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Abstract. Network embedding aims at learning a distributed repre-
sentation vector for each node in a network, which has been increasingly
recognized as an important task in the network analysis area. Most exist-
ing embedding methods focus on encoding the topology information into
the representation vectors. In reality, nodes in the network may contain
rich properties, which could potentially contribute to learn better repre-
sentations. In this paper, we study the novel problem of property preserv-
ing network embedding and propose a general model PPNE to effectively
incorporate the rich types of node properties. We formulate the learn-
ing process of representation vectors as a joint optimization problem,
where the topology-derived and property-derived objective functions are
optimized jointly with shared parameters. By solving this joint optimiza-
tion problem with an efficient stochastic gradient descent algorithm, we
can obtain representation vectors incorporating both network topology
and node property information. We extensively evaluate our framework
through two data mining tasks on five datasets. Experimental results
show the superior performance of PPNE.

1 Introduction

Networks are ubiquitous in our daily lives and many real-life applications focus
on mining information from the networks. A fundamental problem in network
mining is how to learn the desirable network representations [4,22]. To address
this problem, network embedding is presented to learn the distributed represen-
tations of nodes in the network. The main idea of network embedding is to find
a dense, continuous, and low-dimensional vector for each node as its distributed
representation. Representing nodes into the distributed vectors can form up a
potentially powerful basis to generate high-quality node features for many data
mining and machine learning tasks, such as node classification [6], link prediction
[11] and recommendation [24,27].
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Most related works investigate the topology information for network embed-
ding, such as DeepWalk [16], LINE [19], Node2Vec [6] and SDNE [22]. The basic
assumption of these topology-driven embedding methods is that nodes with sim-
ilar topology context should be distributed closely in the learned low dimensional
representation space. However, in many real scenarios, it is insufficient to learn
desirable node representations by purely relying on the network topology struc-
ture. For example in the social networks, it is possible that two users share very
similar interests but they are not connected and share no common friends, thus
their similarity on interests cannot be effectively captured by the topology based
network embedding methods. In such a case, other types of information should be
incorporatedas the complementary content tohelpus learnbetter representations.

Usually, nodes in the network may be associated with a set of properties, such
as the profiles of each user in a social network and the metadata of each paper in
a citation network. Node property information is also important to measure the
similarity between nodes, but are largely ignored by previous network embedding
methods. For example in a social network, if two users share some common tags
or tweet topics, they are very likely to be similar even if they are topologically far
away from each other. Since the node properties potentially encode different types
of information from the network topology, integrating them into the embedding
process is expected to achieve a better performance. As the first attempt, TADW
[25] incorporates the text features of nodes into network embedding process under
a framework of matrix factorization. However, there are two limitations of TADW.
Firstly,theverytimeandmemoryconsumingmatrixfactorizationprocessofTADW
makes it infeasible to scale up to large networks. Secondly, TADW only considers
the texts associated to each node, and it is difficult to apply TADW to handle the
node properties of rich types in general.

In this paper, we propose a general network embedding framework which can
effectively encode both the topology information of the network and the rich prop-
erties of the nodes. This task is difficult to address due to the following challenges.
Firstly, nodes in a network may contain several types of properties, and in differ-
ent networks, the types of node properties are different. It is non-trivial to model
various types of properties into an unified format and utilize these property infor-
mation. Secondly, although combining network topology and node properties into
the embedding process is expected to achieve better performance, it is not obvious
howbest to do this under a general framework.There are sophisticated interactions
between network topology and node properties, and it is difficult to integrate node
properties into the existing topology-derived models. For example, DeepWalk and
Node2Vec cannot easily handle additional information during the random walk
process in a network.

To address the above challenges, we propose a general and flexible prop-
erty preserving network embedding model PPNE. We formulate the learning
process of property preserving network embedding as a joint optimization prob-
lem, where the topology-derived and property-derived objective functions are
optimized jointly. Specifically, we propose a negative sampling based objective
function to capture the topology information, which aims to maximize the like-
lihood of the prediction of the center node given a specific contextual node.
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Besides, we extract a set of constraints according to the property similarity
between each pair of nodes, and a property-derived objective function is pro-
posed to restrict the learned representation vectors to satisfy the extracted con-
straints. Finally, we utilize the stochastic gradient descent (SGD) algorithm to
solve this joint optimization problem.
To summarize, we make the following contributions:

– In this paper we propose and study the novel problem of property preserving
network embedding, and propose a general embedding framework to effec-
tively incorporate both network topological information and node property
information into the network embedding process.

– To utilize the property similarity information, we propose two ways of extract-
ing constraints from the property similarity matrix. A carefully designed objec-
tive function with such constraints is also proposed.

– We extensively evaluate our approach through multi-class classification and
link prediction tasks on five datasets. Experimental results show the superior
performance of PPNE over state-of-the-art embedding methods.

The rest of this paper is organized as follows. Section 2 summarizes the related
works. Section 3 formally defines the problem of property preserving network
embedding. Section 4 introduces the proposed model PPNE in details. Section 5
presents the experimental results. Finally we conclude this work in Sect. 6.

2 Related Work

Network embedding aims to learn a distributed representation vector for each
node in a network, which essentially is an unsupervised feature learning process.
In general, network embedding is related to the problem of graph embedding
or dimensionality reduction. Most existing network embedding methods can be
categorized into two broad categories: matrix factorization based and neural
network based methods.

Matrix factorization based methods first express the input network with a
affinity matrix in which the entries represent the relationships between nodes,
and then embed the affinity matrix into a low dimensional space using matrix
factorization techniques. Locally linear embedding [17] seeks a lower-dimensional
projection of the input affinity matrix which preserves distances within local
neighborhoods. Spectral Embedding [2] is one method to calculate the non-linear
embeddings. It finds a low dimensional representation of the input data using
a spectral decomposition of the graph Laplacian. Sparse random projection [10]
reduces the dimensionality of data by projecting the original input space using a
sparse random matrix. However, matrix factorization based methods rely on the
decomposition of the affinity matrix, which is too expensive to scale efficiently
to large real-world networks. Besides, the manually predefined node similarity
measurements are needed to construct the affinity matrix, which can significantly
affect the quality of learned representation vectors.

Recently neural network based models are introduced to solve the network
embedding problem. As the first attempt, DeepWalk [16] introduces an word
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embedding algorithm (Skip-Gram) [14] to learn the representation vectors of
nodes. Tang et al. propose LINE [19], which optimizes a carefully designed objec-
tive function that preserves both the local and global structure. Wang et al.
propose SDNE [22], a deep embedding model to capture the highly non-linear
network structure and preserve the global and local structures. SDNE exploits
the first-order and second-order proximities to preserve the network structure.
Node2Vec [6] learns a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between network neighbor-
hoods of nodes. TADW [25] incorporates the text features of nodes into network
embedding process under a framework of matrix factorization. Compared to the
matrix factorization based methods, neural network based methods are easier to
generalize and own strong representation ability. However, most previous works
only take the network topology information into consideration. Different from
the previous typology-only works, our work aims to propose a general property
preserving network embedding model which integrate the rich types of node
properties in the network into the embedding process.

Finally, there is a body of works focus on the problem of node classification
[8,20,21,26] or link prediction [11,13]. However, the objective of our work is
totally different from these works. We aim to learn better representation vectors
for nodes, while the node classification or link prediction tasks are only utilized
to evaluate the quality of the embedding results.

3 Problem Definition

In this section, we formally define the studied problem. The input network G is
defined as G = (V, T, P ), where V represents nodes in the network. The topology
matrix T ∈ R

|V |×|V | is the adjacency matrix of the network. P is the property
similarity matrix with each entry Pi,j ∈ [0, 1] denoting the property similarity
score between node i and j. Here we formally define the problem of property
preserving network embedding:

Definition 1. (Property Preserving Network Embedding): Given a network G
= (V, T, P), the problem of property preserving network embedding aims to learn
a matrix X ∈ R

|V |×d, where d is the number of latent dimensions with d � |V |.
Each row vector Xi in X is the embedding vector of node i. The objective of prop-
erty preserving network embedding is to make the learned representation vectors
explicitly preserve both the network topology and node property information.

4 Property Preserving Network Embedding

In this section, we present the details of the proposed property preserving
network embedding model PPNE. Firstly we briefly introduce the framework
of PPNE. Then the topology-derived objective function and property-derived
objective function are introduced separately. After that we present the joint
optimization process of the above two objective functions. Finally we discuss
several practical issues of the proposed model.
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4.1 Framework

Figure 1 shows the framework of PPNE. One can see that each node in the
network is associated with a set of properties. The first step of PPNE is to
construct two matrices from the input network: the topology matrix and the
property similarity matrix. Topology matrix is a 0–1 adjacency matrix which
represents the connections among nodes. The property similarity matrix con-
tains the property similarities between each pair of nodes, which is calculated
by a predefined similarity measurement. Given a particular machine learning
or data mining task, users can flexibly choose or design the property similar-
ity measurement. For example, in order to serve a geographic mining task, the
geography related properties (address, geographic tag) should be more impor-
tant than other properties. How to calculate the node property similarities is not
the focus of this paper, as it varies to different networks and applications. We
assume the property similarity matrix has been given by domain experts. For the
topology matrix, we utilize the random walk algorithm to generate a set of node
sequences. A topology-derived objective function is proposed to capture topology
information preserved in the node sequences. For the property similarity matrix,
we extract a set of constraints, which ensures the embedding vectors of nodes
with similar properties should be distributed closely in the learned representa-
tion space. Here we define two kinds of constraints: inequality constraints and
numeric constraints. We also propose a property-derived objective function for
each type of the constraints. Finally, the topology-derived and property-derived
objective functions are jointly optimized sharing same parameters.

Fig. 1. Framework of PPNE.

4.2 Topology-Derived Objective Function

Following the idea of DeepWalk [16], we assume that nodes with similar topology
context tend to be similar. With such an assumption, we aim to maximize the
likelihood of the prediction of the center node given a specific contextual node.
The contextual nodes of a center node are defined as a fixed-size window w of its
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previous nodes and after nodes in the node sequences generated by random walk.
We propose an novel negative sampling based optimization objective function in
which the node representation vectors are considered as the parameters. In the
optimization procedure, the representation vectors are updated and the finally
learned vectors preserve the topology information.

Firstly, the network topology matrix T is converted into a set of node
sequences C by random walk. In a random walk iteration, for each node n in
V , we generate a node sequence of length t which starts from node n. This
iteration will repeat r times to generate enough sequences.

Based on the node sequences C, we try to solve the following objective
function:

maximize DT =
∏

n∈C

∏

z∈context(n)

∏

u∈{{n}∪NEG(n)}
p(u|z) (1)

Given a sampled center node n and its contextual nodes context(n), NEG(n) is
the set of negative samples of the center node n with a predefined size ns. Nodes
far away from the center node have a larger chance to be picked as the negative
samples. p(u|z) defines the probability of the center node u given the contextual
node z. Given the contextual node z, we aim to maximize the probability of the
positive samples u ∈ {n}, while minimize the probability of the negative samples
u ∈ NEG(n).

For each node n in V , we design two corresponding vectors: the embedding
vector and the parameter vector. The embedding vector υn is the representation
of node n when it is treated as the contextual node, while the parameter vector
θn is the representation of n when it is treated as the center node. In our model,
p(u|z) is defined as

p(u|z) =

{
σ(υT

z θu), Ln(u) = 1

1 − σ(υT
z θu), Ln(u) = 0

in which σ is the sigmoid function:

σ(υT
z θu) =

1
1 + e−(υT

z θu)

Ln(u) is an indicator function:

Ln(u) =
{

1, u ∈ {n}
0, u ∈ NEG(n)

Moreover, p(u|z) can be represented as

p(u|z) = [σ(υT
z θu)]L

n(u) · [1 − σ(υT
z θu)]1−Ln(u)

Hence, the objective function can be rewritten as follows:

maximize DT =
∏

n∈C

∏

z∈context(n)

∏

u∈{{n}∪NEG(n)}

[σ(υT
z θu)]L

n(u) · [1 − σ(υT
z θu)]1−Ln(u) (2)
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By maximizing the likelihood of prediction of positive samples and minimizing
the likelihood of negative samples, the proposed objective function encodes the
topology information into the representation vectors of nodes.

Compare to DeepWalk, a popular topology-derived method, the proposed
model is faster and more effective. Firstly, the objective function of DeepWalk
is defined as

maximize D =
∏

n∈C

∏

z∈context(n)

p(z|n)

The hierarchical softmax method is introduced to design the probability p(z|n),
which reduces the computational complexity of calculating p(z|n) from O(|V |)
to O(log2 |V |). Hence the computational complexity of DeepWalk is O(|C| · 2w ·
log2 |V |), in which w is the window size of the contextual nodes. In the objective
function (2), the computational complexity is further reduced to O(|C| · 2w ·
(ns + 1)), in which ns is a constant number irrelevant to the size of network.
Thus the model training time is significantly reduced. Secondly, by choosing
the negative samples according to their distances from the center node, the rich
global topology information is integrated into our model. This strategy ensures
our model not only considers the local information of the contextual nodes, but
also can encode the information of the nodes which have farther topological
distance from the center node.

4.3 Property-Derived Objective Function

In this subsection we present the details of the property-derived objective func-
tion. In natural language processing area, SWE [12] and RC-NET [23] incorpo-
rate the semantic knowledges into the word embedding process. Inspired by the
above works, we propose two ways to extract constraints from the property sim-
ilarity matrix P . Based on these constraints, we introduce the property-derived
objective functions.

Related works incorporate the original property features of single type into
the embedding process [25]. Different from such works, in our approach the
property matrix P ∈ R

|V |×|V | contains the property similarity scores between
each pair of nodes, which is calculated by a predefined similarity measurement.
According to the requirements of targeting data mining tasks and the types of
networks, users can flexibly design an appropriate property similarity measure-
ment to cast the input network into the property similarity matrix. This strategy
guarantees the proposed embedding framework can be applied on various kinds
of networks and serves different types of data mining tasks.

Inequality Constraints. The first way we proposed to utilize the property
similarity matrix P is to extract a set of inequalities from matrix P as the
constraints. For each node n in V , according to the matrix P , we construct its
most similar node set posn and most dissimilar node set negn. posn contains top
k similar nodes of n and negn contains top k dissimilar nodes, where k � |V |/2.
With posn and negn, we can obtain the following inequalities for node n:

Pnp > Pnq p ∈ posn, q ∈ negn
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in which Pnp is the property similarity score between node n and p. The final
representation vectors of the corresponding nodes should satisfy the following
constraint:

sim(υn, υp) > sim(υn, υq) p ∈ posn q ∈ negn

in which υn is the embedding vector of node n. sim(υn, υp) is the cosine simi-
larity between the embedding vectors of node n and p. After constructing such
constraints for all the nodes, we can obtain a set of constraints S, which contains
triples in the form of {(i, j, k), sim(υi, υj) > sim(υi, υk)}.

Based on the constraint set S and the node sequences C, we propose the fol-
lowing objective function to force the embedding vectors to satisfy the extracted
constraints:

minimize DI =
∑

n∈C

∑

(i,j,k)∈S
Ii,j,k(n) · f(i, j, k) (3)

where Ii,j,k(n) is an indicator function:

Ii,j,k(n) =

{
1, i = n or j = n or k = n

0, else

The function f(.) is a normalization hinge loss function:

f(i, j, k) = max(0, sim(υi, υk) − sim(υi, υj))

The objective function DI ensures that the similarity score between embed-
ding vectors of two nodes with similar properties should be no less than the nodes
with dissimilar properties. For a sampled node in the sequences, we select the
inequality constraints associated with this node and judge whether the current
embedding vectors of the corresponding nodes satisfy these constraints. If the
constraints are satisfied, these embedding vectors will remain unchanged, other-
wise they will be updated towards the direction of satisfying these constraints.

Numeric Constraints. The second way of utilizing the matrix P is to consider
the property similarity scores as the numeric constraints for refining the network
embedding process. The motivation is that the learned representation vectors
of two nodes should be distributed closer to each other if they have similar
properties, namely their property similarity score in P is high.

Similar to the generation process of the inequality constraints, according to
the matrix P , for each node n in |V | we select its top k similar and dissimilar node
sets as the posn and negn. Nodes in the two sets own strong discrimination ability
over node n. Based on the property similarity matrix P and node sequences C,
we propose the following objective function:

minimize DN =
∑

n∈C

∑

i∈{posn∪negn}
Pnid(υn, υi) (4)
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in which d(υi, υj) is the Euler distance function to measure the distance between
the embedding vectors of node i and j: d(υi, υj) =

√
(υi − υj)T (υi − υj).

One can see that the optimization process of the objective function DN is
affected by the property similarity score Pni, and the distances between nodes
with similar properties decrease faster than that between dissimilar ones. Hence,
DN can ensure that nodes with similar properties are distributed closer in the
learned embedding space.

4.4 Joint Optimization

In this subsection, we show the joint optimization process of the topology-
derived and property-derived objective functions. Here we propose two types
of PPNE model: PPNEineq and PPNEnum. PPNEineq aims to jointly optimize
the topology-derived objective function DT and the inequality constraint based
objective function DI . PPNEnum aims to jointly optimize DT and the property-
derived function DN with numeric constraints. We utilize the SGD algorithm to
solve the optimization problems. Firstly we introduce the optimization process
of DT , DI and DN separately, and the derivative results are utilized to jointly
update the embedding vectors.

To maximize the objective function DT in the Formula (2), we try to maxi-
mize the following log-likelihood function:

log DT =
∑

n∈C

∑

z∈context(n)

∑

u∈{{n}∪NEG(n)}

{Ln(u) · log[σ(υT
z θu)] + [1 − Ln(u)] · log[1 − σ(υT

z θu)]}

Given a sample of (n, context(n)) in C, with sampled z and u, we set

L = Ln(u) · log[σ(υT
z θu)] + [1 − Ln(u)] · log[1 − σ(υT

z θu)] (5)

Firstly we calculate the following partial derivative:

∂L
∂θu

= [Ln(u) − σ(υT
z θu)] · υz

Thus θu can be updated by

θu = θu + η[Ln(u) − σ(υT
z θu)] · υz (6)

where parameter η is the learning rate. In Formula (5), θu and υz are symmetric,
so υz can be updated as

υz = υz + η
∑

u∈{{n}∪NEG(n)}
[Ln(u) − σ(υT

z θu)] · θu (7)
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Then we show the optimization process of DI in Formula (3). For conve-
nience, we use snp to represent sim(υn, υp). Given a sampled (n, context(n)) in
C, firstly we calculate the partial derivative of DI :

∂DI

∂υn
=

∑

(i,j,k)∈S

f ′ · (δik(n)
∂sik

∂υn
− δij(n)

∂sij

∂υn
) (8)

in which δij(n) are defined as

δij(n) =

{
1, i = n or j = n

0, others

and

f ′ =

{
1, sij < sik

0, sij ≥ sik

The partial derivatives in Formula (8) can be easily calculated. For example,
given a constraint contains n and assume i = n, we can get

∂sij

∂υn
=

∂snj

∂υn
= −snjυn

|υn|2 +
υj

|υn||υj |
For the sample (n, context(n)), the embedding vectors of node n will be updated
as follows:

υn = υn − β · η
∑

(i,j,k)∈S

∂DI

∂υn
(9)

in which β is the balance parameter to control the weight of the node properties
in the embedding process.

Here we present the optimization process of DN in Formula (4). Given a
sampled (n, context(n)), we calculate the partial derivative of DN :

∂DN

∂υn
=

∑

i∈{posn∪negn}
Pni · (υn − υi)[(υn − υi)T (υn − υi)]−

1
2

The embedding vector of node n will be updated as follows:

υn = υn − β · η
∑

i∈{posn∪negn}

∂DN

∂υn
(10)

Finally, Algorithm 1 shows the joint optimization process of PPNEineq model.
For PPNEnum model, we only need to modify line 14 to update embedding vector
following Formula (10).



PPNE: Property Preserving Network Embedding 173

Algorithm 1. PPNEineq

Input:
Network G(V, T, P ) ;1

Embedding size d;2

Output:
Embedding matrix X ∈ R

|V |×d ;3

for node n in V do4

initialize embedding vector υn ∈ R
1×d;5

initialize parameter vector θn ∈ R
1×d;6

end7

node sequences C = RandomWalk() ;8

for (n, context(n)) in C do9

#Topology − derived Objective Function ;10

update embedding vectors following Formula (7) ;11

update parameter vectors following Formula (6) ;12

#Property − derived Objective Function ;13

update embedding vector following Formula (9) ;14

end15

for i = 0; i < |V |; i + + do16

Xi = υi17

end18

return X19

4.5 Discussion

We discuss several issues of the PPNE model in detail.

Choice of the Measurements. We choose the cosine similarity measurement
to measure the similarity between embedding vectors, and the Euler distance to
measure the distance between embedding vectors. The proposed model is still
effective with these simple and popular measurements, which can better show
the generality of our model.

Property Similarity Matrix. The property similarity matrix of the input
network is the basis of the proposed model. For a large network, the calculation
process of the pairwise similarities between nodes seems to be time consum-
ing. However there are several effective strategies which can significantly reduce
the time cost. Firstly, we can precompute the norm of each vector and store it
using a lookup table. Secondly, this process can be implemented easily in par-
allel. These improvements has been implemented in a popular machine learning
toolkit: scikit-learn1. With scikit-learn, it takes only several hours to construct
the similarity matrix for the largest network in our experiments.

1 http://scikit-learn.org/stable/.

http://scikit-learn.org/stable/
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5 Experiments

In this section, firstly we introduce the datasets and baseline methods used in this
work. Then we thoroughly evaluate our proposed methods through two classic
data mining tasks on four paper citation networks and one social network. Finally
we analyze the quantitative experimental results and investigate the sensitivity
across parameters.

5.1 Experiment Setup

Datasets. In order to thoroughly evaluate the proposed methods, we conduct
experiments on four paper citation networks and one social network with differ-
ent scale of nodes. Table 1 shows the detailed information of the five datasets.
The four paper citation networks are Citeseer2, Cora (see Footnote 2), PubMed
(see Footnote 2) [18] and DBLP3 [9]. In the paper citation networks, nodes refer
to papers and links refer to the citation relationships among papers. Papers are
classified into several categories according to the belonged domains. In Citeseer,
Wiki and PubMed networks, each paper has abstract as its property, and in
DBLP dataset, each paper has properties like title, authors, publication venue
and abstract. Google+ (see Footnote 3) is a social network in which nodes refer
to users and links represent friend relationships among users. Each user has gen-
der, job title, university and workplace as his properties. The institution of each
user is considered as his category. We select top 6 popular institutions as the
final categories. For the networks with single type of node property (Citeseer,
Cora and PubMed), the property similarity matrix contains the pairwise cosine
similarity scores between nodes. For the networks with richer and more com-
plex node properties (DBLP and Google+), we calculate the cosine similarity
between nodes over each type of properties separately, and then weighted linearly
combine them. The weights are tuned in a few random sampled instances.

Embedding Methods. We compare PPNE with the following baseline
methods:

– DeepWalk: DeepWalk [16] is a topology-only network embedding method,
which introduces the Skip-Gram algorithm to learn the node representation
vectors.

– LINE: LINE [19] is a popular topology-only network embedding method,
which considers the first-order and second-order proximities information.

– Property Features: In this method nodes are represented by the property
features.

– Naive Combination: We simply concatenate the vectors from both Property
Features and DeepWalk as the final representation vectors.

– TADW: TADW [25] incorporates the text features of each node into the
embedding process under a framework of matrix factorization.

2 http://linqs.cs.umd.edu/projects/projects/lbc/index.html.
3 https://snap.stanford.edu/data/index.html.

http://linqs.cs.umd.edu/projects/projects/lbc/index.html
https://snap.stanford.edu/data/index.html
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– PPNEineq : PPNEineq is the PPNE model with the inequality constrains.
– PPNEnum : PPNEnum is the proposed PPNE model with the numeric con-

strains.

Table 1. Statistics of the datasets

Data Nodes Links Categories

Citeseer 3, 312 4, 732 6

Wiki 2, 405 17, 981 11

PubMed 19, 717 44, 338 3

DBLP 244, 021 4, 354, 534 9

Google+ 107, 614 13, 673, 453 6

Parameter Setup. For all datasets, the dimension of the learned representation
vector is set to d = 160. In DeepWalk method, parameters are set as window
size w = 10, walks per node r = 80 and walk length t = 40. In LINE method,
the parameters are set as follows: negative = 5 and samples = 10 million. In
Property Features method, we reduce the dimension of node property features
to 160 via SVD [7] algorithm. In TADW method the parameters are set to the
same as given in the original paper. In PPNE method, the number of negative
samplings ns = 5, the balance parameter β = 0.3, learning rate η = 0.1, walks
per node r = 80, walk length t = 40.

5.2 Multi-class Classification

We utilize the representation vectors generated by various network embedding
methods to perform multi-class node classification task. The representation vec-
tor of each node is treated as its feature vector, and then we use a linear support
vector machine model [3] to return the most likely category. The classification
model is implemented using scikit-learn. For each dataset, a portion (Tr) of the
labeled nodes are randomly picked as the training data, and the rest of nodes
are the test data. We repeat this process 10 times, and report the average per-
formance in terms of classification accuracy.

Table 2 shows the classification performance on four datasets. Here “-” means
TADW can not handle large networks due to its very time and memory con-
suming process of matrix factorization. From Table 2, one can see PPNE con-
sistently outperforms other baseline methods. For Citeseer dataset, PPNEineq

achieves the best performance and beat the best baseline TADW by 5%. In Wiki
dataset, PPNEineq beat baselines by 3%. PPNEineq improves the classification
performance by 5% on DBLP dataset and PPNEnum beat the best baseline by
nearly 6% on Google+ dataset. Besides, the improvement over TADW is sta-
tistically significant (sign test, p-value < 0.05) on Citeseer and Wiki datasets.
PPNEineq extracts the inequalities between nodes from the property similarity
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Table 2. Classification performance (Accuracy) on four datasets.

Methods Citeseer Wiki DBLP Google+

Tr 10% 20% 30% 10% 20% 30% 1% 2% 3% 1% 2% 3%

DeepWalk 47.8 53.5 56.5 56.9 61.8 64.0 63.0 64.8 65.7 55.9 56.9 57.4

LINE 41.2 45.8 49.5 57.6 59.4 63.2 61.2 62.8 63.8 53.7 54.6 55.1

Property features 53.4 55.8 58.4 58.1 63.3 65.4 68.6 69.8 71.2 59.8 60.9 61.2

Naive combination 54.1 56.5 60.5 64.4 69.3 72.3 69.4 71.2 72.9 61.8 62.7 64.2

TADW 55.9 58.5 61.8 71.0 74.9 77.3 - - - - - -

PPNEineq 60.4 63.2 66.1 74.5 77.7 80.0 76.2 77.8 79.2 67.2 69.1 70.3

PPNEnum 58.5 62.7 65.5 71.4 75.0 76.7 75.5 76.9 78.7 68.7 70.9 71.8

matrix, which is a robust method to represent the similarity information. As a
more delicate method, the optimization process of PPNEnum is affected by the
numeric similarity scores, which essentially introduces the degree of inequalities
between nodes. If these degrees match the label information, such as in Google+,
PPNEnum performs better than PPNEineq, otherwise it may introduce noise into
PPNEnum as shown on Citeseer, Wiki and DBLP datasets.

The experimental results demonstrate the effectiveness of the proposed
embedding methods. By incorporating the network topology and node prop-
erty information into a unified embedding framework, the quality of the learned
representation vectors are improved. Meanwhile, PPNE performs consistently
better when training data is small.
Parameter Sensitivity Analysis. PPNE has two major parameters: dimen-
sion d and the balance parameter β. We fix the training proportion to 30% and
test the classification accuracies with different d and β. We let β varies from 0.1
to 0.9 and d varies from 10 to 500. Figure 2 shows the classification performances
with different β and d on Citeseer and Wiki datasets. With the increase of β,
the classification accuracy first increases and then decreases. When we increase
the dimension d, the classification accuracy first increases and then keeps sta-
ble. It shows that, PPNE achieves the best performance when β varies within a
reasonable range and d is larger than a specific threshold.

(a) Balance Parameter β. (b) Representation Dimension d.

Fig. 2. The classification performance w.r.t the balance parameter β and dimension d.
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5.3 Link Prediction

Given a snapshot of the current network, the link prediction task refers to pre-
dicting the edges that will be added in the future time [1,13]. Link prediction can
show the predictability of different network embedding methods. To process the
link prediction task, a portion of existing links (50%) are removed from the input
network. Based on the residual network, node representation vectors are learned
by different embedding methods. Node pairs in the removed edges are considered
as the positive samples. We also randomly sample the same number of node pairs
that are not connected as the negative samples. Positive and negative samples
form a balanced data set. Given a node pair in the samples, the cosine similarity
score is calculated according to their representation vectors. Area Under Curve
(AUC) [5] is used to evaluate the consistency between the labels and the simi-
larity scores of the samples. We also choose Common Neighbors as a baseline
method because it has been proved as an effective method [11,15].

Table 3. Link prediction performance (AUC score)

Method Citeseer PubMed

LINE 0.725 0.751

DeepWalk 0.743 0.78

Common neighbors 0.691 0.714

TADW 0.757 0.792

PPNEineq 0.791 0.846

PPNEnum 0.783 0.812

Table 3 shows the experimental results. One can see that PPNE outperforms
other embedding methods. Compare to TADW, PPNEineq improves the AUC
score by 4% in Citeseer and 5% in PubMed, which demonstrates the effective-
ness of PPNE in learning good node representation vectors for the task of link
prediction.

6 Conclusion

This paper proposes a general network embedding model PPNE to incorpo-
rate both network topology information and node property information. We for-
mulate the learning of property preserving network embedding as a joint opti-
mization problem. Firstly we propose the topology-derived objective function
and property-derived objective function, and then the above objective functions
are optimized jointly sharing the same parameters. Experimental results on the
multi-class classification and link prediction tasks over five datasets demonstrate
the effectiveness of PPNE.
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