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Abstract. How to improve reading performance of Log-Structured-
Merge (LSM)-tree gains much attention recently. Meanwhile, construct-
ing secondary index for LSM data stores is a popular solution. And
bulk loading of secondary index is inevitable when a new application is
developed on an existing LSM data stores. However, to the best of our
knowledge there are few studies on research of bulk loading of secondary
index in distributed LSM-tree. In this paper, we study the performance
improvement of bulk loading of secondary index in distributed LSM-tree
data stores. We propose an efficient bulk loading approach of secondary
index in Log-Structured Data Stores. Firstly, we design secondary index
structure based on distributed LSM-tree to guarantee the scalability and
consistency of secondary index. Secondly, we propose an efficient frame-
work to handle bulk loading of secondary index in a distributed envi-
ronment, which can provide a good load balancing for query processing
by using equal-depth histogram to capture data distribution. Analysis of
theoretical and experimental results on standard benchmark illustrate
the efficacy of the proposed methods in a distributed environment.

Keywords: Secondary index · Distributed bulk loading · Load
balancing

1 Introduction

Recently, NoSQL databases are becoming more and more popular to support
scale-out applications, such as BigTable [11], LevelDB [3] and Hbase [1], etc.
Most NoSQL storage engines are implemented by distributed LSM-tree [13],
which is a tree-like data structure that has high performance in write-intensive
workloads.

For distributed LSM-trees, fast read operations are challenging because the
data is partitioned by the primary key. Each partition is distributed to different
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nodes in a distributed environment. Furthermore, in order to get consistent query
results, the corresponding relation tuples will be merged from disk stores and
in-memory stores [13]. The system must scan the whole data set distributed to
different nodes in order to answer queries on non-primary key attributes.

Building a secondary index is a popular solution to decrease response time of
the queries on non-primary key attributes. For an empty LSM-tree data store,
several methods have been proposed to build secondary indices efficiently. For
example, Tan et al. [14] introduce the Diff-index structure to support index
maintenance schemes. However, constructing a secondary index on an existing
distributed LSM data store is very inefficient if traditional insertion operator is
adopted. Unfortunately, bulk loading of a secondary index is inevitable when a
new application is developed on a given LSM-tree data store.

In this study, we address the issues of constructing secondary index for a
given LSM-tree data set, i.e. bulk loading of the secondary index on distributed
LSM-tree data stores. The major difficulties include (1) the data is distributed
to several nodes; and (2) the data store in the memory and in the disk at the
same time. If each node maintains its own local index, high selective queries will
be inefficient.

To construct the secondary index on an existing LSM-tree data store, the
key task is to do efficient global sorting on search keys of the secondary index
for bulk loading. An approach has three stages, including local index construc-
tion, index partition division and global index construction. Firstly, each data
node builds its own local index and sends statistic information of search keys
to the coordinator. Secondly, the coordinator generates multiple uniform ranges
on search keys based on statistic information from data nodes, and sends the
ranges to corresponding data nodes. Finally, data nodes receive ranges from the
coordinator to create index partitions by shuffling data. Particularly, we propose
equal-depth histograms to capture data distributions on search keys in Stage 1.

We have made the following contributions in this paper.

• We design a global sorting approach for bulk loading of secondary index on
distributed LSM-tree.

• We employ sampling equal-depth histogram to capture data distribution.
• We integrate the bulk loading algorithm into our distributed database CEDAR

[2] and measure the system performance using a standard benchmark. Exper-
imental results show the efficacy of the proposed methods.

The rest of paper is organized as follows: Sect. 2 introduces background
knowledge related to our work. Section 3 gives an overview of index construction.
Discussion of details of bulk loading is in Sect. 4. We then provide an evalua-
tion of the approach in Sect. 5. Finally, we describe related work in Sect. 6, and
conclude our paper in Sect. 7.
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2 Background

We begin with an overview of the LSM-tree. An implementation of LSM-tree is
shown in Sect. 2.1. And the index structure based on the LSM-tree in distributed
systems is introduced in Sect. 2.2.

2.1 System Model

The LSM-tree is a data structure that is optimized for frequent updates. It
comprises a tree-like in-memory store and several tree-like immutable disk stores.
Writing into LSM-tree equals to an insertion into the in-memory store. When the
size of the in-memory store reaches a threshold, its content will be flushed to the
disk. Multiple disk stores will be generated after several data merge processes.
Thus read operations need to merge disk stores with the in-memory store to
get consistent data, which greatly affects the performance of query. In order to
improve the performance of query processing and to save disk space, multiple
small disk stores can be merged into a large disk store periodically.

A typical implementation of a distributed storage system employing the
LSM-tree is shown in Fig. 1. A table in the system is divided into partitions
by a continuous primary key. Each partition is denoted by a range of primary
keys [start key, end key). Partitions are stored on the SSD on data nodes in a
replicated way. The system meta data is stored on a node called the coordina-
tor. Modifications of the database are stored in the memory of a node called
the transaction node. When the size of in-memory store reaches a threshold, a
merge process is launched. A new in-memory store will accept modifications and
the old in-memory store will be merged with disk stores on data nodes, applying
changes of data to the disk. After the merge process, new partitions are in service
and old partitions are deleted. Read operations will first ask the coordinator for
data location and then merge the corresponding data from disk stores and the
in-memory store for response.

Partition1

DataNode1

Coordinator

Partition2

DataNode2

Transaction Node

Disk Store

In-mem Store

Disk Store

Write/Read Stream Merge Process

(T,Range1)->Node1
(T,Range2)->Node2
...

Disk Store

Partition1

DataNode1

(T,Range1)->Node1
(T,Range2)->Node2
...

Coordinator

Partition2

DataNode2

Transaction Node

Result
Merge

read

Clients

In-mem Store

write

Disk Store

In-mem Store

Disk Store Disk Store

Fig. 1. Implementition of LSM-tree
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2.2 Index Structure

A common structure of an index is an index table [15], which is partitioned and
stored on a cluster of nodes as an ordinary one. A record in the index table
is combination of an index column (search key) and a primary key column of
the data table, like as (search key, primary key). Figure 2 shows an example
of the index. The primary key of the item table is column “Item Id”. If we
create an index on the column “Sale”, the schema of index table is shown in
Fig. 2. A query is executed by accessing the index table to get the primary key
of the data table, and then getting results from the data table according to the
aforementioned primary key. Certainly, we also permit users to build the covering
index, which is an index that contains all, and possibly more, the columns that
you need for your query.

We organize the secondary index as the ordinary data table for three reasons.
Firstly, modifications of indices are not subject to the CAP theorem [10] since
modifications of the data and the index table are on the same node, which
is important to a distributed write-intensive system. Secondly, bulk loading of
indices can be done without blocking transactions since modifications of indices
and data tables are stored in the in-memory store. Thirdly, the management
of index data can reuse components for the data table, such as load balancing,
scalability and high availability, etc.

Sale Item_Id
180 3016
320 3015

Item_Id Sale
3014 480 150
3015 320 180

1 0
Stock

 Table Item Table Index_Sale

Index on 
Sale

3016
T bl IT

180 190
bl
480

ld
2014

Fig. 2. Index structure Fig. 3. Index construction process

3 Overview of Index Construction

In this section, a general process of secondary index construction will be
described. The procedure of index construction has three phases: (1) Initial-
ization phase, preparing for the start of the index construction. (2) Bulk loading
phase, creating uniform index partition. (3) Index termination phase, imple-
menting the replication of index partitions. The Fig. 3 shows the more details
on above three phases. The more explanations on process of index construction
will be described as follows.

3.1 Initialization Phase

When receiving the command of creating index, the system enters the initial-
ization phase. In this phase, the system waits for a time point when the system
reaches a global consistent data version V . After the time point, modifications of
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indices will be maintained in the in-memory store. Since modifications of indices
and data tables are maintained in the in-memory store, constructing indices on
data version V will guarantee the consistency of indices and data tables without
blocking transactions. As is mentioned in Sect. 2, after data merge processing,
data in the old in-memory store is merged with disk stores, modifications of
system are maintained in the new in-memory store. Hence, the completion of
the merge processing means that initialization phase finished.

3.2 Bulk Loading Phase

The system will complete the construction of index partitions in this phase.
Furthermore, the construction of the index is divided into three stages: local
index construction, balanced index partition division and global index construc-
tion. In the first stage, each data node builds its own local index and sends
statistic information of search key to the coordinator. In the second stage, the
coordinator generates multiple uniform ranges on search keys based on statistic
information from data nodes, and sends the ranges to corresponding data nodes.
In the third stage, data nodes receive ranges from the coordinator and create
index partitions by shuffling data. Algorithm 1 is the main program. Algorithm
1 calls local index construction routine (Algorithm 2), index partition division
routine (Algorithm 3) and global index construction (Algorithm 4) routine in
the proper order.

Local index construction. The first key task of bulk loading is efficient global
sorting on search keys of the secondary index. On the one hand, construction of
local index can reduce communication overhead when global sorting on search
keys is executed. On the other hand, the statistic information denoted by a equi-
depth histogram collected on the local index can make partition division more
uniform, which can guarantee good balancing for query processing.

Balanced index partition division. If the system wants to get uniform index
divisions, the coordinator must understand the distributions of search keys on
the whole data set and the number of index partitions. So, statistic informa-
tion received from data nodes is summarized at the coordinator node. And the
the number of index partitions is computed. Finally, the coordinator uniformly
divides the index ranges according to the number of index partitions and sends
the ranges to corresponding data nodes.

Global index construction. The data nodes are executors of global index
construction. The data node communicates with other data nodes according to
index ranges received from the coordinator to create index partitions in the
global search key order.

3.3 Index Termination

After the bulk loading phase, the coordinator will schedule the task for replica-
tion of the index for high availability of the index. The replication mechanism
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of index table is the same to the original table since an index is organized as an
ordinary table. Index construction is completely finished after index replication.
And then the index is available for query.

4 Bulk Loading Process

The bulk loading phase has three stages, including local index construction, index
partition division and global index construction. Firstly, each data node builds
its own local index and sends statistic information of search keys to the coor-
dinator. Secondly, the coordinator generates multiple uniform ranges on search
keys based on statistic information from data nodes, and sends the ranges to
corresponding data nodes. Finally, data nodes receive ranges from the coordi-
nator create index partitions by shuffling data. Note that Algorithm 1 is the
main program. Algorithm 1 calls local index construction routine (Algorithm 2),
index partition division routine (Algorithm 3) and global index construction
(Algorithm 4) routine in proper order.

Algorithm 1 illustrates the framework of the bulk loading approach in dis-
tributed LSM-tree data stores. We assume we will construct a secondary index
on column search key of table T . And partitions P of table T are distributed to
multiple data nodes. So, all data nodes contained p ∈ P run the function Run-
LocalIndex(p, interval, serach key, storing) (Algorithm 2) to build local index
and report the histogram H containing search key distribution information to
the coordinator (at line 6). Afterwards, the coordinator runs RunPartitionDi-
vision(H,N) (Algorithm 3) to get balanced index data partitions based on his-
togram H and the number of partitions of index data (at line 9), and assigns
partition ranges to appropriate data nodes (at line 10). Finally, the data nodes
receive range information from the coordinator and run RunGlobalIndex(L)
(Algorithm 4) to build the global index based on index partition range list L
(at line 12).

4.1 Local Index Construction

Local index construction starts after the initialization phase. Algorithm 2 illus-
trates the process of local index construction. Note that Algorithm 2 must run
at data nodes. Each data node scans the original data table partitions located
in itself in order to construct index entries (at lines 6–14). If we need to build
the covering index, i.e. storing columns are not NULL, an index entry needs to
contain storing columns besides the search key and primary key of the original
table (at line 8). Otherwise, an index entry only contains the search key and
primary key (at line 11). And an equi-depth histogram Hi is adopted to capture
data distributions on search keys, where each bucket is defined by an interval
which is left-closed and right-open, i.e. [start key, end key) (at lines 15–26). And
interval represents the depth of the bucket h. The size of depth of bucket can be
adjusted. Smaller bucket depth means more accurate information of data distri-
butions, but it also needs more space to store more statics information. Finally,
the local index records are written to the disk (at line 25).
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Algorithm 1. Index Bulk Loading
1 Let P denote partition set of table T which needs to construct index;
2 Let hi and H denote a bucket and an array of equi-depth histogram

respectively;
3 Let R denote an array of range /* construct local index */

4 foreach partition p ∈ P in all data nodes do
5 hi ← RunLocalIndex(p, depth) ;
6 H.add(hi);

7 end
8 report H to Coordinator;

/* divide index partition range */

9 R ← RunPartitionDivision(H, N ) ;
10 Coordinator sends the partition range R[i] to all data node with respect to R[i] ;

/* construct index partition */

11 foreach datanode correlated to R[i] do
12 index partition ← RunGlobalIndex(R[i]);
13 end

Example 1. To help explain this process, we refer to Fig. 4 as our running exam-
ple. Table Item has 16 records and contains three partitions, i.e., partition1,
partition2 and partition3 on DataNode1, DataNode2. Local index construction
in Fig. 4 describes the process local index construction. Each record in a par-
tition is mapped to an index record and index records are sorted by the pri-
mary key of the index table. In our example, the primary key of the index
table is (Sale, Item Id). After local index construction, three local indexes
local index1, local index2, local index3 are constructed. The equal-depth his-
togram of partition1 is shown in Fig. 5. The depth of bucket is 2. Thus three buck-
ets are sampled. See < (101, 3001), (201, 3002) >, < (201, 3002), (400, 3004) >
and < (400, 3004), (600, 3006) > in Fig. 5.

4.2 Balanced Index Partition Division

After local index construction, the coordinator will receive equal-depth his-
tograms of all local index and then divide the index data into multiple uni-
form partitions. It is very important to decide the number of partitions and the
division strategy of the index data. Subsequently, more details will be explored.

Generally, the larger size of partition means less efficient for high selective
queries, while the smaller size of partition means more space for meta data in
a distributed database. Thus, we have to set an appropriate size of partition
for the index data. Considering a table T(col1, col2...coln) with an index I on
colj . Let size(T ) and M denote the size of T and the maximal limitation of
partition size of T respectively. In fact, the partition number P of T can be
defined by Eq. (1). Similarly, the partition number of the index data on table T
denoted by P ′ can be defined by Eq. (2). The relationship between the number
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Algorithm 2. RunLocalIndex
1 Function RunLocalIndex(P, search key, storing) /* local index

construction */

2 Let r and r′ denote a record of data table and index table respectively ;
3 Let P ′ denote the set of index records sorted by search key ;
4 Let H and h[j] denote a equi-depth histogram and a bucket respectively ;
5 int i, j ← 0; P ′ ← ∅; Flag ← TRUE ;
6 for each r ∈ P do
7 if storing is NULL then
8 r′ ← (r.search key, r.primary key, storing) ;
9 end

10 else
11 r′ ← (r.search key, r.primary key);
12 end
13 P ′ ← P ′ inserted r′ based on the order of search-key ;

14 end
15 while i <> |P ′| do
16 i++ ;
17 if Flag then
18 h[j].start key ← r′[i − 1].search key ; Flag ← FALSE ;
19 end
20 if i mod interval == 0 then
21 h[j].end key ← r′[i].search key ;
22 Flag ← TRUE; j++;
23 H ← H ∪ h[j] ;

24 end
25 write r′ to local index partition on disk ;

26 end
27 return H

28 end

of index data partitions and the number of original data table partitions can be
defined by Eq. (3). Furthermore, the index partition number can be calculated by
Eq. (4) for fixed-length storage systems. However, we have to capture the size of
index records during local index construction to calculate the partition number
of the index by Eq. (2) for varying-length storage systems. In practice, we set
the number of partitions of the index data same to the number of partitions of
the original table data in order to reduce query response time.

P =
size(T )

M
(1)

P ′ =
size(I)

M
(2)

P ′ = P ×
(
size(I)
size(T )

)
(3)
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P ′ = P ×
(
size(search key, primary key)

size(col1, col2...coln)

)
(4)

Algorithm 3 illustrates the procedure where the coordinator divides the
index data into multiple uniform partitions. So, Algorithm 3 must run at the
coordinator node. First, the coordinator puts together a whole histogram H ′

with the histogram hi received from each individual data node based on the
order of bucket (at line 5). Afterwards, The coordinator will divide the H ′ into
�(|H ′| − 1)/N� ranges, where |H ′| represents the number of buckets and N
is the number of index data partitions (at line 6). Note that each index data
partition is defined by an interval [start key,end key) which is left-closed and
right-open. Furthermore, the range is continuous, such as (MIN, index key1],
(index key1, index key2]...(index keyp,MAX). After the division, the coordina-
tor will allocate ranges to data nodes and data nodes will construct corresponding
partitions, which are described in the main program (Algorithm 1).

The key point of Algorithm 3 is to guarantee each data node maintains almost
same size of the index, aiming at providing a good load balancing for query
processing. The coordinator adopts two strategies to assign index ranges to data
nodes: (1) overlap priority, it means that the coordinator assigns the index
range to the data node which has maximal overlaps with the range. (2) Load
priority, it means that the coordinator assigns the index range to the data
node which has the lightest load. The overlap priority can reduce communica-
tion overhead, and the load priority can provide a quicker response for queries.
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Algorithm 3. RunPartitionDivision
1 Function RunPartitionDivision(H, N )

2 Let H ′ denote a equi-depth histogram which bucket is sorted by its
start key ;

3 Let R denote an array of range defined by [start key, end key) ;
4 Let h[i] be the i-th bucket of H ′ ;
5 Load all buckets of H based on the order of bucket.startkey into H ′ ;
6 n ← �(|H ′| − 1)/N� ;
7 R ← ∅; i, j ← 0; Flag ← FALSE ;
8 R[1].start key ← h[1].start key ;
9 while i <> |H ′| do

10 i++ ;
11 if Flag then
12 R[j].start key ← h[i − 1].end key; Flag ← FALSE ;
13 end
14 if i mod n == 0||i == |H ′| then
15 R[j].end key ← h[i].end key ;
16 Flag ← TRUE ; j++ ;

17 end

18 end
19 return R;

20 end

The end users can adopt different policies according to application scenarios.
Certainly, the communication overhead cannot be totally avoided even when the
overlap priority is adopted. Fortunately, communication overhead is generated
in the offline stage. It has no effect on the response of query processing.

Fig. 5. Equal-depth histogram Fig. 6. Partition division

Example 2. Take the example in Fig. 4. After local index construction, the coor-
dinator receives three histograms and will divide ranges of index partitions. The
process of division is shown in Fig. 6. Since the partition number of the data
table is 3. For fixed-length storages, the partition number of the index is 2.
Thus, ranges of partitions are: (MIN,(320,3015)] and ((320,3015),MAX). The
first partition includes 7 records and the second partition includes 9 records.
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4.3 Global Index Construction

Global index construction starts after the division of index partitions. During
global index construction, a data node may receive two types of information. One
is the control information from the coordinator node. Another is the data infor-
mation from other data nodes. The former is the index partition construction
command with a list of index partition ranges, which means the data node will
maintain the index data corresponding to ranges received from the coordinator.
The latter is index records loaded from other data nodes in the given range.
Certainly, the index records are sorted by the same search key. After getting all
the index records in the given range, the sorted index data will be flushed to the
disk serving as an index table partition.

Algorithm 4 illustrates the procedure of global index construction. It is worth
noting that Algorithm 4 must run at all data nodes received construction index
messages from the coordinator. Firstly, the algorithm prepares the data for each
range according to a range list L received from the coordinator (at line 4, line 8).
Meanwhile, it may receive requests from other data nodes for index records
and it will response to the these requests. After getting all the records of P,
it will sort these records and then flush them to disk as an index partition P
(at line 5, line 9). In practice, the procedure of constructing index partitions
can be implemented by multi-thread technique, i.e. each range can be assigned
a thread.

Algorithm 4. Global Index Construction
1 Function RunGloalIndex(L)
2 Let P denote a index partition ;
3 for each li ∈ L do
4 if the current data node contains all index data in range li then
5 Flush index data to disk to construct index partition P ;
6 end
7 else
8 shuffle and sort index data which is not located in current nodes

with other data nodes correlated to li ;
9 Flush index data to disk to construct index partition P ;

10 end

11 end

12 end

Example 3. Take the example of global index construction in Fig. 4. After index
partition division, DataNode1 receives a partition range (MIN, (320, 3015)] and
DataNode2 receives a partition range ((320, 3015),MAX]. After getting all the
records of a range, index records are flushed to the disk serving as an index
partition, such as index partition1 and index partition2 in this example.
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5 Experimental Evaluation

5.1 Experimental Setup

For experimental analysis, we integrate the approach with our system CEDAR
based on OCEANBASE 0.4.2 [4], which is a scalable open source RDBMS
developed by Alibaba. It consists of four modules: master server (Coordina-
tor), update server (TransactionNode), baseline data server (DataNode) and
data merge server (MergeServer). Now we describe our experimental setup and
give a brief overview of the database employment we have used for evaluation.

Cluster platform: We run the experiments on a cluster of 9 machines for most
of our experiments except scalability. Each machine is equipped with an Intel(R)
Xeon(R) CPU E5-2620@2.00 GHz (a total of 12 physical cores), 96 GB RAM and
3TB Raid5 while running CentOS version 6.5. All machines are connected by a
gigabit Ethernet switch.

Database deployment: The database is configured with four MergeServe and
four DataNode and each of them is deployed on a single machine in the cluster.
The cluster is also configured with a Coordinator and a TransactionNode and
they are deployed on a same machine. For better performance, we cache the
index and the data table in memory. We choose the load priority policy for
guarantee load balancing of index.

Benchmark: Sysbench [8] is a popular open source benchmark to test open
source DBMSs. We extend Sysbench [8] by adding an item table in which each
row has a unique item id as the primary key and 3 columns. Among them,
item price is the column to index. The rest 2 columns are item desc fed with
100 Byte long random byte and item title fed with 92 Byte long random byte,
Altogether each row is approximately of 200 Byte in size. We change the workload
by varying client threads. For tests of scalability, we vary DataNode from 1 to
4. We test the performance of the index with a query with a predicate on the
item price attribute: Q1: SELECT item id, item desc FROM item WHERE
item price =“?”. By adjusting the size of return size, we can define the selectivity
of the test queries.

5.2 Index Construction

We first evaluate the efficiency of index construction. We generate 50 million
to 125 million and load data to the system. We compare our approach with a
common approach to construct index table denoted as “Read-Insert” where the
index table is constructed by first reading from the data table and then inserting
into the index table. We launch 100 threads for the “Read-Insert” approach and
10 threads for our bulk loading approach on each DataNode. As is shown in
Fig. 7, our approach constructs index much faster than the common approach,
for there is less network overhead and no random disk I/O in our approach.

We then test the index partition strategy. We vary the distribution of data on
the index key and test three types of distribution: Uniform distribution, Gaussian
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distribution, Zipf distribution (Zipf factor = 2). We generate 50 million records
for each distribution and create indices on item price for them respectively. After
index construction, data distributions of indices are shown in Fig. 8. As we can
see, benefiting from balanced index partition strategy, the index data on each
node relatively equals to each other.
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5.3 Query Performance

In this test, we first study the query performance of indices with different data
distribution properties. Since the index key has different distribution properties,
the result size of test queries may differ, however, since the query distribution is
uniform, average result size for queries is relatively the same under different data
distribution properties. Figures 9 and 10 demonstrate that query throughput and
latency of the system under different data distribution properties are almost
same, for our approach captures the different properties of data and guarantees
the load balancing of index.

We then test the latency of queries with different selectivities, using concur-
rent client threads from 50 to 275. We vary selectivity from 0.0001% (50 rows
in result) to 0.001% (500 rows in result). As is shown in Figs. 11 and 12, for
queries with higher selectivities, the system need less time for query processing
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and network communication, thus the system has better latency and through-
put with higher selectivity. Figure 11 also shows that the latency of queries with
high selectivity is less affected by the workload than that of queries with low
selectivity. Queries with lower selectivity requires more system resources such as
CPU and Network than queries with high selectivity. As the workload increases,
more queries will compete for CPU. Thus, the throughput keeps unchanged and
the latency of queries increases.

5.4 Scalability

In this test, we test the scalability of index construction and query performance
with different selectivities. We vary the size of data node from 1 to 4. For index
construction, we measure the construction time for index. For query perfor-
mance, we measure the latency and throughput of exact match queries and
queries with different selectivities.

As we can see in Fig. 13, time for index construction reduces with the incre-
ment of the number of data nodes, this is due to the fact that we allocate index
partitions to data nodes uniformly. However, time for index construction does not
reduce linearly because adding nodes may cause more network communication.
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As can be seen from Figs. 14 and 15, the system scales well with nearly flat
query latency when the size of data node increases due to the fact that the index
is organized as a normal table and can take advantage of the load balancing of
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the system. In this test, the workload submitted to the system is proportional
to the data node size. As we can see, by adding data node, more workload can
be handled. The latency for queries with a specific selectivity remains essentially
unchanged with different number of data nodes.

6 Related Work

There are two types of secondary index models on distributed data stores: local
index models and global index models. In local index models, the index is built
on each node which indexes local data. Global indices support high selectivity
queries better. Huawei’s Hindex [6] realizes the local index on the LSM-based
storage system Hbase [1], however, load balancing of index is not supported.
Diff-index (Differentiated Index) [14] realizes the global index on Hbase which
supports index creation on an empty table.

There have been several existing bulk loading approaches of secondary indices
in distributed log-structed data stores. Phoenix [5] use map-reduce [12] to con-
struct distributed index, modifications of index are maintained in memory. How-
ever, when the data set is huge, it needs to create index in an asynchronous way
by an external tool. AsterixDB [9] presents a bulk loading approach for con-
verting existing index structures to LSM-based index structures. The approach
is for AsterixDB and employs multiple data structures realizing bulk loading of
indices, which means it is hard to do load balancing of indices. Another approach
is by external storages such as solr [7]. Indices are stored in an external system.
Thus, the construction of indices needs to read from the database and insert into
the external system.

7 Conclusion

We introduce a new bulk loading approach of secondary index in distributed
log-structed data stores. The approach supports efficient bulk loading of index
by taking rational use of resources in a cluster. Whats more, by using equal-
depth histogram, load balancing of index is guaranteed. We perform an extensive
evaluation of our approach on a LSM-based distributed system. The results from
our experiments show that our approach take rational use of cluster for bulk
loading of index and guarantee the load balancing of index. In addition, since
an index is organized as a normal table and is integrated in the load balancing
of the system, the index is scalable and adding nodes to the system will improve
the performance of the index.
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