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Abstract. Privacy risks of recommender systems have caused increas-
ing attention. Users’ private data is often collected by probably untrusted
recommender system in order to provide high-quality recommendation.
Meanwhile, malicious attackers may utilize recommendation results to
make inferences about other users’ private data. Existing approaches
focus either on keeping users’ private data protected during recommenda-
tion computation or on preventing the inference of any single user’s data
from the recommendation result. However, none is designed for both hid-
ing users’ private data and preventing privacy inference. To achieve this
goal, we propose in this paper a hybrid approach for privacy-preserving
recommender systems by combining differential privacy (DP) with ran-
domized perturbation (RP). We theoretically show the noise added by
RP has limited effect on recommendation accuracy and the noise added
by DP can be well controlled based on the sensitivity analysis of func-
tions on the perturbed data. Extensive experiments on three large-scale
real world datasets show that the hybrid approach generally provides
more privacy protection with acceptable recommendation accuracy loss,
and surprisingly sometimes achieves better privacy without sacrificing
accuracy, thus validating its feasibility in practice.

Keywords: Recommender systems · Privacy-preserving · Differential
privacy · Randomized perturbation

1 Introduction

During the last few decades we have witnessed the increasing use of recommender
systems in various domains to solve the problem of information seeking in an
extremely large volume of content. With the help of recommender systems, cus-
tomers can quickly find things that are interesting or new by narrowing down
the set of choices. Meanwhile, service providers using recommender systems can
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increase sales or click-through rate (CTR) by providing personalized service for
customers. For example, McKinsey1 reported that “35% of what consumers pur-
chase on Amazon and 75% of what they watch on Netflix come from product
recommendations”.

The benefits brought by recommender systems are significant. However, the
use of recommender systems introduces privacy threats and concerns. In order
to provide high quality recommendations, recommender systems need to collect
customers’ private data, such as history data (e.g., the books bought last month
or the movies watched last week) and rating data (e.g., the rate for a book or a
movie). However, recommender systems may not be trustable. It is common for
customers to raise privacy concerns as the collected data may be shared with,
rent or sold to third parties. According to a survey done by PewResearch2, “86%
of Internet users have taken steps online to remove or mask their digital foot-
prints” and “68% of Internet users believe current laws are not good enough
in protecting people’s privacy online”. It is thus crucial to develop technologies
that can keep users’ private data protected while enabling personalized recom-
mendation, which is a necessary and beneficial complement to the efforts made
in the non-technical domain such as privacy policies and related laws.

1.1 Related Work

Cryptography is one of the most important technologies to realize privacy-
preserving recommender systems. Using some well-known encryption algorithms,
users can transform their private data from meaningful plaintext to meaningless
ciphertext, thus achieving privacy preservation. To enable recommender sys-
tems to carry out computation over ciphertext directly, the encryption algo-
rithms to be used have to be homomorphic, that is, the result of operations
performed on ciphertext, when decrypted, matches the result of operations per-
formed on the corresponding plaintext. For example, Paillier cryptosystem [14]
was employed by Erkin et al. [6] and Ma et al. [10], ElGamal cryptosystem [5]
was used by Zhan et al. [17] and Badsha et al. [1], to realize privacy-preserving
recommender systems. However, homomorphic encryption is built on expensive
public-key cryptography, which is theoretical in nature and cannot be applied
in practice due to the prohibitive computation cost. In addition, Nikolaenko
et al. [13] and Liu et al. [9] built privacy-preserving recommender systems based
on another renowned cryptographic tool, Yao’s garbled circuits [8,16]. However,
these approaches require the existence of a trusted third party, which also hinders
their application in practice.

To overcome the weakness of cryptography based techniques, Polat and Du
[15] proposed a Randomized Perturbation (RP) technique which adds noise to
users’ private data before releasing the data to recommender systems. RP is
much faster than cryptography based techniques, but this is at the cost of sac-
rificing recommendation accuracy and privacy protection degree. In particular,
1 http://www.mckinsey.com/industries/retail/our-insights/

how-retailers-can-keep-up-with-consumers.
2 http://www.pewinternet.org/2013/09/05/anonymity-privacy-and-security-online/.

http://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
http://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
http://www.pewinternet.org/2013/09/05/anonymity-privacy-and-security-online/
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the smaller the random noise added, the more accurate the predicted rating.
However, the smaller noise also results in weak privacy guarantee. For exam-
ple, the data reconstruction methods proposed by Zhang et al. [18] can derive
more original data when smaller noise is injected. Therefore, a trade-off between
accuracy and privacy should be made when applying RP.

The above work aims at keeping users’ private data secret during recommen-
dation computation. However, the output of recommender systems can be also
utilized by malicious users to make inferences about other users’ private data
[12], that is, based on the recommendation she gets, a malicious user can guess
whether someone else has, for example, bought some book or seen some movie.
To avoid this kind of information leakage, Differential Privacy (DP) [3,4] has
been introduced into recommender systems recently [7,11,12]. By adding noise,
DP guarantees the distribution of the recommendation is insensitive to any indi-
vidual user’s data, thus preventing the inference of any single user’s data from
the recommendation. Due to the injected noise, DP also needs to strike a balance
between recommendation accuracy and privacy protection degree. In addition,
DP does not protect users’ data from recommender systems, as the latter has
full access to users’ data in the clear.

1.2 Contributions

From the above discussion, it is expected that a privacy-friendly recommender
system should respect user privacy at two stages: (1) does not ask users to submit
their original data in the data collection stage; and (2) can prevent the inference
of any single user’s data from the final recommendation result in the normal exe-
cution stage. To the best of our knowledge, however, these two aspects have not
been considered simultaneously. In this paper, we aim at designing an approach
that can hide users’ private data and prevent privacy inference simultaneously.
At first glance, an intuitive solution is to integrate the techniques mentioned
above. Nevertheless, there are some interesting issues worthy of investigation but
largely overlooked by recent studies. For example, the amount of noise injected
by DP is based on the sensitivity of a query function, which sometimes is not
easy to estimate, especially when considering that the underlying data will be
disguised by RP or encryption. For another, since DP and RP both introduce
noise to original data, can we be certain that the recommendation accuracy will
inevitably become worse? Or what is the trade-off between accuracy and privacy
in this new context?

As the initial step towards more privacy-friendly recommender systems, we
propose in this paper a hybrid approach which combines RP and DP. Specifically,
users mask their original data through RP and send the disguised values to the
recommender system, which injects calibrated noise again to the perturbed data
to achieve DP. Our contributions are summarized as follows:

– We design a hybrid approach for privacy-preserving recommender systems by
combining DP with RP. Compared with existing works, our approach provides
more privacy guarantee as users’ private data is kept secret and no one can
infer any single user’s data from the recommendation result.
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– We theoretically show the noise added by RP has limited effect on recommen-
dation accuracy and the noise added by DP can be well controlled based on
the sensitivity analysis of functions on the perturbed data.

– We conduct extensive experiments to evaluate the performance of our hybrid
approach on three large-scale real world datasets. The results show that the
combination of DP and RP is feasible in practice. Generally it provides more
privacy protection with acceptable accuracy loss, and surprisingly sometimes
it achieves better privacy and accuracy at the same time.

The rest of the paper is organized as follows. Section 2 introduces a represen-
tative non-private recommendation algorithm and some background knowledge.
Section 3 presents the detailed design of the hybrid approach. Section 4 discusses
the experimental results and Sect. 5 concludes the paper.

2 Preliminaries

2.1 Recommendation Algorithm Without Privacy Guarantee

We first describe a recommendation algorithm [12] without privacy guarantee.
Suppose there are n users and m items. Based on the data provided by n users,
the recommender system has two matrices in hand. One is a rating matrix Rn×m

that contains the ratings of n users for m items where rui indicates the rating
of user u for item i. The other auxiliary (binary) matrix En×m indicates the
presence of ratings, where eui = 1 means u has rated for i and eui = 0 means
u does not. The two matrices are the input to the recommendation algorithm,
while the output is predicted ratings of items that users have not rated.

Some users tend to give higher ratings than other users, and some items tend
to receive higher ratings than others. This difference will make the recommen-
dation result disappointing, so it is necessary to subtract user effects and item
effects from ratings. We first compute the global average of Rn×m:

GAvg =
∑

R rui∑
E eui

Then, we center ratings by computing and subtracting average ratings for
items and users:

r′
ui = rui − UAvg(u)

UAvg(u) =
∑

i (rui − IAvgi) + βu · GAvg
∑

i eui + βu
, IAvgi =

∑
u rui + βm · GAvg
∑

u eui + βm

where IAvg and UAvg are dampened by βm and βu fictitious ratings of the
global average, respectively. Here, βm is the average number of ratings for item
m, and βu is the average number of rating items for user u.
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Finally, we use the centered ratings to calculate the covariance matrix, which
indicates the relationships between items:

Cov(ij) =

∑
u wur′

uir
′
uj∑

u wueuieuj

where wu is per-user weights equaling to the reciprocal of ||eu||. The final rec-
ommendation result can be made by passing this covariance matrix to a large
number of advanced learning and prediction algorithms, such as the k-nearest
neighbor (kNN) method proposed by Bell and Koren [2].

2.2 Differential Privacy (DP)

Intuitively, differential privacy means the probability an attacker who is able to
observe the computation’s output learns any record’s presence in or absence from
the computation’s input should be indistinguishable [3,4]. The formal definition
is as follows:

Definition 1. A randomized function f provides ε-differential privacy if for any
neighboring data bases A and B (A � B = 1), and any subset S of possible
outcomes Range(f),

Pr[f(A) ∈ S] ≤ exp(ε) × Pr[f(B) ∈ S]

Two datasets A and B are adjacent if there is only one individual record
difference between them (A � B = 1). The parameter ε is the privacy budget,
which can be used to control the level of privacy protection. The smaller the
value of ε is, the stronger privacy protection it provides. DP guarantees the
output is insensitive to any individual record. The probability that an attacker
can correctly guess whether or not an individual record is in the dataset is at
most exp(ε) based on the outputs of calculations. It satisfies a composability
property defined as follows: The sequence of fi(A) provides (

∑
i εi)-differential

privacy, where fi each provides εi-differential privacy. Therefore, the ε parameter
can be considered as an accumulative privacy cost as more steps are executed.
These costs keep accumulating until they reach an allotted privacy budget.

A common way to obtain differential privacy is by applying random noise to
the measurement. The amount of noise added depends on the L1-sensitivity of
the evaluated function, which is the largest possible change in the measurement
given a change in a single record in the dataset. In general, the Lk-sensitivity of
a function f is given by:

Sk(f) = max
(A�B=1)

||f(A) − f(B)||k

where || · ||k denotes the Lk−norm.
Given a function f :D → R

d, Laplace mechanism obtains ε-differential privacy
by adding noise sampled from Laplace distribution, with a calibrated scale b =
S1(f)/ε. The following computation maintains ε-differential privacy:

K(x) = f(x) + (Laplace(S1(f)/ε))d
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2.3 Randomized Perturbation

The basic idea of randomized perturbation is to perturb the data in such a way
that certain computations can be done while preserving users’ privacy. Although
data from each user is scrambled, if the number of users is significant large, the
aggregate information of these users can be estimated with decent accuracy. Such
property is very useful for computations that are based on aggregate information.
Scaler product and sum are among such computations.

Let ra and rb be the original vectors, where ra = (ra
1 , . . . , ra

i ) and rb =
(rb

1, . . . , r
b
i ). ra is disguised by va = (va

1 , . . . , va
i ), and rb by vb = (vb

1, . . . , v
b
i ),

where va and vb are uniformly distributed in domain [−γ, γ]. Let r′a = ra + va

and r′b = rb + vb be disguised data that are known. Because va and vb are
uniformly distributed, the scalar product of ra and rb can be estimated from r′a

and r′b and the sum of the values of ra can be estimated from r′a as follows:

n∑

i=1

(ri + vi) =
n∑

i=1

ri +
n∑

i=1

vi ≈
n∑

i=1

ri (1)

r′a · r′b =
n∑

i=1

(ra
i rb

i + rb
i v

a
i + ra

i vb
i + va

i vb
i ) ≈

n∑

i=1

ra
i rb

i (2)

3 The Hybrid Approach

Figure 1 shows the whole life-cycle of a typical recommender system armed with
our hybrid privacy-preserving approach. Three stages are involved in the process
of recommendation: data collection, data publication and data prediction. In the
first stage, users’ original data are disguised through randomized perturbation,
resulting in perturbed rating matrix R and auxiliary matrix E. Based on the
two perturbed matrices, the recommender system computes global average, item
averages, user averages, and finally the covariance matrix for data publication.
All these data are masked with particular amount of noise to guarantee differen-
tial privacy. With the added noise, the covariance matrix is ready for publication
and can be fed into an existing learning and prediction algorithm (e.g., the kNN
method [2]) with no changes. As mentioned earlier, the challenge here is how
to ensure recommendation accuracy and realize differential privacy on the per-
turbed data effectively.

3.1 Methodology

In the data collection stage, the recommender system decides on a range [−γ, γ]
and let each user know. Then, each user u disguises her ratings rui by adding
noise that is uniformly distributed in the domain [−γ, γ]. The recommender
system collects these disguised data r′

ui to form two perturbed matrices.
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Fig. 1. Overview of the hybrid approach for privacy-preserving recommender systems

In the stage of data publication, the recommender system injects noise to
three different values: the global average, the per-item average and the covari-
ance matrix. Note that, the noises for these values are different and depend on
the sensitivity of the underlying functions of computing these values. For global
average, Laplace distributed noise is added to guarantee its privacy:

GAvg =
∑

R r′
ui + Laplace(Δr1/ε1)∑

E eui + Laplace(Δr′
1/ε1)

where Δr1 and Δr′
1 are the sensitivity of function

∑
R r′

ui and
∑

E eui, respec-
tively. Their exact values will be discussed in the next subsection. We then use
the global average to produce a stabilized per-item average rating by βm at value
GAvg for each item:

IAvgi =
(
∑

u r′
ui + Laplace(Δr2/ε2)) + βm · GAvg

(
∑

u eui + Laplace(Δr′
2/ε2)) + βm

where Δr2 and Δr′
2 are the sensitivity of

∑
u r′

ui and
∑

u eui, respectively.
Having published the average rating for each item, we center the ratings for

each user as follows, taking shrinking parameter βu at global average, where cu

is the number of ratings by user u:

UAvg(u) =
∑

i (r′
ui − IAvgi) + βu · GAvg

cu + βu

We subtract user effects average from the appropriate ratings and clamp the
resulting centered ratings to the intervals [−B,B], to lower the sensitivity of the
measurements at the expense of the relatively few remaining large entries:

r̂ui =

⎧
⎨

⎩

−B if r′
ui − UAvg(u) < −B

r′
ui − UAvg(u) if − B ≥ r′

ui − UAvg(u) < B
B if r′

ui − UAvg(u) ≥ B

The final measurement we make of the private data is the covariance of the
perturbed and clamped user ratings vectors. To retain the difference between
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users, we take the non-uniform averages by using per-user weights wu which
equals to the reciprocal of ||eu||. Then, the covariance will be published as:

Cov(ij) =
∑

u wur̂uir̂uj + Laplace(Δr3/ε3)∑
u wueuieuj + Laplace(Δr′

3/ε3)

where Δr3 and Δr′
3 are the sensitivity of

∑
u wur̂uir̂uj and

∑
u wueuieuj ,

respectively.

3.2 Theoretical Analysis

As mentioned earlier, different functions have different sensitivities, which deter-
mines the amount of noise needed for differential privacy. In this subsection, we
analyze the sensitivities of different functions involved in the data publication.
The sensitivity values Δr1 and Δr2 are both τ + 2γ, where τ is the maximum
possible difference in raw ratings, and γ is the parameter of RP. For example,
if the range of rating is from 1 to 5, the τ then equals to 4. From Theorem 2,
the sensitivity value Δr3 is 2B(τ + 2γ) + 3B2. For Δr′

1 and Δr′
2, their values

are both 1, because the maximum possible difference is 1 in the auxiliary matrix
when ea and eb differ on only one value. The value of Δr′

3 is 3 which is clear
from Theorem 3.

Theorem 1. Let ra and rb differ on one rating, τ be the maximum possible dif-
ference in raw ratings. Considering the randomized perturbation before collecting
the data, the maximum possible difference in the processed ratings is τ +2γ. For
centered and clamped ratings r̂a and r̂b, we have

||r̂a − r̂b||1 ≤ τ + 2γ + B

Proof: If ra and rb are two sets of ratings which differ on one rating, present in
rb at rb

ui, others are everywhere equal, except for the ratings of user u. For the
ratings in common between ra and rb, the difference is at most the difference in
the subtracted averages:

|UAvg(u)b − UAvg(u)a| =
|rui − UAvg(u)a|

cb
u + βp

≤ τ + 2γ

cb
u + βp

For the new rating rui, its previous contribution of zero is replaced with the new
centered and clamped rating, at most B in magnitude. Hence, we have

||r̂a − r̂b||1 ≤ ca
u × τ + 2γ

cb
u + βp

+ B

Note that cb
u = ca

u + 1 and the maximal value of ca
u is βp + 1. Therefore, the

upper bound of ||r̂a − r̂b||1 is τ + 2γ + B. �	
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Theorem 2. Let ra and rb differ on one rating. Taking wu = 1/||eu||1, we have

||wa
ur′a

uir
′a
uj − wb

ur′b
uir

′b
uj || ≤ 2B(τ + 2γ) + 3B2

Proof: For the difference wa
ur′a

uir
′a
uj −wb

ur′b
uir

′b
uj , we can rewrite it as wa

ur′a
ui(r

′a
uj −

r′b
uj) + wb

u(r′a
ui − r′b

ui)r
′b
uj + (wa

u − wb
u)r′a

uir
′b
uj , as ||eb

u − ||ea
u|| ≤ 1, we have that

wa
u − wb

u =
1

||ea
u|| − 1

||eb
u|| ≤ 1

||ea
u||||eb

u||
The original matrix difference is bounded by

( ||r′a
i ||

||ea
i || +

||r′b
i ||

||eb
i ||

)

||r′a
i − r′b

i || +
||r′a

i |||r′b
i ||

||er
i ||||eb

i ||
Giving Theorem2, we have the upper bound 2B(τ + 2γ) + 3B2. �	

Theorem 3. Let ea and eb differ on one rating presence or absence. Taking
wu = 1/||eu||1, we have

||wa
uea

uie
a
uj − wb

ueb
uie

b
uj || ≤ 3

Proof: Between the two weight matrices, similarly, we can rewrite it as
wa

uea
ui(e

a
uj − eb

uj)+wb
u(ea

ui − eb
ui)e

b
uj +(wa

u −wb
u)ea

uie
b
uj . Then, we have the bound

as follows:

||wa
uea

uie
a
uj − wb

ueb
uie

b
uj || ≤

( ||ea
i ||

||ea
i || +

||eb
i ||

||eb
i ||

)

||ea
i − eb

i || +
||ea

i ||||eb
i ||

||er
i ||||eb

i ||
= 3

�	
The above theorems show that the hybrid approach takes into account the

effect of noise introduced by RP on the noise injected by DP. If we directly use DP
without considering the noise of RP, we will obtain weaker privacy protection.
This result is guaranteed by the following theorem.

Theorem 4. The hybrid approach can provide stronger privacy protection than
DP when raw rating data are disguised by RP.

Proof: First note that the sensitivity of
∑

R r′
ui and

∑
R rui are τ + 2γ and τ ,

respectively. To provide ε1-differential privacy for the global average, the hybrid
approach injects noise v based on Laplace( τ+2γ

ε1
). As DP does not consider the

noise introduced by RP, it will inject noise v′ based on Laplace( τ
ε1

). The noise
v′ on the disguised raw data can actually provide ε′

1-differential privacy where
τ+2γ

ε′
1

= τ
ε1

. Thus we have ε′
1 = τ+2γ

τ ε1 > ε1. Likewise, we can have ε′
2 > ε2

and ε′
3 > ε3 based on the sensitivity values given in Theorem2, where ε′

2 and ε′
3

are the actual privacy budget DP can provide for item average and covariance,
respectively. According to the composability property of differential privacy, we
have ε = ε1 + ε2 + ε3 and ε′ = ε′

1 + ε′
2 + ε′

3. Clearly, ε < ε′, which completes the
proof. �	
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We now examine the effect of the noise added by RP in the hybrid app-
roach on recommendation accuracy. As mentioned earlier, though raw ratings
from each user are perturbed, the aggregate information of these ratings can
be estimated with decent accuracy if the number of users is significant large.
Suppose GAvg is the global average of the perturbed raw data collected in the
hybrid approach and GAvg∗ is the global average of the raw data collected in
DP. Clearly, we have

GAvg =
∑

R r′
ui + Laplace(Δr1/ε1)∑

E eui + Laplace(Δr′
1/ε1)

, GAvg∗ =
∑

R rui + Laplace(Δr∗
1/ε1)∑

E eui + Laplace(Δr′
1/ε1)

where Δr1, Δr′
1, and Δr∗

1 are the sensitivity of function
∑

R r′
ui,

∑
E eui, and∑

R rui, respectively. If R is sufficiently large, we have
∑

R r′
ui ≈ ∑

R rui as the
noise injected into rui is uniformly sampled from [−γ, γ]. Besides, it is important
to notice that

∑
R r′

ui 
 Laplace(Δr1/ε1). Thus, we have: GAvg ≈ GAvg∗.
Likewise, we can conclude that Cov(ij) ≈ Cov∗(ij), which indicates that the
noise added by RP in the hybrid approach has limited effect on recommendation
accuracy.

4 Experiments

4.1 Experimental Setting

In this section, we evaluate our hybrid approach for privacy-preserving recom-
mender systems. As discussed earlier, both RP and DP introduce noise into
recommendation computation, so it is worth studying the prediction accuracy
when combining the two techniques. Therefore, we examined each of the three
methods (i.e., RP, DP, and the hybrid one) in turn to see its effect on recommen-
dation accuracy. All experiments were conducted on three real world datasets:
Netflix3 consists of roughly 100 M ratings of 17770 movies contributed by 480 K
users; MovieLens4 consists of 100 K ratings of 1682 movies contributed by 943
users; Yahoo5 consists of 23 M ratings of 11915 movies contributed by 7742 users.
The rating of the three datasets are all from 1 to 5.

By adjusting the parameters of the noise distributions we use (i.e., γ of RP
and ε of DP), our approach provides different randomized perturbation and
differential privacy guarantees, and consequently, the recommendation outputs
have different accuracy values. In our experiment, the recommendation accu-
racy is measured by the root mean squared error (RMSE) on the test datasets:

RMSE =
√∑

X(x−x′)2
|X| where X consists of all values needs to be predicted

in the test set and |X| is the size of X, x′ is the predicted value and x is the
original value in the test set. A smaller RMSE value indicates a more accurate
recommendation result. Regarding the training set and test set, the MovieLens
3 http://www.netflixprize.com.
4 http://grouplens.org/datasets/movielens.
5 https://webscope.sandbox.yahoo.com.

http://www.netflixprize.com
http://grouplens.org/datasets/movielens
https://webscope.sandbox.yahoo.com
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data is divided into two parts, 80% for the training set and 20% for the test set.
For Netflix data, the test set is the Probe set. For Yahoo dataset, the training
set contains 7642 users and the test set has 2309 users. The test set is gathered
chronologically after the training set.

We applied the kNN method [2] to the covariance matrix for the final rec-
ommendation. The value of k is fixed at 20, and the clamping parameter B is
set to 1. Following the work in [12], for any ε, we set the respective εi as follows:
ε1 = 0.02 × ε, ε2 = 0.19 × ε, ε3 = 0.79 × ε. All experiments were conducted on
a Dell PowerEdge R930 server which is equipped with 2.2 GHz CPU and 2 TB
RAM. Each experiment was run 10 times and the average results were reported.

4.2 Experimental Results

4.2.1 RP’s Effect on Accuracy. Figure 2 shows the recommendation accu-
racy when γ increases from 0.5 to 3.5 with a step of 0.5. Clearly, the accuracy
decreases on all three datasets. This is because the noise added by RP is deter-
mined by the parameter γ. In particular, the larger the γ is, the wider range the
random noise is in. Therefore, more randomness is likely to be added into the
original data, resulting in less accurate recommendation.

4.2.2 DP’s Effect on Accuracy. Figure 3 shows the recommendation accu-
racy when ε increases from 0.1 to 10. From the results, we can see that the
accuracy decreases rapidly when DP provides strong privacy guarantee (i.e.,

γ

(a) MovieLens dataset

γ

(b) Netflix dataset

γ

(c) Yahoo dataset

Fig. 2. RP’s effect on recommendation accuracy

ε

(a) MovieLens dataset

ε

(b) Netflix dataset

ε

(c) Yahoo dataset

Fig. 3. DP’s effect on recommendation accuracy
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when ε < 1). When providing a weak privacy protection (i.e., when ε > 1),
the accuracy approaches to a constant. Such observations imply that a large ε
contributes little to the accuracy but weakens the privacy protection.

4.2.3 Effect of the Hybrid Approach on Accuracy. We first examine
the hybrid approach by taking DP as the baseline. Figure 4 depicts how the rec-
ommendation accuracy of DP is affected by RP. It is clear that no matter which
γ is used in RP, the overall trend of DP remains the same, that is, the accuracy
decreases as ε approaches to 0, indicating a stronger privacy guarantee. Besides,
when DP and RP work together, larger γ often leads to less accuracy. For exam-
ple, DP plus RP with γ = 0.5 is more accurate than DP plus RP with γ = 3.5 on
MovieLens dataset. Finally, it is worth noting that in most cases the combination
of DP and RP makes recommendation less accurate, which coincides with our
common sense as both of them introduce noise into the original data. However,
their combination sometimes results in a win-win situation where both the accu-
racy and the privacy becomes better, as seen in Fig. 4(b). To make this clear, we
draw in Fig. 5 the RMSE ratio between the hybrid approach and DP. We can see
that for Netflix dataset, the combination of DP and RP sometimes outperforms
DP only, especially when γ is small, for example, 0.5. Besides, the accuracy
loss of DP plus RP is acceptable on MovieLens and Netflix datasets, but is not
satisfactory on Yahoo dataset. A possible reason might be that MoveiLens and
Netflix datasets have similar rating distribution, which is different from Yahoo
dataset. We then examine the hybrid approach by taking RP as the baseline.
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Fig. 4. RP’s effect on DP
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Fig. 5. RMSE ratio between the hybrid approach and DP
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Fig. 6. DP’s effect on RP
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Fig. 7. RMSE ratio between the hybrid approach and RP

Figure 6 depicts how the recommendation accuracy of RP is affected by DP. We
can again see that the overall trend of RP remains the same (i.e. the accuracy
decreases as γ increases) no matter which ε is used in DP. Besides, smaller ε
is more likely to make the recommendation less accurate, as stronger privacy
guarantee is provided in DP through injecting more noise into the data. We also
notice that, for MovieLens dataset, the combination of RP and DP makes rec-
ommendation less accurate, but in an acceptable range. For the Netflix dataset,
however, their combination is indeed a good choice as we can obtain additional
privacy guarantee while not sacrificing recommendation accuracy. Further note
that this is true for any combination of γ and ε in our experiments, as shown in
Fig. 7(b). The accuracy loss is still unsatisfactory on Yahoo dataset, especially
when DP provides strong privacy guarantee, as depicted in Fig. 7(c).

4.2.4 Efficiency of the Hybrid Approach. Figure 8 shows the running
time of the hybrid approach. It is clear that the running time increases when the
rating matrix becomes large, but the total computation cost is acceptable even
on a moderate server. In particular, for the MovieLens dataset where the size of
rating matrix is about 1000 * 1700, the hybrid approach only needs 33 s. Even for
large Netflix dataset whose rating matrix is 380 K * 500, the hybrid approach can
be completed within less than 2.5 h. The computation cost of the hybrid approach
mainly comes from DP, as RP only requires few simple operations and is done at
user side. Thus, the hybrid approach has the same computation complexity as DP,
but can provide stronger privacy guarantee than DP as shown in Theorem4.
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4.2.5 The Hybrid Approach Vs DP. Figure 9 depicts the accuracy com-
parison of the hybrid approach and DP when the raw rating data are disguised
by RP with different γ. The privacy budget ε is set to 1 in both methods. In
all datasets, we can see that DP has a better performance than the hybrid
approach. This, however, exactly shows DP cannot provide sufficient privacy
guarantee over the perturbed data, as it underestimates the sensitivity of the
functions on the perturbed data. This result coincides with Theorem4, which
says the hybrid approach can provide stronger privacy protection than DP over
the data disguised by RP. Further, the RMSE difference of the two methods is
small, which means the hybrid approach has an acceptable accuracy loss while
providing stronger privacy guarantee.

4.2.6 Summary. From the above discussion, we can see that, by carefully
injecting appropriate noise into the perturbed data based the sensitivity analysis
of different functions involved in the recommendation computation, the hybrid
approach can provide more privacy protection with acceptable accuracy loss.
More interestingly, the hybrid approach will not necessarily lead to less recom-
mendation accuracy, which initially contradicts our common sense but has been
validated subsequently by experiments on Netflix dataset, which is the largest
dataset in our experiments. Besides, the integration of DP and RP does not
affect their original trend of the relation between accuracy and privacy, which
is also appealing as we still have control of the balance between accuracy and
privacy in the hybrid approach.

(a) MovieLens dataset (b) Netflix dataset (c) Yahoo dataset

Fig. 8. Efficiency of the hybrid approach
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Fig. 9. RMSE of the hybrid approach and DP over perturbed data
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5 Conclusion

We have presented a hybrid approach for privacy-preserving recommender sys-
tems by combining randomized perturbation (RP) and differential privacy (DP),
which is more privacy-friendly than existing works as the user’s private data are
protected by randomized perturbation and no one can infer any single user’s
data from the normal recommendation output thanks to differential privacy. We
have theoretically shown the noise added by RP has limited effect on recom-
mendation accuracy and the noise added by DP can be well controlled based on
the sensitivity analysis of functions on the perturbed data. We have conducted
extensive experiments on real datasets and concluded that the combination of
DP and RP is feasible not only in theory but also in practice.
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