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Preface

This two-volume set contains proceedings of EvoApplications 2017, the European
Conference on the Applications of Evolutionary Computation. The event was held in
Amsterdam, The Netherlands, during April 19–21.

EvoAPPS, as it is called, is part of EVO*, the leading European event on
bio-inspired computation. EvoAPPS aimed to show the latest applications of research,
ranging from proof of concepts to industrial case studies. At the same time, under the
EVO* umbrella, EuroGP focused on the technique of genetic programming, EvoCOP
targeted evolutionary computation in combinatorial optimization, and EvoMUSART
was dedicated to evolved and bio-inspired music, sound, art, and design. The pro-
ceedings for all of these co-located events are available in the LNCS series.

If EVO* coalesces four different conferences, EvoAPPS exhibits an even higher
granularity: It started as a collection of few workshops and slowly grew into a 14-track
conference, steadily able to attract more than 100 papers per year. This year marked our
20th anniversary, but, despite the success, we do not want to stop to celebrate. In an
ever-evolving scientific landscape, EvoAPPS needs to mutate to adapt and survive: its
scope is constantly broadening or shrinking according to new developments, new
tracks are proposed while others are merged or suspended.

This edition covered 14 different domains: business analytics and finance (Evo-
BAFIN track); computational biology (EvoBIO track); communication networks and
other parallel and distributed systems (EvoCOMNET track); complex systems (Evo-
COMPLEX track); energy-related optimization (EvoENERGY track); games and
multi-agent systems (EvoGAMES track); image analysis, signal processing, and pattern
recognition (EvoIASP track); real-world industrial and commercial environments
(EvoINDUSTRY track); knowledge incorporation in evolutionary computation (Evo-
KNOW track); continuous parameter optimization (EvoNUM track); parallel archi-
tectures and distributed infrastructures (EvoPAR track); evolutionary robotics
(EvoROBOT track); nature-inspired algorithms in software engineering and testing
(EvoSET track); and stochastic and dynamic environments (EvoSTOC track).

This year, we received 108 high-quality submissions, most of them well suited to fit
in more than one track. We selected 46 papers for full oral presentation, while 26 works
were given limited space and were shown as posters. All such contributions, regardless
of the presentation format, appear as full papers in these two volumes (LNCS 10199
and LNCS 10200).

Many people contributed to this edition: We express our gratitude to the authors for
submitting their works, and to the members of the Program Committees for devoting
such a big effort to review papers within our tight schedule.

The papers were submitted, reviewed, and selected through the MyReview
conference management system, and we are grateful to Marc Schoenauer (Inria,
Saclay-Île-de-France, France) for providing, hosting, and managing the platform.



We thank the local organizers, Evert Haasdijk and Jacqueline Heinerman, from the
Vrije Universiteit Amsterdam.

We thank Pablo García Sánchez (University of Cádiz, Spain) for maintaining the
EVO* website and handling publicity.

We thank the invited speakers, Kenneth De Jong and Arthur Kordon, for their
inspiring presentations.

We thank SPECIES, the Society for the Promotion of Evolutionary Computation in
Europe and Its Surroundings, and its individual members (Marc Schoenauer, President;
Anna I. Esparcia-Alcázar, Secretary and Vice-President; Wolfgang Banzhaf, Treasurer)
for the coordination and financial administration.

And we all express our special gratitude to Jennifer Willies for her dedicated and
continued involvement in EVO*. Since 1998, she has been essential for building our
unique atmosphere.
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Hybrid Algorithms Based on Integer
Programming for the Search of Prioritized Test

Data in Software Product Lines

Javier Ferrer(B), Francisco Chicano, and Enrique Alba

Universidad de Málaga, Málaga, Spain
{ferrer,chicano,eat}@lcc.uma.es

Abstract. In Software Product Lines (SPLs) it is not possible, in gen-
eral, to test all products of the family. The number of products denoted
by a SPL is very high due to the combinatorial explosion of features. For
this reason, some coverage criteria have been proposed which try to test
at least all feature interactions without the necessity to test all products,
e.g., all pairs of features (pairwise coverage). In addition, it is desirable to
first test products composed by a set of priority features. This problem is
known as the Prioritized Pairwise Test Data Generation Problem. In this
work we propose two hybrid algorithms using Integer Programming (IP)
to generate a prioritized test suite. The first one is based on an integer
linear formulation and the second one is based on a integer quadratic
(nonlinear) formulation. We compare these techniques with two state-of-
the-art algorithms, the Parallel Prioritized Genetic Solver (PPGS) and
a greedy algorithm called prioritized-ICPL. Our study reveals that our
hybrid nonlinear approach is clearly the best in both, solution quality
and computation time. Moreover, the nonlinear variant (the fastest one)
is 27 and 42 times faster than PPGS in the two groups of instances
analyzed in this work.

Keywords: Combinatorial Interaction Testing · Software Product
Lines · Pairwise testing · Feature models · Integer Linear Programming ·
Integer Nonlinear Programming · Prioritization

1 Introduction

A Software Product Line (SPL) is a set of related software systems, which share
a common set of features providing different products [1]. The effective manage-
ment of variability can lead to substantial benefits such as increased software
reuse, faster product customization, and reduced time to market. Systems are
being built, more and more frequently, as SPLs rather than individual products
because of several technological and marketing trends. This fact has created an
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increasing need for testing approaches that are capable of coping with large num-
bers of feature combinations that characterize SPLs. Many testing alternatives
have been put forward [2–5]. Salient among them are those that support pairwise
testing [6–12]. The pairwise coverage criterion requires that all pairs of feature
combinations should be present in at least one test product. Some feature com-
binations can be more important than others (e.g., they can be more frequent
in the products). In this case, a weight is assigned to each feature combination
(usually based on product weights). In this context, the optimization problem
that arises consists in finding a set of products with minimum cardinality reach-
ing a given accumulated weight. This problem has been solved in the literature
using only approximated algorithms.

The use of exact methods, like Mathematical Programming solvers, has the
drawback of a poor scalability. Solving integer linear programs (ILP) is NP-hard
in general. Actual solvers, like CPLEX1 and Gurobi2, include modern search
strategies which allow them to solve relatively large instances in a few seconds.
However, the size of the real instances of the problem we solve in this paper
is too large to be exactly solved using ILP solvers. For this reason, we propose
a combination of a high level heuristic (greedy) strategy and a low level exact
strategy. The combination of heuristics and mathematical programming tools,
also called matheuristics, is gaining popularity in the last years due to its great
success [13].

In this paper we present two novel proposals: a Hybrid algorithm based on
Integer Linear Programming (HILP) and another Hybrid algorithm based on
Integer Nonlinear Programming (HINLP). We compare our proposals with two
state-of-the-art algorithms: a greedy algorithm that generates competitive solu-
tions in a short time, called prioritized-ICPL (pICPL) [14] and a hybrid algo-
rithm based on a genetic algorithm, called Prioritized Pairwise Genetic Solver
(PPGS) [15], which obtains higher quality solutions than pICPL but generally
using more time. Our comparison covers a total of 235 feature models with a
wide range of features and products, using three different priority assignments
and five product prioritization selection strategies. Our main contributions in
this paper are as follows:

– Two novel hybrid algorithms based on Integer Programming. One models
the problem using linear functions (HILP) and the other one using nonlinear
functions (HINLP).

– A comprehensive evaluation of the performance of HILP and HINLP. In
the experimental evaluation 235 feature models and different prioritization
schemes were used. We also compared the new approaches with those of state-
of-the-art methods: PPGS and pICPL.

The remainder of the article is organized as follows. The next section presents
some background on SPLs and feature models. In Sect. 3 the Prioritized Pair-
wise Test Data Generation Problem in SPL is formalized. Next, Sect. 4 details
1 http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud.
2 https://www.gurobi.com.

http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
https://www.gurobi.com
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our algorithmic proposals. In Sect. 5 we briefly present the other algorithms of
the comparison, the priority assignments and experimental corpus used in the
experiments. Section 6 is devoted to the statistical analysis of the results and
Sect. 7 describes possible threats to the validity of this study. Finally, Sect. 8
outlines some concluding remarks and future work.

2 Background: Feature Models

Feature models have become the de facto standard for modelling the common
and variable features of an SPL and their relationships, collectively forming a
tree-like structure. The nodes of the tree are the features which are depicted as
labelled boxes, and the edges represent the relationships among them. Feature
models denote the set of feature combinations that the products of an SPL can
have [16].

Figure 1 shows the feature model of our running example for SPLs, the Graph
Product Line (GPL) [17], a standard SPL of basic graph algorithms that has been
widely used as a case study in the product line community. In GPL, a product is
a collection of algorithms applied to directed or undirected graphs. In a feature
model, each feature (except the root) has one parent feature and can have a set
of child features. A child feature can only be included in a feature combination
of a valid product if its parent is included as well. The root feature is always
included. There are four kinds of feature relationships:

– Mandatory features are selected whenever their respective parent feature is
selected. They are depicted with a filled circle. For example, features Driver
and Algorithms.

– Optional features may or may not be selected if their respective parent feature
is selected. An example is the feature Search.

– Exclusive-or relations indicate that exactly one of the features in the exclusive-
or group must be selected whenever the parent feature is selected. They are
depicted as empty arcs crossing over a set of lines connecting a parent feature
with its child features. For instance, if feature Search is selected, then either
feature DFS or feature BFS must be selected.

– Inclusive-or relations indicate that at least one of the features in the inclusive-
or group must be selected if the parent is selected. They are depicted as filled
arcs crossing over a set of lines connecting a parent feature with its child
features. As an example, when feature Algorithms is selected then at least one
of the features Num, CC, SCC, Cycle, Shortest, Prim, and Kruskal must be
selected.

In addition to the parent-child relations, features can also relate across dif-
ferent branches of the feature model with the Cross-Tree Constraints (CTC).
Figure 1 shows the CTCs of our feature model in textual form. For instance,
Num requires Search means that whenever feature Num is selected, feature
Search must also be selected. These constraints as well as those implied by the
hierarchical relations between features are usually expressed and checked using
propositional logic.
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Fig. 1. Graph Product Line feature model.

3 Problem Formalization: Prioritized Pairwise Test
Data Generation

Combinatorial Interaction Testing (CIT) is a testing approach that constructs
samples to drive the systematic testing of software system configurations [18,19].
When applied to SPL testing, the idea is to select a representative subset of
products where interaction errors are more likely to occur rather than testing the
complete product family [18]. In the following we provide the basic terminology
of CIT for SPLs3.

Definition 1 (Feature list). A feature list FL is the list of features in a feature
model.

Definition 2 (Feature set). A feature set fs is a pair (sel, sel) where the
first and second components are respectively the set of selected and not-selected
features of a SPL product. Let FL be a feature list, thus sel, sel ⊆ FL, sel ∩ sel
= ∅, and sel ∪ sel = FL. Wherever unambiguous we use the term product as
a synonym of feature set.

Definition 3 (Valid feature set). A feature set fs is valid with respect to a
feature model fm iff fs.sel and fs.sel do not violate any constraints described by
fm. The set of all valid feature sets represented by fm is denoted as FSfm.

The focus of our study is pairwise testing, thus our concern is on the combi-
nations between two features. The coming definitions are consequently presented
with that perspective; however, the generalization to combinations of any num-
ber of features is straightforward.

3 Definitions based on [20,21].
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Definition 4 (Pair4). A pair ps is a 2-tuple (sel, sel) involving two features
from a feature list FL, that is, ps.sel ∪ ps.sel ⊆ FL ∧ ps.sel ∩ ps.sel = ∅ ∧
|ps.sel ∪ ps.sel| = 2. We say pair ps is covered by feature set fs iff ps.sel ⊆
fs.sel ∧ ps.sel ⊆ fs.sel.

Definition 5 (Valid pair). A pair ps is valid in a feature model fm if there
exists a valid feature set fs that covers ps. The set of all valid pairs of a feature
model fm is denoted with V PSfm.

Let us illustrate pairwise testing with the GPL running example. Some sam-
ples of pairs are: GPL and Search selected, Weight and Undirected not selected,
CC not selected and Driver selected. An example of invalid pair, i.e., not denoted
by the feature model, is features Directed and Undirected both selected. Notice
that this pair is not valid because they are part of an exclusive-or relation.

Definition 6 (Pairwise test suite). A pairwise test suite pts for a feature
model fm is a set of valid feature sets of fm. A pairwise test suite is complete if
it covers all the valid pairs in V PSfm, that is: {fs|∀ps ∈ V PSfm ⇒ ∃fs ∈ FSfm

such that fs covers ps}.
In GPL there is a total of 418 valid pairs, so a complete pairwise test suite for

GPL must have all these pairs covered by at least one feature set. Henceforth,
because of our focus and for the sake of brevity we will refer to pairwise test
suites simply as test suites.

In the following we provide a formal definition of the priority scheme based
on the sketched description provided in [14].

Definition 7 (Prioritized product). A prioritized product pp is a 2-tuple
(fs, w), where fs represents a valid feature set in feature model fm and w ∈ R

represents its weight. Let ppi and ppj be two prioritized products. We say that ppi
has higher priority than ppj for test-suite generation iff ppi’s weight is greater
than ppj’s weight, that is ppi.w >ppj .w.

As an example, let us say that we would like to prioritize product p0 with a
weight of 17. This would be denoted as pp0= (p1,17).

Definition 8 (Pairwise configuration). A pairwise configuration pc is a 2-
tuple (sel, sel) representing a partially configured product, defining the selection
of 2 features of feature list FL, i.e., pc.sel ∪ pc.sel ⊆ FL ∧ pc.sel ∩ pc.sel = ∅
∧ |pc.sel ∪ pc.sel| = 2. We say a pairwise configuration pc is covered by feature
set fs iff pc.sel ⊆ fs.sel ∧ pc.sel ⊆ fs.sel.

Definition 9 (Weighted pairwise configuration). A weighted pairwise con-
figuration wpc is a 2-tuple (pc,w) where pc is a pairwise configuration and w ∈ R

represents its weight computed as follows. Let PP be a set of prioritized products
4 This definition of pair differs from the mathematical definition of the same term

and is specific for SPLs. In particular, it adds more constraints to the traditional
definition of pair.
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and PPpc be a subset, PPpc ⊆ PP, such that PPpc contains all prioritized prod-
ucts in PP that cover pc of wpc, i.e., PPpc = {pp ∈ PP |pp.fs covers wpc.pc}.
Then w =

∑
p∈PPpc

p.w

Definition 10 (Prioritized pairwise covering array). A prioritized pair-
wise covering array ppCA for a feature model fm and a set of weighted pairwise
configurations WPC is a set of valid feature sets FS that covers all weighted pair-
wise configurations in WPC whose weight is greater than zero: ∀wpc ∈ WPC
(wpc.w > 0 ⇒ ∃fs ∈ ppCA such that fs covers wpc.pc).

Given a prioritized pairwise covering array ppCA and a set of weighted pair-
wise configurations WPC, we define coverage of ppCA, denoted by cov(ppCA),
as the sum of all weighted pairwise configurations in WPC covered by any con-
figuration in ppCA divided by the sum of all weighted configurations in WPC,
that is:

cov(ppCA) =

∑
wpc∈WPC

∃cc∈ppCA,cc covers wpc.pc
wpc.w

∑
wpc∈WPC wpc.w

. (1)

The optimization problem we are interested in consists of finding a prioritized
pairwise covering array, ppCA, with the minimum number of feature sets |ppCA|
maximizing the coverage, cov(ppCA).

4 Hybrid Algorithms Based on Integer Programming

In this work we propose two different hybrid algorithms combining a heuristic
and Integer Programming. The first one is based on an integer linear formulation
(HILP) and the second is based on a quadratic (nonlinear) integer formulation
(HINLP). Throughout this section we highlight the commonalities and differ-
ences between the proposals.

The two algorithms proposed in this work use the same high level greedy
strategy. In each iteration they try to find a product that maximizes the weighted
coverage. This could be expressed by the following objective function h:

h(x) =
∑

wpc∈I(x)∩U

wpc.w (2)

where x is a product, U the set of not covered pairwise configurations and I(x)
the set of pairwise configurations covered by x.

Once the algorithm found the best possible product, it is added to the set of
products, the pairs covered are removed from the set of all weighted pairs, and
then it seeks for the next product. The algorithms stop when it is not possible
to add more products to increase the weighted coverage. This happens when all
pairs of features with weight greater than zero are covered.

Let us first describe the common part related to the integer program which
is the base of the computation of the best product in each iteration. The trans-
formation of the given feature model is common in the two algorithms. However,
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the expressions used for dealing with pairwise coverage are different in the linear
and nonlinear approaches.

Let f be the number of features in a model fm, we use decision variables
xj ∈ {0, 1} and j ∈ {1, 2, . . . , f} to indicate if we should include feature j in
the next product (xj = 1) or not (xj = 0). Not all the combinations of features
form valid products. According to Benavides et al. [20] we can use propositional
logic to express the validity of a product with respect to a FM. These Boolean
formulas can be expressed in Conjunctive Normal Form (CNF) as a conjunction
of clauses, which in turn can be expressed as constraints in an integer program.
The way to do it is by adding one constraint for each clause in the CNF. Let us
focus on one clause and let us define the Boolean vectors v and u as follows [22]:

vj =
{

1 if feature j appears in the clause,
0 otherwise,

uj =
{

1 if feature j appears negated in the clause,
0 otherwise.

With the help of u and v we can write the constraint that corresponds to
one CNF clause for the i-th product as:

f∑

j=1

vj(uj(1 − xj) + (1 − uj)xj) ≥ 1. (3)

Finally, Algorithm1 represents the general scheme used by our algorithmic
proposals based on integer programming. In Line 1 the list of products ppCA
is initialized to the empty list. Then, the execution enters the loop (Line 2)
that tries to find the best product maximizing the coverage with respect to the
configurations not covered yet, U (Line 3). The new product is added to the list
of products ppCA (Line 4) and the covered pairs are removed from the set U
(Line 5).

Algorithm 1. Scheme of hybrid algorithms based on integer programming
Require: U //Set of configurations with weights greater than zero
Ensure: ppCA // List of products
1: ppCA ← []
2: while U �= ∅ do
3: z ← solve (maxh(x) subject to valid x)
4: ppCA ← ppCA + z
5: U ← U/covered(z) // Remove pairs covered by product z
6: end while
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4.1 Linear Approach

In the linear approach we need decision variables to model the pairwise con-
figurations that are covered by a product. These variables are denoted by cj,k,
cj,k, cj,k o cj,k, depending on the presence/absence of the features j, k in a con-
figuration. They will take value 1 if the product covers a configuration and 0
otherwise. The values of variables c depends on the values of the x variables.
To reflect this dependency in our linear program, we need to add the following
constraints for all pairs of features 1 ≤ j < k ≤ f :

2cj,k ≤ (1 − xj) + (1 − xk), (4)
2cj,k ≤ (1 − xj) + xk, (5)
2cj,k ≤ xj + (1 − xk), (6)
2cj,k ≤ xj + xk. (7)

It is not necessary to add all possible variables c, but only those corresponding
to a pair not yet covered. Finally, the goal of our program is to maximize the
weighted pairwise coverage, which is given by the sum of variables cj,k weighted
with wj,k. Let us denote with U the set of configurations not covered yet. The
expression to maximize is, thus:

∑

(j,k)∈U

wj,kcj,k, (8)

where (abusing notation) j and k are used to represent the presence/absence of
features.

4.2 Nonlinear Approach

In the nonlinear approach we avoid using the decision variables that represent
the presence/absence of particular pairs in a product, reducing the number of
variables and constraints compared to the linear approach. As a counter part we
need to use nonlinear functions to represent the objective function. In this case
the objective function to maximize is as follows:

∑

(j,k)∈U

wj,kxjxk +
∑

(j,k)∈U

wj,k(1 − xj)xk+ (9)

∑

(j,k)∈U

wj,kxj(1 − xk) +
∑

(j,k)∈U

wj,k(1 − xj)(1 − xk). (10)

This problem formulation results in a more concise problem representation
because the objective function is smaller and the inequalities (4)–(7) are not
required.
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5 Experimental Setup

This section describes how the evaluation was performed. First, we describe
the PPGS and pICPL algorithms, object of the comparison. Next, we present
the methods used to assign priorities, the feature models used as experimental
corpus, and the experiments configuration.

5.1 Prioritized Pairwise Genetic Solver

Prioritized Pairwise Genetic Solver (PPGS) is a constructive genetic algorithm
that follows a master-slave model to parallelize the individuals’ evaluation. In
each iteration, the algorithm adds the best product to the test suite until all
weighted pairs are covered. The best product to be added is the product that
adds more weighted coverage (only pairs not covered yet) to the set of products.

The parameter settings used by PPGS are the same of the reference paper for
the algorithm [15]. It uses binary tournament selection and a one-point crossover
with a probability 0.8. The population size of 10 individuals implies a more
exploitation than exploration behaviour of the search with a termination condi-
tion of 1,000 fitness evaluations. The mutation operator iterates over all selected
features of an individual and randomly replaces a feature by another one with
a probability 0.1. The algorithm stops when all the weighted pairs have been
covered. For further details on PPGS see [15].

5.2 Prioritized-ICPL (pICPL) Algorithm

Prioritized-ICPL is a greedy algorithm to generate n-wise covering arrays pro-
posed by Johansen et al. [14]. pICPL does not compute covering arrays with full
coverage but rather covers only those n-wise combinations among features that
are present in at least one of the prioritized products, as was described in the
formalization of the problem in Sect. 3. We must highlight here that the pICPL
algorithm uses data parallel execution, supporting any number of processors.
Their parallelism comes from simultaneous operations across large sets of data.
For further details on prioritized-ICPL please refer to [14].

5.3 Priority Assignment Methods

We considered three methods to assign weight values to prioritized products:
rank-based values, random values, and measured values.

Rank-based Values. In the rank-based weight assignment, the products are
sorted according to how dissimilar they are. More dissimilar products appear
first in the ranking and have a lower rank. Then, they are assigned priority
weights based on their rank values, low ranked products are assigned higher pri-
orities. Giving the same weight value to two of the most SPL-wide dissimilar
products, the weight values will be more likely spread among a larger number of
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pairwise configurations making the covering array harder to compute. In addi-
tion, this enables us to select different percentages of the number of products for
prioritization. The selected percentages used are: 5%, 10%, 20%, 30% and 50%.

Random Values. In the random weight assignment, the weights are randomly
generated from a uniform distribution between the minimum and maximum
values obtained with the rank-based assignment. A percentage of the products
denoted by each individual feature model was used for product prioritization.
The selected percentages are: 5%, 10%, 20%, 30%, and 50%.

Measured Values. For this third method, the weights are derived from non-
functional properties values obtained from 16 real SPL systems, that were mea-
sured with the SPL Conqueror approach [23]. This approach aims at providing
reliable estimates of measurable non-functional properties such as performance,
main memory consumption, and footprint. These estimations are then used to
emulate more realistic scenarios whereby software testers need to schedule their
testing effort giving priority, for instance, to products or feature combinations
that exhibit higher footprint or performance. In this work, we use the actual val-
ues taken on the measured products considering pairwise feature interactions.

Table 1. Measured values benchmark

SPL name Prop NF NP NC PP%

Prevayler F 6 32 24 75.0

LinkedList F 26 1440 204 14.1

ZipMe F 8 64 64 100.0

PKJab F 12 72 72 100.0

SensorNetwork F 27 16704 3240 19.4

BerkeleyDBF F 9 256 256 100.0

Violet F 101 ≈1E20 101 ≈0.0

Linux subset F 25 ≈3E7 100 ≈0.0

LLVM M 12 1024 53 5.1

Curl M 14 1024 68 6.6

x264 M 17 2048 77 3.7

Wget M 17 8192 94 1.15

BerkeleyDBM M 19 3840 1280 33.3

SQLite M 40 ≈5E7 418 ≈0.0

BerkeleyDBP P 27 1440 180 12.50

Apache P 10 256 192 75.0

Footprint, Main memory consumption, Performance,
Number of Features, Number of Products, Number
of Configurations, Percentage of Prioritized products.
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Table 1 summarizes the SPL systems evaluated, their measured property (Prop),
number of features (NF), number of products (NP), number of configurations
measured (NC), and the percentage of prioritized products (PP%) used in our
comparison.

5.4 Benchmark of Feature Models

In this work we use two different groups of feature models. The first one (G1) is
composed of 219 feature models which represent between 16 and 80,000 products
using rank-based and random weight priority assignments. The second group
(G2) is composed of 16 real feature models which represent between 16 and
≈3E20 products for which the measured values strategy for weight assignment
was used. In total, we used 235 distinct feature models: 16 feature models from
SPL Conqueror, 5 from Johansen et al. [14], and 201 from the SPLOT web-
site [24]. Note that for G1, two priority assignment methods are used with five
different prioritization selection percentages. For feature models which denote
less than 1,000 products we use 20%, 30% and 50% of the prioritized products.
For feature models which denote between 1,000 and 80,000 products we use 5%,
10% and 20%. This yields a grand total of 1,330 instances analyzed with the
four algorithms in our comparison (Table 2).

Table 2. Benchmark summary

G1 G2 Summary

NFM 219 16 235

NP 16–80 K 32–≈3E24 16–≈3E24

NF 10–67 6–101 6–101

WPA RK,RD M RK, RD, M

PP% 5, 10, 20, 30, 50 ≈0.0–100 ≈0.0–100

PI 1314 16 1330

NFM: Number Feature Models, NP: Number Prod-
ucts, NF: Number of Features, WPA: Weight Prior-
ity Assignment, RK: Rank based, RN: Random, M:
Measured, PP%: Prioritized Products Percentage, PI:
Problem Instances

5.5 Hardware

PPGS and pICPL are non-deterministic algorithms, so we performed 30 inde-
pendent runs for a fair comparison between them. As performance measures we
analyzed both the number of products required to test the SPL and the time
required to run the algorithm. In both cases, the lower the value the better the
performance, since we want a small number of products to test the SPL and
we want the algorithm to be as fast as possible. All the executions were run
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in a cluster of 16 machines with Intel Core2 Quad processors Q9400 (4 cores
per processor) at 2.66 GHz and 4 GB memory running Ubuntu 12.04.1 LTS and
managed by the HT Condor 7.8.4 cluster manager. Since we have four cores
available per processor, we have executed only one task per single processor, so
we have used four parallel threads in each independent execution of the ana-
lyzed algorithms. HILP and HINLP were executed once per instance and weight
assignment, because they are deterministic algorithms. Four cores were used as
in the other algorithms.

6 Results Analysis

In this section, we study the behaviour of the proposed approaches using sta-
tistical techniques with the aim of analyzing the computed best solutions and
highlighting the algorithm that performs the best.

6.1 Quality Analysis

In Table 3 we summarize the results obtained for group G1, feature models with
up to 80,000 products. Each column corresponds to one algorithm and in the
rows we show the number of products required to reach 50% up to 100% of total
weighted coverage. The data shown in each cell is the mean and the standard
deviation of the independent runs of 219 feature models. We highlight the best
value for each percentage of weighted coverage.

At first glance we observe that the algorithms based on integer programming
are the best in solution quality for all percentages of weighted coverage. Between
HILP and HINLP the differences are almost insignificant except for 100% cov-
erage, so it is difficult to claim that one algorithm is better than the other. It
is also noteworthy that PPGS is the worst algorithm for 100% coverage while
pICPL is the worst for the rest of percentages of coverage.

Table 3. Mean and standard deviation for G1 instances (219 FMs).

Coverage HILP HINLP PPGS pICPL

50% 1.180.39 1.180.38 1.190.39 1.240.55

75% 1.960.49 1.960.49 1.960.50 2.111.01

80% 2.190.58 2.190.58 2.220.59 2.421.13

85% 2.520.70 2.520.70 2.540.70 2.761.31

90% 2.980.86 2.990.87 3.000.87 3.361.56

95% 3.931.14 3.931.14 3.951.17 4.432.07

100% 9.216.31 8.995.06 9.456.81 9.236.41

In order to check if the differences between the algorithms are statistically
significant or just a matter of chance, we applied the non-parametric Kruskal-
Wallis test with a confidence level of 95% (p-value under 0.05). In summary
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the number of times that one algorithm is statistically better than the other
algorithms is as follows: HILP in 11 out of 21 comparisons (7% and 3 other
algorithms), HINLP in 10 out of 21, PPGS in 7 out of 21, and pICPL 1 out of 21.
These results confirm that for G1 the algorithms based on integer programming
are statistically better than the other proposals, so they are able to compute
better sets of prioritized test data than PPGS and pICPL.

Let us now focus on group G2, feature models with measured weight values.
In Table 4 we show the results for this group of real instances. Here, pICPL
and PPGS are the best algorithms in one percentage of coverage, 50% and 80%
respectively. Nevertheless HILP and HINLP are able to compute better test
suites for most percentages of coverage, so the conclusions extracted are similar
than those extracted from the experiments with G1 instances. For 50% and 100%
coverage there are no significant differences among the four algorithms, but in
the rest of scenarios there are significant differences with respect to pICPL.
Therefore, it is clear that pICPL is the worst algorithm for G2 instances. We
want to highlight that there is no difference again between HILP and HINLP.

Table 4. Mean and standard deviation for G2 instances (16 FMs).

Coverage HILP HINLP PPGS pICPL

50% 1, 560,50 1, 560,50 1, 580,49 1, 560,50

75% 2, 630,78 2, 630,78 2, 660,77 2, 750,75

80% 2, 810,81 2, 810,81 2, 810,73 3, 250,97

85% 3, 440,86 3, 440,86 3, 460,87 3, 810,95

90% 4, 061,03 4, 000,94 4, 121,04 4, 561,27

95% 5, 371,05 5, 381,05 5, 451,14 6, 061,44

100% 11, 695,51 11.635.33 12, 086,50 12, 195,68

6.2 Performance Analysis

In Fig. 2 we show the boxplots of the execution time (logarithmic scale) required
by each algorithm in the two group of instances to reach 100% of weighted cover-
age. The median is also shown in text. Regarding the computation time, pICPL
is clearly the fastest algorithm with statistically significant differences with the
rest of algorithms in G1. Actually, in G1 all algorithms are significantly different
from each other. In a closer look at the data, we observe that pICPL has a first
and second quartiles lower than HINLP’s, nevertheless the third pICPL’s quar-
tile is far from HINLP’s. This means that the performance of pICPL decreases
as the instance increases in size. In contrast, HINLP has a smaller inter-quartile
range, then HINLP seems to scale better than pICPL.

Besides, in the comparison between HILP and HINLP, all quartiles are lower
for HINLP, so from these results, it is clear that HINLP produce a boost in
computation time due to the reduction of clauses in comparison with the linear
variant of the algorithm (HILP).
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(a) G1 instances. (b) G2 instances.

Fig. 2. Comparison of algorithms’ execution time in logarithmic scale.

With regard to the G2 group of instances, HINLP is the fastest with signif-
icant differences with the rest of algorithms. In this group of instances, there
are not significant differences between HILP and pICPL. Again, pICPL’s third
quartile is far from the values of HILP and HINLP, then it scales worse than the
integer programming approaches. Although PPGS is not the worst algorithm in
solution quality, in computation time is the worst of the comparison in the two
groups of instances.

As a general conclusion we can say that the two proposed hybrid algorithms
obtain good quality solutions while they are also very competitive in runtime.
Between them, the variant using nonlinear functions is the best in the compari-
son with statistical significant differences. For the benchmark of feature models
analyzed here our proposals do not have scalability problems. Note that some of
the feature models denote ≈1E20 products. Part of our future work is to verify
if this trend holds for feature models with a larger number of products.

7 Threats to Validity

There are two main threats to validity in our work. The first one is related to the
parameters values of the genetic algorithm (PPGS). A change in the values of
these parameters could have an impact in the results of the algorithm. Thus, we
can only claim that the conclusions are valid for the combination of parameter
values that we used, which are quite standard in the field. Second, the selection of
feature models for the experimental corpus can indeed bias the results obtained.
In order to mitigate this threat, we used three different priority assignment
methods, five percentages of prioritized products, and different sources for our
feature models. From them we selected a number of feature models as large
as possible, with the widest ranges in both, number of features and number of
products.
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8 Conclusions and Final Remarks

In this paper we have studied the Prioritized Pairwise Test Data Generation
Problem in the context of SPL with the aim of proposing two novel hybrid algo-
rithms. The first one is based on an integer linear formulation (HILP) and the
second is based on a integer quadratic (nonlinear) formulation (HINLP). We
have performed a comparison using 235 feature models of different sizes, differ-
ent priority assignment methods and four different algorithms, the two proposed
algorithms and two algorithms of the state-of-the-art (pICLP and PPGS). Over-
all, the proposed hybrid algorithms are better in solution quality. In computation
time HINLP is the best with significant difference, except for pICPL in G1.

Regarding the comparison between HILP and HINLP, there is no signifi-
cant difference in solution quality. The slight existing differences are due to the
different solvers used for dealing with linear and nonlinear functions. In con-
trast, concerning the execution time, there are significant differences between
them. The nonlinear variant outperformed the linear variant. The reason behind
this improvement in performance could be the number of clauses (constraints)
not needed by the nonlinear variant to represent the covered pairs. Then, we can
avoid considering a maximum of f ∗(f−1)∗2 constraints5 (total number of valid
pairs). Moreover, the nonlinear technique has no scalability issues computing the
feature models analyzed here. Therefore, with no doubt the best algorithm in
our comparison is HINLP.

There are two promising future lines possible after the work contained in this
paper. Broadly speaking, these lines are search for the limits of the nonlinear
approach applying this technique to larger feature models and the test suites
computation using the whole test suite approach [25]. In this last regard, the
hybrid approaches do not assure the optimum because they are constructive
algorithms that only deal with one product at a time. Obtaining the Pareto
front would require the computation of several products at a time and multiple
executions of the algorithm with different upper bounds in number of products.
Preliminary results suggest that the number of variables and constraints grow
very fast with the number of products computed, what could be an issue for the
integer programming solver. Further research will be needed in that direction.
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Abstract. JavaScript has become one of the widely-used languages. However,
as the size of JavaScript-based applications grows, the number of defects grows
as well. Recent studies have produced a set of manually defined rules to identify
these defects. We propose, in this work, the automation of deriving these rules to
ensure scalability and potentially the detection of a wider set of defects without
requiring any extensive knowledge on rules tuning. To this end, we rely on a base
of existing code smells that is used to train the detection rules using Genetic
Programming and find the best threshold of metrics composing the rules. The
evaluation of our work on 9 JavaScript web projects has shown promising results
in terms of detection precision of 92% and recall of 85%, with no threshold tuning
required.

1 Introduction

JavaScript (JS) has been revolutionizing the web by combining services, libraries, and
services from various third party providers. It was initially born to exclusively serve as
a scripting standard at the browser level but it has drastically expanded to take over the
lead in managing web N-tier architectures and as a result, 98% of the most visited
websites incorporate JS [1]. The popularity of JS is issued from its dynamically-typed
nature [2] and the wide variety of features it can quickly and dynamically include on the
fly [3]. On the other hand, dynamically-typed languages, in general, have proven to be
difficult to analyze, and thus, their catalog of development supporting tools suffers, and
JavaScript is no exception [4]. With the rapid growth of JS applications in terms of size,
rich interpolated functionalities at the expense of complexity and the lack of tools
support, it is becoming a maintenance nightmare of developers [5]. Just like any other
language, JS suffers from bad programming decisions, known as code smells [6], that
can be introduced during the initial software development or during adding new features
or applying debugging patches. The existence of code smells indicates the poor software
quality and it increases the risk of introducing bugs. With the fact that JS is an interpreted
language, the absence of a compiler that may raise warnings about potential runtime
errors, adding to that the ability to include more code on the runtime through prototyping
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makes it hard to maintain a defect-free JS code base [7]. So code smells detection can
be seen as a preventive task to minimize the number of bugs.

Unlike Object-Oriented (OO) languages, in which code smell detection and correc‐
tion have been widely studied in the literature, there isn’t much work tackling these
smells in JS for various reasons, for instance, JS naturally does not necessarily comply
with object oriented design rules, although it supports their implementation, further‐
more, the lack of modeling support for JS prevents the automated identification of any
high-level design anti-patterns. Still, several studies have approached the detection of
bad development behavior in JS, in which, the most developed family of tools is for
static analysis of programs, mostly for detecting very low-level errors in the code.
Although tools such as JSLint [8], and JSHint [9] are great for syntactical issues like
missing semi-colons and enforcing organizational policy, they do not support the high-
level detection of structural defects within the source code that may not be as obvious.

The main challenge of detecting code smells in JS is the inability of statically calcu‐
late structural measurements e.g., coupling and cohesion, which can be combined to
create code smells detection rules. To capture these interaction properties between JS
objects, static analysis has to be augmented with dynamic analysis. On the flipside,
dynamic analysis is more costly in terms of time and performance, also, in many state‐
ments and dependencies cannot be analyzed at runtime until triggered by a given input
or scenario. Still, various studies have been conducted in the context of dynamic analysis
to detect type inconsistencies [10], event related [11] cross-browser testing [12] and
code smell detection [13]. The latter work labeled JSNOSE [13] extracts a set of static
metrics from the static analysis of JS objects and monitor their behavior during the
application runtime. Using this combination, it uses the rule-based approach to identify
high-level disharmonies, which are similar to a subset of the code smells that exist in
literature, as well as smells that exist specific to JavaScript. In addition, JSNOSE allows
developers to extend the list of possible smells to detect. In this approach, rules are
manually defined to identify the key symptoms that characterize a code-smell using a
set of limited quantitative metrics. However, in a more concrete setting, the number of
possible code-smells to manually characterize with rules can be large. Moreover, for
each code-smell, rules that are expressed in terms of metrics require continuous cali‐
bration efforts to find the right threshold especially in a highly dynamic environment
like JS.

To cope the above-mentioned limitations, we propose in this paper the automated
tuning of code-smells detection rules using a dataset of existing code-smells. The process
aims at finding, for each JS object, a subset of similar objects in the base of examples,
then, using this subset of objects with their known smells, we use the Genetic Program‐
ming to tune the threshold of quantitative metrics in order to maximize the coverage of
the detected smells in the subset. These calibrated metrics will be later on used to detect
smells in JS. The evaluation of our work on 9 JS web projects has shown promising
results in achieving a detection of a subset of JS smells that were reported by JSNOSE
with 92% precision, with no metrics tuning needed.

The remainder of this paper is structured as follows. Section 2 provides the back‐
ground required to understand our approach and the challenges in detecting code-smells
in JS. In Sect. 3, we describe our approach and show how we deployed a GP to tune
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metrics that will be used for the smells detection. Section 4 presents and discusses the
results obtained by comparing our approach with JSNOSE. Related work is discussed
in Sect. 5, while in Sect. 6 we conclude and suggest future research directions.

2 Background and Problem Statement

After nearly two decades since code smells were introduced by Fowler [6], there is no
consensus on how to standardize the definition of code smells. Several studies have been
characterizing smells by their symptoms at the source code level that are be measured
by structural metrics [14] or using history of code changes [15] or even using textual
information extracted from the code base internal and external documentation [16]. It
is to note that dynamic analysis was not solicited in the detection process mainly due to
its complexity and also because static analysis offers a rich catalog of metrics that be
used to create detection rules. However, this does not apply to JS. JS revolution in the
last decade was driven by the dynamic manipulation of the Document Object Model
(DOM) and XML objects under several web protocols [17]. The tremendous growth of
JS web application has negatively impacted their maintenance especially with the prop‐
agation of the JS technology to become the leading language for servers and web data‐
bases [18]. In this context, Mesbah et al. [13] discovered the existence of traditional
code smells in JS and clustered them into “classic” smells that are derived from the
literature and “JS-specific” smells that identify exclusive bad programming patterns in
JS. Since we aim at using the knowledge from existing smells detection literature, this
paper will only focus on detecting the first type of the smells. Table 1 summarizes the
code smells detected by JSNOSE and studied in this work.

Table 1. Detection Rules for JS code smells [13].

Code smell Level Detection rule Structural metrics
Many global
variables

File GLB > 10 GLB: Number of global
variables
NOP: Number of properties
LOC: Lines of code
MLOC: Method lines of code
PAR: Number of parameters
BUR: Base-Object usage ratio
NOC: Number of cases

Large object Object LOC > 750 OR
NOP > 20

Lazy object Object NOP < 3
Long method Method MLOC > 50
Long parameter list Method PAR > 5
Refused Bequest Object BUR < 1/3 AND

NOP > 2
Switch statement Method NOC > 3

Although JSNOSE has given promising results, it suffers from scalability issues as
the application of the above-mentioned rules requires the manual calibration of thresh‐
olds which tends to be subjective, human intensive and error prone. Furthermore,
previous detection studies resulted in several approximations of each smell in terms a
set of metrics that be deployed to its identification and addressing this limitation by
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asking the developers to redefine their own rules is difficult as it needs an extensive
knowledge about analysis and requires qualitative validation.

Recent studies [19, 20] have been investigating how developers rely on OO meth‐
odology when designing their JS code-base and have demonstrated the existence of OO-
like structures and code-elements in JS [21]. Therefore, the main contribution of this
paper is driven by the following research question: How to consider the existing knowl‐
edge in detecting bad programming practices in OO languages in the detection similar
practices in JS. A straightforward approach would be to deploy existing detection tech‐
niques, defined for OO, to JS, but the detection process relies essentially on a profound
static analysis that allows the definition of smells using a rich set of structural metrics,
which are limited in the context of JS. Our contribution relies essentially on exploiting
the similarity between JS and Java in order to identify smelly JS elements if they are
similar to smelly Java elements. Also, we propose to address the above-mentioned limi‐
tations of JSNOSE by automatically generating thresholds for detection rules. Moreover,
the base of smells examples can be generated using any developer-preferred existing
detection tool in order to tune the rules to detect similar-smells in JS.

3 Approach Overview

The general workflow of this approach is decomposed into 4 main stages as shown
Fig. 1. The 4 stages are described in this Section.

(1) JS entities enumeration. Our approach, built upon JSNOSE, inputting the web
app, containing JS files, to the crawler. Once JS files extracted and parsed, the set
of extracted JS Entities, called JSE, (e.g., objects, properties) is sent to the Similarity
Calculator.

(2) Similar Elements extraction. This module takes as input JS entities and code
elements from existing software systems. The purpose of this process is to extract
code elements that are mostly similar in terms of structural properties, this set of
similar extracted elements is labeled SEE. To avoid the exhaustive comparison
between JS entities with all the code elements from the code base, which can
become easily large, we apply an initial matching between them as follows [19]
(Table 2):

Then for each pair of entity/code element, we calculate their structural similarity.
We consider this process similar to structural code clone detection and we extend
this existing metric-based technique [22] that identifies exact elements by loosening

Table 2. Initial mapping between JS entities and code elements

Code
element

JS entity

Class File/Object
Attribute Property
Method Function/Inner function
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this exactitude to a certain threshold. Let MX = <m1(X), …, mn(X)> be the set of
metrics characterizing the entity X; mi(X) (i = 1 … n) stands for the i-th software
metric chosen to describe X, and n is a fixed number metrics describing the entities.
Any other entity Y is considered similar to X with threshold α iff:

Sim(X, Y) =

n∑
i=1

||mi(X) − mi(y)
|| <

n∑
i=1

𝛼i (1)

In order to automatically approximate α for each metrics, we use the box-plot tech‐
nique to select near lower bound of the values space. Using these values, for each
JS entity a subset of code elements will be traced.

(3) Metrics thresholds calibration. The purpose of this step is to update the thresholds
of JS detection rules. To do so, we first extract the smelly elements, called SmellyE,
from SEE. The detection of those elements can be done with any state-of-art detec‐
tion tool, in this study we used infusion to detect smelly elements in our base of
example projects. Also, this detection process may be done prior to running the
calibration algorithm for performance purposes. Once the set of SmellyE is known,
for each smell type a detection rule is generated. Therefore, for each generated rule,
the metrics used by JSNOSE undergo the calibration process by inputting them in
a tree structure. the tuning process aims in tuning metrics thresholds in order to
maximize the number of detected smells in SmellyE, this way, the tuned rule can
be used later on to detect smells in JS.

Fig. 1. Approach overview.

Solution Representation. Since our aim is to only tune thresholds for given rules, the
individual initial setup was seeded with JSNose built in rules.

Solution Evaluation. The GP Initially takes as input the list of code elements, which
were previously selected based on their similarity with a given JS entity. Initially, the
calibrator tests whether a subset of elements contain smells. If the elements are smell
free then the subset will be discarded and no calibration needed. Otherwise, the code
smell types will be sorted based on their occurrence and the most occurring smell type
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triggers the GP’s evolutionary process of tuning its metrics’ thresholds. The fitness
function used evolves the rule towards maximizing the detection of the infected elements
in SmellyE, the set of identified smells is labeled DSmellyE.

Solution Evolution. Since the rules structure was not to change, the crossover was not
solicited. Also, the uniform subtree mutation [23] was constrained to act exclusively on
nodes with values and the function was only allowed to update the value by randomly
adding or subtracting a randomly selected number between 0 and 1. After several gener‐
ations, once the stopping criterion is met, the best solution i.e., a rule with the best
detection ranking is then sent to back to JSNose to be used for the detection process.
The following table gives a summary of the terminals used in the GP algorithm (Table 3).

Table 3. GP Terminology.

Term Definition
JSE Set of JS extracted entities, subject to smell investigation
SEE Set of extracted elements from existing projects as they exhibit a strong

structural similarity with the elements in JSE
SmellyE Subset of JSE that are infected with code smells
DSmellyE Subset of SmellyE that were identified by the detection rule

The following pseudo-code highlights the adaptation of GP for the problem of
detection rules generation.

Algorithm1. Metrics calibration using GP for each smell type
Input: Subset of JSE, infected with code smells (SmellyE)
Input: Metrics (R)
Output: Detection rule
1: Create a random Population (P) of Individuals (I)
2: Randomly create a rule using metrics I rule(R)
3: repeat

4: for all I ∈P do
5: DSmellyE I.executeRule(SmellyE)
6: I.fitness DSmellyE SmellyE
7: end for
8: BestIndividual Rank(P, BestIndividual)
9: P reproducePopulation(P)
10:
11: generation generation+1;
12: until generation = maxGeneration
13: return BestIndividual

(4) Code Smells Detection. The GP returns an updated detection rule, for any smell type
that was known in the subset of code elements. This rule is then executed to report any
JS entities that their properties do not violate the updated metrics thresholds.
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4 Initial Evaluation Study

4.1 Research Questions

We defined two research questions to address in our experiments.

RQ1: What is the detection performance of the auto-tuned rules in the detection of
several JS smell types?

RQ2: What is the impact of the base of examples’ size on the finding code elements
with similar properties to the JS entities and how similar are the tuned rules to
the ones defined by JSNose?

To answer RQ1, we assess the performance of our detection process by its ability to
replicate the detected smells by JSNOSE for the same given projects. To do so, we run
JSNose to re-generate the code smells that we consider as expected. Then we run our
approach to generating our suggested smells. These expected and suggested smells are
used to calculate the precision and recall as follows:

PRprecision =
| suggested smells ∩ expected smells|

|suggested smells|
∈ [0, 1] RCrecall =

| suggested smells ∩ expected smells|
|expected smells|

∈ [0, 1] (2)

For RQ2 we want to study the impact of varying the size of the dataset on the
performance of the similarity process. We also illustrate the results by manually veri‐
fying a set of the reported JS entities.

4.2 Experimental Setting

To build our dataset of example, we randomly sampled 100 small to early medium open
source projects. We limited the size of our projects files based on our initial observation
that the average size of the JS projects is small. The sampled projects were 61 Java
Projects and 39 C++ projects, this helps in diversifying the set of examples especially
that C++ is not purely object oriented. To detect smells within the dataset, we used two
state-of-art code smell detectors namely InCode [14] and PMD [24]. To reduce the cost
of parsing several projects, we performed the detection process prior to running the GP
and saved the results (Code elements, their metrics and the list of infected ones) on
separate log files1. We tried selecting the projects previously used in JSNose as the JS
smells were manually validated on that study. We couldn’t locate two of the projects. It
is also to note that the TinyMCE project is still under continuous development and its
size has increased compared to when it was tested using the original experiment of
JSNose. Since the previously used releases were not mentioned and the number of added
smells is relatively low, we included it in our benchmark (Table 4).

1 For replication purposes, the dataset and tools used are located in: https://github.com/mkaouer/
Code-Smells-Detection-in-JavaScript.
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Table 4. Projects constituting the benchmark for our approach.

Systems Number of JS files JS LOC Number of infected JS
entities

PeriodicTable 1 71 23
CollegeVis 1 177 53
ChessGame 2 198 64
Tunnel 0 234 54
GhostBusters 0 278 49
FractalViewer 8 1245 212
PhotoGallery 5 1535 221
TinySiteCMS 13 2496 172
TinyMCE 191 26908 59

During this study, we use the same parameter setting for all executions of the GP.
The parameter setting is specified in Table 5.

Table 5. Parameter tuning for GP.

GP parameter Values
Population size/Max tree depth 50/2
Selection/Survival/K Roulette-Wheel/K-Tournament/2
Mutation/Mutation rate/Range Uniform-Sub-tree/0.1/[0…1]
Max iterations 1000/2500/5000

4.3 Results and Discussions

As an answer to RQ1, Table 6 reports the results of the empirical qualitative evaluation
of the tuned detection rules in terms of precision and recall.

It is observed in Table 6 that our GP algorithm was able in most cases to replicate
the results of JSNose. For reporting a high number of global variables, GP and JSNose
performed the same except for PeriodicTable project, which GP’s acceptance threshold
was lower than JSNose. Since Global variables are highly discouraged especially in OO
programs, having 6 global variables in PeriodicTable was considered high. For the large
object defect, it is to note that, JSNose has not reported any instance for the GhostBusters
and PhotoGallery project which was not the case for GP, since, in relational program‐
ming, several classes and files have the blob behavior, it is most likely to find several
functions condensed in one entity and this increases the chance of detecting them as
large entities. For the lazy object, GP has missed several smells that were reported by
JSNose mainly in projects with limited size. However, in larger projects, GP reported
more smells than JSNose. Both algorithms have almost agreed on the long method, long
parameter list and refused bequest smells, this was expected especially that the definition
of these smells that was adopted by JSNose matches the exact same rules used by InCode
[14] since the authors of JSNose tuned the exact subtree, previously proposed by the
authors of InCode. It can be also seen that; in general, the recall was usually lower than
the precision for the small-sized JS projects while the precision was mostly lower for
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the projects which were larger like TinySiteCMS and TinyMCE. This induces that GP
tends to be stricter on smaller projects while its rules become less selective. To better
understand if this is due to the random sampling of the projects or due to the number of
similar code elements that were selected during the training of GP rules, we conducted
thought of tuning the rules with only smells that existed different releases within the
same project. During multiple releases of a software, several features are added, bugs
are fixed and refactorings conducted, this induces several changes in the software struc‐
ture and any smell that would survive throughout these changes can be considered
persistent. To do so, we picked, for each project, 4 previous releases and we conducted
the same static analysis to generate all the structural metrics and we analyzed them with
PMD and infusion, then we ruled out all the smells that didn’t exist throughout the total
of 5 releases. Then we re-conducted threshold of our rules. The following Fig. 2 shows
the comparison of tuning with one release for each project (GP1R) with the one with 5
releases (GP5R).

As observed in Fig. 2, GP5R has increased the recall score of rules with multiples
metrics (e.g., lazy object, refused bequest) and this can be explained by the fact that
tuning the threshold with fewer but persistent smells makes the detection harder and
fewer fittest rules evolve during the GP. On the other hand, the precision of GP5R for
refused bequest has reduced.

For RQ2, Fig. 3 shows that the number of existing projects in this study has provided
enough elements that are structurally similar to the JS elements under analysis. In
general, it was easier to quickly find functions with equivalent size and number of
parameters and the similarity has converged into an acceptable range earlier compared
to the objects and files; it was harder to find similar classes in terms of number of lines
of code and number of properties and functions, especially that the JS projects sizes were

Table 6. Median values of precision and recall for the JS code smells in 9 JS web projects over
31 runs. Differences are highlighted

Software

Many global 
variables

Large
object

Lazy
object

Long 
method

Long 
parameter list

Refused 
Bequest

Switch 
statement

Median per 
Project

GP
(+/-)

JSNose
(+/-)

PRE
(%)

REC 
(%)

PRE
(%)

REC
(%)

PRE
(%)

REC 
(%)

PRE
(%)

REC 
(%)

PRE
(%)

REC 
(%)

PRE
(%)

REC 
(%)

PRE
(%)

REC
(%)

PeriodicTable + - 1 0.25 1 0.40 1 1 1 1 1 1 1 1 1 0.77

CollegeVis + + 1 1 1 0.37 1 0.5 1 1 1 1 1 1 1 0.81

ChessGame + + 1 0.77 1 0.55 1 1 1 1 1 1 1 1 1 0.88

Tunnel + + 1 1 1 0.59 1 1 1 1 1 1 1 1 1 0.93

GhostBusters - - 0 0 1 0.65 1 1 1 0.33 1 1 1 1 0.83 0.66

FractalViewer + + 1 0.71 1 1 0.83 1 1 0.80 1 0.93 1 1 0.97 0.90

PhotoGallery + + 0 0 1 1 1 1 1 1 1 1 1 1 0.83 0.83

TinySiteCMS + + 1 0.77 0.86 1 1 1 0.51 1 1 1 1 1 0.89 0.96

TinyMCE - - 0.60 1 0.78 1 1 1 0.44 1 1 0.77 1 0.66 0.80 0.94

Median per 
Smell

N/A N/A 0.73 0.61 0.96 0.72 0.98 0.94 0.88 0.90 1 0.93 1 0.96 0.92 0.85
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relatively small and so is for the projects that were also small and thus the number of
classes was limited per project.

Fig. 3. Impact of the number of projects on the similarity between JS entities and code elements.

To illustrate the similarity between JS smells and the ones in the base of examples
we extracted some JS smell instances and an equivalent selected code element from the
base of examples with a smell instance.

As shown in Fig. 4, an object to be instantiated can be exceedingly large and often
the object has many properties and functions that distinguish it as a code smell. Notice
how it is logical to group the properties that are defined by lines 2 to 6. They are funda‐
mental to the image entity. Lines 7 through 18 are really about effects, and so it may
make sense to encapsulate these properties into their own object, perhaps called Image‐
Effects, and then include the object as a dependency within Image. As the code stands
in the figure, the Image object is concerned about the properties of a text that the user
may add while editing. Good software engineering practices suggest to separate

Fig. 2. Median values of precision and recall of GP1R and GP5R for the JS code smells in 9 JS
web projects over 31 runs.
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concerns, and so it would also make sense to also encapsulate text properties into their
own object. This smell is similar to the blob classes which are characterized by being
data-driven highly cohesive and standalone objects (no inheritance and rare coupling).

Large object detected in PhotoGallery Blob class detected in JVacation 

Fig. 4. JS Large object smell.

As shown in Fig. 5, a long parameter list is a straightforward to detect code smell,
it is an important smell to fix because of two reasons. First, the long list of parameters
hurts the understandability of the code and so developers will experience difficulty in
capturing the method’s behavior. Even if the name of the method implies that the image
will be rotated, but why are there so many parameters? What does makeCopy have to
do with rotating an image? Clearly, this adds some confusion if a developer is not
familiar with the function. And it can result in confusion even to someone who wrote
the method but needs to revisit it in order to modify the behavior. Secondly, having so
many parameters could potentially indicate that the method has assumed more than one
responsibility as it has evolved over time. It is often simpler, and easier for developers
to quickly add another parameter, and then create a ‘special case’, or a typical branch
of execution for the respective arguments in order to tailor the method to new require‐
ments. This is where smells become introduced over the lifetime of an application in
either JS or any other language. Having such a long list of parameters like in the
constructor in Fig. 5 makes its invocation difficult as well.

Fig. 5. Long parameter list smell seen in JS function rotateImage and Java constructor
TourOperator
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Refused Bequest in an object-oriented language such as Java refers to any class that
extends some parent/base class but does neither use or override a reasonable amount of
the base class’s behavior nor uses a reasonable amount of its properties. In JavaScript,
the concept is slightly different but it can still be applied. JavaScript is class-free but it
uses prototype-based inheritance. That is, object A can share properties from another
object, B, the prototype. As shown in this figure, there is a JSON object created called
photo. That object has some simple information about the image’s owner, a date, as well
as data about how the photo was developed. Another object is created that uses this photo
object as its prototype, meaning it has access and shares the same properties like stop‐
BathTime. However, the Instagram object adds a new member to itself, filter, and only
uses one of the original properties from the photo object. The Instagram objects use of
the photo object’s properties does not justify its extension. Similarly, DBConnector class
extends DBFactory but defines its own attribute and two functions without really using
any of the properties of its parent class. Both situations can be detected through a low
value of the base-object usage ratio metric (Fig. 6).

Fig. 6. Refused bequest smell seen in JS function Instagram and Java class DBConnector

5 Related Work

The detection of code smells on software systems has been the subject of several studies
over the past decade since their first introduction by Fowler and Beck [6]. They described
22 code smells as structural code flaws that may decrease the overall software quality
and serve as indicators of software vulnerabilities. To cope with these smells, Fowler
has introduced a set of 72 Refactoring operations to fix code smells and thus improving
the system overall design. The detection process can either be manual, semi-automated
or fully automated. Van Emden and Moonen developed one of the first automated code-
smell detection tools for Java programs [25]. Mäntylä et al. [26] provided an initial
formalization of the code smells, in terms of metrics, based on analyzing Fowler’s smells
description, they studied the correlation between the smells and provided a classification
according to their similarity. Marinescu et al. [27] presented an automated framework
for smells identification using detection strategies which are defined by metric-based
rules. Moha et al. [28] presented a semi-automated technique called DECOR. This
framework allows subjects to manually suggest their own defects through their descrip‐
tion with domain specific language, then the framework automatically searches for
smells and visually reports any finding. Most of the above-mentioned work focus mainly
on smells specification in order to automate their detection without taking the develo‐
per’s opinion in the detection process. To better incorporate the developer’s preference,
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Kessentini et al. [29] suggested a by-Example approach that uses a base of previously
detected code smells as a base of examples to generate user-oriented detection rules.
This work was extended [30] to reduce the effort of the detection and correction process.
The main limitation of the by-Example approach is the requirement of a large base of
examples (manually detected and validated code smells) for each code smell type, this
work does not rely on the use of a manually validated database of JS code smells exam‐
ples, instead, any project can be used as a training through the automated generation of
its smells instances using any detection tool.

6 Threats to Validity

In our experiments, we raise multiple construct threats that are related to the random
sampling of the projects that belong to the base of examples, we mitigated this threat by
selecting projects from two languages that both support object oriented concepts and
their size was proportional to the size range of the JS projects. Also, the types of smells
that exist in the base of examples represents another threat. We have used two state of
the art and very popular detection tools that are known for their accuracy and also they
are being cited by the authors of JSNOSE. We take into account the internal threats to
validity in the use of stochastic algorithms since our experimental study is performed
based on 31 independent simulation runs for each problem instance and the obtained
results are statistically analyzed by using the Wilcoxon rank sum test with a 95% confi‐
dence level (α = 5%). Another threat is raised through the lack of metrics that may better
capture the structure and properties of elements. As part of our future work, we are
investigating the use of dynamic analysis to capture the call graphs of objects and records
their afferent and efferent communications to be able to approximate their coupling and
cohesion scores.

7 Conclusion and Future Work

The paper introduces a novel detection of the JS code-smells using classic smelly exam‐
ples that are extracted from existing C++ and Java projects. The purpose of this paper
was to automate the tuning of JS detection rules in order to avoid human intervention
and to also take achieve example-like detection that benefits from the maturity of existing
studies. This tuning has required the extension of a specific similarity function to identify
structurally similar entities between JS and the elements extracted from the base of
examples. The tuning process was done by GP that has taken as input the JS detection
rules that have been evolving to detect the expected smells in the extracted subset of
elements. The evaluation of this work has shown promising results that have proven the
capability of our approach to replicate the results of JSNose with 92% precision.

We are planning as future work to extend the base of code smells and identify popular
method-level defects such as feature envy and shotgun surgery, to do so, it is necessary
to extend the base of metrics used to define the rules as measures like coupling, cohesion
and complexity are mandatory to accurately detect those smells. This will require further
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investigation on how to measure these metrics on JS dynamic environment. We also
plan on extending the evaluation to incorporate front end and back end JS projects.
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Abstract. Akka is a widely-used high-performance and distributed
computing toolkit for fine-grained concurrency, written in Scala for the
Java Virtual Machine. Although Akka elegantly simplifies the process
of building complex parallel software, many crucial decisions that affect
system performance are deferred to the user. Employing the method
of Deep Parameter Tuning to extract embedded ‘magic numbers’ from
source code, we use the CMA-ES evolutionary computation algorithm
to optimise the concurrent implementation of three widely-used divide-
and-conquer algorithms within the Akka toolkit: Quicksort, Strassen’s
matrix multiplication, and the Fast Fourier Transform.

Keywords: Genetic improvement · Concurrency · Scala · JVM · Akka ·
Deep parameter tuning · Divide and Conquer · FFT · Matrix multipli-
cation · Quicksort

1 Introduction

Support for concurrency is an important requirement when developing software
for modern multicore systems, but the cognitive and development-time overheads
of creating and manually-configuring concurrent and parallel systems are high
[7]. In mediation of this difficulty, frameworks offering powerful concurrency
support are now routinely used. Akka is the de facto standard for concurrency
in Java and Scala; the strengths of Akka’s concurrency model include:

– Immutability: the absence of mutable data eliminates many race conditions.
– Lightweight: many hundreds of processes can share a thread.
– Fault Tolerance: via the ‘let it crash’ philosophy popularised by Erlang [4].

In this paper, we define a generic template for divide and conquer algo-
rithms in Akka and use it to express concurrent versions of three well-known
and ubiquitous algorithms: the Fast Fourier Transform (FFT) [8], quicksort [14],
and Strassen’s matrix multiplication [21]. We then apply the method of Deep
Parameter Tuning (DPT) [26] to optimise these algorithms for execution time.
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2 Algorithms

Here we provide brief descriptions of the algorithms under optimisation, all of
which are widely used and applicable to a large range of different problem areas.

2.1 Fast Fourier Transform

The FFT is an algorithm for computing the Discrete Fourier Transform (DFT) or
its inverse of a sequence of complex numbers. The FFT is ubiquitous in signal and
image processing and analysis, in order to refocus images, remove pattern noise,
recover unclear images, pattern recurrence etc. [19]. The näıve approach uses
a series of multiplications and additions of sinusoidal waves, resulting in O(n2)
complexity. In contrast, the FFT achieves O(n log n) complexity by decompos-
ing the DFT into even and odd components, calculating their transforms and
then fusing them back together. This asymptotic complexity is also beneficial
in polynomial arithmetic where it is often preferred over the Karatsuba [15] or
näıve) algorithms of O(nlog 3) and O(n2) complexities respectively. There are
different variants of the FFT, but all utilise the same properties of the DFT—
periodicity and complex conjugate symmetry. The version implemented here is
due to Cooley and Tukey [9].

2.2 Quicksort

Quicksort is a divide and conquer sorting algorithm [14], and is popular due to
its average case time complexity of O(n log(n)). A heuristically-selected element
is chosen as a pivot point, and the sequence is partitioned such that all of the
elements in one subsequence are ‘less than’ the value of the element in the
pivot position, and all the elements in the other subsequence are ‘greater than’
it. The sorting process is then recursively applied to the subsequences. The
sequential performance of the algorithm is in practice heavily-dependent on the
choice of pivot point, but due to its recursive nature, it is naturally suited to
parallelisation. Previous work optimising quicksort for energy consumption used
Genetic Programming to obtain an improved pivot function [23].

2.3 Strassen’s Matrix Multiplication

Strassen’s algorithm [21] is a divide and conquer approach that reduces the
complexity of matrix multiplication from O(n3) to O(n2.8074). Asymptotically
faster algorithms exist, but are rarely used since their high constant factor makes
them impractical. The gain in Strassen’s algorithm is achieved by reducing the
number of recursive calls. Although this comes at a greater storage cost, the
trade-off is often preferable.

3 Implementation

We now describe the implementation details of our chosen algorithms within the
Akka toolkit, give a little background on the Akka Dispatcher, and describe the
optimisation framework that performs Deep Parameter Tuning (DPT).
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3.1 Akka Message Dispatcher

Our algorithm implementations rely upon concurrency support from Akka. One
of the essential building blocks of Akka concurrency is the Future, a widely-used
notion in functional programming that acts as a kind of ‘container’1 for holding
the eventual result of some concurrent operation. For example, an object of type
Future[Double] will eventually yield a Double value. Our implementations use
Futures to queue units of work as the problem is recursively subdivided.

Whilst the implementations themselves determine the division of the prob-
lem into subproblems represented as Futures, the details of how their concur-
rent execution is managed are deferred to Akka. The specific choice of con-
currency policy to be used by Akka is encapsulated by an ExecutionContext.
The ExecutionContext dispatcher manages the dispatch of threads used to exe-
cute Futures. We use the default dispatcher, known as the “fork-join-executor”,
which gives “excellent performance in most cases.”2 The fork-join executor has
two integer parameters that are discovered by our Deep Parameter Tuning mech-
anism and exposed to the optimisation process:

1. Parallelism Factor—the number of threads to use relative to the number of
physical cores on the machine.

2. Throughput—the fairness of resource sharing between threads.

3.2 Benchmark Implementation

Listing 1 shows our implementation of a DivideAndConquer template (c.f. [25]),
which defines concurrent, an algorithm template that invokes the abstract meth-
ods shouldDivide, sequential, divide, and merge. These methods are sub-
sequently defined in subclasses corresponding to each of our examples: FFT,
Quicksort, and Strassen. The implementation of concurrent uses the Akka
toolkit to represent an ‘inversion of control’ of the well-known recursion pat-
tern of divide and conquer, with the divided arguments evaluated concurrently
via a Future.

The results obtained via the completed Futures are then merged according to
the subclass method implementation. Listing 2 gives the corresponding subclass
implementation for Quicksort: a hard-coded Threshold parameter determines
the point below which the sequential algorithm should be used—the implemen-
tations of Strassen and FFT also make equivalent use of a Threshold parameter.
The implementations of divide and merge can be seen to have a direct corre-
spondence with the implementation of sequential. Listing 3 gives the unit test
for Quicksort, which asserts that both the sequential and concurrent implemen-
tations correctly sort randomly-generated test data.

Our implementation of Strassen’s algorithm utilises an additional tunable
Leaf parameter, which determines whether the matrices should be recursively
split further (down to a size of 1x1), or näıvely multiplied. As with the Threshold

parameter, this decision is independent from Akka.
1 Strictly, a monad.
2 http://doc.akka.io/docs/akka/current/scala/dispatchers.html.

http://doc.akka.io/docs/akka/current/scala/dispatchers.html
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trait DivideAndConquer[Args,Result] {

// Implemented by subclasses:

def shouldDivide(args: Args): Boolean
def sequential(args: Args): Result
def divide(args: Args): Seq[Args]
def merge(results: Seq[Future[Result]])

(implicit ec: ExecutionContext): Future[Result]

//////////////////////

final def concurrent(args: Args): Future[Result] = {
if( !shouldDivide(args) )
Future.successful(sequential(args))

else {
val futures = divide(args).map { Future( concurrent(_) ) }
Future.sequence(futures).flatMap { merge(_) }

}
}

}

Listing 1. Generic concurrent divide and conquer for Akka

3.3 DPT Implementation

Deep Parameter Tuning [26] is a heuristic optimisation method that parses
source code in order to identify performance-critical parameters that are not
exposed via any external interface. The goal is to find ‘magic numbers’ or other
variables that do not modify the semantics of the program, but are critical factors
in determining non-functional properties. Here we implement such an approach
in order to optimise the execution time of our algorithm implementations, by
tuning parameters specific to the algorithms themselves along with those used
by the Akka dispatcher to manage concurrent execution.

We implement a Deep Parameter Tuner (DPT) in Scala. Its top-level oper-
ation is as follows:

1. Parse the Scala source code of the application to be optimised: FFT.scala,
Quicksort.scala, and Strassen.scala. Construct an abstract syntax tree.

2. Extract all embedded ‘magic numbers’, in this case, restricted to integer lit-
erals, by operating on the abstract syntax tree [22].

3. Perform a heuristic search over a parameter vector obtained from the
extracted literals.

It should be emphasised that the DPT tool is agnostic about the nature of
the program it is optimising.
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class Quicksort
extends DivideAndConquer[List[Int],List[Int]] {

val Threshold = 100
val Throughput = 10
val ParallelismFactor = 3

val threadDispatcher =
configureAkka(Throughput,ParallelismFactor)

//////////////////////

override def shouldDivide(data: List[Int]): Boolean =
data.length > Threshold

// well-known recursive implementation:
override def sequential(data: List[Int]): List[Int] = {
if( data.isEmpty ) {
data

} else {
val pivot = data.head
val (left, right) = data.tail partition (_ < pivot)
sequential(left) ++ (pivot :: sequential(right))

}
}

override def divide(data: List[Int]): Seq[List[Int]] = {
val pivot = data.head
val (left,right) = data.tail partition(_ < pivot)
Seq( left, List(pivot), right )

}

override def merge(data: Seq[Future[List[Int]]]):
Future[List[Int]] = {

Future.sequence( data ).map { l =>
l.head ++ l.tail.head ++ l.tail.tail.head

}
}

}

Listing 2. Quicksort via concurrent Divide and Conquer framework
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class TestQuicksort {
@Test
def test: Unit = {

implicit val executionContext: ExecutionContext =
ActorSystem().dispatcher

val ArraySize = 1600000
val testData = List.fill(ArraySize)(randomInt)

val result1 = Quicksort.sequential(testData)
val result2 = Quicksort.concurrent(testData)
assertTrue(isSorted(result1))
assertTrue(isPermutation(testData,result1))
assertEquals(result1, result2)

}
}

Listing 3. Unit Test for Quicksort

The search mechanism used for parameter optimisation is CMA-ES [11], a
well-known evolutionary search mechanism that guides the search process via
an adaptive approximation to the second derivative of the fitness function. The
fitness function supplied to CMA-ES performs wall-clock timing of a modified
version of the original source code, in which the magic numbers in the source
are replaced by the corresponding values of a candidate solution, with vector
elements rounded to the nearest integer. The modified source code is then com-
piled by the Scala compiler and executed via the appropriate test harness (e.g.
as per Listing 3 for Quicksort), which helps ensure correctness of the modified
code. The evaluation of the fitness function is repeated 10 times, and the median
value taken, in order to reduce the impact of nondeterminism on the optimisation
process.

To summarise, for a candidate solution vector v̄ consisting of the proposed
literals, the associated fitness function f(v̄) to be minimised is given by:

f(v̄) =

{
∞, if the test case fails
otherwise, the median time in seconds to run the test case

4 Empirical Evaluation

We evaluated DPT on our three algorithm implementations, to assess the efficacy
of DPT in reducing execution time. We compared the optimised results to a set
of default parameters, and also compared DPT with a random search strategy
to confirm that the evolutionary search is exploiting information in the search
space. For each algorithm, we ran DPT and Random Search 10 times each.
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All experiments were run on the same machine, which was a Windows 10 machine
using a i7-2670QM processor with four physical cores at 2.20 GHz and 8 GB
RAM. Due to ten repetitions per fitness evaluation, and the repeated runs for
statistical testing, the main experiments took several days to complete.

4.1 Tuned Parameters

We evaluated DPT on our three algorithms, with the goal of reducing execution
time by modifying performance-critical parameters in the source code, namely:

1. The size Threshold at which the algorithms terminates recursion and uses a
sequential method instead.

2. The Leaf setting, a parameter specific to the Strassen example, which simi-
larly controls recursive behaviour.

3. Akka’s Parallelism Factor, the number of threads to use relative to the num-
ber of physical cores on the machine.

4. Akka’s Throughput setting, which controls the fairness of resource sharing
between threads.

These parameters were automatically extracted from the source code by our
DPT tool. In general, there is no guarantee that such parameters will not affect
the semantics of a program, a problem that can be mitigated by empirical evalu-
ation using unit tests, and by manual inspection of the results. We implemented
suitable unit tests and, once satisfied that the parameters did not impact the
semantics of the code, we omitted the execution of those tests during the optimi-
sation process to improve efficiency. Post-optimisation, we validated the results
against unseen data, and our confidence is further increased through out knowl-
edge of Akka and the system itself.

We selected a set of default parameter settings, to act as a starting point for
the CMA-ES search, and also as a baseline for comparison with the optimised
settings. These default parameter settings were chosen based partly on Akka
documentation, but also through human judgement: the effectiveness of any
settings are dependent on both the program implementation and host machine.
The defaults are given in Table 1.

Table 1. Default parameter settings for each Algorithm

Algorithm Input size Threshold Leaf Parallelism factor Throughput

FFT 524288 100 N/A 3 100

Quicksort 1000000 100 N/A 3 100

Strassen 800 200 10 3 99
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4.2 Test Data

Each algorithm accepts a numerical vector as input. The size of this vector was
selected for each algorithm to ensure its execution time ran for less than 10 s
using our test machine when using the default parameter settings. The FFT
algorithm implementation requires an input size that is a power of two. The
input sizes for each algorithm are given in Table 1.

4.3 Sample Size

The inherent nondeterminism of concurrent execution creates a noisy fitness
function, which can be exacerbated by the exploration of parameter settings that,
for example, reduce the fairness of scheduling threads. After some exploratory
data analysis, we chose 10 repetitions to form the basis of our fitness evaluation;
we use the median of 10 measurements when evaluating the execution time
of a given candidate solution. This is an imperfect measure, as it still means
that a solution may be regarded by the search as superior only due to variance
in execution time measurement. We evaluate the outputs of the optimisation
separately when comparing against the baseline parameter settings.

4.4 CMA-ES Configuration

The CMA-ES implementation used was from Apache Commons Math [12], using
its default parameter settings3, with an initial sigma one order of magnitude
greater than the default parameters. We execute the search for 100 steps, each
consisting of the 10 executions of the program with a candidate solution of
parameter settings. We take the final output of the search, in the form of the
best parameters found for each benchmark.

4.5 Results

CMA-ES vs Default Parameters. We executed ten runs of the CMA-ES
search for each algorithm. Given the noise inherent in measuring concurrency
performance, we wish avoid reporting the behaviour of a possible outlier. As a
conservative measure of success, we therefore select the optimised parameters
produced by the sixth best result, i.e. an approximation of the median, and
compared the resulting performance to the default parameter settings for that
algorithm. The parameter settings from that result are provided in Table 2. We
took 30 measurements of execution time and report the median in Table 3. We
then compared the two sets of measurements for a significant difference using
a Mann-Whitney U-Test, and calculated the Vargha-Delaney Â12 measure to
quantify effect size. The timing information gathered using the default parame-
ters was tested for normality using the Shapiro-Wilk test, and the test statistic

3 https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.
html.

https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
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Table 2. Default Parameters compared to Optimised Parameter Settings from sixth
best result found by CMA-ES

Algorithm Threshold Leaf Parallelism factor Throughput

Default FFT 100 N/A 3 100

Quicksort 100 N/A 3 100

Strassen 200 10 3 99

CMA-ES FFT 1325 N/A 86 735

Quicksort 2078 N/A 43 277

Strassen 217 187 48 730

Table 3. Median execution time (ET) over 30 runs for default parameter settings and
a representative solution found by CMA-ES. Figures to 2 d.p.

Algorithm Default (s) Optimised (s) P Value Â12

FFT 9.16 3.67 2.87e−11 0.0

Quicksort 3.43 1.93 2.87e−11 0.0

Strassen 3.75 0.47 2.87e−11 0.0

was found to be less than the critical value for the Strassen and Quicksort bench-
marks, meaning that we cannot assume a normal distribution of timing values.
The Shapiro-Wilk test was chosen as the number of samples is sufficiently small
to avoid biases. The Mann-Whitney U test was chosen as we cannot be sure
as to the distribution of timing values and as such a parametric test would be
inappropriate. Similarly, the Vargha-Delaney measure of effect size was chosen
as it too is distribution-agnostic while also being able to handle inputs in the
form of real numbers, as opposed to integers.

CMA-ES clearly made a very significant improvement to execution time, even
when we only consider a representative, rather than best, result. The improve-
ments in execution time are all significant at the p < 0.0167 level (a 0.05 p value
Bonferroni-corrected to reflect our three separate benchmarks), and also have
the strongest possible effect size. Examining the median execution times, we see
an order of magnitude improvement for Strassen, and the execution time for
FFT is more than halved.

CMA-ES vs Random Search. In order to demonstrate that CMA-ES pro-
duced these results through the exploitation of information within the search
space, we implemented a simple random search algorithm as a baseline, and
compared the distribution of optimised execution times against that found by
CMA-ES over the ten runs. A summary of the results for each benchmark are
given in Table 4, and boxplots are given in Fig. 1.

Whilst random search was able to make some improvements to execution
time, they appear small in comparison to the performance of CMA-ES. We
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Table 4. Optimised execution time statistics from CMA-ES and Random Search.
Figures to 2 d.p.

Algorithm Min (s) Max (s) Median (s)

CMA-ES FFT 3.54 3.97 3.84

Quicksort 1.79 2.19 1.91

Strassen 0.44 0.53 0.48

Random Search FFT 8.85 8.96 8.92

Quicksort 3.08 3.57 3.29

Strassen 3.70 3.75 3.74

FFT CMA−ES FFT RS Quicksort CMA−ES Quicksort RS Strassen CMA−ES Strassen RS
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Fig. 1. Execution Times found by CMA-ES and Random Search (RS)

performed a Mann-Whitney U test and calculated the Vargha-Delaney Â12 sta-
tistic for the comparison on each benchmark. While the timings resulting from
the random search optimisation technique are normally distributed, given that
we only have ten samples, we felt that a nonparametric test was safer, and
continuing to use the Mann-Whitney U test maintained consistency with our
previous experiments. The results are given in Table 5. All tests are significant
at the p < 0.05 level, and the effect is as strong as possible for FFT and Strassen,
whilst still strong for Quicksort. This supports our alternative hypothesis, that is
CMA-ES outperforms random search; there exists information in the parameter
space that CMA-ES can exploit to tune concurrent performance.
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Table 5. Results for Mann-Whitney U Test and Vargha-Delaney Effect Size compari-
son between CMA-ES and Random Search. Figures to 2 d.p.

Benchmark p-value Â12

FFT 2.80e−6 0.0

Quicksort 0.0095 0.223

Strassen 1.57e−4 0.0

4.6 Threats to Validity

As observed above, wall-clock measurements of concurrent systems are inher-
ently noisy. We have attempted to mitigate against this by using the largest
input sizes that still allow learning to take place within a reasonable amount
of time, and by taking the median of 10 execution time measurements as our
fitness function. The underlying idea is that with larger input sizes, asymp-
totic behaviour will dominate over ‘constant-of-proportionality’ effects such as
startup-transients caused by Just-In-Time compilation. In addition, we only time
the method call to the benchmark itself, excluding JVM startup overhead.

5 Related Work

Beginning with early work on compiler optimisation [3], there is an extensive
body of work applying semantics-preserving transformations to improve the
non-functional properties (NFPs) of software. Recent work in this area includes
Kocsis et al. [16], which yield a 10,000-fold speedup of database queries on ter-
abyte datasets within the Apache Spark analytics framework by eliminating
redundant database joins and other transformations. Kocsis et al. also automati-
cally repaired 451 systematic errors in the implementation of the Apache Hadoop
HPC framework [17], whilst simultaneously significantly improving performance.

In addition to the work improving Quicksort for energy efficiency mentioned
in Sect. 2, Burles et al. [6], also obtained a 24% improvement in energy consump-
tion by optimising a single widely-used class, ImmutableMultimap, in Google’s
Guava collection library. They used a Genetic Algorithm and constrained the
search space via the behavioural contracts of Object-Orientation. Recent work
that explicitly addresses parallelism includes refactoring Haskell programs via
rewrite rules [5].

Within the last decade there has been increasing interest in the use of stochas-
tic search techniques to optimise NFPs [24], often described as “Genetic Improve-
ment”, relying on Genetic Programming as an optimisation method. Early work
on execution time optimisation using search focused on obtaining patches to
source code [1,13]. More recently, Baudry and Yeboah-Antwi produced ECSELR,
a framework for in-situ runtime optimisation and slimming of software systems,
which can optimize and trade-off functional and non-functional properties [27].
Goa et al. used a Genetic Algorithm to optimise webservice composition, with
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a focus on quality of service [10]. Calderón Trilla et al. also combined search
with static analysis [7] to find worthwhile parallelism, i.e. semantics-preserving
transformations that produce parallelism of meaningful granularity.

In contrast to the optimization of pre-existing software, Agapitos and Lucas
used Genetic Algorithms to evolve sorting functions whose time complexity was
measured experimentally [2]. Vasicek and Mrazek used Cartesian Genetic Pro-
gramming to trade the solution quality of median-finding algorithms against
NFPs such as power efficiency and execution time within embedded systems [18].

6 Conclusion

We applied the method of deep parameter tuning to extract and optimise literal
values from the source code of concurrent versions of three well-known algo-
rithms: FFT, quicksort, and Strassen’s matrix multiplication, which make use of
the Akka concurrency toolkit. We find that a DPT system based on the CMA-ES
evolutionary algorithm achieves significant acceleration of all benchmarks, halv-
ing the execution time of FFT and producing an order of magnitude speed-up
of Strassen’s algorithm.

One of the major challenges in this work was the noisy execution time due to
the inherent nondeterminism of the concurrent algorithms. Whilst CMA-ES did
produce good results, exploratory measurements suggest that finding a gradient
in the search space is quite difficult. Algorithms more suited to noisy fitness
functions may find further improvements.

The execution time of the benchmarks varied according to the architecture
of the host machine: thus for best results it is likely that a certain amount of re-
tuning would be required for a given machine. Recently, Sohn et al. [20] demon-
strated the feasibility of amortised optimisation, that is searching the parameter
space at runtime. Applying amortised optimisation to recursive concurrent soft-
ware may serve as the next challenge for developing this technique.
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Abstract. We present an extension to learning-based testing of systems
for adversary-induced weaknesses that addresses the problem of repeated
generation of known weaknesses. Our approach adds to the normally used
fitness measure a component that computes the similarity of a test to
known tests that revealed a weakness and uses this similarity to penalize
new tests. We instantiated this idea to the testing of ad-hoc wireless
networks using the IACL approach, more precisely to applications in
precision agriculture, and our experiments show that our modification
results in finding substantially different tests from the test(s) that we
want to avoid.

1 Introduction

In the last decade, search-based software engineering has shown substantial suc-
cess in supporting various kinds of testing of systems (see, for example, [1,2]).
But in this time we also have seen an increased need to test distributed appli-
cations, especially for potential abuses by adversarial users with all kinds of
agendas. While there are also approaches for supporting these kinds of testing
problems using evolutionary learning to identify possible weaknesses (see [3–5]),
a problem limiting the use of these testing approaches is that repeated runs of
the testing systems often do not result in identifying many possible weaknesses
without fixing previously found weaknesses first. Naturally, due to the use of
random factors in the search, not every run of such a testing system will have
the same result, but depending on how strongly the used fitness function iden-
tifies a particular weakness of the tested system, many runs can identify the
same weakness over and over again. And, after a risk analysis, a found weakness
might be deemed as unnecessary (or too expensive) to fix and then naturally the
testing system needs to be made aware that this particular test is not considered
a weakness anymore.

In this paper, we present an approach that solves this problem of learning-
based testing. The basic idea is to enhance the used fitness function to allow
specifying previously found weaknesses of the tested system and to penalize
individuals created by the evolutionary search based on their similarity to these
specified weaknesses (in the form of individuals from previous runs). Due to this
intended use of the similarity it concentrates on the difference in the effects an
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attack has on the tested system, considering both the components of the tested
system and its environment. We instantiated this general idea for the IACL
approach to test ad-hoc wireless networks that was presented in [5,6].

Our evaluation of the improved testing system showed that our method finds
rather different solutions (with respect to the behavior of the tested system)
when given a single source solution to avoid. Iterating the process, i.e. adding
the newly created best solution to the set of solutions to avoid, also rather con-
sistently creates solutions that differ from all solutions that should be avoided.

The paper is organized as follows: After this introduction, in Sect. 2 we
present the basic IACL approach. Following that, in Sect. 3, we present our
modification of IACL that allows it to focus away from already known weak-
nesses. In Sect. 4, we describe the instantiation of IACL and our modification to
the application area of precision agriculture. Section 5 presents the experimental
evaluation using the instantiation. In Sect. 6, we relate our work to the known
literature and Sect. 7 concludes with some remarks on future work.

2 The IACL Approach

Incremental Adaptive Corrective Learning (IACL, see [5]) is a search-based test-
ing method for ad-hoc wireless networks. In the following, we will present how
we model a particular test as an individual, then briefly describe the evolution-
ary learning method that zooms in more and more on tests fulfilling a given test
goal and then describe how a given test is evaluated, including how we correct
an individual in order to not obviously violate network protocol requirements.

2.1 General Set-up

An ad-hoc wireless network consists of a collection of mobile wireless nodes
(also called agents) within a geographic area. They exchange messages following
several network protocols that specify requirements for these messages. Usually
these requirements include obligations which result in additional messages being
spread through the network.

A particular test of an application of such a wireless network requires defining
a scenario, which describes the geographical area of the network and behaviors for
each of the nodes. These behaviors can be subdivided into its movements during
a given period of time and its communications during that period of time. More
formally, a scenario S = (geo, tmax, velmax,M,C) consists of the geographical
area geo, the length tmax of the test run, the maximal velocity velmax of any
node, the set M of protocols used and the set C of so-called customer nodes that
are acting within the network.

A particular test adds to S a set A of attack agents (nodes) that are also
acting within the given scenario. Nodes in both A and S perform actions out
of two sets Mov and Comm and their behavior is characterized by an action
sequence for each of them. The set Mov of movement actions consists of actions
either of the form spos or v = (t, head, vel) where spos is a starting position for



Focusing Learning-Based Testing Away from Known Weaknesses 51

the node. v is a movement change action, where t is a real number, 0 ≤ t ≤ tmax,
head is a natural number, 0 ≤ head ≤ 359, giving a direction heading and vel is a
real number, 0 ≤ vel ≤ velmax, giving a velocity, altogether indicating a change
in direction and velocity at a given point in time. The set Comm has elements
of 5 different forms: c ∈ Comm = s|p|in|dr|mo, where s = (t, dest, data) is a
data initiation action, indicating that the node should initiate the procedure
necessary to send data to dest at time index t. p = (t, target) is a so-called
protocol action, which is the result of obligations a node has due to the actions
of other nodes. target is the protocol-induced message sent at t. s- and p-actions
are sufficient to describe the communications of customer nodes.

The other types of actions are used by attack agents to compromise the
network. in = (t, target) represents an insertion action where the agent should
insert the packet specified in target into the network at time t. Drop actions,
d = (t, template), indicate to an agent that it should ignore a protocol-induced
obligation of the form template, which should be sent at t. Finally, modification
actions, mo = (t, tactual, template, target), indicate to an agent that a protocol-
induced packet, template, normally sent at t should be modified by replacing it
with target and sending it at tactual.

In our testing system we are searching for a particular test for a given sce-
nario, which means that we are looking for action sequences for the attack agents.
We will use ASi

cust to refer to the action sequence of customer node i and ASj
att

for the sequence of attack agent j. In general, for a node j an action sequence
has the form aj1, . . . , a

j
n.

2.2 The IACL Main Loop

As usual for an evolutionary algorithm, the main loop of IACL creates genera-
tions of individuals that each represents a test, more precisely action sequences
for the attack agents in A. In order to deal with the very large set of possi-
ble individuals, IACL starts with a small number of attack agents (two) and
increases the number over time (hence the incremental in the name). Whenever
a new attack agent is added, the search first concentrates on the new agent to
adapt its behavior to the behaviors of the already existing agents.

More precisely, IACL first creates npop tests with two attack agents and action
sequences consisting just of a starting position for these agents. After evaluating
these tests (which usually results in them being altered, see next subsection)
using a given fitness function that reflects the test goal(s), we keep the nsurv

best tests and replace all other tests with new ones created by applying various
genetic operators (for more information on the operators, see [7]). This process
of creating new generations is repeated ngGL1 times but may be stopped early,
if for nStall iterations the fitness of the best test does not improve.

After this first general learning phase, the method loops through the following
routine (we describe the i-th loop of nmax). First, an attack agent is added,
resulting in adding an action sequence for this agent to each test that consists
just of a start position. In an adaptive learning phase ALi we create new sets of
tests like described above ngALi

times but apply genetic operators only to the
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action sequence of the new attack agent (with the same condition for stalling as
above). Then we have a general learning phase GLi for ngGLi

generations (with
the same stalling condition) in which the genetic operators now target the action
sequences of all attack agents.

2.3 Evaluating (and Correcting) an Individual

In general, an individual (i.e. a test) is evaluated by running it, together with
the given scenario, in a simulation and collecting information metrics that are
used by the fitness function(s). But, due to the various requirements of the used
network protocols, a newly created individual usually is easily identifiable as
not conforming with the requirements by the customer nodes, which naturally
is not what an adversary in control of attack agents would do. Therefore, in
order to test for realistic attacks, we correct the individuals while doing the
simulation. The performed corrections aim at fixing only unintended problems
of an individual, while preserving the intentional violations of the requirements
that were introduced in ancestors of an individual (or in the creation of the
individual itself) and that are not easily detectable by non-attack nodes in the
network.

With IACL, at the start of the simulation, each agent/node is placed at the
starting position spos of its action sequence. Using the time indexes of each
action in each sequence we move the simulation of the test represented by the
individual forward. If we take the attack agent j and assume that aj1, . . . , a

j
i−1

are the actions in its action sequence that have already been performed and
further assume that the time index for action aji has arrived, then there are the
following three major cases (with some sub-cases) to consider:

Case 1: no protocol-induced obligation (due to receiving a message or another
stimulus) needs to be fulfilled:
If aji ∈ Mov, then j simply performs aji and ASj

att remains unchanged. If aji ∈
Comm we have the following sub-cases, depending on the form of aji .

– form s: agent j starts the execution of the action according to the protocols
in place and ASj

att remains unchanged
– form in: j transmits the packet indicated in in and ASj

att remains unchanged
– form mo or dr: ASj

att needs to be corrected, since there is no packet to modify
or drop. aji is therefore removed from ASj

att

– form p: aji is an artifact from a previous test idea which is no longer required.
aji is removed from ASj

att, node j moves ahead to aji+1 and the simulation
continues.

Case 2: there is a protocol-induced obligation (requiring to send a packet):
As before, if aji ∈ Mov, then j performs aji , but j then also performs the protocol-
induced obligation. And this protocol-induced obligation is inserted into ASj

att as
aji+1 as a p action. j moves ahead to aji+2 in ASj

att and the simulation continues.
If aji ∈ Comm then we do the following, depending on the form of aji :
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– form s or in: node j performs aji and then the protocol-induced action is
inserted into ASj

att as aji+1. j moves ahead to aji+2 (if it exists) and the test
continues.

– form mo or dr: the agent checks to see if the packet listed in the template
area of aji matches the protocol-induced action that the agent is required to
take. Matching involves the agent checking to see if the packets in aji ’s template
area and the protocol-induced action are of the same type, and that their fields
contain the same information. If the packets match, then the protocol-induced
obligation is not performed, and instead aji is executed (this is an intentional
break of the obligation). If the packets do not match, then there has been a
change in the network’s behaviour (compared to a previous test) that caused
aji to be invalid. aji is replaced in ASj

att with a p action corresponding to the
actual protocol-induced obligation, the agent then fulfills this obligation and
the simulation continues.

– form p: If the network-induced obligation matches (see above) the target area
of aji , then the agent fulfills the obligation and the test continues. If it does not
match, then aji is replaced with a new p action reflecting the actual protocol-
induced obligation required of the agent, the agent fulfills the obligation and
the simulation continues.

Case 3: the test has reached a point where the node j has a new network-induced
obligation to fulfill but it has no element ajiat the current time index:
In this case, the agent examines its ASj

att in order to find ajins and ajins+1, where
the time index of ajins is earlier than the current time index and ajins+1’s time
index is greater than the current time index. A new p action corresponding to
the network-induced obligation is created and inserted into ASj

att between ajins
and ajins+1 and the simulation continues.

While the above is the behavior of an attack agent the procedure is the same
for customer nodes, except that customer nodes naturally do not use in, mo or
dr actions.

2.4 Other IACL Components

The two remaining components of IACL not explained so far are the set of genetic
operators and the fitness function(s). Due to the complexity of network protocols,
a large number of genetic operators are needed, together with a strategy on how
to decide what operators should be applied when. Each field in a packet is the
target of at least one mutation operator, but for quite a number of fields there are
more such operators (using knowledge about the role of the field in the protocol).
Other mutations insert actions into action sequences or change communication
actions into drop actions. It is also possible to fragment messages (via such a
mutation operator). Additionally, there are crossover operators that apply to
different levels of a test, switching parts of sequences between different agents
within the same test, between agents in different tests, or switching whole attack
sequences between tests. A detailed description of the various operators and how
they are controlled is given in [7].



54 C. Fleischer and J. Denzinger

Naturally, the chosen fitness function is very important for finding tests that
fulfill a test goal, i.e. tests that find a particular kind of weakness of the tested
system. While usually there is an obvious metric that measures the fulfillment
of a particular goal by a test (resp. its simulation), as [6] (and for a totally
different kind of system [4]) showed, additional metrics are needed to guide
a learning-based testing system toward tests that fulfill the given goal. To deal
with this need for combining metrics and the fact that different test goals require
different metric combinations [5,6] used fitness functions that essentially com-
puted the weighted Euclidean distance between the position of an individual in
the n-dimensional space created by n metrics and a so-called goal point in the
same space which represents the “optimal” combination of metric values for the
test goal. While there are some rather general metrics, many of the metrics are
application- and some test goal-dependent.

3 Modifying IACL to Avoid Known Solutions

Since evolutionary algorithms at their core are optimization methods, it is not
exactly surprising that performing several runs of such an algorithm for a given
problem instance does not always result in producing different solutions. In fact,
some proponents of other optimization methods consider the fact that two runs
are not always producing the same result a weakness of evolutionary methods.
But from the perspective of security testing, getting the same solutions in several
runs naturally represents a weakness because resources are essentially “wasted”.
And the longer a run takes to produce solutions, the more serious the problem
becomes.

While tricks like varying parameters between runs might reduce this problem,
they offer no guarantee that runs might not still produce the same solutions, even
if there are other solutions of interest. Our solution approach to this problem is
to modify the used fitness function with a component that penalizes solutions
based on their similarity to previously found solutions.

More precisely, given a basic fitness function fitbase and a set Sol = {sol1, ...,
solk} of known solutions, we evaluate an individual ind using the function
fitno−sim defined as follows:

fitno−sim(ind, Sol) = fitbase(ind) + simSet(ind, Sol) ∗ fitbase(ind) ∗ wsim (1)

(this assumes that fitbase is intended to be minimized.) wsim is a parameter that
determines the influence that similarity to known solutions has on the evaluation
of an individual. simSet should combine the similarities sim of ind to each of
the elements of Sol. Obviously, there are several possible ways to achieve this.
We used the following definition:

simSet(ind, Sol) = 1/k ∗
k∑

i=1

sim(ind, soli) (2)

While the previous definitions were not IACL specific, defining sim naturally
has to reflect that IACL has the attack agents test a scenario happening in an
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environment and a system consisting of customer agents. Therefore, like fitbase,
sim combines several measures from two groups, namely measures comparing
events related to the environment and events that happen to customer agents.
Assuming that ind is already corrected (as described in Sect. 2.3), the second
group of events can be evaluated by just looking at actions/messages recorded for
them, while the first group requires analyzing the simulations of both individuals.

Both groups of events potentially contain several different types of events.
Two individuals can be compared based on the number of occurrences of the
event, as well as the differences in times that those events occur between the two
individuals. In fact, we combine these two ideas for most of our measures that
we combine to create sim.

More precisely, a dual event similarity evsim is defined as

evsim(ind1, ind2) =
∑

ag∈Ag

occev(ind1, ind2, ag) ∗ timeev(ind1, ind2, ag) ∗wev(ag)

(3)
where Ag is either A or C (although we use in our instantiation only agents
from C), occev is the difference of the number of occurrences of the event in the
action sequence for agent ag in the two individuals. timeev is the minimal sum
of time differences between assigned events between the two action sequences
for ag of all possible assignments of events of the type in ind1 to events in ind2
such that sequence is preserved (and the assignment’s length is the smaller of
the numbers of occurrences of the event type in the two action sequences for ag)
divided by tmax and subtracted from 1. Note that by making wev potentially
different for different agents we can focus on particular agents by providing them
with a higher weight.

A small conceptual example for the computation of evsim is the following. Let
us assume that ind1 has created the action sequences ((a11, a12, b13), (c21, d22))
for two customer nodes and ind2 has created ((a′

11, b
′
12), (c

′
21, d

′
22)) (for the same

nodes) with a11, a12, a
′
11 being of the same event type and a11 happening at

time 2, a12 at time 4 and a′
11 happening at time 5 (and tmax = 10). If our

event is occurrences of actions of type a, then for the second agent occev is
0 and consequently timeev is also 0. For the first agent we have two possible
assignments of a-events between the two individuals, namely a′

11 to a11 and a′
11

to a12. Since the time difference for the first assignment is the sum consisting of
3 and for the second assignment is 1, the second assignment determines timeev
as 1 − 1 ÷ 10, which together with the occurrence difference of 1 produces as
evsim-value 0.9 (assuming that wev for the first agent is also 1).

We combine a set of event similarities (which can be dual as defined above,
but also computed differently, see the next section) evsim,1,...,evsim,l by summing
their evaluations up:

sim(ind1, ind2) =
l∑

j=1

evsim,j(ind1, ind2) (4)
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Note that due to the various weight parameters, the maximal similarity, i.e.
between identical solutions, is usually not equal to 1 (which obviously is not a
requirement for our application).

4 Instantiation to Precision Agriculture

For our evaluation of the proposed modification of the fitness computation in
IACL from Sect. 3 we have chosen the same application as in [5], namely preci-
sion agriculture. The idea behind this application area is to use wireless sensor
networks monitoring growing conditions in a field together with actuators that
can influence these growing conditions (like watering an area of the field) and
that are also parts of the wireless network. By so automating the care for crops
the aim is to reduce the amount of manual labour of farmhands and the overall
operating costs. Since all nodes require batteries for operation, one test goal
determines if it is possible to deplete these batteries much faster than normal,
so that the intended gains are negated. Naturally, another test goal is to make
sure that the right actuators act correctly in all conditions.

The simulation uses as M the Internet Protocol (IP, [8]), the User Datagram
Protocol (UDP, [9]), Ad-hoc On-demand Distance Vector Algorithm (AODV,
[10]) for message routing and an improvised agriculture network application
layer protocol (IAP) as defined in [5]. This means that template and target from
Sect. 2.1 have the form (IP, UDP,Payload), where IP and UDP represent all
the fields that these protocols require and Payload contains as possible packets
all the packets from AODV and the watering trigger and watering request packets
from IAP. We will refer to the packets from IAP as DATA packets (or messages
or actions). Among the packets from AODV are the route request (RREQ), route
reply (RREP) and route error packets (RERR), which are used to find routes
between two agents (RREQ to start the search, RREP to report the results of
the search) and to indicate that a route is not valid anymore (RERR). In order
to use these protocols, an agent needs to keep a so-called routing table that aims
to represent the knowledge of how to reach a particular agent. An invalid routing
table usually results in a lot of messages that try to make it valid again.

For fitbase we use, as in [5], as metrics the power consumption of the whole
network determined by counting the number of transmissions made, the distri-
bution of this power consumption over the course of the simulation, the number
of nodes that have exhausted their power supply before the end of the simula-
tion, the number of sensor nodes that have moisture levels below the acceptable
threshold at the end of the simulation and how long each sensor node had a
moisture level below the lowest level measured in the network with no attack
agents present.

For constructing simSet, we used the following dual event similarities. The
event similarities in the group of events happening in the environment are
measuring the events that the soil moisture dropped below a given measure
(simev,moi, we measure moisture, as in fitbase, where the sensor nodes are
located, so that this could also be considered as a measure in the second group
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but conceptually we could do this measurement everywhere in the simulated
environment). Events about the customer nodes are a customer node sending a
RREQ message (simev,rreq), a RREP message (simev,rrep), a RERR message
(simev,rerr) or a DATA message (simev,sdata) and the events that a customer
node received a DATA message (simev,rdata)1.

Additionally, we used simev,en which is the difference in the total amount
of energy used throughout the two simulations (which is obviously in the group
of events related to the customer nodes) weighted by a wev,en and simev,t−out

which is the time difference between the two simulations when a customer node
runs out of power (summed-up over all customer nodes, with the end of the
simulation being the used time if a node did not run out of energy, weighted by
wev,t−out).

Similar to some of the measures in the dual event similarities, we have an
additional event similarity simev,maxseq that is applied to the customer nodes.
For a node, we abstract and filter the action sequences in both individuals to only
containing the message types RREQ, RREP, RERR and DATA. We then deter-
mine the length of the largest subsequence of those types that both sequences
have in common. simev,maxseq is this number weighted by a wev,maxseq for this
node.

Finally, event similarity measure simev,alltime also looks at the nodes and
the times of events (actions) for a node. It sums up the difference of the times
the first action is taken, the difference of the times the second action is taken
and so on until we run out of actions in one of the action sequences. And the
sum for a node ag is weighted by a wev,alltime(ag).

Note that looking only at the message/packet/action types from the AODV
and IAP protocols is justified for this application, since these types reflect the
fact that we have wireless networks (with moving agents) and the goals of the
application. The application is also highlighted by not just looking at events
sending messages but also events representing the reception of a message. While
simev,en and simev,t−out obviously represent looking at the test goals for this
application, simev,maxseq and simev,alltime are rather strong generalizations and
therefore represent also a strong push away from already known solutions (pro-
vided that their associated weights are not neutralizing them). As our experi-
ments in the next section show, these event similarities are useful.

5 Experimental Evaluation

To evaluate our modification of the fitness computation to focus on avoiding
known solutions (i.e. weaknesses) while naturally still trying to find weaknesses,
we have chosen a test scenario S that offers a lot of possibilities for an adversary
to exploit. We have already provided M . geo is 10000 by 10000. tmax for the
1 These kinds of events could also be applied to attack agents which would create

a third group of events. As our experiments show, concentrating on environment
and customer agents is enough for our application, but other applications and other
testing methods might require this third group.
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Table 1. Average results for focused runs with single source

Source Focused runs

Sol. nr. fitbase av. fitbase av. simSet av. nr. of gen. av. run time (in min.)

1 16660.53 16875.55 0.34 90.2 96.9

2 16690.00 16515.56 0.30 119.4 87.4

3 16310.53 16355.63 0.32 84.6 125.3

4 17615.92 17227.34 0.28 83.4 55.3

5 16507.93 17121.76 0.32 25.1 49.0

Table 2. Variance of fitbase and simSet for focused runs with single source

Source Focused runs

Sol. nr. fitbase min fitbase max fitbase simSet for min simSet for max

1 16660.53 16439.35 17295.63 0.32 0.28

2 16690.00 16136.41 17238.95 0.25 0.29

3 16310.53 16079.28 16947.55 0.30 0.34

4 17615.92 16905.89 17306.03 0.35 0.26

5 16507.93 16695.84 17306.60 0.35 0.27

scenario is 1000 time units and velmax (for the attack agents) is also 1000 (which
is the distance travelled in 10 time units). The customer nodes are a master node
placed at (4500, 4000), an actuator node that waters the field at (5000, 4500)
and 3 sensor nodes placed at (5000, 5300), (5000, 6100), and (5000, 6900). All
these nodes do not move. The communication range is 850. Each node has a
battery capacity of 150 and without attack agents the nodes will use between
50 and 75 energy units (to deal with the requests for watering due to having the
field dry out over time; we did not have rain in this scenario). Since we wanted
to test the ability of our approach to avoid a particular solution we needed to
be able to create several source solutions for the scenario (without too many
runs of the IACL system without the modification) and therefore we allowed 7
attack agents (which provides enough opportunities for finding tests that reveal
weaknesses).

For the various parameters of IACL we used the following values: npop = 30,
nsurv = 9, nStall = 20, ngALi

= 75 and ngGLi
= 75. The weights in our mod-

ification of the fitness computation were set as wsim = 0.1, for all agents ag
we used wev,moi(ag) = 2/1800, wev,rreq(ag) = 11/1800, wev,rrep(ag) = 3.6/1800,
wev,rerr(ag) = 3.6/1800, wev,sdata(ag) = 3.6/1800, wev,rdata(ag) = 3.6/1800,
wev,maxseq(ag) = 3/180 and wev,alltime(ag) = 2/180, and finally we used wev,en

= 11/1800 and wev,t−out = 11/1800.
To get some initial solutions to avoid and to establish a baseline, we per-

formed around 50 runs of the original version of our IACL instantiation. The
biggest similarity simSet for two of those solutions was 0.55, the minimal
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similarity was 0.34 and the average similarity between two of these solutions
was 0.43. Of all these solutions, we selected the two with the least similarity and
then additionally three that had the least similarity to all already selected ones
(named 1 to 5) for our first experimental series. For each of these solutions we
ran the modified version 10 times. The results of these experiments are reported
in Tables 1 and 2. As Table 1 shows, the average base fitness of the focused runs
by our modified system is not much worse than the base fitness of the source
solution to be avoided. In fact, already the average base fitness of the 10 focused
runs to source solutions 2 and 4 is better than the base fitness of the source solu-
tions. Consequently, the best of the 10 focused runs for these source solutions
have solutions that are substantially better than the source solution. Even more,
the best runs for source solutions 1 and 3 are also better (see Table 2). Looking at
the worst runs, they are worse than the source solutions they avoided (except for
source solution 4), with a maximal base fitness difference of 800. Given that the
base fitness values are over 16000 and that by avoiding solutions worse solutions
are to be expected, this result is definitely not bad.

Looking more closely at the values of our similarity measure, we see in Table 1
that the average simSet-values are between 0.28 and 0.34 indicating that we are
better, i.e. less similar, that what our baseline achieved. Table 1 shows that the
similarity of the best solutions in the 10 runs for each source solution is not
always lower than for the worst solution. While this is not unexpected (given
that solutions found while avoiding a source solution can be better with regards
to fitbase), a question that these tables cannot answer is whether our proposed
similarity measure really is allowing us to find different weaknesses than those
revealed by the respective source solutions. To look into this, we observed the
behaviors of all agents in the simulations of the source solutions and the best
solutions in each of the focused runs and found that these behaviors were rather
different (although between focused runs we naturally saw some rather similar
ones).

More precisely, in source solution 1, the attack agents send false route
requests from customer nodes for other attack agents and one attacker also
sends irrelevant information to the master node. And another attacker sends
data to a fictitious attack agent. This results in essentially bombarding all cus-
tomer nodes with messages that they have to route, which resulted in very quick
battery depletion for all but the master node and serious network congestion in
general. The best focused run for this source solution has the attackers moving
a lot through the field, with one attacker dropping many requests it receives
while sending requests as if it is the master node and then sending requests for
the master node (totally confusing the routing tables of all agents getting these
requests). This attacker also does a lot of modifying of messages it receives.
Overall, this solution focuses on disrupting the routing tables of the customer
nodes, which leads to preventing the sensor nodes from informing the master
and actuator node about the need to water the field which then causes the field
to go without water for most of the simulation. This is very different from the
source solution.
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Source solution 2 has the attackers hitting all customer nodes with a sudden
burst of nearly constant RREQ messages for around 10 time units, which results
in depleting their batteries. The best solution of a focused run makes extensive
use of the possibility to fragment messages (on the level of the UDP protocol) and
the attack agents especially target the first sensor node (which is the connection
between sensor nodes and the other nodes in this scenario) resulting in depleting
this node’s battery even quicker than the batteries of the nodes in the source
solution. Again, this is very different from the source attack.

Source solution 3 shows a more drawn out version of the behavior seen in
source solution 2, having attack agents producing messages that the customer
nodes will in the end reject but that require the use of energy. The attack agents
also impersonate the master node and immediately after move around which all
results in a very congested network. As a result, we see initially too infrequent
watering (while the batteries are still working) and no watering starting when
the batteries are depleted. As in source solution 1, the master node’s battery
maintains power the longest. The best solution of the focused runs is very similar
to the best solution of the focused runs for source solution 2, attacking the
first sensor node and due to that, interrupting rather quickly the legitimate
communication within the network (and leading to watering issues relatively
early). Again, both attacks are highlighting different weaknesses of the scenario.

In source solution 4, different attack agents use different strategies, with one
agent introducing many watering requests and impersonating the master node,
while the other agents move around a lot and drop messages while sending
RREQ messages. This results in a little more build-up until the batteries of the
actuator node and the sensor nodes are depleted and also the moisture levels
are bad later than for the other source solutions (which results in this solution
having the lowest fitbase-value of all source solutions and allowing for all focused
runs to it to have better best solutions). The best solution from the focused runs
has the attack agents not attack the battery power of the actuator node at all
and only the battery of the first sensor node is depleted at all in the simulation.
The key problem produced by this solution is insufficient moisture levels and this
is achieved by only two attack agents that compromise the routing tables of the
sensor nodes. One of the agents is essentially zipping around the sensor nodes
(at full speed) sending a lot of message requests with the other agent making
sure that all of these requests reach at least one customer node.

Finally, in source solution 5, one attack agent sends a lot of watering requests
directly to the master node which results in depleting the battery of the actuator
node rather quickly which then leads to insufficient moisture in the field. The
other attackers work on depleting the batteries on 2 sensor nodes via having
them relay messages between themselves. In contrast to that, the best solution
from the focused runs does not target the actuator battery at all. Like the
best solution of a focused run for source solution 2, the first sensor node is the
main target for battery depletion, but this happens later in this simulation. Soil
moisture is problematic earlier due to attack agents invalidating routing tables
and creating network congestion.
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Table 3. Experiments with iterated focused runs

Example1 Example2

Iteration fitbase simSet Iteration fitbase simSet

Initial source 16310.53 – Initial Source 17283.23 –

After 1st it. 16601.95 0.39 After 1st it. 16640.69 0.39

After 2nd it. 16717.64 0.30 After 2nd it. 15997.61 0.29

After 3rd it. 16926.88 0.34 After 3rd it. 16682.59 0.41

After 4th it. 16849.59 0.37 After 4th it. 16500.23 0.35

After 5th it. 16553.99 0.34 After 5th it. 16082.90 0.29

As these high-level descriptions show, when avoiding a given source solution
our method creates very different attacks, showing that our similarity measure
really achieves what we want it to do.

We also performed experiments to see the performance of iteratively applying
our modification, i.e. we choose a source solution, run our modified version of
IACL, add the best solution from this run to the set Sol, run our modified version
again and so on for 5 iterations of the modified system. Table 3 reports on two
such experiments with the best source solution from the previous experimental
series (3 from the previous tables, here Example1) and a not so good source
not used so far (Example2). As the table shows, we are still getting solutions
with rather good fitbase-values. In fact, the second iteration for Example2 has
the best fitbase-value we observed in all of our experiments. Just looking at
the sequence of fitbase or the sequence of simSet does not reveal any general
trends except that we get good solutions and that the average similarity between
solutions is less than what we saw in the baseline experiments, which is exactly
what we wanted to achieve.

But, as with the previous experimental series, a look at the behaviors created
in the simulations is of more interest. We have already described the weakness
produced by the source for Example1. In the first iteration, the best found
solution has 4 attack agents contribute in depleting first the actuator nodes
battery and later the sensor nodes’ batteries. The best solution of the second
round also has mostly 4 attack agents being responsible for depleting the battery
of one of the sensor nodes halfway through the simulation but the main effect of
the attack agents’ behavior is to avoid the field getting watered by intercepting
watering requests and moving around a lot. The solution found in the third
iteration has 6 attack agents contributing to first depleting the first sensor node
and then the actuator node by targeting them with a lot of network traffic. This
includes one agent who heavily fragments the messages from other agents. In the
fourth iteration, 6 attack agents contribute, again, by attacking the batteries of
the first and second sensor node using modifications of the messages of the master
node (resulting in checksum errors and the requests not being accepted). Finally,
in the last iteration, all attackers contribute to achieving the attack. In contrast
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to the other solutions, this solution does not attack the batteries but blocks
any watering from happening relatively early in the simulation by modifying all
messages from the master node to the actuator node and making them invalid.
We see also a lot of fragmenting of messages, although this does not result in
the depletion of any of the batteries.

In Example2, the initial source solution has 5 attack agents contributing by
depleting the actuator node’s battery around halfway through the simulation.
The methods used are impersonating other agents, moving around to invalidate
the routing tables and sending watering requests. In the first iteration, the attack
also has 5 attackers contributing in depleting the batteries of the first and second
sensor node early in the simulation. The used methods are moving around while
sending messages and impersonating customer agents. In the second iteration,
6 attack agents contribute to the achieved effect, which is to block all watering
requests the master sends to the actuator node. In fact, not a single watering
by the actuator occurs in the whole simulation which explains the good fitbase-
value. The third iteration’s solution only needs 5 attack agents, again. It depletes
the batteries of the first and second sensor node which makes the environmental
effects rather similar to the solution from the first iteration, but the used meth-
ods to achieve this are rather different, namely faking data fragmentation (i.e.
sending a packet that claims that it has more fragments coming, which never
happens). This creates difference, but not as much as for many of the other
iterations, which is reflected by the rather high simSet-value (compared to other
iterations). The fourth iteration has all 7 attackers contributing to the effects
of the attack. The battery of the actuator node is the target and it is depleted
early in the simulation. The behaviors of the attackers include all kinds of bad
behavior without any clear pattern except for the result for the actuator. The
final iteration manages to block all watering requests, but in contrast to the
second iteration, this is achieved by depleting the battery of the first sensor just
before it would send a watering request and naturally that means also that the
requests from the other sensor nodes are not relayed. In the simulation for this
solution, the master and actuator node end up with higher battery charges than
they have in the simulation without the attackers present.

These two examples show, again, that our similarity measure is achieving
its aim, namely creating different attacks to a scenario when used to produce
a penalty for being too similar to known solutions. Attacks that have similar
elements are producing higher similarity values as intended (and are mostly
avoided). It also seems that in order to have a low similarity to the already
known attacks, involving more attack agents to create more difficult attacks is
a trend.

6 Related Work

As mentioned in Sect. 3, focusing evolutionary algorithms away from a particular
solution has not exactly been a focus of research. In fact, any interest in simi-
larity of solutions is usually associated with additional interests, like improving
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migration in distributed GAs (see [11]) or keeping a higher diversity of solutions
during the search (see [12]). In [11], similarity, respectively distance of solutions
is used to improve the selection of solutions from a particular generation for
sending them to other populations by other search agents. In [12] similarity,
resp. again distance from each other, is added as an additional search objective.
Both papers differ from our approach in that they are not using distance to
given known solutions, but apply the distance/similarity to individuals created
during the search. Also, they focus on similarity on the level of the structure of
the individual (which for us would be the action sequences of the attack agents)
and not on its evaluation.

If we broaden our look to approaches that try to focus evolutionary search
outside of the standard focus on optimizing the given fitness measure, then
there are also not many works. An exception is [13]. In contrast to our approach
for guiding the search, [13] tries to achieve a focus by learning which genetic
operators to choose (which the standard IACL already does, and which is not
sufficient to solve our problem of avoiding known solutions).

If we look into software testing, then the area of search-based software engi-
neering is looking into the creation of test cases (see [1] for an overview, but also
[2]). Also some works in this area look into similarity, resp. difference, between
and also within solutions. As with [11,12], these works define similarity on the
structure of an individual and not on aspects of its evaluation. [14] uses a set
of test cases as individuals and the difference of the elements of such a set to
the other elements is measured and included in the fitness measure (essentially
realizing a multi-objective optimization). Like our approach, [15] uses an already
found solution, but not with the intend to avoid it but in order to use it to guide
the search towards similar solutions, which is realized via the genetic operators.

Finally, with regard to using evolutionary learning for security testing or for
testing wireless networks, there are no works involving previously found tests,
and only a few works that are using learning techniques. In the already mentioned
[16], as in other works of this group, evolutionary methods are used to find
weaknesses in systems. KleeNet, [17] tries to discover bugs in wireless sensor
network protocol stacks and network configurations automatically, but without
involving adversaries, and consequently the misbehaviours are limited to packet
loss, duplication and corruption. [18] uses evolutionary algorithms to search for
network topologies that have a poor network performance when the network
is subjected to automatically generated traffic. Although this work identifies
such topologies, the protocols used by the network are not tested, in that no
communication misbehaviours are allowed. The last two approaches might be
able to make use of our improvement to IACL.

7 Conclusion and Future Work

We presented the idea of using similarity to known solutions in order to penalize
individuals in a search run as a solution to the problem of having repeated runs
of a learning-based testing system discovering the same solutions. We tested this
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idea with the IACL approach for testing ad-hoc wireless networks and instanti-
ated the general method for an application in precision agriculture. Our exper-
iments showed that we are indeed able to focus runs away from already known
solutions, even in an iterated setting that adds solutions to the set of solutions
to avoid over time.

Future work obviously should first evaluate our method for more applications
of IACL (like the ones described in [6]) and then for other approaches to learning-
based testing (like [3,4], as mentioned before).
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Abstract. Program synthesis via heuristic search often requires a great
deal of ‘boilerplate’ code to adapt program APIs to the search mecha-
nism. In addition, the majority of existing approaches are not type-safe:
i.e. they can fail at runtime because the search mechanisms lack the
strict type information often available to the compiler. In this article,
we describe Polytope, a Scala framework that uses polytypic program-
ming, a relatively recent advance in program abstraction. Polytope
requires a minimum of boilerplate code and supports a form of strong-
typing in which type rules are automatically enforced by the compiler,
even for search operations such as mutation which are applied at run-
time. By operating directly on language-native expressions, it provides
an embeddable optimization procedure for existing code. We give a tuto-
rial example of the specific polytypic approach we adopt and compare
both runtime efficiency and required lines of code against the well-known
EpochX GP framework, showing comparable performance in the former
and the complete elimination of boilerplate for the latter.

Keywords: Polytypic programming · Datatype generic programming ·
Genetic programming · Functional programming · Scala

1 Introduction

For over 20 years, Genetic Programming (GP) has been applied to a wide vari-
ety of program induction tasks, yielding an impressive list of (often human-
competitive) results [1]. Most such endeavours require the domain-specific code,
expressed in some host language (e.g. JavaTM in the case of the popular ECJ
GP framework [2]), to be manipulable by some search mechanism (e.g. an evo-
lutionary algorithm in the case of GP). Technically, this is often achieved by
mapping the host language API of interest to individual functions in the GP
instruction set. For instance, in order to manipulate programs which use the
API of a computer vision library (e.g., OpenCV [3], as in the GP/GI work of
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[4–6]), one could provide adaptor code for each API call of interest. This task is
nowadays greatly facilitated by availability of a rich choice of domain-agnostic
software packages (ECJ [2], EpochX [7] and DEAP [8] to name a few), which
offer a extensive support for the representations and operators of GP.

However, tailoring a domain-agnostic search framework to a problem/do-
main comes at price: the GP instructions in question have to be implemented
according to the contracts mandated by a given framework. In the prevailing
object-oriented paradigm, this requires extending certain framework classes (rep-
resenting programs, instructions, data etc.). In common domains (e.g. numeric
and Boolean regression), this can be achieved at relatively low human effort.
Otherwise, one is forced to realize the instructions as ‘wrappers’ that delegate
the actual execution to the host language, which results in substantial amounts
of boilerplate code, i.e. code which does little other than act as adaptor, but
which is sufficiently different on a per-API basis that conventional automation
approaches (e.g. C++ style macros) are insufficient. For example, Listing 1 shows
some of the EpochX code required for Boolean expressions. Moreover, produc-
ing and maintaining such code may become particularly labour-intensive if a
non-trivial grammar and/or type system is required, which becomes a necessity
when approaching real-world program synthesis problems.

The majority of Genetic Improvement (GI) work has been in an offline set-
ting, i.e. taking source- or object- code as input and producing transformed code
for subsequent compilation/execution. However, the desire for systems which can
respond adaptively to dynamic environments [9] has motivated a trend towards
online approaches. Previous work on dynamic GI frameworks include Gen-O-
Fix [10], Templar [11] and ECSELR [12]. Gen-O-Fix operates at runtime via
reflection on the abstract syntax trees generated by the Scala compiler, which
Templar is a wrapper for EpochX GP which makes it easy to generate the mul-
tiple variation points of a user-specified algorithm skeleton [13]. In the spirit of
‘Embedded Dynamic Improvement’ [14], both Gen-O-Fix and Templar can
be configured via an embeddable callback mechanism which allows the train-
ing phase to take place either once, periodically or asynchronously. ECSELR
extends the ‘Java Agent’ monitoring API to apply evolutionary operators to
state snapshots of the JVM.

Despite recent work in GI (e.g. [4]), relatively little has been done to manip-
ulate domain-specific functionality (as expressed in the host language) without
the additional effort of re-presenting that knowledge in a form acceptable to
the search framework. In this article, we describe Polytope, an embeddable
Scala framework operating directly on the host language. The main features of
Polytope are:

1. It allows the creation of manipulable (optimizable) expressions and programs
with a minimum of boilerplate code.

2. It provides a strongly typed approach to GP [15], with typing rules auto-
matically enforced by the Scala compiler. This is in direct contrast to other
approaches, in which types must be cast/queried at runtime (see Listing 1).
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3. Operates directly on language constructs, thereby easing the path to wider
adoption of SBSE techniques by mainstream software developers.

The reader desiring an advance look at the resulting simplicity for the practi-
tioner is referred to Listing 8. Crucially, the Boolean expression presented there
is expressed in the host language and requires no knowledge that it is to be
manipulated via Polytope, nor does it depend on Polytope in any sense typ-
ically considered in software engineering. Hence, it could have been equally well
taken verbatim from an existing Scala library, without the intent of actually
being manipulated by GP, GI or indeed any other synthesis approach. All the
domain-specific knowledge (as implied by the grammatical structure of possi-
ble programs — see next section) that is necessary for forthcoming synthesis or
improvement is automatically derived by building upon mechanisms available in
standard Scala.

We proceed in Sect. 2 with the theoretical underpinnings of Polytope, then
experimentally compare its performance with a popular GP framework in Sect. 3,
and discuss consequences and prospects in Sects. 4 and 5.

2 Background

GP can be considered to be constrained by the production rules of a user-
specified grammar. For example, here is an EBNF for a grammar representing
Boolean expressions:

<BoolEx> ::= <Const> | <Var> | <AndEx>
| <OrEx> | <XorEx> | <NotEx> | <IfEx>

<Const> ::= <True> |<False>
<Var> ::= Var <Varname>
<Varname> ::= string
<AndEx> ::= And <BoolEx> <BoolEx>
<OrEx> ::= Or <BoolEx> <BoolEx>
<XorEx> ::= Xor <BoolEx> <BoolEx>
<NotEx> ::= Not <BoolEx>
<IfEx> ::= If <BoolEx> <BoolEx> <BoolEx>

In the expression trees are manipulated via traditional GP, the grammar is
implicit and (as can be seen in Listing 1) describing the production rules for
each entity in the grammar can require a lot of boilerplate code. In the case
of Grammatical Evolution [16], the grammar rules are explicit, though they
typically have some interpreted representation (e.g. as strings) which cannot be
checked for validity at compile-time. In either case, the required type system
must be implemented explicitly within a GP software framework, which often
involves additional classes for representing particular types (cf. GPType class in
ECJ [2]). This code often duplicates in part the type system of the underlying
programming language, but with the attendant need for runtime type checking
(again, Listing 1).
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class AndNode extends Node {
@Override

public Object eval() {
if(getChildren().length == 2) {

Boolean b1 = (Boolean)getChild(0).eval();
Boolean b2 = (Boolean)getChild(1).eval();

return b1 && b2;

}
else throw new IllegalStateException();

}

@Override
public Class<?>

getReturnType(Class<?>... inputs) {
return inputs.length == 2 ? Boolean.class : null;

}
}

class OrNode extends Node {
@Override
public Object eval() {
if(getChildren().length == 2) {

Boolean b1 = (Boolean)getChild(0).eval();
Boolean b2 = (Boolean)getChild(1).eval();

return b1 || b2;
}
else throw new IllegalStateException();

}

@Override

public Class<?>
getReturnType(Class<?>... inputs) {
return inputs.length == 2 ? Boolean.class : null;

}
}

class ConstNode extends Node {
public ConstNode(boolean value) { this.value = value; }
@Override

public Object eval() {
if(getChildren().isEmpty)
return value;

else
throw new IllegalStateException();

}

@Override

public Class<?>
getReturnType(Class<?>... inputs) {
return inputs.isEmpty() ? Boolean.class : null;

}
}
// Similarly for Var, Not, Xor and If.

Listing 1. Some of the boilerplate code required for Boolean expressions in EpochX
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sealed trait Nat
case object Zero extends Nat
case class Succ(n: Nat) extends Nat
// Example use:
val three: Nat = Succ(Succ(Succ(Zero)))

Listing 2. Algebraic datatype for Peano arithmetic in Scala

In contrast, mainstream programming languages have progressively increased
in their ability to abstract across datatypes. Starting in the 1960s with subtype
polymorphism [17], it became possible to use inheritance to express common
behaviours via the abstraction of a shared superclass. In the 1970s, paramet-
ric polymorphism was introduced [18], allowing the expression of functions and
datatypes that do not require knowledge of the type of their arguments (e.g.
a function to determine the length of a list is independent of the type of the
elements it contains). More recently, there have been a number of develop-
ments in polytypic programming, whereby the specific structure of a datatype
is abstracted away by one of a number of alternative generic mechanisms. These
alternative approaches have a variety of names, e.g. type-parametric program-
ming or structural-/shape-/intensional- polymorphism. In particular, the Haskell
community tends to use the term data-generic programming, which should not
be confused with the more populist notion of ‘generic programming’, since the
latter refers only to parametric polymorphism.

Unlike parametric polymorphism whose strength derives from type agnosti-
cism (e.g. as with the list length example above), polytypic programming cap-
tures a wide class of algorithms which are defined by interrogating the structure
of the data type, e.g. so as to operate inductively upon it. Over the last 10 years
or so, the functional programming community has shown particular interest in
polytypic programming, originating a range of alternative approaches [19–23].
Algorithms which have been defined polytypically include equality tests, parsers
and pretty printers.

3 The Polytope Framework

3.1 Polytypic Programming in Scala

Languages such as Scala and Haskell achieve considerable expressive power via
their support for Algebraic Data Types (ADTs)1, where the creation and manip-
ulation of ADT expressions is ubiquitous programming practice. As shown in the
example in Listing 2, ADT expressions are built-up via inductive construction,
which, amongst other benefits, allows them to be conveniently manipulated via
sophisticated statically-checked pattern matching. Polytope combines poly-
typic programming with an embedded search procedure that makes it possible
1 Not to be confused with the weaker notion of abstract data types.
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to directly manipulate expressions of the host language (such as the last line of
Listing 2) by an arbitrary combinatorial search mechanism, including GP. This
in turn allows replacing the existing expressions with optimized equivalents (GI),
or even synthesizing new expressions according to some specification or exam-
ples (GP). The polytypic approach we use here is essentially the Scala variant
of Hinze’s ‘Generics for the Masses’ [24] given by Oliveira and Gibbons [21], in
which ADTs are converted to/from a universal representation.

In the following, we give a tutorial introduction to polytypic programming
with a simple example, namely the polytypic calculation of size for a program
tree2. This example is relevant to polytypic GP, as determining program size is
an important part of GP workflow, allowing (for example) size-related feasibility
checking. Other necessary functionality for GP, in particular mutation, is realized
in a directly analogous fashion.

Boolean expressions can be represented in Scala by the ADT in Listing 3, which
in the following is our example host language for either synthesis (GP) or modifica-
tion (GI) of programs. We define literals of ‘atomic’ types such as int, char, double
etc. to have a size of 1. Given these atomic building blocks, the polytypic app-
roach allows us to inductively define size independantly of any specific ADT,
so that the compiler can generate code for e.g. both size(Not(Const(true))) and
size(Succ(Succ(Succ(Zero)))), yielding 3 and 4 respectively.

Since we wish to add this functionality in a non-intrusive manner, i.e. with-
out requiring any change to the ADT we wish to operate on, we adopt the
technique of typeclasses, well-known to the functional programming community.
First developed in Haskell, this approach allows the post-hoc addition of func-
tionality to any datatype. The essence of the approach is to provide a trait (for
purposes of this article, equivalent to a Java interface) which defines the required
methods, together with specialized subclasses for all types of interest.

Listing 4 shows the Size typeclass, together with specializations for atomic
types. To make use of this functionality of Polytope, one uses the statement
import polytope.Size. (Listing 8). In result of this, the functions defined in the
Size object are brought into scope, and automatic promotion from some atomic
type A to the corresponding imported specialization of Size[A] is made possible
via the use of the implicit keyword.

For this mechanism to be fully operational, apart from the specializations of
Size for atomic types in Listing 4, it is also necessary to provide specializations
for ADTs. Listing 5 shows how this could be done manually for the first few
subclasses of Ex. In Polytope, we achieve this automatically, and not just for
Ex, but for any ADT. Confronting Listing 5 with Listing 3 reveals that there
is a common pattern which is driven by the shape of the subclass constructor.
Indeed, it is the ability to ‘abstract over shape’ that characterizes polytypic pro-
gramming. In the following section, we explain how we employ this mechanism
to automate creation of such specializations and avoid manually writing such
boilerplate code as Listing 5.

2 We focus on tree-based GP in this paper.
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sealed trait BoolEx {
def eval: Boolean

}

case class And(x: BoolEx, y: BoolEx) extends BoolEx {
override def eval: Boolean = x.eval && y.eval

}

case class Or(x: BoolEx, y: BoolEx) extends BoolEx {
override def eval: Boolean = x.eval || y.eval

}

case class Xor(x: BoolEx, y: BoolEx) extends BoolEx {
override def eval: Boolean = x.eval ˆˆ y.eval

}

case class Not(x: BoolEx) extends BoolEx {
override def eval: Boolean = !x.eval

}

case class If(cond: BoolEx, then: BoolEx, els: BoolEx) extends BoolEx {
override def eval: Boolean = if cond.eval then.eval else els.eval

}

case class Const(override val eval: Boolean) extends BoolEx

case class Var(name: String) extends BoolEx{
override def eval: Boolean = symbolTable.lookupVar(name)

}
Listing 3. Scala algebraic datatype for Boolean expressions

3.2 Product and Coproduct Types

Automatic specialization of ADT like the one exemplified in Listing 5 requires
generic mechanisms for the decomposition, transformation and reassembly of
ADTs. It turns out that it is possible to provide the remaining required special-
izations of Size (and other operations of interest for GP) for all ADTs in terms
of a generic ‘sum of products’ representation [21]. This requires consideration
of the elementary building blocks of ADTs, viz. products and coproducts3. The
conversion of an ADT to and from this representation is described extensively
by Hinze [24] and is beyond the scope of this article, but fortunately the Scala
library Shapeless [25,26] provides complete support for this and a variety of
other polytypic methods (e.g. [20]).

3 The term ‘coproduct’ represents a generalized notion of ‘sum’ inherited from Cate-
gory Theory.
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trait Size[T] {
def size(t: T): Int

}

object Size {
def atomicSize[T] = new Size[T] {

def size(t: T): Int = 1
}

implicit def intSize: Size[Int] = atomicSize
implicit def booleanSize: Size[Boolean] = atomicSize
implicit def charSize: Size[Char] = atomicSize
// ... short, long, float etc.
implicit def doubleSize: Size[Double] = atomicSize

// syntactic sugar:
def size[T](x: T)(implicit ev: Size[T]) = ev.size(x)

}
Listing 4. Size typeclass and specializations for atomic types

Products will already be familiar in the guise of tuples — the type of a
tuple is the ‘Cartesian product’ of the types it contains. The Shapeless product
type is HList, a heterogeneous list with compile-time knowledge of the different
types of each of its elements. It is actually more general than a tuple, in that it
supports an ‘append’ constructor ‘::’. Thus, a HList(2.3,”hello”) would have type
Int :: String :: HNil, where HNil represents the type-level analog of the well-known
use of Nil as a list terminator. If a Double is appended, the resulting type would
be Int :: String :: Double:: HNil. As seen in the above listings, an ADT consists of
a collection of subclasses implementing a given trait. Each subclass has zero or
more attributes and can therefore be generically represented as a HList of these
attributes.

Regarding coproducts, each subclass in an ADT can be considered to rep-
resent a specific choice of construction step. They can therefore be represented
by a disjoint union of subclass types. The canonical example of disjoint union
in Scala or Haskell is the type Either[A, B], which contains an object known at
compile-time to be of type A or else of type B. The corresponding ‘shapeless’
coproduct type for types A and B is denoted by A :+: B4. Hence the ADT Nat
of Listing 2 can be generically represented as the type Zero :+: Succ :+: CNil,
with CNil being the coproduct equivalent of HNil.

Specialization for generic product and coproduct types is defined inductively,
starting with the base case, as represented by the types HNil and CNil respectively.
The top two functions in Listing 6 show how this is done for product types, and the
bottom two functions for coproduct types. The induction step is simplified via a

4 Type constructors in Scala can be infix and composed of non-alphabetic characters.



74 J. Swan et al.

implicit def constSize(implicit ev: Size[Boolean]) =
new Size[Const] {

def size(x: Const): Int = 1 + ev.size(x.value)
}

implicit def andSize(implicit ev: Size[BoolEx]) =
new Size[And] {

def size(x: And): Int = 1 + ev.size(x.a) + ev.size(x.b)
}

implicit def orSize(implicit ev: Size[BoolEx]) =
new Size[Or] {

def size(x: Or): Int = 1 + ev.size(x.a) + ev.size(x.b)
}

// Similarly for other subclasses of BoolEx...

Listing 5. Manual specializations of Size for some subclasses of Ex. The equivalent
functionality is achieved automatically in Polytope.

recursive nesting technique: as is well-known, all n-tuples can be represented by
recursive nesting of pairs, e.g. the triple (a, b, c) can be represented as (a, (b, c)).
For purposes of building specializations one inductive step at a time, the tails of
product and coproduct types are similarly nested. Determining the specialization
for the nested tail T of the HList is dispatched to some other specialization of Size
via the call to t.size(x.tail). Specialization for coproducts relies on analogous dis-
patching, where Inl and Inr denote left and right type-projections respectively, i.e.
Inl(H :+: T) yields H, Inr(H :+: T) yields T.

The universal product and coproduct specializations in Listing 6, together
with the support provided by Shapeless for conversion to/from this generic ‘sum
of products representation’ [21] is all that is required to allow the compiler to
synthesize code for size(x) for any ADT built up from the atomic specializations,
automating so the functionality that would have to be otherwise implemented
manually (Listing 5), for any host language expressed in standard Scala, includ-
ing the example in 2, the Boolean domain in 3, and most of other common
domains.

3.3 Initialization and Mutation

Polytope employs the principles of polytypic programming in the design of
all operators necessary to perform program synthesis or improvement, thereby
allowing manipulation of arbitrary ADTs. In the current version, programs are
stochastically initialized using the well-known ‘full’ method [27] and subtree-
replacing mutation (a randomly selected subtree in a program is replaced by a
random ‘full’ tree). The generic definitions for tree initialization and mutating
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implicit val productBase = new Size[HNil] {
def size(x: HNil): Int = 0

}

implicit def productInductionStep[H, T <: HList](
implicit h: Size[H], t: Size[T]) =

new Size[H : : T] {
def size(x: H : : T) = {

val hd = h.size(x.head)
val tl = t.size(x.tail)
hd + tl

}
}

implicit val coproductBase = new Size[CNil] {
def size(x: CNil): Int = 0

}

implicit def coproductInductionStep[H, T <: Coproduct](
implicit h: Size[H], t: Size[T]) =

new Size[H :+: T] {
def size(x: H :+: T): Int = x match {

case Inl(l) => h.size(l)
case Inr(r) => t.size(r)

}
}

Listing 6. Generic Size specialization for product and coproduct types

a subtree follow the same general pattern as the Size example. As can be seen
in Listing 7 (which gives the SubtreeMutate typeclass and an example of the
corresponding client code), the actual mutation is performed in the method
mutateImpl. The implementation of this method is slightly more complex than
the Size example, since it requires additional book-keeping to keep track of the
node indexing. This is represented by the Either[T,Int] return type, in which
the Int value represents the index of the node for subsequent consideration. The
corresponding overridden versions for atomic, product and coproduct types are
too lengthy for this article, but are implemented analogously. Similar remarks
apply to the initialization operator. As in the case of Size, both mutation and
initialization work for any domain-specific host language expressible in Scala.

3.4 Comparison of Lines of Code

For the Boolean domain considered here, the total required by EpochX 1.4.1 is
301 lines of code (LOC) (specifically that for the classes AndFunction,OrFunction,
NotFunction,XorFunction,ImpliesFunction in the org.epochx.epox.bool package).
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trait SubtreeMutate[T] {
def mutate(t: T, index: Int): Option[T] =

mutateImpl(t, index) match {
case Left(t) => Some(t)
case Right(newIndex) => None

}

protected def mutateImpl(t: T, index: Int): Either[T,Int] = ...
}

def mutate[T](x: T, rng: Random)(
implicit m: SubtreeMutate[T], sz: Size[T]): T =

ev.mutate(x,rng.nextInt(sz.size(Ex))).getOrElse(x)
}

// client code:
import Size.
import SubtreeMutate.

val ex = Not(Xor(Var(”a”),Const(false)))
val mutated = mutate(ex)

Listing 7. Mutation typeclass and client code

Wediscount theEpochXcode required forConst since it is providedbybuilt-in sup-
port for ephemeral random constants. In contrast,Polytope can operate directly
on the 20 LOC given in the classes of Listing 3. However, the important thing to
note is that the code of Listing 3 will in general be some arbitrarily complex API
that has already been implemented and that we wish to manipulate via search.

4 Experiments

With Polytope’s generic initialization and mutation operators, we can apply
search routines to obtain an instance of any ADT, optimized to some user-
specified criterion. To this end, Polytope provides an implementation of the
well-known Evolution Strategies (ES) metaheuristic [28], specifically, Algorithms
18 and 19 from Luke [29].

Polytope can either be applied to optimize existing code (i.e. an ADT expres-
sion) or else can synthesize an ADT from scratch. Listing 8 shows the client code
required to obtain an optimized expression for Mux6, the well-known 6-input mul-
tiplexer problem [27], for both ex-nihilo synthesis (GP-style) and improvement of
existing code (GI-style). In contrast to the boilerplate of Listing 1, the only client
responsibility is the implementation of the fitness function (here, the normalized
sum of the zero/one errors on all possible 26 fitness cases).
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// client code
def mux6Fitness(x:BoolEx): Double = // error of x.eval on fitness cases. . .

def main(args: Array[String]) = {

// bring implicit specializations into scope
import polytope.Size.
import polytope.FullInitializer.
import polytope.SubtreeMutate.

// 1. ex−nihilo synthesis
val opt1 = polytope.optimize(mux6Fitness)
println( opt1, opt1.eval )

// 2. Improvement of some existing expression
val ex = If(Or(Var(”x”),False),

And(Var(”y”),Var(”z”)),
Or(Not(Var(”x”)),True))

val opt2 = polytope.optimize(mux6Fitness,ex)
println( opt2, opt2.eval )

}
Listing 8. Client code for Mux6 problem. Note the ‘last-minute’ import of Polytope.

To determine the performance relative to a traditional GP implementation,
we compared our ES approach against EpochX on Mux6 over 30 runs with com-
mon parameters as given in Table 1. We compare against two variants of EpochX:
EpochX-1 uses EpochX ‘out of the box’, i.e. with default parameters5 (i.e. sub-
tree crossover with probability 0.9, elitism count = 10, max tree depth = 17).
EpochX-2 is intended to provide a more ‘like for like’ comparison with the cur-
rent implementation of Polytope, and therefore has no crossover and no upper
bound on max-tree-depth. Although a lack of crossover is somewhat unusual in

Table 1. Parameters common to all Mux-6 experiments

Parameter Value

Population-size 1,000

Max-generations 100

Max-initial-tree-depth 5

Tree-initialization-method Full

Mutation-method Subtree

5 http://www.epochx.org/javadoc/1.4/.

http://www.epochx.org/javadoc/1.4/
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Table 2. Results of Mux-6 experiment

Algorithm Fitness Time (s) Generations Time per individual (ms) 0/1 successrate

EpochX-1 0.00 ± 0.00 2.26 ± 0.95 17.10 ± 6.71 7.14 ± 1.17 100%

EpochX-2 0.06 ± 0.11 3.60 ± 2.01 62.40 ± 31.63 17.49 ± 4.74 7.3%

Polytope 0.25 ± 0.14 7.26 ± 1.96 92.03 ± 18.77 13.29 ± 1.85 6.7%

GP (Cartesian GP being a notable exception [30]) it is not so common in GI
(e.g. [31]). For the ES-specific parameters, we use a (λ + μ)-ES we take λ to
be population size and μ = λ/5. A run is terminated once a correct program is
found or 100 generations elapse, whichever comes first.

Experiments were run on a Windows 10 desktop PC with 8 GB of RAM and
an Intel Core i5-3570 CPU @ 3.40 GHz. Table 2 shows the results of the experi-
ments, giving averaged normalized fitness, execution time in seconds, number of
generations at termination, processing time per individual (elapsed time divided
by the number of generations), and 0/1 success rate (defined as ‘1 for the opti-
mum output, else 0’), accompanied with 0.95-confidence intervals. The rates of
convergence to the optimum make it clear that the absence of crossover is detri-
mental to solution quality. Comparing Polytope with the EpochX-2 setup, the
performance of the former can be explained in part by the fact that it lacks a
bloat control method [32], which fails to impose selection pressure against large
expressions and leads to trees which take longer to evaluate. However, the end-
of-run fitness of Polytope is not statistically significantly worse6 than that of
EpochX-2, and the ‘zero or one’ success rate is comparable.

Concerning the time for processing a program, Polytope performs slightly
better than the ‘like for like’ comparator EpochX-2, which might be explained
by the amount of compile-time support afforded by our chosen polytypic app-
roach. Since there are no theoretical obstacles to adding polytypic equivalents
for crossover and bloat control to Polytope, it would then be expected to
behave comparably to (or even slightly better than) the ‘out of the box’ version
of EpochX.

5 Discussion and Conclusion

We have described how polytypic programming (specifically Oliveira and
Gibbons [21] variant of Hinze’s ‘Generics for the Masses’ [24]) can be used to
provide initialization and mutation operators for arbitrary datatypes, and have
implemented Polytope, a Scala framework which uses embedded optimiza-
tion to perform synthesis and improvement of Scala code with minimal end-user
effort.

Using Polytope as a GP system frees the end-user from having to write the
significant amounts of instruction-set specific code that is necessary when using
most popular GP frameworks (Listing 1). Although previous work [10,33] has

6 as determined by the nonparametric Wilcoxon Signed Rank test.
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used runtime reflection as a means of reducing this burden, we describe how this
can be via compile-time techniques. We explain how methods from polytypic
programming can achieve this via the automatic and non-intrusive derivation of
the grammatical structure of datatypes.

In addition to manipulating existing datatypes, Polytope resembles GP in
that it also supports ex-nihilo synthesis of expressions involving these datatypes.
This is in contrast to some other GI frameworks [31,34] that manipulate
programs by ‘plastic surgery’ (i.e. moving around pre-existing expressions mod-
ulo variable re-naming). With the historical emphasis on GI being ‘offline, top-
down’, Polytope can therefore be considered to occupy an intermediate posi-
tion between traditional notions of GP and GI.

The current version of Polytope lacks both crossover and any built-in mech-
anism for bloat control. The experiments in Sect. 4 show that that both are desir-
able. There is no intrinsic technical obstacle to the implementation of either and
they are suitable subjects for further work. Regarding bloat-control, irrespective
of the provision of a general mechanism for this, reducing expressions to some
minimal-size form via domain-specific rewrite rules [35] can be implemented very
naturally on ADTs using pattern-matching. Nevertheless, even without these
extensions, we anticipate two distinguishing uses of Polytope in its current
form: as a ‘rapid prototyping tool’ for GP, in which development time is more
of an issue than raw speed, and as a background optimization process in long-
running systems, continuing to adapt to an operating environment that changes
over time.
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Abstract. Tools that perform automated software testing via the user
interface rely on an action selection mechanism that at each step of
the testing process decides what to do next. This mechanism is often
based on random choice, a practice commonly referred to as monkey
testing. In this work we evaluate a first approach to genetic programming
(GP) for action selection that involves evolving IF-THEN-ELSE rules;
we carry out experiments and compare the results with those obtained
by random selection and also by Q-learning, a reinforcement learning
technique. Three applications are used as Software Under Test (SUT) in
the experiments, two of which are proprietary desktop applications and
the other one an open source web-based application. Statistical analysis
is used to compare the three action selection techniques on the three
SUTs; for this, a number of metrics are used that are valid even under
the assumption that access to the source code is not available and testing
is only possible via the GUI. Even at this preliminary stage, the analysis
shows the potential of GP to evolve action selection mechanisms.

Keywords: Automated testing via the GUI · Action selection for
testing · Testing metrics · Genetic Programming

1 Introduction

The relevance of testing a software application at the Graphical User Interface
(GUI) level has often been stated due to several reasons, the main being that it
implies taking the user’s perspective and is thus the ultimate way of verifying a
program’s correct behaviour. Current GUIs can account for 45–60% of the source
code [2] in any application and are often large and complex; hence, it is diffi-
cult to test applications thoroughly through their GUI, especially because GUIs
are designed to be operated by humans, not machines. Furthermore, they are
usually subject to frequent changes motivated by functionality updates, usabil-
ity enhancements, changing requirements or altered contexts. Automating the
c© Springer International Publishing AG 2017
G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part II, LNCS 10200, pp. 82–95, 2017.
DOI: 10.1007/978-3-319-55792-2 6
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process of testing via the GUI is therefore a crucial task in order to minimise
time-consuming and tedious manual testing.

The existing literature in testing via the User Interface covers three
approaches: capture-and-replay (C&R), which involves recording user interac-
tions and converting them into a script that can be replayed repeatedly, visual-
based which relies on image recognition techniques to visually interpret the
images of the target UI [3], and traversal-based, which uses information from
the GUI (GUI reflection) to traverse it [1], and can be used to check some gen-
eral properties. Of the three, the latter group is considered the most resilient to
changes in the SUT.

The designer of any automated tool for carrying out traversal-based test-
ing is faced with a number of design choices. One of the most relevant is the
decision of the action selection mechanism which, given the current state (or
window) the system is in, involves answering the question “what do I do next?”.
Although most tools leave this to purely random choice (a procedure known
as monkey testing), some authors have resorted to metaheuristics or machine
learning techniques in order to decide what action to execute at each step of the
testing sequence, such as Q-learning [7] and Ant Colony Optimisation [5]. Here
we present a first approach to using Genetic Programming (GP) to evolve action
selection rules in traversal-based software testing. There is a large body of work
that shows the power of GP to evolve programs and functions and, more specif-
ically, rules; on the other hand, GP has also previously been used in software
testing, e.g. by [11,12] but, to the best of our knowledge, not to evolve action
selection rules.

In our approach GP evolves a population of rules whose quality (or fitness)
is evaluated by using each one of them as the action selection mechanism in a
traversal-based software testing tool. In order to do this suitable metrics must be
defined and a number of options are available in the literature. For instance, in
[6] metrics are proposed for event driven software; [10] defines a coverage criteria
for GUI testing, while in [4] the number of crashes of the SUT, the average time
it takes to crash and the reproducibility of these crashes are used. In this work
we will follow the approach taken by [7], who propose four metrics which are
suitable for testing web applications, based on the assumption that source code
is not available.

In order to carry out our study we chose three applications as the SUTs:
the Odoo enterprise resource planning (ERP) system, a software testing tool
called Testona and the PowerPoint presentation software. These are very differ-
ent types of SUT: while Odoo is an open source web application, both Testona
and Powerpoint are proprietary desktop applications. Statistical analysis was
carried out on the results of the three action selection methods over the three
SUTs.

The rest of this paper is structured as follows. Section 2 describes the action
selection mechanism using genetic programming. Section 3 introduces the metrics
used for quality assessment of the testing procedure. Section 4 summarises the
experimental set up, the results obtained and the statistical analysis carried out;
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it also highlights the problems encountered. Finally, in Sect. 5 we present some
conclusions and outline areas for future work.

2 Genetic Programming for Action Selection in
GUI-Based Automated Testing

Tree-based Genetic Programming is the original form of GP as introduced by
Koza [8]. It involves the evolution of a population of individuals, or candidate
solutions, that can be represented as expression trees, given suitable nodes (func-
tions) and leaves (terminals) are defined for the problem at hand. In this work
we represent individuals as IF-THEN-ELSE rules that, given the current state of
the SUT, pick the next action to execute. An example rule would be something
like this:

IF previousAction EQ typeInto
AND nLeftClick LE nTypeInto
PickAny typeInto
ELSE
PickAnyUnexecuted

According to this rule, if the last executed action (previousAction) was enter-
ing text in a box (typeInto) and the number of clickable items (nLeftClick) is less
than or equal to the number of text boxes (nTypeInto), then the next action will
be typing text in any of the text boxes (PickAny typeInto); otherwise, a ran-
dom action will be chosen that has not been executed before (PickAnyUnex-
ecuted). Note that the text entered would be chosen at random.

The GP engine chosen was ponyGP1 and the set up for the experiments is
given in Table 1. The fitness of each individual was calculated by using it as the
action selection rule for the traversal-based tool TESTAR2; metrics are collected
in the process, one of which is used as the fitness value.

Figure 1 shows how the genetic programming process could be embedded
within the testing tool (TESTAR here). The live version of TESTAR tests the
SUT at hand using the best action selection rule found so far, while, in paral-
lel, the evolutionary algorithm uses a sandbox version of TESTAR in order to
evaluate the fitness of the new individuals. When a better individual is found,
it is sent to the live TESTAR, that carries on testing using the new individual
for action selection.

3 Testing Performance Metrics

As stated in Sect. 1, a number of metrics have been defined in the literature to
assess the quality of the testing, e.g. those given by [10] or [4]. However, two main
1 Developed by Erik Hemberg from the ALFA Group at MIT CSAIL http://groups.

csail.mit.edu/EVO-DesignOpt/PonyGP/out/index.html.
2 http://www.testar.org.

http://groups.csail.mit.edu/EVO-DesignOpt/PonyGP/out/index.html
http://groups.csail.mit.edu/EVO-DesignOpt/PonyGP/out/index.html
http://www.testar.org
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Fig. 1. The evolutionary process embedded within a traversal-based testing tool.

issues can be found with them: namely, that they either imply having access to
the SUT source code (which is not always the case) or that they focus on errors
encountered and reveal nothing about to what extent the SUT was explored
(which is particularly relevant if no errors are detected). For these reasons, we
decided on the following metrics, as defined by [7]:

– Abstract states. This metric refers to the number of different states, or
windows in the GUI, that are visited in the course of an execution. An abstract
state does not take into account modifications in parameters; for instance, a
window containing a text box with the text “tomato” would be considered
the same abstract state as the same window and text box containing the text
“potato”.

– Longest path. This is defined as the longest sequence of non-repeated con-
secutive states visited.

– Minimum and maximum coverage per state. The state coverage is
defined as the rate of executed over total available actions in a given
state/window; the metrics are the highest and lowest such values across all
windows.

It is interesting to note that longest path and maximum coverage are in a
way opposed metrics, one measuring exploration and the other exploitation of
the SUT.
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Table 1. Genetic programming parameters.

Feature Value

Population size 20

Max tree size 20

Functions Pick, PickAny, PickAnyUnexecuted,
AND, OR, LE, EQ, NOT

Terminals nActions, nTypeInto, nLeftClick,
previousAction, RND,
typeLeftClick, typeTypeInto, Any

Evolutionary operators Mutation and crossover

Evolutionary method Steady state

Selection method Tournament of size 5

Termination criterion Generating more than 30 different states

4 Experiments and Results

4.1 Procedure

We have taken a simplified approach which involves evolving action selection
rules by genetic programming using PowerPoint as the sandbox SUT and then
validating the best evolved rule by using it to test the three different SUTs
described below. For the latter phase we carried out 30 runs of 1000 actions
each. In this way we can ascertain how well the GP-evolved rule generalises to
SUTs not encountered during evolution.

The best evolved rule was as follows:

IF nLeftClick LT nTypeInto
PickAny leftClick
ELSE
PickAnyUnexecuted

In order to carry out statistical comparisons, the validation process was
repeated using random and Q-learning-based action selection. Q-learning [13] is a
model-free reinforcement learning technique in which an agent, at a state s, must
choose one among a set of actions As available at that state. By performing an
action a ∈ As, the agent can move from state to state. Executing an action in a spe-
cific state provides the agent with a reward (a numerical score which measures the
utility of executing a given action in a given state). The goal of the agent is to max-
imise its total reward, since it allows the algorithm to look ahead when choosing
actions to execute. It does this by learning which action is optimal for each state.
The action that is optimal for each state is the action that has the highest long-term
reward. The choice of the algorithm’s two parameters, maximum reward, Rmax

and discount γ, will promote exploration or exploitation of the search space. In
our case we chose those that had provided best results in [7].
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A summary of the experimental settings is given in Table 2.

Table 2. Experimental set up.

Set Action selection
algorithm

Parameters Max. actions
per run

Runs

Ev GP-evolved rule See Table 1 1000 30

Qlearning Q-learning Rmax = 9999999; γ = 0.95 1000 30

RND Random N/A 1000 30

4.2 The Software Under Test (SUT)

We used three different applications in order to evaluate our action selection app-
roach, namely Odoo, PowerPoint and Testona. Odoo is an open source Enter-
prise Resource Planning software consisting of several enterprise management
applications; of these, we installed the mail, calendar, contacts, sales, inventory
and project applications in order to test a wide number of options. Power-
Point is a slide show presentation program part of the productivity software
Microsoft Office. It is currently one of the most commonly used presentation
programs available. Testona (formerly known as Classification Tree Editor) is
a software testing tool that runs on Windows. It implements tree classification,
which involves classifying the domain of the application under test and assigning
tests to each of its leaves.

4.3 Statistical Analysis

We run the Kruskal-Wallis non parametric test, with α = 0.05, on the results for
the three action selection mechanisms. The test shows that all the metrics have
significant differences among the sets. Running pair-wise comparisons by means
of the Mann-Whitney-Wilcoxon test, provides the results shown in the boxplots
contained in Figs. 2, 3, 4, 5 and 6; these results are ordered in Table 3, where
the shaded column is the best option. It can be seen that the GP approach wins
in the abstract states and longest path metrics for both Powerpoint and Odoo
and comes second in Testona, where, surprisingly, random testing performs best
(Fig. 7).

One metric we have not considered in the statistical analysis is the number
of failures encountered, shown in Table 4. Here we can see that in general, the
evolutionary approach finds the most real failures3.

3 Note that ascertaining whether these failures are associated to any defects is beyond
the scope of the TESTAR tool.
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Fig. 2. Boxplots for the abstract states and longest path metrics with the results
obtained for Odoo
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Fig. 3. Boxplots for the maximum and minimum coverage metrics with the results
obtained for Odoo
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Fig. 4. Boxplots for the abstract states and longest path metrics with the results
obtained for PowerPoint.
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Fig. 5. Boxplots for the maximum and minimum coverage metrics with the results
obtained for PowerPoint.
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Fig. 6. Boxplots for the abstract states and longest path metrics with the results
obtained for Testona.
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Fig. 7. Boxplots for the maximum and minimum coverage metrics with the results
obtained for Testona.
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Table 3. Results of the statistical comparison for all algorithms and metrics, in the
three different SUTs. The shaded column represents the best choice, the remaining
ones are in order of preference.

PowerPoint Set

Abstract states Ev Q-learning RND
Longest path Ev Q-learning RND

Maximum coverage per state RND Q-learning Ev
Minimum coverage per state Q-learning Ev RND

teSoodO

Abstract states Ev Q-learning RND
Longest path Ev Q-learning RND

Maximum coverage per state Ev Q-learning RND
Minimum coverage per state RND Q-learning Ev

teSanotseT

Abstract states RND Ev Q-learning
Longest path RND Ev Q-learning

Maximum coverage per state Ev Q-learning RND
Minimum coverage per state Ev Q-learning RND

Table 4. Number of failures encountered per SUT and algorithm.

SUT Algorithm Errors Freezes False positives

Odoo Ev 4 0 2

RND 0 0 4

Q-learning 1 1 6

PowerPoint Ev 1 0 5

RND 0 1 2

Q-learning 0 1 5

Testona Ev 2 2 3

RND 0 3 6

Q-learning 1 1 3

5 Conclusions

We have shown here the successful application of a genetic programming-evolved
action selection rule within an automated testing tool. The GP-evolved rule was
also compared to Q-learning and random, or monkey testing. The performance
was evaluated on three SUTs (PowerPoint, Odoo and Testona) and according to
four metrics. Statistical analysis reveals the superiority of the GP approach in
PowerPoint and Odoo, although not in Testona.
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Further work will involve developing more complex rules by introducing new
functions and terminals. A further step ahead will also involve eliminating the
fitness function and guiding the evolution based on novelty only [9].
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Abstract. Dynamic optimization problems (DOPs) are optimization problems
that change over time, and most investigations in this area focus on tracking the
moving optimum efficiently. However, continuously tracking a moving optimum
is not practical in many real-world problems because changing solutions
frequently is not possible or very costly. Recently, another practical way to tackle
DOPs has been suggested: robust optimization over time (ROOT). In ROOT, the
main goal is to find solutions that can remain acceptable over an extended period
of time. In this paper, a new multi-swarm PSO algorithm is proposed in which
different swarms track peaks and gather information about their behavior. This
information is then used to make decisions about the next robust solution. The
main goal of the proposed algorithm is to maximize the average number of envi‐
ronments during which the selected solutions’ quality remains acceptable. The
experimental results show that our proposed algorithm can perform significantly
better than existing work in this aspect.

Keywords: Robust optimization over time · Robust optimization · Dynamic
optimization · Benchmark problems · Tracking moving optima · Particle swarm
optimization · Multi-swarm algorithm

1 Introduction

Many real-world optimization problems are dynamic and changing over time. Most of
previous studies in this domain focus on tracking the moving optimum (TMO) [1].
However, this is not practical in many cases since changing solutions may be very costly,
and changing the solution frequently is not possible. As a result, there is a gap between
academic research and real-world scenarios in this domain.

Recently, a new approach for solving DOPs was proposed to address the above
concern that aims at finding solutions that are robust over the course of time [2]. A robust
solution is one that is not necessarily the best solution in the environment, but at least
is acceptable. A found robust solution can be utilized until its quality degrades to an
unacceptable level in the current environment.

© Springer International Publishing AG 2017
G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part II, LNCS 10200, pp. 99–109, 2017.
DOI: 10.1007/978-3-319-55792-2_7



In case the current robust solution becomes unsatisfactory, a new robust solution
must be chosen. Therefore, the task for addressing the DOPs in this approach is not to
find the best solutions in each environment but to find robust solutions that can remain
acceptable for a large number of environments. The process of finding such a sequence
of robust solutions is referred to as robust optimization over time (ROOT) [2, 3].

In [2] ROOT was proposed as a new perspective on DOPs. In [4], a new framework
for ROOT algorithms was proposed in which the algorithm searches for robust solutions
by means of local fitness approximation and prediction. In this framework, an adapted
radial-basis-function was used as the local approximator and an autoregressive model
as the predictor. The metric in this framework uses the average of current fitness value
of a solution, its p previous fitness values (by approximator) and its q future fitness values
(by predictor) to search for robust solutions.

In [5], authors proposed two different robustness definitions and metrics, namely
survival time and average fitness. The survival time is the maximum time interval in
which the fitness of the robust solution remains acceptable, and the average fitness is
the fitness value of the robust solution in a pre-defined time window. Then, two metrics
and also performance indicators were defined based on these two definitions. In this
framework, an autoregressive model is used as the predictor. In [12], a new multi-
objective method was proposed to find robust solutions that can maximize both of
survival time and average fitness.

In [6], some problem difficulties of ROOT were analyzed. Also, two different bench‐
mark problems which one of them is specially designed for maximizing survival time
and another benchmark is for maximizing average fitness, were proposed in [6].

In this paper, we propose a new algorithm for ROOT based on multi-swarm PSO.
The main goal of this algorithm is to maximize the average number of environments
that the robust solutions remain acceptable i.e., we focus on the survival time definition
of ROOT [5, 6]. The procedure of the proposed algorithm in finding robust solutions
differs from previous works in several aspects. First, we have a multi-swarm PSO [8]
that is responsible for not only finding and tracking optima as usual but also for gathering
some information about peaks. Second, different to [4, 5], the fitness function for our
proposed algorithm is the normal fitness function of the problem without involving any
estimator. The proposed algorithm checks the robust solution at the end of each envi‐
ronment and if its fitness value is not acceptable, then a new robust solution is chosen.
Third, for choosing a robust solution, the algorithm uses the gathered information to
choose the most reliable Gbest [13] among PSO swarms as a position for the next robust
solution. The results based on the average number of environments that robust solutions
can remain acceptable show that the performance of our algorithm is substantially better
than previous works in this domain.

The remainder of this paper is structured as follows. Section 2 presents the proposed
algorithm. In Sect. 3, a new generic performance indicator is presented for ROOT and
the experimental result, analysis and comparison with previous works are shown in this
section. In the final section, we summarize the main findings and suggest directions for
future work.

100 D. Yazdani et al.



2 A New PSO Algorithm for Robust Optimization Over Time

In this section, a new algorithm based on Multi-swarm PSO [8] is proposed for ROOT.
In the proposed algorithm, Multi-swarm PSO behaves in a similar way to previous multi-
swarm algorithms proposed to track a moving optimum, i.e., our algorithm tries to find
all peaks and track them after each environmental change. However, while tracking
peaks, our algorithm gathers information about the behavior of all peaks. Then, our
algorithm uses this information to choose a robust solution on peaks that have the most
suitable characteristics based on the aim to maximize the number of environments that
a robust solution remains acceptable.

From another point of view, our algorithm predicts the robustness of solutions based
on this information. In order to highlight the difference of our algorithm with previous
works [4, 5], it is worth mentioning that in the previous frameworks, specific estimators
were adopted and used in order to search for robust solutions. In addition, the fitness
function for algorithms was based on average of these estimated values. But, our algo‐
rithm is different in that we use the normal fitness function for dynamic optimization
and use information the algorithm has gathered to make decisions about which peak is
the best for choosing a robust solution. So, in the proposed algorithm we do not use any
specific estimator and the algorithm relies on previous behavior of peaks in order to
predict future of candidate robust solutions on them.

In the proposed algorithm, there is a Finder_swarm that is responsible for searching
for uncovered peaks. Additionally, there are Tracker_swarms that have two main tasks,
namely tracking peaks and gathering information about the behavior of their covered
peak. Each Tracker_swarm stores in its memory the difference between fitness value of
the best found position in each environment with its fitness value after environmental
change. The average of these values (named Fit_drop) shows how much the fitness value
of points close to the top of the peak is expected to change after an environmental change.
In addition, each Tracker_swarm stores the Euclidean distance between its Gbest at the
end of successive environments, and the average of these distances reflect the
shift_severity of each peak.

At the beginning, there is only one Finder_swarm in the problem space. After it
converges to a peak [8], a new Tracker_swarm is created in place of the
Finder_swarm, and the Finder_swarm is re-initialized to continue its global search for
finding another possibly uncovered peak. On the other hand, the Tracker_swarm
performs a local search for exploiting its peak and aims to reach the top of it.

In the proposed algorithm, exclusion mechanism [7] is used to avoid covering each
peak by more than one Tracker_swarm. If the Finder_swarm converges to a covered
peak (if the Euclidean distance between Gbest of Finder_swarm with Gbest of each
Tracker_swarm is less than rexcl [8]), it will be re-initialized. Moreover, if the Euclidean
distance between Gbest of two Tracker_swarms is less than a value rexcl, then the older
swarm is kept because of its valuable memory and the other one is removed. However,
if the Gbest fitness value of the newer swarm is better than that of the older one, the
better Gbest information is copied to the older Tracker_swarm. Moreover, if both
Tracker_swarms are of the same age, the one with better Gbest is kept.
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Multi_swarm PSO for ROOT

1:
Initialize Finder_ swarm

2:
repeat:

3:

Re-evaluate Gbest Positions for change detec-
tion

4:
If the environmental change is detected then

5:
Update Fit_Drop

6:
If f (Robust_solution )<δ

7:

Choose the next Robust_Solution based 
on Eq.1

8:
End if

9:
Re-evaluate Pbest positions in Finder_swarm

10:
Update Shift _severity for each covered peak

11:
Re_diversify all Tracker_swarms

12:
End if

13:
Execute an iteration of PSO on Finder_swarm

14:
Execute Exclusion mechanism on Finder_swarm

15:
If the Finder_swarm is converged then 

16:
create a new Tracker_swarm

17:
Re-initialize Finder_swarm

18:
End if

19:

Execute an iteration of PSO on all Trac k-
er_swarms

20: Execute Exclusion mechanism on each pair of

Tracker_swarms

21:
until stopping criterion is met

Fig. 1. The pseudocode of the proposed algorithm.
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For change detection, the algorithm re-evaluates all Gbest positions of all
Tracker_swarms in each iteration and if any obtained fitness value is different from the
saved ones, then a change in the environment is detected. After change detection, first
of all, all Tracker_swarms store the difference of the new fitness values of their Gbest
with their saved value to obtain Fit_drop. After this, all Pbest positions [13] in
Finder_swarm re-evaluate and a re-diversification mechanism [8] is done by all
Tracker_swarms based on obtained Shift_Severity value for each peak.

In the proposed algorithm, robust solutions are chosen from the best found positions
by all Tracker_swarms according to a decision making process based on current fitness
value as well as Fit_drop. For making a decision about the current robust solution, its
quality is checked at the end of each environment based on a user-defined lower bound
threshold δ [5, 6]. Having this type of threshold is realistic in many real-world problems
where there is a specification indicating the acceptability of a solution. If the fitness
value of the robust solution is better than δ, then it is deemed acceptable and the robust
solution is kept for at least another environment, otherwise the algorithm must choose
a new robust solution.

The next robust solution will be a Gbest position of one of the Tracker_swarms. The
best location for the next robust solution is a peak with the highest fitness value and
lowest Fit_drop. In the proposed algorithm, the next robust solution position is placed
on the Gbest of a Tracker_swarm which is chosen by Eq. 1:

C = argmaxi=S

i=1

(
f
(
Gbesti

)
− Fit_Dropi

)
(1)

where S is the number of Tracker_swarms, f(Gbesti) is the Gbest fitness value of the ith

Tracker_swarm, C is the index of a Tracker_swarm in which the next robust solution is
located. This equation suggests how much the fitness value of a peak solution is dropped
in the next environment, based on the difference between it’s the current fitness value
and the past behavior (Fit_drop). The equation allows choosing a robust solution that
may likely keep its quality for a greater number of changing environments.

The pseudo code of the proposed algorithm is shown in Fig. 1.

3 Experimental Results and Their Analysis

In this section, the proposed algorithm is tested on a modified version of the Moving
Peak Benchmark [9] (mMPB) [5] in which each peak has its own height_severity and
width_severity. The mMPB is described in Eq. 2.

Ft

(
X⃗
)
= maxi=m

i=1

{
Hi

t
− Wi

t
∗ X⃗ − ⃖⃖⃖⃗Ci

t2

}
(2)

where m is number of peaks, X⃗ is a solution in the problem space, and Hi
t
, Wi

t
 and ⃖⃖⃖⃗Ci

t
 are

the height, width and center of ith peak in the tth environment, respectively. The height,
width and center of a peak change in each environment as follows:
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Hi

t+1 = Hi

t
+ height_severityi ∗ N(0.1) (3)

Wi

t+1 = Wi

t
+ width_severityi ∗ N(0.1) (4)

C⃗i

t+1 = C⃗i

t
+ V⃗ i

t+1 (5)

V⃗ i

t+1 = Shift_severity ∗
(1 − 𝜆) ∗ r⃗ + 𝜆 ∗ V⃗ i

t

(1 − 𝜆) ∗ r⃗ + 𝜆 ∗ V⃗ i
t

(6)

where N(0,1) represents a random number drawn from Gaussian distribution with zero
mean and one variance. The parameter setting of mMPB is shown in Table 1 based on [5].

Table 1. Parameter setting of the modified MPB

Parameter Value
Number of peaks, M 5
Change frequency 2500
Shift severity, s 1
Height severity Randomized in range [1.0,10.0]
Width severity Randomized in range [0.1,1.0]
Peaks shape Cone
Number of dimensions, D 2
Correlation Coefficient, λ 0
Peaks location range [0–50]
Peak height [30.0–70.0]
Peak width [1–12]
Initial height value 50.0
Initial width value 6.0
Number of Environments 150

In the proposed algorithm, the problem is solved by multi_swarm PSO as a maxi‐
mization problem. Our algorithm tries to track moving peaks and gathers information
about them. Additionally, it uses this information as well as Gbest fitness values of
Tracker_swarms for choosing the next robust solution in its decision making process.
The main goal of this process is that the chosen robust solutions keeps their quality above
the threshold δ over a larger number of environments. As a result, the average number
of environments that each robust solution remains acceptable is used as a performance
measure as follows:

Average Survival time =
Number of Environments

Number of Robust Solutions
(7)

where number of environments shows how many times the environment changes, and
number of robust solutions indicates the number of times that the algorithm changed the
robust solution because the existing robust solutions no longer remains acceptable.
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Therefore, higher values of Average Survival time show better results and the best situa‐
tion happens when the first robust solution remains acceptable for all environments.

It is worth mentioning that, in [5], Fu et al. proposed a performance measure based
on average of survival time which was calculated by Eq. 8:

Fs(x, t, 𝛿) =
{

0, iff (x, 𝛼(t)) < 𝛿

max{l|t ≤ i ≤ t + l:f (x, 𝛼(i)) ≥ 𝛿}, else
(8)

where Fs is maximal time interval starting from time t until t + l in which the fitness
value of solution x remains above δ. The average of Fs was used as the performance
measure which the result is the same with Eq. 7. However, we preferred to use Eq. 7 as
performance indicator, because in our proposed algorithm, we do not use the survival
time metric like in [5]. Furthermore, in [4], Jin et al. introduced different performance
measures including the robustness rate as Eq. 9:

RobustnessRate = 1 −
NumberofRobustSolutions − 1
NumberofEnvironments − 1 (9)

The parameter used in both Eqs. 7 and 9 are the same and the main idea of both of
them is measuring average survival time based on the length of robust solution sequence.
However, the outcome of Eq. 7 is more suited to the main goal of ROOT, i.e., maximizing
the number of environments a robust solution can keep its quality above the threshold.

The parameter setting of the proposed algorithm is shown in Table 2. Experiments
are done on the mMPB with a parameter setting shown in Table 1 with different values
of δ (40, 45 and 50). Results are obtained from 30 executions of the proposed algorithm
and each execution continues for 150 environmental changes (375,000 function evalu‐
ations).

Table 2. Parameter values of the proposed algorithm

Parameters Initial value
c1, c2 2.05 [10]
χ 0.729843788 [10]
Trackers’ Population Size 5
Finder’s Population Size 10
P 1[8]
Q 1[8]
Conv_limit 1[8]
K 10[8]
δ 40,45,50
Environment number 150
Stop criterion Max number of function

evaluations

Table 3 shows the experimental result of the proposed algorithm. In Table 3,
Offline_error [11] shows the performance of Multi_swarm PSO. Additionally, RS_error
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shows the average error of robust solutions in all environments and RS_Fit shows the
average fitness value of robust solutions in all environments. Also the numbers in paren‐
theses are standard_error.

Table 3. Results of the proposed algorithm on mMPB with δ = 40, 45, and 50.

δ Offline_error
(std_error)

RS_error
(std_error)

RS_Fit
(std_error)

Average
Survival time
(Eq. 7)
(std_error)

40 0.0210
(0.0037)

9.3154
(0.2588)

53.1573
(0.2845)

8.3488
(0.6331)

45 0.0214
(0.0043)

6.9659
(0.2267)

55.8288
(0.2078)

6.8309
(0.6571)

50 0.0218
(0.0055)

5.2021
(0.1488)

58.1354
(0.1426)

4.2483
(0.1849)

The main goal of the proposed algorithm is to increase Average survival time, i.e.,
to decrease the number of times that the algorithm needs to change the robust solution
because of a lack of quality as determined by δ. As expected, a lower δ allows a robust
solution to survive longer.

The value of offline_error is almost the same for all experiments because the problem
is the same from the point of view of DOP and the results show that the accuracy of
multi_swarm PSO for finding and tracking peaks is acceptable. This is important because
the performance of choosing robust solutions is totally dependent on the performance
of multi_swarm PSO in finding and tracking moving peaks. The average error of robust
solutions decreases when δ increases because the proposed algorithm tried to keep fitness
value of robust solutions above δ and change them if their fitness value came under δ.
As a result, with higher values of δ, fitness values of acceptable robust solution increases,
and the error decreases. Therefore, when δ increases, the average fitness value of robust
solutions increases, at the expense of requiring more changes. Figure 2 illustrates the
average fitness of the best found position by multi_swarm PSO in each environment by
TMO as well as robust solutions’ fitness values.

To compare the result of proposed algorithm with that of previous works in the field
of ROOT, in [12], the number of robust solutions for the proposed Multi_objective
ROOT algorithm and the ROOT algorithm from [5] are reported. Since the experiments
in [12] were done on the same benchmark and for the same number of environments as
this paper, the Average Survival time of existing works i.e. works in [5, 12] can be
calculated by Eq. 7 and compared with our algorithm. It is worth mentioning that since
in some papers such as [4, 6], the benchmark problem is different with the one that we
used in this paper, so we cannot use their reported results for our comparisons and
comparing the result of our algorithm with of them will be done in future works. The
best Average Survival time with δ = 40, 45 and 50 of Guo’s algorithm [12], and the
average of reported values in [12] for Fu’s Algorithm [5], and our proposed algorithm
are shown in Table 4. The results in Table 4 show that our proposed algorithm can
perform significantly better than compared works in term of Average Survival time. Note
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that Table 4 does not have comparisons on standard error or standard deviation, because
these figures were not provided in [12] for Guo’s and Fu’s algorithms.

Table 4. The Average Robustness obtained by the three algorithms on mMPB.

δ Average Robustness
Fu’s
Algorithm [5]

Guo’s
Algorithm [5]

Proposed
Algorithm

40 2.30 2.67 8.35
45 1.91 2.08 6.83
50 1.53 1.61 4.25

Fig. 2. Average fitness values of the best TMO and robust solutions found by multi_swarm PSO.
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4 Conclusion

In this paper, a new multi-swarm PSO algorithm has been proposed for robust optimi‐
zation over time (ROOT). The main goal of the proposed algorithm is finding robust
solutions that remain acceptable for a longer time, i.e., solutions with fitness quality
above an acceptance threshold over a number of environments. The proposed algorithm
differs from previous work to find ROOT solutions. We use PSO Tracker_swarms that
track peaks and gather information about how they react to changes. Then, the selection
of the next robust solution is based on this information. As a performance measure, we
use an easy-to-implement and algorithm-independent performance indicator named
Average Robustness that reflects the average number of environments that the robust
solutions could remain acceptable during optimization. The experimental results show
that our proposed algorithm performs better than existing work in terms of Average
Robustness. Currently, we are working on finding robust solutions based on different
characteristics of peaks for DOPs with higher number of peaks and dimensions, and
different specifications. In addition, new dynamic characteristics such as time-linkage
[14] and distance constrains between successive solutions should be added to the
problem to close the current gaps [15] between academic research and real-world prob‐
lems in this domain.
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Abstract. Static and stochastic vehicle routing problems (SS-VRP) aim
at modeling and solving real life problems by considering uncertainty on
the data. In particular, customer data may not be known with certainty.
Before the beginning of the day, probability distributions on customer
data are used to compute a first-stage solution that optimizes an expected
cost. Customer data are revealed online, while the solution is executed,
and a recourse strategy is applied on the first-stage solution to quickly
adapt it. Existing SS-VRP variants usually make a strong assumption
on the time at which a stochastic customer reveals its data (e.g., when
a vehicle arrives at the corresponding location). We introduce a new SS-
VRP where customer reveal times are stochastic. We define first-stage
solutions and a recourse strategy for this new problem. A key point is
to introduce waiting locations that are used in the first stage-solution
to wait for the realization of customer stochastic data. We show how to
compute the expected cost of a first-stage solution in pseudo polynomial
time, in the particular case where the vehicles are not constrained by a
maximal capacity. We also introduce a local search-based approach for
optimizing the first-stage solution, and introduce a scale parameter to
tune the precision and cost of the expected cost computation. Experi-
mental results on small to large instances demonstrate its efficiency and
flexibility.

1 Introduction

The Vehicle Routing Problem (VRP) aims at modeling and solving a real life
common operational problem, in which a set of customers must be visited using
a fleet of vehicles. Each customer comes with a certain demand. In the VRP with
Time Windows (VRPTW), each customer must be visited within a given time
window. A feasible solution of the VRPTW is a set of vehicle routes, such that
every customer is visited exactly once during its time window and that sum of the
demands along each route does not exceed the corresponding vehicle’s capacity.
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The objective is then to find an optimal feasible solution, where optimality is
usually defined in terms of travel distances.

The classical deterministic VRP(TW) assumes that customer data are known
with certainty before the computation of the solution. Contrary to standard
academic formulations, real world applications usually have missing part of the
problem data when computing a solution. For instance, only a subset of the
customer demands may be known before online execution. Missing demands
hence arrive in a dynamic fashion, while vehicles are on their route. In such
a context, a solution should contain operational decisions that deal with cur-
rent known demands, but should also anticipate potential unknown demands.
Albeit uncertainty may be considered for various attributes of the VRP (e.g.,
travel times), we focus on situations where the customer data are unknown a
priori, and we assume that we have some probabilistic knowledge on missing
data (e.g., probability distributions computed from historical data). This prob-
abilistic knowledge is used to compute a first-stage solution which is adapted
online when random variables are realized. Two different kinds of adaptations
may be considered: Dynamic and Stochastic VRPTW (DS-VRPTW) and Static
and Stochastic VRPTW (SS-VRPTW).

In the DS-VRPTW, the solution is re-optimized at each time-step, and
this re-optimization involves solving an NP-hard problem so that it is usually
approximated with meta-heuristics as proposed, for example, in [1–3]. Note that
the DS-VRPTW assumes a probabilistic knowledge on the potential requests.
In contrary, in [4] for instance no prior knowledge is provided on the potential
requests, which are then assumed to be uniformly distributed in the Euclidean
plan.

In the SS-VRP(TW), no expensive reoptimization is allowed during online
execution. When unknown information is revealed, the first stage solution is
adapted online by applying a predefined recourse strategy whose time complex-
ity is polynomial. In this case, the goal is to find a first stage solution that
minimizes its total cost plus the expected extra cost caused by the recourse
strategy. For example, in [5], the first stage solution is a set of vehicle tours
which is computed offline with respect to probability distributions of customer
demands. Real customer demands are revealed online, and two different recourse
strategies are proposed: in the first one, each demand is assumed to be known
when the vehicle arrives at the customer place, and if it is larger than or equal
to the remaining capacity of the vehicle, then the first stage solution is adapted
by adding a round trip to the depot to unload the vehicle; in the second recourse
strategy, each demand is assumed to be known when leaving the previous cus-
tomer and the recourse strategy is refined so that customers with null demands
are skipped.

In this paper, we focus on the SS-VRPTW, and introduce a new variant
where no strong assumption is made on the moment at which customer requests
are revealed during the operations (contrary to most existing work that assume
that customer requests are known either when arriving at the customer place, or
when leaving the previous customer). In this new variant, called the SS-VRPTW
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with random Customers and Reveal time (SS-VRPTW-CR), the reveal times of
customer requests are random variables. To handle uncertainty on reveal times,
we introduce waiting locations when computing first-stage solutions: the routes
computed offline visit waiting locations and a waiting time is associated with
each waiting location. When a customer request is revealed, it is either accepted
(if it is possible to serve it) or rejected. The recourse strategy then adapts routes
so that all accepted requests are guaranteed to eventually be served. The goal
is to compute the first-stage solution that minimizes the expected number of
rejected requests.

Our motivating application is an on-demand health care service for elderly
or disabled people. Health care services are provided directly at home by mobile
medical units. Every person who’s registered to the service can request a health
care support at any moment of the day with the guarantee to be satisfied within
a given time window. From historical data, we know, for each customer region
and each time unit, the probability that a request appears. Given this stochastic
knowledge, we compute a first-stage solution. When a request appears (online),
the recourse strategy is used to decide whether the request is accepted or rejected
and to adapt medical unit routes. When a request is rejected, the system must
rely on an external service provider in order to satisfy it. Therefore, the goal is
to minimize the expected number of rejected requests.

Organization. In Sect. 2, we review the existing studies on VRPs that imply
stochastic customers. Section 3 formally defines the general SS-VRPTW-CR.
Section 4 describes a recourse strategy for this problem. Section 5 shows how the
expected number of rejected requests can be efficiently computed from a first
stage solution and for a specific recourse strategy. Section 6 describes a local
search-based approach for approximating an optimal first stage solution. Exper-
imental results are analysed in Sect. 7. Further research directions are finally
discussed in Sect. 8.

2 Related Work

The most studied cases in SS-VRPs are stochastic customers (presence of cus-
tomers are random variables), stochastic demands (quantities required by cus-
tomers are random variables), and stochastic times (travel and/or service times
are random variables). Since the SS-VRPTW-CR belongs to the first case, we
focus this review on customers uncertainty.

The Traveling Salesman Problem (TSP) is a special case of the VRP with
only one uncapacitated vehicle. [6] introduced the TSP with stochastic Cus-
tomers (SS-TSP-C), and provided mathematical formulations and a number of
properties and bounds. In particular, he showed that an optimal solution for the
deterministic problem can be arbitrarily bad in case of uncertainty. [7] developed
the first exact solution method for the SS-TSP-C, using the integer L-shaped
method [8] to solve instances up to 50 customers. Heuristics for the SS-TSP-C
have then been proposed (e.g. [9–11]) as well as meta-heuristics such as simulated
annealing [12] or ant colony optimization [13].
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The first SS-VRP with stochastic Customers (SS-VRP-C) has been studied
by [9] as a generalization of the SS-TSP-C. [14] compared different heuristics.
[5] considered a VRP with stochastic Customers and Demands (SS-VRP-CD).
A customer demand is assumed to be revealed either when the vehicle leaves the
previous customer or when it arrives at the customer’s own location. Two differ-
ent recourse strategies are proposed. For both strategies, closed-form mathemat-
ical expressions are provided to compute the expected total distance, provided
a first stage solution. [15,16] developed the first exact algorithm for solving the
SS-VRP-CD for instances up to 70 customers, by means of an integer L-shaped
method. [17] later proposed a tabu search to efficiently approximate the solution.
Experimentations are reported on instances with up to 46 customers. [18] later
developed an adaptive memory programming metaheuristic for the SS-VRP-C
and assess it on benchmarks with up to 483 customers and 38 vehicles.

Particularly close to the SS-VRPTW-CR is the SS-TSP-C with Deadlines
[19]. Unlike the SS-VRPTW-CR, the set of customers is revealed at the beginning
of the operations. A recent literature review on SS-TSP-C may be found in [20].

[21] considered a variant of the SS-VRPTW-C, the Courier Delivery Problem
with Uncertainty. Unlike the SS-VRPTW-CR, authors assume that customer
presences are not revealed at some random moment during the operations, but
all at once at the beginning of the day (that is, after computing the first stage
solution).

3 Description of the SS-VRPTW-CR

Input Data. We consider a complete directed graph G = (V,A) and a discrete
time horizon H = [1, h], where interval [a, b] denotes the set of all integer values
i such that a ≤ i ≤ b. To every arc (i, j) ∈ A is associated a travel time (or
distance) di,j ∈ N. The set of vertices V = {0} ∪ W ∪ C is composed of a depot
0, a set of m waiting locations W = [1,m] and a set of n customer regions
C = [m + 1,m + n]. We note W0 = W ∪ {0} and C0 = C ∪ {0}. The fleet is
composed of K uncapacitated vehicles.

We consider the set R = C × H of potential customer requests such that
an element (c, Γ ) ∈ R represents a potential request revealed at time Γ ∈ H
for customer region c. To each potential request r = (c, Γ ) ∈ R is associated
a deterministic demand qr ∈ [1, Q], a deterministic service duration sr ∈ H
and deterministic time window [er, lr] with Γ ≤ er ≤ lr ≤ h. We note pr the
probability that r appears on vertex c at time Γ , and assume independence
between request probabilities. Although our formalism imposes Γ ≥ 1 for all
potential requests, in practice a request may be known with certainty that is,
with probability 1.

To simplify notations, a request r = (c, Γ ) can be written in place of its
own region c. For instance, the distance dv,c can also be intuitively written dv,r.
Furthermore, we use Γr to denote the reveal time of a request r ∈ R and cr for
its customer region.
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First Stage Solution. The first-stage solution is computed offline, before the
beginning of the time horizon. It consists in a set of K vehicle routes visiting a
subset of the m waiting vertices, together with time variables denoted τ indicat-
ing how long a vehicle should wait on each vertex. More specifically, we denote
(x, τ) a first stage solution to the SS-VRPTW-CR, where:

• x = {x1, ..., xK} defines a set of K sequences of waiting vertices of W , such
that each sequence xk starts and ends with 0 and each vertex of W occurs at
most once in x. We note W x ⊆ W the set of waiting vertices visited in x.

• τ : W x → H associates a waiting time τw ≥ 1 to every waiting vertex w ∈ W x;
• Each sequence 〈0, w1, ..., wm′ , 0〉 in x is such that the vehicle is back to the

depot before the end of the day.

In other words, x defines a Tour Orienteering Problem (TOP, see [22]) to which
each visited location is assigned a waiting time by τ . Given a first stage solu-
tion (x, τ), we define on(w) = [on(w), on(w)] for each vertex w ∈ W x such
that on(w) (resp. on(w)) is the arrival (resp. departure) time on w. In a sequence
〈0, w1, ..., wm′ , 0〉 in x, we then have on(wi) = on(wi−1) + dwi−1,wi

and on(wi) =
on(wi) + τwi

for i ≥ 1 and assume both on(0) = 1 and on(0) = on(wm′) +
dwm′ ,0 ≤ h. Figure 1 (left) illustrates an example of first stage solution on a basic
SS-VRPTW-CR instance.

Recourse Strategy and Second Stage Solution. A recourse strategy R states how
a second stage solution is gradually constructed as requests are dynamically
revealed. In this paragraph, we define the properties of a recourse strategy. An
example of recourse strategy is given in Sect. 4.

Let ξ ⊆ R be the set of requests that reveal to appear by the end of the
horizon H. The set ξ is also called a scenario. We note ξt ⊆ ξ the set of requests
appearing at time t ∈ H, i.e., ξt = {r ∈ ξ : Γr = t}. We note ξ1..t = ξ1 ∪ ... ∪ ξt

the set of requests appeared up to time t.
A second stage solution is incrementally constructed at each time unit by

following the skeleton provided by the first stage solution (x, τ). At a given time
t of the horizon, we note (xt, At) the current state of the second stage solution:

• xt defines a set of vertex sequences describing the route operations performed
up to time t. Unlike x, we define xt on a graph that also includes the customer
regions. Operations described in xt must satisfy the time window and vehicle
capacity constraints imposed by the VRPTW.

• At ⊆ ξ1..t is the set of accepted requests up to time t. Requests of ξ1..t that
do not belong to At are said to be rejected.

We distinguish between requests that are accepted and those that are both
accepted and satisfied. Up to a time t, an accepted request is said to be satisfied
if it is visited in xt by a vehicle. Accepted requests that are no yet satisfied must
be guaranteed to be eventually satisfied according to their time window.

Figure 1 (right) illustrates an example of second stage solution being partially
constructed at some moment of the time horizon.
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Fig. 1. On the left: first stage solution with K = 3 vehicles. The depot, waiting vertices
and customer regions are represented by a square, circles and crosses respectively.
Arrows represent vehicle routes and integers indicate waiting times at waiting locations.
Values preceded by ‘d’ indicate travel times. Waiting vertices h, i and m are not
part of the first stage solution. Here on(D) = 1, on(a) = 3, on(a) = 9, on(b) = 12,
on(b) = 16, etc. On the right: partial second stage solution (plain arrows). Filled crosses
are accepted requests. Some accepted requests, such as r1, have been satisfied (or the
vehicle is currently traveling towards the location, e.g., r2), while some others are not
yet satisfied (e.g., r3).

Before starting the operations (time 0), x0 is a set of K sequences that only
contain vertex 0, and A0 = ∅. At each time unit t ∈ H, given a first stage solution
(x, τ), a previous state (xt−1, At−1) of the second stage solution and a set ξt of
requests appearing at time t, the new state (xt, At) is obtained by applying a
specific recourse strategy R:

(xt, At) = R(
(x, τ), (xt−1, At−1), ξt

)
. (1)

A necessary property of a recourse strategy is to avoid reoptimization. We con-
sider that R avoids reoptimization if the computation of (xt, At) is achieved in
polynomial time.

We note cost(R, x, τ, ξ) = |ξ\Ah| the final cost of a second stage solution with
respect to a scenario ξ, given a first stage solution (x, τ) and under a recourse
strategy R. This cost is the number of requests that are rejected at the end h of
the time horizon.

Optimal First Stage Solution. An optimal first stage solution (x, τ) to the SS-
VRPTW-CR minimizes the expected cost of the second stage solution under a
given strategy R, satisfying statements (2) and (3):

(SS-VRPTW-CR) Minimize
x,τ

QR(x, τ) (2)

s.t. (x, τ) is a first stage solution. (3)
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The objective function QR(x, τ), which is nonlinear in general, determines the
expected number of rejected requests, i.e. requests that fail to be visited under
recourse strategy R and first stage solution (x, τ):

QR(x, τ) =
∑

ξ⊆R

Pr(ξ) cost(R, x, τ, ξ) (4)

where Pr(ξ) defines the probability of scenario ξ. Since we assume independence
between requests, we have Pr(ξ) =

∏
r∈ξ pr · ∏

r∈R\ξ(1 − pr).

4 Description of a Recourse Strategy

In order to avoid reoptimization, the set R of potential requests is ordered.
Furthermore, given a first stage solution (x, τ) that visits the set W x of waiting
locations, each potential request r = (c, Γ ) ∈ R is assigned to exactly one waiting
vertex (and hence, a vehicle) in W x.

Informally, the recourse strategy accepts a new request if it is possible for
the vehicle associated to its corresponding waiting vertex location to adapt its
first stage tour to visit the customer. The vehicle will then travel from the
waiting location to the customer and return to the waiting location. Time window
constraints should be respected, and the already accepted requests should not
be perturbed. In the recourse strategy we propose here, we assume the vehicles
not to be constrained by a maximal capacity.

Request Ordering. Before computing first-stage solutions, we order R by increas-
ing reveal time Γr first, end of time window lr second and request number r to
break ties. Let <R denote this total strict order on R. Whereas the remain-
ing of the paper is based on the assumption of total order on Γr, the order-
ing criteria may be modified without loss of generality (e.g., replacing lr by
er), as long as the total order remains strict and primarily based on Γr, i.e.
∀r1, r2 ∈ R,Γr1 < Γr2 ⇒ r1 <R r2.

Request Assignment According to a First Stage Solution. Given a first-stage
solution (x, τ), we assign each request of R to a waiting vertex visited in (x, τ).
This assignment is computed for each first stage solution (x, τ) before the appli-
cation of the recourse strategy. As an optimally fair distribution of the potential
requests might be excessively expensive to compute, we propose the following
heuristic.

Let tmin
r,w = max{on(w), Γr, er − dw,r} be the minimum time for leaving

waiting location w to satisfy request r. Indeed, a vehicle cannot handle r before
(1) the vehicle is on w, (2) r is revealed, and (3) the beginning er of the time
window minus the time dw,r needed to go from w to r.

Let tmax
r,w = min{lr − dw,r, on(w) − dw,r − sr − dr,w} be the latest time at

which a vehicle can handle r (which also involves a service time sr) from waiting
location w and still leave it in time t ≤ on(w).
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Given a first stage solution (x, τ), we assign each request r ∈ R either to a
waiting vertex of W x or to ⊥ (to denote that r is not assigned). We note w(r)
this assignment which is computed as follows:

• Let W x
r = {w ∈ W x : tmin

r,w ≤ tmax
r,w } be the set of feasible waiting locations for r

• If W x
r = ∅ then set w(r) to ⊥ (r is always rejected)

• Else set w(r) to the feasible vertex of W x
r that has the least number of requests

already assigned to it (break further ties w.r.t. vertex number)

Once finished, the request assignment ends up with a partition {π⊥, π1, ..., πK}
of R, where πk is the set of requests assigned to the waiting vertices visited by
vehicle k and π⊥ is the set of unassigned requests (such that w(r) = ⊥). We note
πw

k ⊆ πk the set of requests assigned to w ∈ W x in route k. We note fst(πw
k )

the first request of πw
k according to order <R, and for each request r ∈ πw

k such
that r �= fst(πw

k ) we note prv(r) the request of πw
k that immediately precedes r

according to order <R.

Using the Recourse Strategy to Adapt a First Stage Solution at a Current Time t.
At each time step t, the recourse strategy is applied to compute the second stage
solution (xt, At), given the first stage solution (x, τ), the second stage solution
(xt−1, At−1) at the end of time t − 1, and the incoming requests ξt.

At is the set of accepted requests. It is initialized with At−1. Then, each
incoming request of ξt is considered (taken by increasing order of <R) and either
accepted (added to At) or rejected (not added to At) by applying the following
decision rule:

• Let k be the vehicle associated with r (i.e., r ∈ πk)
• Let y : R → H be the function returning the time at which k finishes to

satisfy all accepted requests that precede r (according to <R) and reaches
waiting vertex w(r). Namely, y(r) is the time at which k is available for r and
is defined by:

– If r = fst(πw
k ), then y(r) = on(w)

– else if prv(r) /∈ At then y(r) = y(prv(r))
– else y(r) = max(y(prv(r)) + dw,prv(r), eprv(r)) + sprv(r) + dprv(r),w

If y(r) allows k to reach r during its time window and to arrive in time to
its next waiting location (i.e., y(r) ≤ tmax

r,w(r)) then r is accepted and added
to At; otherwise it is rejected.

Once At has been computed, vehicle operations for time unit t must be decided.
Vehicles operate independently of each other. If vehicle k is traveling between
a waiting location and a customer region, or if it is serving a request, then its
operation remains unchanged; Otherwise, let w be the current waiting location
(or the depot) of vehicle k:

• If t = on(w), the operation for k is “travel from w to the next waiting vertex
(or the depot), as defined in the first stage solution”
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• Otherwise, let P = {r ∈ πw
k |cr /∈ xt ∧ (r ∈ At ∨ t < Γr)} be the set of requests

of πw
k that are not yet satisfied and that are either accepted or with unknown

revelation

– If P = ∅, then the operation for k is “travel back to the depot”
– Otherwise, let rnext be the smallest element of P according to <R

If t < tmin
rnext,w, then the operation for k is “wait until t + 1”

Otherwise, the operation is “travel to rnext, serve it and come back to w”

Figure 2 shows an example of second stage solution at a current time t = 17,
from an operational point of view.

Fig. 2. Example of second stage solution at time t = 17, under strategy R1. A filled
cross represents a request that appeared, an empty one a request that is either still
unknown (e.g., r8) or revealed as being absent (that is didn’t appear, e.g., r5). Here
πk = 〈ra, r1, . . . , r9〉 is the sequence of requests assigned to the vehicle, according to
(x, τ). We assume qr = sr = 0, ∀r ∈ R. sat(r) represents, for a request r, the time at
which r gets satisfied.

5 Expected Cost of Second Stage Solutions

Provided a recourse strategy R and a first stage solution (x, τ) to the SS-
VRPTW-CR, a naive approach for computing QR(x, τ) would be to literally
follow Eq. (4), therefore using the strategy described by R in order to confront
(x, τ) to each and every possible scenario ξ ⊆ R. Because there is an exponential
number of scenarios with respect to |R|, this naive approach is not affordable in
practice. In this section, we show how the expected number of rejected requests
QR(x, τ) under the recourse strategy described in Sect. 4 may be computed in
O(nh2) using closed form expressions, in the special case where vehicles are of
infinite capacity.

We assume that the potential request probabilities are independent from each
other such that, for any couple of requests r, r′ ∈ R, the probability pr∩r′ that
both requests appear is given by pr∩r′ = pr · pr′ .
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Expected Cost. QR(x, τ) is equal to the expected number of rejected requests,
which in turn is equal to the expected number of requests that reveal to appear
minus the expected number of accepted requests. The expected number of
revealed requests is given by the sum of all request probabilities, whereas the
expected number of accepted requests is equal to the sum, for every request r,
of the probability that it belongs to Ah:

QR(x, τ) =
∑

r∈R

pr −
∑

r∈R

Pr{r ∈ Ah} =
∑

r∈R

(
pr − Pr{r ∈ Ah})

(5)

where the right-hand side of the equation comes from the independence
hypothesis.

If we consider a request r ∈ πk, the probability Pr{r ∈ Ah} only depends on
the time at which vehicle k is available for r, which itself depends on previous
operations. Recall the y : R → H function described in Sect. 4: y(r) is that
time. Whereas y(r) is deterministic for a specific scenario, it is not anymore in
the context of the computation of Pr{r ∈ Ah} and we are thus interested in its
probability distribution. More specifically, we compute the probability that, at
a time t ∈ H, a request r already appeared and the vehicle leaves w(r) to satisfy
it. Let’s call this probability g1(r, t):

g1(r, t) ≡ Pr{request r appeared at time t′ ≤ t and departureTime(r) = t}
where departureTime(r) is the time at which the vehicle leaves vertex w(r) in
order to serve r, if r has been accepted. According to the recourse strategy, for
a specific scenario we see that departureTime(r) = max(y(r), tmin

r,w(r)).
The probability Pr{r ∈ Ah} that a request r gets satisfied is the probability

that both r appears and that departureTime(r) ≤ tmax
r,w , that is:

Pr{r ∈ Ah} =
tmax
r,w∑

t=1

g1(r, t) =
tmax
r,w∑

t=tmin
r,w

g1(r, t). (6)

The calculus of g1(r, t) is less obvious. Since departureTime(r) depends on
previous operations on the same waiting location w = w(r), we calculate g1(r, t)
recursively starting from the first request r1 = fst(πw

k ) assigned to the waiting
location, up to the current request r. The second stage solution strictly respects
the first stage schedule when visiting the waiting vertices, that is, these are
guaranteed to be visited according to their arrival (on) and departure (on) times.
The base case is then:

g1(r1, t) =

{
pr1 , if t = max(on(w), tmin

r1,w)
0 otherwise.

(7)

Indeed, if r1 appeared then the vehicle leaves w at time tmin
r1,w, unless it has

not yet reached w at that time. The general case of a request r >R r1, r ∈ πw
k ,

depends on the time at which the vehicle gets rid of the preceding request prv(r).
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Let f(r, t) be the probability that, at time t, the vehicle either reaches back w
after having served r, or discard r because it is not satisfiable or because it
has revealed not to appear. It represents the time at which the vehicle becomes
available for the next request after r in πw

k , if any (computation of f is detailed
below). We define g1(r, t) based on f -probabilities of the previous request prv(r):

g1(r, t) =

⎧
⎪⎪⎨

⎪⎪⎩

pr · f(prv(r), t) if t > tmin
r,w

pr · ∑tmin
r,w

t′=on(w) f(prv(r), t′) if t = tmin
r,w

0 otherwise.

(8)

Indeed, if t > tmin
r,w the vehicle leaves w to serve r as soon as it gets rid of

the previous one prv(r). In such case, g1(r, t) is the probability that both r has
already appeared and the vehicle is available for it at time t, that is, finished with
request prv(r) at time t. At any time below tmin

r,w , the probability that the vehicle
leaves w must obviously be zero, since tmin

r,w is the minimum time for serving r

from location w = w(r). At time t = tmin
r,w , we must consider the possibility

that the vehicle was waiting for being able to serve r, but from an earlier time
t′ < tmin

r . The overall probability that the vehicle leaves w for request r at time
t = tmin

r,w is then pr times all the f -probabilities that the vehicle was actually
available from a time on(w) ≤ t′ ≤ tmin

r,w .
The f -probabilities of a request r depend on what exactly happened to r.

Namely, from a time t there are two cases: either r consumed operational time,
or it didn’t at all:

f(r, t) = g1(r, t − Sr) · δw(r, t − Sr) + g1(r, t) · (
1 − δw(r, t)

)
+ g2(r, t). (9)

where Sr = dw,r + sr + dr,w and the function δw(r, t) returns 1 iff request r is
satisfiable from time t and vertex w, i.e., δw(r, t) = 1 if t ≤ tmax

r,w , and δw(r, t) = 0
otherwise.

The first term in the summation of the right hand side of Eq. 9 gives the
probability that request r actually appeared and got satisfied. In such a case,
departureTime(r) must be the current time t, minus delay Sr needed for serving r.

The second and third terms of Eq. (9) add the probability that the vehicle
was available time t, but that request r did not consume any operational time.
There are only two possible reasons for that: either r actually appeared but was
not satisfiable (second term), or r did not appear at all (third term), where
g2(r, t) is the probability that r did not appear and is discarded at time t, and
is computed as follows. For the base case of first potential request r1 = fst(πw

k ),
we have:

g2(r1, t) =

{
1 − pr1 if t = max(on(w), Γr1)
0 otherwise

(10)
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The general case for r ≥ r1, r ∈ πw
k , is quite similar to the one of function g1.

We just consider the probability 1 − pr that r doesn’t reveal and replace tmin
r,w

by Γr:

g2(r, t) =

⎧
⎪⎨

⎪⎩

(1 − pr) · f(prv(r), t) if t > max(on(w), Γr)
(1 − pr) · ∑max(on(w),Γr)

t′=on(w) f(prv(r), t′) if t = max(on(w), Γr)

0 otherwise.
(11)

A Note on Implementation. Since we are interested in computing Pr{r ∈ Ah}
for each request r separately, by following the definition of g1, we only require
the f -probability associated to prv(r) to be already computed. This suggests a
dynamic programming approach. Computing all the f -probabilities can then be
incrementally achieved while filling up a 2-dimensional matrix containing all the
f -probabilities.

Algorithm 1. Local search to compute a first stage solution of SS-
VRPTW-CR

Let (x, τ) be an initial feasible first stage solution.1

Initialize the neighborhood operator op to 12

while some stopping criterion is not met do3

Select a solution (x′, τ ′) at random in Nop(x, τ)4

if some acceptance criterion is met on (x′, τ ′) then set (x, τ) to (x′, τ ′)5

and op to 1 ;
else change the neighborhood operator op to op % nop + 1 ;6

return the best first stage solution computed during the search7

Computational Complexity. Complexity of computing the expected cost is equiv-
alent to the one of filling up a |πw

k | × h matrix for each visited waiting location
w ∈ W x, in order to store all the f(r, t) probabilities. By processing incremen-
tally on each waiting location separately, each matrix cell can be computed
in constant time using Eq. (9). In particular, once the probabilities in cells
(prv(r), 1 · · · t) are known, the cell (r, t) such that r �= fst(πw

k ) can be com-
puted in O(1) according to Eqs. (8)–(11). Given n customer regions and a time
horizon of length h, we have at most |R| = nh ≥ ∑

w∈W x |πw
k | potential requests.

It then requires at most O(|R|h) = O(nh2) constant time operations to compute
QR(x, τ).

6 Local Search for the SS-VRPTW-CR

Algorithm 1 describes a Simulated Annealing [23] local search approach for
approximating the optimal first stage solution (x, τ), minimizing QR(x, τ). The
computation of QR(x, τ) is performed according to equations of Sect. 5 and is
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considered from now as a black box. Starting from an initial feasible first stage
solution (x, τ), Algorithm 1 iteratively modifies it by using a set of nop = 9 neigh-
borhood operators. At each iteration, it randomly chooses a solution (x′, τ ′) in
the current neighborhood (line 4), and either accepts it and resets the neighbor-
hood operator op to the first one (line 5), or rejects it and changes the neigh-
borhood operator op to the next one (line 6). At the end, the algorithm simply
returns the best solution (x∗, τ∗) encountered so far.

Initial Solution and Stopping Criterion. The initial first stage solution is con-
structed by randomly adding each waiting vertex in a route k ∈ [1,K]. All
waiting vertices are thus initially part of the solution. The stopping criterion
depends on the computational time dedicated to the algorithm.

Neighborhood Operators. We consider 4 wellknown operators for the VRP: relo-
cate, swap, inverted 2-opt, and cross-exchange (see [24,25] for detailed descrip-
tion). In addition, 5 new operators are dedicated to waiting vertices: 2 for either
inserting or removing from W x a waiting vertex w picked at random, 2 for
increasing or decreasing the waiting time τw at random vertex w ∈ W x, and 1
that transfers a random amount of waiting time units from one waiting vertex
to another.

Acceptance Criterion. We use a Simulated Annealing acceptance criterion.
Improving solutions are always accepted, while degrading solutions are accepted
with a probability that depends on the degradation and on a temperature para-

meter, i.e., the probability of accepting (x′, τ ′) is e− 1−QR(x,τ)/QR(x′,τ′)
T . The tem-

perature T is updated by a cooling factor 0 < α < 1 at each iteration of
Algorithm 1: T ← α · T . During the search process, T gradually evolves from
an initial temperature Tinit to nearly zero. A restart strategy is implemented by
resetting the temperature to T ← Tinit each time T decreases below a fixed limit
Tmin.

7 Experimentations

Test Instances. We have randomly generated instances for the SS-VRPTW-
CR. Each test instance is drawn in a square of [100, 100] distance units, and is
characterized by:

• The number |C| ∈ {30, 50, 80} of customer regions, randomly distributed in
the square. Each customer c ∈ C region hosts nTS potential requests.

• The number |W | ∈ {20, 30, 50} of waiting vertices, randomly distributed in
the square.

• The size h = 480 of the horizon (corresponding to the number of minutes in
an 8 h day).
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Fig. 3. Map representation of instance a.1. The depot (square) is located at the cen-
ter. The instance counts 30 customer regions (stars) and 20 waiting vertices (circles).
Although it is not visible here, the instance has a time horizon of 480 units and counts
24 time slots. If the operational day lasts 8 h, a time unit represents a 1 min in real
time and each time slot lasts 20min.

• The number nTS = 24 of time slots. Time slots are introduced because it is
not realistic to detail request probabilities for each time unit of the horizon
(i.e., every minute). We set nTS to 24 so that the probability that a request
appears at a customer region is specified for 20 min time slots.

• The number K ∈ {1, 3, 5, 10} of available vehicles.

Travel times between vertices correspond to Euclidean distances, divided by
a velocity parameter specified in the instance. Figure 3 shows an example of
test instance. As a convention, the first time slot is associated to time unit
1 whereas time slot i is associated to time unit 1 + (i − 1) · �h/nTS�. In our
instance a.1, a potential request r associated to time slot 2 has a reveal time
Γr = 21 and no potential request is associated to time units [2, 20], [22, 40],
etc. All the test instances are available at http://becool.info.ucl.ac.be/resources/
benchmarks-ss-vrptw-cr.

Potential Requests. Each potential request r, associated with a customer region
and a time slot, comes with a deterministic service time sr = 10. The time
window [er, lr] is such that er is chosen uniformly in [Γr,min(Γr + h

nTS
], h), and

lr is chosen uniformly in [max(el, d0,r),max(el + 10, d0,r)].

Scale Parameter. A scale parameter is introduced in order to optimize expec-
tations on coarser data, and therefore to speed-up computations. When equal
to 1, expectations are computed while considering the original horizon. When
scale > 1, expectations are computed from a coarse version of the initial horizon,
scaled down by the factor scale. If scale = 10 for instance, then the horizon is
scaled to h′ = 48. All the time data, such as travel and service times, but also
time windows and reveal times, are then scaled as well (rounding up to nearest
integer). When working on a scaled horizon (i.e. scale ¿ 1), Algorithm1 deals
with an approximate but easier objective function QR(x, τ), in O(n( h

scale )
2), and

a reduced search space due to a coarse time horizon.

http://becool.info.ucl.ac.be/resources/benchmarks-ss-vrptw-cr
http://becool.info.ucl.ac.be/resources/benchmarks-ss-vrptw-cr
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Algorithm 1 is then modified by simply adapting line 7 to return the best
solution encountered so far, according to the initial horizon. Each time a new
best solution is found during the search, its true expected cost is computed after
scaling it up back to the original horizon, multiplying arrival, departure and
waiting times by a factor scale.

Experimental Plan. All experiments are done under a cluster composed of 32 64-
bits AMD Opteron 1.4 GHz cores. The code is developed in C++11 and compiled
with LLDB using -O3 optimization flag. The Simulated Annealing parameters
are set to Tinit = 5, Tmin = 10−6 and α = 0.995.

Table 1. Experimental results while varying horizon scale and computational time.

Scale 30 s 3 min 30 min

1 2 5 10 1 2 5 10 1 2 5 10

a.1 19.7 18.2 15.0 16.2 16.7 16.4 14.9 16.2 16.1 15.3 14.9 16.5

a.2 22.2 20.1 16.4 17.5 17.7 16.8 16.2 17.4 16.7 16.3 16.2 17.5

a.3 20.3 20.0 14.4 16.1 16.1 15.9 14.0 16.0 15.6 15.2 14.0 16.2

b.1 21.1 16.9 11.1 11.0 8.2 6.3 7.1 9.9 5.6 5.7 6.9 9.6

b.2 22.1 17.5 9.6 11.4 5.6 7.7 6.8 9.9 5.1 7.4 6.4 9.3

b.3 22.2 17.0 10.8 11.9 8.7 7.2 7.8 11.1 6.2 8.3 7.2 10.8

c.1 42.1 38.7 23.6 25.9 15.3 13.9 12.2 19.3 8.3 9.3 11.0 16.7

c.2 43.9 37.2 25.8 27.8 14.0 14.9 13.5 19.8 9.9 10.4 11.6 17.9

c.3 42.4 39.2 24.3 24.8 17.5 14.9 11.7 17.5 15.2 8.8 10.3 15.8

d.1 71.6 67.9 54.8 54.3 46.5 30.4 26.1 39.6 11.8 13.0 19.2 32.7

d.2 72.2 67.9 52.8 56.2 40.9 34.7 25.7 40.1 12.6 19.0 20.3 31.4

d.3 73.0 67.4 53.8 51.5 40.8 37.2 23.0 35.9 17.4 11.9 18.4 28.4

Results. Table 1 shows average experimental results over 10 runs on 12 instances:
Instances a.x (resp. b.x, c.x and d.x) are such that |C| = 30 (resp. 30, 50 and 80),
|W | = 5 (resp. 20, 30 and 50), and K = 1 (resp. 3, 5 and 10). Results are reported
with scale ∈ {1, 2, 5, 10} and with a CPU time limit ∈ {30, 180, 1800} seconds.

Provided a limited computational time of 30 s, using a scaled horizon leads
to better results. This is easily explained by the limited number of local search
iterations performed when scale = 1. As the computational time increases to
3 min, working on the original horizon size tends to provide better results. This
trend is confirmed by moving to 30 min. As the available computational time
increases, the accuracy in the objective function eventually overtakes the com-
putational efficiency provided by scaled horizons, especially for large instances
such as c.x and d.x.

With their unique vehicle and because requests are uniformly distributed,
instances a.x may suffer from an evaluation function being roughly uniform.
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Sending the vehicle at some location to wait there is, most of the time, more
or less equivalent to another location. Consequently, local optima are numerous
and little diversified, the more promising ones being hard to detect when using
scale 1 for only 30 min. In the contrary, using more vehicles (e.g. instances b.x)
leads to a less uniform evaluation function. For example, concentrating all the
vehicles in the same region would surely leads to poor results. On instances a.x,
the diversification brought by scaled horizons then still prevails after 30 min.
Given larger computation times (5 h), results on scales 5 and 10 do not show a
significant improvement:

a.1 a.2 a.3

scale ∈ {1, 2, 5, 10}: 15.3 15.1 14.9 16.5 16.2 15.8 16.1 17.3 14.8 14.6 14.0 16.1

Scales 1 and 2 in contrary tend to take promising benefits of a larger com-
putation time.

Figure 4 shows how, for instance c.1, the real objective function (i.e. according
to the original horizon) evolves in average (over 10 runs) during an execution
of Algorithm 1. By reducing both the granularity of the search space and the
complexity of the objective function, the parameter scale can therefore be used
as a tradeoff between responsiveness and good quality solutions on the long term.
Figure 4 also shows that the parameter scale can dynamically be reduced during
the search.

Fig. 4. Average evolution of the best real objective value in Algorithm 1, during 3600 s
on instance c.1. During the first second, objective values rapidly decrease when optimiz-
ing on scaled horizon. Thereafter, depending on the available computation time, some
scale factors reveal to be more efficient than others. For less than 1 min, scale = 5 leads
to better results. With at least 10 min, using the original horizon is definitely better.

8 Conclusions and Research Directions

We introduced a new stochastic VRP, the SS-VRPTW-CR. Unlike existing SS-
VRPs with random customers, we don’t make any assumption on the moment
at which a customer reveals its presence or absence. Instead, this is treated
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as a random variable as well. We proposed a recourse strategy for a special
case of the SS-VRPTW-CR, when there is no maximal vehicle capacities. We
showed how the exact expected cost can be computed in pseudo-polynomial time
under this recourse strategy, and how to integrate in an efficient meta-heuristic
method. Experiments are driven on generated test instances of various sizes. The
average results show how a scale parameter, controlling the granularity of the
time horizon, can be used to tune the optimization process in the case of limited
computational times.

Maximal Vehicle Capacity Constraints. The recourse strategy and equations we
give can be extended to take care of vehicle capacities. We are currently working
on a generalized version of these equations.

Contribution to Online Optimization. Another potential application of the SS-
VRPTW-CR goes to online optimization problems such as the DS-VRPTW.
Because of the huge complexity of reoptimization, heuristic methods are often
preferred, including the so called Sample Average Approximation (SAA, see
[26]). SAA relies on Monte Carlo sampling, making decisions based on a subset
of the scenarios. Thanks to recourse strategies, the SS-VRPTW-CR provides
an upper bound on the expected cost of a first stage solution under optimal
reoptimization. The SS-VRPTW-CR could therefore be used as a subroutine in
order to heuristically solve the DS-VRTPW, whilst considering the whole set of
scenarios instead of only a subset of sampled ones. In such a context, the scale
parameter we introduce in the experiments can be of great contribution.
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Abstract. The performance of the MAX -MIN ant system (MMAS)
in dynamic optimization problems (DOPs) is sensitive to the colony size.
In particular, a large colony size may waste computational resources
whereas a small colony size may restrict the searching capabilities of
the algorithm. There is a trade off in the behaviour of the algorithm
between the early and later stages of the optimization process. A smaller
colony size leads to better performance on shorter runs whereas a larger
colony size leads to better performance on longer runs. In this paper,
pre-scheduling of varying the colony size of MMAS is investigated in
dynamic environments.

1 Introduction

Ant colony optimization (ACO) is a metaheuristic inspired by the foraging
behaviour of real ant colonies [2,3]. ACO algorithms have been successfully
applied to many NP-hard combinatorial problems such as the travelling sales-
man problem (TSP) [4] and vehicle routing problem (VRP) [7]. In this paper, we
focus on a particular ACO variation, i.e., MAX -MIN Ant System (MMAS)
[22], which is one of the best performing variations.

The construction of solutions from ants is biased by existing pheromone trails
and heuristic information. Pheromone trails are updated according to the search
experience and towards solution with good quality. This is similar to a learning
reinforcement scheme. The behaviour and performance of MMAS algorithm
depends strongly on the number of ants used [5,24]. When a given computa-
tional budget is available, e.g., the maximum number of function evaluations, a
smaller number of ants will produce more algorithmic iterations whereas a larger
number of ants less. Hence, the colony size affects the duration of the learning
reinforcement [18].
c© Springer International Publishing AG 2017
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In [24], it was investigated that when fewer ants are used, the algorithm
may converge quickly at early stages of the optimization process, but get stuck
in the stagnation behaviour later on. In contrast, when more ants are used,
the algorithm converges slower but to better solutions at later stages of the
optimization process. Considering this MMAS’s behaviour, it can be observed
that the optimal number of ants depends on the stage of the optimization process.
Therefore, MMAS can benefit from varying the number of ants. For example, a
pre-schedule of varying the colony size may improve the performance of MMAS
in dynamic environments. The key idea is to start a few ants when a change
occurs and gradually increase the number of ants. In this way, MMAS will
benefit from both merits of a small (fast convergence) and large (improve solution
quality) colony size at different stages of the optimization process.

Several dynamic test cases of the dynamic TSP (DTSP) are generated for
our study. The rest of the paper is organized as follows. Sections 2 and 3
describe the DOPs generated and the ACO algorithm used for this study, respec-
tively. Section 4 discusses the importance of the colony size parameter. Section 5
presents the experimental study with discussions. Finally, Sect. 6 concludes this
paper.

2 Dynamic Environment

2.1 Dynamic Travelling Salesman Problem (DTSP)

The DTSP is modelled by a fully connected weighted graph G = (N,A), where
N = {v1, . . . , vn} is a set of n nodes (e.g., cities) and A = {(vi, vj) | vi, vj ∈
N, i �= j} is a set of arcs (i.e., links), where n represents the size of a problem
instance. Each arc (vi, vj) ∈ A is associated with a non-negative value dij ∈ R

+,
which represents the distance between cities vi and vj . The objective of the
problem is to find the shortest Hamiltonian cycle that starts from one node and
visits each of the other cities once before returning to the starting city.

The distance matrix of the DTSP is subject to changes, which is defined
as follows: D(t) = {dij(t)}n×n, where t is the period of a dynamic change. A
particular TSP solution s = [s1, . . . , sn] in the search space is specified by a
permutation of the nodes (cities) and it is evaluated as follows:

f(s, t) = dsns1(t) +
n−1∑

i=1

dsisi+1(t). (1)

2.2 DTSP Benchmark Generators

The concept of DTSPs was initially introduced by Psaraftis [20]. Since then,
several variations of DTSPs were introduced, where the set of nodes N
[1,9,10,12,13,25] and/or the cost from the set of arcs A [6,17,19,21,25] cause
the weight matrix W(t) to change during the optimization process. However,
there is still no any unified benchmark problem for DTSPs, which makes the
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comparison with algorithms from the literature a very challenging task. One
popular benchmark is the DTSP where cities are exchanged: half of the cities
from the problem instance are removed to create a spare pool [9,10,14], and
the cities from the spare pool are then used to replace cities from the problem
instance. Another popular benchmark is the DTSP where the weights of arcs
change probabilistically [17,25] (the complete benchmark generator description
is given in Sect. 2.3 since it is the benchmark generator we consider in the exper-
iments). In [6,21], only the weights of arcs that belong to the best tour increase
or decrease accordingly.

Younes et al. [26] introduced a benchmark generator for the DTSP with
different modes: (1) topology changes as in [10], (2) weight changes in [6],
and (3) swap cities. Based on the last mode (i.e., swap cities) of the afore-
mentioned benchmark generator, a general dynamic benchmark generator for
permutation-encoded problems (DBGP) was proposed that can generate test
cases with known optima [15]. DBGP can convert any stationary TSP instance
into a DTSP with specific properties (i.e., frequency and magnitude of changes).
Although with DBGP one can observe how close to the optimum an algorithm
converges, it sacrifices real-world models for the sake of benchmarking.

2.3 Generating Dynamic Test Cases

Considering the problem formulation above, a dynamic test case of a TSP can be
generated by modifying the value of the arc between nodes vi and vj as follows:

wij(T + 1) =

{
wij(0) + N (μ, σ), if (i, j) ∈ AS(T );
wij(T ), otherwise;

(2)

where T = �t/f� is the environmental period index, f is the frequency of change,
t is the evaluation count of the algorithm, N (μ, σ) is a random number generated
from a normal distribution with μ = 0 and σ = 0.2×wij(0), wij(0) is the weight
between nodes vi and vj for the initial instance and AS(T ) ⊂ A contains exactly
�m(n(n − 1))� arcs in which their weights will be subject to changes (either
increase or decrease) [25].

Since many real-world problems can be formulated as DTSPs and methods
for solving static TSPs can be applied to solve them [8]; the dynamic changes
generated in this paper can be generalized and may represent different factors
depending on the application. For example, in logistics, the weight changes may
represent traffic on the road system or in telecommunications the weight changes
may represent delays on the network.

3 MAX -MIN Ant System

3.1 Construct Solutions

One of the state-of-the-art ACO variations is the MMAS [22]. A colony of ω
ants read pheromones in order to construct their solutions and write pheromones



Pre-scheduled Colony Size Variation in Dynamic Environments 131

to store their solutions. Each ant k uses a probabilistic rule to choose the next
node to visit. The decision rule of the kth ant to move from node vi to node vj

is defined as follows:

pk
ij =

[τij ]
α [ηij ]

β

∑
l∈Nk

i
[τil]

α [ηil]
β
, if j ∈ N k

i , (3)

where τij and ηij are the existing pheromone trail and heuristic information
available a priori between nodes vi and vj , respectively. The heuristic information
is defined as ηij = 1/dij(t), where dij(t) is defined as in Eq. (1). N k

i is the
neighbourhood of unvisited nodes incident to node i available for ant k to select.
α and β are the two parameters which determine the relative influence of τij and
ηij , respectively.

3.2 Pheromone Update

The pheromone trails in MMAS are updated by applying evaporation as follows:

τij ← (1 − ρ) τij ,∀(vi, vj), (4)

where ρ is the evaporation rate which satisfies 0 < ρ ≤ 1, and τij is the existing
pheromone value. After evaporation, the best ant deposits pheromone as follows:

τij ← τij + Δτ best
ij ,∀(vi, vj) ∈ T best, (5)

where Δτ best
ij = 1/Cbest is the amount of pheromone that the best ant deposits

and Cbest defines the solution quality of tour T best. The best ant that is allowed
to deposit pheromone may be either the best-so-far, in which case Cbest = Cbs, or
the iteration-best, in which case Cbest = Cib, where Cbs and Cib are the solution
quality of the best-so-far and the iteration best ant, respectively. The best-so-far
ant is a special ant that may not necessarily belong in the current colony of ants
as the iteration best ant. Both update rules are used in an alternate way in the
implementation [23].

The lower and upper limits τmin and τmax of the pheromone trail values
are imposed. The τmax value is bounded by 1/(ρCbs), where Cbs is initially the
solution quality of an estimated optimal tour and later on is updated whenever
a new best-so-far ant solution quality is found. The τmin value is set to τmin =
τmax/2n.

Since only the best ant is allowed to deposit pheromone, the colony may
quickly converge towards the best solution found in the first iteration. Therefore,
the pheromone trails are occasionally reinitialized to the τmax value to increase
exploration. For example, whenever the stagnation behaviour occurs or when no
improved solution is found for a given number of iterations, the pheromone trails
are reinitialized.
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3.3 Adapting to Dynamic Changes

MMAS is able to use knowledge from previous environments via pheromone
trails and can be applied directly to DOPs without any modifications [1,16]. For
example, when the changing environments are similar, the pheromone trails of
the previous environment may provide knowledge to speed up the optimization
process to the new environment. However, the algorithm needs to be flexible
enough to accept the knowledge transferred from the pheromone trails, or elim-
inate the pheromone trails, in order to adapt well to the new environment. In
particular, pheromone evaporation enables the algorithm to forget bad decisions
made in previous iterations. When a dynamic change occurs, evaporation elim-
inates the pheromone trails of the previous environment from areas that are
generated on the old optimum and helps ants to explore for the new optimum.

In case the changing environments are different, then pheromone reinitializa-
tion may be a better choice rather than transferring the knowledge from previous
pheromone trails [1,9,10,16]. For instance, when a change occurs, the pheromone
trails are initialized with an equal amount.

4 Varying the Colony Size

4.1 Effect of the Colony Size in Dynamic Environments

A previous empirical study showed that the colony size of the MMAS algorithm,
one of the best performing ACO algorithms, is sensitive to the properties of
DOPs [18]. In particular, if for a given DOP only a certain computation budget,
e.g., the maximum number of function evaluations, is available, then the colony
size, i.e., the number of ants, is a very critical parameter. Since each ant in a
colony corresponds to a single function evaluation, an unnecessarily large colony
size may waste computations whereas an extremely small colony size may restrict
the searching capabilities of ACO.

Furthermore, the colony size has a direct relation with the reinforcement
learning period of ACO because it determines its duration: less ants corresponds
to larger duration whereas more ants corresponds to smaller duration. Also the
colony size determines how broad the search is at each iteration (e.g., more ants
means broader search). Hence, the number of ants needs to be tuned accordingly
in order not to waste computation resources and degrade the solution quality.

In this paper, we study the impact of the colony size on the performance of
the MMAS algorithm for DOPs. This kind of problems in a nutshell are a series
of stationary optimization problems that all need to be optimized. Therefore, it is
straightforward that more challenges exist and the colony size will have impact
on the performance of the algorithm. This is because it determines the num-
ber of iterations and the broadness of the search as in stationary optimization
problems. For example, for a given DOP a predefined computation budged is
available between each environmental change that is typically synchronized with
the algorithm, i.e., every f evaluations a change occurs [15]. Therefore, an algo-
rithm with a larger colony size means that it will perform a broader search (i.e.,
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more evaluations per iteration) but it will have limited reinforcement learning
(i.e., less number of iteration) for each environmental change.

4.2 Pre-scheduling the Colony Size

The colony size of MMAS was investigated on the stationary TSP [24]. In
particular, the number of ants used shows a trade-off between the early and
later optimization process of the algorithm regarding the solution quality. At
early stages of the optimization process fewer ants result to better performance,
whereas at later stages more ants result to better performance. With fewer
ants the algorithm seems to initially progress faster but leads to the stagna-
tion behaviour at later stages. More ants give better results only on later stages
of the optimization process. This behaviour of MMAS can be observed in Fig. 1.
Similar behaviour was observed for other problem instances (kroA150.tsp and
kroA200.tsp).
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Fig. 1. Performance of MMAS with different fixed number of ants for a short run of
5000 evaluations (left) and a long run of 50,000 evaluations (right), respectively.

Clearly, at different stages of the optimization process the optimal colony size
of MMAS varies. Therefore, adjusting the colony size during the optimization
process seems a better choice rather than keeping a fixed colony size. In fact,
pre-scheduling the colony size in stationary environments has proved that it can
combine the merits of few ants on shorter runs and the merits of more ants on
longer runs [24]. However, in this paper, we are concerned with pre-schedules for
dynamic environments. Considering the observations in Fig. 1, a potential good
pre-schedule in a dynamic environment could be starting with a small colony
size when a change occurs to quickly converge and then gradually increase the
colony size to further improve the solution quality.
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In particular, four pre-schedules are investigated which are defined as follows:

1. Pre-schedule 1: every 15 iterations add a single ant
2. Pre-schedule 2: every 10 iterations add a single ant
3. Pre-schedule 3: every 5 iterations add a single ant
4. Pre-schedule 4: every 2 iterations add a single ant

All schedules start with an initial colony size of 1 ant and increase by 1 ant at a
time. When a change occurs the colony size is reset back to 1 and starts to grow
until the next dynamic change occurs. An arbitrary number of different pre-
schedules can exist but in this paper we consider these four to determine under
which frequency of increasing the number of ants MMAS performs better. The
size of the colony increases faster from pre-schedule 1 to pre-schedule 2, pre-
schedule 3 and to pre-schedule 4.

5 Experimental Study

5.1 Experimental Setup

To investigate the effect of the colony size of MMAS in dynamic environments,
three TSP stationary benchmark instances (i.e., kroA100.tsp, kroA150.tsp and
kroA200.tsp) were obtained from TSPLIB1 and corresponding DOPs are gen-
erated using the benchmark generator (described in Sect. 2.3) with f set to 5000
and 50000 function evaluations, indicating quickly and slowly changing environ-
ments, respectively, and m set to 0.1, 0.25, 0.5 and 0.75, indicating slightly, to
medium, to severely changing environments, respectively. Totally, a series of 8
dynamic test cases of DTSPs are constructed from each stationary benchmark
instance to systematically investigate MMAS algorithm with the proposed pre-
scheduled colony size against standard fixed colony size.

The colony size of a traditional MMAS was set to fixed values, i.e.,
ω ∈ {1, 2, 5, 10, 25, 50, 100}, and the results are compared with the pre-scheduled
variation of MMAS. The remaining parameters were set to typical values for
DOPs as follows: α = 1, β = 5 and ρ = 0.8 from our preliminary experiments.

5.2 Performance Measurement

For each DTSP, 30 independent runs of the MMAS were executed. For each run,
25 environments changes were allowed and the best so far ant after a dynamic
change was recorded. The overall offline performance [11] is defined as follows:

P̄offline =
1
E

E∑

i=1

⎛

⎝ 1
R

R∑

j=1

P ∗
ij

⎞

⎠ , (6)

where E is the total number of function evaluations, R is the number of runs,
P ∗

ij is the best-so-far after a dynamic change of iteration i of run j.

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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5.3 Results and Discussion

The offline performance results of the MMAS algorithm on DTSPs with fixed
and pre-scheduled colony sizes are presented in Table 1. Pairwise comparisons
between the best fixed colony variation (1, 2, 5, 10, 25, 50 and 100 ants) against
the best pre-scheduled colony variation (1, 2, 3 and 4 pre-schedules) using Mann–
Whitney statistical tests are performed. The best variation of one type with a
bold value indicates that is significantly better than the best variation of the
other type. In case both variations types are in bold it indicates insignificantly
difference between them. In Figs. 2 and 3, the dynamic offline performance for
quickly and slowly changing environments against the algorithmic evaluations
are plotted for the first 10 environments to better understand the behaviour
of MMAS. From the experimental results, the following observations can be
drawn.
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Fig. 2. Dynamic offline performance of MMAS with different fixed number of ants
for quickly changing (left) and slowly changing (right) DTSPs, respectively.

First, the offline performance of fixed colony variations of MMAS with a
larger size is better in most test cases. Only on few cases, i.e., when m = 0.75,
a smaller colony size has better performance. These results were expected for
slowly changing DTSPs, i.e., f = 50000, because more ants perform better in
long runs. However, a large colony also performs better for quickly changing
DTSPs, i.e., f = 5000. This is contradictory with the observations in Fig. 1,
where a small colony size performed better in a shorter run (corresponds to a
quickly changing environment). From Fig. 2, it can be observed that the perfor-
mance up to the first environment (before any change occurs) the results match
the one in Fig. 1. When a dynamic change occurs MMAS with fewer ants per-
form worst. This is possibly because the pheromone trails generated by fewer
ants of the previous environment may not promote exploration when they are
used in the new environment.

Second, the offline performance of pre-scheduled colony variations of MMAS
that increase the colony size faster, e.g., Pre-schedule 3 and Pre-schedule 4,
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Table 1. Comparison of MMAS variations regarding the results of the offline perfor-
mance

f = 5000 f = 50000

m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

# ants kroA100.tsp

(1 ant) 23452 23565 23417 23584 22993 23125 22986 23159

(2 ants) 23378 23523 23381 23538 22967 23119 23004 23157

(5 ants) 23395 23575 23458 23648 23014 23152 23034 23188

(10 ant) 23390 23565 23410 23558 22984 23151 23007 23184

(25 ants) 22831 23030 23037 23085 22937 23135 23002 23134

(50 ants) 22892 23072 22933 23150 22880 23098 22975 23109

(100 ants) 22845 23016 22964 23128 22790 23092 23006 23112

Pre-schedule 1 23199 23385 23226 23284 22826 23055 22929 23055

Pre-schedule 2 23294 23318 23126 23193 22781 23038 22952 23081

Pre-schedule 3 22804 23050 22740 22830 22609 22913 22803 22916

Pre-schedule 4 22707 22887 23071 23144 22814 23066 22963 23090

# ants kroA150.tsp

(1 ant) 28892 29276 29473 29538 28404 28797 28975 29004

(2 ants) 28874 29260 29492 29588 28436 28842 29029 29060

(5 ants) 29020 29338 29610 29727 28558 28907 29082 29146

(10 ant) 28993 29308 29466 29568 28596 28922 29088 29188

(25 ants) 28600 28885 29229 29419 28578 28902 29057 29158

(50 ants) 28575 28897 29236 29300 28542 28861 29056 29156

(100 ants) 28596 28810 29237 29302 28508 28883 28966 29195

Pre-schedule 1 28832 29065 29163 29313 28474 28870 28960 29161

Pre-schedule 2 28856 29040 29019 29309 28491 28845 28995 29116

Pre-schedule 3 28566 28930 29189 29286 28414 28824 28994 29176

Pre-schedule 4 28405 28701 29334 29143 28500 28843 29004 29146

# ants kroA200.tsp

(1 ant) 31799 32405 32722 32829 31240 31712 32044 32103

(2 ants) 31635 32178 32588 32620 31219 31684 32029 32061

(5 ants) 31602 32148 32561 32592 31165 31656 32011 32017

(10 ant) 31543 31958 32409 32327 31131 31641 31992 31980

(25 ants) 31156 31529 32171 32105 31077 31583 31969 31987

(50 ants) 31191 31505 32138 32129 31055 31552 31973 31914

(100 ants) 31158 31493 32032 32113 30982 31468 31915 31802

Pre-schedule 1 31326 31692 32134 32086 31005 31503 31860 31895

Pre-schedule 2 31243 31534 31991 31850 30978 31463 31841 31825

Pre-schedule 3 31084 31466 31882 32101 31002 31345 31806 31718

Pre-schedule 4 30935 31643 31155 32248 31017 31549 31861 31858



Pre-scheduled Colony Size Variation in Dynamic Environments 137

 22000

 22500

 23000

 23500

 24000

 24500

 25000

0 10000 20000 30000 40000 50000

O
ff

lin
e 

Pe
rf

or
m

an
ce

Evaluations

kroA100.tsp, f = 5000, m = 0.1

100 Ants
Pre-Schedule 3
Pre-Schedule 4

 21500

 22000

 22500

 23000

 23500

 24000

 24500

 25000

 25500

0 100000 200000 300000 400000 500000

O
ff

lin
e 

Pe
rf

or
m

an
ce

Evaluations

kroA100.tsp, f = 50000, m = 0.1

100 Ants
Pre-Schedule 3
Pre-Schedule 4

Fig. 3. Dynamic offline performance of the best fixed and pre-schedule MMAS vari-
ations for quickly changing (left) and slowly changing (right) DTSPs, respectively.

perform better in most test cases. Only in kroA150.tsp problem instance when
f = 50000 none of the pre-scheduled variations perform better. This is because the
results of fixed variation in Table 1 show that 1 ant outperforms other fixed varia-
tions. Therefore, a pre-schedule that increases the colony size will not be helpful.
For the remaining cases, either Pre-schedule 3 or Pre-schedule 4 performs better.
This shows that the speed of increasing the colony size is problem dependent.

Finally, the comparisons between the fixed and pre-scheduled variation show
that with the exception of kroA150.tsp when f = 50000, the best performing
pre-schedule variation outperforms the best performing fixed variation in many
DTSPs. From Fig. 3, it can be observed that a pre-scheduled colony size is able
to maintain a better offline performance than a fixed colony size.

6 Conclusions

The optimal colony size of MMAS algorithms varies at different stages of the
optimization process. More precisely, a small colony size works better for short
runs and a large colony size works better for long runs in stationary envi-
ronments. This paper, investigates different pre-schedules for DTSPs, where
MMAS begins with a single ant and gradually increase its colony size in
dynamic environments. When a dynamic change occurs, the colony is reset back
to a single ant. The key idea of the pre-schedule is to combine the benefits of
small and large colonies. The experiments for different DTSP test cases showed
that a varying colony size has a promising performance when compared with a
fixed colony size. However, the performance of the pre-schedule of the varying
colony strongly depends on the properties of the DTSP. Hence, a direct future
work would be to self-adapt the colony size of MMAS. In this way, a possibly
automatic pre-schedule will be generated for different DTSPs.
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Abstract. In this paper, we consider the online three-dimensional container
loading problem. We develop a novel online packing algorithm to solve the
three-dimensional bin packing problem in the online case where items are not
known well in advance and they have to be packed in real-time when they
arrive. This is relevant in many real-world scenarios such as automated cargo
loading in warehouses. This is also relevant in the new logistics model of
Physical Internet. The effectiveness of the online packing heuristic is evaluated
on a set of generated data. The experimental results show that the algorithm
could solve the 3D container loading problems in online fashion and is com-
petitive against other algorithms both in the terms of running time, space uti-
lization and the number of bins.

Keywords: Dynamic optimization � Online optimization � Dynamic
environments � 3D bin packing problem � 3D container loading problem �
Online packing heuristic � Physical internet � Benchmark problems

1 Introduction

The three-dimensional bin packing problem (3D-BPP), a special class of bin packing
problems [1, 2], is a NP-hard combinatorial optimization problem [3, 4], where the
primary aim is to load a finite number of items of different sizes using the smallest
possible number of bins. In logistics and supply chains, the 3D-BPP is also called the
three-dimensional container loading problem (3D-CLP). It has many industrial and
commercial applications, such as loading goods to containers and pallets, cargo and
ship stowage loading, etc. 3D-CLP has been studied extensively by a lot of researchers
with different objective functions and constraints by using diverse methods as surveyed
and discussed in [5, 6].

Although many studies have addressed the 3D-CLP, most have focused exclusively
on volume utilization and ignored other practical requirements. In real world problems,
a number of practical constraints and requirements need to be satisfied, such as loading
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feasibility, stability, weight balance, operational safety product handling, and the
prevention of cargo damage during container shipping. But only a few works have
addressed those mentioned requirements [7–9].

Furthermore, most existing works focused on the static (offline) multidimensional
CLP. Only few works have addressed the online or dynamic 3D-CLP where knowledge
about items’ arrival is not known in advance and items have to be packed right after
they arrive. The online 3D-CLP has many applications in automatic or robotic cargo
loading in warehouse storages. It will also become very common in a new logistics
model, the Physical Internet [10], which is considered the future of smarter logistics
[11]. This logistics model proposes to move, pack and unpack goods in the same way
as information are being transported, pack and unpack in the digital internet. In the
Physical Internet logistics model, items will arrive in real-time with not much notifi-
cation, and they will need to be packed immediately to avoid any delay.

To solve the online/dynamic 3D-CLP, one needs to follow a dynamic optimization
approach, in which the problem is solved online when time goes by [12], i.e. packing
solutions need to be provided immediately in real-time whenever one or a set of items
arrive.

The classical online one-dimensional CLP problem was introduced in [13–15],
where items are coming one by one and each must be packed immediately and irre-
vocably into a bin without any knowledge of future items and the goal is to minimize
the maximal number of bins ever used over all times.

The issue we are addressing in this work is to develop an online packing heuristic
for 3D-CLP with online arrival of items, and test its performance against other online
and static algorithms. The algorithm must make decisions immediately and irrevocably
based only on a part of the input without any knowledge of the future part. This is
different to the static (offline) case where an algorithm knows the whole information
about items and containers before making any decision. The algorithm should guar-
antee that all items are loaded more realistically in the containers, with one door from
the one side, and avoid the problem of blocked items (see Fig. 3).

The remainder of this paper is organized as follows. In Sect. 2 basic concepts of
online 3D-BPP are introduced. In Sect. 3 we discuss about building a packing heuristic
for the online case. Section 4 discusses generating problem data and testing the per-
formance of algorithms. Finally, conclusions are given in Sect. 5.

2 Problem Definition

Since the online 3D-CLP in this work is formed from the classical 3D-CLP, it is
defined as follows: suppose that IPS is an item packing sequence where items are
coming in an online fashion, CLS is a container loading sequence and there are enough
containers for the whole IPS.

Let N is the total number of items, and let M is the total number of user containers
over all the time of loading process. We assumed that all item and container have the
shape of a cube, where the length, width, and height of the container are oriented with
the x-axis, y-axis and z-axis respectively in the Cartesian coordinate system. So the
point ð0; 0; 0Þ is the deepest-bottom-left corner of a container. Let Lj;Wj;Hj and ci be

An Online Packing Heuristic for the Three-Dimensional Container 141



the container length, width, height and the cost of the j-th container, respectively. Let
the lowercase letters li;wi; hi be the length, width, and height of i-th item.

2.1 Objective and Constraints

The objective is to minimize the total cost of all used containers:

XM

i¼1

ci ! min ð1Þ

If the containers are homogeneous, then the cost of all containers are the same, in
this case the objective is to minimize the number M. This objective function is similar
to maximize the utilization or minimize the wasted space:

XM

i¼1

Lj �Wj � Hj
� ��

XM

i¼1

lj � wj � hj
� � ! min ð2Þ

For the constraints of the online problem, this work takes into account the basic
geometric constraints, according to [5]: (1) the items are assumed to be placed
orthogonally, that is, the edges of the boxes have to be either parallel or perpendicular
to those of the containers and within the container’s dimension; (2) all items are packed
and (3) items do not overlap with each other. More detailed explanation of the similar
model can be found in [8, 16, 17]. We also consider a specific constraint that the items
can be rotated because it is an important operational factor in both the research and the
real world. There are, at most, six different rotation types (0 to 5) for each packed item
in a container. They are: l-w-h, w-l-h, l-h-w, w-h-l, h-l-w, and h-w-l (see Fig. 1).

2.2 Empty Maximal Spaces

To indicate the exact position where an item can be loaded into a particular container,
many concept of coordinates of objects have been used, for example the concept of
corner points [2, 18, 19], and the concept of extreme points [20, 21]. In this work, we
use the concept of empty maximal spaces (EMSs) to represent the free spaces in bins.
In this concept, for each container to be used, we list the largest empty orthogonal

Y

X

Z

l-w-h w-l-h w-h-l h-w-l h-l-w l-h-w

Fig. 1. Six types of item orientation
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spaces (that are not inscribed by any other space) available for packing. This concept is
used in many recent studies [22–24]. Each empty maximal space is represented by a
pair of their vertices with minimum and maximum coordinates: deepest bottom left
vertex and highest top right vertex. Figure 2 shows four empty maximal spaces in a
container where item1 is placed in the middle front of the container. The difference
process introduced by [25] is also used in this work to calculate and update the list of
EMSs.

3 Online Packing Heuristic

For the static 3D-CLP, usually, a packing algorithm follows a certain type of heuristic
packing strategy. The input of a packing algorithm includes a sequence of packing
items (IPS), which can be static or online, and a sequence of loading containers (CLS).
The packing algorithm will then convert these sequences into a solution, where each
item is assigned an exact position and an exact orientation inside a container.
Depending on the type of 3D-CLP and the priority of selection of items and positions,
one of many available packing heuristics can be used, such as First Fit Decreasing
Algorithm (FFDA), Best-Fit Decreasing Algorithm (BFDA) [26], Bottom-Left-Fill,
Bottom-Left-Back-Fill [27], etc.

[28] introduced a packing strategy called Deepest-Bottom-Left with Fill heuristic
(DBLF). This heuristic has gained its popularity in various works e.g. [8, 28, 29]. This
heuristic always searches for a space with the minimal x (deepest) coordinate to place
the current item. And it uses z (bottom) and y (left) coordinates as tie breakers. This
heuristic is also used and modified in [30]. [17] showed two drawbacks of DBLF: First,
only one coordinate (x) plays the dominant role in choosing the candidate space;
second, only one of the two factors: the item or the space, is determined. The other
factor is then selected based on certain priority rules. This results in a potential loss of
good combinations that may lead to better solutions (i.e. a solution with a smaller
wasted space); In [17], authors proposed a new packing heuristic called Best Match
First Packing Heuristic (BMF). In this heuristic, EMSs are sorted in order of smallest
coordinate values of the vertices to the deepest-bottom-left point of the container (with
coordinates x; y; zð Þ ¼ 0; 0; 0ð Þ). Then BMF searches for the best combination

EMS4

Item 1
Y

X

Z

EMS1

Item 1

EMS2 EMS3

Item 1

Fig. 2. Empty maximal spaces
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(space-box-orientation), in which the space as close as possible to the deepest-
bottom-left corner of the container is chosen to place the current item. The authors
showed that BMF outperforms DBLF in terms of utilization when they are combined
with a metaheuristic such as genetic algorithm (GA) or differential evolution algorithm
(DE).

We find that the main difference between the two heuristics is the priority of EMSs,
but in both BMF and DBLF, the problem of items being blocked, i.e. an item cannot be
loaded through the container’s entrance door to its designated locations due to other
existing items blocking its way, is not considered. In Subsect. 3.1 we will propose an
online packing heuristic (OnlineBPH) for the online 3D-BPP. The OnlineBPH is
inspired from the Deepest-Bottom-Left order in DBLF and the idea of choosing the
best combination (space-item-orientation) in BMF. In this new algorithm also we
implemented an improvement in space selection to avoid the problem of item being
blocked, so that the loading solution provide by packing heuristics can be more realistic
and implementable in the real-world.

3.1 Empty Maximal Space Selection

For two EMSs in the same container, we first compare their deepest (the x-value)
coordinate values of the two vertices, while the EMS with the smaller value is given
higher priority. If they are at the same deep level, we compare the bottom (the z-value)
coordinate values and assign the higher priority to the EMS with the smaller one. If the
two values are still the same, we compare the y-values. Furthermore, the heuristic
always check if the item can be loaded from the door of the container or not by
checking the x-value of the selected EMS. The reason behind this is to avoid the
blocking problem, where an item can be fit in the space, but the loading process is
unfeasible. When the deepest-bottom-left space is selected for an item, but the length
dimension of this EMS does not extend to the entrance of the container, then other
loaded items can block its loading ways. For example, in Fig. 3 if the items are loaded
in order item1, item2, item3 then item4, then after item2 is loaded, item 3 cannot be
placed in the assigned space, because item 2 has blocked its way.

Y

X

Z

Fig. 3. Blocking problem in loading process
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3.2 Placement Selection

OnlineBPH also inherits two parameters Kb and Ke from [17] but in different manner:
to determine the placement assignment, for Kb items (if items are arriving one by one
then Kb = 1) and the first Ke EMSs in the each opened container, the heuristic finds all
the feasible placement assignments with allowed rotations of the items. When one item
has several feasible placements in a free EMS, the one that has the smallest margin
(from the faces of item to the faces of EMS) is selected. The triad (item, rotation, ems)
pair with the largest fill ratio is chosen.

The three main differences between our online packing heuristic (OnlineBPH) and
BMF are: (1) BMF has information about all items while OnlineBPH only has infor-
mation about the limited number of items that have arrived. (2) BMF will place an item
in the first opened container (bin) that it has found a suitable space; while OnlineBPH
considers all combinations of (bin, item, ems, and rotation) in all opened containers
first before deciding which one is the best. (3) the OnlineBPH always check either the
item can be loaded from the door of the container or not by checking the x-value of the
selected EMS.

3.3 Pseudo-code of OnlineBPH

Pseudo-code of OnlineBPH is described in Fig. 4. At each step OnlineBPH decides
packing information of one item in sequence (item will be packed in which container,
at which position and in which orientation). For this, there are two phases to determine
a placement of one item. First, the algorithm considers all opened containers and the
information about the first Ke empty maximal spaces in EMSs list of each opened
container, and look ahead Kb item in online IPS Then it selects the best tetrad of
(container, item, orientation, ems) to pack an item. If there are no feasible tetrad, the
second phase is triggered to open a new suitable container for the item.
FindNewSuitableContainer returns the container that can fit the item with the largest
fill ratio. In the case of identical containers, the next empty container in CLS is chosen.
Note that the initial EMS of a container cover its whole space, so containers with
different dimensions will have initial EMSs with different sizes.

4 Experiments

4.1 Benchmark Problems

Due to the lack of proper data for online 3D-CLP, we follow the approach described in
[31] to generate test problems for the case of identical container packing problems. We
generated 4 classes (I, II, III and IV) of instances. For classes I, II and III, specific
distributions are chosen (Table 2), where lj, wj and hj are length, with and height of j-th
generated item, whereas L, W, H are respectively length, with and height of the
identical containers.
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Fig. 4. Pseudo-code of packing heuristic for Online 3D-CLP
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For class IV, the following four types (types 1, 2, 3, and type 4) of uniformly
distribution are defined in the terms of the length L, width W and height H of the
containers (Table 1). To generate class IV, instances of type 1 are selected with
probability 70%, instances of types 2, 3, 4 are selected with probability 10% each.

To evaluate the performance of algorithms, we classified instances into groups in
terms of the problems sizes (number of items): small (less than 50 items), medium
(from 50 up to 200 items), or large (more than 200 items). For classes I, II, and III, we
generated for each class 5 datasets of instances in sizes of 20, 40 (small), 60, 80
(medium) and 1000 items (large). For class IV, we generated 2 datasets of small size
(40 items) and large size (1000 items). In each dataset, there are 100 instances gen-
erated. Table 2 shows the classes of test problems.

Table 1. Type of random items in instances

Type of uniformly distribution in dimensions of items lj wj hj
Type 1 1; 13 L

� �
; 2

3W ;W
� �

; 1; 12H
� �

;

Type 2 1
2L; L
� �

; 1; 12W
� �

; 2
3H;H
� �

;

Type 3 1; 12 L
� �

; 1
2W ;W
� �

; 1
2H;H
� �

;

Type 4 2
3L; L
� �

; 1; 12W
� �

; 1; 12H
� �

;

Table 2. Classes of test problems

Data set
No.

Category Sizes of
containers
(L*W*H)

No. of
items

No. of
instances

Item sizes (l*w*h)

I_20 Small 30*30*30 20 100 Uniformly random in
[1, 10]

I_40 Small 30*30*30 40 100 Uniformly random in
[1, 10]

I_60 Medium 30*30*30 60 100 Uniformly random in
[1,10]

I_80 Medium 30*30*30 80 100 Uniformly random in
[1,10]

I_1000 Large 30*30*30 1000 100 Uniformly random in
[1,10]

II_20 Small 100*100*100 20 100 Uniformly random in
[1,35]

II_40 Small 100*100*100 40 100 Uniformly random in
[1,35]

II_60 Medium 100*100*100 60 100 Uniformly random in
[1,35]

II_80 Medium 100*100*100 80 100 Uniformly random in
[1,35]

(continued)
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4.2 Computational Results

All the proposed approach and algorithms have been coded in C and executed on a
system with the following configuration: Intel® Core™ i5-4590 CPU @(3.30 Ghz,
3.30 Ghz) with 8.00 GB RAM, Windows 7 Enterprise 64-bit.

Tables 3 and 4 show the average results of OnlineBPH on 100 generated instances
for each dataset. We tested the proposed algorithm for both cases of fixed orientation
and free (6-ways) orientation of items. To evaluate efficiency of the approach, we
selected different combination of parameters Kb and Ke.

Let S be the number of tetrads (container, item, orientation, ems), obviously, S is
proportional to Kb � Ke � OC size � number of allowed orientations of item. For
Kb ¼ 3, Ke ¼ 3 or Ke ¼ 5, the value of S is larger than in the case where Kb ¼ 1 or
Ke ¼ 1. As shown in Tables 3 and 4, in the case of fixed orientation when Kb ¼ 3 and
Ke ¼ 3 the algorithm gives better results, but in the case of six way orientations, with
Kb ¼ 1 and Ke ¼ 1, the algorithm is more efficient both in utilization and computa-
tional time.

To compare the performance of OnlineBPH, we implemented three other algo-
rithms from the literature:

• The online packing algorithm in [31] (Algorithm 1), this online heuristic is based on
a layer-building approach;

• Algorithm864, proposed in [19] - a static approximation packing heuristic - where
items are sorted by non-increasing volume. In this work the concept of corner points

Table 2. (continued)

Data set
No.

Category Sizes of
containers
(L*W*H)

No. of
items

No. of
instances

Item sizes (l*w*h)

II_1000 Large 100*100*100 1000 100 Uniformly random in
[1,35]

III_20 Small 100*100*100 20 100 Uniformly random in
[1,100]

III_40 Small 100*100*100 40 100 Uniformly random in
[1,100]

III_60 Medium 100*100*100 60 100 Uniformly random in
[1,100]

III_80 Medium 100*100*100 80 100 Uniformly random in
[1,100]

III_1000 Large 100*100*100 1000 100 Uniformly random in
[1,100]

IV_40 Small 100*100*100 40 100 Probability 70% of type
1, probability 10% of
each types 2, 3, 4

IV_1000 Large 100*100*100 1000 100 Probability 70% of type
1, probability 10% of
each types 2, 3, 4
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and a branch & bound procedure are employed to verify whether a set of boxes can
be placed into a container. The algorithm also assumes that unlimited identical bins
are given.

• A static metaheuristic approach (DE+BMF), introduced in [17] - a differential
evolution algorithm (DE) with the Best-Match-First Packing heuristic (BMF). As
shown by the authors, this is one of the best combinations of a metaheuristic and a
packing heuristic for static 3D container loading problem so far.

Firstly, we tested OnlineBPH and Algorithm1 for all instances in an online manner.
Then when all information about instances is gathered, the Algorithm864 and DE+BMF
is applied to the test cases in an offline (static) manner. The parameters of DE are set as
follows: G = 200; Np = 80; F = 0.85; Cr = 0.5; the parameters of BMF Kb = 3;
Ke = 3 (as recommended by the authors). The results for 17 classes of instances are
showed in Table 5. For each dataset (each has 100 instances), if an algorithm cannot
solve more than 20 out of 100 instances then the algorithm is given N/A, i.e. no score. If
an algorithm takes more than averagely 3600 s (1 h) per instance, it is also given N/A. If
an algorithm can solve more than 20 instances but not all 100 instances, the average
value of utilization, number of used bins and average time is calculated for the solved
cases only, and the scores are given in italic font.

From Table 5 we observe that in terms of computational time the Algorithm1 is the
fastest, closely followed byOnlineBPHand the static Algorithm864. The static DE+BMF
is significantly slower than the other three in magnitudes of thousands to hundreds of
thousands. The static DE+BMF also takes more than 3600 s to solve the large instances
with 1000 items (hence the N/A).

In the terms of solution quality (utilization or number of used bins), OnlineBPH and
static DE+BMF achieved the best scores for problems of classes I and II (although
DE+BMF failed to solve the largest cases with 1000 items). In problems of classes III
and IV, DE+BMF is slightly better than OnlineBPH but again it failed in the largest
cases while OnlineBPH still succeeded. Online Algorithm 1 performed the worst in
terms of solution quality. Static Algorithm864 is bettern than online Algorithm 1, but it
struggled to solve all the 100 instances in most datasets, failed to find solutions in some
datasets, and its scores are generally worse than that of OnlineBPH and static DE+BMF.

Overall OnlineBPH seems to be the most well-rounded taking into account both
computational time and solution quality. It is generally the second-best in both cate-
gories and its scores are not far off the best scores and in many cases match the best
scores. It is interesting to see that although it is expected that an optimal online solution
cannot be as good as an optimal static/offline solution, OnlineBPH is actually just
slightly worse than the best available static solutions (provided by DE+BMF). Onli-
neBPH’s solutions are even better than the static solutions found by Algorithm864.

Here we will try to analyse the reason for the good/bad performance of the algo-
rithms. OnlineBPH is fast because it is an online algorithm, being able to consider just
one item at a time. OnlineBPH can produce solutions with good quality because (1) it
considers all available containers and choose the most suitable for the current item; and
(2) it utilize the EMS concept effectively by taking into account all feasible placements
with all possible rotations.
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Algorithm1 is fast because like OnlineBPH it is an online algorithm. Algorithm1
provides solutions with the worst quality because it is over simplified. Its layer-building
approach is efficient only in the case of weakly heterogeneous items [6]. This is much
less effective than the mechanisms in OnlineBPH, Algorithm864 and DE+BMF. These
three compute and consider a much larger number of placement combinations.

In most data sets, Algorithm864 cannot find the solutions for all instances because
it does not allow the rotation of items. Due to that, if one of the items’ original
dimension exceeds the corresponding dimension of the container then algorithm will
stop. Algorithm864 also trades the computational quality for computational time to
make it fast. That is why a static algorithm like Algorithm864 can still be nearly as fast
as online algorithms like Algorithm 1 and OnlineBPH. As a trade-off, the quality of
Algorithm864 is worse than OnlineBPH, even that Algorithm864 is a static algorithm.

DE+BMF can provide the best results for the static case because it relies on one of
the best packing heuristics, BMF, to pack items into a container, and it relies on an
efficient meta-heuristics, DE, to find the optimal sequence of containers. The downside
of DE+BMF is that it is very slow. Being a static algorithm it needs to consider all
items before making a decision. In addition, the use of a population-based algorithm
like DE also slow down the decision making process. The large amount of time needed
for DE+BMF to find a solution in the large-scale cases (like the data sets with 1000
items) is simply not realistic in real-world scenarios.

There is also another issue with Algorithm864 and DE+BMF: these algorithm do
not check the problem of items being blocked, so their output may not be used directly
for real loading process. Our experiments show that the solutions provided by these
algorithms can have a large number of blocked items, meaning that not all items can be
loaded into the containers in the sequence provided by the algorithms. This situation is
mitigated by OnlineBPH because it always check either the item can be loaded from
the door of the container first before selecting an EMS. Due to a lack of space we are
not able to provide detailed experimental results on this issue, but this will be further
investigated and published in a future publication.

In summary, OnlineBPH seems to be able to provide a good balance of time and
utilization. Being an online algorithm it is obviously the only choice if items need to be
handled/loaded in real-time or if there is no storage areas and/or buffers for incoming
items. However, even in situations where items can be handled offline and there are
ample storage areas for incoming items, OnlineBPH can still provide a good alternative
to current state-of-the-arts static algorithms like DE+BMF. OnlineBPH is significantly
faster; its solutions are just slightly less good in the tested cases; and it eliminates the
need of having storage areas.

5 Conclusion

This work presented an online packing heuristic to solve the three-dimensional bin
packing problem in dynamic environments and in the Physical Internet context. The
effectiveness of the online packing heuristic is evaluated on a set of generated data. The
experimental results show that the algorithm could solve the 3D container loading
problems in an online fashion and is competitive against one of best static algorithms
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both in the terms of running time, space utilization and number of bins. The algorithm
also avoids the problem of blocked item and allows the loading process in the con-
tainers to be more realistic.
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Abstract. This paper reports on IMDEA (In-Memory database
Dynamic Evolutionary Algorithm), an approach to dynamic evolution-
ary optimization exploiting in-memory database (IMDB) technology to
expedite the search process subject to change events arising at runtime.
The implemented system benefits from optimization knowledge persisted
on an IMDB serving as associative memory to better guide the opti-
mizer through changing environments. For this, specific strategies for
knowledge processing, extraction and injection are developed and evalu-
ated. Moreover, prediction methods are embedded and empirical studies
outline to which extent these methods are able to anticipate forthcom-
ing dynamic change events by evaluating historical records of previous
changes and other optimization knowledge managed by the IMDB.

Keywords: Dynamic evolutionary algorithm · Associative memory ·
Prediction · In-memory databases

1 Introduction

For decades Evolutionary Algorithms (EA) [1] have been established heuristics
to tackle NP-hard optimization problems which are inherent to countless indus-
trial applications. Typically, the search for good solutions to such problems can
consume up to several hours or even days. The hitherto best solution found, e.g.
a production schedule, would then be used for planning and executing opera-
tions. In practice, however, several aspects like the objective function, the size of
the problem instance or constraints may be subject to changes. In such dynamic
optimization scenarios, it is essential that every relevant change of the opti-
mization problem is taken into account. However, calculation time is commonly
restricted and usually one cannot afford to restart optimization from scratch.
Instead it is often advisable to exploit existing optimization knowledge from the
running optimization to quickly react to and to recover from dynamic changes
arriving.

This paper reports on the implementation and on the empirical evaluation
of IMDEA (In-Memory database Dynamic Evolutionary Algorithm), a dynamic
c© Springer International Publishing AG 2017
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EA which interfaces with an in-memory database (IMDB) [2] and exploits its
strengths to expedite the search process in dynamically changing environments.
It is shown, how in-memory databases can be used as a large capacity knowl-
edge store that embodies a persistent associative memory to the optimization
algorithm. Such knowledge includes, e.g. historical logs of visited search areas,
environmental data, and recorded change events. In contrast to previous work,
where a memory is usually implemented by storing knowledge in data objects
inside the EA, it is examined to which extent in-memory database technology
can help increase and manage the amount of stored knowledge in order to bet-
ter guide the optimization process. Furthermore, the database is employed as
a storage for predictive knowledge that is accessed and analyzed to make the
optimizer better prepared for prospected changes, to quickly respond to such
changes and to easier recover from their impact.

The remainder of the paper is structured as follows: Sect. 2 introduces to
dynamic evolutionary computing. Section 3 briefly reviews related work and out-
lines how IMDEA contributes to progress beyond. Section 4 describes the archi-
tecture and the methods of the system implemented. Subsequently, a sample of
results from extensive experiments are presented in Sect. 5. Concluding remarks
are provided in Sect. 6.

2 Dynamic Evolutionary Optimization

Prior to introducing the EA, the static Knapsack Problem shall be defined and
henceforth be used to exemplify the strategies proposed in this paper. In its static
variant, the 0/1 Knapsack Problem [3] is described by a set of n items of weight
wj and value vj where j ∈ {1, . . . , n}. A candidate solution X = (x1, . . . , xn)
represents a subset of all items, with xj ∈ {0, 1} indicating if item j is included
in the knapsack which has a capacity of C. The goal is to maximize the total
value of items included in the knapsack such that the sum of their weights is less
or equal to the knapsack capacity: Maximize

f(X) =
n∑

j=1

vjxj subject to
n∑

j=1

wjxj ≤ C, xj ∈ {0, 1}. (1)

As the Knapsack Problem is known to be NP − hard, EA [1] are one possible
heuristic to search for near optimal solutions. Inspired by the principles of nat-
ural evolution, the main idea behind evolutionary optimization is to represent
solutions of an optimization problem as a set of individuals called population.
The size of the population shall be denoted as p. An individual i ∈ {1, . . . , p}
is encoded in a chromosome Xi representing the individual’s genotype. In the
case of the Knapsack Problem, individual i is encoded as n-bit chromosome
Xi = (xi,1, . . . xi,n) with xi,j ∈ {0, 1}, where xi,j = 1 means that item number j
is contained in the knapsack of individual i, and xi,j = 0 otherwise. The dynamic
Knapsack Problem introduces time-dependent variance: capacity C(t), weights
wj(t) and values vj(t) are considered dynamic over time t.
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The goal of an EA is to incrementally improve the fitness of the best individ-
ual, which represents its solution quality, by mimicking the principles of natural
selection, recombination, mutation and survival of the fittest (cf. [1] for more
details). Overweight individuals are invalid but in dynamic problems it is more
advisable to reduce their fitness by a penalty cost term than considering them
as completely unsuitable, since a change event could lead an invalid solution to
become valid or even the best. Hence, IMDEA calculates the fitness of individual
i with genotype Xi(t) as

fit (Xi(t)) =
n∑

j=1

(vj(t)xji(t)) ·
⎛

⎝1 − max

{

0;

∑n
j=1 (wj(t)xji(t))

C(t)
− 1

}λ
⎞

⎠ (2)

with external parameter λ representing the penalty weight.
For dynamic optimization the goal is not to localize a global stationary opti-

mum but to track moving optima [4]. It is assumed that the problem instances
before and after a change are related to each other, thus reusing prior optimiza-
tion knowledge is more beneficial than a restart [5]. If prior solutions are intended
to be reused, good individuals will have to be stored in a so-called direct memory.
A memory that additionally stores information on the corresponding problem
instance is called associative memory [6,7]. It allows to reuse individuals that
had been successful under similar circumstances. Predictive analysis can be used
for tracking optima by calculating the prospected path of an optimum through
the solution space or by anticipating the nature of the next change [8,9]. A suc-
cessful dynamic EA should include a memory and a predictive component and it
should maintain diversity throughout the run because a diverse population can
better react to a change than a converged one [4].

3 Related Work and Progress Beyond

Related work started with early contributions by Fogel et al. [10] and Goldberg [1].
A recent state of the art survey by Nguyen et al. [4] summarizes papers on evo-
lutionary dynamic optimization of the past 20 years, benchmark generators and
performance measures. Cruz et al. [11] provide a list of about 40 artificial and real
world problems as well as papers addressing them.

Hatzakis et al. [12] integrate auto-regression and moving average analysis into
a multiobjective EA to forecast optimal regions. Rossi et al. [8] use an EA that
learns the movement of the optimum and adjusts the fitness function accordingly
to force the population into promising areas of the solution space. Simões and
Costa [9,13–15] published several papers on linear and nonlinear regression to
predict the generation of the next change. They use Marcov Chains to anticipate
the nature of the next change and they include a direct memory.
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Fitness Sharing [16] is a widely used diversity management technique. Fitness
sharing calculates the so-called shared fitness for each individual i depending on
its distance d (i, k) (e.g. hamming distance) to all other individuals k:

fit∗ (Xi(t)) =
fit (Xi(t))

p∑

k=1

(

1 − min
{

1;
d (i, k)

σs

}α) . (3)

Parameter α is a constant which defines the shape of the sharing function and is
commonly set to 1 [17]. Further strategies to maintain diversity are, e.g., Deter-
ministic Crowding Selection [18] and Mating Restricted Tournament (MRT) [19].

Grefenstette et al. [7] published one of the early papers on an associative
memory. Branke [5] worked on direct memory and suggests to compute an impor-
tance value for each individual to decide which individuals to store in the mem-
ory. Yang introduced EA with direct [20] and with associative [21,22] memory.

Previous approaches to memory-extended EAs appear to be implemented
as data objects within the algorithm. Online analytical processing using IMDB
was explored by Plattner [23], however an extensive review of prior work yields
that no previous publication on evolutionary computation has ever used data-
base technology as knowledge store. Hence, this paper introduces IMDEA, an
approach to dynamic evolutionary optimization exploiting IMDB technology as
storage for associative memory and for prediction knowledge.

4 The Dynamic In-Memory Database Evolutionary
Algorithm (IMDEA)

4.1 In-Memory Databases

Plattner [2] introduces the characteristics and advantages of IMDB: The rapid
decline of prices for RAM storage during the last decade comes along with an
increase in chip capacities and expedited access times. IMDBs provide a vast
amount of storage capacity to the database residing entirely in main memory.
And compared to disc-resident databases, data access times are reduced dra-
matically. This can also be attributed to flexible table encoding (row-store or
column-store), as well as improved data compression and partitioning techniques.
Therefore IMDBs suggest themselves as a technology to support dynamic evolu-
tionary computing. This paper proposes to use the IMDB to store and efficiently
maintain optimization knowledge in terms of an associative memory and predic-
tion data. The storage volume required depends on (1) the optimization problem
instance, (2) the extraction and replacement strategy, and (3) the number of gen-
erations executed. A set of preliminary experiments indicates that such storage
requirements can easily exceed 1 GB of data, effectively managed by an IMDB.
The product chosen for this paper is SAP HANA (High Performance Analytics
Appliance) [24], which is the market-leading IMDB [25], and it has shown to
excel in many application scenarios [25] with practical relevance. The IMDEA
system is implemented in SAP HANA Extended Application Services [26], which
is the common approach for native HANA applications.
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4.2 Architectural Overview

Figure 1 visualizes the architecture of the IMDEA. The core algorithm, based
on the dynamic EA approach introduced in Sect. 2, is started reading a set
of parameters and the problem definition. Since the problem is considered
dynamic, a simulator continuously adapts this problem definition, whereupon
the changes are propagated to the core algorithm. A set of individuals is per-
petually extracted from the current population and persisted into an associative
memory held in an IMDB. Whenever necessary this memory is queried for suit-
able individuals which are injected into the core algorithm. A predictive analytics
component processes the knowledge stored in the IMDB to better prepare the
algorithm for forthcoming dynamic changes.

Simulator PredictionCore Algorithm

In-Memory 
Database

simulation of 
dynamics

Memory

prediction 
knowledge

associative
memory

problem & 
parameter 
definition

results& 
measures

Application
Layerinjection extractionpredictive

analytics
dynamic evolutionary

algorithm

Fig. 1. Architectural overview

4.3 Simulator

For simulating a dynamically changing environment, several approaches are pro-
posed in literature. Simulators like the Moving Peaks Benchmark by Branke [5]
are not suitable for binary encoded problems like the Knapsack Problem as they
assume real-valued search spaces. The XOR Generator by Yang et al. [22] is
designed for binary encoded problems but creates dynamics by manipulating
genotypes. A better approach would be to adjust the problem definition itself.
The framework proposed by Li and Yang [27] appears to be an adequate app-
roach and therefore inspired the implementation of the IMDEA simulator. This
approach is closer to real world dynamics, avoids manipulating the population
and leads to measurable dynamic environments which are crucial for an associa-
tive memory that stores environmental information.

The simulator creates environments e(t), which are considered to represent
the definition of the optimization problem at time t, where the time is sup-
posed to be the generation number. The environment is constituted by a tuple
of problem parameters that are subject to change. In the case of the knapsack
problem, the environment e(t) = (C(t), v(t), w(t)) shall be signified by the knap-
sack capacity C(t), its item weights w(t) = (w1(t), . . . , wn(t)) and item values



Advancing Dynamic Evolutionary Optimization 161

200000

205000

210000

215000

220000

225000

0

100000

200000

300000

400000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Su
m

 o
f 

va
lu

e

S
um

of
th gie

w
/ 

yticapac

Number of environment

capacity weight value

Fig. 2. Sample scenario simulating a dynamic knapsack problem, cycle length L = 32.

v(t) = (v1(t), . . . , vn(t)). The simulator is implemented to change the environ-
ment at a constant frequency of T generations. Furthermore, it is assumed that
the environment changes in a cyclic manner at a cycle length of L. Hence any
environment will recur every L·T generations. The specific environment sequence
used in this paper is visualized in Fig. 2.

4.4 Pseudocode for IMDEA

Listing 1.1 illustrates the IMDEA as pseudocode. The functions concerning mem-
ory and prediction are described in Sects. 4.5 and 4.6. After preparing the IMDB
for the upcoming optimization and loading the problem definition and several
parameters (line 1) the IMDEA initializes all necessary variables (line 2–6).
There are population-objects for temporary saving parents, children, individ-
uals from the memory and individuals provided by the predictive component
(line 3–4).

The population is initialized (line 7), whereupon the population size is defined
by one of the loaded parameters and the IMDEA enters its main while-loop.
If a change is predicted for the current generation t, IMDEA will update the
population with the individuals provided by the predictive component (line 9).
In the first generation this condition is false. Changes are simulated every T
generations (line 10) and the fitness of all individuals is evaluated (line 13).

Lines 12–22 are entered every time a change occured: If the accuracy of the
predictive component for the current change lies below a threshold, that means
that the change was anticipated badly and there is a high possibility that the
individuals, which had been provided by the predictive component to prepare
the EA for this change, are not suitable for the new environment. Thus the
memory will be searched for individuals from a similar environment to update
the population (line 13–17). Otherwise no measures will be taken.

Lines 18–21 illustrate the prediction cycle that is run after every change:
The new change is saved in the IMDB (line 18). Using this prediction knowledge
the IMDEA anticipates the generation of the next change and the expected
environment (line 19–20). Afterwards IMDEA searches the associative memory
for individuals that had been successful in an environment similar to the expected
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one (line 21, cf. Sect. 4.6 for more detail). These individuals will be used to update
the population before the next change (line 9).

Lines 23–26 execute the standard functions of an EA, namely selection of at
least two parents, recombination, mutation and population update. Extraction
of good individuals to the memory is performed in line 27 (cf. Sect. 4.5 for more
details). Finally the algorithm enters the next generation unless the stopping
condition is met.

1 initializeIMDB () ; env = loadProblem () ; par = loadParameters () ;
2 pop = newPopulation () ; fitness = newFitnessArray () ;

3 parents = newPopulation () ; children = newPopulation () ;

4 memoryPop = newPopulation () ; predictionPop = newPopulation () ;
5 acc = 0.0; predictedGen = −1; predictedEnv = newEnvironment () ;

6 t = 0;

7 pop = initializePopulation (par.populationSize) ;
8 while (stopping condition not met)

9 i f (t == predictedGen) pop = updatePopulation (predictionPop) ; endif
10 i f ((t mod par.T ) == 0) env = simulateChanges (env) ; endif
11 fitness = evaluateF itness (pop) ;

12 i f (change occured in current generation t)
13 acc = computePredictionAccuracy (env, predictedEnv) ;
14 i f (acc < par.accuracyThreshold)

15 memoryPop = getIndividualsFromMemory (env) ;

16 pop = updatePopulation (memoryPop) ;

17 endif
18 saveChangesInPredictionKnowledge (env) ;
19 predictedGen = predictGenerationOfNextChange () ;

20 predictedEnv = predictNewEnvironment () ;

21 predictionPop = getIndividualsFromMemory (predictedEnv) ;
22 endif

23 parents = selectForReproduction (pop, fitness, par.numberOfParents) ;

24 children = recombineParents (parents) ;
25 children = mutateIndividuals (children) ;

26 pop = updatePopulation (pop, children) ;
27 i f ((t mod par.extractionPeriod) == 0) extraction (pop, fitness) ; endif
28 t = t+ 1;

29 endwhile

Listing 1.1. Pseudocode for IMDEA

4.5 Associative Memory

An associative memory has the advantage that after a change the EA can reuse
individuals that had been successful in a similar environment before. It needs to
address four main issues [4]: (1) how to organize the memory, (2) when to extract
which individuals from the EA to the memory (3) how to update the memory
and (4) when to inject individuals from the memory to the EA (cf. Fig. 1).
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CAPACITY

ENV-ID CAPACITY

Integer Double

0 231001,0000

1 255267,3097

… …

WEIGHT

ENV-ID WEIGHT001 … WEIGHT500

Integer Double … Double

0 533,000 … 852,000

1 599,625 … 852,000

… … … …

VALUE

ENV-ID VALUE001 … VALUE500

Integer Double … Double

0 276,000 … 103,000

1 299,544 … 103,000

… … … …

GENOTYPES

ENV-ID INDIVIDUAL GENE001 … GENE500

Integer Integer Integer Integer

0 8 1 … 0

0 3 1 … 1

… … … … …

Fig. 3. Database schema of associative memory for knapsack instance with 500 items

The associative memory of IMDEA is organized in column tables on the
IMDB. Figure 3 illustrates database schema of the memory for a knapsack
instance with j = 500 items. The tables are organized according to the problem
definition. Table GENOTYPES stores good individuals of earlier generations.
Each column GENE-j (j = {001..500}) stores one gene xj , which is 1 if item j is
chosen, and 0 otherwise (cf. Eq. 1). The other three tables contain environmental
information. Every environment is referenced by an ENV-ID in the first column
of all tables. Column WEIGHT-j/VALUE-j in table WEIGHT/VALUE stores
weight wj , or value vj of item j, respectively. When a change is detected, the
IMDEA compares the current environment to the environmental information
from the memory. If a suitable environment is found in the memory, good solu-
tions from table GENOTYPES are injected into the IMDEA. These solutions
had previously been successful in a similar environment. The similarity of two
environments e1 = e (t1) and e2 = e (t2) at times t1 and t2 is computed as a
weighted sum as follows:

sim (e1, e2) = ηc · simC (e1, e2) + ηw · simW (e1, e2) + ηv · simV (e1, e2) (4)

with ηc, ηw, ηv ∈ [0, 1] and ηc + ηw + ηv = 1. Similarities simC , simW and simV

signify the proportion of capacities (C(t1) and C(t2)), weights (w(t1) and w(t2)),
and values (v(t1) and v(t2)), respectively:

simC (e1, e2) = min
{

C(t1)
C(t2)

,
C(t2)
C(t1)

}

, (5)

simW (e1, e2) =
1
n

·
n∑

j=1

min
{

wj(t1)
wj(t2)

,
wj(t2)
wj(t1)

}

, (6)

simV (e1, e2) =
1
n

·
n∑

j=1

min
{

vj(t1)
vj(t2)

,
vj(t2)
vj(t1)

}

. (7)
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The min-function normalizes the outcome between 0 and 1. An alternative
way to calculate simW and simV is

simW (e1, e2) =
1
n

·
n∑

j=1

stW (e1, e2, j) with (8)

stW (e1, e2, j) =

⎧
⎨

⎩

1, if min
{

wj(t1)
wj(t2)

,
wj(t2)
wj(t1)

}

≥ τW

0 otherwise
. (9)

The first calculation (6, 7) is more flexible because it does not declare items
as dissimilar based on a threshold. The second calculation (8, 9) on the other
hand allows for a strict control of the similarity threshold τW if required and
prevents the commingling of similarities of different items. This paper uses the
second calculation because it focuses on the performance of the IMDEA for
environments that reappear in exactly the same way.

The extraction of good individuals from the population is performed at
equally spaced intervals. Copies of the individuals are stored in the IMDB.
Yang [20] uses dynamic time patterns for extraction to reduce the risk that
extraction and change coincide. As this paper combines an associative mem-
ory with predictive analytics, the prediction on change periods can be used to
adapt the extraction period accordingly. As recommended by Grefenstette and
Ramsey [7] we extract 50% of the population after a change. To decide which
individuals to extract the IMDEA calculates an importance value based on [5]
for each individual i as

imp (i) = γf · impfit (i) + γd · impdiv (i) + γa · impage (i) (10)

with γ ∈ [0, 1] and γf + γd + γa = 1. The terms impfit (i), impdiv (i) and
impage (i) express the relative importance of individual i with respect to the
fitness, diversity and age of the population. At generation t these importance
terms are computed as follows:

impfit (i) =
fitness (i)

∑p
k=1 fitness (k)

, (11)

impdiv (i) =
∑p

k=1 d (i, k)
∑p

h=1

∑p
k=1 d (h, k)

, (12)

impage (i) =
age (i, t)

∑p
k=1 age (k, t)

, (13)

where d (h, k) is the Hamming distance between individuals h and k. The age
of an individual i in generation t is age (i, t) = 0 if the individual was created in
generation t, and age (i, t − 1)+1 otherwise. The population is sorted descending
by importance and the 50% with the highest importance value are extracted.

If the current environment does not exist in the memory so far, the new envi-
ronmental information is stored in the in-memory database and the extracted
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individuals are inserted to the memory. The IMDEA checks whether the current
environment already exists in the memory by applying Eq. 4. If a similar envi-
ronment exists in the memory, the extracted individuals will be used to update
table GENOTY PES (see Fig. 3). In this case the extracted individuals and the
memory individuals are merged and Eq. 10 is used to decide which individuals
become the new memory individuals.

When the associative memory is called by the IMDEA (i.e. due to a new
prediction output or during injection after an unpredicted change, cf. Sect. 4.4),
the environmental tables in the memory are searched for an environment similar
to the new environment based on Eq. 4. If the search is successful, the stored
individuals from the memory will replace similar individuals in the population
of the EA. Otherwise only immigrants will be generated to increase diversity.

4.6 Change Prediction

The associative memory component interacts with the predictive analytics com-
ponent. Prediction is triggerd after each change and aims to anticipate the gener-
ation and nature of the next change. Therefor prediction knowledge on previous
changes is stored in the in-memory database (cf. Fig. 1). This paper uses the
Predictive Analysis Library (PAL) [28]. HANA is organized in two layers [26].
Applications, like the implemented EA, run as part of the control flow logic.
Interaction with the data is controlled by the calculation logic. PAL is part of
the calculation logic and is thus very suitable for the IMDEA because the pre-
dictive algorithms run close to the data they analyze. Furthermore PAL is well
compatible with the HANA IMDB. Its functionality is based on stored proce-
dures. The input data has to be stored in database tables and must be organized
in the specific way required by the respective procedure.

PAL comprises functions for statistics, time series analysis, regression, clus-
tering, classification and preprocessing of data [28]. Simões et al. [9] showed the
effectiveness of regression for prediction. Therefore this paper uses polynomial
regression to predict upcoming changes. Other methods like forecast smoothing
or neural networks are potential candidates for predictive analytics as well but
polynomial regression has a slight advantage regarding computation time. Based
on the previous changes that are stored in the prediction knowledge, the IMDEA
calls the stored procedure from PAL for polynomial regression to calculate

– the anticipated generation of the next change,
– which of the parameters C, wj and vj are going to change and
– how they will change (cf. Listing 1.1).

PAL stores its output in dedicated database tables from where the results are
selected. Based on the output of the predictive analytics component the expected
environment can be simulated and the IMDEA searches the associative mem-
ory for individuals, which had been successful in an environment similar to the
simulated one. If such individuals are found, they remain in a temporary buffer
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Fig. 4. Prediction of the generation of the next change using regression

in order to be injected right before the anticipated change occurs. If no suit-
able individuals are found in the memory, immigrants will be inserted to the
population when the next change occurs to increase diversity.

Figure 4 illustrates an example for the calculation of the generation of the
next change in a scenario where change occurs every 7000 generations (T =
7000). The input table for the stored procedure is organized in the way required
by PAL [28, p. 273]. The dotted line in the diagram illustrates the corresponding
regression function, which is used to calculate the generation of the 7th change.
The next step of the prediction is to analyze which of the parameters C, wj

and vj are going to change. Therefor information on how often the parameters
changed before is used: the more often they changed, the higher the likelihood
that they are going to change next time. Afterwards their new numerical value
is anticipated with the same PAL procedure as described above.

In order to measure the efficiency of the implemented predictive analysis,
every time a change occurs the prediction accuracy is calculated as acc = 1−err.
The prediction error err is One if the actual change occurs too early or if no
prediction was made at all. Otherwise err is calculated as the arithmetic mean
of the relative error of each parameter.

5 Evaluation Results

Extensive tests were conducted to evaluate the performance the associative
memory and the predictive component of IMDEA. This paper uses a knap-
sack instance with 500 items [29], a constant population size p of 40 individuals,
mating restriction [19] and Fitness Sharing to maintain diversity with α = 1 and
σs = 257.6 based on [16] and a quadratic penalty in the fitness function (λ = 0.5,
Eq. 2).

Based on Design of Experiment (DoE) principles a 23 full factorial design
was prepared to evaluate the effect of the three factors associative memory,
polynomial regression prediction and diversity maintenance. In the diagrams each
factor combination is coded with three letters, the first one indicating whether
predictive analysis was used (P) or not (O), the second one indicating the same
for diversity maintenance (D or O) and the third one standing for associative
memory (M or O). For each factor combination ten tests were run. Each test
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ran for eight hours simulating dynamic changes with T = 7000 and L = 32
(cf. Sect. 4.3, Fig. 2) resulting in more than 1000000 generations, 150 changes
and five repetitions of each environment. The main performance measures for
evaluation are decrease and recovery of the fitness after a change, mean best
fitness per factor, computation time and prediction accuracy.

Figure 5 compares the best fitness per generation. The best fitness declines
over the generations because the diagram shows a stage of decreasing capacity.
Figure 6 shows the arithmetic mean of the percentaged decrease of the best fitness
per factor combination averaged over all changes as well as the arithmetic mean
of the best fitness over all generations (cf. [4], FBOG).
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Fig. 5. Excerpt of the best-of-generation
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Both diagrams clearly show, that using the IMDB as associative memory for
the IMDEA has a positive effect on the fitness for recurring environments. In
the scenario with no dynamic adaptation (O-O-O) the average decrease of the
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best fitness after a change is 12.55%. However when using an IMDB memory
(O-O-M) the decrease drops to only 3.70%. That is merely about a quarter of
the decrease of the non-adapted EA. Correspondingly the implemented memory
in average also realizes the highest outcome for the best fitness.

On the other hand, Figs. 5 and 6 show that combining the associative memory
with Fitness Sharing, mating restriction and polynomial regression prediction
does not further improve the algorithm but diminishes it. Using only diversity
maintenance (O-D-O) or prediction (P-O-O) results in an improvement com-
pared to the non-adapted EA, too (O-O-O). If prediction or diversity mainte-
nance is used and the memory is added (O-D-M, P-O-M, P-D-M), the results
will be better than without memory (O-D-O, P-O-O, P-D-O). But no factor
combination leads to better results than memory alone.

The idea behind diversity maintenance is that a diverse population can adapt
to changes more easily than a converged population. Yet for IMDEA it diminishes
the algorithm. A logical explanation is the difficulty of finding an appropriate
value for σs, as pointed out by Sareni et al. [17]. The test results suggest that
Fitness Sharing is not always the best solution for diversity maintenance.
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Fig. 7. Prediction accuracy per environment

The reason for the negative effect of the predictive component is not the pre-
diction itself but the hardness of predictability. Figure 7 illustrates the prediction
accuracy (cf. Sect. 4.6) for each environment. The simulator was programmed to
simulate changes that are hard to predict on purpose, because easy changes
such as linear increase are no challenge for predictive analysis. Therefore the
simulator includes a sine function (capacity, cf. Fig. 2) which is relatively easy
to predict and small jumps (value, cf. Fig. 2) based on [27] which are hard to
predict. Figure 7 shows that polynomial regression can estimate a sine function
with an accuracy of about 82%. However the jumps are so hard to predict, that
the polynomial regression varies significantly from the actual jumps. As a result
there are some cases where the memory is queried for individuals from the wrong
environment which are then inserted to the EA before the next change. Due to
these individuals originating from the wrong environment the prediction weakens
the performance of the memory.
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Fig. 8. Computation time per generation

Communication between IMDEA and the IMDB needs to be taken into
account when evaluating its performance. IMDEA is implemented as an appli-
cation within the IMDB thus reducing communication overhead to a minimum.
It uses PAL for predictive analysis to ensure that the prediction is carried out as
close as possible to the stored data. Figure 8 illustrates the computation time in
milliseconds per generation for each factor combination as box plot diagram. The
ordinate is limited to 25 ms

g . Diversity maintenance raises the average computa-
tion time from 5 ms

g to 7 ms
g because extra time to compute the shared fitness is

required. Prediction and memory do not influence the average computation time
but the maximum values every T generations: During each prediction cycle more
than 30 s of computational cost are lost in the IMDB. This is due to the used
library and can not be improved by IMDEA. Extraction and injection require
500ms to read from the IMDB and to write into it.

Similar to results obtained by Yang [22] and Branke [5] these tests conducted
with IMDEA prove the effectiveness of a memory, but in contrast to previous
work IMDEA introduces the benefit of storing large amounts of data in an IMDB.
IMDEA accomplishes a high prediction accuracy for linear changes but for noisy
environments it is not able to outperform existing approaches like Simões [9].

After determining that memory alone has the best effect of the performance of
the IMDEA, further test were conducted to evaluate interdependences between
changes and the extraction periodicity. The results show, that there is no cor-
relation between the extraction periodicity and the severity of jumps. However,
there is a strong interdependence between the extraction periodicity and the
frequency of change. If changes occur often, extraction will have to take place
often as well. For a low frequency of change a less frequent extraction strategy is
beneficial. This strong interdependence leads to the conclusion that in dynamic
environments where the frequency of change itself is fluctuating, the EA per-
forms best if the memory component constantly and automatically adapts its
extraction points according to the frequency of change.

6 Conclusion

This paper reported on an implemented approach to dynamic evolutionary opti-
mization exploring the possibilities of integrating in-memory computing into
evolutionary algorithms. Empirical studies suggest that an in-memory database
(e.g. SAP HANA) can enable the optimizer to learn from the decisions of the past
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and to make better informed decisions in the forthcoming iterations of the opti-
mization algorithm. This positive effect of associative memory seems becomes
particularly apparent in recurring environments. In such cases, the contribution
of associative memory is strong. Using an IMDB allows storing and maintaining
huge amounts of data on previously visited solutions. By implementing the opti-
mizer as an application within the IMDB the time required for communication
between the database and the optimizer is reduced to 500 ms. The test results
also indicate, that there is a strong interdependence between the frequency of
change and the extraction strategy, meaning that the interval for extraction
needs to adapt to the frequency of change in order to ensure maximum effi-
ciency of the associative memory.

Additionally, the results demonstrate that some changes (i.e. jumps) are hard
to predict. To improve the accuracy of predictive analysis of stored knowledge,
further evaluation of suitable analysis methods such as different regression mod-
els, forecast smoothing or neural networks may be explored. The optimizer could
include a learning component to automatically improve the selection of the best
prediction method. Alternate approaches of implementing the predictive com-
ponent – besides PAL – should be tested to reduce the computation time of the
prediction cycle. Future work targets the associative memory by testing alter-
nate database schemes addressing typical access patterns. It is also envisaged to
apply IMDEA to other usage scenarios including, e.g., constrained-based product
configuration systems [30], a form of the SAT problem.

Acknowledgments. The work for this paper was generously supported by the HPI
Future SOC Lab in the scope of the project “Big Data in Bio-inspired Optimization”.

References

1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1989)

2. Plattner, H.: A Course in in-Memory Data Management: The Inner Mechanics of
in-Memory Databases. Springer, Heidelberg (2014)

3. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004)

4. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey
of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

5. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Congress on Evolutionary Computation, CEC 1999, pp. 1875–1882
(1999)

6. Yang, S.: Explicit memory schemes for evolutionary algorithms in dynamic envi-
ronments. In: Yang, S., Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in
Dynamic and Uncertain Environments. SCI, vol. 51, pp. 3–28. Springer, Berlin
London (2007)

7. Grefenstette, J.J., Ramsey, C.L.: Case-based initialization of genetic algorithms.
In: Proceedings of the 5th ICGA, pp. 84–91 (1993)

8. Rossi, C., Abderrahim, M., Dı́az, J.C.: Tracking moving optima using Kalman-
based predictions. Evol. Comput. 16, 1–30 (2008)



Advancing Dynamic Evolutionary Optimization 171

9. Simões, A., Costa, E.: Prediction in evolutionary algorithms for dynamic environ-
ments. Soft Comput. 18, 1471–1497 (2014)

10. Fogel, L., Owens, A., Walsh, M.: Artificial Intelligence Through Simulated Evolu-
tion. Wiley, New York (1966)

11. Cruz, C., Gonzalez, J.R., Pelta, D.A.: Optimization in dynamic environments: a
survey on problems, methods and measures. Soft Comput. 15, 1427–1448 (2011)

12. Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolution-
ary algorithms. In: Cattolico, M. (ed.) Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation, GECCO 2006, pp. 1201–1208. ACM,
New York (2006)

13. Simões, A., Costa, E.: Variable-size memory evolutionary algorithm to deal with
dynamic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol.
4448, pp. 617–626. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71805-5 68

14. Simões, A., Costa, E.: Evolutionary algorithms for dynamic environments: pre-
diction using linear regression and Markov chains. In: Rudolph, G., Jansen, T.,
Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 306–315.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-87700-4 31

15. Simões, A., Costa, E.: Prediction in evolutionary algorithms for dynamic envi-
ronments using Markov chains and nonlinear regression. In: Rothlauf, F. (ed.)
Proceedings of the 11th Annual Conference on Genetic and Evolutionary Compu-
tation, GECCO 2009, pp. 883–890. ACM, New York (2009)

16. Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic
function optimization. In: Proceedings of the 3rd ICGA, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc., pp. 42–50 (1989)
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Abstract. We consider the problem of the automatic synthesis of road
traffic rules, motivated by a future scenario in which human and machine-
based drivers will coexist on the roads: in that scenario, current road
rules may be either unsuitable or inefficient. We approach the problem
using Grammatical Evolution (GE). To this end, we propose a road traf-
fic model which includes concepts amenable to be regulated (e.g., lanes,
intersections) and which allows drivers to temporarily evade traffic rules
when there are no better alternatives. In our GE framework, each indi-
vidual is a set of rules and its fitness is a weighted sum of traffic efficiency
and safety, as resulting from a number of simulations where all drivers
are subjected to the same rules. Experimental results show that our app-
roach indeed generates rules leading to a safer and more efficient traffic
than enforcing no rules or rules similar to those currently used.

Keywords: Simulation · Road traffic model · Stochastic evolution ·
Driverless cars

1 Introduction and Related Work

Car driving is one of the tasks that in a not far away future will be carried out by
machines, rather than by humans. In a driverless car scenario a machine must be
able to take a number of decisions in real time, with a limited and possibly noisy
perception of the environment. Such decisions must take into account the need
of abiding by the rules of the road and the presence of other moving, possibly
hardly predictable, agents (pedestrian, bikers, other cars, either driverless or
with a human driver).

Current traffic rules have been written for a scenario where humans drive cars
and may hence be suboptimal in a driverless car scenario, or even in a scenario
where both machines and humans drive cars. In this work, we take a fresh look
at traffic rules and investigate the possibility of devising a novel set of rules
that are amenable to automation and, at the same time, able to improve global
indexes computed over the full population of vehicles. In particular, we focus
on optimizing the global traffic efficiency and safety. We believe that, broadly
speaking, an approach of this kind could lead to significant advantages to the
society as a whole and that the driverless car revolution could offer a unique
opportunity in this respect.
c© Springer International Publishing AG 2017
G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part II, LNCS 10200, pp. 173–188, 2017.
DOI: 10.1007/978-3-319-55792-2 12
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We propose a framework based on Grammatical Evolution (GE) and our con-
tribution is as follows. First, we propose and experimentally evaluate a model
for road traffic including the road graph, the cars, and the rules-aware drivers
who try to abide by, but can possibly evade, the rules; the model is detailed
enough to include concepts such as lanes, collisions, and safety distance, which
are significant to our study. Second, we propose a language to define rules which
can be enforced in our model: rules are predicates and the language is given in
the form of a context-free grammar. Third and finally, we propose and experi-
mentally evaluate a method for the automatic synthesis of rules based on GE:
individuals represent sets of rules (i.e., regulations) and their fitness capture the
degree to which, according to the results of several simulations, traffic regulated
by the set of rules is efficient and safe.

Our experimental evaluation shows that, using GE, it is possible to obtain
sets of rules which result in safer (less collisions) and more efficient traffic, w.r.t.
both unregulated traffic and a set of hand-written rules designed to resemble a
(simplified) real world set of rules.

To the best of our knowledge, no other studies concerning the automatic
synthesis of road traffic rules have been proposed before. Recent research has
focused on how driverless cars should behave with respect to the existing rules:
by proposing flexible control strategies which minimize the number of violated
rules [14], by approaching the (highway) driverless algorithm design with rules
complying as a first goal (legal safety) [15], or by formalizing rules for the sake
of accountability after collisions involving driverless cars [10]. A much deeper
problem in this area consists in determining which decision should be taken by
a driverless car when facing a situation where only less-than-ideal outcomes are
possible [4,5]. In such a case, the decision may result in some sacrifice involv-
ing car users (passengers) or other people (e.g., pedestrians). This fundamental
problem is orthogonal to our work.

Traffic is regulated not only by rules but also by the infrastructure, e.g., road
markings and signs. In this area, several proposals have been made to modify
the working principle of traffic lights in order to avoid congestion (e.g., [16]),
also resorting to evolutionary computation [12]. More recently, motivated by
the emergence of more automated vehicles, Tachet et al. even proposed the
replacement of traffic lights with a novel (for road traffic) flow regulation solution
build upon slot-based systems [13].

From a more general point of view, automatic synthesis of rules is a task
which fits particularly well GE, since the language of the rules can be described
in terms of a grammar and candidate solutions may be evaluated by means
of simulated application of the corresponding set of rules: for instance, in [2]
GE has been used to generate trading rules for spot foreign-exchange markets.
Moreover, recent works showed that GE is suitable for addressing real problems
with complex grammars, such as learning of string similarity functions [1], or
designing components of vehicle routing algorithms [3].
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2 Road Traffic Model

We consider a scenario with continuous space and discrete time in which a num-
ber of cars move according to their driving algorithms.

2.1 Roads and Cars

A road graph is a directed graph G = (S, I) in which edges represent road
sections, vertices represent road intersections, and where each vertex is connected
to at least two edges. A road section p ∈ S is characterized by a length l(p) ∈
R, l(p) > 0 and a width w(p) ∈ N, w(p) > 0: the former represents the length
of the section between two intersections and the latter represents the number
of lanes in the section. A road intersection p ∈ I is characterized by a size
w(p) ∈ N, w(p) > 0: without loss of generality, we assume that the size of an
intersection is equal to the largest width among the sections connecting the
intersection.

A car is an agent which moves on the road graph. At a given time step, the car
is positioned somewhere on the road graph, i.e., its position can be determined in
terms of the section/intersection, lane and distance from the section/intersection
origin. The car movement is determined in terms of two speeds, i.e., along the
section and along the lanes—see Fig. 1.

In detail, a car is a tuple (p, x, y, vx, vy, s) where p, x, y constitute the position,
vx ∈ R is the linear speed, vy ∈ {−1, 0, 1} is the lane-changing speed, and
s ∈ {alive,dead} is the status. Within the position, p ∈ S ∪ I is the section or
intersection where the car is. If p ∈ S, x ∈ [0, l(p)] and y ∈ {1, . . . , w(p)} are the
linear and lane coordinates of the car within the road section p—we assume that
x = 0 refers to the starting side of p. If p ∈ I, x ∈ [0, w(p)] is the coordinate of
the car within the intersection and y is not relevant.

At each time step, if the status of a car is s = dead, the position is not
updated. Otherwise, if the status is s = alive, the position (p, x, y) of a car is
updated as follows. If p ∈ S and 0 ≤ x + vx ≤ l(p), then its position at the next
step is (p, x + vx,min(max(y + vy, 0), w(p))). Otherwise, if p ∈ S and x + vx < 0
or x + vx > l(p), then its position at the next step is (p′, 0, 0), where p′ ∈ I is
the appropriate intersection between the two connected by p. Otherwise, if p ∈ I
and x+ |vx| ≤ w(p) then its position at the next step is (p, x+ |vx| , 0). Otherwise
and finally, if p ∈ I and x + |vx| > w(p), then its position at the next step is
(p′, x0, y0), where p′ ∈ S is one of the sections connecting p and x0 = 0, y0 = 0 or
x0 = l(p′), y0 = w(p′) depending on whether p′ starts or ends in p, respectively—
in the latter case, if vx > 0, then at the next step it is set to −vx. Concerning the
choice of p′, let {p′

1, . . . , p
′
n} ⊆ S be the set of sections connecting p, then p′ is set

to p′
j , where j is chosen randomly in {1, . . . , n}. In other words, a car moves on

a section according to its speeds; whenever it reaches the end (or the beginning)
of the section, it enters the connected intersection. While in an intersection, the
car remains inside according to its linear speed and the intersection size. When
exiting an intersection, it enters a connecting section.
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Fig. 1. A visualization of some of our model definitions. A car A is traveling with a
positive linear speed vx and a negative lane speed vy = −1 on a road section on which
there are other 4 cars. With respect to A, car C is the 1-lane closest car, because it is
on yC = 2 = yA + 1 and its distance from A is Δx ≤ dview; moreover, δv1 = opposite,
since C is traveling in the opposite direction w.r.t. A, and ε1 = T, since C is closer
than depsilon to A. There are no other j-lane closest cars for A: in facts B is behind
(not ahead) A, D is two lanes away from A, and E distance to A is larger than dview.

At each time step, a collision may occur between a pair of cars. A collision
occurs if two cars meet on the same intersection or if two cars meet on the same
lane of the same road section. If a collision occurs, the status of the two cars is
set to dead. In detail, let (p(k)1 , x

(k)
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(k)
2 ) be the positions of

the two cars at time step k, a collision occurs at k if at least one of the following
conditions is met:
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and v
(k)
x,1 < 0 and x

(k−1)
1 ≥ x

(k−1)
2 ;

where dcollision is a parameter which represents the minimal distance between
two cars—note that with any dcollision > 0 the capacity of the road graph is
limited.

2.2 Driver

A driver is an algorithm according to which the linear and lane-changing speeds
of a car are updated. In particular, at each time step, the algorithm execution is
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based on the processing of (a) a set of input variables, (b) a set of state variables,
(c) the driver’s car tuple, (d) a set of unmodifiable parameters and results in (a)
the output of a non-empty sequence of actions and (b) the modification of the
state variables.

The input variables are based on the concept of j-lane closest car, with
j ∈ {−1, 0, 1}. The j-lane closest car is the closest car ahead of the driver’s car
on the y + j lane such that its linear distance is Δx < dview, where y is the lane
of the driver’s car and dview is a driver’s parameter. For the sake of brevity, we
omit a more formal definition, which covers also the case in which the driver’s
car is in (or close to) an intersection. Note that the j-lane closest car could not
exist for some j, if no cars are closer than dview or there is no y + j-th lane.

The input variables are the following—see Fig. 1 for a visual interpretation
of the variables.

– Three relative movement variables δv−1, δv0, and δv1. The value of δvj is
defined in {∅, opposite, −1, 0, 1} and is determined as follows. If there is no
j-lane closest car, then δvj = ∅. Otherwise, let (p′, x′, y′, v′

x, v′
y, s′) the j-

lane closest car: if sign vx �= sign v′
x, then δvj = opposite, otherwise δvj =

sign (|v′
x| − |vx|). In other words, δvj says if there is a j-lane closest car and,

if any, if it moves in the opposite direction or, otherwise, is becoming closer
(δvj = −1), farther (δvj = 1), or has the same linear speed, w.r.t. the driver’s
car.

– Three closeness variables ε−1, ε0, ε1. The value of εj is a boolean which is true
if and only if there is a j-lane closest car and its distance Δx from the driver’s
car is Δx ≤ dε, where dε < dview is a driver’s parameter. In other words, εj is
set if the j-lane closest car, if any, is closer than a threshold.

The state variables include a single variable d ∈ R, d ≥ 0, which represents
the distance the driver still wants to go and which is updated at each time
step as d(k+1) = d(k) − |v(k)

x |. The parameters include dview, dε (whose meaning
was described above), a value vmax ∈ R, vmax ≥ 0, and a value vΔ ∈ R, 0 <
vΔ < vmax: vmax is the maximum linear speed the driver’s car can reach and vΔ

represents the acceleration/deceleration of the driver’s car.
The output of the driver’s algorithm is a non-empty sequence A of actions,

i.e., an ordered subset of the set A of possible driver’s action, with A = {↑,↗,→
↘, ↓,↙,←,↖, ∅}. An action determines how vx and vy are updated, as shown
in Table 1.

In other words, an up arrow corresponds to accelerating and a down arrow
corresponds to braking; a right arrow corresponds to moving on the right lane
and a left arrow corresponds to moving on the left lane, and so on. The driver
executes only one of the actions in A. The action which is actually performed is
chosen after processing A according to a procedure that is detailed in Sect. 2.4
which takes traffic rules into account.

The driver’s algorithm is presented in the form of a multiway branch control
in Table 2. The rationale for the proposed algorithm is to resemble the behavior
of a “reasonable” driver who aims at traveling a distance d while avoiding trivial
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Table 1. Driver’s actions.
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Table 2. The driver’s algorithm.

δv1 δv0 δv−1 ε1 ε0 ε−1 d ≤ xstop A

1 ∀ ∀ ∀ ∀ ∀ ∀ {T} {↓, ↘, ↙}
2 {∅, 1} {∅, 1} {∅, 1} ∀ ∀ ∀ ∀ {↑, ↗, ↖, ∅, ↓}
3 ∀ {∅, 1} ∀ ∀ ∀ ∀ ∀ {↑, ∅, ↓}
4 ∀ {−1, 0} ∀ ∀ {F} ∀ ∀ {↑, ∅, ↓}
5 {∅, 1} {−1, 0} ∀ {F} {T} ∀ ∀ {↖, ∅, ↓}
6 ∀ {−1, 0} {∅, 1} ∀ {T} {F} ∀ {↗, ∅, ↓}
7 ∀ {0} ∀ ∀ {T} ∀ ∀ {∅, ↓}
8 ∀ {−1} ∀ ∀ {T} ∀ ∀ {↓}
9 ∀ {opposite} ∀ ∀ ∀ {F} ∀ {→, ↘, ↓}
10 ∀ {opposite} ∀ {F} ∀ ∀ ∀ {←, ↙, ↓}
11 ∀ {opposite} ∀ ∀ {T} ∀ ∀ {↘, ↙, ↓}
12 ∀ ∀ ∀ ∀ ∀ ∀ ∀ {↓, ↘, ↙}

collisions: that goal is pursued by—in essence—trying to travel at the max linear
speed while avoiding hitting other cars on the same lane. In detail, each row of
Table 2 represents a proposition and the corresponding output A. The propo-
sition is composed of the conjunction of membership checks on input variables
and on the result of the comparison of the state variable d against xstop, which

is defined as xstop = kstopvx + 1
2

(
k2
stop − kstop

)
vΔ where kstop =

⌈
vx

vΔ

⌉
; xstop

represents the distance the driver’s car would run if it constantly decrease its
speed until stopping. For instance, row 4 proposition is δv0 ∈ {−1, 0}∧ε0 ∈ {F},
row 5 proposition is δv1 ∈ {∅, 1} ∧ δv0 ∈ {−1, 0} ∧ ε1 ∈ {F} ∧ ε0 ∈ {T}. The
output is determined as follows: if the row 1 proposition is true, then the output
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is the row 1 A; otherwise, if the row 2 proposition is true, then the output is the
row 2 A, and so on—note that the last row proposition is always true, hence it
is guaranteed that a non empty sequence is always output.

2.3 Rules

A traffic rule is a predicate defined on a set of variables concerning a car and its
driver, its j-lane closest cars, and the road graph. A car breaks a rule at a given
time step if the corresponding predicate is false.

The variables on which a traffic rule can be defined include: (a) variables
concerning the car and the corresponding driver: v̂x, vmax, vΔ, dview, dε, p, x̂,
and ŷ, where v̂x = |vx|, x̂ = l(p) − x and ŷ = y, if vx ≥ 0, and x̂ = x and
ŷ = w(p) − y, otherwise; (b) variables concerning the car j-lane closest cars:
δv−1, δv0, δv1, Δx−1, Δx0, and Δx1, where Δxj is defined as in Sect. 2.2 and is
set to +∞ if the corresponding δvj = ∅; (c) variables concerning the road graph
section or intersection in which the car is: l(p) and w(p).

The set of possible traffic rules is defined by a context-free grammar which
we here present with the Backus-Naur Form (r is the rule) in Fig. 2.

r ::= 〈conditions〉
〈conditions〉 ::= 〈condition〉 | 〈conditions〉 ∨ 〈condition〉
〈condition〉 ::= 〈baseCondition〉 | ¬〈baseCondition〉

〈baseCondition〉 ::= 〈numericCondition〉 | 〈deltaCondition〉 | 〈graphCondition〉
〈numericCondition〉 ::= 〈numericVariable〉 ≤ 〈numericValue〉

〈numericVariable〉 ::= v̂x | vmax | vΔ | dview | dε | x̂ | ŷ | Δx−1 | Δx0 | Δx1 | l(p) | w(p)

〈numericValue〉 ::= 〈digit〉.〈digit〉e〈exp〉
〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈exp〉 ::= −1 | 0 | 1

〈deltaCondition〉 ::= δv−1 = 〈deltaValue〉 | δv0 = 〈deltaValue〉 | δv1 = 〈deltaValue〉
〈deltaValue〉 ::= ∅ | opposite | − 1 | 0 | 1

〈graphCondition〉 ::= p ∈ S

Fig. 2. Backus-Naur Form of the context-free grammar for the traffic rules.

For example, the rule stating that “the maximum speed of a car is 20” is
written as v̂x ≤ 20. The rule stating that “the car should stay on the rightmost
free lane” is written as ŷ ≤ 0∨Δx−1 ≤ 10, where 10 represents a distance within
which a lane is not considered free. The rule stating that “the car should proceed
slowly when approaching an intersection” is written as ¬x̂ ≤ 20 ∨ v̂x ≤ 10.

2.4 Rules-Aware Driver

A rules-aware driver is a driver that selects exactly one winning action out of
a sequence A = (a1, a2, . . . ) of actions, given a set R of traffic rules. In brief, a
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rules-aware driver selects the action which, if repeated for the next steps, will
cause the least number of broken rules.

More in detail, the selection is performed as follows. First, for each action ai

in A, the sequence Ai of future actions consisting of ai repeated kadvance times
is considered. Second, the number ni of future broken rules caused by Ai is
computed as the sum of the number of rules that would be broken at each future
step k+j, with 0 ≤ j ≤ |Ai|. Third and finally, the winning action is determined
as the action ai� for which ni�

|Ai� | is the lowest—in case of tie, the action with
the lowest index in A is selected. When computing ni, the rules-aware driver
predicts the future variable values assuming that: (i) the j-lane closest cars, if
any, will maintain the same speeds of step k; (ii) no other j-lane closest cars
will appear; (iii) the driver’s car will update consistently with the sequence of
actions Ai. If a sequence Ai is such that the future position p of the car changes,
the sequence is truncated to the last element before that change.

3 Grammatical Evolution

Grammatical Evolution (GE) [11] is a form of grammar-based Genetic Program-
ming (GP) [6] which can evolve strings belonging to a language L(G) defined
by a context-free grammar G. In brief, GE operates on genotypes, which are
variable-length bit strings, maps them to phenotypes, which are strings of L(G),
and finally associates them with fitness values in R.

The genotype-phenotype mapping procedure is the distinguishing trait of
GE. In this procedure, the genotype is viewed as a variable-length integer string
where each i-th integer, called codon and denoted by gi, is obtained by decoding
bits from the (8(i − 1))-th to the (8i − 1)-th, included, in the genotype g. The
procedure is iterative and starts by setting the phenotype to p = s0, s0 being
the grammar starting symbol, a counter i to 0, and a counter w to 0. Then, the
following steps are iterated.

1. The leftmost non-terminal s in p is expanded using the j-th option (zero-based
indexing) in the production rule rs for s in G, with j being the remainder of
the division between the value gi of the i-th codon (zero-based indexing) and
the number |rs| of options in rs, i.e., j = gi mod |rs|.

2. The counter i is incremented by 1; if i exceeds the number of codons, i.e., if
i > |g|

8 , then i is set to 0 and w is incremented by 1—the latter operation is
called wrapping and w represents the number of wraps performed during the
mapping.

3. If w exceeds a predefined threshold nw, the mapping is aborted, i.e., a null
phenotype is returned which will be associated to the worst possible fitness.

4. If p contains at least one non-terminal to be expanded, return to step 3,
otherwise end.

The search engine of GE, i.e., the way in which the population of individuals
is updated across subsequent generations, is conventionally based on Genetic



Road Traffic Rules Synthesis Using Grammatical Evolution 181

Algorithms (GA). In Sect. 4.2 we provide the evolutionary parameters values
which we used in our experimentation.

In order to adapt the general-purpose GE framework to a specific case, one
has to provide a grammar, which implicitly define the phenotype space, and
a fitness function f , which maps a phenotype to a number in R. In our case,
phenotypes are sets of rules and hence we modified the grammar of Fig. 2, which
describes the language for defining a single rule r, by replacing the first rule in
order to make it defining a rule set R, as follows:

R ::= 〈conditions〉 | 〈conditions〉 ∧ 〈conditions〉
Rules within a set or rules are separated by a conjunction ∧.

Concerning the fitness function, we aimed at defining a function which cap-
tures two desired high-level objectives of a set R of road traffic rules: (i) traffic
flow regulated by R should allow car drivers to reach their destination without
taking too long time, i.e., with a large average speed, and (ii) traffic flow regu-
lated by R should result in no or few collisions. It can be noted that, in principle,
the two objectives are conflicting: for instance (and simplifying), a set R impos-
ing a very low speed limit will likely prevent many collisions, but will cause long
traveling times for all drivers; on the other hand, a set R not imposing any speed
limit will allow drivers to quickly reach their destination, but will likely result
in many collisions.

We implemented these high-level objectives by means of two indexes which
can be measured for each single driver. The average speed ratio (ASR) is the
ratio between the actual average speed dtot

ktot
a driver traveled at and the maximum

theoretical average speed vmax. The collision-per-time (CpT) is the ratio between
the number ncollision of collisions a car had during its travel and ktot, where
ncollision ∈ {0, 1}. For the former index, the greater, the better; the opposite for
the latter. Hence, instead of ASR, we considered 1 − ASR, i.e.,

(
1 − dtot

ktot

1
vmax

)
.

We associate a rule set R with a fitness value which is a linear combination of the
two indexes averaged across all cars ncar during a number nsim of simulations:

f(R) = αtime
1

nsim

1
ncar

∑

cars

(

1 − dtot
ktot

1
vmax

)

+ αcollision
1

nsim

1
ncar

∑

cars

ncollision

ktot

(1)
where αtime and αcollision are the weights.

4 Experiments

We performed two experimental campaigns. The first one aimed at validating
our road traffic model. The second one aimed at verifying the effectiveness of
our GE-based approach for the synthesis of road traffic rules.

4.1 Validation of the Road Traffic Model

We performed a number of simulations in order to validate our proposed model
for the road traffic scenario. In particular, we were interested in: (i) finding
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Table 3. Model and simulation parameters.

Param Meaning Value

dcollision Minimum distance between cars without
collision

1

kremoval Time steps before collided cars remotion 100

dview Driver’s view distance 30

dε Driver’s safety distance 10

vmax Driver’s maximum speed ∼ U(1.5, 3.5)

vΔ Driver’s acceleration (deceleration) 0.1

kadvance Driver’s rules forethought time steps 10

d(0) Driver’s distance to travel (i.e., initial d) 2000

|S| Number of road sections 5

|I| Number of road intersections 4

w(p), p ∈ S Number of lanes ∈ {2, 3, 4}
l(p), p ∈ S Section length ∈ {100, 100

√
2}

ncar Cars in the simulation ∈ {2, 5, 8, 11, 14, 17, 20}
kdead Dead car removal time steps 100

kmax Simulation time steps 5000

appropriate values for the model (dcollision, dview, dε, vmax, vΔ, kadvance, and
all the values concerning the road graph) and simulation (d(0), ncar, kdead, and
kmax) parameters; (ii) verifying if the model behaves consistently when varying
the number of cars in the road graph; (iii) verifying if a set of manually crafted
rules causes a sound modification of the model behavior w.r.t. the absence of
rules. To this end, after an exploratory experimentation, we set the values of
the parameters as shown in Table 3. In order to simulate different drivers, we set
different values, chosen randomly according to a uniform distribution, for the
driver-related parameter vmax.

We performed each simulation by maintaining constant the number ncar of
cars in the graph during the whole simulation. To this end, during the simulation,
we removed a car and added a new one in a random position whenever at least
one of the two following conditions was met: (a) the driver’s state variable d
(i.e., the distance the driver still wants to travel) became lower or equal to zero,
or (b) exactly kdead time steps passed since the car state s switched from alive
to dead, i.e., since the step when the car was involved in a collision. Concerning
the former condition, we recall that drivers do not have a specific destination;
instead, their goal is to travel for a predefined distance.

Table 4 shows the set of 8 rules that we manually crafted in order to resemble
a (simplified) typical road traffic regulation. The set contains rules regulating the
driver’s behavior w.r.t. lane to stay on (i.e., “stay on the right”, rules 1 and 2),
rules stating how the driver’s should approach intersection (3, 4, and 5), rules



Road Traffic Rules Synthesis Using Grammatical Evolution 183

Table 4. Hand-written rules.

Rule Explanation

1 ŷ ≤ 0.0e0 ∨ Δx−1 ≤ 2.0e1 Stay on the rightmost free lane

2 ŷ ≤ 1.0e0 Stay on the first or second rightmost lane

3 ¬x̂ ≤ 3.0e1 ∨ v̂x ≤ 1.5e0 When close to end of (inter)section, proceed
slowly

4 ¬x̂ ≤ 2.0e1 ∨ v̂x ≤ 0.5e0 When closer to end of (inter)section, proceed
more slowly

5 ¬x̂ ≤ 3.0e1 ∨ ŷ ≤ 0.0e0 When close to end of (inter)section, stay on the
rightmost lane

6 ¬Δx0 ≤ 2.0e1 Do not travel too close to the preceding car

7 ¬v̂x ≤ 0 ∨ Δx0 ≤ 2.0e1 When too close to the preceding car, stop

8 v̂x ≤ 2.4e0 Do not exceed a maximum speed
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Fig. 3. Values of the two indexes vs. the number ncar of cars in the simulation, obtained
by performing 10 simulation for each value of ncar and each of the three set of rules.

imposing a safety distance (6 and 7), and a rule prohibiting speeding (8). We
adjusted the numeric values in the rules by exploratory experimentation, with
the aim of reducing the number of collisions while not heavily affecting ASR.

Figure 3 shows the results of our first experimentation (along with the results
of the rules inference experimentation, discussed in the next section). The figure
shows the value of the two indexes (1−ASR, left, and CpT, right) vs. the number
ncar in the simulation, that is, vs. the injected traffic. There is one curve for each
of the three following sets of rules: an empty set (no rules), the set of rules of
Table 4 (hand-written rules), and a set of generated rules (best GE rules)—we
here discuss the results corresponding to the first two curves. Each point of the
curve is obtained by averaging the values of the index collected in 10 simulations.

Observing the plots of Fig. 3, it can be seen that the relation between the
amount of traffic (ncar) and the two indexes looks sound, i.e., consistent with
what happens in real world road traffic: the greater the number of traveling
cars, the lower the average speed (i.e., the longer the time to destination) and
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the greater the overall number of collisions. From another point of view, there is
a trade-off between efficiency and safety of the road traffic, like in the real world.

Moreover, by comparing the curves related to no rules and hand-written
rules, it can be seen that enforcing a road traffic regulation results in a different
point in the above-mentioned trade off: with the hand-written rules traffic is
in general less efficient but safer. This findings suggest that our models for the
road graph, the car, and the driver are sufficiently consistent with the real word
and hence, in our opinion, adequate to investigate the feasibility of an automatic
synthesis of road traffic rules.

4.2 Synthesis of Traffic Rules

In our second experimental campaign, we investigated the feasibility of the
automatic synthesis of traffic rules using GE. To this end, we run 30 different
evolutionary searches using the parameters shown in Table 5 and, concerning
the fitness function (see Eq. 1), setting ncar = 10, nsim = 10, αtime = 1, and
αcollision = 100. For the weights αtime and αcollision, we chose the values accord-
ing to the results of the experimentation discussed in the previous section and
reflecting the intuition that minimizing collisions is more important than maxi-
mizing the average speed.

Table 5. GE parameters.

Population 100 Crossover rate 0.9

Generations 100 Crossover operator Two-points

Initial genotype size 512 Mutation operator Bit flip with pmut = 0.01

Max wraps 10 Selection Tournament with size 5

We first analyze extensively the set of rules which obtained the best fitness
among the final generations of the 30 runs, which is shown in Table 6 and dis-
cussed later. We experimentally verified how this set of best GE rules affected
the traffic with different amounts of injected traffic by running 10 simulations
for each value of ncar ∈ {2, 5, 8, 11, 14, 17, 20}. In other words, since GE rules
were generated with ncar = 10, we evaluated the generalization ability of our
rules synthesis approach. The results are shown in Figs. 3 and 4.

Figure 3 shows the values of the two indexes (1 − ASR and CpT) vs. ncar for
the three set of rules: no rules, hand-written rules, and best GE rules. It can
be seen that the generated rules always obtain better index values w.r.t. hand-
written rules, for both 1−ASR and CpT—the difference being always statistically
significant (p < 0.001 with the Mann–Whitney U test) with the sole exception
of CpT for ncar = 2, for which p < 0.05. That is, GE rules allow to reduce the
number of collisions and increase the average speed.

Figure 4 shows the same results of Fig. 3 from another point of view, by
plotting the overall number of collisions in the simulation (i.e.,

∑
ncollision, on
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Table 6. Best GE rules.

Rule Possible explanation

1 Δx−1 ≤ 4.8e0 Stay within some distance from the car on right lane

2 ¬v̂x ≤ 1.1e1 Maintain at least a minimum speed

3 ¬δv0 = opposite∨δv0 = 1∨
¬p ∈ S ∨ Δx0 ≤ 0.3e1

When in an section, stay close to a car coming on the
same lane

4 v̂x ≤ 1.2e0 Do not exceed a maximum speed
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Fig. 4. Overall number of collisions in the simulation against the overall traveled dis-
tance in the simulation averaged across simulations with the same ncar.

y-axis) against the overall traveled distance in the simulation (i.e.,
∑

dtot, on
x-axis), averaged across simulations with the same ncar, one curve for each set of
rules. The figure allows to appreciate the trade-off between traffic efficiency and
safety: the larger the overall distance, the larger the overall number of collisions.
However, it can also be seen that the curve of GE rules strictly dominates both
the other two curves (no rules and hand-written rules), hence suggesting that
GE rules may be a better way of regulating road traffic regardless of the amount
of cars in the graph—i.e., not only for the ncar for which the GE rules were
generated. This latter finding seems to confirm the good generalization ability
of our approach.

Figure 4 also shows another interesting property of our traffic model, namely
it highlights the congestion condition. In facts, in both the cases where the
traffic is regulated (hand-written and GE rules), there is a maximum number
of cars in the graph (ncar = 17) after which no further increasing in the overall
distance can be obtained, while an increasing in overall number of collisions
occurs. Interestingly, despite the fact that the maximum injected traffic before
congestion in the two cases is the same, with GE rules the resulting overall
distance is greater and the resulting overall number of collisions is smaller.

Table 6 shows in detail the best GE rules: it can be seen that the set consists
of four rules, one of which (the 2nd) is clearly always broken in our simulations,
since it tries to impose a minimum linear speed which cannot be reached with the
parameters shown in Table 3. Rule 4 is easily understandable and its inclusion in
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Fig. 5. Fitness of the best individual: during the evolution, averaged across the 30
runs, on the left; histogram w.r.t. the 30 runs at the end of the evolution, on the right.

best individual is not surprising. The role, if any, of rules 1 and 3 on the drivers’
behavior is not clear. Rule 3 is hard to understand, i.e., hard to translate in
natural language: the third disjunction says that the remaining part of the rule
applies only when the car is in a section (since if p ∈ I ≡ p �∈ S, the rule is
true); the first and second disjunctions can be rewritten as δv0 ∈ {∅,−1, 0, 1},
hence resulting in the rule being writable as (p ∈ S ∧ δv0 = opposite) =⇒
Δx0 ≤ 3. However, due to the driver’s algorithm (see Table 2) and the value of
the parameter dε (see Table 3), it is unlikely that rule 3 plays an actual role in
determining drivers’ behavior.

The analysis of the rules of Table 6 may suggest that some mechanism for
detecting and cleaning ineffective rules may be beneficial in order to (i) increase
the readability/understandability of the generated rules, and (ii) improve the
evolutionary search. While we cannot make any meaningful prediction in this
respect, we observe that, for the former goal, some automatic and domain-specific
heuristic applied after the evolution may suffice—indeed a similar approach have
been applied in [8] in the field of the automatic generation of rules for security
policies.

We also analyzed our experimental results by looking at how individuals
evolved across the 30 runs. Figure 5 summarizes the results of the evolutionary
searches in terms of the fitness of the best individual in the population. In
particular, Fig. 5a shows how the average (across all runs) best individual fitness
varies during the evolution; Fig. 5b shows the histogram of the best individual
fitness at the end of the evolution.

It can be seen from Fig. 5a that GE is in general able to decrease the fitness of
individuals during the evolution: however, after approximately 20 generations,
fitness decreases much more slowly. We speculate that some improvement to
evolutionary search might be obtained by finely tuning the GE-related para-
meters, or maybe by using a different variant of GE (e.g., [7,9]). However, we
also note that our scenario is characterized by a remarkably high stochasticity
which could, at least, slow down the search of a good solution and, from a more
practical point of view, makes experimentation and parameter tuning costly due
to the long time needed to compute the fitness. In our case, running a single
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simulation took ≈ 10 s on commodity hardware and computing the fitness of a
single individual (i.e., a set of rules) consisted in running 10 simulations, precisely
to mitigate the impact of the high stochasticity in the simulations.

Figure 5b shows the histogram of the best individual fitness at the end of the
evolution across the 30 runs. It can be seen that most of the runs resulted in
fitness values close to 1, i.e., the distribution is skewed toward bad values. We
analyzed the details of the runs and found that in some of those cases the search
got stuck in a local minimum corresponding to a set of rules including one or
more rules which, in practice, enforce drivers to stand still. Under those rules,
no collision occurs (CpT = 0) and no one moves (ASR = 0), which is, clearly,
one extreme of the trade-off between traffic efficiency and safety.

5 Concluding Remarks and Future Work

We proposed and assessed experimentally, by an extensive set of simulations, a
method for synthesizing automatically a set of road traffic rules with the aim
of maximizing such global indexes as road efficiency (high average speed) and
safety (low number of collisions). We are motivated by a future scenario in which
human and machine-based drivers will coexist on the roads, making current road
regulation possibly unsuitable or inefficient. We are not aware of any similar
proposal.

Our method is based on GE: individuals are sets of rules written according
to a context-free grammar that we designed ad hoc to express quite expressive
concepts such as, e.g., “stay on the rightmost free lane” or “slow down when
approaching an intersection”. The fitness of a candidate set of rules is given by
a weighted sum of the traffic efficiency and safety resulting from the application
of the rules set in a number of simulations, which makes this GE application
highly stochastic.

Results of our experimental evaluation are promising, since generated rules
result in simulated road traffic which is more efficient and safer than that regu-
lated by hand-written rules or not regulated at all.

Our work may be extended in different ways, such as: (i) including a more
fine-grained model (e.g., concerning intersections); (ii) considering a different
way for expressing rules (e.g., with Linear Temporal Logic); (iii) better exploring
GE parameters and/or variants. We plan to investigate some of these research
lines in future works.

Acknowledgements. The authors are grateful to Lorenzo Castelli for his insightful
comments.
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Abstract. Graph coloring problem is one of the main optimization
problems from the literature. Many real world problems interacting with
changing environments can be modeled with dynamic graphs. Genetic
algorithms are a good choice to solve dynamic graph coloring problem
because they can adopt to dynamic environments and are suitable for
problems with NP-hard complexity. In this paper, we propose a dynamic
pool based evolutionary algorithm (DPBEA) for solving the dynamic
graph coloring problem, which contains a partition based representation
to adopt to the dynamic changes of the graph and carry the valuable
information obtained in history. The proposed algorithm uses a novel
special purpose pool based crossover operator that targets to minimize
the number of colors used in the solutions and a local search method
that tries to increase the diversity of the solutions. We compared the
performance of our algorithm with a well known heuristic for solving the
graph coloring problem and a genetic algorithm with a dynamic popu-
lation using a large number of dynamic graphs. The experimental eval-
uation indicates that our algorithm outperforms these algorithms with
respect to number of colors used by the algorithms in most of the test
cases provided.

Keywords: Graph coloring problem · Genetic algorithms · Dynamic
graphs

1 Introduction

The graph coloring problem is one of the well-known optimization problems
from the literature that tries to assign different colors to the vertices connected
through an edge in a given graph. Its aim is to use minimum number of colors to
color the vertices in the graph. This problem can be used to solve many practical
and theoretical problems such as register allocation [1], frequency assignment [2]
and scheduling applications [3]. The graph coloring problem is NP-Complete [4]
and genetic algorithms are widely used to solve this problem [5,6].

In the static graph coloring problem, the input graph can be modeled with
n number of vertices connected with edges having a probability of p and repre-
sented as G(n, p) [7]. Genetic algorithms have been applied to solve static graph
coloring problem [8,9].
c© Springer International Publishing AG 2017
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Most of the real-world optimization problems are changing over time [10] and
can be modeled by using dynamic graphs [11]. The dynamic graph model used in
this study adds the dimension of time to the graph G(n, p, cv) where cv denotes
vertex change rate as defined in [12]. In this work, vertex-dynamic graphs [11]
that dynamically change in time by adding or removing vertices from the graph
are used.

In this paper, we propose a solution to the dynamic graph coloring problem.
Each individual in the population is represented with partitions [9] having non-
conflicting nodes. When the graph changes, some of the nodes are added or
removed from the graph. The individuals in the population can easily adopt to
these changes by deleting the nodes from the partitions without changing the
current non-conflicting groups, and adding new partitions for each newly added
node. Our algorithm is able to keep the valuable information obtained in history
and reshape this information with the current state of the graph. The number
of partitions represent the number of colors used to color the graph, and the
solution quality of each individual is different so the number of partitions in
each representation is also dynamic. We propose a highly specialized and novel
crossover operator that can easily deal with the dynamic representation of the
individuals. It targets to maximize the number of non-conflicting nodes in the
graph and place them to the same partition. The nodes having conflicts can not
be directly placed in a partition so a pool is proposed to keep these nodes and
place them to the most appropriate partition as soon as possible. As a result, the
proposed pool based crossover operator can easily adopt to the dynamic changes
of the graph. When we try to maximize the number of non-conflicting nodes in
the partitions, we are also decreasing the search area, so to increase the diversity
of the solutions in the population, we propose a local search method for checking
the neighborhood solutions.

We conduct experiments with dynamic graphs to test the effectiveness of the
proposed solution. The performance of our solution is compared with Degree of
Saturation (DSATUR) [13] which is a well known and effcient greedy heuristic for
solving the graph coloring problem and DGA [12] which is the first and recently
published genetic algorithm that solves the dynamic graph coloring problem.
DGA proposes a dynamic population that includes individuals with permuta-
tion based representation. It uses a standart crossover operator OX1 [14] and a
mutation operator SWAP [15]. They mainly concentrate on the dynamics of the
problem and dynamics of the algorithm and proposed populations suitable for
dynamic graph coloring problem, so their genetic algorithm is pure and straight-
forward. Our experimental evaluation indicates that we have outperformed both
of the algorithms from the literature.

The rest of this paper is structured as follows. The next section presents the
details of the proposed solution. The experimental evaluation is given in Sect. 3.
Finally, Sect. 4 summarizes our main conclusions.
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2 Proposed Work

In the dynamic graph coloring problem, the dimension time is added to the graph
so it changes over time. In our approach, only the current state of the graph
is known and the solution from evolutionary algorithm is generated according
to this state. The problem representation and operators of our algorithm are
designed such that it can adopt to the dynamic changes of the graph.

The general procedure of our evolutionary algorithm is given in Fig. 1. The
algorithm works on various number of dynamic graphs, and at time step t = 1
the first graph G1 is created. The number of nodes in the initial graph will
determine the number of color classes used by each individual in the initial
population. According to the graph change step value, the current graph used
by the algorithm will change and a new graph will be created. The algorithm
gets the current state of the graph generated at time step t and continues for a
predefined number of iterations working on the same graph. In each iteration, two
individuals represented as parent1 and parent2 are randomly selected from the
population and a new offspring is generated by applying the problem specific
crossover operator from these individuals. The main objective of local search
method is to add diversity to the newly generated solution by regrouping some
of the randomly selected color classes, and it also tries to decrease the number

1. Generate an initial graph G1.

2. while not predefined number of initial vertices created in G1 do

3. Create a vertex v.

4. Assign a life time that is set randomly between tmin and tmax to v.

5. Create edges between v and the vertices in G1 with edge probability p.

6. endwhile

7. Generate an initial population S randomly according to G1.

8. Evaluate S based on the given fitness function F .

9. while not predefined number of GraphChangeStep(t) evaluated do

10. while not predefined number of iterations evaluated do

11. Select two parents from S randomly.

12. Apply pool-based crossover to these parents to create an offspring.

13. Mutate the offspring according to MutationRate.

14. Evaluate the offspring based on F .

15. Replace the offspring with the worst parent of S.

16. endwhile

17. Remove the vertices that have reached the end of their life times.

18. Add new vertices to Gt according to GraphChangeRate(cv).

19. Assign life times to the added vertices by using tmin and tmax.

20. Create edges between the current and newly added vertices in Gt with p.

21. endwhile

Fig. 1. General algorithm of DPBEA
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of color classes used in the offspring. Local search method may increase the
number of colors used in the offspring generated after crossover, and in this
case the offspring generated after crossover is used for replacement. Finally the
fitness value of the offspring is calculated. The offspring is always replaced with
the parent having the worst fitness value.

When the algorithm reaches the end of the iterations, it gives the best parent
as the solution for the graph at time step t. The state of the graph is then changed
to produce the graph at time step t+1 by removing nodes with its edges from the
graph and adding newly generated nodes to the graph. Each node removed from
the graph is also removed from all of the individuals, and a new color class is
created for each newly generated node in all of the individuals in the population.

2.1 Graph Generation

Our input graph is modeled as G(n, p) at time step t = 1 and is represented as G1.
When a vertex in the graph is created, a life time that is set randomly between
two input parameters tmin and tmax, is assigned to the vertex. Throughout its
lifetime, the vertex will exist on the graph. At each time step, the vertices in
the graph are checked, and the ones that have reached the end of their life times
are removed with their edges from the graph. While some vertices are removed
from the graph, new vertices are added with graph change rate cv. The number
of vertices that can be added to the graph at time step t represented with Gt

is determined randomly between 0 and n × cv. When a vertice is added to the
graph, all of the vertices that are still alive are traversed and an edge is created
between these two vertices with probability p.

(a) Gt (b) Gt+1

Fig. 2. State of the dynamic graphs at graph change step t and t + 1

Figure 2 shows the states of an input graph at time t as Gt and time t+ 1 as
Gt+1. At time t, Gt has 15 vertices. At time t+1, vertice1 has ended its lifetime
and is removed from the graph with its edges e1,2, e1,3, e1,5, e1,6 and e1,11. At the
same time, vertice15 is added with its edges e15,2 and e15,6 to the graph. Edges
are only added or removed when the vertices are removed or added. The total
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number of nodes is the same for Gt and Gt+1 but the total number of edges in
the graph has decreased. These two graphs will be used in the following figures
to describe our algorithm and to compare the performance of our algorithm with
the algorithms from the literature.

2.2 Initial Population Generation

The initial population contains a predefined number of individuals and each indi-
vidual is generated randomly. In our algorithm, each individual is represented
with the partition method [9] as Si where Si = {R0, R1, ...Rk−1} and k is the
total number of colors used in the solution. Each color class Ri contains any
number of conflict free nodes. In the dynamic graph coloring problem, the num-
ber of colors needed to color a given graph is not known a priori, and nodes can
not be randomly assigned to color classes, because the classes should be conflict
free. Due to these restrictions, each node is represented with a different color,
and is assigned to a different color class Ri in the initial population. Thus k is
equal to the total number of nodes only in the initial graph G1. Once the group-
ing of the conflict free nodes starts, the number of colors used in the individuals
will decrease and k will no longer be equal to n.

2.3 Crossover Operator

In this work, we propose a novel crossover operator Dynamic Pool-Based
Crossover (DPBC) that increases the search space while generating each color
class of the offspring. It also includes a pool which contains conflicting nodes that
have not been assigned to any color class yet. DPBC is a variant of the Pool-
Based Crossover (PBC) [16] operator that we have recently proposed. PBC oper-
ator is suitable for static and weighted graphs, whereas in this work the graphs
are dynamically generated and the weights of the nodes are equal. The basic
working principle of these operators is the same, but DPBC operator has major
differences to adapt to the dynamics of the problem. Also in PBC operator, the
number of colors to be used are fixed but in DPBC operator, the number of
colors used by the algorithm changes as the solution evolves and gets better, or
as the graph changes in time so is not fixed.

Our algorithm selects two parents with k partitions S1 = {R1
0, R

1
1, ...R

1
k−1}

and S2 = {R2
0, R

2
1, ...R

2
k−1} randomly for the crossover operation. The proposed

algorithm generates dynamic solutions and the number of color classes in S1

and S2 may not be equal but the total number of nodes in S1 and S2 are always
equal. Initially the pool is emptied. In each step, DPBC operator selects one
of the color classes from S1 and S2 randomly and combines the nodes in these
color classes in Ri, which is the newly generated color class of the offspring. The
nodes that are present in Ri are removed from the color classes of both of the
parents S1 and S2. For each node in Ri, DPBC operator calculates the total
number of conflicts and creates the maximum set of non-conflicting nodes by
removing the nodes with the highest number of conflicts from Ri. If two nodes
in Ri have the same number of conflicts, one of the nodes is selected randomly.
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As soon as the conflicting nodes are removed from Ri and are placed in the pool,
Ri becomes conflict free.

In the next step, the operator selects two random color classes that have not
been selected from S1 and S2 again, combines the nodes in these classes with
the nodes in the pool and places them to the next color class of the offspring.
This process continues until all nodes in the parents are visited. If there are
any nodes left in the pool, these nodes have not been assigned to a color class
due to conflicts. Starting from the node with the highest number of conflicts
in the original graph, a new color class is generated and the node is removed
from the pool and added to this class. The remaining nodes in the pool are also
checked and assigned to the new color class if they are not conflicting with the
node/nodes currently assigned to the new color class. This process continues
until all of the nodes left in the pool are assigned to a color class, and the pool
becomes empty.

Figure 3 is an example of the crossover operator applied on two parents. In
the first step of the algorithm, R1

0 and R2
2 are selected randomly and the nodes in

these classes are combined in R0. The selected nodes are removed from both of
the parents S1 and S2. The conflicts between the nodes in R0 are calculated by
using the graph in Fig. 2(a) and CF (m) denotes the total number of conflicts of
each node m in the color class R0. Node 5 has the maximum number of conflicts
due to e5,6 and e5,10, so it is thrown to the pool. Once node 5 is removed from
R0, CF (6) and CF (10) are updated and are decreased by one. Each time a node
is thrown to the pool, the total number of conflicts are recalculated. The nodes
in R0 are now conflict-free and are colored with Color0.

In the next iteration, R1
1 and R2

0 are selected randomly and the nodes in
these classes are combined with the nodes in the pool in R1. This time node 5
and node 11 has the maximum number of conflicts, which is 4 and node 5 is
randomly selected and is thrown to the pool. Node 5 is conflicting with node 0,
node 1, node 7 and node 8, so the conflict numbers of these nodes are updated
and CF0, CF1, CF7 and CF8 become 1, 2, 1 and 1 respectively. Node 11 still
has 4 number of conflicts so it is also thrown to the pool. Node 11 has conflicts
with node 0, node 1, node 8 and node 13, so CF0, CF1, CF8 and CF13 become
0, 1, 0, 0 respectively. After the updates, there are still 4 conflicting nodes in
R1, which are node 1, node 3, node 4 and node 7. CF3 and CF4 are both 2, so
node 4 is randomly selected and thrown to the pool and after the conflicts are
updated node 1 is randomly selected and thrown to the pool.

In the third step, R1
2 and R2

3 are selected randomly, R2
3 contains node 9 so it

is combined with the nodes in the pool in R2. In the previous iterations, all the
nodes in the selected color classes are removed from both of the parents, and even
if R1

2 has never been selected before, it contains 0 nodes. Node 1 is conflicting with
node 5 and node 11 and is thrown to the pool and the remaining nodes in R2 are
conflict free and colored with Color2. Even though S1 and S2 has 4 color classes,
all of the nodes in the graph are visited in three iterations and the parents become
empty. Finally the algorithm checks the pool and creates new color classes for the
nodes remaining in the pool. Node 1 is assigned to color class R3 and colored with
Color3. Once the pool is emptied, the crossover operation is finished.
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Fig. 3. Applying dynamic pool-based crossover on two parents using Gt. (Color figure
online)

We have used the graphs in Fig. 2 to obtain the actual results of DPBEA,
DGA and DSATUR algorithms which are given in Figs. 4 and 5 for the dynamic
graphs Gt and Gt+1 respectively. The results for DPBEA and DGA on the
dynamic graphs are obtained after 2000 actual evolution steps. All three algo-
rithms use 4 colors to color the graph in Fig. 2(a).

The aim of the DPBC operator is to group maximum number of nodes in
the same color class and leave minimum number of nodes in the least used
color classes. This property will bring the opportunity to decrease the number
of colors used when the node/nodes that are present in the least used color are
removed from the graph in the next graph change step. For example, node 1 is
removed from Gt+1 in Fig. 2(b) and the number of colors used in the offspring
generated in Fig. 3 is reduced by one, even if node 15 is added to the graph. We
would obtain the same performance if node 3 was removed instead of node 1,
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Fig. 4. Results obtained from actual runs of the algorithms on Gt (Color figure online)

and node 1 would be placed in R1. In Fig. 5, DPBEA and DSATUR uses three
color classes, whereas DGA uses 4 colors to color the graph Gt+1. The solution
representation of the algorithms are not the same due to differences (partition-
based vs. permutation-based) in individual representations.

Fig. 5. Results obtained from actual runs of the algorithms on Gt+1 (Color figure
online)

The grouping of the nodes have these benefits, but the DPBC operator will
group similar nodes in color classes after some number of evolution steps. For
example, R1

1 and R2
1, R1

2 and R2
0 are two color classes that contain the same

nodes in parents S1 and S2. To prevent producing offsprings with similar color
classes and to increase diversity, local search is applied to the offspring with
mutation probability.

2.4 Local Search Method

In local search phase, there is a mutation chance for every color class so each color
class is visited to decide whether LS will be applied or not. A random number is
generated for each color class of the offspring and local search is applied to the
color classes depending on this number and the mutation probability. If mutation
is applied to a color class, all the nodes in this class are thrown to the pool. The
selected color classes become empty and are no longer used.

All of the remaining color classes that are not selected for mutation are
visited. The aim is to increase the number of non-conflicting nodes in these color
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classes. Starting from the first color class, all of the nodes in the pool are added
to the color class and combined with the nodes in this class. For each node,
the number of conflicts are recalculated, and the nodes with highest number
of conflicts are thrown to the pool as done in crossover operator. This process
continues until all nodes in the pool are assigned to a color class.

If the number of colors used in the offspring increases after local search,
the offspring created after crossover is replaced with the parent that has the
worst fitness value, otherwise the offspring created after local search (even if it
has worse fitness value than the offspring created after crossover) is selected for
replacement to increase diversity.

2.5 Computation of Fitness Function

The number of colors used to color the dynamic graph in each graph change
step is the basic criteria to compare the performance of the individuals. Two
individuals may use the same number of colors, but one of them may have higher
probability to generate a better offspring in the next graph change step, if the
number of nodes is not evenly distributed between color classes. So our aim is
to obtain individuals with fewest number of nodes in the three least used color
classes. For each individual Si, the fitness value Fi is calculated by Eq. 1 [12].

Fi = n3 ∗ ci + n2 ∗ ci,1 + n ∗ ci,2 + ci,3 (1)

In this equation, n denotes the number of nodes currently available in the
dynamic graph, ci is the number of colors used, ci,1 , ci,2 and ci,3 are the number
of nodes in the least, second least and the third least used color class. As we are
trying to minimize the number of colors used, our algorithm tries to minimize
the fitness function. The fitness values calculated for the solutions given in Fig. 4
are 13789, 14000, 13790 for DPBEA, DGA and DSATUR respectively. Even if
all three algorithms use 4 colors, DPBEA and DSATUR have 1 node in the least
used color class, so their fitness values are close to each other whereas DGA has
2 nodes in the least used color and has the worst fitness value.

3 Experimental Evaluation

In this section, the performance of our algorithm DPBEA is compared with
DSATUR [13] and DGA [12] algorithms. We consider the number of colors used
and the fitness values of the algorithms for comparison. The performance of
the algorithms are evaluated using dynamic graphs. A graph generator running
parallel with the algorithms creates the dynamic graphs. The graph generator
takes six input parameters which are:

– Graph Change Step: Graph change step determines the number of dynamic
graphs generated from the initial graph. The default value for graph change
step is 50, but it can vary from 5 to 50 in the experiments.
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– Total Number of Nodes: Total number of nodes in the graph is denoted by n.
The default value for the number of nodes in the graph is 100. In the initial
graph, there will be 0 to 5 nodes and according to graph change rate, minimum
and maximum lifetime, the total number of nodes in each graph change step
will change dynamically.

– Edge Density: Edge density is denoted by p. The default value of edge density
is 0.75 but it can take values between 0.1 and 0.95.

– Graph Change Rate: Graph change rate denoted by cv, is used to determine
whether the dynamic change in the graph will be fast or slow. It affects the
total number of nodes in the graph. If the graph change rate is low, the total
number of nodes in the graph will change slowly. In Table 1, the relations
between graph change rate and the number of nodes in the graph can easily
be seen. The default value for graph change rate is 0.1, but in the experiments
it can vary from 0.01 to 0.3.

– Minimum Lifetime: The minimum amount of iterations that a node is kept
alive in the graph is the minimum lifetime of a node and is denoted by tmin.

– Maximum Lifetime: The maximum amount of iterations that a node is kept
alive in the graph is the maximum lifetime of a node and is denoted by tmax.

The default values for the parameters of the evolutionary algorithm are muta-
tion rate = 0.3, population size = 100 and generation size = 8000. In order to
balance the number of nodes that are added and removed in each graph change
step, the values for tmin and tmax are set to 3 and 13 respectively. These values
are used in the experiments unless stated otherwise.

The initial graph has 0 nodes and in each graph change step, at most n × cv
number of nodes are added to the graph. When a node is created, a number
between tmin and tmax is randomly generated to denote its lifetime, then all
the nodes in the graph are traversed and an edge between these two nodes is
created with probability p. In each graph change step, the graph is changed and
is given as input to all three algorithms. In the first evolution step DSATUR
algorithm produces its result, and in DGA and DPBEA the newly produced
nodes are added to and the dead nodes are removed from the population. In
DPBEA, the dead nodes are deleted from their color classes and for each newly
produced node, a new color class is created and this node is the only node that is
placed to this color class. Both DGA and DPBEA algorithms will evolve for 8000
evolution steps (denoted as e), where 8000 individuals are generated. The best
individuals from DGA and DPBEA are recorded at the end of the graph change
step. To compare the performance of the algorithms, this process continues for
50 graph change steps (from G1 to G50) working on one single dynamic graph
and a total of 10 dynamic graphs are generated. The results are the mean of the
number of colors and fitness values calculated by each algorithm for 500 different
graph states.

In Figs. 6 and 7, the performance of three algorithms are evaluated and the
results are given as percentage of the mean number of colors DSATUR algorithm
used to see the relative performance of the algorithms clearly. The mean number
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Table 1. Comparison of the algorithms by using dynamic graphs generated with dif-
ferent graph change rate values

cv # of nodes # of colors used Fitness values

Current Added Removed DSATUR DGA DPBEA DSATUR DGA DPBEA

0.1 5 8.2 0 2.4 2.4 2.4 106 106 106

13.2 9.4 2.2 4.6 4.6 4.6 122× 102 122× 102 122× 102

20.4 10.2 3.2 5.6 5.4 5.4 584× 102 553× 102 553× 102

27.4 8.6 3.2 6.72 6.4 6.6 149× 103 143× 103 146× 103

32.8 10.2 3.6 7.6 7.08 6.96 280× 103 263× 103 260× 103

39.4 10.4 5.2 8.48 8.08 8 568× 103 535× 103 531× 103

44.6 9 8 9.8 8.92 8.64 991× 103 892× 103 859× 103

45.6 12.8 6.8 10 9.4 8.96 113× 104 104× 104 995× 103

0.2 5 19.2 0 2 2 2 824 816 816

24.2 19 4 6 6 6 114× 103 109× 103 109× 103

39.2 19.2 6 9 8.28 8 662× 103 595× 103 584× 103

52.4 21.4 7.8 10.6 9.92 9.6 164× 104 153× 104 149× 104

66 22.6 9 12.64 11.84 11.08 365× 104 341× 104 321× 104

79.6 21 10.6 15.04 14.36 13.56 837× 104 798× 104 759× 104

90 20 13 16.36 15.48 14.6 129× 105 122× 105 115× 105

97 19.4 12.8 17.04 16.6 15.56 160× 105 156× 105 146× 105

0.3 5 29.6 0 2.6 2.6 2.6 247 246 246

34.6 23.6 3.8 7.83 7.12 7 309× 103 282× 103 278× 103

54.4 27.8 5.8 10.92 10.52 9.92 175× 104 168× 104 159× 104

76.4 30.2 9 14.4 13.6 12.8 683× 104 644× 104 607× 104

97.6 31.4 14.4 17.48 16.72 16.08 179× 105 170× 105 164× 105

114.6 31 17.8 19.56 18.76 18.52 316× 105 302× 105 299× 105

127.8 32.4 21 21.28 20.84 20.2 488× 105 477× 105 462× 105

139.2 33.8 22.4 22.68 22.08 21.44 651× 105 636× 105 617× 105

(a) Varying p values (b) Varying cv values

Fig. 6. Performance of DGA and DPBEA relative to DSATUR for variable edge prob-
ability and node probability values (Color figure online)
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(a) Varying evolution steps (b) Varying node values

Fig. 7. Performance of DGA and DPBEA relative to DSATUR for varying evolution
steps and node values (Color figure online)

of colors used by DGA and DPBEA algorithms are scaled by the mean number
of colors used by DSATUR algorithm.

In Fig. 6(a), the performance of the algorithms are compared for varying edge
density values. As p values increase, the number of edges connecting the nodes
in the graph are increased, so the number of colors used by the three algorithms
also increase. The gap between DGA and DPBEA is variable and increased as p
increases, but as p reaches 0.95, DGA and DPBEA nearly use the same number
of colors.

In Fig. 6(b), the performance of the algorithms are compared for variable
graph change rate values, that determine the probability of the number of nodes
added to the graph at each graph change step. DPBEA outperforms DGA in
nearly all of the cases (except 3 cases where they have equal performance), and
this shows that our algorithm has better adaptation to the dynamic changes of
the graph.

Figure 7(a) shows the performance of the algorithms for different evolution
steps. Both of the genetic algorithms performance increase with respect to
DSATUR as evolution values increase. This is due to generating higher num-
ber of offsprings between two graph change steps which increase the probability
of obtaining a better result, whereas DSATUR produces only one result which is
not related to evolution value. DGA and DPBEA have similar trend but DPBEA
has better performance in all of the cases.

In Fig. 7(b) the performance of the algorithms are compared for various node
values. DPBEA outperforms both algorithms in all of the test cases. DGA is
suitable for graphs with few number of nodes, and as the nodes in the graphs start
to increase, they hardly can adopt to the dynamic changes and their performance
start to decrease. When 400 or higher number of nodes are considered, they
show the worst performance. The results from the original paper of DGA show
a similar trend. In the original paper, they use a smaller evolution size that is
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equal to 1000, and when 250 or higher number of nodes is considered, they have
the worst performance.

Table 1 is used to show how the graph changes in 8 graph change steps (from
G1 to G8). The values in this table are the mean values obtained from 15 different
graphs having an edge probability 0.15, 0.3, 0.45, 0.6 and 0.75. For each edge
probability value, 3 dynamic graphs are generated. This process continued for
3 different graph change rate values of 0.1, 0.2 and 0.3. So the total number
of dynamic graphs used in this test is 45. tmin and tmax are set to 2 and 5 to
see the affect of these parameters much more clearly. That is why in the first
two graph change steps, the number of nodes removed from the graph is equal
to 0. Starting from an initial graph with 5 nodes, the final graph contains 45.6
nodes, 97 nodes and 139.2 nodes for 0.1, 0.2 and 0.3 graph change rate values
respectively. When we compare the algorithms, all three algorithms have the
same performance in 5 test cases in the initial graphs. Once the graphs start to
change dynamically, DPBEA outperforms DGA and DSATUR in 17 tests cases
because it can adapt to these changes faster than DGA due to problem specific
representation of the individuals and operators. In the remaining test cases,
DGA outperforms DPBEA in 1 test case and DGA and DPBEA have equal
performance outperforming DSATUR in 1 test case. When the fitness values are
compared for the cases where all algorithms have the same performance, DGA
and DPBEA find the same solution and in 2 test cases, their solutions are better
than DSATUR.

In Tables 2 and 3 the performance of DPBEA algorithm that does not use
local search (represented with DPBEA*) is also given to show the efficiency and
cost of the operators used in DPBEA in much more detail. In both of the tests,
initial graph contains 50 nodes and at each graph change step 50 nodes are added
to the graph. None of the nodes are deleted from the graphs so tmin and tmax

are not used in these tests. The results are the average values obtained from 5
different populations each running on 5 different graphs in Table 3.

Table 2 contains the number of colors used by DSATUR, DGA, DPBEA*
and DPBEA algorithm for different evolution steps to show the affect of ini-
tial population, crossover and local search operators. In DPBEA each node is
placed to one color class in the initial population and each individual in the pop-
ulation contains n number of color classes. In the first evolution step, DPBEA
significantly outperforms DPBEA* because both crossover and local search is
applied to the offspring generated in the first evolution. When the evolution is
completed, the gap between the solutions obtained from DPBEA and DPBEA*
decreases and DPBEA has better performance than DPBEA* in 2 cases, has
equal performance in 2 cases and has worse performance in 1 case. This shows
that our local search mechanism can be improved and the pool-based crossover
mechanism is the main strength of our algorithm.

If we compare the initial solutions obtained by DGA and DPBEA, we see
that there is a huge difference in the number of colors used. This is due to the
differences in individual representation and the random node to color assign-
ment DGA uses in initial population. Even if their initial population contains



202 G. Sungu and B. Boz

Table 2. Comparison of the algorithms for varying node values and different evolution
steps

# of colors used

Graph size Evolution DSATUR DGA DPBEA* DPBEA

50 Before evolution – 17.2 50.0 50.0

1st evolution 17.4 17.1 35.0 26.4

After evolution 17.4 16.0 15.0 15.0

100 Before evolution – 30.4 65 65

1st evolution 29.2 29.8 47 46.4

After evolution 29.2 28.4 27 26.8

150 Before evolution – 42.4 77 76.8

1st evolution 41.2 41.8 59.2 52

After evolution 41.2 40.2 38.6 38.6

200 Before evolution – 54.4 88.6 88.6

1st evolution 52.8 53.6 70.4 68.4

After evolution 52.8 51.8 50 50.2

250 Before evolution – 64.6 100.0 100.2

1st evolution 62.8 63.7 81.2 80.6

After evolution 62.8 61.4 60.2 60.0

better solutions, when the evolution is completed our algorithm outperforms
DGA due to problem specific crossover operator. Both DGA and DPBEA can
not outperform DSATUR when the results obtained after the first evolution is
considered.

As the graph is dynamically changed, 50 nodes are added to the graph. DGA
places these nodes randomly to its individuals, and the number of colors DGA
uses is approximately increased by only 14, whereas DPBEA adds 50 new color
classes, so the number of colors it uses is increased by 50 before the evolution of
the new dynamic graph starts.

In Table 3 DPBEA outperforms DSATUR and DGA in all of the test cases
provided. DGA shows the worst performance when 400 or greater number of
nodes are considered, it can not easily adopt to the dynamic changes due to the
structure of the problem representation and the operators it uses. DPBEA out-
performs DPBEA* in 6 cases and they have equal performance in 1 case. Espe-
cially when the node number is equal to 300, local search significantly improves
the quality of solution. When execution times are considered, DSATUR has very
small amount of computational effort, and DPBEA shows the worst performance.
If the execution times of DPBEA* and DPBEA are compared, we can see that
local search method has a very high impact on the execution time.
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Table 3. Detailed comparison of the algorithms for varying node values

n # of colors used Execution time

DSATUR DGA DPBEA* DPBEA DSATUR DGA DPBEA* DPBEA

50 17.4 16.0 15.5 15.5 0.01 0.15 0.76 1.12

100 28.6 27.4 25.6 25.8 0.01 0.64 5.09 9.13

150 41.1 39.1 37.9 38.2 0.04 1.62 20.20 39.98

200 51.6 50.1 48.3 48.1 0.09 2.89 57.68 122.98

250 61.8 61.3 59.1 58.8 0.18 4.69 139.83 316.50

300 72.5 72.3 72.8 70.0 0.33 7.09 274.41 654.96

350 82.2 81.9 80.9 80.7 0.57 10.38 555.73 1276.75

400 91.6 92.4 90.3 90.4 0.87 14.20 1033.96 2369.62

450 100.6 102.7 100.3 100.1 1.28 18.22 1666.25 3866.60

500 110.6 113.2 109.2 109 1.94 24.80 2616.20 6207.40

4 Conclusions and Future Work

In this study, we propose a novel dynamic evolutionary algorithm for solving
the dynamic graph coloring problem, that contains a novel crossover operator
(DPBC) combined with a local search method that targets to increase the diver-
sity of the solutions. We have used DSATUR, a well-known greedy algorithm
for solving graph coloring problem, and DGA which is the first and to the best
of our knowledge the only genetic algorithm targets to solve dynamic graph col-
oring problem, in the experimental study to evaluate the performance of our
algorithm. Our algorithm outperforms DGA and DSATUR algorithms in most
of the test cases with respect to total number of colors used when various graphs
with different properties are considered.

Our algorithm has strengths and weaknesses. The most important strength
is the efficient dynamic pool-based crossover operator it proposes, and the
partition-based representation it uses. It is weak because it has the worst execu-
tion time. Nearly half of the computation time on DPBEA is spent on the local
search mechanism that may not always yield to a better solution. As a future
work, local search methods proposed in this study may be replaced with other
efficient techniques to improve the quality of the solution. Also the performance
of DPBEA can be investigated for edge-dynamic graphs, edge-vertex-dynamic
graphs and dynamic graphs with different structures.
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Abstract. Locating Radio Frequency (RF) emitters can be done with
a number of methods, but cheap and widely available sensors make the
Power Difference of Arrival (PDOA) technique a prominent choice. Pre-
dicting the location of an unknown RF emitter can be seen as a con-
tinuous optimization problem, minimizing the error w.r.t. the sensor
measurements gathered. Most instances of this problem feature multi-
modality, making these challenging to solve. This paper presents an
analysis of the performance of evolutionary computation and other meta-
heuristic methods on this real-world problem. We applied the Nelder-
Mead method, Genetic Algorithm, Covariance Matrix Adaptation Evo-
lutionary Strategies, Particle Swarm Optimization and Differential Evo-
lution. The use of meta-heuristics solved the minimization problem more
efficiently and precisely, compared to brute force search, potentially
allowing for a more widespread use of the PDOA method. To compare
algorithms two different metrics were proposed: average distance miss
and median distance miss, giving insight into the algorithms’ perfor-
mance. Finally, the use of an adaptive mutation step proved important.

Keywords: Search heuristics · Continuous optimization · Multilatera-
tion

1 Introduction

Radio Frequency (RF) emitters are becoming increasingly common in everyday
use. Most people carry at least one RF emitter on them at any given time, for
example a cellphone or smart watch. In the case of an emergency, the ability
to locate people trapped in an avalanche or in distress, would greatly relieve
the search effort and possibly save lives. Locating RF emitters can, for instance,
be done using a number of inexpensive quadcopter sampling the RF signal at
different points in space. Figure 1 shows 10 quadcopters sampling an RF signal
at multiple points in space.

There are many different methods for locating or geolocating RF signals
based on sampling of signal properties [1,4,10,15,17], including: Angle of arrival,
c© Springer International Publishing AG 2017
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Fig. 1. Illustration of predicting the location
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Time difference of arrival, Power difference of arrival, and Frequency Difference
of arrival. Most methods for geolocation require the RF signal to be sampled
at multiple distinct locations in order to achieve a prediction of the emitter
location. The different methods all have their strengths and weaknesses, in prac-
tical applications it is likely that multiple methods or a combination of methods
will be applied [17]. Regardless of the method applied, it is important for an
implementation to be as efficient as possible.

One method of locating an RF emitter is based on Received Signal Strength
(RSS), or Power Difference of Arrival (PDOA) [4,10]. This method can be imple-
mented using cheap and readily available sensors, based on simple power mea-
surements. An issue with this method is the high amount of computation required
in order to make a prediction of the emitter location. The computational require-
ments includes the brute force minimization of a function over a discrete grid.
This minimization can be implemented on a hardware accelerated system [4].
For many applications, where locating RF emitter would be useful, the use of
hardware acceleration may be impossible due to energy constraints or inability
to carry a specialized computing unit for this purpose.

The goal of this work is to reduce the computational requirements of PDOA
geolocation in order to facilitate implementation, on simple and energy restricted
platforms. By reducing the required computational resources it would be pos-
sible to implement this using minimal hardware, for instance on a small board
computer. Evolutionary computation methods or numerical methods may assist
in solving the minimization problem faster and more efficiently. The use of evolu-
tionary computation methods would also allow for potentially infinite resolution,
compared to a brute force solver.

In this work, a few of the most common heuristics for continuous opti-
mization are compared for performance on this RF emitter localization prob-
lem. These were chosen for being common and frequently used algorithms in
the literature, and were used without significant modification or customization.
The algorithms chosen are examples of hill-climber methods, population based
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methods and higher-order search algorithms. The tested heuristics are: Random
sampler, Nelder-Mead (NM) [12], Preselect NM, Genetic Algorithm (GA) [3,6],
Covariance Matrix Adaptation Evolutionary Strategies (CMA-ES) [7,8], Particle
Swarm Optimization (PSO) [2], and Differential Evolution (DE) [16].

This is the first paper to our knowledge describing the application of search
heuristics in an effort to make the minimization of the error function more effec-
tive. Several papers exists on the topic of locating RF emitters [1,10,15,17]. Con-
trary to previous work, we apply evolutionary computation methods, instead of
a brute force optimization, in order to increase the speed and precision of the
emitter location predictions. A GA have previously been applied to optimize
the location of the sampling points, both for the static and dynamic cases [4].
Using RSS to locate RF emitters have also been attempted in the context of a
swarm system [13]. However, in this paper the focus is shifted from optimizing
the behavior and positioning of the sample locations, to increasing the efficiency
of the location prediction algorithm itself using meta-heuristics instead of a brute
force optimization.

Section 2 describes the problem of locating RF emitters and defines a
benchmark. Section 3 defines the heuristics used for this optimization problem.
Section 4 describes the test cases used and the extensive parameter variation
required for optimal algorithm performance. Sections 5 and 6 features results,
with multiple metrics for comparison, and discussion. Finally, Sect. 7 concludes
the paper.

2 RF Emitter Localization

In locating objects in space, there are three common exploitable methods: tri-
angulation, trilateration and multilateration [1,15]. Triangulation estimates the
location of an unknown object by measuring the angle towards the object from
multiple directions. This gives an intersection where the object is estimated to
be located. Trilateration uses the distance from at least three points to find an
intersection between circles (in 2D) to locate an object. Multilateration combines
measurements of the differences in distances, at multiple known points, in order
to estimate the location of the object. These fundamental geolocation methods
makes up the basis of the search for an RF emitter. There are multiple ways of
locating an RF emitter [1,4,10,15], including:

1. Angle of arrival (triangulation)
2. RSS (trilateration)/PDOA (multilateration)
3. Frequency difference of arrival (triangulation)
4. Time of arrival (trilateration)/Time difference of arrival (multilateration)

Using a simple RSS method is problematic as it is fairly common that the
power of the emitter is not known. Many transceivers (radio transmitters and
receivers) today implement power saving schemes, where they vary emitted
power. By varying the emitted signal strength, using only RSS for geolocation
(with trilateration) becomes impossible. However by combining multiple RSS
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measurements and using PDOA it is possible to remove the unknown emitted
effect at the cost of additional complexity.

2.1 Power Difference of Arrival

PDOA compares the RSS at multiple distinct locations in order to get an esti-
mate for the emitter location. This is based on an estimation of the loss in signal
strength at a given distance. A common model for propagation loss of an RF
signal is the path loss model [10,11,14]. This model gives the RSS L at a distance
r and can be expressed as follows:

L(r) = Lf (r0) − 10α log10
r

r0
(1)

P (r) = L(r) + N (0, σ) (2)

Lf (r0) is signal strength “a short distance” from the emitter; this is typically
determined experimentally and is a fixed value. For these experiments the dis-
tance r0 was set to 1. P (r) is a sample, with added noise, a distance r from the
emitter. By attaining a number of samples P (r) of the RSS at multiple different
points in space it is possible to estimate the location of an RF emitter. The exact
constant value of Lf (r0) is irrelevant, as it is canceled out when calculating the
difference between pairs of samples.

Simulated samples are generated by adding white noise to the estimated
signal strength L(r), where σ is the standard deviation of the white noise. α is
the path loss factor, depending on the environment this constant may vary from
2 to 6. Free space/line-of-sight gives an α of 2.0.

There are several methods of using the attained power measurement to obtain
a prediction of the emitter location [10]. Some examples are: Non-Linear Least
Squares (NLLS), maximum likelihood, and discrete probability density. All of
these methods are fairly computationally expensive, in the order of O(I ·J ·M2).
I · J is given by the grid resolution and M is the number of measurements.
The physical sensors used for PDOA are capable of gathering several hundred
samples per second. Using all the information available will result in a large M ,
making the optimization slow.

NLLS can be expressed as an optimization to minimize the error, given a set
of measurements. By comparing the measured difference in RSS to the expected
signal strength, an expression for the error can be formulated [10] as:

Pkl = Pk − Pl (3)

Q(x, y) =
∑

k<l[Pkl−5α log
(

(x − xl)2 + (y − yl)2

(x − xk)2 + (y − yk)2
)]2 (4)

The proposed location of the emitter is (x, y). k and l denotes indexes into the
list of samples. Predicting, or finding, the most likely emitter location can be done
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by minimizing the function Q(x, y) over the desired area. Analytic methods are
problematic for this expression due to the non-linearity found in the expression.
Figure 2 is an example of the search landscape as defined by Q(x, y). The search
landscape is smooth and can be highly multi-modal.

The conventional way of solving this problem would be to use regular grid,
over which the function is evaluated and the smallest value located. Using a
grid suffers from a number of undesirable features; such as finite resolution and
high computational cost. Practical implementations may even have problems
defining the grid boundaries, over which to minimize the function, as this makes
an assumption about the emitter location before any predictions have been made.
It is also impossible to predict a location outside of the grid.

2.2 Error Metric

In order to evaluate the performance of each algorithm, a suitable benchmark
metric has to be defined. All of the search and optimization algorithms will
return a single best solution found through the search, the position in which
Q(x, y) takes on the least value seen. This solution is used to calculate an error
measurement (eavg), given as follows:

di = ||Si − Sref|| (5)

ei =

{
di, if Qi > Qref

0, otherwise
(6)

Si is the best found solution (by the search algorithm) and Sref the solution
calculated by brute force using 40.000 evaluations (a fine grid of 200 by 200
cells). Both of these are two-dimensional coordinates. The Euclidean distance
between the two solutions is di, for a single run of the optimization algorithm.
An error ei is calculated, only penalizing those solutions that have worse fitness
value Qi compare to the reference Qref. All of the errors are aggregated and an
average is calculated, indicating the performance of the given algorithm on the
given case. For the same set of values ei, median and standard deviation is also
calculated.

It is important to note that the true emitter location, where the emitter was
placed during simulation, may not be the location of the global optimum. Due
to the noise added to the samples (Eq. 2), the global optimum may shift away
from the true emitter location. For this reason, the global optimum has to be
located using a brute force search.

2.3 Error Bound for Brute Force Search

Brute force divides the grid into a number of cells, this limits the maximal error
ei by the size of the grid cell. Similarly, it is possible to estimate the expected
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error assuming a uniform distribution of global optima. Two independent uni-
form distributions X and Y give the x and y coordinates, respectively. The
exhaustive grid search (brute force) will divide the area of interest into bins of
equal dimensions. Since all the bins are equal, we only need to consider the case
of a single bin to find the expected miss distance. A 2D-grid of size (Gx, Gy)
is divided equally into bins of size (Bx, By). We can then define the uniform
distributions of X and Y as follows:

X = Uniform(−1
2
Bx,

1
2
Bx) (7)

Y = Uniform(−1
2
By,

1
2
By) (8)

D =
√

X2 + Y 2 (9)

Monte-Carlo simulations were used to determine the expected average miss
distance E(D).

Table 1. Metrics (Bx = By = 100)

Miss dist. Estimated Expr.

Avg. 38.3 0.383Bx

Median 39.9 0.399Bx

Neval =
G2

x

B2
x

=
0.15G2

x

D2
avg

(10)

The expression, in Table 1, for average expected miss distance was determined
numerically, using regression on a number of different values for Bx and By. Using
this expression it is possible to devise the resolution required (using a discrete
grid optimization) to achieve any desired maximal error.

In Eq. 10, Neval is the number of evaluations required to achieve an average
prediction error of Davg. For example, if the desired average miss should be
less than 20 m, at least 375 evaluations would be required. The area of interest
(Gx, Gy) was set to (1000, 1000), as used for the test cases.

This is a tight and optimistic bound for the average error. Most algorithms
will not be able to attain this bound. Experiments found that even with a rea-
sonably fine grid, the global optimum would not be sampled close enough. This
resulted in choosing a local optimum instead, with a better fitness value. Miss-
ing the global optimum, and instead choosing a local optimum, gives a severe
penalty to the average distance miss. The local optima are often located far away
from the global optimum (See Fig. 2).
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3 Optimization Heuristics

Seven different common optimization heuristics were implemented in this paper:
Random sampling, NM, Preselect NM, GA, CMA-ES, PSO and DE. For all
of the heuristics tested, the solutions are encoded as a 2D real-valued vector.
Some of these algorithms had standard implementations found in the DEAP
framework [5]. The full source code can be found here1.

For comparison, a basic random sampler was implemented. This uses a uni-
form distribution in x and y dimensions to generate a random sampling of solu-
tions within the area of interest. The best solution, of the random selection, is
returned by this method. This is similar to the brute force method, but does not
restrict the solutions to a regular grid.

The NM algorithm [12] is a continuous numerical optimization algorithm,
that does not require gradient information in the fitness space. The initial step
of the NM algorithm requires a simplex to be defined. A simplex is a set of three
points, for a two dimensional search landscape. Further iterations will manipulate
the simplex through reflection, expansion and contraction, eventually converging
to a small area of the search landscape. NM has four parameters governing the
rate of contraction and simplex permutation; Alpha, Gamma, Sigma, and Phi.
In the case of multiple minima, NM can get stuck or fail to converge to a single
solution. For the problem as described, the fitness landscape may have more
than one minimum. This makes the NM algorithm a poor choice by itself, but
is included for comparison.

NM will typically struggle on non-smooth landscapes, or in cases where there
are multiple optima. If the NM algorithm could be initialized in a way as to
exclude these two problems, this algorithm could be a prime contender due to
very fast convergence to a single solution. Choosing the simplex carefully it
may be possible to reduce or even eliminate the adverse properties of the NM
method alone. The Preselect NM method samples a (large) number of points
in the search space before applying the NM method. These points are used to
select the initial simplex for the NM algorithm. From the points sampled, the
three best solutions (according to Q(x, y) values) are chosen and given to the
NM method. This allows the algorithm to start closer to the global optimum
and may assist in reducing the chance of getting stuck in local optima.

In this paper, the GA [3,6] is applied as a search heuristic in the two-
dimensional optimization problem defined in the previous sections. A direct real
encoding is used, and the fitness function is Q(x, y) as defined in the prob-
lem description. Furthermore, to apply a GA to this problem a suitable muta-
tion, crossover and selection operator has to be chosen. Tournament selection is
used as a selection operator. The mutation operator is implemented as a simple
Gaussian additive mutation, which requires a sigma to be specified. The crossover
operator takes two parent solutions and creates two children by selecting two new
random solutions on the line segment joining the two parent solutions. In total,

1 https://github.com/ForsvaretsForskningsinstitutt/Paper-NLLS-speedup.

https://github.com/ForsvaretsForskningsinstitutt/Paper-NLLS-speedup
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the GA requires five parameters to be specified: Mutation probability, Mutation
sigma, Crossover probability, number of elites, and finally, a population size.

CMA-ES [7,8] is described as a second degree method building on Evolution-
ary Strategies [9]. As opposed to the GA, this method does not use a crossover
operator, only a mutation operator and selection. The CMA-ES algorithm will
attempt to adapt the mutation step size dynamically (from an initial guess),
maximizing the likelihood that favorable solutions are generated by the muta-
tions. This is an important feature, as it allows for rapid convergence once an area
of solutions with good fitness has been found. The main drawback of this method
is the use of a population size of 1 (in the standard implementation). Having
only a single individual makes the algorithm prone to getting stuck in local
optima, converging prematurely. The same properties that make the algorithm
exceptional at quickly converging and find a good solution are a disadvantage in
respect to robustness when faced with multi-modal fitness landscapes. CMA-ES
requires two parameters: a population size and an initial permutation standard
deviation.

The concept of the PSO [2] is to have a number of particles moving in the
N -dimensional space and being attracted to the various optima that both the
particle itself finds, and the global optimum as found by all the particles. This
algorithm required minimal modification to suit the described problem, but has
a number of parameters that will significantly impact the performance of the
algorithm. The parameters are: population size (number of particles), attraction
weight toward local best (φ1), attraction weight toward global best (φ2) and a
maximum particle speed.

DE [16] is a variation of an evolutionary optimization method. The main
difference is the use of a differential operator as a mutation operator. In short,
the mutation step used by DE is defined by the difference between two solution
vectors. This allows the mutation step size to adapt and converge as the solutions
in the population converge to a single optimum. DE uses three parameters: F a
scaling factor for the mutation size, CR for controlling the chance of a mutation,
and the population size.

4 Testing Methodology

50 cases were randomly generated, in order to make sure that algorithms
excelling at a single problem instance were not preferred. Each case consists
of 10 distinct randomly located simulated PDOA samples with randomly gener-
ated noise (Eq. 2). In this work free space/line-of-sight was assumed, α of 2 and σ
of 3.0. The optimization area (Gx, Gy) is (1000, 1000). For all of the test cases the
true emitter location is in the middle of the search area, but the location of the
global optimum will vary depending on the noise added. In a real-world imple-
mentation of PDOA, averaging may be used to reduce the percieved standard
deviation of the noise (σ). Varying the position of samples and measured RSS
will drastically alter the fitness landscape. All the algorithms are benchmarked
on the exact same cases. Due to the non-determinism found in several of the
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heuristics, each algorithm was tested 50 times on each case, using a new random
seed for each trial. For all experiments algorithms were given a limited number of
function evaluations, effectively limiting the number of iterations. The number
of test cases and samples per case was limited by the computational resources
available.

4.1 Heuristics Parameters

Most of the analyzed algorithms require one or more parameters to be defined.
Common for all the population based methods is a population size, which
inevitably affects the number of iterations, as each algorithm is limited in the
number of function evaluations. Deciding the best set of parameters for each
algorithm is non-trivial and may require expert knowledge about both the fit-
ness landscape and the properties of the search algorithm. In this paper, a fairly
extensive set of parameter combinations were tested for each algorithm. The best
set of parameters, for any given algorithm, depends heavily on the metric used
for comparison. The optimal set of parameters may also vary depending on the
limit on function evaluations.

Table 2. Parameters for all experiments and algorithms

Algorithm Parameters

NM Alpha 1.0, Gamma 2.0, Sigma 0.5, Phi -0.5

Preselect NM NM evals. 10%, Alpha 1.0, Gamma 2.0, Sigma 0.5, Phi -0.5

GA Pop. size [200 160 100 80 50 40 20 10], Mut. sigma [25.0 50.0], Mut.
prob. [0.1 0.2], Crossover prob. [0.4 0.6], Elites max(2, 5%),
Tournament N=2

CMA-ES Pop. size [200 160 100 80 50 40 20 10], Sigma [100.0 125.0 150.0
200.0]

PSO Pop. size [200 160 100 80 50 40 20 10], φ1 [1.0 2.0], φ2 [1.0 2.0],
Speed max [20.0 50.0]

DE Pop. size [200 160 100 80 50 40 20 10], Crs [0.25 0.50], Fr [0.5 1.0]

Based around recommended settings, the parameters seen in Table 2 were
used for the different algorithms. Experiments were conducted for all the possi-
ble combinations of parameter settings. This resulted in each algorithm having
around 32 different sets of parameters to test. The exception to this was the NM
algorithm, which was only run with the single parameter set recommended for
the algorithm. The default parameters were found to work well for this problem.

All algorithms were compared on the 50 test cases. As a baseline; a brute
force optimizer, i.e. grid search, was also implemented. The brute force optimizer
used an additional 450 randomly generated test instances (in addition to the 50
used for the other algorithms). Without the additional cases, brute force would
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only have 50 sample points (compared to 2500 for each of the other algorithms),
as it is a fully deterministic algorithm.

In addition, the effect of the function evaluation limit was tested. Tests were
run for 100, 200, 400, 800, and 1600 evaluations per optimization run. The
performance of each algorithm will vary depending on the number of evaluations
allowed to solve the problem. In total approx. 500.000 optimization runs were
conducted, evaluating 300 million solutions in the search space.

5 Results

One of the main challenges for this problem, is to determine the optimal parame-
ters for each algorithm. These parameters may change depending on evaluation
budget size. In order to address this problem, extensive parameter variation tests
was conducted based on values given in Table 2. Initially, the case of a fixed eval-
uation budget of 400 evaluations will be examined, before extending the same
methods and analysis to a set of different and variable evaluation budgets.

5.1 Fixed Evaluation Budget Size

A histogram over error values (ei) can be made for each algorithm and parameter
set tested using a fixed evaluation budget size. An example of this can be seen
in Fig. 3 for the random sampler using 400 evaluations. For most trials, a simple
random sampling will succeed in finding a good solution to the problem instance.
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Fig. 3. Random sampling - Error distribution for 2500 tests using 400 evaluations
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Fig. 4. Example of error distribution for 2500 tests using 400 evaluations and a single
set of parameters - GA (left) and DE (right)

Most of the weight of the distribution is found at less than 100 m away from the
reference solution Sref. In some cases, a random sampling will miss the global
optimum and instead choose a local optimum. This can be seen at a distance
750 m in Fig. 3.

Left part of Fig. 4 shows an example of the error distribution for the GA
for a single set of parameters. The GA has a similar distribution as the random
sampling, but is more likely to get stuck and converge prematurely in the given
example. This can be seen by the long and heavy tail of the distribution.

DE outperforms both a random sampling and the GA and has more consis-
tent performance. Right part of Fig. 4 shows an example where the DE often is
able to converge to the global optimum as defined by Sref. This distribution does
not have the same tail as the random sampling and the GA, indicating that it
is less likely to get stuck in local optima.

However, none of the histogram plots are symmetric distributions. This leads
to problems when attempting to rank the methods and generate useful statistics.
In particular, the average miss of each algorithm will be significantly skewed by
the outliers, favoring reliable algorithms. By using the median as a measure for
comparison, this is mitigated, but it also hides some of the issues when using
search heuristics on the problem. For some applications, the loss of reliability
may be acceptable, but not in others. Table 3 shows performance on the metrics
median, average and standard deviation for selected parameter combinations.
The parameters associated can be found in Table 3. This is based on Euclidean
distance, as defined in Eq. 6. The selected subset of combinations was chosen
based on its performance on the median metric. Normally, the average metric
would give a better indication of performance, but in this case, the average
metric is insufficient.

The search landscape is smooth (an example can be seen in Fig. 2), but still
poses a challenge for search algorithms. Multi-modality makes these problem
instances hard, and often makes the search heuristic converge prematurely, or
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Table 3. Results overview - 400 evaluations

get stuck in local optima. For this problem, the average metric is indicative of the
likelihood for getting stuck. A single miss (on the global optimum) gives a severe
penalty to the average. If the average was used to select the best parameter for
each algorithm, a single generation/iteration with the maximum possible number
of evaluations would be preferred for many algorithms. With such parameter
settings, any heuristic becomes a random search.

An alternative to focusing on a single metric, such as median or average,
could be to use a combination of metrics, as commonly done in multi-objective
optimization. The metrics are defined as follows:

1. Probability of getting stuck in a local minimum
2. Average Euclidean distance error, given that the global minimum was found

The first of these two metrics acts a filter, effectively removing the outliers
seen in the histogram plots. In order to quantify the chance of getting stuck, a
solution has to be classified as either a part of a local optimum or the global
optimum. While classifying the solutions like this is non-trivial, a simple app-
roach would be to define some radius around the global minimum, and use this
as a selection threshold. Based on the clustering of solutions seen in the exper-
iments (Figs. 3 and 4), a radius of 100 m was selected. This is a relaxed limit
and includes most, if not all, solutions that were in the basin of attraction of the
global optimum.

Figure 5 shows the different algorithms-parameter combinations and how
they perform on the two objectives. Preselect NM is able to approach the origin,
i.e. reference solution. CMA-ES shows excellent ability to find equal or better
solutions as the reference solution, but lacks in reliability; as seen by a fairly
high chance of missing the global optimum completely. DE is the opposite of
CMA-ES and is very reliable, but lacks somewhat in its ability to converge to
solutions equal or better than the reference.

5.2 Variable Evaluation Budget Size

Another interesting view of this problem would be to examine the performance
of each algorithm across evaluation budget sizes. All the algorithms were tested
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Fig. 5. Algorithm comparison using two alternative metrics. Each dot represent a para-
meter configuration. Clustered dots from the same algorithm typically share parameters
significantly affecting performance.

with 100, 200, 400, 800 and 1600 evaluations, and the number of evaluations are
likely to affect the performance of the algorithm. Figure 6 shows a comparison
across evaluations using the average metric. In this figure, the parameters for
each algorithm were selected based on average metric.

Only DE and Preselect NM manage to compete with brute force search on
the average metric. The rest of the heuristics were found on or above the line for
random sampler and are excluded from the plot for readability. Preselect NM
performs well across all numbers of evaluations; particularly in the area of 200
to 800 evaluations, where it is comparable to using twice as many evaluations
on a brute force search. In other words, applying the Preselect NM algorithm
resulted in a speed-up of at least 2x on this real-world problem.

In Fig. 6 a plus (+) signs indicate the positive result of a Wilcoxon Rank and
Sum test, testing the Brute force algorithm against Preselect NM using compara-
ble number of evaluations. This test was applied for each number of evaluations
as indicated in the figure. The distribution of errors, between Preselect NM and
the Brute force algorithm, was found to be significantly different at the level of
0.01 for all tests applied. The results are the same for the median plot because
the underlying dataset is the same.

The challenge of this real-world problem is not to find a good solution, but
to find the best solution. For several of the heuristics this is problematic, as
they readily will converge to local optima. Yet, the problem may greatly benefit
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Fig. 6. Comparison of algorithms across number of evaluations using average metric.
Plus signs indicate statistical significant difference between Preselect NM and Brute
force algorithms for the given number of evaluations.
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from a heuristic in converging to the global optimum from nearby areas in the
solution space.

Using a median metric shows another view of the algorithms performance
(Fig. 7). This plot highlights the benefit of using a search heuristics in providing
solutions that often are better than the reference solution found by a brute
force optimization using 40.000 evaluations. Parameters were here chosen based
on median. DE and Preselect NM are repeatedly able to find solutions that
outperform a brute force optimization with an equal number of evaluations.

Finally, considering the effect of increasing the number of evaluations for
Fig. 5 is a gradual tendency for all points in the plot to converge on the origin.
As more evaluations are allowed, most algorithms and parameter combinations
perform better (i.e. provide better solutions). Decreasing the limit has the oppo-
site effect.

6 Discussion

For this particular real-world problem, finding a suitable metric for comparing
algorithms and parameter combinations proved challenging. With the average
miss as the metric, many of the search heuristics had problems caused by their
unreliability to find the global optimum. Using the median metric instead allows
for a partial solution to this problem, but will camouflage how unreliable each
algorithm is to a certain degree.

Many of the heuristics are able to often find solutions that outperform those
found by a brute force search using several orders of magnitude more resources.
In particular, DE, Preselect NM and CMA-ES proved to excel at this. What
differentiates these algorithms from the remaining (PSO and GA) is the use of
adaptive step lengths when converging on an optimum. In order to maximize
the solution performance, this proved an important trait. It becomes clear that
there is a trade-off between the reliability of an algorithm and the ability to
narrow in on an optimum. With a limited evaluation budget a heuristics cannot
do both, and depending on parameters, may focus on one or the other.

One of the main premises for using search heuristics is that there is no guar-
antee that the optimal solution will be found. For some problems this may be
acceptable, and not for others. In this case, it depends on the application sce-
nario of the method. In presenting a prediction of the location of an RF emitter
to a user, there is an expectation of reliability and predictability. Automated
systems may to a greater degree be able to accept the chance that, in certain
cases, a prediction might miss, as long as the miss is not too great or too fre-
quent. In future work it would be interesting to investigate the use of a search
heuristic, as described in this paper, in a context of swarm system. Commonly,
swarm systems rely on simple and cheap units with limited capabilities. In such
a context, the acceptance of suboptimal performance (a chance to miss) may be
unavoidable and must be dealt with on a higher algorithmic level.

In the case of a miss being unacceptable and absolute reliability required, sig-
nificant performance increase is still possible using a search heuristic. As shown
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for Preselect NM, a no-cost speed-up can be achieved, effectively giving double
the performance on limited resources. As described previously, the issue of a
suitable metric camouflages some of the characteristics of the search heuristic.
For this particular case, the use of a hill-climber allows a system implementing
this to be at least as reliable as a system using twice the amount of resources on
a brute force search. In addition, the system gains an infinite resolution. What
previously was limited to the resolution of the brute force grid is only limited
by the resolution of the number representation, and how quickly the hill-climber
can converge. This is an important result of this work.

7 Conclusions

This paper shows the viability of using search heuristics on the problem of geolo-
cating RF emitters. By using a search heuristic, multiple favorable attributes can
be achieved, such as: infinite resolution, reduced and flexible computational cost,
and greater robustness against deceptive objective functions when restricted in
computational resources. Comparing a number of common search algorithms,
such as GA, PSO and CMA-ES, it is clear that these strategies may not always
be the best option given a limited computational budget. The challenge for these
algorithms is to converge quickly enough while at the same time avoiding local
optima. If the search space is reasonably small, applying the NM algorithm
with a preselect may be an option resulting in high performance even with little
resources.

One of the biggest issues in this particular problem was the multi-modality
of the fitness landscape. Multiple local optima made this a deceptive problem
and required algorithms that were robust and had an exploratory behavior.

This work may not only allow for a practical real-world implementation of a
system locating RF emitters, but also a wider range of concepts to be explored.
The ability to locate an RF emitter can also be used as part of a higher level
simulation, investigating into the behaviors or how multiple agents should inter-
act. One intriguing idea is a swarm of flying platforms able to autonomously
locate RF emitters. This is a topic for future research.
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Abstract. There is a large scale initiative by the machine learning com-
munity to automate the design of machine learning techniques to remove
reliance on the human expert, providing out of the box software that
can be used by novices. In this study the automated design of genetic
programming classification algorithms is proposed. A number of design
decisions have to be considered by algorithm designers during the design
process and this is usually a time consuming task. Our automated design
approach uses a genetic algorithm to automatically configure a genetic
programming classification algorithm. The genetic algorithm determines
parameter values and sets the flow control for the classification algorithm.
The proposed system is tested on real world problems and the results
indicate that induced classifiers perform better than manually designed
classifiers.

Keywords: Data classification · Automated machine learning · Genetic
programming · Genetic algorithms

1 Introduction

A significant amount of research has been carried out in the domain of data
classification resulting in the development of numerous classification algorithms.
The application of heuristic based methods such as Evolutionary Algorithms
(EAs) [1] to data classification problems has gained traction. EAs are popula-
tion based algorithms that emulate the Darwian principles of natural evolution
to solve problems. Genetic programming(GP) [2] an EA has proved to be very
effective at inducing classifiers particularly for binary data classification prob-
lems [3]. GP requires a number of parameters to be defined to have a functional
system. A combination of GP parameters that results in a functional system
define a configuration. Setting the configuration of GP as a classification algo-
rithm entails searching for parameter values and component combinations that
will lead to the algorithm evolving optimal classifiers. It is widely accepted that
the effectiveness of an EA to solve a problem at hand depends on the design deci-
sions taken to configure the EA [4]. Finding the best configuration is a manual
c© Springer International Publishing AG 2017
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search process that is usually carried out empirically using trial runs on subset
instances of a problem. This manual process is considered to be a non trivial
menial task that consumes a lot of man-hours [1]. Sabar et al. [5] argue that
effective manual design requires detailed knowledge of both algorithm design
and the problem domain, which is not always possible. During manual design
not all possible design decisions are considered but the few that are, are selected
based on the experience and intuition of the algorithm designer. The effect of
this is a search in a limited search space which may not be effective as other
unexplored areas may contain parameters likely to lead to optimal classifiers.
The design of GP classification algorithms that yield optimal classifiers remains
a challenge.

In this research we propose the automation of the design process through
the use of an EA namely a Genetic Algorithm (GA) to evolve classification algo-
rithms. We use a GA to search for a GP configuration that will lead to GP induc-
ing good classifiers. The search is conducted in a search space of GP configuration
parameters including GP classification algorithm design components. The pur-
pose of this work is to automate the design of GP classification algorithms. We
hypothesise that automatically designed GP classification algorithms are com-
petitive when compared to human designed algorithms. Our contribution is an
automated approach to designing GP classification algorithms. The automated
design approach will reduce the man-hours spent on the design process which
involves parameter tuning, through trial and error. This will free the designer
to attend to other tasks as the design process will be automated. The user of
this system does not require expert knowledge of genetic programming but they
need knowledge of the classification problem they need solved. Therefore the
system can be used by novice users. It is important to point out that the objec-
tive of our approach is not to reduce the time of the design process. The system
creates a GP algorithm and tunes the parameters therefore long run-times are
anticipated. The aim is to automate the process of designing the genetic pro-
gramming approach, while producing classifiers that perform at least as good as
that generated by the manually designed genetic programming approach.

The rest of this paper is structured as follows. Section 2 provides a brief
overview of GP, and classification. Section 3 provides an overview of related
work and in Sect. 4 we present the proposed system. In Sect. 5 the experimental
setup is presented. Section 6 describes and analyses the results, and Sect. 7 draws
conclusions and presents future work.

2 Background

2.1 Classification

A classifier is a predictive model extracted when a classification algorithm analy-
ses a collection of labeled attributes (training set). In [6] a classification algorithm
is described as a computational procedure that receives a set of attributes and
attempts to discover a predictive relationship between them. The effectiveness of
a classifier is tested on unseen instances of data (test data set) that is similar to
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the training set. Among a number of methods proposed for inducing classifiers,
genetic programming has also proved to be popular [3].

2.2 Genetic Programming and Classification

As a classification algorithm GP searches for the best classifier in a population
of randomly initialized classifiers, these are evolved until a stopping criterion is
met. The problem being solved influences the tree representation used in the
algorithm and this also influences the contents of the function and terminal sets.
When configured to model decision trees the GP algorithm function set consists
of nominal variables from the data set and the terminal set contains the classes
and classification evaluation is a top down process. Arithmetic tree GP classifi-
cation algorithms output a numerical value, hence a preset threshold is used to
separate the classes based on the output [2]. The function set contains functions
that are used to manipulate numeric data and the terminal set has variables
that index attributes of the classification problem. The function set for logical
tree representation normally contains logical operators while the terminal set will
have variables indexing the data set. One of the advantages of using GP as a clas-
sification algorithm is that it can represent a number of classification models such
as classification rules, decision trees, discriminant function and other classifier
models. This benefit arises from the flexibility provided by a tree representation.
In [7] Koza demonstrated how GP can model decision trees. Bojarczuk et al. [8]
used logical trees to evolve rules to classify medical data while in [9] arithmetic
tree representation was used in credit scoring. Another advantage of GP is that it
is able to perform feature selection during the evolution process. Since a classifier
is evolved from the data instances it is not possible to use the same classification
algorithm configuration across different problem domains or problem instances.
To evolve good classifiers the configuration of classification algorithms is a data
specific process and therefore we cannot use the same configuration across dif-
ferent data instances and expect optimal results. A comprehensive review of the
application GP in the area of classification is provided in [3]. In the next section
we review related work.

3 Related Work

A significant amount of similar research has been carried out in the broader area
of evolutionary algorithms. Research can be found under parameter tuning, para-
meter control and hyper-heuristics. In this section we review only approaches in
the literature that are closely related to our proposed approach. Genetic algo-
rithms have been used to tune other metaheuristics. In [10] a genetic algorithm
is used to evolve parameter settings for an Ant Colony Optimization (ACO)
metaheuristic to solve the orienteering problem, a form of the traveling sales-
man problem. Real numbers are used to encode the chromosome. Each gene
of the chromosome represents a specific parameter of the ACO metaheuristic.
Stochastic universal selection is the preferred selection method while uniform
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crossover (90%), random bit mutation (0.1%) and elitism (2%) are used as the
genetic operators. The GA is used to search for parameter values that yield the
best ACO solution to solve the problem at hand. The effectiveness of each ACO
is measured using a measure referred to as solution quality (SQ). The SQ metric
is also used as the fitness function of the associated GA individual that evolved
the configuration. The best GA trained ACO settings are compared to manu-
ally tuned parameters by applying them to unseen instances of the orienteering
problem. Results show that the GA evolved ACO algorithms perform better
than those manually tuned.

In [11] a decision tree is decomposed into its basic components and an evo-
lutionary algorithm is used to recombine the components. Accuracy and the
f-measure [6] are used as the fitness functions. Twenty data sets are used to com-
pare the performance of the automatically designed classifiers to those evolved
using C4.5 and CART. The automatically evolved classifiers perform better than
the CART and C4.5 classifiers. Oltean et al. [12] present a GA to evolve an evo-
lutionary algorithm. Each gene of the chromosome is structured to contain a
pair of elements. The first element defines how the genetic operators are applied
to generate an offspring. The second element defines the strategy employed for
inserting the generated offspring into the new population. The GA chromosome
is a sequence of 8 genes, each gene indexes a complete EA. The fitness of the best
evolved EA is used as the fitness of the evolving GA. The evolved EAs are tested
on function optimization problems and the results indicate that the evolved EAs
produced competitive results when compared to standard function optimization
schemes. Our proposed work differs from the presented work in that we create
new GP algorithms and parameter tune them for classification problems. In the
next section we present the proposed system.

4 Automated Design of GP Classification Algorithm
Using GA

This work proposes the use of a GA to evolve GP classification algorithms. To the
best of our knowledge there is no work in literature which follows this proposed
approach to automate the design of GP classification algorithms.

4.1 Genetic Algorithms

Genetic algorithms (GA), are also classified under EAs [13]. They are widely used
to solve optimization and search problems. Algorithm 1 is a high level overview
of a generational GA algorithm. A detailed presentation of genetic algorithms is
provided in [13].

4.2 GP Design Components and GA for Automated Design

In this section we provide a brief review of the design decisions considered during
the configuration of a GP classification algorithm. We also provide a description
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Algorithm 1. Genetic Algorithm
1: Create initial population
2: Calculate fitness of all individuals
3: while termination condition not met do
4: Select fitter individuals for reproduction
5: Recombine between individuals
6: Mutate individuals
7: Evaluate fitness of all individuals
8: Generate a new population
9: end while

10: return best individual

of how the components are encoded in our GA chromosome. The GP classi-
fication algorithm is decomposed into a pool of low-level configuration design
components. A component may be a numerical parameter (e.g. population size)
or categorical (e.g. selection type). We predefined the range of possible values
for each component based on typical values found in literature.

4.3 GA Chromosome Representation

For this study we considered 14 GP design components. Therefore our GA indi-
vidual is encoded as a 14 gene fixed length chromosome as illustrated in Fig. 1.
The 14 chromosome genes are labeled from g0 to g13. A gene represents a para-
meter (design component) of a classification algorithm. Gene values are encoded
as integer values. As stated parameters can be numerical or categorical and the
value of each gene can index a specific categorical component or be the value for
that parameter. The 14 design components are presented as follows:

Representation in [14] the importance of representation is emphasized and
the authors assert that representation acts as a link between the conceptual
algorithm and real-world problem. The commonly used representations when
evolving classifiers using GP are arithmetic trees, logical trees and decision trees.
This component is represented by g0 in the chromosome for GP representation
and can be one of three integer values, 0 for arithmetic trees, 1 for logical trees
or 2 for decision trees.

Population size represents the search space, a small population size means
a small search space and the algorithm might converge prematurely while too
large a population size may lead to slow or no convergence. Research has been
carried out on classification problems using population sizes as low as 50 to as
high as 5000 [15]. The value of g1 is the population size in our encoding scheme.
For our study population size can either be 100, 200 or 300.

Fig. 1. GA chromosome representation
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Tree generation method is encoded by g2. The three common methods
found in literature for tree generation are, the full method which constructs
balanced trees with branches of equal size, the grow method which constructs
irregular trees and the ramped half-and-half which constructs half of the trees
using the full method and the other half using the grow method at each level of
tree depth. Values of g2 can be 0 - full, 1- grow and 2 - ramped half and half.

Maximum initial tree depth an initial maximum depth limit has to be
defined for tree growth for the initial population. This value can be as small as
2 as used in [15] to evolve decision trees, or as high as 17 as used in [16] for text
classification. The value of g3 defines the maximum tree depth at initialization
and possible values can be set within the range [2–15], except if the specified
tree type is 2 (decision trees) then the range is set to [2–8]. This restricts the
size of our decision trees.

Offspring tree depth is defined by g4 and the range of values are defined
as [2–15]and [2–8] for decision trees.

Selection method gene 5 denoted by g5 can be 0 or 1 representing selection
methods, fitness proportionate and tournament selection respectively.

Tournament size is defined by g6 and can have a value in the range [0–100]
which determines the size of the tournament. If the selection method determined
by g5 is not tournament selection then g6 is ignored.

Reproduction rates are defined by g7 which sets the crossover rate. This
by default also sets the mutation rate and is given by the evaluation of (100 -
crossover). Crossover rates as high as 90% have been used and mutation as low
as 1%. In our system these are randomly generated within the range [0–100].

Mutation type. The eighth gene, g8 specifies the mutation type and can be
0 indicating grow mutation or 1 for shrink mutation. Grow mutation in which
a randomly selected subtree is replaced by a randomly created one and shrink
subtree mutation which replaces a subtree with a random terminal.

Mutation depth is relevant if the selected mutation type is grow mutation
and is represented by g9 and can be assigned a value in the range [2–6].

Pool of operators this design component is defined by g11 and indexes a
pool of predefined genetic operators listed in Table 1 and explained as follows; if
the value of this gene is 0 the application rates of genetic operators rates are set
as defined by g7, if the value is 1 the whole generation is evolved by crossover
only, if the value is 2 then mutation only is applied to evolve the complete
generation. If the value is 3 a random pair of rates is selected from (crossover,
mutation) [{10,90; 20,80; 30,70; 40,60; 50,50; 60,40; 70,30; 80,20; 90,10}]. If
the gene is set to 4 then a new population is evolved by first mutating all the
members of the previous population and then applying crossover at a randomly
determined rate. Operator 5’s functionality is similar to that of operator 4 albeit
starting with crossover and operator 6 randomly creates a new population.

Operator sequence this design component defined by g10 is responsible for
determining how an operator is used to evolve a generation. If this component’s
value is set to 0 all the generations of a run are evolved using the genetic operator
specified in g11. However if the value is 1 a random operator is selected to evolve
each generation from the pool of operators in Table 1.
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Table 1. GP pool of operators

Index Operator

0 Crossover = g7

1 Crossover = 100%

2 Mutation = 100%

3 Random selection preset rates∗

4 100% mut then (rand)% of crossover

5 100% cross then (rand)% of mutation

6 Create new population

Fitness functions predictive accuracy is the most common choice of fitness
function used in classification. The authors in [17] argue that predictive accuracy
is overused as a fitness function. In some domains (medical/financial) reducing
misclassification can be more desirable than improving accuracy. Other metrics
from the confusion matrix [6] such as sensitivity, specificity, have been used as
fitness functions [8]. Research in which different combinations of these measures
has been presented, for example Barros et al. [11] use the f-measure given by

f = 2 ∗ (
sensitivity ∗ specificity

sensitivity + specificity
) (1)

as a fitness function for classification of unbalanced data sets. In this study 5
fitness functions were defined and are indexed as outlined in Table 2. Index 0
defines accuracy and index 1 defines the f-measure. In [18] a weighted fitness
function is proposed using 50% of the true positive and 50% of the true negative
rates, we adapt the same principle however we weight accuracy and f- measure
using the same 50% and that fitness function is fitness function 2. Three is a
similar principle however the weighting rates are set randomly, and finally 4 is
the true positive rate. The fitness function design component is specified by g12

Number of generations defined by g13 which can lie in the range of [50–
200] sets the actual value of the number of generations.

The GP design components considered in this study and the range of possible
values are summarized in Table 3

Table 2. Fitness functions

Index Method

0 Accuracy

1 f-measure%

2 weighted = 0.5 ∗ accuracy + 0.5 ∗ fmeasure

3 weightedrand = rand ∗ accuracy + rand ∗ fmeasure

4 True positive rate
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Table 3. Design components

Gene # Param. Description Range of possible values

0 Representation 0 - arithmetic, 1 - logical, 2 - decision

1 Population size 100, 200, 300

2 Tree generation 0- full, 1- grow, 2- ramped half and half

3 Initial tree depth 2–15 (decision tree 2 -8)

4 Max offspring depth 2–15

5 Selection method 0 - fitness proportionate, 1 - tournament selection

6 Selection size 2–10

7 Reproduction rates 0 - 100 crossover (mutation = 100-crossover)

8 Mutation type 0 - grow mutation, 1 - shrink mutation,

9 Max mutation depth 2–6

10 Reproduction sequence 0 - fixed 1 - random

11 Operator pool 0–6

12 Fitness type 0–4

13 Number of generations 50, 100, 200

4.4 Initial Population Generation

An initial population of chromosomes (individuals) is randomly generated. The
value of each gene of the chromosome is randomly set from the range of possible
values defined in Sect. 4.3. Each individual is a configuration of a GP algorithm
for evolving classifiers. The effectiveness of each individual is evaluated by the GP
algorithm inducing classifiers using the configuration defined by the individual
and the best testing classification value (accuracy) from the classifiers is assigned
as a fitness of that individual.

4.5 Selection

Fitness proportionate is used to select parents that will take part in the repro-
duction of offspring for the next generation. This selection of parents is based
on the fitness of each individual in the population.

4.6 Genetic Operators

The population of the next generation of configurations is determined by repro-
duction operators. For this system uniform crossover where random genes can
be copied from either of the selected parents is used as the crossover operator.
While the mutation method used is bit mutation where each bit has a ran-
dom chance of being altered and assigned a value within the domain of defined
ranges in Sect. 4.3. Application rates of both crossover and mutation have to be
set. Elitism is also applied where a stipulated percentage of the population is
allowed to progress to the next generation.
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5 Experiment Setup

In this section we describe the experimental setup used to evaluate the effective-
ness of automatically designed classification algorithms when compared to those
manually designed. We selected eleven data sets with real-world data and binary
class attributes from the UCI machine learning repository [19]. We chose data
sets from different domains and with diverse characteristics such as both bal-
anced and unbalanced class distributions. This enables us to asses the suitability
of automated designed classifiers to adapt to different data characteristics. Each
dataset was randomly split into 70% for training and 30% for testing. Table 4
outlines the selected data sets and their attributes.

Table 4. Summary of selected data sets

Dataset # attributes # numeric #nominal # instances

Australian credit data 14 8 6 690

Appendicitis 7 7 0 106

Breast cancer (Ljubljana) 9 0 9 277

Cylinder band 19 19 0 365

Diabetes (pima) 8 8 0 768

German credit data 20 7 13 1000

Heart disease 13 13 0 270

Hepatitis 19 19 0 80

Liver disease (Bupa) 7 7 0 345

Mushroom 22 0 22 5644

Tictactoe 9 0 9 958

For each training data set 30 runs of the GA were performed. The GA was
configured with a population size of 20, we used fitness proportionate as the
selection method. Uniform crossover at 80% and bit mutation 10% were the
genetic operators. We used 10% elitism to preserve good configurations. The
population control model used was generational. These values were obtained
empirically through performing test runs. A population size higher than 20 did
not improve the search whilst a significantly lower population size yielded poorer
results. Beyond generation 50 in most cases the algorithm was found to have
converged. We termed the automatically designed classifiers autoDesign. The
same GA settings were used for all the training data sets.

We compared the performance of the best autoDesign configured algorithm
to three human designed baseline GP classification algorithms. The three GP
classification algorithms were distinct in the representation used in each namely
arithmetic tree, logical tree and decision tree representations.

The baseline algorithms were designed based on the generational GP algo-
rithm presented in Algorithm 2. Tournament selection was used as the selection



Automated Design of Genetic Programming Classification Algorithms 233

Algorithm 2. Generational Genetic Programming Algorithm
1: Create initial population
2: while termination condition not met do
3: Calculate fitness of all individuals
4: Select fitter individuals for reproduction
5: Apply genetic operators to selected individuals
6: Replace the current population with the offspring
7: end while
8: return best individual

Table 5. Manual algorithm parameter values

Dataset Tree type Parameter values Dataset Tree type Parameter values

Aus credit
data

Arithmetic 8, 10, 4, 60, 40, 5 Appendicitis Arithmetic 8, 10, 12, 90, 10, 6

Logical 8, 10, 8, 80, 20, 5 Logical 8, 10, 8, 85, 15, 4

Decision 2, 5, 8, 80, 20, 3 Decision 2, 4, 8, 70, 30, 3

Breast
cancer

Arithmetic 3, 10, 4, 80, 20, 6 Cylinder
band

Arithmetic 3, 15, 4, 60, 40, 6

Logical 4, 12, 8, 60, 40, 5 Logical 2, 10, 4, 60, 40, 6

Decision 2, 5, 4, 70, 20, 3 Decision 3, 5, 4, 80, 20, 3

Diabetes Arithmetic 8, 10, 4, 60, 40, 6 German
credit data

Arithmetic 6, 10, 4, 70, 30, 6

Logical 4, 10, 4, 70, 30, 6 Logical 3, 10, 4, 80, 20, 4

Decision 3, 5, 4, 70, 30, 3 Decision 2, 4, 4, 80, 20, 3

Heart
disease

Arithmetic 8, 10, 8, 70, 30, 4 Hepatitis Arithmetic 4, 12, 4, 65, 35, 8

Logical 6, 10, 4, 80, 20, 4 Logical 3, 10, 8, 80, 20, 6

Decision 2, 5, 4, 70, 30, 4 Decision 2, 5, 4, 70, 30, 3

Liver
disease

Arithmetic 7, 15, 8, 85, 15, 4 Mushroom Arithmetic 8, 10, 12, 60, 40, 4

Logical 8, 10, 8, 70, 30, 5 Logical 6, 12, 8, 80, 20, 6

Decision 4, 5, 4, 70, 30, 4 Decision 3, 5, 4, 70, 30, 4

Tictactoe Arithmetic 5, 10, 4, 90, 10, 6

Logical 4, 12, 4, 60, 40, 6

Decision 2, 5, 8, 80, 20, 3

method and crossover and mutation were the genetic operators. For each of the
human designed algorithms, parameters were determined empirically using trial
runs for each dataset. The following settings were used for all manual configu-
rations; Population size = 300; Tree generation = ramped half-and-half; Selec-
tion method = tournament; Mutation type = grow; Maximum generation =
200; Fitness function = accuracy. The numerical values used for initial tree
depth, maximum tree depth, selection size, crossover rate, mutation rate and
mutation depth are listed respectively for each algorithm per dataset in Table 5.
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Arithmetic tree algorithm function set ={ +, −, *, /(protected)}, terminal set =
one variable for each attribute in the dataset. Logical tree algorithm function set
= {AND,OR,EQUAL,DIFFERENT,NOT}, terminal set = one variable for each
attribute in the dataset. Decision tree algorithm function set = one variable for
each attribute in the dataset, terminal set = class 0 and class 1.

The specification of the computer used to develop the software is as fol-
lows: Intel(R) Core(TM) i5-3337U CPU @ 2.7 GHz with 4GB RAM running
64bit Linux Ubuntu. The simulations were performed using the CHPC (Cen-
tre for High Performance Computing) Lengau cluster. Java 1.8 was used as the
software development platform on the Netbeans 8.1 Integrated Development
Environment. In the next section we present the results.

6 Results and Discussion

Table 6 shows the training results obtained from applying the four algorithms
to the data sets. Each row refers to a dataset while a column is the applied
algorithm. The best training accuracy ± standard deviation over 30 runs is pre-
sented for each algorithm. The number of generations each algorithm takes to
reach convergence is shown in brackets. From the results the autoDesign algo-
rithms trained better on 3 data sets and tied on 2 while the logical tree algorithms
were also better on 3 data sets and tied on 2. The arithmetic tree representation
algorithms performed well on 1 dataset and tied on 4. On average across all data
sets the decision tree algorithms converged quicker followed by the autoDesign
algorithms and then arithmetic tree algorithms which were marginally better
than logical tree algorithms

The best evolved classifiers were tested by applying them to unseen instances
in the test data sets. Table 7 shows the classification accuracy of the arithmetic
tree, logical tree, decision tree and autoDesign algorithms. It outlines the accu-
racy ± standard deviation of the best classifiers over 30 runs. From the results the

Table 6. Training results

Dataset Arithmetic Logical Decision autoDesign

Aus credit 0.89± 0.01(151) 0.91± 0.01(183) 0.86± 0.01(94) 0.89± 0.01(48)

Appendicitis 0.97± 0.02(117) 0.89± 0.02(96) 0.89± 0.02(138) 0.95± 0.02(148)

Breast cancer 0.98± 0.01(103) 0.97± 0.01(178) 0.94± 0.02(86) 0.98± 0.01(121)

Cylinder band 0.74± 0.01(97) 0.77± 0.01(116) 0.64± 0.01 (58) 0.75± 0.01(101)

Diabetes (pima) 0.78± 0.07(171) 0.78± 0.07(191) 0.69± 0.07(110) 0.75± 0.01(104)

German credit 0.76± 0.06(187) 0.76± 0.06(163) 0.73± 0.06(91) 0.85± 0.07(94)

Heart disease 0.92± 0.01(103) 0.94± 0.01(131) 0.79± 0.01(56) 0.87± 0.01(72)

Hepatitis 0.98± 0.03 (171) 0.98± 0.03(167) 0.88± 0.02(111) 0.93± 0.02(182)

Liver disease 0.80± 0.01(169) 0.73± 0.01(193) 0.62± 0.01(186) 0.80± 0.01(161)

Mushroom 0.86± 0.00(192) 0.86± 0.00(102) 0.60± 0.00(99) 0.88± 0.00(108)

Tictactoe 0.87± 0.07 (157) 0.84± 0.07(169) 0.72± 0.07 (152) 0.94± 0.07(138)
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Table 7. Testing results

Dataset Arithmetic Logical Decision autoDesign

Aus credit 0.83 ± 0.01 0.84 ± 0.01 0.85 ± 0.01 0.88± 0.01

Appendicitis 0.84 ± 0.03 0.78 ± 0.03 0.85 ± 0.03 0.91± 0.03

Breast cancer 0.97± 0.02 0.93 ± 0.03 0.90 ± 0.04 0.97± 0.02

Cylinder band 0.66 ± 0.01 0.68 ± 0.01 0.69 ± 0.01 0.75± 0.01

Diabetes (pima) 0.64 ± 0.01 0.75± 0.01 0.69 ± 0.01 0.70 ± 0.07

German credit 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.68± 0.01

Heart disease 0.77± 0.02 0.64 ± 0.02 0.44 ± 0.01 0.72 ± 0.02

Hepatitis 0.67 ± 0.03 0.75± 0.03 0.75± 0.03 0.75± 0.03

Liver disease 0.64 ± 0.01 0.64 ± 0.01 0.44 ± 0.01 0.71± 0.01

Mushroom 0.78 ± 0.00 0.75 ± 0.00 0.66 ± 0.00 0.81± 0.00

Tictactoe 0.73 ± 0.01 0.76 ± 0.01 0.65 ± 0.01 0.86± 0.01

autoDesign evolved classifiers generalised better on 7 of the 11 data sets. While
arithmetic trees and logical trees induced classifiers were better on 1 data set
each. On the remaining data sets no algorithm induced classifiers outperformed
the others.

To evaluate the statistical significance of the testing results we use the non-
parametric Friedman test as recommended by Demšar [20] for evaluating multi-
ple algorithms on multiple data sets. We ranked each algorithm based on perfor-
mance and calculated the average rank for each algorithm the best performing
algorithm is ranked 1st and the worst 4th. If there were any ties the ranking was
averaged between the equal algorithms. Table 8 shows the evaluated ranks.

Table 8. Average ranks for testing accuracy

Arithmetic Logical Decision tree autoDesign

Average ranks 2.90 2.68 3.09 1.32

The critical value F(3,30) degrees of freedom at α = 0.05 (5%) is 2.92. Using
the average rankings in Table 8 we evaluate our Ff to 6.04. This leads to the
rejection of our null hypothesis which states that autoDesign algorithms perform
the same as human designed algorithms since our calculated value is greater than
the critical value of 2.92. We then carry out a pairwise comparison of the autoDe-
sign algorithm to the baseline algorithms using the Nemenyi post-hoc test. The
critical difference at α = 0.05 for the Nemenyi test for 4 classification algorithms
is evaluated to be 0.447. The differences in average ranks of the autoDesign and
arithmetic tree algorithm is 1.58, autoDesign and logical tree algorithm is 1.36
and autoDesign and decision tree algorithm is 1.77. All the average differences
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Table 9. autoDesign configurations

Dataset Configuration

Aus credit data 0, 200, 2, 8, 10, 0, 6, 21, 1, 5, 0, 3, 0, 55

Appendicitis 0, 200, 2, 3, 10, 0, 8, 57, 1, 4, 0, 0, 0, 153

Cylinder band 2, 300, 2, 3, 5, 0, 5, 31, 1, 3, 1, 2, 0, 161

German credit data 1, 200, 0, 6, 5, 0, 5, 33, 1, 5, 0, 2, 0, 109

Liver disease 0, 200, 0, 3, 9, 0, 6, 77, 1, 3, 0, 5, 3, 170

Mushroom 0, 200, 2, 8, 11, 0, 9, 60, 0, 4, 1, 5, 3, 138

Tictactoe 1, 100, 0, 3, 9, 0, 4, 55, 0, 5, 0, 0, 2, 156

are greater than the critical difference which means autoDesign performs better
than the human designed algorithms for accuracy.

Table 9 presents the 7 configurations evolved by autoDesign that outper-
formed the baseline algorithms. Out of the 7 configurations 5 used arithmetic
tree representation, 1 decision tree and 1 logical tree. Five configurations set a
population size of 200, 1 with 300 and 1 with 100. Ramped half-and-half was
used as the initial population generation method on 4 of the 7 and grow method
on the other 3 data sets. The values for initial tree depth were well spread from
3 to 8. A value of size 3 was used 4 times and 8 twice and 6 once. Maximum
offspring depth value of 5 was used twice, 9 twice, 10 twice and 11 once. Surpris-
ingly all 7 configurations used fitness proportionate as the selection method, this
is in contrast to the intuitive norm that tournament selection is better. On 5 of
the 7 configurations g10 was set to 0 which means the same randomly selected
operator was used to complete a run for GP. Crossover was applied using higher
rates than mutation on 3 of 5 configurations. Shrink mutation was used for 5
of the 7 data sets. The 2 configurations that used grow mutation used a muta-
tion depth of 4 and 5 respectively. Operators from the pool were only effective
on 2 data sets and the selected operators were mutation and 100% crossover
and random mutation. Four of the 7 configurations used accuracy as the fitness
functions while the weighted random fitness function was used twice and the
50% weighted function used once. Only 1 configuration had a low maximum
generation value which was set as 55 the other configurations had values higher
than 100 although none had the maximum value possible which was 200. As
anticipated with the proposed approach high run-times were experienced during
the automated design process. The lowest runtime experienced for a single data
set was 16 h and the highest 36 h. Compared to a manual approach this period
of time was considered to be acceptable. The automation is also able to config-
ure algorithms in an unbiased manner as shown in the results where crossover
is applied at 57%, a rate a human designer is unlikely to configure. Table 10
presents a comparison of the autoDesign algorithms accuracy to other methods
found in literature. The following section draws the conclusion and proposes
future work.
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Table 10. Comparison of autoDesign accuracy to other methods

Dataset GP approaches Other state-of-the-art autoDesign

Aus credit data 89.00 [9] 90.50(ANN) [21] 88.00

Appendicitis 86.01 [22] 90.60(GA) [23] 91.00

Breast cancer 71.80 [24] 99.51(SVM) [25] 97.00

Cylinder band 78.69 [22] 88.30(OOB) [26] 75.00

Diabetes (pima) 67.96 [27] 84.20(FNN) [28] 70.00

German credit data 85.80 [29] 87.57(ANN) [30] 68.00

Heart disease 72.20 [31] 90.00(ANN) [28] 72.00

Hepatitis 81.00 [11] 79.40(GA) [32] 75.00

Liver disease 68.00 [31] 72.78(SVM) [33] 71.00

Mushroom 94.00 [27] 88.40(SVM) [33] 81.00

Tictactoe 74.21 [27] 95.00(SVM) [33] 86.00

7 Conclusion and Future Work

This paper proposed an automated approach to designing GP classification
algorithms. The developed automated approach was compared to three human
designed classification algorithms. The comparison was carried out on 11 data
sets selected from the UCI data repository. The results suggest that automated
design is able to evolve classification algorithms that perform better than human
designed algorithms. The main benefit of automated design is that it enables a
user who lacks knowledge of genetic programming to produce genetic program-
ming classifiers. The runtimes for the autoDesign algorithm on the considered
data sets ranged from 16 h to 36 h. This may seem high but it allows the human
designer to attend to other tasks and therefore reduces man-hours on the design
process. In the future we plan to parallelize the algorithm in order to reduce
the runtime. The promising results also open up the possibility of increasing
the number of design decisions as well as applying automated design to multi-
classification problems. The results presented in the paper suggest that automat-
ing the design of GP classification algorithms is feasible.
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