that there exists a unique vector w̃ ∈ D1(q) such that

〈
n(q),M−1(q)

(
n(q)+

w̃)
〉

= 0 and with assumptions (H1)–(H3) we obtain

lim
ε→0

wε = w̃.

Moreover, the boundedness of (ũε)rq>ε>0 implies that (λε)rq>ε>0 is also
bounded and we infer that the adherence values of (ũε)rq>ε>0 belong to
u− +

(
M−1(q)R(q) ∩ T (q)

)
.

If furthermore there exists εq ∈ (0, rq) such that γ(q′) ≤ 0 for all q′ ∈
B(q, εq)\Int(K), then we can prove that (ũε)rq>ε>0 admits a unique adherence
value given by ũ. It follows that

lim
ε→0

dH

({u−, ũ},Aε(q, u−)
)

= 0.

On the contrary, if for any ε ∈ (0, rq) there exists qε ∈ B(q, ε)\(
Int(K)∪{q})

such that γ(qε) > 0, then, for any v̄ ∈ [u−, ũ]\{
u−}

, dist
(
v̄,Aε(q, u−)

)
tends

to zero as ε tends to zero. Indeed, we may construct a sequence (qεn
, u−

εn
)n≥1

with (εn)n≥1 decreasing to zero such that (qεn
, u−

εn
) ∈ B(q, εn)×B(u−, εn), and

γ(qεn
) > 0 for all n ≥ 1 and (S(qεn

, u−
εn

))n≥1 converges to v̄. It follows that

lim
ε→0

dH

(
[u−, ũ],Aε(q, u−)

)
= 0.

Then we conclude by using the continuity of γ at q and the definition of
A(q, u−).

We infer that the discrete contact law always satisfies the asymptotic consis-
tency property while the asymptotic indeterminacy of the scheme holds only if
γ(q) < 0 or γ(q) = 0 and for all ε ∈ (0, rq) there exists qε ∈ B(q, ε)\(

Int(K)∪{q})
such that γ(qε) > 0 if ũ �= u−. In the latter case, any v̄ ∈ [u−, ũ]\{u−, ũ} is
the limit of a sequence of post-collision velocities (S(qεn

, u−
εn

) = ũεn
)n≥1 with

(εn)n≥1 decreasing to zero and (qεn
, u−

εn
) ∈ B(q, εn) × B(u−, εn) for all n ≥ 1.

Hence, for all n ≥ 1, S(qεn
, u−

εn
) = ũεn

is defined as the Argmin of the kinetic
norm of the admissible right velocities at (qεn

, u−
εn

) but v̄ is not the Argmin of
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the kinetic norm of the admissible right velocities at (q, u−). It means that the
minimization property (7) defining post-collision velocities is not continuous at
(q, u−) and it appears that this mathematical propery is deeply related to the
indeterminacies of Coulomb’s law.

Finally let us emphasize that (H3) allows to take into account both isotropic
and anisotropic friction. Moreover the conclusions of Theorem 1 are still valid
when (H4) is replaced by
(H’4) D1(q′) is strictly convex for any q′ ∈ B(q, rq) i.e. for any w1 and w2

belonging to D1(q′) such that w1 �= w2, and for any γ ∈ (0, 1), γw1 + (1 − γ)w2

belongs to the relative interior of D1(q′), i.e. there exists a open subset O of Rd

such that

γw1 + (1 − γ)w2 ∈ O ∩ Span
(
D1(q′)

) ⊂ D1(q′)

which is always true for the classical isotropic Coulomb’s friction characterized
by a friction coefficient μ > 0.
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Abstract. This paper investigates an optimal control problem associ-
ated with a complex nonlinear system of multiple delay differential equa-
tions modeling the development of healthy and leukemic cell populations
incorporating the immune system. The model takes into account space
competition between normal cells and leukemic cells at two phases of
the development of hematopoietic cells. The control problem consists
in optimizing the treatment effect while minimizing the side effects.
The Pontryagin minimum principle is applied and important conclusions
about the character of the optimal therapy strategy are drawn.

Keywords: Leukemia · Asymmetric division · Competition · Optimal
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1 Introduction

Leukemia is a cancer of the blood and bone marrow, characterized by large and
uncontrolled growth of white blood cells. The most studied type of leukemia,
Chronic myelogenous leukemia (CML), involves granular leukocyte precursors,
namely the myelocyte line. The trigger of CML is a chromosomal abnormality,
called the Philadelphia chromosome, that occurs in all cell lineages in about
90% of cases. The product of this chromosome is the formation of the BCR-ABl
fusion protein which is thought to be responsible for the dysfunctional regulation
of myelocyte proliferation and other features of CML. The standard treatment
of CML in recent years is Imatinib, a molecular targeted drug [15], that has the
effect that almost all patients attain hematological remission [13] and 75% attain
cytogenetic remission.

Nowadays, it is well known that both innate and adaptive immunity are impli-
cated in the defense mechanisms against cancer and recent progress in cancer
immunology suggest that the immune system plays a fundamental role in tumor
progression [23]. In CML, the biological literature reveals that T cells may play
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an important role in stemming the expansion of leukemic cells. This happens
because leukemic cells express antigens that are immunogenic and can be recog-
nized by cytotoxic T cells (CD8+ T cells or CTLs). In the paper [22], the authors
found that leukemia-specific effectors CTLs were able to eliminate leukemic stem
cells (LSCs) in vitro and in vivo in a setting with minimal leukemia load. The
role of CD4+ T cells in leukemia is less clear, although in [3] the authors ascer-
tained that some CML patients under imatinib-induced remission develop an
anti-leukemia immune response involving both CD4+ and CD8+ T cells. Hence,
our goal in this paper is to capture in a mathematical model the underlying
dynamics of this disease by considering the evolution of healthy and leukemic
cell populations along with one of the most important component of the cellular
immune response to CML, namely T cell response.

Even if a variety of mathematical papers have applied a range of model-
ing approaches to study tumor-immune interactions in general (see, for exam-
ple the recent review [7]), only a few described the specific leukemia-immune
interaction. Leukemia-immune models have been formulated using mostly ordi-
nary differential equations (ODE) [16,17] or delay differential equations (DDE)
[2,5,12,19]. Some models that specifically study the immune response to CML
are [2,12,16,18]. However, none of the above papers have considered competition
between healthy and leukemic cell populations, which is an important factor in
CML dynamics.

2 Assumptions on the Model

In this paper, we use a five-dimensional system of DDEs. The first four equations
describing the healthy and leukemic cell populations are based on the Mackey
and collaborators models of hematopoiesis [14]. In the present model, we consider
two types of hematopoietic cell populations: stem-like cell populations consisting
of stem cells and progenitors with self-renew ability and mature cell populations
formed by differentiated cells without self-renew ability. We include two types of
cell populations, healthy and leukemic, each of them with two subpopulations of
cells: stem-like and mature. In this way, we introduce space competition between
the normal cell population and the CML one. We underline that in the case
of leukemic cell populations mature cells are mostly unable to perform their
functions.

The main difference from the Mackey model is considering the competition
between healthy and CML cell populations and the fact that three types of
division of a stem-like cell are considered: asymmetric division, symmetric self
renewal and differentiation. In this paper we use the notation α = h, l with h for
healthy and l for leukemia. Consequently, we assume that a fraction η1α, α = h, l,
of stem-like cell population is susceptible to asymmetric division: one daughter
cell proceeds to differentiate and the other re-enters the stem cell compartment.
A fraction η2α, α = h, l, is susceptible to differentiate symmetrically with both
cells that result following a phase of maturation and the fraction 1 − η1α − η2α,
α = h, l, is susceptible to self-renewal so both cells that results after mitosis
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are stem-like cells. This four-dimensional competition model was introduced by
Radulescu et al. in [20].

The fifth equation of the system models the anti-leukemia T cell immune
response. The T cell population considered in this paper consists only of acti-
vated anti-leukemia T cells (involving both CD4+ and CD8+ T cells), which
actively interact with CML cells. We do not consider other parts of the immune
response, as the population of antigen presenting cells or the levels of citokines
production. We assume that after encountering a leukemic cell, a T cell has two
possibilities: either it inhibits the leukemic cell and activates a feedback function
to stimulate the production of new T cells, or it is inhibited itself by the leukemic
cell.

3 Description of the Model

The state variables of the model are the healthy cell populations x1 - stem-
like and x2 - mature, the CML cell populations x3 - stem-like and x4 - more
differentiated and x5 - the population of anti-leukemia T cells. The delays for
healthy and leukemia stem-like cells are τ1 and τ3 for the duration of the cell
cycle, independent of the type of division, and τ2 and τ4 for the time necessary
for differentiation into mature leukocytes for healthy and, respectively, leukemia
cells. τ is the duration of the cell cycle for T-cells and τ5 = nτ with n the
number of antigen depending divisions. We denote Xτi

= X(t − τi), where X =
(x1, x2, x3, x4, x5).

The optimal control model is

ẋ1 = f1(x1, x2, x3, x4, x1τ1 , x2τ1 , x3τ1 , x4τ1)
ẋ2 = f2(x2, x1τ2 , x2τ2 , x4τ2)
ẋ3 = f3(x1, x2, x3, x4, x5, x1τ3 , x2τ3 , x3τ3 , x4τ3 , u1, k1l, u1τ3)
ẋ4 = f4(x3, x4, x5, x2τ4 , x3τ4 , x4τ4 , k2l, u1τ4)
ẋ5 = f5(x4, x5, x4τ5 , x5τ5 , u2)

(1)

where

f1 = −γ1hx1 − (η1h + η2h)kh(x2 + x4)x1 − (1− η1h − η2h)βh(x1 + x3)x1+

+ 2e−γ1hτ1 (1− η1h − η2h)βh(x1τ1 + x3τ1 )x1τ1 + η1he−γ1hτ1kh(x2τ1 + x4τ1 )x1τ1

f2 = −γ2hx2 + Ah(2η2h + η1h)kh(x2τ2 + x4τ2)x1τ2

f3 = −(γ1l + f1a)x3 − [(η1l + η2l)kl((x2 + x4) fu1 ) + (1− η1l − η2l)βl((x1 + x3) fu1 )]x3+

+ [2e−(γ1l+f̃1a)τ3 (1− η1l − η2l)βl((x1τ3 + x3τ3 ) fu1τ3
)+

+ η1le
−(γ1l+f̃1a)τ3kl((x2τ3 + x4τ3 ) fu1τ3

)]x3τ3 − b1x3x5l1(x3 + x4)

f4 = − (γ2l + f2a)x4 + Al(2η2l + η1l)kl((x2τ4 + x4τ4 ) fuτ4
)x3τ4 − b2x4x5l1(x3 + x4)

f5 = a1 − a2x5 − a3fu2x5l2(x4) + 2n1a4x5τ5 l2(x4τ5 )

subject to minimization of the cost functional

min J(u), (2)
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where

J(u) = g(x(T )) + L(t, u(t), x5(t))

with g(x(T )) = A1x3(T ) + A2x4(T ) + E1x3(T )/x1(T ) + E2x4(T )/x2(T ) – being
the weighted sum of the final tumor population and the ratio the ratio of leukemia
cells and the healthy ones and

L(t, u(t), x5(t)) =
T∫
0

[B1u1(t) + B2u2(t) + C1k1(t) + C2k2(t) − Dx5(t)] dt –

the cumulative drug toxicity and T cell amount.
The history of the state variables is given by X(θ) = ϕ(θ), θ ∈

[−τmax, 0], τmax = max(τ1, τ2, τ3, τ4, τ5).
The healthy and leukemic blood cell populations are seen in competition

for resources and this is reflected in the fact that both feedback laws for self-
renewal and differentiation depend on the sum of healthy and leukemia cells.

Consequently, the rate of self-renewal is βα(x1 + x3) = β0α
θmα
1α

θmα
1α + (x1 + x3)mα

,

with β0α the maximal rate of self-renewal and θ1α half of the maximal value

and the rate of differentiation is kα(x2 + x4) = k0α
θnα
2α

θnα
2α + (x2 + x4)nα

, with

k0α the maximal rate of differentiation and θ2α is half of the maximal value.
The rest of the parameters for healthy and CML cell populations are: γ1α -
the natural apoptosis, Aα - an amplification factor and mα, nα parameters that
control the sensitivity of βα respectively kα to changes in the size of stem-like
and respectively mature populations. Table 1 contains a complete description of
parameters of the model.

To model the influence of T cells on CML cells, we consider the feedback

function l1(y) =
1

b5 + y
. Consequently, the last terms of the third and fourth

equations represent the inhibition of CML cells by anti-leukemia T cells. We
assumed that the inhibition of CML cell population by T cells increases with
the number of leukemic cells up to a certain level and then reaches a maximal
value of inhibition. A further increase in CML population will not modify this
value.

As concerns the fifth equation, the first term a1 is the natural supply of naive
T cells, while the second term −a2x5 indicates that T cells exit the population
through death at the rate a2. Leukemia cells suppress anti-leukemia immune
response. The precise mechanism is unknown, but it is assumed that the level
of down regulation depends on the current leukemia population, so we consider
that the immune system is regulated by the feedback function l2(y) =

y

b5 + y2
.

This function ensures that T cells are stimulated by CML cells only if leukemia
cell population has values in a certain range, called “the optimal load zone” (see
[12]). We take the rate of antigen stimulation as a feedback function depend-
ing on the level of the mature leukemic population, l2(x4) and the third and
the fourth terms, −a3u2x5l2(x4) and 2n1a4x5τ6 l2(x4τ5) gives the rate at which
naive T cells leave and re-enter the effector state after finishing the minimal
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developmental program of n1 cell divisions (due to antigen stimulation). The
time delay τ5 = n1τ is the duration of this program. These terms represent
the loss and respectively the production of T cells due to the competition with
leukemic cells.

The treatment targeting the BCR-ABL gene is supposed to affect the apop-
tosis and the proliferation rates of leukemia cells [11]. In view of this fact,

we consider the treatment functions fu1 =
1

1 − u1
, f1a = (γ1h − γ1l) k1l and

f2a = cγ2hk2l, with u1, k1l, k2l : [0, T ] → [0, 1], where u1(t), k1l(t), k2l(t) are the
treatment effects.

The action of treatment on the proliferation rate will be considered through
fu1 in the function of self-renew βl and in the function of differentiation or
asymmetric division kl. Note that, in this way, both βl and kl became decreasing
functions of u1. For more details, see [21]. The treatment acts on the apoptosis
through the function f1a on the stem cells and through the function f2a on

the mature ones. Also, from the law of the mass, we have f̃1a =
t∫

t−τ1

k1l(s)ds.

Moreover, it seems that, in vivo, Imatinib is the trigger of complex mechanisms,
some of them able to promote T cell expansion (see [22]). Imatinib’s effect on T
cell population is introduced in the form of a treatment function fu2 = 1 − u2,
with the stimulatory effect u2 : [0, T ] → [0, 1]. If no drug is given, then fu2 = 1
and a maximal effect takes place for u2(t) = 1, when T cell population is no
longer inhibited by CML cell population.

The existence of an optimal control follows since one can transform the
given problem into an optimal control problem for a system of ODEs whose
solutions will be bounded together with their derivatives on compact intervals
(see [1]).

4 Discretization of the Optimal Problem

In this section, we apply the numerical procedure from Gollmann and Maurer
[10], in order to solve the delay optimal control problem (1) + (2) (see also [8,9]).
For that matter, we write the cost functional in the Mayer form

J(u, x) = h(x(T )), x = (x1, x2, x3, x4, x5) ∈ R5.

We introduce the additional state variable z through the equation

ż(t) = B1u1(t) + B2u2(t) + C1k1(t) + C2k2(t) − Dx5(t), z(0) = 0.

Then, the cost functional (2) is rewritten as

J(u, x, z) = g(x(T )) + z(T ).

In the following, let τ > 0 be such that τ1 = j1τ , τ2 = j2τ, τ3 = j3τ , τ4 =
j4τ, τ5 = j5τ, ji ∈ N∗, i = 1, 5, T = Nτ and use the Euler integration method
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with a uniform step size τ > 0. Of course, τ can be refined in order to obtain
an appropriate smaller step-size. Using the grid points ti = iτ , i = 0, N and
the approximations x1(ti) � x1i ∈ R, x2(ti) � x2i ∈ R, x3(ti) � x3i ∈ R,
x4(ti) � x4i ∈ R, x5(ti) � x5i ∈ R, u1(ti) � u1i, u2(ti) � u2i and k1(ti) � k1i,

k2(ti) � k2i the treatment function f1a becomes
j3∑

j=1

k1li−j
τ and the delay control

problem (1) + (2) is transformed into the nonlinear programming problem (NLP)

Minimize J = g(xN ) + zN (3)

subject to
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1i − x1i+1 + τf1(x1i, x2i, x3i, x4i, x1i−j1 , x2i−j1 , x3i−j1 , x4i−k1) = 0
x2i − x2i+1 + τf2(x2i, x1i−j2 , x2i−j2 , x4i−j2) = 0
x3i − x3i+1 + τf3(x1i, x2i, x3i, x4i, x5i, x1i−j3 , x2i−j3 , x3i−j3 , x4i−j3 , u1i,

k1i,
j3∑

j=1

k1i−j
τ, u1i−j3) = 0

x4i − x4i+1 + τf4(x4i, x5i, x2i−j4 , x3i−j4 , x4i−j4 , k2li, u1i−j4) = 0
x5i − x5i+1 + τf5(x4i, x5i, x4i−j5 , x5i−j5 , u2i) = 0
zi − zi+1 + τ(B1u1i + B2u2i + C1k1i + C2k2i − Dx5i) = 0

(4)

− u1i ≤ 0, u1i − 1 ≤ 0,−u2i ≤ 0, u2i − 1 ≤ 0, (5)
−k1i ≤ 0, k1i − 1 ≤ 0,−k2i ≤ 0, k2i − 1 ≤ 0, i = 0, N − 1..

Herein, the initial value profiles ϕ1, ϕ2, ϕ3, ϕ4 and ϕ5 give the values

x1−i
:= ϕ1(−iτ), i = 0, l1,x2−i

:= ϕ2(−iτ), i = 0, l2, x3−j
:= ϕ3(−iτ), i = 0, l3

x4−j
:= ϕ4(−iτ), i = 0, l4, x5−j

:= ϕ5(−iτ), i = 0, l5.

The variable to be optimized is represented by the vector w = (u10 , u20 , k10 ,
k20 , x11 , .., , x51 , z1, .., u1N−1 , u2N−1 , k1N−1 , k2N−1 , x1N

, .., x5N
, zN ) ∈ R10N .

5 Numerical Results

In the following figures, we plotted the trajectories of the healthy, respectively
CML cell populations for the competition system, showing a comparison between
the dynamics of a system without treatment and the dynamics of a system sub-
ject to optimal treatment. In the following simulations two aspects are combined,
resulting four distinct manifestations of the disease:

– starting treatment in two different stages of the disease: a less severe stage
when the population of leukemic cells and the healthy cells coexist (the
leukemia cell population is still small) (S1) and a stage where healthy cell
population disappeared and the number of leukemic cells is already very high
(S2);

– two configurations of parameters describing two different forms of the disease
for patients, configuration 1 and configuration 2 (see Table 1). The configura-
tion 2 corresponds to a more serious disease.
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Considering multiple effects of treatment, on the apoptosis of leukemic stem
cells, leukemic mature cells, proliferation rate and immune system, simulations
show the impact of the disease on various optimal control solutions for four hypo-
thetical patients (see Figs. 1, 2, 3 and 4 for comparison between the dynamics of
a system without treatment and with optimal reatment).
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Fig. 1. Simulations start from S1 for configuration 1 of parameters. Dashed line repre-
sents the dynamics of a system without treatment and continuous line represents the
dynamics of a system with optimal treatment.
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Fig. 2. Simulations start from S2 for configuration 1 of parameters. Dashed line repre-
sents the dynamics of a system without treatment and continuous line represents the
dynamics of a system with optimal treatment.

In the Figs. 5, 6, 7 and 8 the controls k1l, k2l, u1, u2 represent the influence
of drug on the apoptosis of leukemic stem cells, leukemic mature cells, prolif-
eration rate and immune system. The value of cost functional was improved in
all situations (see figures). To solve the problem of optimal control the Matlab
solver for NLP problems fmincon was used, selecting the ‘interior-point ’ solver.
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Fig. 3. Simulations start from S1 for configuration 2 of parameters. Dashed line repre-
sents the dynamics of a system without treatment and continuous line represents the
dynamics of a system with optimal treatment.
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Fig. 4. Simulations start from S2 for configuration 2 of parameters. Dashed line repre-
sents the dynamics of a system without treatment and continuous line represents the
dynamics of a system with optimal treatment.
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Fig. 5. Controls for configuration 1 of parameters, simulations start from S1. The cost
function was improved from 4000 to 2700.
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Fig. 6. Controls for configuration 1 of parameters, simulations start from S2. The cost
function was improved from 5100 to 4100.
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Fig. 7. Controls for configuration 2 of parameters, simulations start from S1. The cost
function was improved from 3400 to1600.
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Fig. 8. Controls for configuration 2 of parameters, simulations start from S2. The cost
function was improved from 2700 to 2100.
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6 Conclusions

In this paper, an optimal control model for CML with the influence of the
immune system and treatment was investigated. Based on clinical evidences and
assumptions, the effects of Imatinib, the current first line treatment in CML,
was considered. These effects include the decrease of leukemic proliferation and

Table 1. Description of parameters

Par. Description Conf. 1 Conf. 2

β0h Maximal value of the βh feedback function (days−1) 1.77 1.77

β0l Maximal value of the βl feedback function (days−1) 2 2.27

k0h Maximal value of the kh feedback function (days−1) 0.1 0.1

k0l Maximal value of the kl feedback function (days−1) 0.4 0.8

mh Hill coefficient of the βh feedback function 4 4

ml Hill coefficient of the βl feedback function 4 4

nh Hill coefficient of the kh feedback function 3 3

nl Hill coefficient of the kl feedback function 3 3

θ1h Parameter for the βh feedback function (106cells/kg) 1.6 1.6

θ2h Parameter for the kh feedback function (106cells/kg) 12 12

θ1l Parameter for the βl feedback function (106cells/kg) 0.5 0.5

θ2l Parameter for the kl feedback function (106cells/kg) 36 36

γ1h Loss of stem cells due to mortality for healthy cells (days−1) 0.1 0.1

γ1l Loss of stem cells due to mortality for leukemic cells (days−1) 0.04 0.01

η1h Rate of asymmetric division for healthy cells 0.7 0.7

η1l Rate of asymmetric division for leukemic cells 0.1 0.1

η2h Rate of symmetric division for healthy cells 0.1 0.1

η2l Rate of symmetric division for leukemic cells 0.7 0.7

γ2h Instant mortality of mature normal leukocytes (days−1) 2.4 2.4

γ2l Instant mortality of mature leukemic leukocytes (days−1) 1.5 0.15

Ah Amplification factor for normal leukocytes 829 829

Al Amplification factor for leukemic leukocytes 1843 3686

b1 Loss of leukemic stem cells due to cytotoxic T cells 0.3 0.3

b2 Loss of mature leukemic leukocytes due to cytotoxic T cells 0.6 0.6

b3 Standard half-saturation in a Michaelis-Menten law 36 36

b4 Standard half-saturation in a Michaelis-Menten law 36 36

a1 Anti-leukemia T-cell supply rate 3 3

a2 Anti-leukemia T-cell death rate 0.23 0.23

a3 Coefficient of influence due to leukemic cells 0.3 0.3

a4 Probab. that T cell survives the encounter with a leukemia cell 0.9 0.9

n1 The number of antigen depending divisions 2 2

τ1 Duration of cell cycle for normal stem cells (days) 2.8 2.8

τ2 Duration of cell cycle for normal leukocytes (days) 3.5 3.5

τ3 Duration of cell cycle for leukemic stem cells (days) 2.1 2.1

τ4 Duration of cell cycle for leukemic leukocytes (days) 2.8 2.8

τ5 Duration of one T cell division (days) 1.4 1.4
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differentiation, the increase of leukemic apoptosis and some influences on the
anti-leukemia immune response.

From Figs. 1, 2, 3 and 4 one can see one can see the decline of leukemic cells
(i.e. molecular remission) and the increase of the number of healthy cells after
approximately three months of treatment. Depending on the level of cell popu-
lations at diagnosis (S1 or S2) and on the leukemia severity (i.e. configuration 1
or configuration 2) the evolution of healthy cell population to a normal amount
is more or less rapid.

The plots of optimal controls (Figs. 5, 6, 7 and 8) exhibit an optimal control
effect different for four hypothetical patients. One can observe that the drug
influence is slightly different for various manifestations of the disease. Conse-
quently, for an optimal effect of treatment, the prescribed dose should be adapted
considering the parameter’s disease of a certain patient and the leukemic burden
at diagnosis. Although the identification of most of the values parameters of the
disease is a daunting task, there are some which can be computed by means
of current methods and they might provide an important indication concerning
dose adjustment and therapy management.

Acknowledgments. This work was supported by CNCS-ROMANIA Grant ID-PCE-
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Abstract. We consider a mathematical model which describes the equi-
librium of an electro-elastic beam in contact with an electrically conduc-
tive foundation. The model is constructed by coupling the beam equa-
tion with the one dimensional piezoelectricity system obtained in [13].
We state the unique weak solvability of the model as well as the contin-
uous dependence of the weak solution with respect to the data. We also
introduce a discrete scheme for which we perform the numerical analy-
sis, including convergence and error estimates results. Finally, we present
numerical simulations in the study of a test problem.

Keywords: Beam · Elasticity · Piezoelectricity · Contact · Normal
compliance · Finite element method

1 Introduction

Piezoelectric materials belong to the family of “smart materials” and are char-
acterized by a coupling of mechanical and electrical properties. Thus, electric
charges can be observed on a piezoelectric body subjected to the action of exter-
nal forces and, conversely, an electric potential applied on a piezoelectric body
gives rise to stresses and strains. These properties of piezoelectric materials make
them suitable to be used as sensors and actuators in various industrial settings
and real-world applications. For this reason, the interest in the analysis of math-
ematical models with piezoelectric materials is currently increasing.

The construction of appropriate models to describe the behaviour of thin
deformable bodies like plates, shells and beams, represents an important topic in
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Solid Mechanics. By using asymptotic analysis, several classical reduced models
have been mathematically justified over the years. Pioneering work for modelling
of thin linearly isotropic piezoelectric beams was performed in [1,5,8,13–15,17].
Models for elastic beams in contact with a foundation have been justified in
[7,9,16], based on the ideas in [12].

The present paper represents a continuation of our previous works. Here we
analyse, both mathematically and numerically, a model for an elastic piezoelec-
tric beam in contact with a deformable conductive foundation. The manuscript is
structured as follows. In Sect. 2 we describe the physical setting together with the
corresponding mathematical model. Then, we list the assumptions on the data
and state our main results in the analysis of the model. In Sect. 3 we formulate
the discrete problem by using Finite Elements and provide existence, uniqueness,
convergence and error estimates results. We also provide a brief description of
the corresponding numerical algorithm. Finally, in Sect. 4 we present numerical
simulations which highlight the performances of the algorithm and describe the
effects of the different parameters on the solution.

2 Problem Statement

We consider an elastic piezoelectric beam of length L > 0, cross-section area
A, Young Modulus E and Inertia Moment I. The beam is clamped at both
ends and subjected to axial and vertical external forces f̄ and f⊥, respectively.
As a result, it may enter in contact with a conductive deformable foundation.
Based on our previous works [9,13,16], we associate to this physical setting the
following mathematical model.

Problem 1. Find a bending field ξ : [0, L] → IR, a stretching field u : [0, L] → IR
and an electric potential q : [0, L] → IR such that

(C⊥ξ′′)′′ = f⊥ − p(ξ − s) − μ1R(q)R̃(ξ − s), (2.1)

− (Pu′)′ − (εq′)′ = μ2(R̃(ξ − s))2, (2.2)
− (C̄u′)′ + (Pq′)′ = f̄ , (2.3)
ξ(0) = ξ′(0) = ξ(L) = ξ′(L) = 0, (2.4)
q(0) = q0, q(L) = qL, (2.5)
u(0) = u(L) = 0. (2.6)

Here, P and ε > 0 denote the piezoelectric coefficient and the electric permit-
tivity coefficient, respectively, and C⊥ = EI > 0, C̄ = EA > 0. Moreover,
p(·) : IR → IR+ denotes the normal compliance function, which vanishes for neg-
ative arguments, and μ1 > 0, μ2 > 0 represent coefficients of the system. The
dependence of the various functions on x ∈ [0, L] is not indicated explicitly and
the symbol ′ stands for the derivative with respect to this spatial variable.

We now briefly describe the equations and conditions (2.1)–(2.6). First, equa-
tion (2.1) is the beam equation in normal compliance contact with a foundation,
with an initial gap s. It also contains an additional term on the right hand side,
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which describes the electric charges from the obstacle to the beam, when the
contact arises. Here we use the notation R̃(z) = (R(z))+, for all z ∈ IR, where
r+ = max {r, 0} denotes the nonnegative part of r and R is the truncation
operator given by

R(z) =

⎧⎨
⎩

−M if z < −M,
z if −M ≤ z ≤ M,
M if z > M,

M > 0 being a positive constant that depends on the characteristic length of the
system. Equations (2.2)–(2.3) are the piezoelectric equations for elastic beams
presented in [13], and (2.4)–(2.6) represent the boundary conditions, in which q0
and qL denote the electric potentials applied on both ends of the beam.

For the analysis of Problem 1 we use the standard notation for Sobolev and
Lebesgue spaces. In particular, we denote by ‖ · ‖0, ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ the
norms on the spaces L2(0, L), H1(0, L), H2(0, L) and L∞(0, L), respectively. Let
ϕ = q − q̂, where q̂ is a lifting function of q0 and qL in H1(0, L) (see [13]). Note
that

q̂ ∈ C0([0, L]) and max
x∈[0,L]

{q̂(x)} = max{q0, qL}.

Moreover, without loss of generality, we assume that q0, qL > 0. As a conse-
quence, it follows that q̂ > 0 as well. We also assume that

s ∈ C1([0, L]), s(0) = s′(0) = s(L) = s′(L) = 0, (2.7)

and we denote η = ξ − s. Then, using a standard procedure, it is easy to obtain
the following variational formulation of problem (2.1)–(2.6).

Problem 2. Find η ∈ H2
0 (0, L), u ∈ H1

0 (0, L), ϕ ∈ H1
0 (0, L), such that

∫ L

0

C⊥η′′ζ ′′dx +
∫ L

0

μ1R(ϕ + q̂)R̃(η)ζdx +
∫ L

0

p(η)ζdx

=
∫ L

0

f⊥ζdx −
∫ L

0

C⊥s′′ζ ′′dx, (2.8)

∫ L

0

Pu′ψ′dx +
∫ L

0

εϕ′ψ′dx −
∫ L

0

μ2(R̃(η))2ψdx = −
∫ L

0

εq̂′ψ′dx, (2.9)

∫ L

0

C̄u′v′dx −
∫ L

0

Pϕ′v′dx =
∫ L

0

f̄vdx +
∫ L

0

P q̂′v′dx, (2.10)

for all ζ ∈ H2
0 (0, L), v, ψ ∈ H1

0 (0, L).

In the study of Problem 2 we assume the following hypotheses.

f̄ , f⊥ ∈ L2(0, L), (2.11)

C⊥, P, ε, C̄, μ1, μ2 ∈ L∞(0, L), (2.12)

C⊥ ≥ C⊥
0 > 0, ε ≥ ε0 > 0, C̄ ≥ C̄0 > 0, μ1 > 0, μ2 > 0 a.e. in (0, L), (2.13)
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Moreover, we assume that the normal compliance function p satisfies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) p : [0, L] × R → R+,

(b) There exists cp > 0 such that
|p(x, r1) − p(x, r2)| ≤ cp |r1 − r2|,
∀ r1, r2 ∈ R, a.e. x ∈ (0, L),

(c) There exists mp ≥ 0 such that
(p(x, r1) − p(x, r2))(r1 − r2) ≥ mp|r1 − r2|2,
∀ r1, r2 ∈ R, a.e. x ∈ (0, L),

(d) The mapping p(·, r) : x �→ p(x, r) is measurable on [0, L],
for all r ∈ R,

(e) The mapping p(·, r) : x �→ p(x, r) vanishes for all r ≤ 0,

(2.14)

and, in addition,

C⊥
0

c22M
>

3
2

‖μ1‖∞ + ‖μ2‖∞,
ε0

c21M
>

1
2

‖μ1‖∞ + ‖μ2‖∞. (2.15)

Next, we consider the space X(0, L) = H2
0 (0, L)×H1

0 (0, L)×H1
0 (0, L), which

is a real Hilbert space with the canonical inner product, denoted by (·, ·)X(0,L).
We then define the operator A : X(0, L) → X(0, L) and the element F ∈ X(0, L)
by equalities

(Ax,y)X(0,L) =
∫ L

0

C⊥η′′ζ ′′dx +
∫ L

0

μ1R(ϕ + q̂)R̃(η)ζdx +
∫ L

0

p(η)ζdx

+
∫ L

0

Pu′ψ′dx +
∫ L

0

εϕ′ψ′dx −
∫ L

0

μ2(R̃(η))2ψdx +
∫ L

0

C̄u′v′dx

−
∫ L

0

Pϕ′v′dx ∀x = (η, ϕ, u), y = (ζ, ψ, v) ∈ X(0, L), (2.16)

(F ,y)X(0,L) =
∫ L

0

f⊥ζdx +
∫ L

0

f̄vdx −
∫ L

0

C⊥ s′′ζ ′′dx −
∫ L

0

εq̂′ψ′dx

+
∫ L

0

P q̂′v′dx ∀y = (ζ, ψ, v) ∈ X(0, L). (2.17)

Then, an equivalent formulation of Problem 2 is as follows.

Problem 3. Find x = (η, ϕ, u) ∈ X(0, L) such that

(Ax ,y) = (F ,y)X(0,L) ∀y ∈ X(0, L). (2.18)

Our main result in the study of Problem 3 is the following.

Theorem 1. Under the assumptions (2.7), (2.11)–(2.15), there exists a unique
solution x = (η, ϕ, u) ∈ X(0, L) to Problem 3. Moreover, if xi = (ηi, ui, ϕi)
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represents the solution of Problem 3 for the data {q0i, qLi}, {si} and {f⊥
i , f̄i}

verifying the assumptions (2.7) and (2.11), i = 1, 2, then there exists C > 0 such
that

‖x1 −x2‖X(0,L) ≤ C(‖f⊥
1 −f⊥

2 ‖0 +‖s1 −s2‖2 +‖f̄1 − f̄2‖0 +‖q̂1 − q̂2‖1). (2.19)

The proof of this theorem is based on arguments of monotonicity and will be
included in our forthcoming paper [10]. Besides the unique weak solvability of
Problem 1, it provides the continuous dependence of the solution with respect
to the boundary data, the initial gap and the external forces.

3 Numerical Analysis

We now turn to the numerical analysis of the problem. To this end let 0 < h < L,
N(h) ∈ IN and let 0 = xh

0 < xh
1 < . . . < xh

i < xh
i+1 < . . . < xh

N(h) = L be a
partition of the interval [0, L] in N(h) intervals with maximum length h. We
denote by Θh the set of all elements and Kh

i = [xh
i , xh

i+1] ∈ Θh, 0 ≤ i < N(h).
We consider the finite element spaces

V h
1 (0, L) = {ξh ∈ C0([0, L]), ξh

|Kh
i

∈ P1(Kh
i ), 0 ≤ i < N(h), ξh(0) = ξh(L) = 0},

V h
3 (0, L) = {ξh ∈ C1([0, L]), ξh

|Kh
i

∈ P3(Kh
i ), 0 ≤ i < N(h),

ξh(0) = ξh(L) = (ξh)′(0) = (ξh)′(L) = 0},

where Pk(Kh) represents the space of polynomials of degree less or equal than
k restricted to Kh. It is straightforward to see that V h

3 (0, L) ⊂ H2
0 (0, L) and

V h
1 (0, L) ⊂ H1

0 (0, L). Let Xh(0, L) = V h
3 (0, L) × V h

1 (0, L) × V h
1 (0, L) ⊂ X(0, L),

and let PXh : X(0, L) → Xh(0, L) denote the projection operator. Then, the
discrete version of Problem 3 can be formulated as follows:

Problem 4. Find xh = (ηh, ϕh, uh) ∈ Xh(0, L) such that

(Axh,yh)X(0,L) = (F ,yh)X(0,L) ∀yh = (ζh, ψh, vh) ∈ Xh(0, L).

Using arguments similar to those used in the proof of Theorem 1 it follows that
Problem 4 has a unique solution xh = (ηh, ϕh, uh) ∈ Xh(0, L). In addition, the
following a priori error estimation holds:

‖x − xh‖X(0,L) ≤ C‖x − yh‖X(0,L) ∀yh ∈ Xh(0, L), (3.1)

where, recall, x = (η, ϕ, u) ∈ X(0, L) is the solution of Problem 3.
For a given Kh

i = [xh
i , xh

i+1] ∈ Θh, we use a local nodal notation, so
Kh

i = [xi,h
0 , xi,h

1 ]. Denote by Πh
1 : C([0, L]) → V h

1 (0, L) the Lagrange global
interpolation operator, i.e.

Πh
1 v|Kh

i
= Πh

1 |Kh
i
v ∀Kh

i ∈ Θh, v ∈ C([0, L]),
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where Πh
1 |Kh

i
: C(Kh

i ) → P1(Kh
i ) represents the local Lagrange interpolation

operator. Similarly, denote by Πh
3 : C1([0, L]) → V h

3 (0, L) the Hermite global
interpolation operator, i.e.

Πh
3 v|Kh

i
= Πh

3 |Kh
i
v ∀Kh

i ∈ Θh v ∈ C1([0, L]),

where Πh
3 |Kh

i
: C1(Kh

i ) → P3(Kh
i ) is the local Hermite interpolation operator.

Then, the following interpolation error estimations holds:

‖v − Πh
k v‖m,K ≤ C hl

K |v|r,K ∀K ∈ Θh, (3.2)

where v ∈ Hr(K), Πh
k v denotes its corresponding interpolant in V h

k (0, L), l =
min{k + 1 − m, r − m} and C > 0 is a constant which does not depend on v, k
and h. For the proof of (3.2) see, for instance, [4,6].

Finally, let Πh : C1([0, L]) × C0([0, L]) × C0([0, L]) → Xh(0, L) denote the
global interpolation operator given by Πh(y) = (Πh

3 (ζ),Πh
1 (ψ),Πh

1 (v)) for all
y = (ζ, ψ, v) ∈ C1([0, L])×C0([0, L])×C0([0, L]). Therefore, given {r1, r2, r3} ⊂
IN, from (3.2) we find that

‖y − Πhy‖X(0,L) ≤ C (hr1‖ζ‖2 + hr2‖ψ‖1 + hr3‖v‖1) ≤ C hl‖y‖X(0,L),

for all y = (ζ, ψ, v) ∈ H2+r1(0, L) × H1+r2(0, L) × H1+r3(0, L), where l =
min{r1, r2, r3}. Furthermore, by using the previous error estimation and den-
sity arguments in (3.1), we conclude that

lim
h→0

‖x − xh‖X(0,L) = 0,

which represents a convergence result for our discrete scheme.

Algorithm Implementation. The algorithm for the numerical solution of
Problem 4 is based on a fixed point strategy to compute the bending, the stretch-
ing and the electric potential, iteratively. The novelty lies in the method we use
to solve the contact problem on each step. The description of this method rep-
resents our main aim in the rest of this section. In order to simplify it, note that
the numerical discretization of (2.8) fits in the following general framework:

Find ξh ∈ Eh such that L ∈ Aξh + BHB∗ξh, where H : Eh → 2Eh

is a
maximal monotone operator, B ∈ L(Eh, V h

3
′), A ∈ L(V h

3 , V h
3

′) and L ∈ V h
3

′.

Here and below the symbol E′ denotes the dual of E. To solve this problem we
use a penalization algorithm of the Uzawa family whose performance is improved
by combining it with the Newton method. We restrict ourselves to describe the
main steps of the algorithm, and refer the reader to [2,11] for further details.
Let Hω

μ denote the Yosida approximation of the operator Hω = H − ωI, with
ωμ < 1. Then the algorithm introduced in [2] is the following:

Let qh,0, ξh,0 be arbitrary. Given qh,n and ξh,n−1, compute qh,n+1 and ξh,n

such that ⎧⎨
⎩

Aξh,n + ωBB∗ξh,n = L − Bqh,n,
qh,n+1/2 = Hω

μ

[
B∗ξh,n + μqh,n

]
,

qh,n+1 = ρqh,n+1/2 + (1 − ρ)qh,n.

(3.3)
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The efficiency of this algorithm is well known, although its convergence is
quite slow. For this reason, following [3], we combine it with the Newton method
which accelerates its convergence. First, note that if ω = 0, then ωμ < 1 and

H0
μ(x) = Hμ(x) =

k

1 + kμ
(I − ΠEh)(x).

Therefore, we need to solve the system

Aξh,n+1 = L − Bqh,n+1, (3.4)
qh,n+1 = Hμ(Bξh,n+1 + μqh,n+1). (3.5)

Besides, given φ ∈ Eh, we have Hμ(φ)|C = G(φ|C) where

G(p) =
{

0 if p ≤ s
k

1+kμ (p − s)(x) if p > s
.

We approximate G(p0) by G(p1) + V (p0 − p1) + O(|p0 − p1|2), where

V ∈ ∂G(p0) =

⎧⎪⎨
⎪⎩

0 if p0 < s[
0, k

1+kμ

]
if p0 = s

k
1+kμ if p0 > s

. (3.6)

Thus, taking p0 = Bξh,n+1 + μqh,n+1 and p1 = Bξh,n + μqh,n, we obtain that

qh,n+1 = Hμ(p0) = G(Bξh,n + μqh,n) + V (Bξh,n+1 + μqh,n+1 − Bξh,n + μqh,n).

Next, we use the subsets of the mesh Θh given by

Ω+
n = {Kh

i ∈ Θh; (Bξh,n + μqh,n)|Kh
i

> s}, Ω−
n = Θh \ Ω+

n , (3.7)

and we take into account the values of V in (3.6) to find that

qh,n+1 =
{

0 on Ω−
n

k
1+kμ (Bξh,n+1 + μqh,n+1) − k

1+kμs on Ω+
n

,

which implies that qh,n+1 = 0 on Ω−
n and qh,n+1 = k(Bξh,n+1−s) on Ω+

n . Recall
that our aim is to solve the system (3.4)–(3.5). To this end, substituting qh,n+1

in (3.4) by this value obtained by applying the Newton approximation to (3.5),
we obtain the following algorithm:

Let qh,0, ξh,0 be arbitrary. Given qh,n, ξh,n and Ω+
n , compute qh,n+1, ξh,n+1

and Ω+
n+1 such that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

Aξh,n+1ζdx +
∫

Ω+
n

kBξh,n+1ζdx =
∫

Ω

Lζdx +
∫

Ω+
n

ksζdx,

qh,n+1 =
{

0 on Ω−
n

k(Bξh,n+1 − s) on Ω+
n

,

Ω+
n+1 = {Kh

i ∈ Θh; (Bξh,n+1 + μqh,n+1)|Kh
i

> s}.

(3.8)

We finally recall that even though the algorithm above has been presented
in a general framework, in our work it is highly simplified since the operator B
is, in fact, the identity operator.
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4 Numerical Simulations

In this section we will show the numerical results obtained for several simulations
designed to highlight the performance of the algorithm. We consider a beam of
length L = 1m, and a uniformly spaced mesh with element size h = 0.01. The
choice of values for the various parameters is the following:

E = 1 × 105
N

m2
, I = 0.05 m4, A = 1 m2, P = 100

N · m

V
,

μ1 = μ2 = 1
N

V · m2
, ε = 1

N · m2

V
, f̄ = 1 × 106

N

n
, f⊥ = 1 × 106

N

m
.

Our results are presented in Figs. 1, 2, 3 and 4 where the bending, the stretching,
the deformation and the electric potential of the beam are plotted.
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Fig. 1. Bending.
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Fig. 4. Electric potential.

Next, in Fig. 5, we illustrate the influence of the stiffness coefficient on the
bending of the beam. We start with the value k = 1 for the stiffness coefficient
and increase it up to the value k = 1 × 1016. Our results show that more the
obstacle is stiff, less the penetration is. We also note that the influence of the
obstacle arises only for values of the stiffness coefficient larger than the Young
modulus of the beam, E. We also plot the solutions obtained by using both
the method in (3.3) and its Newton improvement formulated in (3.8), for k =
1 × 1016. As expected, the two solutions are practically the same.

Now, in order to show the improvement of the Newton method versus the
original algorithm, we represent in Fig. 6 the number of iterations needed to
achieve convergence for both algorithms, with various tolerances. As we can
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Fig. 5. Bending for several coefficients of stiffness

see, the convergence of the Newton method is always achieved in about ten
iterations, while the Bermúdez-Moreno algorithm (3.3) needs more than one
thousand iterations, if the tolerance is smaller than 1 × 10−3.

In Figs. 7, 8 and 9 we show the convergence of the solutions for bending,
stretching and electric potential, respectively, as the mesh size decreases. We
take the solution obtained for h = 1 × 10−4 as “exact” solution. We note that
the convergence for the electric potential and the stretching field is linear while
the convergence for the bending field is slower.
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Spain, vol. A310, pp. 1–17 (2005)

15. Viaño, J.M., Ribeiro, C., Figueiredo, J.: Asymptotic modelling of a piezoelectric
beam. In: Proceedings of II ECCOMAS Thematic Conference of Smart Materials
and Structures, pp. 1–12. Lisbon, Portugal, EO26MOD (2005)
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Abstract. We present two models for engineering processes, where ther-
mal effects and time-dependent domains play an important role. Typi-
cally, the parabolic heat equation is coupled with other equations. Chal-
lenges for the optimization of such systems are presented.

The first model describes a milling process, where material is removed
and heat is produced by the cutting, leading to thermomechanical dis-
tortion. Goal is the minimization of these distortions.

The second model describes the melting and solidification of metal,
where the geometry is a result of free-surface flow of the liquid and the
microstructure of the re-solidified material is important for the quality
of the produced preform.

Keywords: Optimization with PDEs · Time-dependent domain · Heat
equation · Thermoelasticity · Free surface flow

1 Introduction

The optimization of industrial engineering processes often lead to the treatment
of coupled, nonlinear systems of PDEs. Here we want to investigate applica-
tions where an important part of the nonlinearities is created by time-dependent
domains, which are not prescribed but who are part of the solution itself. The
treatment of such models in the context of PDE constraints in optimal control
problems typically generates additional challenges in both, the solution of the
forward problems and the treatment and storage of adjoint solutions.

In the following, we present two models for engineering processes, where
heating of metal workpieces and time-dependent domains play an important role.
Thus, a parabolic heat equation is coupled with other equations. Challenges for
the optimization of such coupled systems are presented.

The first model describes a milling process, where material is removed and
heat is produced by the cutting. This leads to a thermomechanical distortion of
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 452–461, 2016.
DOI: 10.1007/978-3-319-55795-3 43
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the workpiece during the cutting process and leads to an incorrect removal of
material. An optimization of the cutting path and speed, varying chip thickness
and thus heat production, etc., should give reduced distortion during the process
and lead to a correct workpiece shape.

The second model describes the melting and solidification of metal heated
by a laser beam. Due to free-surface flow, the shape of the liquid part depends
on capillary boundary conditions, and heat transport on the flow field. The
microstructure of the re-solidified material, which is important for subsequent
process steps, depends on the temperature gradients near the moving liquid-solid
interface and its velocity. Accelerating the process for mass production on the
one hand and improving the microstructure on the other hand compete for an
optimized process.

Both optimization problems can be formulated in an abstract setting as

min
u∈Uad

J(u, y) under the constraint y = S(u) (1)

where u denotes the control, Uad the set of admissible controls, y the state, J the
error functional to be minimized, and S is the control-to-state operator, given by
a nonlinear PDE. J is typically given by a deviation of y (or something derived
from it) from a desired function yd plus some regularization by a norm of u, like

J(u, y) = d(y, yd) + α‖u‖p
p. (2)

For both applications, we will first state and describe the primal problem
giving the solution operator S, and later cover some details of the associated
optimization problem.

2 Thermomechanics of Milling Processes

2.1 Application

During a milling process, heat is produced by the cutting tool and transfered into
the workpiece, and mechanical load is generated by cutting forces. Due to the
resulting thermomechanical deformation of the workpiece, the final shape of the
processed workpiece deviates from the desired shape, making a postprocessing
finishing necessary. Deformations are relatively large especially when producing
fine structures like thin walls for lightweight constructions. In order to reduce the
shape deviation, an optimization of the tool path and other process parameters
is desirable, taking into account the thermomechanical deformations.

2.2 Model

The mathematical model for the thermomechanics of the process includes ther-
moelasticity of the workpiece, energy and forces introduced by the process, and
most importantly the cutting process itself, which leads to a time-dependent
domain, whose shape influences the process and vice versa. As typical under
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the assumption of small deformations, the model is formulated in a reference
configuration.

Let Ω(t) ⊂ R
3 denote the time-dependent domain in the reference configu-

ration, QT := {(x, t) : x ∈ Ω(t), t ∈ (0, T )} the space-time-domain, θ : QT → R

the temperature, and v : QT → R
3 the deformation.

The change of geometry by material removal as well as energy and forces
introduced by the cutting process are provided by a process model [3,5], tak-
ing into account the tool path and velocity, chip thickness, temperature and
deformation, and other global and local parameters and properties. Here, we
rely on a macroscopic model where microscopic processes like chip formation
are not directly considered, but their effects considered via the process model.
Let us denote by Γ (t) ⊂ ∂Ω(t) the contact zone of the cutting tool at time t,
ΓT := {(x, t) : x ∈ Γ (t), t ∈ (0, T )}, qΓ : ΓT → R the normal heat flux, and
gΓ : ΓT → R

3 the forces introduced at the cutting surface.
In the notion of optimal control problems, the state y consists of the domain,

temperature, and deformation, y = (Ω, θ,v), while the control u consists of the
process parameters like tool path, feed rate, rotational velocity, etc. The material
removal and thus the domain Ω(t) depend on the cutting process (control u) and
the deformation v.

The coupled model includes the parabolic heat equation and quasistatic,
elliptic thermoelasticity

θ̇ − ∇ · (κ∇θ) = 0, (3)
−∇ · σ = fv(θ) (4)

on ΩT with stress tensor σ = 2μDv + λtr(Dv)I and Dv = 1
2 (∇v + ∇vT ) the

symmetric gradient or strain tensor. On the contact zone ΓT , we have boundary
conditions for heat flux and mechanical forces given by the process model,

κ∇θ · n = qΓ (u, θ,v), (5)
σn = gΓ (u, θ,v). (6)

The workpiece is clamped, which is reflected by Dirichlet conditions on a subset
ΓD ⊂ ∂Ω \ ΓT ,

v = 0 on ΓD, (7)

while cooling conditions and free deformation apply on the rest of the boundary,

κ∇θ · n = r(θext − θ), (8)
σn = 0. (9)

Initially, the temperature is typically constant at room temperature, thus θ = θ0
on Ω(0).
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2.3 Numerical Discretization of the Forward Problem

The system (3–9) of PDEs is discretized using a finite element method on
an adaptively locally refined tetrahedral mesh [10,13], using piecewise polyno-
mial functions for the temperature and the components of deformation. Time-
discretzation is based on a semi-implicit time stepping scheme.

The time-dependent domain Ω(t) is approximated by a subset Ωh(t) of the
triangulation, where the completely cut off elements are ignored. The cutting
process is simulated by a dexel method [11], which is able to compute the inter-
action of the tool with the (deformed) workpiece very efficiently, giving Ω̃h(t)
and Γ̃h(t). At the same time, chip thickness and other cutting parameters are
computed and the process model returns approximations of the heat flux qΓ,h

and forces gΓ,h at the cutting surface Γ̃h(t). Based on that, the finite element
method computes Ωh(t) and Γh(t) and projects the boundary data onto Γh(t).
Finite element approximations of temperature and deformation are computed on
Ωh(t). This is done in every time step of the finite element method. The overall
method is described in [4,5].

Figure 1 shows the mesh, temperature, and deformation from the simulation
of a milling process. The mesh is adaptively refined in order to approximate the
geometry Ω(t) well by Ωh(t). The process removes layers of material to mill a
pocket into a rectangular bar of metal. Especially the final thin backward wall is
prone to deformations larger than the given tolerance, making it hard to produce
the desired shape.

Fig. 1. Simulation of a milling process: mesh and temperature (top) and deforma-
tion (bottom, amplified by a factor 100). The tool is at the moment cutting near the
backward left lower corner.
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2.4 Optimization

The goal of a process optimization is a compensation and reduction of geometry
errors while not slowing down the process too much. Control is given by the
variation of process parameters like tool path and velocity, speed of tool rota-
tion, etc. Such variations result in changes of the tool entry situation and thus,
reflected by the process model, changes in heat source and cutting forces, and
finally a change in the thermomechanic deformation. Admissible controls in Uad

are defined by restrictions on the machining process.
Given a prescribed final geometry Ωd of the workpiece, the optimization func-

tional should include the deviation of the process geometry from the desired one,
as well as the process duration. Considering the geometry error, different criteria
are possible, especially comparing geometries during the whole cutting process
or only in the end. For the latter, this would nevertheless include geometry error
terms over time, as material which was removed before cannot be added later
on again.

Another approach to an error functional includes geometry deviations near
the cutting zone ΓT during the whole process:

J(u,Ω, θ,v) =
∫ T

0

‖Ω(t) − Ωd(t)‖2Γ (t) + λ‖u‖2. (10)

We show the effect of such an error functional in a model situation, where a
L-shaped geometry is produced from a rectangular plate. This can be seen as
a slice through the original workpiece, see the left of Fig. 2. The non-optimized
control does not consider the thermal extension and leads to increased mater-
ial removal resulting in a recessed surface after the workpiece has cooled down.
Figure 2 shows on the right the geometry error in the contact zone over the
process time. The general optimal control problem requires to find the spatial
tool positions and the cutting parameters which minimize (10). In a first inves-
tigation of the model problem, simple raster milling is performed and control
is given by traditional setting parameters, i.e. cutting depth, radial and tan-
gential feed and cutting velocity. Figure 3 shows the resulting surface for the
non-optimized process and for the process with optimal parameters.

Fig. 2. Model geometry (left), deformation v in the cutting zone at t = 10.5 s (middle),
and maximal deformation in the cutting zone Γ (t) over time (right).
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Fig. 3. L-shaped workpiece near the end of the milling process, with initial control
(left) and optimized parameters (right). Colors depict the modulus of deformation.
(Color figure online)

Adjoint Problem. The optimization shown above was done with the stan-
dard MATLAB optimization toolbox which just calls the finite element package
to solve the forward problem. For a more involved algorithm, the computation
and storage of the adjoint solution would be used. The corresponding system
of adjoint problems consists of the adjoint (backward) heat equation on the
time-dependent domain (now given from the forward problem), coupled to the
quasistatic adjoint elasticity equation. Due to the rather long process time, the
three-dimensional time-dependent domain, and adaptive meshes for approxi-
mation of domain and solution, the handling of such adjoint solutions in the
optimization procedure is a challenge.

3 Material Accumulation by Laser Heating

3.1 Application

For the production of micro components (like micro-valves, etc., with diameters
smaller than 1 mm) by cold forming, a necessary pre-forming step is to accumu-
late enough material for a subsequent cold forming step. This can be done by
partial melting and solidification of a half-finished product like a thin wire [14].
Due to the small scale, the dominant surface tension of the melted material leads
to a nearly spherical form, leading to an accumulated solid sphere attached to
the wire after solidification which is called preform. Due to the industrial back-
ground, very high process speeds are requested. However, for the subsequent
forming step, the microstructure of the material is important. Thus, besides the
speed of the process and an accurate size of the preform, its microstructure is part
of the optimization goal. Formation of dendritic structures and their spacings,
or other phases, during the solidification are strongly influenced by the liquid-
solid interface velocity and local temperature gradients [9]. Thus, temperature,
phase transitions, and the geometry are important aspects of the corresponding
optimization problem.



458 A. Schmidt et al.

3.2 Model

We consider the time-dependent domain Ω(t) consisting of the solid and partially
melted parts of the material (metal). Melting and solidification are typically
modeled by the Stefan problem, including temperature θ and energy density e
as variables in the space-time-domain QT := {(x, t) : x ∈ Ω(t), t ∈ (0, T )}:

ė + v · ∇e − ∇ · (κ∇θ) = 0, θ = β(e), (11)

where β(s) := c1 min(s, 0) + c2 max(0, s − L) and L denotes the latent heat
of solid-liquid phase transitions. β is only a piecewise-smooth function with a
constant part, making (11) a degenerate parabolic equation.

The liquid subdomain Ωl(t) is given by all points where the temperature is
above the melting temperature (which is assumed to be 0 after some scaling),

Ωl(t) := {x ∈ Ω(t) : θ(x, t) > 0}. (12)

The shape of the melted (and later on re-solidified) material accumulation is
mainly influenced by the surface tension of the liquid, together with gravitational
forces etc., which means free-surface flow. Parabolic Navier-Stokes equations
with capillary boundary condition is the main model component for this, with
solenoidal velocity field v and pressure p in Ωl(t),

v̇ + v · ∇v − ∇ · σ = fv(θ), ∇ · v = 0, (13)

with stress tensor σ = 1
ReDv − pI. Here, fv denotes the forces introduced by

gravity due to a temperature-dependent density and the Boussinesq approxima-
tion. The shape of the liquid subdomain is given through the capillary boundary
condition on the free surface Γ (t) of the melted subdomain, where the surface
tension (proportional to the mean curvature of the surface) balances the normal
stress. In a differential geometric PDE formulation, the mean curvature vector
HΓ is given by the Laplace-Beltrami-operator −ΔΓ applied to the coordinates
of the surface (represented by the embedding id : Γ (t) → R

3), giving another
(nonlinear) elliptic equation in the coupled system. Additionally, the normal
component of the fluid velocity should be equal to the normal velocity VΓ of the
capillary surface. Both lead to the following equations on Γ (t):

σn =
1

We
HΓ = − 1

We
ΔΓ id, v · n = VΓ . (14)

On the solid-liquid interface and in the solid subdomain, the velocity vanishes,

v = 0 in Ω(t) \ Ωl(t). (15)

The heating is done through a laser pointing at a spot on the boundary, modeled
by a time- and space-dependent energy density qL, and cooling conditions apply
on the whole boundary,

κ∇θ · n = qL + r(θext − θ) on ∂Ω(t). (16)

A more detailed description of the model can be found in [8].
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3.3 Numerical Discretization of the Forward Problem

The forward problem with given boundary conditions is discretized by a finite
element method which combines a Stefan problem solver with a free-surface
Navier-Stokes solver. The latter is based on the Navier code [1], the combined
approach is described in more detail in [2,7]. Locally refined (triangular or tetra-
hedral) meshes are needed in order to approximate the large variations in tem-
perature near the heating zone and the surrounding of the solid-liquid interface
sufficiently well, while keeping the overall numerical costs acceptable. Due to the
big changes in geometry, starting from a thin wire and ending in a relatively large
spherical accumulation, several remeshings are necessary during the simulation
in order to avoid a degeneration of mesh elements.

Figure 4 shows a typical mesh, temperature field, and velocity field during
the melting, with the laser pointing to the center bottom of the material. Due
to rotational symmetry, a 2D FEM with triangular meshes could be used. As
the wire is melted from below, the growing sphere is moving upwards and thus
the velocity vectors are pointing upwards, too. In Fig. 5, we show several stages
during the solidification after the heating is switched off (from a simulation with
shorter heating period). In contrast to our results for energy dissipation during
the heating process [6], the cooling after switching off the laser is mainly done by
conducting heat upwards into the wire, which results in a downward movement
of the interface. The additional cooling by the boundary conditions leads later
on to an additional solidification at the boundary of the liquid region. During
solidification, the shape does not change much anymore, so the velocities are
typically quite small and not shown here.

Fig. 4. Melting the end of a thin wire: liquid material accumulation with mesh, solid-
liquid interface, and liquid flow field.

3.4 Optimization

The goals for an optimization of the process are on the one hand a high speed
in order to be able to produce thousands of micro preform parts in a short time,
while generating material accumulations of the desired size, and on the other
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Fig. 5. Material accumulation at the end of a thin wire: Solid-liquid interface and
isothermal lines at 5 different times during solidification.

hand generating a microstructure which is well suited for the subsequent cold
forming step and usage properties of the work piece. Models for microstructure
evolution during solidification show a dependency of the microstructure quality
on the speed VΓI

of the liquid-solid interface ΓI(t) and the temperature gradients
near the interface [9]. A higher speed and larger gradient typically result in a
microstructure which gives better forming characteristics and useful properties.
Thus, the error functional has to include parts for geometry approximation, for
speed, and for the microstructure generation during solidification,

J(u,Ω, θ,v) =
∫ T

0

‖Ω(t) − Ωd(t)‖2 (17)

+λ1

∫ T

0

(
‖VΓI

− Vd‖2ΓI(t)
+ ‖∇θ − Gd‖2ΓI(t)

)
+ λ2‖u‖2.

The control parameters u are given by the time-dependent intensity and
location of the laser spot, thus they enter the system of equations via the heating
energy density qL(u). An additional control variable might be the intensity r of
outer cooling, for example by adjusting the flow velocity of a cooling gas. Uad

is given by control restrictions which follow from limits of the process, like an
upper bound of the laser power for preventing an evaporation of the material.

Adjoint Problem. For an efficient implementation of the optimization pro-
cedure, the solution of the adjoint problem will be used. Here, the system of
adjoint equations includes the adjoint (linearized) Navier-Stokes system on the
prescribed time dependent domain (from the forward solution), together with the
(linear) Laplace-Beltrami equation on the prescribed capillary boundary. For the
formulation of the adjoint Stefan problem, a regularization could be used which
was used in [12] for the derivation of an aposteriori error estimate.

As in our first application, also here the efficient handling of the adjoint prob-
lem including adaptively refined meshes with remeshings for the time dependent
domain and the corresponding system of solutions in the domain and on the cap-
illary surface poses a challenge for the overall numerical optimization method.
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Abstract. A boundary value problem with state constraints is under
consideration for a nonlinear noncoercive Hamilton-Jacobi equation. The
problem arises in molecular biology for the Crow – Kimura model of
genetic evolution. A new notion of continuous generalized solution to the
problem is suggested. Connections with viscosity and minimax general-
ized solutions are discussed. In this paper the problem is studied for the
case of additional requirements to structure of solutions. Constructions
of the solutions with prescribed properties are provided and justified via
dynamic programming and calculus of variations. Results of simulations
are exposed.

Keywords: Hamilton – Jacobi equation · Method of characteristics ·
Generalized solutions · Viscosity solutions · State constraints

1 Introduction

In [1] a new way to study molecular evolution has been proposed. According to
this way dynamics of the Crow – Kimura model for molecular evolution can be
analyzed via the following HJE

∂u/∂t + H(x, ∂u/∂x) = 0, (1)

where the Hamiltonian H(·) has the form

H(x, p) = −f(x) + 1 − 1 + x

2
e2p − 1 − x

2
e−2p. (2)

The function f(·) in (2) is given and called fitness. Equation (1) is considered
for t ≥ 0, −1 ≤ x ≤ 1. It is also assumed that an initial function u0 : R → R is
given such that

u(0, x) = u0(x), x ∈ [−1; 1]. (3)

In [1] problem (1)–(3) was studied for input data u0(x) = −a(x − x0)2, a > 0,
f(x) = x2 and physical interpretations were used.
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The classical method for solving PDE of the first order in Cauchy problem
is the method of characteristics (see, e.g. [2]). This method reduces integration
of PDEs to integration of the characteristic system of ODEs.

The characteristic system for problem (1)–(3) has the form

ẋ = Hp(x, p) = −(1 + x)e2p + (1 − x)e−2p,
ṗ = −Hx(x, p) = f ′(x) + (e2p − e−2p)/2,

ż = pHp(x, p) − H(x, p),
(4)

with initial conditions

x(0, y) = y, p(0, y) = u′
0(y), z(0, y) = u0(y), y ∈ [−1; 1]. (5)

Here Hx(x, p) = ∂H(x, p)/∂x, Hp(x, p) = ∂H(x, p)/∂p, f ′(x) =
∂f(x)/∂x. Solutions of the system (4)–(5) are called characteristics. Compo-
nents x(·, y), p(·, y) and z(·, y) of the solution are called state, conjugate, and
value characteristics, respectively.

Fig. 1. State characteristics for the case f(x) = −0.25x2, u0(x) = 0.25(x − 0.5)2 −
0.1 cos 2πx.

The method of characteristics can be applied to constructions of solutions
for problem (1)–(3) in such a neighborhood of the initial manifold (5) where
state characteristics don’t cross. As a rule, characteristics for problem (1)–(3)
are nonextendable to the whole time axis and can cross each other. Moreover,
there are points in strip t ≥ 0, −1 ≤ x ≤ 1. where solution of (1)–(3) should
be found, and where the state characteristics do not pass. An example of such a
behavior of state characteristics is presented on Fig. 1.

So, one can see that solutions of the problem (1)–(3) should be understood
in a generalized sense.

In [3], we introduced a concept of continuous generalized solutions (see Defi-
nition 1 below) and proved it’s existence in problem (1)–(3) using tools of Non-
smooth Analysis and results of the Optimal Control Theory. It was also shown
that the generalized solution is not unique.
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In this paper, we consider problem (1)–(3) with additional requirements to
the structure of solutions, see [4,5]. Namely, we need to construct a continuous
solution in the strip t ≥ 0, −1 ≤ x ≤ 1 in such a way that it coincides with a
solution obtained by the method of characteristics in a domain part where the
characteristics defined by (4) and (5) pass.

The paper is organized as follows. In Sect. 2, the definition of a continuous
generalized solution is introduced, and the results on its existence are presented.
In Sect. 3 we state the problem of constructing the generalized solution with
prescribed properties, give sufficient conditions under which the problem can be
solved, and formulate auxiliary results on which solving is based. A scheme for
constructing the generalized solution and results of a simulation are presented in
Sects. 4 and 5 respectively. And, in Sect. 6, we compare our generalized solution
with viscosity solutions.

2 Continuous Generalized Solutions to the Problem
with State Constraints

2.1 The Problem with State Constraints and Definition
of a Generalized Solution

Let T > 0 be such an instant that characteristics (4), (5) are extendable up to
T , and x(·, y), p(·, y), z(·, y) are continuous on [0, T ] for all y ∈ [−1; 1]. Exact
estimates for intervals of extendibility are obtained in [4,6].

We consider problem (1)–(3) on the restricted closed domain

ΠT = [0;T ] × [−1; 1],

and also use the notations

ΠT = (0;T ) × (−1; 1), ΓT = {(t, x)| t ∈ (0, T ), x = ±1}.

In the HJEs’ theory various concepts of generalized solutions have been intro-
duced (see, e.g. [7–9]). Note that definitions of generalized solutions to HJEs in
open areas were applied to problems with state constraints as additional require-
ments to solutions on the border were imposed. These requirements play a role of
boundary conditions. Unfortunately, results of the theories of generalized solu-
tions are inapplicable to the problem (1)–(3). In particular, one of the key con-
ditions under which the known theorems on existense of a generalized viscosity
solution [8,10] has been proved is the coercivity of the Hamiltonian (see (22)
below). And the theory of minimax solutions [9] is not developed for problems
with state constraints. So, below a new definition of a generalized solution is
introduced [3]. This definition is based on the minimax and viscosity approahes
and uses the following tools of nonsmooth analysis [10,11].

Let W be a set in R
2. Denote by W the closure of this set, by C(W )—the

class of functions continuous on the set W .
Let u(·) ∈ C(W ) and (t, x) ∈ W . The subdifferential of the function u(·) at

(t, x) is the set
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D−u(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a, s) ∈ R × R

∣∣∣∣∣∣∣∣∣
lim inf

(τ,y)→(t,x)

(τ,y)∈W

u(τ,y)−u(t,x)−a(τ−t)−s(y−x)
|τ−t|+|y−x| ≥ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The superdifferential of the function u(·) at (t, x) is the set

D+u(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a, s) ∈ R × R

∣∣∣∣∣∣∣∣∣∣
lim sup

(τ,y)→(t,x)

(τ,y)∈W

u(τ,y)−u(t,x)−a(τ−t)−s(y−x)
|τ−t|+|y−x| ≤ 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Let Dif(u) be the set of points where the function u(·) ∈ C(W ) is differen-
tiable. For a given set M ⊂ R

2, the symbol coM means its convex hull [13]. Let
us define the set

∂u(t, x) = co
{

(a, s)
∣∣∣ a = lim

i→∞
∂u(ti, xi)

∂t
, s = lim

i→∞
∂u(ti, xi)

∂x
;

(ti, xi) → (t, x) as i → ∞, (ti, xi) ∈ Dif(u)
}

.

Definition 1. A continuous function u(·) : ΠT → R
2 is called a generalized

solution to problem (1)–(3) iff it satisfies the initial condition (3) and the follow-
ing relations are true

a + H(x, s) ≤ 0, ∀(a, s) ∈ D+u(t, x),∀(t, x) ∈ ΠT , (6)

a + H(x, s) ≥ 0, ∀(a, s) ∈ D−u(t, x),∀(t, x) ∈ ΠT , (7)

a + H(x, s) ≥ 0, ∀ (a, s) ∈ D−u(t, x) ∩ ∂u(t, x),∀ (t, x) ∈ ΓT . (8)

2.2 Existence of Generalized Solutions

The following statement was proved in [4] by using tools of Mathematical Theory
of Optimal Control [14] and the method of generalized characteristics [15,16].

Theorem 1. Let input data u0(·) : [−1, 1] → R and f(·) : [−1, 1] → R be
continuously differentiable functions. Let a function ϕ(t, x) : R

2 → R be also
continuously differentiable and satisfy the relations

ϕ(0, x) = u0(x) ∀ x ∈ [−1, 1];

∂ϕ(t,±1)
∂t + H

(
± 1, ∂ϕ(t,±1)

∂x

)
= 0 ∀ t ≥ 0.

(9)

Then there exists a solution u(t, x) of problem (1)–(3) in sense of Definition 1.
The solution has the form

u(t, x) = maxx(t,y�)=x

[
ϕ(t�, y�)+

+
t∫

t�

p(τ, y�)Hp(x(τ, y�), p(τ, y�)) − H(x(τ, y�), p(τ, y�))dτ

]
,

(10)



466 N. Subbotina and L. Shagalova

for all (t, x) ∈ ΠT , where t� ∈ [0, T ]. If t� = 0 then y� = y ∈ [−1, 1]; if t� > 0,
then y� = ±1. The functions (x(·, y�), p(·, y�)) : [t�, t] → R

2 are solutions for
the system composed of the first two equations of characteristic system (4) with
initial conditions

x(t�, y�) = y�, p(t�, y�) =
∂ϕ(t�, y�)

∂y
= p0(t�, y�).

To obtain u(t, x) in accordance with (10), one should consider the set of all
state characteristics x(·, y�) passing through the point (t, x), namely, x(t, y�) = x.
Note that the generalized solution to problem (1)–(3) is not unique because of
wide choice of functions ϕ(·) in Theorem 1.

3 Solutions with Prescribed Properties

Here, we consider a problem to construct the generalized solution of some par-
ticular structure.

Let x−(t) = x(t,−1) and x+(t) = x(t,+1), t ∈ [0, T ] be the state character-
istics started at t = 0 from the points x = −1 and x = 1, respectively. Below,
we assume that the following condition is satisfied.

A. For the state characteristics x(·, y) with initial conditions (5) at t = 0 the
inequalities are valid

−1 ≤ x−(t) ≤ x(t, y) ≤ x+(t) ≤ 1, ∀ y ∈ [−1, 1], ∀ t ∈ [0, T ].

Define the subdomains

G+ = {(t, x)| t ∈ [0, T ], x+(t) ≤ x ≤ 1},

G0 =
{
(t, x)|t ∈ [0, T ], x−(t) ≤ x ≤ x+(t)

}
.

G− = {(t, x)| t ∈ [0, T ], −1 ≤ x ≤ x−(t)}.

(11)

So, under the assumption A, we get

ΠT = G+ ∪ G0 ∪ G−.

The goal of the work is to construct the generalized solution to problem (1)–
(3) such that it has the following form in G0:

u(t, x) = max
x(t,y)=x

[u0(y) +

t∫

0

p(τ)Hp(x(τ), p(τ)) − H(x(τ), p(τ))dτ ], (12)

where x(t) = x(t, y), p(t) = p(t, y), t ≥ 0, are state and conjugate characteris-
tics, respectively, which satisfy at t = 0 the initial conditions

x(0, y) = y, p(0, y) = u′
0(y), y ∈ [−1, 1].
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3.1 Sufficient Conditions

To solve the problem (1)–(3) with the requirement (12) we introduce the follow-
ing additional assumptions on input data.

B1. The derivative u′
0(·) : [−1, 1] → R is continuous and satisfies the inequalities

u′
0(1) < 0, u′

0(−1) > 0.

B2. The derivative f ′(·) : [−1, 1] → R is continuous and monotone nondecreas-
ing. It satisfies the inequalities

2f ′(1) + e2u′
0(1) < e−2u′

0(1), −2f ′(−1) + e−2u′
0(−1) < e2u′

0(−1).

3.2 Auxiliary Problems of Calculus of Variations

Consider the following two problems of Calculus of Variations over the set of all
continuously differentiable functions x(·) : [0, T ] → R

I(x(·)) =

t̄∫

0

H∗(x(τ), ẋ(τ))dτ �→ max (13)

x1(0) = 1, x1(t̄) = x̄, (t̄, x̄) ∈ G+; (14)

x2(0) = −1, x2(t̄) = x̄, (t̄, x̄) ∈ G− (15)

where
H∗(x(t), ẋ(t)) = inf

p∈R
[pẋ(t) − H(x(t), p)]. (16)

The following assertions are proven in [4,5], where conditions B1-B2 are
essential.

Theorem 2. For any interior point (t̄, x̄) ∈ G+ there exists a unique extremal
x = x(t) of the problem (13), (14), (16). The extremal coinsides with a state
characteristic x(·; 0, 1, p0) satisfying the initial conditions x(0) = 1, p(0) = p0
∈ (−∞, u′

0(1)) where initial value p0 can be defined uniquely from the condition
x(t̄) = x̄. The functional (13) attains its strong maximum at this extremal.

Theorem 3. For any interior point (t̄, x̄) ∈ G− there exists a unique extremal
x = x(t) of the problem (13), (15), (16). The extremal coinsides with a state
characteristic x(·; 0,−1, p0) satisfying the initial conditions x(0) = −1, p(0) =
p0 ∈ (u′

0(−1),∞) where initial value p0 can be defined uniquely from the condi-
tion x(t̄) = x̄. The functional (13) attains its strong maximum at this extremal.

Theorem 4. For any boundary point (t̄, 1), 0 < t̄ ≤ T in G+, the maximum of
functional (13), (16) is attained at a state characteristic x(·; 0, 1, p0), such that
the characteristics x(·; 0, 1, p0), p(·; 0, 1, p0) are nonextendable from the interval
[0, t∗(p0) = t̄) to the right. The maximum of functional (13), (16) is equal to
I(x(·; 0, 1, p0)) = (f(1) − 1)t̄.
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Theorem 5. For any boundary point (t̄,−1), 0 < t̄ ≤ T in G−, the maximum
of the functional (13)–(16) is attained at a state characteristic x(·; 0,−1, p0),
such that characteristics x(·; 0,−1, p0), p(·; 0,−1, p0) are nonextendable from the
interval [0, t∗(p0) = t̄) to the right. The maximum of functional (13), (16) is
equal to I(x(·; 0,−1, p0)) = (f(−1) − 1)t̄.

4 Construction of the Generalized Solution

The generalized solution of the problem (1)–(3) with the prescribed property (12)
has the following form in G0:

u(t, x) = max
x(t,y)=x

[

t∫

0

p(τ)Hp(x(τ), p(τ)) − H(x(τ), p(τ))dτ + u0(y)], (17)

where x(t) = x(t, y), p(t) = p(t, y), t ≥ 0, are state and conjugate characteristics
satisfied initial conditions

x(0, y) = y, p(0, y) = ∂u0(y)/∂x, y ∈ [−1, 1].

Let (t∗, x∗) ∈ G+ and x∗ < 1. We assign

u(t∗, x∗) = u0(1) +

t∗∫

0

[
p(τ)Hp(x(τ), p(τ)) − H(x(τ), p(τ))

]
dτ, (18)

where x(t) = x+(t, p0(t∗, x∗)), p(t) = p+(t, p0(t∗, x∗)) is the solution of the
problem of Calculus Variations (13), (14), (16).

For x∗ = 1, 0 ≤ t∗ ≤ T, we set

u(t∗, 1) = u0(1) + (f(1) − 1)t∗. (19)

Let (t∗, x∗) ∈ G− and x∗ > −1. We assign

u(t∗, x∗) = u0(−1) +

t∗∫

0

[
p(τ)Hp(x(τ), p(τ)) − H(x(τ), p(τ))

]
dτ, (20)

where x(t) = x−(t, p0(t∗, x∗)), p(t) = p−(t, p0(t∗, x∗)) is the solution of the
problem of Calculus Variations (13), (15), (16).

For x∗ = −1, 0 ≤ t∗ ≤ T, we set

u(t∗,−1) = u0(−1) + (f(−1) − 1)t∗. (21)

So, we have defined function u(·) for all points from ΠT by relations (17)–
(21). Following the Cauchy method of characteristics [2], one can show that u(·)
is continuously differentiable at any interior point (t, x) ∈ G+ ∪ G−, and the
gradient of u(·) is equal to (−H(x, p(t)), p(t)). Theorems 2–5 imply that u(·)
is continuous in ΠT , and inequalities (6)–(7) are valid. Below, in Sect. 6.2, we
will show that D−u(t, x) ∩ ∂u(t, x) = ∅, (t, x) ∈ ΓT . So, u(·) is a generalized
solution of problem (1)–(3) in sense of Definition 1. It follows from (17) that u(·)
satisfies the prescribed property (12).
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5 Numerical Example

Results of simulation for the input data u0(x) = −0.02x2 +0.001 cos 2πx, f(·) =
−0.5x2 are presented in Fig. 2. One can easily check that these input data satisfy
the conditions B1, B2.

Fig. 2. The graph of the generalized solution and its projection on the (t, x)-plane for
the input data u0(x) = −0.02x2 + 0.001 cos 2πx, f(x) = −0.5x2.

6 Comparison with Viscosity Solution

One can see that Definition 1 coincides with the definition of viscosity solution
in the interior points of the region ΠT . The difference between these definitions
is evident at boundary points, namely, on the set ΓT . In condition (8), the
inequality holds for such points (a, s) of the subdifferential D−u(t, x) which at
the same time belong to the set ∂u(t, x). In contrast to Definition 1, the notion of
viscosity solution [10] for Eq. (1) on the set ΠT requires that this solution satisfies
inequality (8) at the boundary points (t, x) ∈ ΓT for all (a, s) ∈ D−u(t, x).

6.1 On Coercivity Condition

Conditions ensuring existence and uniqueness for viscosity solutions on the com-
pact domain were obtained in [10]. One of the key conditions for the existence
of viscosity solutions (see [10,12]) is the coercivity of the Hamiltonian:

H(x, p) → +∞ as |p| → ∞ (22)
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It can be easily checked that the Hamiltonian (2) does not satisfy condition (22),
for example, at x = 1 and x = −1. Therefore, the existence theorems for viscosity
solutions in the sense of paper [10] cannot be used in the problem (1)–(3).

Moreover, the notion of generalized viscosity solution is inapplicable to the
initial value problem (1)–(3) on the compact setΠT : If a viscosity solution would
satisfy the condition D−u(t∗, x∗) �= ∅ at some point (t∗, x∗) ∈ ΓT , then inequal-
ity (8) would not hold in this case. Indeed, let 0 ≤ t∗ ≤ T and, for definiteness,
x∗ = 1. Let (a, s) ∈ D−u(t∗, x∗). One can use the above definition of subdiffer-
ential to get the following inclusion:

(a, s + k) ∈ D−u(t∗, x∗) ∀k ≥ 0.

So, if condition (8) would hold then

a + H(1, s + k) = a − f(x) + 1 − e2(s+k) ≥ 0, ∀k ≥ 0,

which is obviously unfair. Therefore, we use the intersection of the subdifferential
with the set ∂u(t, x) (see condition (8)) in Definition 1 of a continuous generalized
solution to the initial value problem (1)–(3) on the compact set ΠT .

6.2 Structure of Subdifferentials on the Border

Let’s consider the structure of the sets D−u(t, x) and ∂u(t, x) for the function
u(·) defined by (17)–(20) if (t, x) ∈ ΓT .

In the case 0 < t < T, x = 1, we have
D−u(t, x) = D−u(t, 1) = {(f(1) − 1, s)| s ∈ R, s ≥ 0},
∂u(t, x) = ∂u(t, 1) = {(−H(1,−∞),−∞)} = {(f(1) − 1,−∞)}.

In the case 0 < t < T, x = −1, we have
D−u(t, x) = D−u(t,−1) = {(f(−1) − 1, s)| s ∈ R, s ≤ 0},
∂u(t, x) = ∂u(t,−1) = {(−H(−1,∞),∞)} = {(f(−1) − 1,∞)}.

Thus, for generalized solution (17)–(20)

D−u(t, x) ∩ ∂u(t, x) = ∅, (t, x) ∈ ΓT .
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Abstract. Perturbed inverse reconstruction problems for controlled
dynamic systems are under consideration. A sample history of the actual
trajectory is known. This trajectory is generated by a control, which isn’t
known. Moreover, the deviation of the samples from the actual trajectory
satisfies the known estimate of the sample error. The inverse problem
with perturbed (inaccurate) sample of trajectory consists of reconstruct-
ing trajectories which are close to the actual trajectory in C. Controls
generating the trajectories should be close in L2 to the normal control
generating the actual trajectory and have the least norm in L2. A numer-
ical method for solving this problem is suggested. The application of the
suggested method is illustrated by the graphics.

Keywords: Inverse problem · Positive and negative discrepancy ·
Optimal control problem · Dynamic programming

1 Introduction

A model of macroeconomics is considered due to works by Al’brekht [1]. The
model has the form of two nonlinear ordinary differential equations. The right-
hand sides of the equations depend on control parameters. The rate of taxation,
the refunding rate and the currency exchange course are included in control para-
meters because they determine economical conditions for production activity. A
sample history of the actual trajectory of the model is known. A numerical
method is suggested and verified to reconstruct the actual trajectory and the
control generating it. It is based on the method of the dynamic programming.
Results of numerical calculations of the solutions of the inverse problem are rep-
resented for statistic data obtained from a reports of companies sent to local
statistic offices in Russia.

2 Macroeconomic Model

Consider a model of a macroeconomic system, where the symbol x1 denotes the
gross product, x2 denotes production costs, G denotes profits.
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Let dynamics of x1(t), x2(t) be of the form

dx1
dt = u1(t)

∂G(x1,x2)
∂x1

,

dx2
dt = u2(t)

∂G(x1,x2)
∂x2

(1)

on a time interval t ∈ [0, T ]. Here u1(t), u2(t) are control parameters, satisfying
the geometric restrictions

|u1| ≤ U1, |u2| ≤ U2, (2)

where U1 > 0, U2 > 0 are constants.

3 Known Data

We have got the following statistic data in the form of a table of parameters x∗
1,

x∗
2, G∗ measured at given instants ti, ti = 0, 1, . . . , N , t0 = 0, tN = T,

x∗
1(t0), x∗

1(t1), . . . , x∗
1(tN ),

x∗
2(t0), x∗

2(t1), . . . , x∗
2(tN ),

G∗(t0), G∗(t1), . . . , G∗(tN ),

where x∗
1(ti), x∗

2(ti) are measurements of the actual trajectory x1∗(·), x2∗(·) of
the system (1) on the interval [0, T ].

4 Hypothesis

Following the Albrekht’s works, we assume that the mathematical model of the
measured dynamics meets the following assertions

• the structure of the function G(x1, x2) has the form of the polynomial

G(x1, x2) = x1x2(a0 + a1x1 + a2x2). (3)

• the given statistic data are measurements of the actual trajectory x∗(·) =
(x1∗(·), x2∗(·)) and profit function G(x∗(·)) with errors, while estimate δ on
admissible errors is known.

|x1∗(ti) − x∗
1(ti)| ≤ δ, |x2∗(ti) − x∗

2(ti)| ≤ δ,
|G(x1∗(ti), x2∗(ti)) − G∗(ti)| ≤ δ, i = 0, 1, . . . , N.

(4)

• such smooth continuous interpolations y(·) = (y1(·), y2(·)) of the data x∗(ti) =
(x∗

1(ti), x
∗
2(ti)), i = 0, 1, . . . , N are defined, that

∣∣∣∣d
2yi(t)
dt2

∣∣∣∣ ≤ K, K > 0, t ∈ [0, T ], i = 1, 2, . (5)

‖y(·) − x∗(·)‖c → 0, as δ → 0. (6)
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5 Reconstruction Problems

The inverse problems are identification problem and reconstruction problem for
the model, which supposes reconstructing such trajectories xδ(·) of system (1)
generated by measurable controls uδ(·), satisfying (2), that

‖xδ(·) − x∗(·)‖C = max
t∈[0,T ]

‖xδ(t) − x∗(t)‖ → 0, as δ → 0;

‖uδ(·) − u∗(·)‖2L2
=

T∫

0

‖uδ(t) − u∗(t)‖2dt → 0, as δ → 0;

where x∗(·) = (x1∗(·), x2∗(·)) is the actual trajectory on [0, T ] generated by
“normal” control u∗(·) = (u1∗(·), u2∗(·)), which has the minimal norm in
L2([0, T ], R2). The method suggested below is based on the dynamic program-
ming [2] for auxiliary optimal control problems. It can be interpreted as a mod-
ification of Tikhonov method [3]. The other approach to solutions of the inverse
problems with the help of optimal feedbacks [4] in auxiliary optimal control
problems was suggested in works by Osipov and Kryazhimskii [5].

6 Identification Problem for the Function G(x1, x2)

At first we consider the identification problem for parameters a0, a1, a2 of the
polynomial

G(x1, x2) = x1x2(a0 + a1x1 + a2x2)

to obtain the best correspondence with the given statistic materials.
In order to do this, we apply the least square method to the statistic data

N∑
i=0

[G∗(ti) − G(x∗
1(ti), x

∗
2(ti))]

2 −→ min
(a0,a1,a2)

.

7 Auxiliary Optimal Control Problems (AOCPs)

We introduce the following AOCPs to solve the reconstruction problem. Consider
dynamics of the form

dx1
dt = u1

∂G(x1,x2)
∂x1

,

dx2
dt = u2

∂G(x2,x2)
∂x2

,

t ∈ [0, T ], u = (u1, u2) ∈ P,

(7)

P = {|u1| ≤ U1, |u2| ≤ U2, }. (8)

The set of admissible controls is defined as

U[0,T ] = {∀u(·) : [0, T ] → P — measurable}.
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We introduce the α-regularized positive discrepancy functional

I+
0,x0

1,x0
2
(u(·)) =

T∫

0

[(y1(t) − x1(t))2 + (y2(t) − x2(t))2]
2

+ α2 (u2
1(t) + u2

2(t))
2

dt, (9)

where α is a small parameter. The functions y1(·), y2(·) are interpolations of
statistic data.

We also consider the α–regularized negative discrepancy functional

I−
0,x0

1,x0
2
(u(·)) =

T∫

0

− [(y1(t) − x1(t))2 + (y2(t) − x2(t))2]
2

+ α2 (u2
1(t) + u2

2(t))
2

dt. (10)

8 Optimal Results in AOCPs

Let small parameters α > 0, δ > 0 be fixed and interpolations y1(·), y2(·) of
the statistic data be known. The aim of the AOCPs at an initial state t = 0,
x1(0) = x0

1, x2(0) = x0
2 is to minimize the cost functionals (10), (9) under the

condition
x1(T ) = y1(T ), x2(T ) = y2(T ). (11)

The optimal results in the class U[0,T ] are equal to

V ±(0, x0
1, x

0
2) = inf

u(·)∈U[0,T ]

I±
t0,x0

1,x0
2

(
u(·)). (12)

8.1 Hamiltonian

Let’s consider the AOCP for the negative discrepancy functional (10). Let us
denote

ω1(x) = ω1(x1, x2) =
∂G(x1(t), x2(t))

∂x1
= a0x2 + 2a1x1x2 + a2x

2
2,

ω2(x) = ω2(x1, x2) =
∂G(x1(t), x2(t))

∂x2
= a0x1 + a1x

2
1 + 2a2x1x2.

Hα(t, x1, x2, s1, s2) = min
u∈P

[
s1u1ω1(x1, x2) + s2u2ω2(x1, x2)

+
α2(u2

1 + u2
2)

2
− (x1 − y1(t))2 + (x2 − y2(t))2

2

]

=
[
s1u

0
1ω1(x1, x2) + s2u

0
2ω2(x1, x2) +

α2(u0
1
2 + u0

2
2)

2

− (x1 − y1(t))2 + (x2 − y2(t))2

2

]
. (13)
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where for i = 1, 2,

u0
i (x, s) =

⎧⎪⎨
⎪⎩

−Ui, if − siωi(x(t))
α2 ≤ −Ui,

− s1ωi(x(t))
α2 , if − s1ωi(x(t))

α2 ∈ [−Ui, Ui],
Ui, if − s1ωi(x(t))

α2 ≥ Ui.

So, for the simple case

u0
i (x, s) ∈ [−Ui, Ui], i = 1, 2, (14)

we get Hamiltonian of the form

Hα(t, x1, x2, s1, s2) = − 1
2α2

(s21 + s22) − (x1 − y1(t))2 + (x2 − y2(t))2

2
.

8.2 Characteristics

Necessary optimality conditions for the AOCPs has the following form [6,7]: the
characteristic system

dxi

dt
=

∂Hα(t, x, s)
∂si

,
dsi

dt
= −∂Hα(t, x, s)

∂xi
, i = 1, 2, t ∈ [0, T ], (15)

and the boundary conditions

xi(T ) = yi(T ), si(T ) = ξi,

∣∣∣∣ω
2
i (x(T ))ξi

α2
− ẏi(T )

∣∣∣∣ ≤ δ, i = 1, 2. (16)

8.3 Characteristics for the Simple Case

Restrictions U1, U2 for admissible controls are usually unknown. To simplify the
explanations we assume that U1, U2 are large enough to let interpolations y(t)
provide the simple case (14) with boundary conditions (16).

The characteristic system for the simple case has the form:

dx1(t)
dt

= −s1(t)
α2

ω2
1(x1(t), x2(t)),

dx2(t)
dt

= −s2(t)
α2

ω2
2(x1(t), x2(t)),

ds1(t)
dt

= x1(t) − y1(t)

+ s2
1(t)
α2 F1(x1(t), x2(t)) + s2

2(t)
α2 F2(x1(t), x2(t)),

ds2(t)
dt

= x2(t) − y2(t)

+ s2
1(t)
α2 F3(x1(t), x2(t)) + s2

2(t)
α2 F4(x1(t), x2(t)),

(17)

where

F1(x1, x2) = 2a1x2(a0x2 + 2a1x1x2 + a2x
2
2),

F2(x1, x2) = (a0 + 2a1x1 + 2a2x2)(a0x1 + a1x
2
1 + 2a2x1x2),

F3(x1, x2) = (a0 + 2a1x1 + 2a2x2)(a0x2 + 2a1x1x2 + a2x
2
2),

F4(x1, x2) = 2a2x1(a0x1 + a1x
2
1 + 2a2x1x2),
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boundary conditions

x1(T ) = y1(T ), x2(T ) = y2(T ), (18)

ξ−
1 ≤ s1(T ) = ξ1 ≤ ξ+1 , ξ−

2 ≤ s2(T ) = ξ2 ≤ ξ+2 ,

where

ξ−
i = − ẏi(T )α2

ωi(y(T ))2
− δα2

ωi(y(T ))2
,

ξ+i = − ẏi(T )α2

ωi(y(T ))2
+

δα2

ωi(y(T ))2
,

i = 1, 2.

(19)

9 Solutions of Inverse Problems

Let us pick such characteristics (15)–(19) xα
δ (·) and the realizations of extremal

feedbacks uα
δ [t] = uα(t, xα

δ (t), sα
δ (t)), generating them, which satisfy the rela-

tions:

‖x(0, ξ) − y(0)‖ ≤ α + δ,

I±
0,xα

δ (0)(u
α
δ [·]) = min

‖x(0,ξ)−y(0)‖≤α+δ
I±
0,x(0)(u

α(·)) = V ±(0, xα
δ (0)),

uα(t) = uα(t, x(t, ξ), s(t, ξ)), t ∈ [0, T ]. (20)

We have got that these characteristics xα
δ (·, ξ) and controls uα

δ [·], generating
them, provide solutions to the inverse problems [8–10].

9.1 Assumptions

A1 Such constants α0 > 0, δ0 > 0 exist that state characteristics x1(t, ξ) and
x2(t, ξ) of the form (15)–(19) for all t ∈ [0, T ] belong to the compact set Φ:

Φ ⊃ Φ(δ, α) ∀ δ, α : 0 < δ ≤ δ0, 0 < α ≤ α0, (21)

Φ(δ, α) =
{

(t, x) : t ∈ [0, T ], x = x(t, ξ),

x(T, ξ) = y(T ),
∣∣∣∣ω

2
i (x(T ))ξi

α2
− ẏi(T )

∣∣∣∣ ≤ δ, i = 1, 2
}

.

A2 For (x1, x2) ∈ Φ such constants ωi > 0, ω̄i > 0, i = 1, 2 exist, that

0 < ω2
1 ≤ ω2

1(x1(t), x2(t)) ≤ ω̄2
1 , 0 < ω2

2 ≤ ω2
2(x1(t), x2(t)) ≤ ω̄2

2 , t ∈ [0, T ].

9.2 Note

In the example below, one can choose such α0 > 0, δ0 > 0, r > 0, that

Φ = Φr = {(t, x) : t ∈ [0, T ], ‖x − y(t)‖ ≤ r},

min
0≤t≤T

yi(t) > 3r > 0, i = 1, 2,

and assumptions A1–A2 are true.
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9.3 Main Result

Let us consider AOCPs for the system (7), (8) at initial states

x(0) ∈ {x : ‖x − y(0)‖ ≤ δ + α}

where the aim is to reach the target set {T, x = y(T )} and minimize the func-
tional (10).

The following assertions are proven [9,10].

Lemma 1. Let xα
δ (t) be a solution of the AOCP (7), (8), (10). Let uα

δ (t) be
a control generating xα

δ (t). If conditions A1–A2 are true in the problem, then
such constant c > 0 exists that the following estimate takes place:

I0,xα
δ (0)(uα

δ (·)) ≤ I0,x∗(0)(u∗(·)) + ζ(α, δ), ζ(α, δ) = cδ(δ2 + α2U2
∗ ),

where U∗ = max{U1, U2}.
We introduce the functions

φ(α, δ, h) = TMh

(
TMh

2
+ 2δ + α + ζ(α, δ)

)
, ρ(h) = nU∗T (K + M)h,

where K, M are constant parameters.
Let us denote numerical approximations of the solution xα

δ (·), uα
δ (·) of

AOCP (7), (8), (10) as xh(·), uh(·).
Theorem 1. Let conditions A1 – A2 be true in AOCP (7), (8), (10). Then
there exists such constants M > 0, K > 0 and parameters h = h(δ) > 0,
α = α(δ) > 0, δ > 0, satisfying the conditions lim

δ→0
h(δ) = 0, lim

δ→0
α(δ) = 0,

lim
δ→0

2
α2

(
φ(α, δ, h) + ρ(h) +

T

2
(Mh + α + 2δ + ζ(α, δ))2

)
= 0, (22)

that the following relations are true

lim
δ→0

‖xh(δ)(·) − x∗(·)‖C = 0, lim
δ→0

‖uh(δ)(·) − u∗(·)‖L2 = 0.

10 Numerical Experiments

Results of application of the suggested numerical method via AOCP with the
functional I−

(0,x(0))(u(·)) are exposed on the Figs. 1, 2, 3, 4, 5 and 6 below.
Note that the results obtained via AOCP with the functional I+(0,x(0))(u(·))

are not so satisfying (see Figs. 7 and 8). This is because of the properties of
characteristics in the considered AOCPs.

We used the data on the industry of the Ural Region in Russia for the period
1970–1985 (10000 Rubles = 1) due to paper [1]:
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t Year Gross regional
product x∗

1

Costs x∗
2 Profit G∗

0 1970 37.88 21.69 6.17

1 1971 40.63 23.70 6.31

2 1972 43.25 25.45 6.68

3 1973 46.00 27.30 6.98

4 1974 49.33 29.44 7.04

5 1975 53.04 32.16 7.27

6 1976 57.03 35.01 7.62

7 1977 59.85 36.92 8.00

8 1978 62.72 38.69 8.27

9 1979 63.45 38.76 8.42

10 1980 65.74 39.96 8.61

11 1981 65.90 39.75 8.21

12 1982 69.22 41.31 9.65

13 1983 64.52 37.86 9.28

14 1984 71.03 42.04 10.26

15 1985 74.69 45.05 10.76

3t2t
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0
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Fig. 1. Trajectory bundle obtained
with α2 = 10−4, t ∈ [1, 1.5]
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3t2t
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Fig. 2. Controls bundle obtained with
α2 = 10−4, t ∈ [1, 1.5].
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Fig. 3. Discrepancy x1(t) − y1(t) with
α2 = 10−4, t ∈ [0, 1.5]
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Fig. 4. Discrepancy x1(t) − y1(t) with
α2 = 10−5, t ∈ [0, 1.5]
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Fig. 5. Control u1(t) with α2 = 10−4,
t ∈ [0, 1.5]
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Fig. 6. Control u1(t) with α2 = 10−5,
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Fig. 7. Discrepancy x1(t) − y1(t) for
functional I+(·) with α2 = 10−10, t ∈
[0, 1.5]
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Fig. 8. Control u1(t) for functional
I+(·) with α2 = 10−10, t ∈ [0, 1.5]

11 Perspectives

The suggested numerical method can be applied in the following directions.

– Identification and reconstruction of dynamic models of production activity
for single firms, various branches of industry or industry and economics of a
region.

– Investigating properties of the examined object.
– A short-term and long-term prediction and analysis of scenarios of the process

development in the future.
– Analysis of the production plan and construction of feedback controls realizing

the plan.
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Abstract. This article is devoted to studying dual regularization
method as applied to parametric convex optimal control problem of con-
trolled third boundary-value problem for parabolic equation with bound-
ary control and with equality and inequality pointwise state constraints.
These constraints are understood as ones in the Hilbert space L2. A
major advantage of the constraints of the original problem which are
understood as ones in L2 is that the resulting dual regularization algo-
rithm is stable with respect to errors in the input data and leads to
the construction of a minimizing approximate solution in the sense of
J. Warga. Simultaneously, this dual algorithm yields the corresponding
necessary and sufficient conditions for minimizing sequences, namely,
the stable, with respect to perturbation of input data, sequential or,
in other words, regularized Lagrange principle in nondifferential form
and Pontryagin maximum principle for the original problem. Regard-
less of the fact that the stability or instability of the original optimal
control problem, they stably generate a minimizing approximate solu-
tions for it. For this reason, we can interpret these regularized Lagrange
principle and Pontryagin maximum principle as tools for direct solving
unstable optimal control problems and reducing to them unstable inverse
problems.

Keywords: Optimal boundary control · Parabolic equation ·
Minimizing sequence · Dual regularization · Stability · Pontryagin
maximum principle

1 Introduction

Pontryagin maximum principle is the central result of all optimal control theory,
including optimal control for differential equations with partial derivatives. Its
statement and proof assume, first of all, that the optimal control problem is con-
sidered in an ideal situation, when its input data are known exactly. However,
in the vast number of important practical problems of optimal control, as well
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as numerous problems reducing to optimal control problems, the requirement of
exact defining input data is very unnatural, and in many undoubtedly interest
cases is simply impracticable. In similar problems, we can not, strictly speaking,
to take as an approximation to the solution of the initial (unperturbed) problem
with the exact input data, a control formally satisfying the maximum principle
in the perturbed problem. The reason of such situation lies in the natural insta-
bility of optimization problems with respect to perturbation of its input data.
As a typical property of optimization problems in general, including constrained
ones, instability fully manifests itself in optimal control problems (see., e.g., [1]).
As a consequence, the mentioned above instability implies “instability” of the
classical optimality conditions, including the conditions in the form of Pontrya-
gin maximum principle. This instability manifests itself in selecting by them of
arbitrarily distant “perturbed” optimal elements from their unperturbed coun-
terparts in the case of an arbitrarily small perturbations of the input data. The
above applies, in full measure, both to discussed below optimal control problem
with pointwise state constraints for linear parabolic equation in divergent form,
and to the classical optimality conditions in the form of the Lagrange principle
and the Pontryagin maximum principle for this problem.

In this paper we discuss how to overcome the problem of instability of the
classical optimality conditions in optimal control problems in the way of apply-
ing dual regularization method (see., e.g., [2–4]) and simultaneous transition to
the concept of minimizing sequence of admissible elements as the main concept
of optimization theory. In the role of the last, acts the concept of the minimiz-
ing approximate solution in the sense of Warga [5]. The main attention in the
paper is given to the discussion of the so-called regularized or, in other words,
stable, with respect to perturbation of input data, sequential Lagrange princi-
ple in the nondifferential form and Pontryagin maximum principle. Regardless
of the stability or instability of the original optimal control problem, they sta-
bly generate minimizing approximate solutions for it. For this reason, we can
interpret the regularized Lagrange principle and Pontryagin maximum princi-
ple that are obtained in the article as tools for direct solving unstable opti-
mal control problems and reducing to them unstable inverse problems [1,6,7].
Thus, they contribute to a significant expansion of the range of applicability
of the theory of optimal control in which a central role belongs to classic con-
structions of the Lagrange and Hamilton-Pontryagin functions. Finally, we note
that discussed in this article regularized Lagrange principle in the nondiffer-
ential form and Pontryagin maximum principle may have another kind, more
convenient for applications [7]. Justification of these alternative forms of the
regularized Lagrange principle and Pontryagin maximum principle is based on
the so-called method of iterative dual regularization [2,3]. In this case, they
take the form of iterative processes with the corresponding stopping rules when
the error of input data is fixed and finite. Here these alternative forms are not
considered.
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2 Statement of Optimal Control Problem

We consider the fixed-time parametric optimal control problem

(P δ
p,r) gδ

0(π) → min, π ≡ (u,w) ∈ D ⊂ L2(QT ) × L2(ST ),

gδ
1(π)(x, t) ≡ ϕδ

1(x, t)zδ[π](x, t) = hδ(x, t) + p(x, t) for a.e. (x, t) ∈ Q,
gδ
2(π)(x, t) ≡ ϕδ

2(x, t, zδ[π](x, t)) ≤ r(x, t) for a.e. (x, t) ∈ Q

with equality and inequality pointwise state constraints understood as ones in the
Hilbert space H ≡ L2(Q); D ≡ {u ∈ L2(QT ) : u(x, t) ∈ U for a.e. (x, t) ∈ QT }×
{w ∈ L2(ST ) : w(x, t) ∈ W for a.e. (x, t) ∈ ST }; U, W ⊂ R

1 are convex compact
sets. In this problem, p ∈ H and r ∈ H are parameters; gδ

0 : L2(QT )×L2(ST ) is a
continuous convex functional, Q ⊂ Qι,T is a compact set without isolated points
with a nonempty interior, ι ∈ (0, T ), Q = cl intQ; and zδ[π] ∈ V 1,0

2 (QT ) ∩ C(QT )
is a weak solution [8,9] to the third boundary-value problem1

zt − ∂

∂xi
(ai,j(x, t)zxj

) + aδ(x, t)z + u(x, t) = 0, (1)

z(x, 0) = vδ
0(x), x ∈ Ω,

∂z

∂N + σδ(x, t)z = w(x, t), (x, t) ∈ ST ,

corresponding to the pair π ≡ (u,w). The superscript δ in the input data of
Problem (P δ

p,r) indicates that these data are exact (δ = 0) or perturbed (δ > 0),
i.e., they are specified with an error, δ ∈ [0, δ0], where δ0 > 0 is a fixed number.

For definiteness, as target functional we take terminal one

gδ
0(π) ≡

∫
Ω

Gδ(x, zδ[π](x, T ))dx.

The input data for Problem (P 0
p,r) are assumed to meet the following condi-

tions:

(a) It is true that ai,j ∈ L∞(QT ), i, j = 1, . . . , n, aδ ∈ L∞(QT ), σδ ∈ L∞(ST ),
vδ
0 ∈ C(Ω),

ν|ξ|2 ≤ ai,j(x, t)ξiξj ≤ μ|ξ|2 ∀(x, t) ∈ QT , ν, μ > 0,

aδ(x, t) ≥ C0 for a.e. (x, t) ∈ QT , σδ(x, t) ≥ C0 for a.e. (x, t) ∈ ST ;

(b) It is true that ϕδ
1, hδ ∈ L∞(Q); ϕδ

2 : Q × R
1 → R

1 is Lebesgue measurable
function that is continuous and convex with respect to z for a.e. (x, t) ∈
Q, ϕδ

2(·, ·, z(·, ·)) ∈ L∞(Q) ∀z ∈ C(Q); Gδ : Ω × R
1 → R

1 is Lebesgue
measurable function that is continuous and convex with respect to z for a.e.
x ∈ Ω, Gδ(·, z(·, T )) ∈ L∞(Ω) ∀z(·, T ) ∈ C(Q);

(c) Ω ⊂ R
n be a bounded domain with Lipschitz boundary S.

1 Here and below, we use the notations for the sets QT , ST , Qi,T and also for functional
spaces and norms of their elements adopted in monograph [8].
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Assume that the following estimates hold:

|Gδ(x, z) − G0(x, z)| ≤ CMδ ∀ (x, z) ∈ Ω × S1
M , ‖ϕδ

1 − ϕ0
1‖∞,Q ≤ Cδ, (2)

‖hδ − h0‖∞,Q ≤ Cδ, |ϕδ
2(x, t, z) − ϕ0

2(x, t, z)| ≤ CMδ ∀ (x, t, z) ∈ Q × S1
M ,

‖aδ − a0‖∞,QT
≤ Cδ, |vδ

0 − v0
0 |(0)Ω

≤ Cδ, ‖σδ − σ0‖∞,ST
≤ Cδ,

where C, CM > 0 are independent of δ; Sn
M ≡ {x ∈ R

n : |x| < M}. Let’s note,
that the conditions on the input data of Problem (P δ

p,r), and also the estimates
of deviations of the perturbed input data from the exact ones can be weakened.

In this paper we use for discussing the main results, related to the stable
sequential Lagrange principle and Pontryagin maximum principle in Problem
(P 0

p,r), a scheme of studying the similar optimization problems in the papers [10,
11] for a system of controlled ordinary differential equations. In these works, both
spaces of admissible controls and spaces, where lie images of the operators that
define the pointwise state constraints, represented as Hilbert spaces of square-
integrable functions. For this reason, we put the set D of admissible controls
π into a Hilbert space also, i.e., assume that D ⊂ Z ≡ L2(QT ) × L2(ST ),
‖π‖ ≡ (‖u‖22,QT

+‖w‖22,ST
)1/2. At the same time, we note that the conditions on

the input data of Problem (P δ
p,r) allow formally to consider that the operators

gδ
1, gδ

2, specifying the state constraints of the problem, act into space Lp(Q) with
any index p ∈ [1,+∞]. However, in this paper, taking into account the above
remark, we will put images of these functional operators in the Hilbert space
L2(Q) ≡ H.

Suppose that Problem (P 0
p,r) has a solution (which is unique if g00 is strictly

(strongly) convex). Its solutions are denoted by π0
p,r ≡ (u0

p,r, w
0
p,r), and the set

of all such solutions is designated as U0
p,r. Define the Lagrange functional, a set

of its minimizers and the concave dual problem

Lδ
p,r(π, λ, μ) ≡ gδ

0(π) + 〈λ, gδ
1(π) − hδ − p〉 + 〈μ, gδ

2(π) − r〉, π ∈ D,

U δ[λ, μ] ≡ Argmin {Lδ
p,r(π, λ, μ) : π ∈ D}∀(λ, μ) ∈ H × H+,

V δ
p,r(λ, μ) → sup, (λ, μ) ∈ H × H+, V δ

p,r(λ, μ) ≡ inf
π∈D

Lδ
p,r(π, λ, μ).

Since the Lagrange functional is continuous and convex for any pair (λ, μ) ∈
H × H+ and the set D is bounded, the dual functional V δ

p,r, is obviously defined
and finite for any (λ, μ) ∈ H × H+.

The concept of a minimizing approximate solution in the sense of Warga
[5] is of great importance for the design of a dual regularizing algorithm for
problem (P 0

p,r). Recall that a minimizing approximate solution is a sequence
πi ≡ (ui, wi), i = 1, 2, . . . such that g00(π

i) ≤ β(p, r) + δi, πi ∈ D0,εi

p,r for some
nonnegative number sequences δi and εi, i = 1, 2, . . . , that converge to zero.
Here, β(p, r) is the generalized infimum, i.e., an S-function:

β(p, r) ≡ lim
ε→+0

βε(p, r), βε(p, r) ≡ inf
π∈D0,ε

p,r

g00(π), βε(p, r) ≡ +∞ if D0,ε
p,r = ∅ ,
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Dδ,ε
p,r ≡ {π ∈ D : ‖gδ

1(π) − hδ − p‖2,Q ≤ ε, min
z∈H−

‖gδ
2(π) − r − z‖2,Q ≤ ε}, ε ≥ 0 ,

D00
p,r ≡ D0

p,r, H− ≡ {z ∈ L2(Q) : z(x, t) ≤ 0 for a.e. (x, t) ∈ Q}, H+ ≡ −H−.

Obviously, in the general situation, β(p, r) ≤ β0(p, r), where β0(p, r) is the clas-
sical value of the problem. However, in the case of Problem (P 0

p,r), we have
β(p, r) = β0(p, r). Simultaneously, we may asset that β : L2(Q) × L2(Q) →
R

1 ∪ {+∞} is a convex and lower semicontinuous function. Note here that
the existence of a minimizing approximate solution in Problem (P 0

p,r) obviously
implies its solvability.

From the conditions (a)–(c) and the theorem on the existence of a weak
solution of the third boundary-value problem for a linear parabolic equation of
the divergent type (see [8, chap. III, Sect. 5] and also [12]), it follows that the
direct boundary-value problem (1) and the corresponding adjoint problem are
uniquely solvable in V 1,0

2 (QT ).

Proposition 1. For any pair (u,w) ∈ L2(QT ) × L2(ST ) and any T > 0 the
direct boundary-value problem (1) is uniquely solvable in V 1,0

2 (QT ) and the esti-
mate

|zδ[π]|QT
+ ‖zδ[π]‖2,ST

≤ CT (‖u‖2,QT
+ ‖vδ

0‖2,Ω + ‖w‖2,ST
),

takes place, where the constant CT is independent of δ ≥ 0 and pair π ≡ (u,w) ∈
L2(QT ) × L2(ST ). Also the adjoint problem

−ηt − ∂

∂xj
ai,j(x, t)ηxi

+ aδ(x, t)η = χ(x, t),

η(x, T ) = ψ(x), x ∈ Ω,
∂η

∂N + σδ(x, t)η = ω(x, t), (x, t) ∈ ST

is uniquely solvable in V 1,0
2 (QT ) for any χ ∈ L2(QT ), ψ ∈ L2(Ω), ω ∈ L2(ST )

and any T > 0. Its solution is denoted as η[χ, ψ, ω]. Simultaneously, the estimate

|ηδ[χ, ψ, ω]|QT
+ ‖ηδ[χ, ψ, ω]‖2,ST

≤ C1
T (‖χ‖2,QT

+ ‖ψ‖2,Ω + ‖ω‖2,ST
),

is true, where the constant C1
T is independent of δ ≥ 0 and a triple (χ, ψ, ω).

Simultaneously, from conditions (a)–(c) and the theorems on the existence of
a weak (generalized) solution of the third boundary-value problem for a linear
parabolic equation of the divergent type (see, e.g., [9]), it follows that the direct
boundary-value problem is uniquely solvable in V 1,0

2 (QT ) ∩ C(QT ).

Proposition 2. Let us l > n + 1. For any pair (u,w) ∈ Ll(QT ) × Ll(ST ) and
any T > 0, δ ∈ [0, δ0] the direct boundary-value problem (1) is uniquely solvable
in V 1,0

2 (QT ) ∩ C(QT ) and the estimate

|zδ[π]|(0)
QT

≤ CT (‖u‖l,QT
+ |vδ

0|(0)Ω
+ ‖w‖l,ST

),

takes place, where the constant CT is independent of pair π ≡ (u,w) and δ.
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Further, the minimization problem for Lagrange functional

Lδ
p,r(π, λ, μ) → min, π ∈ D when (λ, μ) ∈ L2(Q) × L+

2 (Q) (3)

plays the central role in all subsequent constructions. It is usual problem
without equality and inequality constraints. It is solvable as a minimization
problem for weakly semicontinuous functional on the weak compact set D ⊂
L2(QT ) × L2(ST ). Here, the weak semicontinuity is a consequence of the con-
vexity and continuity with respect to π of the Lagrange functional. Minimizers
πδ[λ, μ] ∈ U δ[λ, μ] for this optimal control problem satisfy the Pontryagin maxi-
mum principle under supplementary assumption of the existence of Lebesgue
measurable with respect to (x, t) ∈ Q for all z ∈ R

1 and continuous with
respect to z for a.e. x, t gradients ∇zϕ

δ
2(x, t, z), ∇zG

δ(x, z) with the estimates
|∇zϕ

δ
2(x, t, z)| ≤ CM , |∇zG

δ(x, z)| ≤ CM ∀z ∈ S1
M where CM > 0 is inde-

pendent of δ. Due to the estimates of the Propositions 1 and 2 and to the so
called two-parameter variation [13] of the pair πδ[λ, μ] that is needle-shaped
with respect to control u and classical with respect to control w the following
lemma is true.

Lemma 1. Let H(y, η) ≡ −ηy and the additional condition that specified above
is fulfilled. Any pair πδ[λ, μ] = (uδ[λ, μ], wδ[λ, μ]) ∈ U δ[λ, μ], (λ, μ) ∈ L2(Q) ×
L+
2 (Q) satisfies to (usual) Pontryagin maximum principle in the problem (3):

for π = πδ[λ, μ] the following maximum relations

H(u(x, t), ηδ(x, t)) = max
u∈U

H(u, ηδ(x, t)) for a.e. QT , (4)

H(w(s, t), ηδ(s, t)) = max
w∈W

H(w, ηδ(s, t)) for a.e. ST

hold, where ηδ(x, t), (x, t) ∈ QT is a solution for π = πδ[λ, μ] of the adjoint
problem

−ηt − ∂
∂xj

(ai,j(x, t)ηxi
) + aδ(x, t)η =

ϕδ
1(x, t)λ(x, t) + ∇zϕ

δ
2(x, t, zδ[π](x, t))μ(x, t), (x, t) ∈ QT ,

η(x, T ) = ∇zG
δ(x, zδ[π](x, T )), x ∈ Ω, ∂η(x,t)

∂N + σδ(x, t)η = 0, (x, t) ∈ ST .

Remark 1. Note that here and below, if the functions ϕδ
1, ∇zϕ

δ
2(·, ·, z(·, ·)),

λ, μ ∈ L2(Q) are considered on the entire cylinder QT , we set that the equalities
ϕδ
1(x, t) =∇zϕ

δ
2(x, t, z(x, t)) = λ(x, t) = μ(x, t) = 0 take place for (x, t) ∈ QT \Q;

the same notation is preserved if these functions are taken on the entire cylinder.

In the next section we construct minimizing approximate solutions for Prob-
lem (P 0

p,r) from the elements πδ[λ, μ], (λ, μ) ∈ L2(Q) × L+
2 (Q). As consequence,

this construction leads us to various versions of the stable sequential Lagrange
principle and Pontragin maximum principle. In the case of strong convexity and
subdifferentiability of the target functional g00 , these versions are statements
about stable approximations of the solutions of Problem (P 0

p,r) in the metric of
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Z ≡ L2(QT ) × L2(ST ) by the points πδ[λ, μ]. Due to the estimates (2) and the
Propositions 1 and 2 we may assert that the estimates

|gδ
0(π)−g00(π)| ≤ C1δ ∀π ∈ D, ‖gδ

1(π)−g01(π)‖2,Q ≤ C2δ(1+‖π‖) ∀π ∈ Z, (5)

‖hδ − h0‖2,Q ≤ Cδ, ‖gδ
2(π) − g02(π)‖2,Q ≤ C3δ ∀π ∈ D,

hold, in which the constants C1, C2, C3 > 0 are independent of δ ∈ (0, δ0], π.

3 Stable Sequential Pontryagin Maximum Principle

In this section we discuss the so-called regularized or, in other words, stable,
with respect errors of input data, sequential Pontryagin maximum principle for
Problem (P 0

p,r) as necessary and sufficient condition for elements of minimiz-
ing approximate solutions. Simultaneously, this condition we may treat as one
for existence of a minimizing approximate solutions in Problem (P 0

p,r) with per-
turbed input data or as condition of stable construction of a minimizing sequence
in this problem. The proof of the necessity of this condition is based on the dual
regularization method [2–4] that is stable algorithm of constructing a minimiz-
ing approximate solutions in Problem (P 0

p,r). Sketches of the proofs for the the-
orems in this section (Theorems 1, 2 and 3) and some comments may be found
in [14,15].

3.1 Dual Regularization for Optimal Control Problem
with Pointwise State Constraints

The estimates (5) give a possibility to organize for constructing a minimizing
approximate solution in Problem (P 0

p,r) the procedure of the dual regularization
in accordance with a scheme of the paper [11]. In accordance with this scheme
the dual regularization consists in the direct solving dual problem to Problem
(P 0

p,r) and its Tikhonov stabilization

Rδ,α(δ)
p,r (λ, μ) ≡ V δ

p,r(λ, μ) − α(δ)‖(λ, μ)‖2 → max, (λ, μ) ∈ L2(Q) × L+
2 (Q)

under consistency condition δ/α(δ) → 0, α(δ) → 0, δ → 0. This dual regular-
ization leads to constructing minimizing approximate solution in Problem (P 0

p,r)

from the elements πδ[λδ,α(δ)
p,r , μ

δ,α(δ)
p,r ] ∈ Argmin {Lδ

p,r(π, λ, μ) : π ∈ D}, where
(λδ,α

p,r , μδ,α
p,r ) ≡ argmax{Rδ,α

p,r (λ, μ) : (λ, μ) ∈ L2(Q) × L+
2 (Q)} and δ → 0.

We may assert that the following “convergence” theorem for the dual regu-
larization method in Problem (P 0

p,r) is valid.

Theorem 1. Regardless of the properties of the solvability of the dual problem
to Problem (P 0

p,r) or, in other words, regardless of the properties of the sub-
differential ∂β(p, r) (it is empty or not empty), it is true that exist elements
πδ ∈ U δ[λδ,α(δ)

p,r , μ
δ,α(δ)
p,r ] such that the relations

g00(π
δ) → g00(π

0
p,r), g01(π

δ) − h0 − p → 0, g02(π
δ) − r ≤ κ(δ), ‖κ(δ)‖ → 0, δ → 0,

〈(λδ,α(δ)
p,r , μ

δ,α(δ)
p,r ), (gδ

1(π
δ) − hδ − p, gδ

2(π
δ) − r)〉 → 0, δ → 0
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hold, in which the inequality g02(π
δ) − r ≤ κ(δ) is understood in the sense of

ordering on a cone of nonpositive functions in L2(Q). Simultaneously, the equal-
ity

lim
δ→+0

V 0
p,r(λ

δ,α(δ)
p,r , μδ,α(δ)

p,r ) = sup
(λ,μ)∈H×H+

V 0
p,r(λ, μ)

is valid. If the dual of Problem (P 0
p,r) is solvable, then the limit relation

(λδ,α(δ)
p,r , μ

δ,α(δ)
p,r ) → (λ0

p,r, μ
0
p,r), δ → 0 is valid also, where (λ0

p,r, μ
0
p,r) denotes

minimum-norm solution of the dual problem.

This theorem may be proved in exact accordance with a scheme of proving
the similar theorem in [11]. We note only that, as in [11], this proving uses a
weak continuity of the operators gδ

1, gδ
2 that is consequence of the conditions on

the input data of Problem (P 0
p,r) and a regularity of the bounded solutions of

the boundary-value problem (1) inside of the cylinder QT [8, chap. III, Theo-
rem10.1].

3.2 Stable Sequential Lagrange Principle for Optimal Control
Problem with Pointwise State Constraints

We formulate in this subsection the necessary and sufficient condition for exis-
tence of a minimizing approximate solution in Problem (P 0

p,r). Also, it can be
called by stable sequential Lagrange principle in nondifferential form for this
problem. Simultaneously, as we deal only with regular Lagrange function, the
formulated theorem may be called by Kuhn-Tucker theorem in nondifferential
form. Note that the necessity of the conditions of formulated below theorem
follows from the Theorem 1. At the same time, their sufficiency is a simple con-
sequence of the convexity of Problem (P 0

p,r) and the conditions on its input data.
A verification of these propositions for similar situation of the convex program-
ming problem in a Hilbert space may be found in [1,7].

Theorem 2. Regardless of the properties of the subdifferential ∂β(p, r) (it is
empty or not empty) or, in other words, regardless of the properties of the solv-
ability of the dual problem to Problem (P 0

p,r), necessary and sufficient condi-
tions for Problem (P 0

p,r) to have a minimizing approximate solution is that there
is a sequence of dual variables (λk, μk) ∈ H × H+, k = 1, 2, . . . , such that
δk‖(λk, μk)‖ → 0, k → ∞, and relations

πδk

[λk, μk] ∈ Dδk,εk

p,r , εk → 0, k → ∞, (6)

〈(λk, μk), (gδk

1 (πδk

[λk, μk]) − hδk − p, gδk

2 (πδk

[λk, μk]) − r)〉 → 0, k → ∞ (7)

hold for some elements πδk

[λk, μk] ∈ U δk

[λk, μk]. The sequence πδk

[λk, μk], k =
1, 2, . . . , is the desired minimizing approximate solution and each of its weak limit
points is a solution of Problem (P 0

p,r). As (λk, μk) ∈ H × H+, k = 1, 2, . . . , we

can use the sequence of the points (λδk,α(δk)
p,r , μ

δk,α(δk)
p,r ), k = 1, 2, . . . , generated

by the dual regularization method of the Theorem1. If the dual of Problem (P 0
p,r)
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is solvable, the sequence (λk, μk) ∈ H × H+, k = 1, 2, . . . , should be assumed to
be bounded. The limit relation

V 0
p,r(λ

k, μk) → sup
(λ,μ)∈H×H+

V 0
p,r(λ, μ) (8)

holds as a consequence of the relations (6) and (7). Furthermore, each weak limit
point (if such points exist) of the sequence (λk, μk) ∈ H × H+, k = 1, 2, . . . is a
solution of the dual problem V 0

p,r(λ, μ) → max, (λ, μ) ∈ H × H+.

Remark 2. If the functional g00 is strongly convex and subdifferentiable on D
then from the weak convergence of the unique in this case elements πδk

[λk, μk]
to unique element π0

p,r as k → ∞, and numerical convergence g00(π
δk

[λk, μk]) →
g00(π

0
p,r), k → ∞ follows the strong convergence πδk

[λk, μk] → π0
p,r, k → ∞.

Problem (P 0
p,r) with the strongly convex g00 for linear system of ordinary differ-

ential equations but with exact input data is studied in [10].

3.3 Stable Sequential Pontryagin Maximum Principle for Optimal
Control Problem with Pointwise State Constraints

Denote by U δ
max[λ, μ] a set of the elements π ∈ D that satisfy all relations of the

maximum principle (4) of the Lemma 1. Under the supplementary condition of
existence of continuous with respect to z gradients ∇zϕ

δ
2(x, t, z), ∇zG

δ(x, z) with
corresponding estimates, it follows that the proposition of the Theorem 2 may be
rewritten in the form of the stable sequential Pontryagin maximum principle. It
is obviously that the equality Uδ

max[λ, μ] = U δ[λ, μ] takes place under mentioned
supplementary condition.

Theorem 3. Regardless of the properties of the subdifferential ∂β(p, r) (it is
empty or not empty) or, in other words, regardless of the properties of the solv-
ability of the dual problem to Problem (P 0

p,r), necessary and sufficient condi-
tions for Problem (P 0

p,r) to have a minimizing approximate solution is that there
is a sequence of dual variables (λk, μk) ∈ H × H+, k = 1, 2, . . . , such that
δk‖(λk, μk)‖ → 0, k → ∞, and relations (6) and (7) hold for some elements
πδk

[λk, μk] ∈ U δk

max[λk, μk]. Moreover, the sequence πδk

[λk, μk], k = 1, 2, . . . , is
the desired minimizing approximate solution and each of its weak limit points is
a solution of Problem (P 0

p,r). As (λk, μk) ∈ H×H+, k = 1, 2, . . . , we can use the

sequence of the points (λδk,α(δk)
p,r , μ

δk,α(δk)
p,r ), k = 1, 2, . . . , generated by the dual

regularization method of the Theorem 1. If the dual of Problem (P 0
p,r) is solvable,

the sequence (λk, μk) ∈ H × H+, k = 1, 2, . . . , should be assumed to be bounded.
The limit relation (8) holds as a consequence of the relations (6) and (7).

Remark 3. When the inequality constraint in Problem (P 0
p,r) is absent, i.e.,

(P 0
p,r) = (P 0

p ), and ϕ2(x, t) = r ≡ 0, ϕ1(x, t) ≡ 1, the target functional g00
is taken, for example, in the form g00(π) ≡ ‖π‖2 ≡ ‖u‖2 + ‖w‖2 then Problem
(P 0

p ) acquires the typical form of unstable inverse problem. In this case the sta-
ble sequential Pontryagin maximum principle of the Theorem3 becomes a tool
for the direct solving such unstable inverse problem.
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Remark 4. In important partial case of Problem (P 0
p,r) = (P 0

r ), when it has only
the inequality constraint (ϕδ

1(x, t) = hδ(x, t) = p(x, t) = 0, (x, t) ∈ Q), “weak”
passage to the limit in the relations of the Theorem3 leads to usual for similar
optimal control problems Pontryagin maximum principle (see, e.g., [9,16]) with
nonnegative Radon measures in the input data of the adjoint equation.
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Abstract. The convergence of a family of continuous distributed mixed elliptic
optimal control problems (Pa), governed by elliptic variational equalities, when
the parameter a ! 1 was studied in Gariboldi - Tarzia, Appl. Math. Optim., 47
(2003), 213-230 and it has been proved that it is convergent to a distributed
mixed elliptic optimal control problem (P). We consider the discrete approxi-
mations (Pha) and (Ph) of the optimal control problems (Pa) and (P) respec-
tively, for each h[ 0 and a[ 0. We study the convergence of the discrete
distributed optimal control problems (Pha) and (Ph) when h ! 0, a ! 1 and
ðh; aÞ ! ð0; þ1Þ obtaining a complete commutative diagram, including the
diagonal convergence, which relates the continuous and discrete distributed
mixed elliptic optimal control problems Phað Þ; Pað Þ; Phð Þ and (P) by taking the
corresponding limits. The convergent corresponds to the optimal control, and
the system and adjoint system states in adequate functional spaces.

Keywords: Double convergence � Distributed optimal control problems �
Elliptic variational equalities � Mixed boundary conditions � Numerical
analysis � Finite element method � Fixed points � Optimality conditions �
Error estimations

1 Introduction

The purpose of this paper is to do the numerical analysis, by using the finite element
method, of the convergence of the continuous distributed mixed optimal control
problems with respect to a parameter (the heat transfer coefficient) given in [10, 11]
obtaining a double convergence when the parameter of the finite element method goes
to zero and the heat transfer coefficient goes to infinity.

We consider a bounded domain X � R
n whose regular boundary C ¼ @X ¼

C1 [C2 consists of the union of two disjoint portions C1 and C2 with meas ðC1Þ[ 0.
We consider the following elliptic partial differential problems with mixed boundary
conditions, given by:

�Du ¼ g in X; u ¼ b on C1;� @u
@n

¼ q on C2; ð1Þ

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
L. Bociu et al. (Eds.): CSMO 2015, IFIP AICT 494, pp. 493–504, 2016.
DOI: 10.1007/978-3-319-55795-3_47



�Du ¼ g in X;� @u
@n

¼ aðu� bÞ on C1;� @u
@n

¼ q on C2 ð2Þ

where g is the internal energy in X, b ¼ Const:[ 0 is the temperature on C1 for the
system (1) and the temperature of the external neighborhood on C1 for the system (2)
respectively, q is the heat flux on C2 and a[ 0 is the heat transfer coefficient on C1.
The systems (1) and (2) can represent the steady-state two-phase Stefan problem for
adequate data [21, 22]. We consider the following continuous distributed optimal
control problem ðPÞ and a family of continuous distributed optimal control problems
ðPaÞ for each parameter a[ 0, defined in [10], where the control variable is the internal
energy g in X, that is: Find the continuous distributed optimal controls gop 2 H ¼
L2ðXÞ and gaop 2 H (for each a[ 0) such that:

Problem (P): J gop
� � ¼ min

g2H
J gð Þ; Problem ðPaÞ : Ja gaop

� � ¼ min
g2H

Ja gð Þ ð3Þ

where the quadratic cost functional J; Ja : H ! R
þ
0 are defined by [2, 18, 26]:

ðaÞ JðgÞ ¼ 1
2

ug � zd
�� ��2

H þ M
2

gk k2H ; ðbÞ JaðgÞ ¼ 1
2

uag � zd
�� ��2

H þ M
2

gk k2H ð4Þ

with M[ 0 and zd 2 H given, ug 2 K and uag 2 V are the state of the systems defined
by the mixed ellliptic differential problems (1) and (2) respectively whose elliptic
variational equalities are given by [16]:

ug 2 K : a ug; v
� � ¼ g; vð Þ �

Z
C2

qvdc; 8v 2 V0 ð5Þ

uag 2 V : aa uag; v
� � ¼ g; vð Þ �

Z
C2

qvdcþ a
Z
C1

bvdc; 8v 2 V ð6Þ

and their adjoint system states pg 2 V and pag 2 V are defined by the following elliptic
variational equalities:

ðaÞ pg 2 Vo : a pg; v
� � ¼ ug � zd ; v

� �
; 8v 2 V0;

ðbÞ pag 2 V : aa pag; v
� � ¼ uag � zd ; v

� �
; 8v 2 V

ð7Þ

with the spaces and bilinear forms defined by:

V ¼ H1ðXÞ; V0 ¼ v 2 V ; v=C1 ¼ 0f g; K ¼ bþV0; H ¼ L2ðXÞ; Q ¼ L2ðC2Þ ð8Þ

a u; vð Þ ¼
Z
X

ru:rvdx; aa u; vð Þ ¼ a u; vð Þþ a
Z
C1

uvdc; ðu; vÞ ¼
Z
X

uv dx ð9Þ
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where the bilinear, continuous and symmetric forms a and aa are coercive on V0 and V
respectively, that is [16]:

9k[ 0 such that k vk k2V � aðv; vÞ; 8v 2 V0 ð10Þ

9ka ¼ k1minð1; aÞ[ 0 such that ka vk k2V � aaðv; vÞ; 8v 2 V ð11Þ

and k1 [ 0 is the coercive constant for the bilinear form a1[16, 21].
The unique continuous distributed optimal energies gop and gaop have been char-

acterized in [10] as a fixed point on H for a suitable operators W and Wa over their
optimal adjoint system states pgop 2 V0 and pagaop 2 V defined by:

W ;Wa : H ! H such that ðaÞ W gð Þ ¼ � 1
M

pg; ðbÞ Wa gð Þ ¼ � 1
M

pag: ð12Þ

The limit of the optimal control problem (Pa) when a ! 1 was studied in [10] and
it was proven that:

lim
a!1 uagaop � ugop

��� ���
V
¼ 0; lim

a!1 pagaop � pgop

��� ���
V
¼ 0; lim

a!1 gaop � gop

�� ��
H¼ 0 ð13Þ

for a large constantM[ 0 by using the characterization of the optimal controls as fixed
points through operators (12a) and (12b); this restrictive hypothesis on data was
eliminated in [11] by using the variational formulations. We can summary the condi-
tions (13) saying that the distributed optimal control problems (Pa) converges to the
distributed optimal control problem (P) when a ! þ1.

Now, we consider the finite element method and a polygonal domain X � R
n with

a regular triangulation with Lagrange triangles of type 1, constituted by affine-
equivalent finite element of class C0 being h the parameter of the finite element
approximation which goes to zero [3, 7]. Then, we discretize the elliptic variational
equalities for the system states (6) and (5), the adjoint system states (7a) and (7b), and
the cost functional (4a, b) respectively. In general, the solution of a mixed elliptic
boundary problem belongs to HrðXÞ with 1\r� 3=2� e ðe[ 0Þ but there exist some
examples which solutions belong to Hr Xð Þ with 2� r [1, 17, 20]. Note that mixed
boundary conditions play an important role in various applications, e.g. heat conduc-
tion and electric potential problems [12].

The goal of this paper is to study the numerical analysis, by using the finite element
method, of the convergence results (13) corresponding to the continuous distributed
elliptic optimal control problems ðPaÞ and ðPÞ when a ! þ1. The main result of
this paper can be characterized by the following result:

Theorem 1. We have the following complete commutative diagram which relates the
continuous distributed mixed optimal control problems ðPaÞ and ðPÞ, with the discrete
distributed mixed optimal control problems ðPhaÞ and ðPhÞ and it is obtained by taking
the limits h ! 0,a ! þ1 and ðh; aÞ ! ð0; þ1Þ, as in Fig. 1, where ghaop , uhaghaop
and phaghaop are respectively the optimal control, the system and the adjoint system
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states of the discrete distributed mixed optimal control problem ðPhaÞ for each h[ 0
and a[ 0, and the double convergence is the diagonal one.

The study of the limit h ! 0 of the discrete solutions of optimal control problems
can be considered as a classical limit, see [4–6, 8, 9, 13–15, 19, 23, 24, 27, 28] but the
limit a ! þ1, for each h[ 0, and the double limit ðh; aÞ ! ð0; þ1Þ can be
considered as a new ones.

The paper is organized as follows. In Sect. 2 we define the discrete elliptic varia-
tional equalities for the state systems uhg and uhag, we define the discrete distributed
cost functional Jh and Jha, we define the discrete distributed optimal control problems
ðPhÞ and ðPhaÞ, and the discrete elliptic variational equalities for the adjoint state
systems phg and phag for each h[ 0 and a[ 0, and we obtain properties for the
discrete optimal control problems ðPhÞ and ðPhaÞ. In Sect. 3 we study the classical
convergences of the discrete distributed optimal control problems ðPhÞ to ðPÞ, and
ðPhaÞ to ðPaÞ when h ! 0 (for each a[ 0) and the estimations for the discrete cost
functional Jh and Jha. In Sect. 4 we study the new convergence of the discrete dis-
tributed optimal control problems ðPhaÞ to ðPhÞ when a ! þ1 for each h[ 0 and we
obtain a commutative diagram which relates the continuous and discrete distributed
mixed optimal control problems Phað Þ; Pað Þ; Phð Þ and ðPÞ by taking the limits h ! 0
and a ! þ1. In Sect. 5 we study the new double convergence of the discrete dis-
tributed optimal control problems ðPhaÞ to ðPÞ when ðh; aÞ ! ð0; þ1Þ and we obtain
the diagonal convergence in the previous commutative diagram.

2 Discretization by Finite Element Method and Properties

We consider the finite element method and a polygonal domain X � R
n with a regular

triangulation with Lagrange triangles of type 1, constituted by affine-equivalent finite
element of class C0 being h the parameter of the finite element approximation which

Fig. 1. Relationship among optimal control problems Phað Þ; Pað Þ; Phð Þ and ðPÞ by taking the
limits h ! 0, a ! þ1 and ðh; aÞ ! ð0; þ1Þ.
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goes to zero [3, 7]. We can take h equal to the longest side of the triangles T 2 sh and
we can approximate the sets V ; V0 and K by:

Vh ¼ vh 2 C0 X
� �

=vh=T 2 P1 Tð Þ; 8T 2 sh
� �

;V0h ¼ vh 2 Vh=vh=C1 ¼ 0f g;Kh

¼ bþV0h ð14Þ

where P1 is the set of the polymonials of degree less than or equal to 1. Let ph :
C0ð�XÞ ! Vh be the corresponding linear interpolation operator. Then there exists a
constant c0 [ 0 (independent of the parameter h) such that [3]:

ðaÞ v� ph vð Þk kH � c0h
r vk kr; ðbÞ v� ph vð Þk kV � c0h

r�1 vk kr; 8v 2 Hr Xð Þ; 1\r� 2:

ð15Þ

We define the discrete cost functional Jh; Jha : H ! R
þ
0 by the following

expressions:

ðaÞ Jh gð Þ ¼ 1
2

uhg � zd
�� ��2

H þ M
2

gk k2H ; ðbÞ Jha gð Þ ¼ 1
2

uhag � zd
�� ��2

H þ M
2

gk k2H
ð16Þ

where uhg and uhag are the discrete system states defined as the solution of the following
discrete elliptic variational equalities [16, 24]:

uhg 2 Kh : a uhg; vh
� � ¼ g; vhð Þ �

Z
C2

qvhdc; 8vh 2 V0h; ð17Þ

uhag 2 Vh : aa uhag; vh
� � ¼ g; vhð Þ �

Z
C2

qvhdcþ a
Z
C1

bvhdc; 8vh 2 Vh: ð18Þ

The corresponding discrete distributed optimal control problems consists in finding
ghop ; ghaop 2 H such that:

ðaÞ Problem (PhÞ : Jh ghop
� � ¼ Min

g2H
Jh gð Þ;

ðbÞ Problem (PhaÞ : Jha ghaop
� � ¼ Min

g2H
Jha gð Þ ð19Þ

and their corresponding discrete adjoint states phg and phag are defined respectively as
the solution of the following discrete elliptic variational equalities:

phg 2 V0h : a phg; vh
� � ¼ uhg � zd; vh

� �
; 8vh 2 V0h ð20Þ

phag 2 Vh : aa phag; vh
� � ¼ uhag � zd ; vh

� �
; 8vh 2 Vh ð21Þ
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Remark 1. We note that the discrete (in the n-dimensional space) distributed optimal
control problem (Ph) and (Pha) are still infinite dimensional optimal control problems
since the control space is not discretized.

Lemma 2.

(i) There exist unique solutions uhg 2 Kh and phg 2 V0h, and uhag 2 Vh and phag 2
Vh of the elliptic variational equalities (17) and (20), (18), and (21) respectively
8g 2 H, 8q 2 Q, b[ 0 onC1.

(ii) The operators g 2 H ! uhg 2 V , and g 2 H ! uhag 2 V are Lipschitzians. The
operators g 2 H ! phg 2 V0g, and g 2 H ! phag 2 Vh are Lipschitzians and
strictly monotone operators.

Proof. We use the Lax-Milgram Theorem, the variational equalities (17), (18), (20)
and (21), the coerciveness (10) and (11) and following [10, 18, 25]. h

Theorem 3.

(i) The discrete cost functional Jh and Jha are H - elliptic and strictly convexe
applications, that is 8g1;g2 2 H;8t 2 0; 1½ �� �

:

1� tð ÞJh g2ð Þþ tJh g1ð Þ � Jh tg1 þ 1� tð Þg2ð Þ�M
t 1� tð Þ

2
g2 � g1k k2H ð22Þ

1� tð ÞJha g2ð Þþ tJha g1ð Þ � Jha tg1 þ 1� tð Þg2ð Þ�M
t 1� tð Þ

2
g2 � g1k k2H ð23Þ

(ii) There exist a unique optimal controls ghop 2 H and ghaop 2 H that satisfy the
optimization problems (19a) and (19b) respectively.

(iii) Jh and Jha are Gâteaux differentiable applications and their derivatives are
given by the following expressions:

ðaÞ J 0h gð Þ ¼ Mgþ phg; ðbÞ J 0ha gð Þ ¼ Mgþ phag; 8g 2 H; 8h[ 0 ð24Þ

(iv) The optimality condition for the optimization problems (19a) and (19b) are
given by:

(a) J 0h ghop
� � ¼ 0 , ghop ¼ � 1

M
phghop ; (b) J 0ha ghaop

� � ¼ 0 , ghaop

¼ � 1
M

phaghaop ð25Þ

(v) J 0h and J 0ha are Lipschitzians and strictly monotone operators.

Proof. We use the definitions (16a, b), the elliptic variational equalities (17) and (18)
and the coerciveness (10) and (11), following [10, 18, 25]. h
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We define the operators:

Wh;Wha : H ! H such that (a) Wh gð Þ ¼ � 1
M

phg; ðbÞ Wha gð Þ ¼ � 1
M

phag: ð26Þ

Theorem 4. We have that:

(i) Wh and Wha are Lipschitzian operators, and Wh ( Wha) is a contraction operator if
and only if M is large, that is:

ða) M [
1

k2
; ðbÞ M [

1

k2a
: ð27Þ

(ii) If M verifies the inequalities (27a, b) then the discrete distributional optimal
control ghop 2 H ( ghaop 2 H) is obtained as the unique fixed point of Wh ðWha),
i.e.:

ghop ¼ � 1
M

phghop , Wh ghop
� � ¼ ghop ;

ghaop ¼ � 1
M

phaghaop , Wha ghaop
� � ¼ ghaop :

ð28Þ

Proof. We use the definitions (25a, b), and the properties (25a, b) and Lemma 2. h

3 Convergence of the Discrete Distributed Optimal Control
Problems Phð Þ to Pð Þ and Phað Þ to Pað Þ When h ! 0

We obtain the following error estimations between the continuous and discrete
solutions:

Theorem 6. We suppose the continuous system states and adjoint system states have
the regularities ug; uagaop 2 Hr Xð Þ and pg; pagaop 2 Hr Xð Þ 1\r� 2ð Þ. If M verifies the
inequalities (27a, b) then we have the following error bonds:

ghop � gop

�� ��
H
� chr�1; uhghop � ugop

��� ���
V
� chr�1; phghop � pgop

��� ���
V
� chr�1 ð29Þ

ghaop � gaop
�� ��

H
� chr�1; uhaghaop � uagaop

��� ���
V
� chr�1;

phaghaop � pagaop

��� ���
V
� chr�1

ð30Þ

where c’s are constants independents of h.
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Proof. It is useful to use the restriction a[ 1 by splitting aa by [21, 24, 25].

aa u; vð Þ ¼ a1 u; vð Þþ ða� 1Þ
Z
C1

uvdc ð31Þ

but then it can be replaced by a� a0 for any a0 [ 0. We follow a similar method to the
one developed in [25] for Neumann boundary optimal control problems by using the
elliptic variational equalities (17), (18), (20) and (21), the thesis holds. h

Remark 2. If M verifies the inequalities (27a, b) we can obtain the convergence in
Theorem 6 by using the characterization of the fixed point (28a, b), and the uniqueness
of the optimal controls gop 2 H and gaop 2 H.

Now, we give some estimations for the discrete cost functional Jha and Jh.

Lemma 7. If M verifies the inequality (27a, b) and the continuous system states and
adjoint system states have the regularities ug; uag 2 Hr Xð Þ pg; pag 2 Hr Xð Þ 1\r� 2ð Þ
then we have the following error bonds:

M
2

ghop � gop
�� ��2

H
� J ghop
� �� J gop

� ��Ch2ðr�1Þ;
M
2

ghaop
� gaop

��� ���2
H
� Ja ghaop

� �� Ja gaop
� ��Ch2ðr�1Þ

ð32Þ

M
2

ghop � gop
�� ��2

H � Jh gop
� �� Jh ghop

� ��Ch2ðr�1Þ;
M
2

ghaop � gaop
�� ��2

H � Jha gaop
� �� Jha ghaop

� ��Ch2ðr�1Þ
ð33Þ

Jh gop

� �� J gop

� ��� ���Chr�1; Jh ghop
� �� J gop

� ��� ���Chr�1 ð34Þ

Jha gop

� �� Ja gop

� ��� ���Chr�1; Jha ghaop
� �� Ja gaop

� ��� ���Chr�1 ð35Þ

where C’s are constants independents of h and a.

Proof. Estimations (32) and (33) follow from the estimations (29), and the equalities
(similar relationship for J and Ja):

Ja ghaop
� �� Ja gaop

� � ¼ 1
2

uhaghaop � uagop
��� ���2

H
þ M

2
ghaop � gaop
�� ��2

H
ð36Þ

Jha gaop
� �� Jha ghaop

� � ¼ 1
2

uhaghop � uhaghaop

��� ���2
H
þ M

2
ghaop � gaop
�� ��2

H
ð37Þ

Jha gð Þ � Ja gð Þj j � 1
2

uhag � uag
�� ��

H þ uag � zd
�� ��

H

� 	
uhag � uag
�� ��

H ; 8g 2 H: ð38Þ

h
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4 Convergence of the Discrete Optimal Control Problems
Phað Þ to Phð Þ When a ! þ1

Theorem 9. We have the following limits:

lim
a!þ1 uhaghaop � uhghop

��� ���
V
¼ lim

a!þ1 phaghaop � phghop

��� ���
V
¼ lim

a!þ1 ghaop � ghop
�� ��

H

¼ 0; 8h[ 0: ð39Þ

Proof. We omit this proof because we prefer to prove the next one with more details.

5 Double Convergence of the Discrete Distributed Optimal
Control Problem Phað Þ to Pð Þ When ðh; aÞ ! ð0; þ1Þ

For the discrete distributed optimal control problem Phað Þ we will now consider the
double limit ðh; aÞ ! ð0; þ1Þ.
Theorem 10. We have the following limits:

lim
ðh;aÞ!ð0;þ1Þ

uhaghaop � ugop

��� ���
V
¼ lim

ðh;aÞ!ð0;þ1Þ
phaghaop � pgop

��� ���
V

¼ lim
ðh;aÞ!ð0;þ1Þ

ghaop � gop

�� ��
H¼ 0 ð40Þ

Proof. From now on we consider that c’s represent positive constants independents
simultaneously of h[ 0 and a[ 0 (see (31)). We show a sketch of the proof by
obtaining the following estimations (for 8h[ 0 and 8a[ 1):

uh0k kV � c1; uha0k kV � c2; a� 1ð Þ
Z
C1

uha0 � bð Þ2dc� c3 ð41Þ

ghaop
�� ��

H � c4; uhaghaop

��� ���
H
� c5; ghop

�� ��
H � c6 ð42Þ

uhghop

��� ���
V
� c7; uhaghaop

��� ���
V
� c8; a� 1ð Þ

Z
C1

uhaghaop � b

 �2

dc� c9 ð43Þ

phghop

��� ���
V
� c10; phaghaop

��� ���
V
� c11; a� 1ð Þ

Z
C1

p2haghaop dc� c12: ð44Þ

For example, the constant c11 is a positive constant independent simultaneously of
h[ 0 and a[ 0, and it is given by the following expression:

Double Convergence of a Family 501



c11 ¼ zdk kH
1
k1

1þ 1ffiffiffiffiffi
M

p 1
k1

þ 1
k
þ 1

kk1

� 	� 	
þ 1

k
1þ 1

k1

� 	
1þ 1

k
ffiffiffiffiffi
M

p
� 	 �

þ b
1
k1

1þ 1
k1

� 	
1þ 1

k
ffiffiffiffiffi
M

p þ 1

k1
ffiffiffiffiffi
M

p
� 	

þ 1
k

1þ 1
k1

� 	
1þ 1

k
ffiffiffiffiffi
M

p
� 	 �

þ qk kQ c0k k 1
k1

1
k1

þ 1
k

1þ 1
k1

� 	
þ 1ffiffiffiffiffi

M
p 1

kk1
þ 1

k2
1þ 1

k1

� 	
þ 1

k21
1þ 1

k

� 	 !" #"

þ 1

k2
1þ 1

k1

� 	
1þ 1

k
ffiffiffiffiffi
M

p
� 	�

ð45Þ

Therefore, from the above estimations we have that:

9 f 2 H=ghaop �! f in H weak as ðh; aÞ ! ð0; þ1Þ ð46Þ

9 g 2 V=uhaghaop �! g in V weak (H strong) as ðh; aÞ ! ð0; þ1Þ with g=C1 ¼ b

ð47Þ

9 n 2 V=phaghaop �! n in V weak (H strong) as ðh; aÞ ! ð0; þ1Þ with n=C1 ¼ 0

ð48Þ

9 fh 2 H=ghaop �! fh in H weak as a ! þ1 ð49Þ

9 gh 2 V=uhaghaop �! gh in V weak (in H strong) as a ! þ1 with gh=C1 ¼ b

ð50Þ

9 nh 2 V=phaghaop �! nh in V weak (in H strong) as a ! þ1 with nh=C1 ¼ 0

ð51Þ

9 fa 2 H=ghaop �! fa in H weak as h ! 0 ð52Þ

9 ga 2 V=uhaghaop �! ga in V weak (in H strong) as h ! 0 with ga=C1 ¼ b ð53Þ

9 na 2 V=phaghaop �! na in V weak (in H strong) as h ! 0 with na=C1 ¼ 0 ð54Þ

9 f � 2 H=ghop �! f � in H weak as h ! 0 ð55Þ

9 g� 2 V=uhghop �! g� in V weak (H strong) as h ! 0 with g�=C1 ¼ b ð56Þ

9 n� 2 V=phghop �! n� in V weak (H strong) as h ! 0 with n�=C1 ¼ 0 ð57Þ

Taking into account the uniqueness of the distributed optimal control problems
Phað Þ; Pað Þ; Phð Þ and Pð Þ, and the uniqueness of the elliptic variational equalities
corresponding to their state systems we get
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gh ¼ uhfh ¼ uhghop ; nh ¼ phfh ¼ phghop ; fh ¼ ghop
ð58Þ

ga ¼ uafa ¼ uagaop ; na ¼ pafa ¼ pagaop ; fa ¼ gaop
ð59Þ

g ¼ g� ¼ uf ¼ ugop ; n ¼ n� ¼ pf ¼ pgop ; f ¼ f � ¼ g
op
: ð60Þ

Now, by using [11] we obtain

lim
a!þ1 fa � gop

�� ��
H¼ 0; lim

a!þ1 ga � ugop

��� ���
V
¼ 0; lim

a!þ1 na � pgop

��� ���
V
¼ 0 ð61Þ

and therefore the three double limits (40) hold when ðh; aÞ ! ð0; þ1Þ.
Proof of Theorem 1. It is a consequence of the properties (29), (30), (39), (40) and
[10, 11].

Remark 3. We note that this double convergence is a novelty with respect to the
recent results obtained for a family of discrete Neumann boundary optimal control
problems [25].
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Abstract. We consider a particular model for electromagnetic fields in
the context of optimal control. Special emphasis is laid on a non-standard
H-based formulation of the equations of low-frequency electromagnetism
in multiply connected conductors. By this technique, the low-frequency
Maxwell equations can be solved with reduced computational complexity.
We show the well-posedness of the system and derive the sensitivity
analysis for different models of controls.

Keywords: Electromagnetic fields · Maxwell equations · Eddy current
equations · H-based approximation · Low frequency approximation ·
Optimal control

1 Introduction

In this paper, we suggest an H-based eddy current formulation of the time-
harmonic Maxwell equations, where a standard scalar elliptic equation is given
in the insulator and a vector formulation is only needed in the conductor. This
approach is theoretically slightly more complicated than the well known vector
potential ansatz. However, we think that the computational savings can be con-
siderable, if the computational domain Ω must be large. We apply this H-based
formulation to the optimal control of electric and magnetic fields and discuss
associated optimality conditions. Special emphasis is laid on a variety of models
for controls.

Optimal control of electromagnetic fields is a quite active subject, important
for various applications. We mention only the control of induction heating as
in [8,9,16], the optimal control of MHD processes as in [3–7], optimal control
problems for time-harmonic eddy current problems as in [10,11], inverse prob-
lems for electromagnetic fields as in [2], or the control of magnetic fields in flow
measurement as in [12,13] and refer to [15] for more references.
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506 F. Tröltzsch and A. Valli

2 The Model for the Electromagnetic Fields

2.1 Time-Harmonic Maxwell and Eddy Current Equations

The main quantities in our eddy current formulation, are the magnetic field H,
the electric field E, and the (total) current J that is the sum of the generated
current and an impressed current Je. By the generalized Ohm’s law, we have

J = σE + Je, (1)

where σ is the electrical conductivity, that is assumed to be a symmetric and
(uniformly) positive definite matrix in the conducting region and to vanish in the
insulating region. We assume that the entries of σ are bounded and measurable
real functions on the conducting domain ΩC .

We consider a time-harmonic model and assume that Je is an alternating
current of the form Je(x, t) = J(x) cos(ωt+φ), where J is a real vector function
that accounts for direction and strength of the current, ω is the angular frequency
and φ is the phase angle. Expressing these quantities in a complex setting, we
have

Je(x, t) = Re [J(x)ei ωt+i φ] = Re [Je(x)ei ωt].

The complex vector function Je = J eiφ will be our control; we assume that it
is supported in the conducting region, namely, it is vanishing inside the non-
conducting region. This time-periodic impressed current Je generates associated
time-periodic solutions in the form

E(x, t) = Re [E(x)ei ωt], H(x, t) = Re [H(x)ei ωt].

Inserting these quantities in the full Maxwell equations and assuming that the
displacement current term ∂(εE)/∂t, ε being the electric permittivity, can be
neglected, one arrives in a standard way at the following time-harmonic eddy
current system

curlH − σE = Je

curlE + iωμH = 0
(2)

that holds in the whole space R
3. Here, μ is the magnetic permeability, a uni-

formly positive definite matrix that is assumed to have bounded and measurable
real functions as entries on the holdall domain Ω.

2.2 Eddy Current Formulation in Weak and Strong Form

Assumption 1 (Geometry). In the paper, Ω ⊂ R
3 is a bounded and simply con-

nected Lipschitz domain with connected boundary Γ ; Ω is the “holdall” compu-
tational domain containing all conductors. The subdomain ΩC ⊂ Ω that denotes
the conductor is a bounded Lipschitz set. We require that ΩC is the union of
finitely many disjoint open and connected sets (ΩC)l, l ∈ {1, . . . , k}, the so-
called (connected) components of ΩC . Assume further that cl ΩC ∩ ∂Ω = ∅. The
set ΩI := Ω \ cl ΩC stands for the non-conducting domain. For simplicity, it is
assumed to be connected.
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Definition 1. Let g ∈ N ∪ {0} be the number of all “handles” of ΩI (precisely,
the rank of the first homology group of cl ΩI , or, equivalently, the first Betti
number of ΩI). Due to our assumption on Ω, it is also the number of “handles”
of ΩC . If all the components (ΩC)l are simply connected, we have g = 0.

This assumption allows fairly general forms of conductors. For instance, the
conducting domain can include finitely many tori which might form together
more complicated geometrical figures like the Borromean rings.

The function spaces used in our paper will include complex functions. For
instance, Lp(D), 1 ≤ p < ∞, is defined as the space of all complex valued
functions v : D → C such that |v|p is integrable on D ⊂ R

3. To distinguish this
space from the one with real-valued functions, we introduce

Lp
R
(D) = {v : D → R, |v|p is integrable}.

The spaces L∞(D) (complex) and L∞
R

(D) (real) are defined accordingly.

Definition 2. We denote by ρj, j ∈ {1, . . . , g}, a basis of the space of μ-
harmonic fields

Hμ
I = {v : ΩI → R

3 : curlv = 0 in ΩI ,div(μv) = 0 in ΩI , μv · n = 0 on ∂ΩI},
(3)

where n is the unit outward normal vector on ∂ΩI .

The functions ρj can be computed once “offline” before the numerical solution
of the optimal control problem is started. For associated equations, we refer to
[1].

From (2)1 we see that curlH = 0 holds in ΩI . Therefore, H|ΩI
can be

written as ∇ψ +
∑g

j=1 αjρj (see, e.g., [1, Appen. A.3]). This leads to the weak
formulation of our eddy current system: Let V = H(curl;ΩC)×H1(ΩI)/C×C

g

and define the state space

V0 = {(H, ψ,α) ∈ V that satisfy the interface conditions (4) below} ,

where

H × n − ∇ψ × n −
g∑

j=1

αjρj × n = 0 on Γ. (4)

Both spaces V and V0 are equipped with the norm

‖(H, Ψ,α)‖V =
(
‖H‖2H(curl;ΩC) + ‖ψ‖2H1(ΩI)/C

+ |α|2
)1/2

,

where ‖H‖H(curl;ΩC) =
(∫

ΩC
(curlH · curlH + H · H)

)1/2

and ‖ψ‖H1(ΩI)/C =
(∫

ΩI
∇ψ · ∇ψ

)1/2

. We also need the norms ‖Q‖ΩC
:=

(∫
ΩC

|Q(x)|2
) 1

2
,

‖Q‖μ,ΩC
:=

(∫
ΩC

μ(x)Q(x) · Q(x)
) 1

2
, and analogous norms ‖Q‖σ,ΩC

and
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‖Q‖μ,ΩI
. Further, we introduce a symmetric and positive definite matrix M

by

Mnj =
∫

ΩI

μρn · ρj ;

and the vector norm |q|M = (Mq · q)
1
2 , where q ∈ C

g. Finally, we define an
antilinear form a : V × V → C by

a[u,v] =
∫

ΩC

σ−1 curlH ·curlW+
∫

ΩC

iωμH ·W+
∫

ΩI

iωμ∇ψ ·∇η+iωMα ·β,

where u = (H, ψ,α) and v = (W, η,β). The form a[·, ·] is continuous and
coercive on V × V (see, e.g., [1, p. 37]).

Definition 3. A triplet u = (H, ψ,α) ∈ V0 is said to be a weak solution of the
eddy current model associated with Je ∈ L2(ΩC)3, if

a[u,v] =
∫

ΩC

σ−1Je · curlW ∀v := (W, η,β) ∈ V0. (5)

Lemma 1 (Well posedness, [15]). For all Je ∈ L2(ΩC)3, there exists a
unique weak solution (H, ψ,α) of (7). Moreover, there is a constant c > 0 not
depending on Je such that

‖(H, ψ,α)‖V ≤ c ‖Je‖ΩC
. (6)

We have shown in [15] that the solution (H, ψ,α) ∈ V0 to the variational
problem (5) satisfies the following strong eddy current equations, provided that
the variational solution is sufficiently smooth:

curl(σ−1 curlH) + iωμH = curl(σ−1Je) in ΩC

H × n = ∇ψ × n +
∑g

j=1 αjρj × n on Γ

μH · n = μ∇ψ · n on Γ
−div (μ∇ψ) = 0 in ΩI

μ∇ψ · nΩ = 0 on ∂Ω

(7)

with additional geometrical conditions

(Mα)j = (iω)−1

∫
Γ

σ−1(curlH − Je) · (n × ρj) ∀ j ∈ {1, . . . , g}. (8)

3 Optimal Control

3.1 The Optimal Current Problem and Its Well-Posedness

We discuss the following steady state optimal control problem of elliptic type,
where the impressed current Je is the control. As fixed data, vector functions
Hd ∈ L2(Ω)3, Ed ∈ L2(ΩC)3 and constants νC ≥ 0, νA ≥ 0, νB ≥ 0, νE ≥
0, ν ≥ 0 with νC + νA + νB + νE + ν > 0 are given. In ΩI the reference magnetic
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field Hd is split as ∇ψd +
∑g

j=1 αd,jρj . Moreover, a nonempty, bounded, convex
and closed set of admissible controls Jad ⊂ L2(ΩC)3 is given. Possible choices
for Jad will be specified later.

Thanks to Lemma 1, for each control Je ∈ Jad there exists a unique weak
solution of (7). We express the correspondence of the solution to Je, by the
notation (HJe

, ψJe
,αJe

) for the solution. Let us now skip the subscript e from
the controls and denote them just by J, i.e. J stands now for the impressed
current Je and is not the total current. We use the following (reduced) objective
functional F ,

F (J) =
νC

2
‖HJ − Hd‖2μ,ΩC

+
νA

2
‖∇ψJ − ∇ψd‖2μ,ΩI

+
νB

2
|αJ − αd|2M

+
νE

2
‖σ−1(curlHJ − J) − Ed‖2σ,ΩC

+
ν

2
‖J‖2ΩC

.
(9)

Recalling that the electric field associated with J is given by EJ = σ−1(curlHJ −
J), it is easily checked that in F the magnetic energy and the electric energy
(per unit time) of H and E, respectively, appear.

The optimal control problem, written in short form, is

min
J∈Jad

F (J). (10)

A control J∗ ∈ Jad is said to be optimal, if F (J∗) ≤ F (J) holds for all J ∈ Jad.

Theorem 2. The optimal control problem (10) admits at least one optimal con-
trol denoted by J∗. The optimal control is unique, if ν > 0.

In view of the continuity of the control-to-state mapping, this is a standard
result.

3.2 Necessary Optimality Conditions

The objective functional F is not differentiable, but it is directionally differ-
entiable. This is enough to derive necessary (and by convexity also sufficient)
optimality conditions. After quite elementary calculations, the derivative in the
direction J at an arbitrary fixed (not necessarily optimal or admissible) control
Ĵ with associated solution Ĥ := HĴ , ψ̂ := ψĴ and α̂ := αĴ is obtained as

F ′(Ĵ)J = Re
{∫

ΩC

νC μ(Ĥ − Hd) · HJ

+
∫

ΩI

νA μ(∇ψ̂ − ∇ψd) · ∇ψJ + νB M(α̂ − αd) · αJ

+
∫

ΩC

νE

(
Ê − Ed

) · curlHJ

−
∫

ΩC

νE

(
Ê − Ed

) · J + ν

∫
ΩC

Ĵ · J
}

.

(11)

Here, we have inserted the relation σ−1(curl Ĥ − Ĵ) = Ê := EĴ. By an adjoint
state, this derivative is transformed to one with explicit appearance of J.
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Definition 4 (Adjoint equation). Let Ĵ ∈ L2(ΩC)3 be a given control with
associated states Ĥ := HĴ, Ê := EĴ, ψ̂ := ψĴ, α̂ := αĴ , and let Hd ∈ L2(ΩC)3,
ψd ∈ H1(ΩI)/C, αd ∈ C

g, Ed ∈ L2(ΩC)3 be given as above. The equation for
(W, η,β),∫

ΩC

σ−1 curlW · curlH − iω

∫
ΩC

μW · H − iω

∫
ΩI

μ∇η · ∇ψ − iωMβ · α

=
∫

ΩC

νC μ(Ĥ − Hd) · H

+
∫

ΩI

νA μ(∇ψ̂ − ∇ψd) · ∇ψ + νB M(α̂ − αd) · α

+
∫

ΩC

νE(Ê − Ed) · curlH ∀ (H, ψ,α) ∈ V0

(12)
is said to be the adjoint equation of equation (5). The solution (WĴ , ηĴ ,βĴ) ∈
V0 is called the adjoint state associated with Ĵ.

For the strong form of the adjoint equation, we refer the reader to [15].
For all given Hd ∈ L2(ΩC)3, ψd ∈ H1(ΩI)/C, αd ∈ C

g, Ed ∈ L2(ΩC)3,
Ĵ ∈ L2(ΩC)3, the adjoint equation (12) has a unique solution (WĴ , ηĴ ,βĴ). This
result follows, analogously to Lemma 1, from the Lemma of Lax and Milgram.
By transposition, we can prove the following necessary optimality conditions:

Theorem 3 (Necessary optimality conditions). Let J∗ be an optimal con-
trol of problem (10) and let HJ∗ and EJ∗ be the associated optimal magnetic and
electric fields, respectively. Then there exists a unique solution (WJ∗ , ηJ∗ ,βJ∗)
of the adjoint equation (12) such that the variational inequality

Re
∫

ΩC

(
σ−1 curlWJ∗ − νE (EJ∗ −Ed) + ν J∗

)
· (J−J∗) ≥ 0 ∀J ∈ Jad (13)

is satisfied.

Proof. The optimal control J∗ must obey the standard variational inequality

F ′(J∗)(J − J∗) ≥ 0 ∀J ∈ Jad. (14)

We show that this is equivalent to the variational inequality (13). We first con-
sider the expression (11) for F ′(Ĵ) for the particular choice Ĵ := J∗ and have

F ′(J∗) (J − J∗)

= Re
[
νC

∫
ΩC

μ(HJ∗ − Hd) · HJ−J∗

+ νA

∫
ΩI

μ(∇ψJ∗ − ∇ψd) · ∇ψJ−J∗ + νB M(αJ∗ − αd) · αJ−J∗

+ νE

∫
ΩC

(EJ∗ − Ed) · curlHJ−J∗ − νE

∫
ΩC

(EJ∗ − Ed) · (J − J∗)

+ ν

∫
ΩC

J∗ · (J − J∗)
]

.
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Thanks to a lemma on transposition in [15] that is not deep but a bit technical
in the proof, we obtain

F ′(J∗) (J − J∗)

= Re
[∫

ΩC

σ−1 curlWJ∗ · (J − J∗)

−
∫

ΩC

νE (EJ∗ − Ed) · (J − J∗) +
∫

ΩC

ν J∗ · (J − J∗)
]

= Re
∫

ΩC

(
σ−1 curlWJ∗ − νE (EJ∗ − Ed) + ν J∗

)
· (J − J∗) ,

(15)

where WJ∗ is the first component of the adjoint state associated with J∗. �

Let us define for convenience

DJ∗ := σ−1 curlWJ∗ − νE (EJ∗ − Ed). (16)

By this definition, the variational inequality (13) simplifies to

Re
∫

ΩC

(
DJ∗ + ν J∗

)
· (J − J∗) ≥ 0 ∀J ∈ Jad. (17)

This is our main necessary condition that will be later used to handle various
particular cases for Jad. Though our objective functional F is only direction-
ally differentiable and hence does not have a gradient, we denote for short the
direction of steepest ascent of F ′(Ĵ) as its reduced gradient:

∇F (Ĵ) := DĴ + ν Ĵ. (18)

3.3 Modeling the Control and Associated Optimality Conditions

Below, we discuss several types of controls and admissible sets that seem to be
useful and establish the associated optimality conditions as conclusions of (17).

Unbounded Complex Control Vectors. If ν > 0, the unbounded control
set

Jad = L2(ΩC)3 (19)

can be used. Notice that the choice ν = 0 is only useful here, if the desired fields
Hd and Ed belong to the range of the control-to-state mapping. It follows imme-
diately from the variational inequality (13) that, in the case Jad = L2(ΩC)3, the
equation DJ∗ + ν J∗ = 0 is necessary and sufficient for the optimality of J∗,
i.e. we have

J∗ = −1
ν
DJ∗ .
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Complex Control Vectors Bounded by Box Constraints. For all ν ≥ 0,
the set

Jad = {J ∈ L2(ΩC)3 : |Re J�(x)| ≤ Remax, | Im J�(x)| ≤ Immax

for � = 1, 2, 3, and for almost all x ∈ ΩC} (20)

might be taken, if positive bounds Remax and Immax must be imposed on the
possible currents. In this case, using the representation (18), the variational
inequality (13) can be re-written as

Re
∫

ΩC

∇F (J∗) · J∗ ≤ Re
∫

ΩC

∇F (J∗) · J ∀J ∈ Jad.

Expanding the terms under the integral and invoking that Re J and Im J can
be chosen completely independent, we find the following two inequalities:
∫

ΩC

Re (∇F (J∗)) · Re J∗ ≤
∫

ΩC

Re (∇F (J∗)) · Re J ∀J : |Re J(·)| ≤ Remax,

∫
ΩC

Im (∇F (J∗)) · Im J∗ ≤
∫

ΩC

Im (∇F (J∗)) · Im J ∀J : | Im J(·)| ≤ Immax.

Here, the inequalities |Re J(·)| ≤ Remax and | Im J(·)| ≤ Immax have to be
understood in pointwise and componentwise sense. These inequalities can be
discussed further in a pointwise way (for this type of argument, see, e.g., [14,
Sect. 2.8]). For instance, the first inequality is equivalent to the condition that

Re ∇F (J∗)(x) · Re J∗(x) ≤ Re ∇F (J∗)(x) · v ∀v ∈ R
3 : |v�| ≤ Remax, � ∈ {1, 2, 3} (21)

holds for almost all x ∈ ΩC . All components of the vector v ∈ R
3 can be selected

independently. Then the inequality above means for the �th component that

min
v∈R:|v|≤Remax

Re (∇F (J∗))�(x) v = Re (∇F (J∗))�(x) Re J∗
� (x),

i.e., that, for a.a. x ∈ ΩC , the minimum at the left-hand side is attained by
Re J∗

� (x).
Inserting the concrete expression for the reduced gradient ∇F (see (18)), we

find

Re J∗
� (x) =

{−Remax, if Re (DJ∗ + ν J∗)�(x) > 0
Remax, if Re (DJ∗ + ν J∗)�(x) < 0 (22)

for almost all x ∈ ΩC and all � ∈ {1, 2, 3}. The formula for the imaginary part is
the same with Im substituted for Re . If the Tikhonov regularization parameter
is positive, then this is equivalent to the projection formula

Re J∗
� (x) = P[−Remax,Remax]

{
−1

ν
Re (DJ∗)�(x)

}
(23)

for almost all x ∈ ΩC and all � ∈ {1, 2, 3}. Here, the projection function P[a,b] :
R → [a, b] is defined by P[a,b](s) := max(a,min(b, s)).
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Example 1 (Optimal control as inverse problem). In electro-encephalography
(EEG) or magneto-encephalography (MEG), magnetic or electric fields associated to
the electrical activity of the human brain are measured. Then one looks for the electri-
cal currents, located in certain regions of the brain, that generated these fields. Under
certain assumptions, this problem can be cast into the form of our optimal control
problem, where the desired fields Hd and Ed stand for the measurements. Normally,
these measurements can be taken only at the boundary Γ of the conductor, say at the
surface of the human head ΩC (which can be assumed to be simply connected). More-
over, they are only given at certain points. Let us assume that these measurements
can be interpolated to get a measurement of μHd · n on the interface Γ . In view of
the interface conditions on Γ , we have then also μ∇ψd · n on Γ . Together with the
homogeneous boundary conditions on ∂Ω, we then can determine the harmonic scalar
potential ψd and hence also ∇ψd in ΩI that can serve as measurement in ΩI .

In this inverse problem, one cannot prescribe any particular form or direction of

the unknown electrical current Je. Here the general class Jad of arbitrary bounded L2-

controls is meaningful indeed. Possible selections of Jad are the definitions (19) and (20).

Electrical Current in an Induction Coil. Another typical application is
the case where the electrical current is prescribed in an induction coil (see, e.g.,
[13]). A standard induction coil is composed by one wire that is twisted in many
windings around the core. Here, the direction of the electrical current in one
point is very precisely given by the direction of the wire in that point. The
strength j of the current is the only unknown that is to be determined. The
control Je has the form

Je(x) =
N�

Qcoil
e(x) j

where j is a complex number, the unit vector function e is the direction of the
wire in the point x of the coil, N� is the number of windings and Qcoil is the
area of the cross section of the coil that is perpendicular to the direction of the
windings. Assume for convenience that N�/Qcoil = 1 to simplify our notation.

Example 2. In [13] the following geometry was chosen for the induction coil, which is
topologically equivalent to a torus:

Ωcoil = {x ∈ R
3 : 0 < r1 < x2

1 + x2
2 < r2, c1 < x3 < c2},

where r2 > r1 > 0 and c1 < c2 are given real numbers. Here the function e is defined
by

e(x1, x2, x3) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
x2
1+x2

2

⎡

⎣
−x2

x1

0

⎤

⎦ in Ωcoil

0 in ΩC \ cl Ωcoil.

(24)

In Ωcoil, e is a unit vector.

Notice that in this case the control is just one complex number. Here, the ana-
logue of (20) is

Jad = {e(·) j : |Re j| ≤ Remax and | Im j| ≤ Immax}. (25)
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The optimality conditions can be discussed analogously to complex control vector
functions, we leave the main steps to the reader. For the real part, we deduce
for ν ≥ 0

Re j∗ =
{−Remax, if

∫
ΩC

Re (DJ∗ · e + νj∗) > 0
Remax, if

∫
ΩC

Re (DJ∗ · e + νj∗) < 0 .
(26)

If ν > 0, then we have the projection formula

Re j∗ = P[−Remax,Remax]

{
−1

ν

∫
ΩC

Re DJ∗ · e
}

. (27)

Analogous conditions are satisfied by Im j∗ with Im substituted for Re.

Electrical Currents in a Package of Wires. The following situation is some-
how intermediate between the two cases mentioned above. Here, the induction
coil is composed of a package of single wires that can be controlled separately.
Assume that each one of these currents can be controlled independently from
the others. The cross section of this package of wires can be viewed as a discrete
approximation of a function j : Ωcoil → C that stands for the strength of the
current while the direction is still given by a function such as e above.

Let us consider the geometry of Example 2. Here, the strength j of the current
depends only on the radius r and the coordinate x3, while the direction of the
current is given again by e. In terms of cylindrical coordinates, this reads

Je = e(r, ϕ, z) j(r, z),

where r1 ≤ r ≤ r2, 0 ≤ ϕ < 2π, c1 ≤ z ≤ c2. A useful set of admissible control
functions might be

Jad = e jad (28)

where we take controls out of the complex space L2((r1, r2) × (c1, c2)),

jad = {j ∈ L2((r1, r2) × (c1, c2)) : |Re j| ≤ Remax and | Im j| ≤ Immax}

and the actual control function would be j ∈ L2((r1, r2) × (c1, c2)). This view
is, perhaps, a bit academic but it gives an interpretation on how a controlled
distributed current might be generated.

The necessary optimality conditions are analogous to (22) and (23), but
(r1, r2) × (c1, c2) must be substituted for ΩC . For instance, the optimal solution
obeys, for almost all (r, z) ∈ [r1, r2] × [c1, c2], the projection formula

Re j∗(r, z) = P[−Remax,Remax]

{
−1

ν

∫ 2π

0

Re DJ∗(r, z) · e(r, ϕ, z) dϕ

}
. (29)

Real Current Vectors. A smaller but perhaps more realistic class of controls
J has the particular form

J(x) = eiφJ(x) , (30)
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where J is a real vector function and φ is fixed. Here, J varies in the admissible
set

Jad = {J ∈ L2
R
(ΩC)3 : −jmax ≤ J�(x) ≤ jmax

for a.a. x ∈ ΩC , all � ∈ {1, 2, 3}} (31)

with a given bound jmax > 0. To cover this ansatz by the control problem (10),
we define the functional f(J) := F (eiφJ) and consider the problem

min
J∈Jad

f(J). (32)

This is nothing more than a particular case of the optimal control problem (10)
subject to the particular control set defined by (30) and (31).

The associated optimal control J∗ = eiφJ∗ has to obey the necessary opti-
mality conditions of Theorem3, in particular (13), i.e.

Re
∫

ΩC

(DJ∗ + νJ∗) · (J − J∗) ≥ 0 ∀J ∈ Jad

using the notation (16). With the particular ansatz (30), this variational inequal-
ity can be further simplified. Finally, inserting the particular form of J, we find

∫
ΩC

(DJ∗ + νJ∗) · (J − J∗) ≥ 0 ∀J ∈ Jad , (33)

with DJ∗ := Re (e−iφDJ∗). The further pointwise discussion of (33) is analogous
to (22) and (23), where “Re ” can be omitted, since all quantities in (33) are real.
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12. Nicaise, S., Stingelin, S., Tröltzsch, F.: On two optimal control problems for mag-
netic fields. Comput. Methods Appl. Math. 14, 555–573 (2014)
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Abstract. The aim of this work is to test the Levemberg Marquardt and
BFGS (Broyden Fletcher Goldfarb Shanno) algorithms, implemented by
the matlab functions lsqnonlin and fminunc of the Optimization Tool-
box, for modeling the kinetic terms occurring in chemical processes of
adsorption. We are interested in tests with noisy data that are obtained
by adding Gaussian random noise to the solution of a model with known
parameters. While both methods are very precise with noiseless data, by
adding noise the quality of the results is greatly worsened. The semi-
convergent behaviour of the relative error curves is observed for both
methods. Therefore a stopping criterion, based on the Discrepancy Princi-
ple is proposed and tested. Great improvement is obtained for both meth-
ods, making it possible to compute stable solutions also for noisy data.

Keywords: Parameter estimation · Non-linear differential models ·
Quasi-Newton methods · Discrepancy Principle

1 Introduction

An important topic in many engineering applications is that of estimating para-
meters of differential models from partial and possibly noisy measurements. For
example the removal of pollutants from surface water and groundwater requires
the optimization of partial differential models where the dispersion, mass trans-
fer and reaction terms are estimated from data in column reactor experiments
[1–3].

We define here the constrained optimization problem connected to the esti-
mation of a parameter, defined by q, in a differential model represented by c(u, q),
named state equation, whose solution u(q) is called state variable:

min
q

J(u, q) s.t. c(u, q) = 0 ODE-PDE model

By pointing out the implicit dependence of u on the parameter q, the prob-
lem is usually presented in its reduced form minq Ĵ(q) where Ĵ(q) ≡ J(u(q), q)
represents the fit to the given data.
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
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By defining the observation operator C, that maps the state variable u ∈ U
into the measurements space Y , we obtain the measurements y ∈ Y . The data
fidelity term Ĵ(q) is defined as: Ĵ(q) ≡ ‖F (q) − y‖ where F (q) ≡ C(u(q)).

Hence the final problem consists in the minimization of the distance between
the data and the computed approximation (F (q)) measured in a norm dependent
on the model of the data noise. The discrete finite dimensional optimization
problem is obtained by defining the vector parameter q ∈ R

P and computing
the noisy data yδ ∈ R

N by sampling y at N points and adding a noise term.
Depending on the type of noise present in the data the discrete minimization

problem can be defined in the suitable Lp norm 1 ≤ p < ∞. In case of Gaussian
random noise the L2 norm is the optimal choice, obtaining the following nonlin-
ear least squares problem:

min
q

1
2
‖F (q) − yδ‖22. (1)

Since the present paper focuses on the L2 norm we define ‖ · ‖ ≡ ‖ · ‖2. It
is well known that such problems are ill-posed in the sense that noise present
in the data leads to poor solutions, hence some form of regularization needs
to be introduced. Among the most common ways to regularize problem (1) is
the introduction of a suitable regularization constraint, taking into account the
smoothness of the solution (see [8] and reference therein). However the appli-
cation of such methods to the estimation of several parameters of a differential
model is quite challenging and has a high computational cost. A more practical
way consists in exploiting the possibly semi-convergent behavior of the iterative
methods used to solve (1) and compute stable solutions by means of a suitable
stopping criterion. The aim of this work is to test the iterative methods imple-
mented by the functions fminunc and lsqnolin of the Matlab Optimization
Toolbox and evaluate their efficiency in the solution of problem (1) with noisy
data, verifying the semi-convergence in presence of medium-high noise. To this
purpose we define a test problem where the state equation is a system of two
time dependent differential equations, representing the dynamic evolution of the
liquid and solid phases of Polyphenolic compounds [4]. The noisy measurements
yδ are obtained by adding Gaussian noise to the solution of the state equation
with given reference parameters qtrue. We observe a progressive worsening of
the results of both functions while increasing the level of noise in the data. The
analysis of the relative errors at each iteration shows that the error curve has
the typical semi-convergent behaviour: it decreases in the first steps and, after
reaching a minimum value, it start to increase, reaching errors possibly higher
than those at the initial step. Hence a change in the convergence conditions and
tolerances can improve the solutions. Although the semi-convergence of Descent,
Gradient and Simultaneous Iterative Reconstruction Technique (SIRT) methods
is well understood [9–11], the same does not apply to Gauss Newton, Levem-
berg Marquardt or quasi Newton Methods such as the BFGS (Broyden Fletcher
Goldfarb Shanno). Therefore after the a posteriori verification of such behaviour,
we define a stopping rule based on the Morozov’s Discrepancy Principle [7], that
is proved to be suitable for descent, gradient and SIRT methods. By suitably
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defining the options structure, it is possible to modify the stopping conditions
of the matlab optimization functions and evaluate the improvement obtained by
computing the solution reached by the application of the stopping rule in case
of data with different noise levels. Moreover we can evaluate the efficiency of
our stopping rule compared to the optimal solution obtained by minimizing the
relative error.

In Sect. 2 we define the state equation and analyze the details of its numeri-
cal solution. The optimization methods implemented by the functions fminunc
and lsqnolin are outlined in Sect. 3, together with the proposed stopping rule.
Finally in Sect. 4 we report the numerical results and the conclusions.

2 The Adsorption Model

We describe here the differential problem (state equation) used as a test problem.
It consists of a system of two time dependent differential equations representing
the dynamic evolution of the liquid and solid phases of Polyphenolic compounds
[4]. In the hypotheses of not negligible mass transfer and Langmuir adsorption
isotherm the liquid phase u is modeled by a convection, diffusion and reaction
equation while the solid phase concentration v is characterized by the absence
of any dispersion and convection:

{
δu

∂u
∂t = −ν ∂u

∂z + D ∂2u
∂z2 − R(u, v,θ) + fu

δv
∂v
∂t = R(u, v,θ) + fv

z ∈ [0, L] (2)

where the adsorption isotherm is given by

R(u, v,θ) = θ1

(
u − θ2v

θ3 − v

)

The parameters to be identified are θ = (θ1, θ2, θ3) while the dispersion coef-
ficient D, the interstitial velocity coefficient ν and the retardation factors δu,
δv are assumed to be known. The spatial domain is given by the height L of
the column reactor. Dirichlet boundary conditions are assumed in z = 0 while
convective flux is assumed in z = L for the liquid phase. Using the Method of
Lines, problem (2) is tranformed in the following system of Nonlinear Ordinary
Differential Equations:

{
U ′(t) = KU(t) − G(t,θ)
V ′(t) = G(t,θ) , G(t,θ) ∈ R

M , (3)

where M is the number of intervals in the spatial domain, U(t) =
(u1(t), . . . , uM (t)), V (t) = (v1(t), . . . , vM (t)) are the discrete solutions at time t
and G is the discrete isotherm at time t of components Gi = R(ui(t), vi(t),θ),
i = 1, . . . , M . The matrix K ∈ R

M×M is the tridiagonal matrix obtained by
applying the second order finite differences approximation of the spatial deriv-
atives in (2). It is well known that such systems tend to become very stiff at
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the increasing of the spatial resolution M , hence a suitable implicit solver is
required. In our experiments we use the matlab function ode15s, which imple-
ments variable order (1–5) method and variable step size, being therefore the
most accurate solver available in Matlab ODE-suite for stiff problems.

3 Iterative Regularization

In this section we define the stopping rule applied to the iterative methods used
by fminunc and lsqnolin functions to solve the test problem obtained by the
model described in Sect. 2. We start by a brief outline of the iterative numerical
methods tested in the numerical experiments.

The first method, Levemberg Marquardt, is specific of the non linear
Least squares minimization while the second method, BFGS (Broyden Fletcher
Goldfarb Shanno) quasi Newton method, is applied to more general nonlinear
minimization problems. (See [5,6] for details.) Both methods compute a sequence
of approximate solutions of (1), {q(k)}, k = 0, 1, . . . by the following update rela-
tion:

q(k+1) = q(k) + αksk (4)

where αk ∈ (0, 1] is a damping parameter used to guarantee the decrease of
the residual norm ‖F (q(k)) − yδ‖2. In the case of Levemberg Marquardt the
direction sk is computed by solving the linear system obtained by the first order
conditions of the linear approximation of the residual at q(k+1):

(
(J (k)

F )tJ
(k)
F + λkI

)
sk = −(J (k)

F )t(F (q(k)) − yδ), λk ≥ 0 (5)

where J
(k)
F is the Jacobian matrix (J (k)

F )i,j = ∂Fi(q(k))/∂qj . If the parameter
λk is zero we have the Gauss Newton Method, otherwise, to overcome possibly
singular Jacobians, a diagonal positive matrix is added by means of a small
scalar parameter λk (Levemberg Marquardt Method). Notice that (5) is the first
order condition of the following constrained minimization problem:

min
s

‖J
(k)
F s + rk‖22, s.t. ‖s‖22 ≤ Δk (6)

where rk = yδ − F (q(k)) and Δk is the level of smoothness required by s and
can be computed by the Trust Region method (see algorithm 4.1 in [6]).

In absence of data noise the following stopping rule is used to stop the iter-
ations:

GF s(k) < τF and ‖GF ‖∞ < 10(τF + τX), ‖s(k)‖∞ < τX (7)

where GF = 2(J (k)
F )t(F (q(k)) − yδ) and τF , τX are tolerance parameters.

The second family of methods is that of Quasi Newton methods where the
direction sk used in the update step (4) is computed by solving the following
linear system:

H(k)sk = −∇qĴ(q(k))
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where H(k) is the approximate Hessian matrix, whose value is updated by adding
a rank one update term. The BFGS method uses the following update term
H(k+1) = H(k) + S(q(k)), where

S(q(k)) =
vkvt

k

vt
ksk

− H(k)skst
kH(k)

st
kH(k)sk

, vk = ∇q(Ĵ(q(k+1))) − ∇q(Ĵ(q(k)))

The initial Hessian approximation is chosen as H(0) = γI where γ > 0 is relative
to the scaling of the variables. The stopping criterion applied in this case is:

‖∇Ĵ(q(k))‖∞ < τF (1 + ‖∇Ĵ(q(0))‖∞), max
i

(
|q(k+1)

i − q
(k)
i |

1 + |q(k)i |

)
< τX (8)

The main computational effort in each iteration is the computation of the
Jacobian matrix. The approach used here is that of finite difference approxi-
mation. Although it is not optimal for precision and computational cost, it is
simple and readily available in matlab software optimization tools. As reported
in Sect. 4, in case of noiseless data, the sequences {q(k)} of both methods con-
verge to good approximate solutions of (1). On the other hand, with noisy data
we observe bad results for both algorithms. A thorough analysis reveals that
the error curve has the typical semi-convergent behaviour: it decreases in the
first steps and then start to increase giving a completely wrong solution. An
improvement can be obtained by heuristically increasing the tolerances τF and
τX , so as to decrease the number of steps. This strategy would require specific
tolerance values for each noise level, which is unknown.

More systematic stopping rules can be obtained by means of the Morozov’s
Discrepancy Principle (MDP) that proposes to stop (4) at the d-th iteration as
soon as the residual norm approximates the data noise:

‖F (q(d)) − yδ‖ 	 δ, (9)

The main drawback is the need to estimate the noise δ. In order to overcome this
difficulty we exploit the decreasing behaviour of the residual norm. We observe
that the decrease of the residual norm is fast in the first iterations and tends
to become slower and slower as the iterations increase. Hence computing the
decrease rate (measured as the difference of the residual norms in two successive
steps: d and d− 1) we stop as soon as it becomes sufficiently small, compared to
the initial decrease rate. Therefore we propose the following stopping rule (SRd)

|Rd − Rd−1| < τ |R1 − R0|, τ > 0 (10)

where Rd is the residual norm at d-th step: Rd = 1
2‖F (q(d)) − yδ‖2 and the

parameter τ represents the ratio between the change in the residual norm at step
d and that at the first step. The optimal parameter should stop the iterations
as soon as the noise starts to deteriorate the solution, causing an increase of the
relative error. Hence the optimal value depends on the method, the data and
the noise as well. Improvement in (10) could be obtained by adding information
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about the maximum relative change in the solution. However in this application,
using only information about the residual norm, it is possible to obtain great
improvement in the results. In all our experiments we used the following values
for the tolerance τ : 10−1 for the Levemberg Marquardt method and 10−5 for the
BFGS method.

4 Numerical Experiments

The numerical experiments reported in this section are carried out on a test
problem obtained by the model equations (2) where the terms fu and fv are
defined by the known solutions:

u(t, z) = e(−π2t)(sin(πz2)) cos(0.5πz2), v(t, z) = e(−π2t)(sin(πz))

The reference parameter vector qtrue has elements [θ1, θ2, θ3] = [1, 2, 3]. The
retardation factors are δu = 1, δv = 2.2, and the spatial domain [0.2, 0.8] is dis-
cretized using Nz uniform spaced samples. The differential system (3) is solved in
the time interval [0, 0.1] by means of the matlab function ode15s with tolerance
parameters AbsTol=RelTol=10−10.

The measurements y = F (qtrue) are defined on a uniformly spaced grid of
Nt ×Nz points on the time space domain and are computed by solving (3) on an
oversampled space domain: 	 3Nz points. In order to compare the results (q)
computed by the different methods, we evaluate the Parameter Relative Error
(PRE) and Residual Norm (ResN) defined as follows:

PRE =
‖q − qtrue‖

‖q‖ ResN = ‖F (q) − y‖ (11)

The reported results are computed on a PC Intel(R) equipped with 4 i5 proces-
sors 5.8 GB Ram, using Matlab R2010a.

In the first experiment we compare the results obtained by the Levemberg
Marquardt and BFGS methods without data noise. The Levemberg Marquardt
method with parameter λ (5) is implemented by the matlab function lsqnonlin
with the option ‘Algorithm’,{‘levenberg-marquardt’,λ}. In this experiment
we choose the constant value λ = ε (machine epsilon) throughout all the itera-
tions and we call this method LM(ε).

The BFGS method is implemented by the matlab function fminunc setting
the option {‘HessUpdate’, ‘bfgs’}. The starting value q(0) is chosen at a
relative distance δq from qtrue, i.e. q(0) = qtrue(1 ± δq). The iterations are
stopped using the standard convergence stopping rules (7) and (8) with τF =
τX = 10−6.

In Table 1 we report the parameter error (PRE) and Residual norm (NRes)
obtained by solving the problem with Nt × Nz samples ranging in the domain
[20, 40] × [20, 40] and with an initial relative distance δq given by 25% and 40%.
The computational cost is evaluated by the total number of function evaluations
fval and by the number of iterations k. We observe that LM(ε) performs much
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Table 1. Test with noiseless measurements. Levemberg Marquardt LM(ε) with λ = ε.
BFGS with H0 = I

δq(%) Nt Nz LM(ε) BFGS

PRE ResN k(fval) PRE ResN k(fval)

25 20 20 1.0455e–12 3.0782e–26 5(24) 4.8683e–03 6.2636e–09 11(56)

20 30 2.0644e–11 1.9521e–24 5(24) 1.7381e–03 1.1973e–09 9(52)

30 30 1.3760e–12 4.5015e–25 5(24) 1.7167e–03 1.7694e–09 10(48)

40 30 3.1294e–10 3.0582e–22 5(24) 4.5629e–05 1.6661e–12 20(92)

40 40 1.3050e–12 2.1200e–25 5(24) 7.3953e–05 5.9466e–12 20(92)

40 20 20 2.9505e–12 1.8642e–26 7(32) 5.3876e–04 8.7967e–11 22(108)

20 30 1.4647e–11 5.3618e–25 7(32) 7.5150e–05 2.4042e–12 25(112)

30 30 4.7820e–12 3.2652e–25 7(32) 5.2751e–05 1.7968e–12 25(112)

40 30 4.4779e–11 8.5756e–24 7(32) 3.8518e–05 1.2619e–12 25(112)

40 40 1.3728e–11 1.0526e–24 7(32) 1.3826e–04 2.5034e–11 24(108)

better than BFGS for precision and computational complexity. Furthermore it
is more robust in terms of dependence on the initial parameter estimate δq. We
see that an initial relative error of 25% or 40% doesn’t affect much the errors
of LM(ε) while BFGS is more precise for smaller values of δq. The behavior
of the error curves plotted in Fig. 1 confirms the faster convergence of LM(ε)
compared to BFGS.

In the second experiment we introduce Gaussian random noise of level δ ∈
[10−4, 10−1) and estimate the parameters starting from the noisy data yδ defined
as follows:

yδ = y + δ‖y‖η, ‖η‖ = 1 (12)

We run this analysis for all the cases in Table 1 but, as an example, we report in
Table 2 the details of the case Nt = Nz = 40 with an initial parameter estimate
δq = 40%. The error parameters reported in Table 2 show that both methods are
very sensitive to noise, even if BFGS seems to be more stable than LM(ε) when
δ ≥ 1.e − 2. Focusing on the BFGS method we observe the semi-convergence by

Table 2. Noisy data: Nt = Nz = 40, δq = 40%

δ LM(ε) BFGS

PRE ResN k (fval) PRE ResN k (fval)

1e–4 1.1224e–3 1.1849e–5 7(32) 1.2120e–3 1.7211e–03 21(104)

1e–3 1.3231e–2 1.1852e–3 7(32) 1.3275e–2 1.7229e–02 24(112)

5e–03 1.1362e–01 2.9605e–02 5(24) 1.1415e–01 8.6031e–02 24(108)

1e–2 6.2798e–2 1.1855e–01 6(41) 5.7114e–2 8.6031e–02 24(108)

5e–2 1.2936e+4 2.9593 8(36) 1.7283e+1 8.6013e–01 32(208)
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plotting the PRE values at each iteration (see Fig. 2). The PRE curves obtained
with noise δ = 0.01 and δ = 0.1 are plotted in Fig. 2, where the iteration at which
the relative error is minimum is represented by a red star and the iteration d
obtained by rule SRd (10) by a green circle. By changing the exit condition as in
(10), with tolerance τ = 10−5, we obtain a great improvement for the noisy data,
as reported in Table 3. The relative errors obtained in column 5 are very close
to the minimum value (column 2). The exit condition of the fminunc function
is changed by setting the OutputFcn field in the options structure to a user
defined mfile.m function that implements the stopping rule (10).

Table 3. BFGS results with best and stopping rule DRd : Nt = Nz = 40, δq = 40%

δ Best SRd

PRE ResN k PRE ResN d

5e-03 5.7449e–02 8.6034e–02 11 5.7449e–02 8.6034e–02 10

1e-02 5.7087e–02 1.7215e–01 11 5.7114e–02 1.7215e–01 11

5e-02 7.0872e–02 8.6022e–01 11 7.1133e–02 8.6022e–01 11

1e-01 5.6863e–02 1.7213 5 7.7457e–02 1.7211 9

Concerning the Levemberg Marquardt method, it is possible to improve the
results in case of noisy data by using a larger initial value λ0 and a suitable
strategy to update it during the computation. The matlab function lsqnonlin
implements the following strategy:

λk = max(0.1λk−1, eps) (13)

where eps is the machine epsilon ε. Hence we repeat the experiment with noisy
data choosing the default value λ = 0.05 and refer to this method as LM(.05).
Comparing the columns 2 in Tables 2 and 4, we observe an improvement of the
errors when δ > 1.e − 3. Also in this case we have semi-convergence because the
update formula (13) is not optimal. Actually the value of λk should be updated
by taking into account the constraint in problem (6) (see [3] for details about a
possible implementation). By applying the stopping rule (10) with τ = 0.1 we
observe a more stable behaviour of the error (Table 4 column 8), which is always
better than the standard stopping rule (7) and very close to the minimum value
(column 6). The PRE curves obtained with noise δ = 0.01 and δ = 0.1 are
plotted in Fig. 3, where the iteration at which the relative error is minimum is
represented by a red star and the iteration d obtained by rule SRd (10) by a
green circle.

Finally the global evaluation of the two methods in all the cases reported in
Table 1 shows that the Levemberg Marquardt Method is usually slightly better
than BFGS in terms of mean PRE (see Fig. 4).
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Table 4. Levemberg Marquardt results with λ0 = 0.05 case Nt = Nz = 40, δq = 40%

δ LM(.05) min PRE SRd

PRE ResN k fval PRE k PRE d

1e–3 2.2742e–2 5.3695e–1 6 28 9.8952e–3 5 2.1302e–2 3

5e–3 5.2977e–2 5.4327e–1 6 28 6.8027e–3 4 2.1448e–2 3

1e–2 1.1323e–1 5.6172e–1 6 28 6.7842e–3 4 1.8100e–2 3

5e–2 3.6183e+2 1.0134 11 48 5.6674e–2 3 5.6674e–2 3

Fig. 1. LM and BFGS convergence plots: δq = 40%, Nt = Nz = 40

Fig. 2. BFGS convergence plots with noisy data, δq = 40%, Nt = Nz = 40
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Fig. 3. Levemberg Marquardt (LM(.05)) δq = 40%, Nt = Nz = 40 (Color figure
online)

Fig. 4. Mean relative error for all the cases in Table 1 with noise δ ∈ [10−3, 5 · 10−2]

5 Conclusions

The present work reports tests of the Levemberg Marquardt and BFGS algo-
rithms for modeling the kinetic terms, occurring in chemical processes of adsorp-
tion, in the presence of noisy data. The semi-convergent behavior of both meth-
ods is observed in presence of noise, confirming the need to introduce a suitable
stopping criterion. A stopping rule, based on the behavior of the residual norm,
is presented and the good performance is reported by the experimental tests.
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