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Biochemical and Clinical Aspects 
of Hereditary Tyrosinemia Type 1
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Abstract

Inborn errors of metabolism (IEMs) are a group of diseases involving a 
genetic defect that alters a metabolic pathway and that presents usually dur-
ing infancy. The tyrosine degradation pathway contains five enzymes, four 
of which being associated with IEMs. The most severe metabolic disorder 
associated with this catabolic pathway is hereditary tyrosinemia type 1 
(HT1; OMIM 276700). HT1 is an autosomal recessive disease caused by a 
deficiency of fumarylacetoacetate hydrolase (FAH), the last enzyme of the 
tyrosine catabolic pathway. Although a rare disease worldwide, HT1 shows 
higher incidence in certain populations due to founder effects. The acute 
form of the disease is characterized by an early onset and severe liver failure 
while the chronic form appears later and also involves renal dysfunctions. 
Until 1992 the only treatment for this disease was liver transplantation. 
Since then, NTBC/Nitisone (a drug blocking the pathway upstream of FAH) 
is successfully used in combination with a diet low in tyrosine and phenyl-
alanine, but patients are still at risk of developing hepatocellular carcinoma. 
This chapter summarizes the biochemical and clinical features of HT1.
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FAH	 Fumarylacetoacetate hydrolase
GSH	 Glutathione
HCC	 Hepatocellular carcinoma
HGA	 Homogentisic acid
HGO	 Homogentisic acid oxidase
HPD	 p-hydroxyphenylpyruvate dioxygenase
HT1	 Hereditary tyrosinemia
IEM	 Inborn errors of metabolism
MAA	 Maleyl acetoacetate
MAAI	 Maleyl acetoacetate isomerase also 

known as (ζ) 1 GSTZ1
OLT	 Orthotopic liver transplantation
PAH	 Phenylalanine hydroxylase
SAA	 Succinylacetone
TAT	 Tyrosine aminotransferase
TCA	 Trichloroacetic acid cycle

2.1	 �Introduction

Inborn errors of metabolism (IEMs) are a group 
of diseases (more than 400) in which a single 
gene defect causes a block in a metabolic path-
way resulting either in the accumulation of 
unwanted metabolites or in product deficiency. 
Most IEMs disorders present early in life 
although milder forms may remain undetected 
until adulthood. Individually they are rare, but 
collectively they are common. In Canada, the 
incidence of IEMs is estimated at 40/100,000 live 
births (Applegarth et al. 2000).

IEMs are classified according to their clinical 
features, the type of enzyme involved and their 
pattern of inheritance. They include genetic 
defects that alter amino acids, lipid and carbohy-
drate metabolisms in addition to mucopolysac-
charidoses, purine and pyrimidine disorders and 
porphyrias.

Amino acids are the building blocs of proteins 
and are a source of nitrogen for biologically 
important compounds such as hormones and neu-
rotransmitters. Many IEMs alter amino acid 
metabolism such as alkaptonuria, maple syrup 
urine disease and homocystinuria. This chapter 
focusses on the most severe metabolic disorder of 
the tyrosine catabolic pathway, hereditary tyro-
sinemia type 1 (HT1; OMIM 276700) (Mitchell 
et al. 2001; Sniderman King et al. 2006) and is 
aimed at describing the general biochemical and 
clinical aspects of this disease.

2.2	 �Phenylalanine and Tyrosine

Phenylalanine and tyrosine only differ by the 
presence of an – OH group attached to the ben-
zene ring (Fig.  2.1). Hence, tyrosine is also 
known as 4-hydroxyphenylalanine. Phenylalanine 
normally has two fates in cells: incorporation into 
polypeptide chains and hydroxylation to tyrosine 
via phenylalanine hydroxylase (PAH). Therefore 
phenylalanine degradation follows the tyrosine 
catabolic pathway.

Tyrosine is involved in protein biosynthesis 
and is also a precursor for neurotransmitters and 
hormones. Indeed, tyrosine is involved in epi-
nephrine, melanin and thyroxine synthesis among 
others. Together with phenylalanine, they are 
considered glucogenic and ketogenic amino acids 
due to the products yield by their degradation.

2.2.1	 �Tyrosine Catabolism

The tyrosine degradation pathway involves five 
enzymes that ultimately lead to the conversion of 
tyrosine into fumarate and acetoacetate (Fig. 2.2). 
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Fig. 2.1  Conversion of phenylalanine to tyrosine by phenylalanine hydroxylase. The transformation of phenylalanine 
to tyrosine is done by phenylalanine hydroxylase (PAH)
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Fig. 2.2  Tyrosine degradation pathway. Enzymatic steps 
of the tyrosine catabolic pathway. Each enzyme is abbrevi-
ated and the corresponding IEM is written near the “no” 
symbol. The conversion of 4-maleylacetoacetate (MAA) 
and 4-fumarylacetoacetate (FAA) into succinylacetoacetate 
(SAA) and then succinylacetone (SA) is depicted as well as 

the inhibitory effect of SA on ALAD. The site of action of 
NTBC is also indicated. TAT tyrosine aminotransferase, 
HPD p-hydroxyphenylpyruvate dioxygenase, HGO homo-
gentisate oxidase, MAAI maleylacetoacetate isomerase, 
FAH fumarylacetoacetate hydrolase, TCA cycle tricarbox-
ylic acid cycle, ALAD δ-aminolevulic acid dehydratase
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The first step is catalyzed by tyrosine amino-
transferase (TAT) and consists in the transforma-
tion of tyrosine in 4-hydroxyphenylpyruvic 
acid. TAT uses α-ketoglutarate as the amino 
acceptor, which leads to the generation of gluta-
mate. The second step is performed by p-
hydroxyphenylpyruvate dioxygenase (HPD), 
which catalyzes the oxidation of 
4-hydroxyphenylpyruvic acid to homogentisic 
acid (HGA). This product is then oxidized by the 
homogentisate oxidase (HGO) into 
4-maleylacetoacetate (MAA). The fourth enzyme 
of the pathway is the maleylacetoacetate 
isomerase (MAAI, also known as glutathione 
S-transferase zeta (ζ) 1 (GSTZ1)), which con-
verts MAA in 4-fumarylacetoacetate (FAA). 
The final step consists in the cleavage of FAA in 
fumarate and acetoacetate by fumarylacetoace-
tate hydrolase (FAH). The fumarate end product 
of tyrosine catabolism feeds directly the tricar-
boxylic acid (TCA) cycle while the acetoacetate 
is activated to acetoacetyl-CoA via succinyl-
CoA:3-oxoacid-CoA transferase (mitochondria) 
or acetoacetyl-CoA synthetase (cytosol). 
Acetoacetyl-CoA is involved in the mevalonate 
pathway and has a role in cholesterol biosynthe-
sis as well as in ketogenesis.

2.2.2	 �Diseases Associated 
with Enzymes of the Tyrosine 
Catabolic Pathway

Of the five enzymes involved in tyrosine catabo-
lism, four are implicated in autosomal recessive 
metabolic disorders (IEMs) and seven diseases 
have been reported to be associated with this cat-
abolic pathway (Table 2.1).

The defect of TAT, the first enzyme of the 
tyrosine degradation pathway, leads to hereditary 
tyrosinemia type 2 (HT2, OMIM 276600) (also 
called Richner-Hanhart syndrome) (Table  2.1). 
HT2 is associated with elevated tyrosine levels in 
both blood and urine. The clinical phenotype of 
HT2 includes mental retardation, painful corneal 
eruptions, photophobia, keratitis, and painful 
palmoplantar hyperkeratosis (Natt et al. 1992).

Mutations abolishing HPD function, the sec-
ond enzyme of the pathway, can result in 
Hawkinsinuria (OMIM 140350) or hereditary 
tyrosinemia type 3 (HT3, OMIM 276710) 
(Table 2.1). Hawkinsinuria develops when only 
one HPD allele is mutated (dominant IEM) while 
HT3 occurs when both HPD alleles are affected 
(recessive IEM) (Tomoeda et  al. 2000). 
Hawkinsinuria is associated with transient 
metabolic acidosis and hypertyrosinemia. 
The symptoms improve within the first year of 
life but patients excrete hawkinsin in their urine 

Table 2.1  Diseases associated with the tyrosine catabolic pathway

Enzyme Disease Incidence
Tyrosine/plasma 
(pmole/l) Signs

TAT HT2 (OMIM: 276,600) Rare 370–3300 Keratosis, keratitis, 
corneal eruptions, 
mental retardation

HPD HT3 (OMIM: 276710) Very rare 355–640 Mental retardation, 
ataxia

Hawkinsinuria 
(OMIM: 140350)

Very rare 196 Metabolic acidosis, 
hawkinsin excretion

Transient tyrosinemia 
of the newborn

30–50% of 
premature baby, 
transient

up to 2000 Asymptomatic

HGO Alkaptonuria (OMIM: 
203500)

Frequent – Arthritis, ochronosis, 
dark urine

MAAI HT1b Very rare 1000 Undefined

FAH HT1 (OMIM: 276700) Rare to frequent 400–800 Liver and kidney 
dysfunctions

G. Morrow and R.M. Tanguay
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throughout life (Niederwieser et  al. 1977; 
Wilcken et al. 1981). HT3 is a very rare disease 
with clinical phenotype including mild mental 
retardation and/or convulsions, and noteworthy, 
the absence of liver damage (Tomoeda et  al. 
2000). Of note, a delay in HPD maturation results 
in transient tyrosinemia of the newborn. This 
condition is benign and disappears spontaneously 
with no sequelae (Mitchell et  al. 2001; Russo 
et al. 2001).

A defect of HGO, the third enzyme of the path-
way, leads to the first IEM ever recognized, alkap-
tonuria (AKU, OMIM 203500) (Garrod 1902). 
This disease is not life-threatening and the usual 
consequences are ochronosis (bluish-black dis-
coloration of the tissues) and arthritis (reviewed in 
(Vilboux et al. 2009)). The accumulation of HGA 
also causes the urine to darken on exposure to air.

Up to now, a deficiency in MAAI has been 
suggested twice in literature but it has not been 
clearly confirmed (Karnik et al. 2004; Fernandez-
Canon et al. 2002) (OMIM gene ID: 603758). In 
both cases, patient developed liver failure and 
kidney dysfunction similar to hereditary tyrosin-
emia type 1 (HT1, see below) but with absence of 
SA accumulation and the corresponding disease 
was therefore called HT1 type b (HT1b). It 
remains unclear if MAAI deficiency actually 
exists in human patients, especially since there is 
an enzyme-independent bypass that allows the 
isomerization of MAA in FAA (Fernandez-
Canon et al. 2002).

Finally, the defect of the last enzyme of the 
pathway (FAH) causes HT1 (OMIM 276700), 
which is a severe progressive liver disease cou-
pled with renal tubular dysfunction (Lindblad 
et  al. 1977; Mitchell et  al. 2001; Russo et  al. 
2001). HT1 is the most severe disease associated 
to the tyrosine catabolism pathway.

2.3	 �HT1 Incidence

The incidence of HT1 is around 1/100,000 births 
worldwide but can be much higher in certain 
regions due to founder effects (reviewed in 
(Angileri et al. 2015)). The highest incidence of 
HT1 is found in the region of Saguenay-Lac-St-

Jean (SLSJ) (Quebec Province, Canada), where 
1:1846 children has HT1 and 1:22 individual is a 
carrier of a disease allele (De Braekeleer and 
Larochelle 1990; Grompe et  al. 1994; Poudrier 
et al. 1996) (See Larochelle, Chap. 1). The splice 
mutation c.1062 + 5G>A (IVS12 + 5G→A) is the 
most frequently found mutation within this popu-
lation (~90% of the HT1 reported allele) and 
accounts for approximately one third of all HT1 
reported alleles worldwide (Grompe et al. 1994; 
Poudrier et al. 1996; St-Louis and Tanguay 1997; 
Angileri et al. 2015).

A second mutation cluster of HT1 is found in 
Scandinavia, most precisely in the Finnish popu-
lation of Pohjanmaa where 1/5000 individual is 
affected by HT1 while the overall incidence of 
HT1  in Finland is 1/60,000 (Kvittingen et  al. 
1981; Mustonen et al. 1997; St-Louis et al. 1994). 
The most frequent HT1 reported allele in Finland 
is c.786G>A (p.W262X) which represents ~88% 
of the reported alleles in nine out of ten alleles in 
this country (St-Louis et al. 1994). A third cluster 
of HT1 occurs in an immigrant population from 
Pakistan living predominantly in Birmingham 
(United Kingdom) (Hutchesson et al. 1998). HT1 
alleles have been reported all over the world 
except in Central America and on the Oceania 
continent (Angileri et  al. 2015) (See Morrow 
et al. Chap. 3).

2.4	 �FAH, the Deficient Enzyme 
in HT1

The FAH gene is located on the long arm of chro-
mosome 15 at position 25.1 (15q25.1; base pairs 
80,152,890 to 80,186,581) (Phaneuf et al. 1991). 
The corresponding protein (FAH, E.C. 3.7.1.2) is 
a metalloenzyme for which the structure has been 
determined by crystallography (Timm et  al. 
1999; Tanguay 2002; Bateman et  al. 2007; 
Bateman et al. 2001). FAH is a cytosolic homodi-
meric enzyme of two 46 kDa subunits, which is 
mainly expressed in liver and kidneys. It is also 
expressed in other tissues, such as fibroblasts, 
amniocytes, chorionic villi, erythrocytes and 
oligodendrocytes, albeit at a lower level. As the 
last enzyme of the tyrosine catabolic pathway, 
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FAH catalyzes the conversion of FAA into fuma-
rate and acetoacetate (Phaneuf et  al. 1992; 
Tanguay et al. 1990) (Fig. 2.2).

Ninety-eight mutations have been reported to 
cause HT1 and their occurrence worldwide has 
been recently compiled (Angileri et  al. 2015). 
The most common FAH mutation causing HT1 
are c.1062 + 5G>A (IVS12 + 5G>A) followed by 
c.554-1G>T (IVS6-1G  >  T) and c.786G  >  A 
(p.W262X) (See Morrow et al. Chap. 3).

2.5	 �Biochemical Features of HT1

The deficiency of FAH was originally associated 
with increased levels of hepatic transaminases, as 
well as increased plasma levels of tyrosine, methio-
nine and phenylalanine and with urinary elevated 
concentrations of tyrosine metabolites (p-hydroxy-
phenylpyruvate, p-hydroxyphenyllactate and 
p-hydroxyphenylacetate) (Table  2.2). 
Hypertyrosinemia can be caused by numerous 
other conditions affecting the liver and is also a 
feature of transient tyrosinemia of the newborn, a 
condition that resolves spontaneously without 
significant damages (Mitchell et  al. 2001; Russo 
et al. 2001) (Table 2.1).

HT1 patients usually present with high levels 
of plasma α-fetoprotein (AFP) and most impor-
tantly with high levels of succinylacetone in 
plasma and urine (SA) the only valid prognosis 

marker of HT1. The latter metabolite is widely 
used for HT1 screening and its presence can be 
directly linked to the lack of FAH activity. Indeed, 
the absence of FAH results in the accumulation 
of FAA and MAA, which are then reduced in 
succinylacetoacetate (SAA) (Fig. 2.2). The sub-
sequent decarboxylation of SAA is responsible 
of the observed succinylacetone (SA).

FAA and SA are the most damaging metabo-
lites resulting from FAH deficiency and consider-
able efforts have been made to find by which 
molecular mechanisms these compounds act to 
produce the severe phenotype seen in HT1 (See 
Tanguay et al. Chap. 4).

2.5.1	 �Overview of FAA Toxicity

FAA is an electrophilic compound that has been 
suggested to damage DNA. While a direct effect 
on DNA remains to be demonstrated, it was 
shown to be mutagenic in a cell assay, albeit at a 
much lower level than classical mutagens 
(Tanguay et  al. 1996). FAA induces genome 
instability through activation of the ERK path-
way (Jorquera and Tanguay 2001). Moreover, it 
induces cell cycle arrest and apoptosis through 
glutathione (GSH) depletion (Jorquera and 
Tanguay 1997, 2001). Hence, GSH, a major actor 
of redox homeostasis, was shown to reduce FAA 
mutagenicity in cultured cells (Jorquera and 

Table 2.2  Clinical characteristics of HT1

Symptoms Biochemistry Pathology

Vomiting Tyrosinemia Liver cirrhosis

Diarrhea Methioninemia Fanconi syndrome

Muscle weakness Hyperbilirubinemia Peripheral neuropathy

Hepato-splenomegaly Hypoglycemia Hepatocarcinoma (HCC)

Jaundice Hypoproteinemia Renal tubule dilatation

Cabbage smell Hypothrombinemia Rickets

Auto-mutilation Aminoaciduria Hypertrophy pancreas

Fever Succinylacetonuria

Anemia Tyrosyluria

Irritability Glucosuria

Ascites Phosphaturia

Bleeding Alphafoetoprotein

Paralysis Anemia

Hypotonia Hematuria

G. Morrow and R.M. Tanguay
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Tanguay 1997, 2001) and to rescue neonatal 
death in the fah knockout model of HT1 (Langlois 
et al. 2008). At the cellular level, the stress caused 
by FAA accumulation was also shown to induce 
the unfolding protein response (UPR) in the 
endoplasmic reticulum (Bergeron et al. 2006).

In an interesting study, FAA was shown to 
inhibit 6 of the 7 human DNA glycosylases 
involved in DNA base removal during base exci-
sion repair (BER) (Bliksrud et al. 2013). This is 
in agreement with a previous report showing that 
the expression of DNA glycosylase OGG1 and 
the nucleotide excision repair protein ERCC1, 
was reduced in lymphocytes of two HT1 patients 
(van Dyk et al. 2010). Preventing DNA repair by 
the BER pathway, would favor accumulation of 
oxidative damage to DNA resulting in increased 
potent mutagenic lesions. Noteworthy, GSH 
depletion due to FAA accumulation is likely to 
affect DNA repair indirectly as redox homeosta-
sis is also important for this process (Langie et al. 
2007; Storr et al. 2012).

2.5.2	 �Overview of SA Toxicity

Contrary to FAA, SA has no mutagenic effect on 
DNA (Tanguay et al. 1996) nor was it shown to 
have any inhibiting effect on human DNA glyco-
sylases (Bliksrud et al. 2013).

The toxicity of SA mostly relies on its ability 
to be a competitive inhibitor of δ-aminolevulinic 
acid dehydratase (ALAD), the enzyme responsi-
ble of the conversion of δ-aminolevulinic acid 
(ALA) in porphobilinogen, which is precursor of 
heme synthesis (Fig. 2.2). This inhibition results 
in the accumulation of ALA and its excretion in 
urine. ALA has been associated with mitochon-
drial toxicity, liver toxicity, liver cancer, and neu-
ropshychiatric problems. Indeed, it lowers heme 
levels for cytochrome/hemoproteins synthesis 
and increases mitochondrial iron levels, resulting 
in heme deficiency, down regulation of mito-
chondrial cytochrome oxidase and overall mito-
chondrial toxicity (reviewed in (Lee and O’Brien 
2010)). Accordingly, SA is widely used as a 
heme synthesis inhibitor to create a mitochon-

drial iron-loading model that is similar to the 
mitochondrial iron loading found in Friedreich’s 
ataxia (Lee and O’Brien 2010; Richardson et al. 
2001).

At the tissue level, SA causes dysfunction of 
kidney membrane transport by altering mem-
brane fluidity and possibly disrupting normal 
structure. Indeed, it was shown to cause renal 
tubular dysfunction in normal rat kidneys, mim-
icking human Fanconi syndrome (Roth et  al. 
1991; Wyss et al. 1992; Tanguay et al. 2009).

2.6	 �Clinical Features of HT1

HT1 is characterized by progressive liver disease 
and renal tubular dysfunction leading to hypo-
phosphatemic rickets. Moreover, it is the IEM 
with the highest incidence of hepatocellular car-
cinoma (HCC) (Schady et al. 2015) (Table 2.3). 
HT1 is categorized into three main clinical types 
(acute, subacute and chronic) based on the age of 
onset and the clinical manifestations (Tanguay 
et  al. 1990; Mitchell et  al. 2001; van Spronsen 
et al. 1994).

2.6.1	 �Acute, Subacute and Chronic 
Forms of HT1

The acute form of HT1 has an onset before 
2 months of age and is mainly characterized by 
severe liver failure associated with cirrhosis, hep-
ato- and spleno-megaly, abnormal blood coagula-
tion and hypoglycemia leading to death in the 
first months of life (Table 2.3). Renal tubular dys-
functions such as Fanconi syndrome and rickets 
have also been considered hallmarks of HT1 
(Mitchell et al. 2001; Russo et al. 2001). The sub-
acute form is similar to the acute form but symp-
toms appear between 2 and 6  months (van 
Spronsen et al. 1994) (Table 2.3).

The chronic form is initially less aggressive 
and presents after 6  months of age. While its 
onset is insidious and progressive, renal manifes-
tations, such as proximal tubulopathy, are promi-
nent and may even be the presenting problem 

2  Biochemical and Clinical Aspects of Hereditary Tyrosinemia Type 1
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(Table 2.3). Patients show impaired renal tubular 
reabsorption functions leading to Fanconi syn-
drome, renal tubular acidosis, generalized amino-
aciduria, hypophosphatemic vitamin D-resistant 
rickets and growth retardation (Paradis et  al. 
1990; Russo and O’Regan 1990; Fernandez-
Lainez et al. 2014; Forget et al. 1999).

2.6.2	 �High Incidence of HCC in HT1

HT1 is characterized by gradual liver alterations 
leading to cirrhosis and HCC development. In 
fact, the risk of developing HCC in HT1 is con-
sidered the highest among all metabolic disorders 
(Russo et  al. 2001; Schady et  al. 2015). In an 
early study, HCC was reported in 37% of HT1 
patients over 2  years of age (Weinberg et  al. 
1976) but subsequent studies in Scandinavia (van 
Spronsen et al. 1989) and in Quebec (Russo et al. 
2001) showed a lower frequency of HCC (~15%) 
likely due to the advent of transplantation and 
improved treatment. In addition to be at high risk 
of developing HCC, HT1 patients develop them 
earlier then patients having other diseases (often 
before 5 years of age) (Schady et al. 2015) (See 
van Ginkel et al. Chap. 9).

2.7	 �Diagnosis of HT1

As mentioned above, the deficiency of FAH 
gives rise to elevated plasma concentrations of 
amino acids such as tyrosine and methionine as 
well as excretion of unusual tyrosine metabo-
lites like SA (Mitchell et al. 2001; Russo et al. 
2001) (Table 2.2). Although elevated levels of 
tyrosine and plasma AFP are indicative of HT1, 
the most reliable biochemical diagnostic marker 
consists in the presence of SA in urine, blood 
and amniotic fluid (Grenier et al. 1976; Grenier 
et al. 1982). In Quebec, where a high incidence 
of HT1 is observed, a neonatal screening pro-
gram for the disease has been established in 
1970 and consists of measuring SA levels in 
dried blood spots. Tandem mass spectrometry 
(MS/MS) is now used as a sensitive and rapid 
method, for screening HT1 by measuring the 
level of SA (Allard et  al. 2004). Prenatal bio-
chemical diagnosis can also be done by mea-
suring the level of SA in amniotic fluid sampled 
between the 14th and 16th weeks of pregnancy 
(Grenier et  al. 1996; Jakobs et  al. 1990). 
However, some false-positives have been 
reported using this method.

Table 2.3  Distinctive features of each HT1 forms

Acute Subacute Chronic

Age at manifestation 0–2 months 2–6 months After 6 months

Progression Fast Fast Slow

Life expectancy when 
untreated

0–1 year 0–1 year 0–10 years

Characteristic symptoms Severe hepatic dysfunction Rickets Cirrhosis

Hepatomegaly Failure to thrive Renal tubular 
Dysfunction

Easy bruising Growth retardation

Abnormal blood 
coagulation

Hepatomegaly

Main cause of death Liver failure HCC HCC

Recurrent bleeding Liver failure Porphyria

Extent of mutation 
reversion

Low (1.6%) Low to moderate (22%) Moderate (36%)

FAH activity Absent Absent to residual Residual

Data in the table are based on the following papers: (Demers et al. 2003; Tanguay et al. 1990; van Spronsen et al. 1994).
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An enzymatic assay based on FAH activity 
measurements on cultured fibroblasts, blood, or 
liver specimen has also been used for diagnosis 
(Kvittingen et  al. 1981, 1983). However, this 
method is less reliable on liver specimen as some 
HT1 patients have mosaic expression of FAH in 
their liver due to reversion of the mutation 
(Demers et al. 2003; Kvittingen et al. 1993, 1994; 
Poudrier et al. 1998).

Genetic diagnosis tests are also performed 
when the family history or the origin of the 
patient suggests that one parent may be a carrier 
of the disorder. This kind of test has been facili-
tated by the technological progress achieved in 
the past decade and the identification of predomi-
nant mutations in certain ethnic groups (Angileri 
et  al. 2015). The best example of this is the 
genetic screening test that was designed to detect 
the most common mutation found in HT1 
(c.1062 + 5G>A, IVS12 + 5G→A) (Grompe and 
al-Dhalimy 1995). The method is based on the 
amplification of the genomic DNA region con-
taining the mutation by PCR followed by enzy-
matic cleavage of the amplified sequence in order 
to distinguish the mutated allele from the wild-
type sequence. Similar molecular tests have since 
been developed for most mutations and can be 
performed on blood, chorionic villi or cultured 
amniocytes. However, with the improvement of 
new sequencing technologies, it is becoming 
very simple to perform the FAH gene 
sequencing.

2.8	 �Treatment of HT1

2.8.1	 �Restrictive Diet

Before 1990s, there was no treatment available 
for HT1 except liver transplantation. Patients 
were following a restrictive diet with low phenyl-
alanine and tyrosine intake. While this was ben-
eficial at the beginning, it was not fully preventing 
ulterior liver damage and renal dysfunction.

2.8.2	 �Orthotopic Liver 
Transplantation

Orthotopic liver transplantation (OLT) is per-
formed in the most severe HT1 cases due to the 
risks associated to the surgery. OLT is essentially 
curative but does not fully correct metabolic per-
turbations in HT1 since kidneys continue to 
excrete SAA, SA and ALA in urine (Fernandez-
Lainez et al. 2014; Tuchman et al. 1987; Pierik 
et al. 2005; Bartlett et al. 2013). Only half of liver 
transplanted patients show partial improvement 
of renal function but still, altered kidney size and 
architecture persists (Paradis et  al. 1990; 
Fernandez-Lainez et al. 2014; Forget et al. 1999) 
(See Alvarez and Mitchell Chap. 5 and 
McKiernan Chap. 7 on liver transplantation).

2.8.3	 �NTBC

NTBC (2-(2-nitro-4-trifluoro-methylben-
zyol)-1,3 cyclohexanedione, Nitisinone) was first 
used in 1992 (Lindstedt et  al. 1992). It acts by 
inhibiting the second enzyme of the tyrosine cat-
abolic pathway, HPD (Fig.  2.2). The advantage 
of blocking the pathway at this step is that there 
is no accumulation of FAA and MAA and there-
fore no accumulation of SA either. Moreover, as 
mentioned in Sect. 2.2 no liver damages are asso-
ciated with inhibition of HPD in HT3.

The use of NTBC combined to the low tyro-
sine/phenylalanine diet has proven to be very effi-
cient in preventing HT1 progression, by curing 
both liver and kidney dysfunctions (Larochelle 
et al. 2012; Bartlett et al. 2014). It is very efficient 
particularly when introduced early in life 
(Larochelle et al. 2012), but it is still unsure if it 
will be sufficient to prevent problems on a long-
term basis. For instance, failure to respond to 
NTBC has been reported in one child (Mohan 
et  al. 1999) and high risks of HCC have been 
reported when NTBC is introduced after 2 years of 
age (McKiernan 2006; van Spronsen et al. 2005) 
(for more information on NTBC see Maiorana and 
Dionisi-Vici Chap. 8 and Lock Chap. 16).
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2.9	 �Concluding Remarks

HT1 is a severe liver disease that should be 
detected at the earliest to be treated effectively. 
The management of this disease has been revolu-
tionised by the introduction of NTBC (de Laet 
et al. 2013), but the venue of alternative/comple-
mentary treatments will be of upmost importance 
due to difficulties to fully comply to the restrictive 
diet for some patients and the high cost of 
NTBC.  It is also important to favor newborn 
screening programs for the early detection of HT1 
patients whenever possible. Such screening is 
inexpensive and should prevent late intervention 
when liver damage has already been done. Finally 
additional basic research is still needed to unveil 
the pathogenic mechanisms involved in HT1.
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