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Abstract. Dynamic optimization problems (DOPs) are optimization problems
that change over time, and most investigations in this area focus on tracking the
moving optimum efficiently. However, continuously tracking a moving optimum
is not practical in many real-world problems because changing solutions
frequently is not possible or very costly. Recently, another practical way to tackle
DOPs has been suggested: robust optimization over time (ROOT). In ROOT, the
main goal is to find solutions that can remain acceptable over an extended period
of time. In this paper, a new multi-swarm PSO algorithm is proposed in which
different swarms track peaks and gather information about their behavior. This
information is then used to make decisions about the next robust solution. The
main goal of the proposed algorithm is to maximize the average number of envi‐
ronments during which the selected solutions’ quality remains acceptable. The
experimental results show that our proposed algorithm can perform significantly
better than existing work in this aspect.

Keywords: Robust optimization over time · Robust optimization · Dynamic
optimization · Benchmark problems · Tracking moving optima · Particle swarm
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1 Introduction

Many real-world optimization problems are dynamic and changing over time. Most of
previous studies in this domain focus on tracking the moving optimum (TMO) [1].
However, this is not practical in many cases since changing solutions may be very costly,
and changing the solution frequently is not possible. As a result, there is a gap between
academic research and real-world scenarios in this domain.

Recently, a new approach for solving DOPs was proposed to address the above
concern that aims at finding solutions that are robust over the course of time [2]. A robust
solution is one that is not necessarily the best solution in the environment, but at least
is acceptable. A found robust solution can be utilized until its quality degrades to an
unacceptable level in the current environment.
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In case the current robust solution becomes unsatisfactory, a new robust solution
must be chosen. Therefore, the task for addressing the DOPs in this approach is not to
find the best solutions in each environment but to find robust solutions that can remain
acceptable for a large number of environments. The process of finding such a sequence
of robust solutions is referred to as robust optimization over time (ROOT) [2, 3].

In [2] ROOT was proposed as a new perspective on DOPs. In [4], a new framework
for ROOT algorithms was proposed in which the algorithm searches for robust solutions
by means of local fitness approximation and prediction. In this framework, an adapted
radial-basis-function was used as the local approximator and an autoregressive model
as the predictor. The metric in this framework uses the average of current fitness value
of a solution, its p previous fitness values (by approximator) and its q future fitness values
(by predictor) to search for robust solutions.

In [5], authors proposed two different robustness definitions and metrics, namely
survival time and average fitness. The survival time is the maximum time interval in
which the fitness of the robust solution remains acceptable, and the average fitness is
the fitness value of the robust solution in a pre-defined time window. Then, two metrics
and also performance indicators were defined based on these two definitions. In this
framework, an autoregressive model is used as the predictor. In [12], a new multi-
objective method was proposed to find robust solutions that can maximize both of
survival time and average fitness.

In [6], some problem difficulties of ROOT were analyzed. Also, two different bench‐
mark problems which one of them is specially designed for maximizing survival time
and another benchmark is for maximizing average fitness, were proposed in [6].

In this paper, we propose a new algorithm for ROOT based on multi-swarm PSO.
The main goal of this algorithm is to maximize the average number of environments
that the robust solutions remain acceptable i.e., we focus on the survival time definition
of ROOT [5, 6]. The procedure of the proposed algorithm in finding robust solutions
differs from previous works in several aspects. First, we have a multi-swarm PSO [8]
that is responsible for not only finding and tracking optima as usual but also for gathering
some information about peaks. Second, different to [4, 5], the fitness function for our
proposed algorithm is the normal fitness function of the problem without involving any
estimator. The proposed algorithm checks the robust solution at the end of each envi‐
ronment and if its fitness value is not acceptable, then a new robust solution is chosen.
Third, for choosing a robust solution, the algorithm uses the gathered information to
choose the most reliable Gbest [13] among PSO swarms as a position for the next robust
solution. The results based on the average number of environments that robust solutions
can remain acceptable show that the performance of our algorithm is substantially better
than previous works in this domain.

The remainder of this paper is structured as follows. Section 2 presents the proposed
algorithm. In Sect. 3, a new generic performance indicator is presented for ROOT and
the experimental result, analysis and comparison with previous works are shown in this
section. In the final section, we summarize the main findings and suggest directions for
future work.
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2 A New PSO Algorithm for Robust Optimization Over Time

In this section, a new algorithm based on Multi-swarm PSO [8] is proposed for ROOT.
In the proposed algorithm, Multi-swarm PSO behaves in a similar way to previous multi-
swarm algorithms proposed to track a moving optimum, i.e., our algorithm tries to find
all peaks and track them after each environmental change. However, while tracking
peaks, our algorithm gathers information about the behavior of all peaks. Then, our
algorithm uses this information to choose a robust solution on peaks that have the most
suitable characteristics based on the aim to maximize the number of environments that
a robust solution remains acceptable.

From another point of view, our algorithm predicts the robustness of solutions based
on this information. In order to highlight the difference of our algorithm with previous
works [4, 5], it is worth mentioning that in the previous frameworks, specific estimators
were adopted and used in order to search for robust solutions. In addition, the fitness
function for algorithms was based on average of these estimated values. But, our algo‐
rithm is different in that we use the normal fitness function for dynamic optimization
and use information the algorithm has gathered to make decisions about which peak is
the best for choosing a robust solution. So, in the proposed algorithm we do not use any
specific estimator and the algorithm relies on previous behavior of peaks in order to
predict future of candidate robust solutions on them.

In the proposed algorithm, there is a Finder_swarm that is responsible for searching
for uncovered peaks. Additionally, there are Tracker_swarms that have two main tasks,
namely tracking peaks and gathering information about the behavior of their covered
peak. Each Tracker_swarm stores in its memory the difference between fitness value of
the best found position in each environment with its fitness value after environmental
change. The average of these values (named Fit_drop) shows how much the fitness value
of points close to the top of the peak is expected to change after an environmental change.
In addition, each Tracker_swarm stores the Euclidean distance between its Gbest at the
end of successive environments, and the average of these distances reflect the
shift_severity of each peak.

At the beginning, there is only one Finder_swarm in the problem space. After it
converges to a peak [8], a new Tracker_swarm is created in place of the
Finder_swarm, and the Finder_swarm is re-initialized to continue its global search for
finding another possibly uncovered peak. On the other hand, the Tracker_swarm
performs a local search for exploiting its peak and aims to reach the top of it.

In the proposed algorithm, exclusion mechanism [7] is used to avoid covering each
peak by more than one Tracker_swarm. If the Finder_swarm converges to a covered
peak (if the Euclidean distance between Gbest of Finder_swarm with Gbest of each
Tracker_swarm is less than rexcl [8]), it will be re-initialized. Moreover, if the Euclidean
distance between Gbest of two Tracker_swarms is less than a value rexcl, then the older
swarm is kept because of its valuable memory and the other one is removed. However,
if the Gbest fitness value of the newer swarm is better than that of the older one, the
better Gbest information is copied to the older Tracker_swarm. Moreover, if both
Tracker_swarms are of the same age, the one with better Gbest is kept.
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Multi_swarm PSO for ROOT

1:
Initialize Finder_ swarm

2:
repeat:

3:

Re-evaluate Gbest Positions for change detec-
tion

4:
If the environmental change is detected then

5:
Update Fit_Drop

6:
If f (Robust_solution )<δ

7:

Choose the next Robust_Solution based 
on Eq.1

8:
End if

9:
Re-evaluate Pbest positions in Finder_swarm

10:
Update Shift _severity for each covered peak

11:
Re_diversify all Tracker_swarms

12:
End if

13:
Execute an iteration of PSO on Finder_swarm

14:
Execute Exclusion mechanism on Finder_swarm

15:
If the Finder_swarm is converged then 

16:
create a new Tracker_swarm

17:
Re-initialize Finder_swarm

18:
End if

19:

Execute an iteration of PSO on all Trac k-
er_swarms

20: Execute Exclusion mechanism on each pair of

Tracker_swarms

21:
until stopping criterion is met

Fig. 1. The pseudocode of the proposed algorithm.
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For change detection, the algorithm re-evaluates all Gbest positions of all
Tracker_swarms in each iteration and if any obtained fitness value is different from the
saved ones, then a change in the environment is detected. After change detection, first
of all, all Tracker_swarms store the difference of the new fitness values of their Gbest
with their saved value to obtain Fit_drop. After this, all Pbest positions [13] in
Finder_swarm re-evaluate and a re-diversification mechanism [8] is done by all
Tracker_swarms based on obtained Shift_Severity value for each peak.

In the proposed algorithm, robust solutions are chosen from the best found positions
by all Tracker_swarms according to a decision making process based on current fitness
value as well as Fit_drop. For making a decision about the current robust solution, its
quality is checked at the end of each environment based on a user-defined lower bound
threshold δ [5, 6]. Having this type of threshold is realistic in many real-world problems
where there is a specification indicating the acceptability of a solution. If the fitness
value of the robust solution is better than δ, then it is deemed acceptable and the robust
solution is kept for at least another environment, otherwise the algorithm must choose
a new robust solution.

The next robust solution will be a Gbest position of one of the Tracker_swarms. The
best location for the next robust solution is a peak with the highest fitness value and
lowest Fit_drop. In the proposed algorithm, the next robust solution position is placed
on the Gbest of a Tracker_swarm which is chosen by Eq. 1:

C = argmaxi=S

i=1

(
f
(
Gbesti

)
− Fit_Dropi

)
(1)

where S is the number of Tracker_swarms, f(Gbesti) is the Gbest fitness value of the ith

Tracker_swarm, C is the index of a Tracker_swarm in which the next robust solution is
located. This equation suggests how much the fitness value of a peak solution is dropped
in the next environment, based on the difference between it’s the current fitness value
and the past behavior (Fit_drop). The equation allows choosing a robust solution that
may likely keep its quality for a greater number of changing environments.

The pseudo code of the proposed algorithm is shown in Fig. 1.

3 Experimental Results and Their Analysis

In this section, the proposed algorithm is tested on a modified version of the Moving
Peak Benchmark [9] (mMPB) [5] in which each peak has its own height_severity and
width_severity. The mMPB is described in Eq. 2.

Ft

(
X⃗
)
= maxi=m

i=1

{
Hi

t
− Wi

t
∗ X⃗ − ⃖⃖⃖⃗Ci

t2

}
(2)

where m is number of peaks, X⃗ is a solution in the problem space, and Hi
t
, Wi

t
 and ⃖⃖⃖⃗Ci

t
 are

the height, width and center of ith peak in the tth environment, respectively. The height,
width and center of a peak change in each environment as follows:
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Hi

t+1 = Hi

t
+ height_severityi ∗ N(0.1) (3)

Wi

t+1 = Wi

t
+ width_severityi ∗ N(0.1) (4)

C⃗i

t+1 = C⃗i

t
+ V⃗ i

t+1 (5)

V⃗ i

t+1 = Shift_severity ∗
(1 − 𝜆) ∗ r⃗ + 𝜆 ∗ V⃗ i

t

(1 − 𝜆) ∗ r⃗ + 𝜆 ∗ V⃗ i
t

(6)

where N(0,1) represents a random number drawn from Gaussian distribution with zero
mean and one variance. The parameter setting of mMPB is shown in Table 1 based on [5].

Table 1. Parameter setting of the modified MPB

Parameter Value
Number of peaks, M 5
Change frequency 2500
Shift severity, s 1
Height severity Randomized in range [1.0,10.0]
Width severity Randomized in range [0.1,1.0]
Peaks shape Cone
Number of dimensions, D 2
Correlation Coefficient, λ 0
Peaks location range [0–50]
Peak height [30.0–70.0]
Peak width [1–12]
Initial height value 50.0
Initial width value 6.0
Number of Environments 150

In the proposed algorithm, the problem is solved by multi_swarm PSO as a maxi‐
mization problem. Our algorithm tries to track moving peaks and gathers information
about them. Additionally, it uses this information as well as Gbest fitness values of
Tracker_swarms for choosing the next robust solution in its decision making process.
The main goal of this process is that the chosen robust solutions keeps their quality above
the threshold δ over a larger number of environments. As a result, the average number
of environments that each robust solution remains acceptable is used as a performance
measure as follows:

Average Survival time =
Number of Environments

Number of Robust Solutions
(7)

where number of environments shows how many times the environment changes, and
number of robust solutions indicates the number of times that the algorithm changed the
robust solution because the existing robust solutions no longer remains acceptable.
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Therefore, higher values of Average Survival time show better results and the best situa‐
tion happens when the first robust solution remains acceptable for all environments.

It is worth mentioning that, in [5], Fu et al. proposed a performance measure based
on average of survival time which was calculated by Eq. 8:

Fs(x, t, 𝛿) =
{

0, iff (x, 𝛼(t)) < 𝛿

max{l|t ≤ i ≤ t + l:f (x, 𝛼(i)) ≥ 𝛿}, else
(8)

where Fs is maximal time interval starting from time t until t + l in which the fitness
value of solution x remains above δ. The average of Fs was used as the performance
measure which the result is the same with Eq. 7. However, we preferred to use Eq. 7 as
performance indicator, because in our proposed algorithm, we do not use the survival
time metric like in [5]. Furthermore, in [4], Jin et al. introduced different performance
measures including the robustness rate as Eq. 9:

RobustnessRate = 1 −
NumberofRobustSolutions − 1
NumberofEnvironments − 1 (9)

The parameter used in both Eqs. 7 and 9 are the same and the main idea of both of
them is measuring average survival time based on the length of robust solution sequence.
However, the outcome of Eq. 7 is more suited to the main goal of ROOT, i.e., maximizing
the number of environments a robust solution can keep its quality above the threshold.

The parameter setting of the proposed algorithm is shown in Table 2. Experiments
are done on the mMPB with a parameter setting shown in Table 1 with different values
of δ (40, 45 and 50). Results are obtained from 30 executions of the proposed algorithm
and each execution continues for 150 environmental changes (375,000 function evalu‐
ations).

Table 2. Parameter values of the proposed algorithm

Parameters Initial value
c1, c2 2.05 [10]
χ 0.729843788 [10]
Trackers’ Population Size 5
Finder’s Population Size 10
P 1[8]
Q 1[8]
Conv_limit 1[8]
K 10[8]
δ 40,45,50
Environment number 150
Stop criterion Max number of function

evaluations

Table 3 shows the experimental result of the proposed algorithm. In Table 3,
Offline_error [11] shows the performance of Multi_swarm PSO. Additionally, RS_error
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shows the average error of robust solutions in all environments and RS_Fit shows the
average fitness value of robust solutions in all environments. Also the numbers in paren‐
theses are standard_error.

Table 3. Results of the proposed algorithm on mMPB with δ = 40, 45, and 50.

δ Offline_error
(std_error)

RS_error
(std_error)

RS_Fit
(std_error)

Average
Survival time
(Eq. 7)
(std_error)

40 0.0210
(0.0037)

9.3154
(0.2588)

53.1573
(0.2845)

8.3488
(0.6331)

45 0.0214
(0.0043)

6.9659
(0.2267)

55.8288
(0.2078)

6.8309
(0.6571)

50 0.0218
(0.0055)

5.2021
(0.1488)

58.1354
(0.1426)

4.2483
(0.1849)

The main goal of the proposed algorithm is to increase Average survival time, i.e.,
to decrease the number of times that the algorithm needs to change the robust solution
because of a lack of quality as determined by δ. As expected, a lower δ allows a robust
solution to survive longer.

The value of offline_error is almost the same for all experiments because the problem
is the same from the point of view of DOP and the results show that the accuracy of
multi_swarm PSO for finding and tracking peaks is acceptable. This is important because
the performance of choosing robust solutions is totally dependent on the performance
of multi_swarm PSO in finding and tracking moving peaks. The average error of robust
solutions decreases when δ increases because the proposed algorithm tried to keep fitness
value of robust solutions above δ and change them if their fitness value came under δ.
As a result, with higher values of δ, fitness values of acceptable robust solution increases,
and the error decreases. Therefore, when δ increases, the average fitness value of robust
solutions increases, at the expense of requiring more changes. Figure 2 illustrates the
average fitness of the best found position by multi_swarm PSO in each environment by
TMO as well as robust solutions’ fitness values.

To compare the result of proposed algorithm with that of previous works in the field
of ROOT, in [12], the number of robust solutions for the proposed Multi_objective
ROOT algorithm and the ROOT algorithm from [5] are reported. Since the experiments
in [12] were done on the same benchmark and for the same number of environments as
this paper, the Average Survival time of existing works i.e. works in [5, 12] can be
calculated by Eq. 7 and compared with our algorithm. It is worth mentioning that since
in some papers such as [4, 6], the benchmark problem is different with the one that we
used in this paper, so we cannot use their reported results for our comparisons and
comparing the result of our algorithm with of them will be done in future works. The
best Average Survival time with δ = 40, 45 and 50 of Guo’s algorithm [12], and the
average of reported values in [12] for Fu’s Algorithm [5], and our proposed algorithm
are shown in Table 4. The results in Table 4 show that our proposed algorithm can
perform significantly better than compared works in term of Average Survival time. Note
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that Table 4 does not have comparisons on standard error or standard deviation, because
these figures were not provided in [12] for Guo’s and Fu’s algorithms.

Table 4. The Average Robustness obtained by the three algorithms on mMPB.

δ Average Robustness
Fu’s
Algorithm [5]

Guo’s
Algorithm [5]

Proposed
Algorithm

40 2.30 2.67 8.35
45 1.91 2.08 6.83
50 1.53 1.61 4.25

Fig. 2. Average fitness values of the best TMO and robust solutions found by multi_swarm PSO.
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4 Conclusion

In this paper, a new multi-swarm PSO algorithm has been proposed for robust optimi‐
zation over time (ROOT). The main goal of the proposed algorithm is finding robust
solutions that remain acceptable for a longer time, i.e., solutions with fitness quality
above an acceptance threshold over a number of environments. The proposed algorithm
differs from previous work to find ROOT solutions. We use PSO Tracker_swarms that
track peaks and gather information about how they react to changes. Then, the selection
of the next robust solution is based on this information. As a performance measure, we
use an easy-to-implement and algorithm-independent performance indicator named
Average Robustness that reflects the average number of environments that the robust
solutions could remain acceptable during optimization. The experimental results show
that our proposed algorithm performs better than existing work in terms of Average
Robustness. Currently, we are working on finding robust solutions based on different
characteristics of peaks for DOPs with higher number of peaks and dimensions, and
different specifications. In addition, new dynamic characteristics such as time-linkage
[14] and distance constrains between successive solutions should be added to the
problem to close the current gaps [15] between academic research and real-world prob‐
lems in this domain.
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