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Abstract. This paper reports on IMDEA (In-Memory database
Dynamic Evolutionary Algorithm), an approach to dynamic evolution-
ary optimization exploiting in-memory database (IMDB) technology to
expedite the search process subject to change events arising at runtime.
The implemented system benefits from optimization knowledge persisted
on an IMDB serving as associative memory to better guide the opti-
mizer through changing environments. For this, specific strategies for
knowledge processing, extraction and injection are developed and evalu-
ated. Moreover, prediction methods are embedded and empirical studies
outline to which extent these methods are able to anticipate forthcom-
ing dynamic change events by evaluating historical records of previous
changes and other optimization knowledge managed by the IMDB.

Keywords: Dynamic evolutionary algorithm · Associative memory ·
Prediction · In-memory databases

1 Introduction

For decades Evolutionary Algorithms (EA) [1] have been established heuristics
to tackle NP-hard optimization problems which are inherent to countless indus-
trial applications. Typically, the search for good solutions to such problems can
consume up to several hours or even days. The hitherto best solution found, e.g.
a production schedule, would then be used for planning and executing opera-
tions. In practice, however, several aspects like the objective function, the size of
the problem instance or constraints may be subject to changes. In such dynamic
optimization scenarios, it is essential that every relevant change of the opti-
mization problem is taken into account. However, calculation time is commonly
restricted and usually one cannot afford to restart optimization from scratch.
Instead it is often advisable to exploit existing optimization knowledge from the
running optimization to quickly react to and to recover from dynamic changes
arriving.

This paper reports on the implementation and on the empirical evaluation
of IMDEA (In-Memory database Dynamic Evolutionary Algorithm), a dynamic
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EA which interfaces with an in-memory database (IMDB) [2] and exploits its
strengths to expedite the search process in dynamically changing environments.
It is shown, how in-memory databases can be used as a large capacity knowl-
edge store that embodies a persistent associative memory to the optimization
algorithm. Such knowledge includes, e.g. historical logs of visited search areas,
environmental data, and recorded change events. In contrast to previous work,
where a memory is usually implemented by storing knowledge in data objects
inside the EA, it is examined to which extent in-memory database technology
can help increase and manage the amount of stored knowledge in order to bet-
ter guide the optimization process. Furthermore, the database is employed as
a storage for predictive knowledge that is accessed and analyzed to make the
optimizer better prepared for prospected changes, to quickly respond to such
changes and to easier recover from their impact.

The remainder of the paper is structured as follows: Sect. 2 introduces to
dynamic evolutionary computing. Section 3 briefly reviews related work and out-
lines how IMDEA contributes to progress beyond. Section 4 describes the archi-
tecture and the methods of the system implemented. Subsequently, a sample of
results from extensive experiments are presented in Sect. 5. Concluding remarks
are provided in Sect. 6.

2 Dynamic Evolutionary Optimization

Prior to introducing the EA, the static Knapsack Problem shall be defined and
henceforth be used to exemplify the strategies proposed in this paper. In its static
variant, the 0/1 Knapsack Problem [3] is described by a set of n items of weight
wj and value vj where j ∈ {1, . . . , n}. A candidate solution X = (x1, . . . , xn)
represents a subset of all items, with xj ∈ {0, 1} indicating if item j is included
in the knapsack which has a capacity of C. The goal is to maximize the total
value of items included in the knapsack such that the sum of their weights is less
or equal to the knapsack capacity: Maximize

f(X) =
n∑

j=1

vjxj subject to
n∑

j=1

wjxj ≤ C, xj ∈ {0, 1}. (1)

As the Knapsack Problem is known to be NP − hard, EA [1] are one possible
heuristic to search for near optimal solutions. Inspired by the principles of nat-
ural evolution, the main idea behind evolutionary optimization is to represent
solutions of an optimization problem as a set of individuals called population.
The size of the population shall be denoted as p. An individual i ∈ {1, . . . , p}
is encoded in a chromosome Xi representing the individual’s genotype. In the
case of the Knapsack Problem, individual i is encoded as n-bit chromosome
Xi = (xi,1, . . . xi,n) with xi,j ∈ {0, 1}, where xi,j = 1 means that item number j
is contained in the knapsack of individual i, and xi,j = 0 otherwise. The dynamic
Knapsack Problem introduces time-dependent variance: capacity C(t), weights
wj(t) and values vj(t) are considered dynamic over time t.
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The goal of an EA is to incrementally improve the fitness of the best individ-
ual, which represents its solution quality, by mimicking the principles of natural
selection, recombination, mutation and survival of the fittest (cf. [1] for more
details). Overweight individuals are invalid but in dynamic problems it is more
advisable to reduce their fitness by a penalty cost term than considering them
as completely unsuitable, since a change event could lead an invalid solution to
become valid or even the best. Hence, IMDEA calculates the fitness of individual
i with genotype Xi(t) as

fit (Xi(t)) =
n∑

j=1

(vj(t)xji(t)) ·
⎛

⎝1 − max

{
0;

∑n
j=1 (wj(t)xji(t))

C(t)
− 1

}λ
⎞

⎠ (2)

with external parameter λ representing the penalty weight.
For dynamic optimization the goal is not to localize a global stationary opti-

mum but to track moving optima [4]. It is assumed that the problem instances
before and after a change are related to each other, thus reusing prior optimiza-
tion knowledge is more beneficial than a restart [5]. If prior solutions are intended
to be reused, good individuals will have to be stored in a so-called direct memory.
A memory that additionally stores information on the corresponding problem
instance is called associative memory [6,7]. It allows to reuse individuals that
had been successful under similar circumstances. Predictive analysis can be used
for tracking optima by calculating the prospected path of an optimum through
the solution space or by anticipating the nature of the next change [8,9]. A suc-
cessful dynamic EA should include a memory and a predictive component and it
should maintain diversity throughout the run because a diverse population can
better react to a change than a converged one [4].

3 Related Work and Progress Beyond

Related work started with early contributions by Fogel et al. [10] and Goldberg [1].
A recent state of the art survey by Nguyen et al. [4] summarizes papers on evo-
lutionary dynamic optimization of the past 20 years, benchmark generators and
performance measures. Cruz et al. [11] provide a list of about 40 artificial and real
world problems as well as papers addressing them.

Hatzakis et al. [12] integrate auto-regression and moving average analysis into
a multiobjective EA to forecast optimal regions. Rossi et al. [8] use an EA that
learns the movement of the optimum and adjusts the fitness function accordingly
to force the population into promising areas of the solution space. Simões and
Costa [9,13–15] published several papers on linear and nonlinear regression to
predict the generation of the next change. They use Marcov Chains to anticipate
the nature of the next change and they include a direct memory.
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Fitness Sharing [16] is a widely used diversity management technique. Fitness
sharing calculates the so-called shared fitness for each individual i depending on
its distance d (i, k) (e.g. hamming distance) to all other individuals k:

fit∗ (Xi(t)) =
fit (Xi(t))

p∑
k=1

(
1 − min

{
1;

d (i, k)
σs

}α) . (3)

Parameter α is a constant which defines the shape of the sharing function and is
commonly set to 1 [17]. Further strategies to maintain diversity are, e.g., Deter-
ministic Crowding Selection [18] and Mating Restricted Tournament (MRT) [19].

Grefenstette et al. [7] published one of the early papers on an associative
memory. Branke [5] worked on direct memory and suggests to compute an impor-
tance value for each individual to decide which individuals to store in the mem-
ory. Yang introduced EA with direct [20] and with associative [21,22] memory.

Previous approaches to memory-extended EAs appear to be implemented
as data objects within the algorithm. Online analytical processing using IMDB
was explored by Plattner [23], however an extensive review of prior work yields
that no previous publication on evolutionary computation has ever used data-
base technology as knowledge store. Hence, this paper introduces IMDEA, an
approach to dynamic evolutionary optimization exploiting IMDB technology as
storage for associative memory and for prediction knowledge.

4 The Dynamic In-Memory Database Evolutionary
Algorithm (IMDEA)

4.1 In-Memory Databases

Plattner [2] introduces the characteristics and advantages of IMDB: The rapid
decline of prices for RAM storage during the last decade comes along with an
increase in chip capacities and expedited access times. IMDBs provide a vast
amount of storage capacity to the database residing entirely in main memory.
And compared to disc-resident databases, data access times are reduced dra-
matically. This can also be attributed to flexible table encoding (row-store or
column-store), as well as improved data compression and partitioning techniques.
Therefore IMDBs suggest themselves as a technology to support dynamic evolu-
tionary computing. This paper proposes to use the IMDB to store and efficiently
maintain optimization knowledge in terms of an associative memory and predic-
tion data. The storage volume required depends on (1) the optimization problem
instance, (2) the extraction and replacement strategy, and (3) the number of gen-
erations executed. A set of preliminary experiments indicates that such storage
requirements can easily exceed 1 GB of data, effectively managed by an IMDB.
The product chosen for this paper is SAP HANA (High Performance Analytics
Appliance) [24], which is the market-leading IMDB [25], and it has shown to
excel in many application scenarios [25] with practical relevance. The IMDEA
system is implemented in SAP HANA Extended Application Services [26], which
is the common approach for native HANA applications.
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4.2 Architectural Overview

Figure 1 visualizes the architecture of the IMDEA. The core algorithm, based
on the dynamic EA approach introduced in Sect. 2, is started reading a set
of parameters and the problem definition. Since the problem is considered
dynamic, a simulator continuously adapts this problem definition, whereupon
the changes are propagated to the core algorithm. A set of individuals is per-
petually extracted from the current population and persisted into an associative
memory held in an IMDB. Whenever necessary this memory is queried for suit-
able individuals which are injected into the core algorithm. A predictive analytics
component processes the knowledge stored in the IMDB to better prepare the
algorithm for forthcoming dynamic changes.

Simulator PredictionCore Algorithm

In-Memory 
Database

simulation of 
dynamics

Memory

prediction 
knowledge

associative
memory

problem & 
parameter 
definition

results& 
measures

Application
Layerinjection extractionpredictive

analytics
dynamic evolutionary

algorithm

Fig. 1. Architectural overview

4.3 Simulator

For simulating a dynamically changing environment, several approaches are pro-
posed in literature. Simulators like the Moving Peaks Benchmark by Branke [5]
are not suitable for binary encoded problems like the Knapsack Problem as they
assume real-valued search spaces. The XOR Generator by Yang et al. [22] is
designed for binary encoded problems but creates dynamics by manipulating
genotypes. A better approach would be to adjust the problem definition itself.
The framework proposed by Li and Yang [27] appears to be an adequate app-
roach and therefore inspired the implementation of the IMDEA simulator. This
approach is closer to real world dynamics, avoids manipulating the population
and leads to measurable dynamic environments which are crucial for an associa-
tive memory that stores environmental information.

The simulator creates environments e(t), which are considered to represent
the definition of the optimization problem at time t, where the time is sup-
posed to be the generation number. The environment is constituted by a tuple
of problem parameters that are subject to change. In the case of the knapsack
problem, the environment e(t) = (C(t), v(t), w(t)) shall be signified by the knap-
sack capacity C(t), its item weights w(t) = (w1(t), . . . , wn(t)) and item values
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Fig. 2. Sample scenario simulating a dynamic knapsack problem, cycle length L = 32.

v(t) = (v1(t), . . . , vn(t)). The simulator is implemented to change the environ-
ment at a constant frequency of T generations. Furthermore, it is assumed that
the environment changes in a cyclic manner at a cycle length of L. Hence any
environment will recur every L·T generations. The specific environment sequence
used in this paper is visualized in Fig. 2.

4.4 Pseudocode for IMDEA

Listing 1.1 illustrates the IMDEA as pseudocode. The functions concerning mem-
ory and prediction are described in Sects. 4.5 and 4.6. After preparing the IMDB
for the upcoming optimization and loading the problem definition and several
parameters (line 1) the IMDEA initializes all necessary variables (line 2–6).
There are population-objects for temporary saving parents, children, individ-
uals from the memory and individuals provided by the predictive component
(line 3–4).

The population is initialized (line 7), whereupon the population size is defined
by one of the loaded parameters and the IMDEA enters its main while-loop.
If a change is predicted for the current generation t, IMDEA will update the
population with the individuals provided by the predictive component (line 9).
In the first generation this condition is false. Changes are simulated every T
generations (line 10) and the fitness of all individuals is evaluated (line 13).

Lines 12–22 are entered every time a change occured: If the accuracy of the
predictive component for the current change lies below a threshold, that means
that the change was anticipated badly and there is a high possibility that the
individuals, which had been provided by the predictive component to prepare
the EA for this change, are not suitable for the new environment. Thus the
memory will be searched for individuals from a similar environment to update
the population (line 13–17). Otherwise no measures will be taken.

Lines 18–21 illustrate the prediction cycle that is run after every change:
The new change is saved in the IMDB (line 18). Using this prediction knowledge
the IMDEA anticipates the generation of the next change and the expected
environment (line 19–20). Afterwards IMDEA searches the associative memory
for individuals that had been successful in an environment similar to the expected
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one (line 21, cf. Sect. 4.6 for more detail). These individuals will be used to update
the population before the next change (line 9).

Lines 23–26 execute the standard functions of an EA, namely selection of at
least two parents, recombination, mutation and population update. Extraction
of good individuals to the memory is performed in line 27 (cf. Sect. 4.5 for more
details). Finally the algorithm enters the next generation unless the stopping
condition is met.

1 initializeIMDB () ; env = loadProblem () ; par = loadParameters () ;
2 pop = newPopulation () ; fitness = newFitnessArray () ;

3 parents = newPopulation () ; children = newPopulation () ;

4 memoryPop = newPopulation () ; predictionPop = newPopulation () ;
5 acc = 0.0; predictedGen = −1; predictedEnv = newEnvironment () ;

6 t = 0;

7 pop = initializePopulation (par.populationSize) ;
8 while (stopping condition not met)

9 i f (t == predictedGen) pop = updatePopulation (predictionPop) ; endif
10 i f ((t mod par.T ) == 0) env = simulateChanges (env) ; endif
11 fitness = evaluateF itness (pop) ;

12 i f (change occured in current generation t)
13 acc = computePredictionAccuracy (env, predictedEnv) ;
14 i f (acc < par.accuracyThreshold)

15 memoryPop = getIndividualsFromMemory (env) ;

16 pop = updatePopulation (memoryPop) ;

17 endif
18 saveChangesInPredictionKnowledge (env) ;
19 predictedGen = predictGenerationOfNextChange () ;

20 predictedEnv = predictNewEnvironment () ;

21 predictionPop = getIndividualsFromMemory (predictedEnv) ;
22 endif

23 parents = selectForReproduction (pop, fitness, par.numberOfParents) ;

24 children = recombineParents (parents) ;
25 children = mutateIndividuals (children) ;

26 pop = updatePopulation (pop, children) ;
27 i f ((t mod par.extractionPeriod) == 0) extraction (pop, fitness) ; endif
28 t = t+ 1;

29 endwhile

Listing 1.1. Pseudocode for IMDEA

4.5 Associative Memory

An associative memory has the advantage that after a change the EA can reuse
individuals that had been successful in a similar environment before. It needs to
address four main issues [4]: (1) how to organize the memory, (2) when to extract
which individuals from the EA to the memory (3) how to update the memory
and (4) when to inject individuals from the memory to the EA (cf. Fig. 1).
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CAPACITY

ENV-ID CAPACITY

Integer Double

0 231001,0000

1 255267,3097

… …

WEIGHT

ENV-ID WEIGHT001 … WEIGHT500

Integer Double … Double

0 533,000 … 852,000

1 599,625 … 852,000

… … … …

VALUE

ENV-ID VALUE001 … VALUE500

Integer Double … Double

0 276,000 … 103,000

1 299,544 … 103,000

… … … …

GENOTYPES

ENV-ID INDIVIDUAL GENE001 … GENE500

Integer Integer Integer Integer

0 8 1 … 0

0 3 1 … 1

… … … … …

Fig. 3. Database schema of associative memory for knapsack instance with 500 items

The associative memory of IMDEA is organized in column tables on the
IMDB. Figure 3 illustrates database schema of the memory for a knapsack
instance with j = 500 items. The tables are organized according to the problem
definition. Table GENOTYPES stores good individuals of earlier generations.
Each column GENE-j (j = {001..500}) stores one gene xj , which is 1 if item j is
chosen, and 0 otherwise (cf. Eq. 1). The other three tables contain environmental
information. Every environment is referenced by an ENV-ID in the first column
of all tables. Column WEIGHT-j/VALUE-j in table WEIGHT/VALUE stores
weight wj , or value vj of item j, respectively. When a change is detected, the
IMDEA compares the current environment to the environmental information
from the memory. If a suitable environment is found in the memory, good solu-
tions from table GENOTYPES are injected into the IMDEA. These solutions
had previously been successful in a similar environment. The similarity of two
environments e1 = e (t1) and e2 = e (t2) at times t1 and t2 is computed as a
weighted sum as follows:

sim (e1, e2) = ηc · simC (e1, e2) + ηw · simW (e1, e2) + ηv · simV (e1, e2) (4)

with ηc, ηw, ηv ∈ [0, 1] and ηc + ηw + ηv = 1. Similarities simC , simW and simV

signify the proportion of capacities (C(t1) and C(t2)), weights (w(t1) and w(t2)),
and values (v(t1) and v(t2)), respectively:

simC (e1, e2) = min
{

C(t1)
C(t2)

,
C(t2)
C(t1)

}
, (5)

simW (e1, e2) =
1
n

·
n∑

j=1

min
{

wj(t1)
wj(t2)

,
wj(t2)
wj(t1)

}
, (6)

simV (e1, e2) =
1
n

·
n∑

j=1

min
{

vj(t1)
vj(t2)

,
vj(t2)
vj(t1)

}
. (7)
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The min-function normalizes the outcome between 0 and 1. An alternative
way to calculate simW and simV is

simW (e1, e2) =
1
n

·
n∑

j=1

stW (e1, e2, j) with (8)

stW (e1, e2, j) =

⎧
⎨

⎩
1, if min

{
wj(t1)
wj(t2)

,
wj(t2)
wj(t1)

}
≥ τW

0 otherwise
. (9)

The first calculation (6, 7) is more flexible because it does not declare items
as dissimilar based on a threshold. The second calculation (8, 9) on the other
hand allows for a strict control of the similarity threshold τW if required and
prevents the commingling of similarities of different items. This paper uses the
second calculation because it focuses on the performance of the IMDEA for
environments that reappear in exactly the same way.

The extraction of good individuals from the population is performed at
equally spaced intervals. Copies of the individuals are stored in the IMDB.
Yang [20] uses dynamic time patterns for extraction to reduce the risk that
extraction and change coincide. As this paper combines an associative mem-
ory with predictive analytics, the prediction on change periods can be used to
adapt the extraction period accordingly. As recommended by Grefenstette and
Ramsey [7] we extract 50% of the population after a change. To decide which
individuals to extract the IMDEA calculates an importance value based on [5]
for each individual i as

imp (i) = γf · impfit (i) + γd · impdiv (i) + γa · impage (i) (10)

with γ ∈ [0, 1] and γf + γd + γa = 1. The terms impfit (i), impdiv (i) and
impage (i) express the relative importance of individual i with respect to the
fitness, diversity and age of the population. At generation t these importance
terms are computed as follows:

impfit (i) =
fitness (i)∑p

k=1 fitness (k)
, (11)

impdiv (i) =
∑p

k=1 d (i, k)∑p
h=1

∑p
k=1 d (h, k)

, (12)

impage (i) =
age (i, t)∑p

k=1 age (k, t)
, (13)

where d (h, k) is the Hamming distance between individuals h and k. The age
of an individual i in generation t is age (i, t) = 0 if the individual was created in
generation t, and age (i, t − 1)+1 otherwise. The population is sorted descending
by importance and the 50% with the highest importance value are extracted.

If the current environment does not exist in the memory so far, the new envi-
ronmental information is stored in the in-memory database and the extracted
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individuals are inserted to the memory. The IMDEA checks whether the current
environment already exists in the memory by applying Eq. 4. If a similar envi-
ronment exists in the memory, the extracted individuals will be used to update
table GENOTY PES (see Fig. 3). In this case the extracted individuals and the
memory individuals are merged and Eq. 10 is used to decide which individuals
become the new memory individuals.

When the associative memory is called by the IMDEA (i.e. due to a new
prediction output or during injection after an unpredicted change, cf. Sect. 4.4),
the environmental tables in the memory are searched for an environment similar
to the new environment based on Eq. 4. If the search is successful, the stored
individuals from the memory will replace similar individuals in the population
of the EA. Otherwise only immigrants will be generated to increase diversity.

4.6 Change Prediction

The associative memory component interacts with the predictive analytics com-
ponent. Prediction is triggerd after each change and aims to anticipate the gener-
ation and nature of the next change. Therefor prediction knowledge on previous
changes is stored in the in-memory database (cf. Fig. 1). This paper uses the
Predictive Analysis Library (PAL) [28]. HANA is organized in two layers [26].
Applications, like the implemented EA, run as part of the control flow logic.
Interaction with the data is controlled by the calculation logic. PAL is part of
the calculation logic and is thus very suitable for the IMDEA because the pre-
dictive algorithms run close to the data they analyze. Furthermore PAL is well
compatible with the HANA IMDB. Its functionality is based on stored proce-
dures. The input data has to be stored in database tables and must be organized
in the specific way required by the respective procedure.

PAL comprises functions for statistics, time series analysis, regression, clus-
tering, classification and preprocessing of data [28]. Simões et al. [9] showed the
effectiveness of regression for prediction. Therefore this paper uses polynomial
regression to predict upcoming changes. Other methods like forecast smoothing
or neural networks are potential candidates for predictive analytics as well but
polynomial regression has a slight advantage regarding computation time. Based
on the previous changes that are stored in the prediction knowledge, the IMDEA
calls the stored procedure from PAL for polynomial regression to calculate

– the anticipated generation of the next change,
– which of the parameters C, wj and vj are going to change and
– how they will change (cf. Listing 1.1).

PAL stores its output in dedicated database tables from where the results are
selected. Based on the output of the predictive analytics component the expected
environment can be simulated and the IMDEA searches the associative mem-
ory for individuals, which had been successful in an environment similar to the
simulated one. If such individuals are found, they remain in a temporary buffer
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PREDICT-NEXT-GENERATION-INPUT

ID Y X1

Integer Integer Integer

… … …

4 28000 4

5 35000 5

6 42000 6

0
10000
20000
30000
40000
50000

0 1 2 3 4 5 6 7

G
en

er
at

io
n

Numberof change

Fig. 4. Prediction of the generation of the next change using regression

in order to be injected right before the anticipated change occurs. If no suit-
able individuals are found in the memory, immigrants will be inserted to the
population when the next change occurs to increase diversity.

Figure 4 illustrates an example for the calculation of the generation of the
next change in a scenario where change occurs every 7000 generations (T =
7000). The input table for the stored procedure is organized in the way required
by PAL [28, p. 273]. The dotted line in the diagram illustrates the corresponding
regression function, which is used to calculate the generation of the 7th change.
The next step of the prediction is to analyze which of the parameters C, wj

and vj are going to change. Therefor information on how often the parameters
changed before is used: the more often they changed, the higher the likelihood
that they are going to change next time. Afterwards their new numerical value
is anticipated with the same PAL procedure as described above.

In order to measure the efficiency of the implemented predictive analysis,
every time a change occurs the prediction accuracy is calculated as acc = 1−err.
The prediction error err is One if the actual change occurs too early or if no
prediction was made at all. Otherwise err is calculated as the arithmetic mean
of the relative error of each parameter.

5 Evaluation Results

Extensive tests were conducted to evaluate the performance the associative
memory and the predictive component of IMDEA. This paper uses a knap-
sack instance with 500 items [29], a constant population size p of 40 individuals,
mating restriction [19] and Fitness Sharing to maintain diversity with α = 1 and
σs = 257.6 based on [16] and a quadratic penalty in the fitness function (λ = 0.5,
Eq. 2).

Based on Design of Experiment (DoE) principles a 23 full factorial design
was prepared to evaluate the effect of the three factors associative memory,
polynomial regression prediction and diversity maintenance. In the diagrams each
factor combination is coded with three letters, the first one indicating whether
predictive analysis was used (P) or not (O), the second one indicating the same
for diversity maintenance (D or O) and the third one standing for associative
memory (M or O). For each factor combination ten tests were run. Each test
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ran for eight hours simulating dynamic changes with T = 7000 and L = 32
(cf. Sect. 4.3, Fig. 2) resulting in more than 1000000 generations, 150 changes
and five repetitions of each environment. The main performance measures for
evaluation are decrease and recovery of the fitness after a change, mean best
fitness per factor, computation time and prediction accuracy.

Figure 5 compares the best fitness per generation. The best fitness declines
over the generations because the diagram shows a stage of decreasing capacity.
Figure 6 shows the arithmetic mean of the percentaged decrease of the best fitness
per factor combination averaged over all changes as well as the arithmetic mean
of the best fitness over all generations (cf. [4], FBOG).
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Fig. 5. Excerpt of the best-of-generation
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Both diagrams clearly show, that using the IMDB as associative memory for
the IMDEA has a positive effect on the fitness for recurring environments. In
the scenario with no dynamic adaptation (O-O-O) the average decrease of the



168 J. Jordan et al.

best fitness after a change is 12.55%. However when using an IMDB memory
(O-O-M) the decrease drops to only 3.70%. That is merely about a quarter of
the decrease of the non-adapted EA. Correspondingly the implemented memory
in average also realizes the highest outcome for the best fitness.

On the other hand, Figs. 5 and 6 show that combining the associative memory
with Fitness Sharing, mating restriction and polynomial regression prediction
does not further improve the algorithm but diminishes it. Using only diversity
maintenance (O-D-O) or prediction (P-O-O) results in an improvement com-
pared to the non-adapted EA, too (O-O-O). If prediction or diversity mainte-
nance is used and the memory is added (O-D-M, P-O-M, P-D-M), the results
will be better than without memory (O-D-O, P-O-O, P-D-O). But no factor
combination leads to better results than memory alone.

The idea behind diversity maintenance is that a diverse population can adapt
to changes more easily than a converged population. Yet for IMDEA it diminishes
the algorithm. A logical explanation is the difficulty of finding an appropriate
value for σs, as pointed out by Sareni et al. [17]. The test results suggest that
Fitness Sharing is not always the best solution for diversity maintenance.
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Fig. 7. Prediction accuracy per environment

The reason for the negative effect of the predictive component is not the pre-
diction itself but the hardness of predictability. Figure 7 illustrates the prediction
accuracy (cf. Sect. 4.6) for each environment. The simulator was programmed to
simulate changes that are hard to predict on purpose, because easy changes
such as linear increase are no challenge for predictive analysis. Therefore the
simulator includes a sine function (capacity, cf. Fig. 2) which is relatively easy
to predict and small jumps (value, cf. Fig. 2) based on [27] which are hard to
predict. Figure 7 shows that polynomial regression can estimate a sine function
with an accuracy of about 82%. However the jumps are so hard to predict, that
the polynomial regression varies significantly from the actual jumps. As a result
there are some cases where the memory is queried for individuals from the wrong
environment which are then inserted to the EA before the next change. Due to
these individuals originating from the wrong environment the prediction weakens
the performance of the memory.
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Fig. 8. Computation time per generation

Communication between IMDEA and the IMDB needs to be taken into
account when evaluating its performance. IMDEA is implemented as an appli-
cation within the IMDB thus reducing communication overhead to a minimum.
It uses PAL for predictive analysis to ensure that the prediction is carried out as
close as possible to the stored data. Figure 8 illustrates the computation time in
milliseconds per generation for each factor combination as box plot diagram. The
ordinate is limited to 25 ms

g . Diversity maintenance raises the average computa-
tion time from 5 ms

g to 7 ms
g because extra time to compute the shared fitness is

required. Prediction and memory do not influence the average computation time
but the maximum values every T generations: During each prediction cycle more
than 30 s of computational cost are lost in the IMDB. This is due to the used
library and can not be improved by IMDEA. Extraction and injection require
500ms to read from the IMDB and to write into it.

Similar to results obtained by Yang [22] and Branke [5] these tests conducted
with IMDEA prove the effectiveness of a memory, but in contrast to previous
work IMDEA introduces the benefit of storing large amounts of data in an IMDB.
IMDEA accomplishes a high prediction accuracy for linear changes but for noisy
environments it is not able to outperform existing approaches like Simões [9].

After determining that memory alone has the best effect of the performance of
the IMDEA, further test were conducted to evaluate interdependences between
changes and the extraction periodicity. The results show, that there is no cor-
relation between the extraction periodicity and the severity of jumps. However,
there is a strong interdependence between the extraction periodicity and the
frequency of change. If changes occur often, extraction will have to take place
often as well. For a low frequency of change a less frequent extraction strategy is
beneficial. This strong interdependence leads to the conclusion that in dynamic
environments where the frequency of change itself is fluctuating, the EA per-
forms best if the memory component constantly and automatically adapts its
extraction points according to the frequency of change.

6 Conclusion

This paper reported on an implemented approach to dynamic evolutionary opti-
mization exploring the possibilities of integrating in-memory computing into
evolutionary algorithms. Empirical studies suggest that an in-memory database
(e.g. SAP HANA) can enable the optimizer to learn from the decisions of the past
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and to make better informed decisions in the forthcoming iterations of the opti-
mization algorithm. This positive effect of associative memory seems becomes
particularly apparent in recurring environments. In such cases, the contribution
of associative memory is strong. Using an IMDB allows storing and maintaining
huge amounts of data on previously visited solutions. By implementing the opti-
mizer as an application within the IMDB the time required for communication
between the database and the optimizer is reduced to 500 ms. The test results
also indicate, that there is a strong interdependence between the frequency of
change and the extraction strategy, meaning that the interval for extraction
needs to adapt to the frequency of change in order to ensure maximum effi-
ciency of the associative memory.

Additionally, the results demonstrate that some changes (i.e. jumps) are hard
to predict. To improve the accuracy of predictive analysis of stored knowledge,
further evaluation of suitable analysis methods such as different regression mod-
els, forecast smoothing or neural networks may be explored. The optimizer could
include a learning component to automatically improve the selection of the best
prediction method. Alternate approaches of implementing the predictive com-
ponent – besides PAL – should be tested to reduce the computation time of the
prediction cycle. Future work targets the associative memory by testing alter-
nate database schemes addressing typical access patterns. It is also envisaged to
apply IMDEA to other usage scenarios including, e.g., constrained-based product
configuration systems [30], a form of the SAT problem.
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