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Abstract. We present a study demonstrating how random walk algo-
rithms can be used for evolutionary image transition. We design differ-
ent mutation operators based on uniform and biased random walks and
study how their combination with a baseline mutation operator can lead
to interesting image transition processes in terms of visual effects and
artistic features. Using feature-based analysis we investigate the evolu-
tionary image transition behaviour with respect to different features and
evaluate the images constructed during the image transition process.

1 Introduction

Evolutionary algorithms (EAs) have been widely and successfully used in the
areas of music and art [1–3]. In this application area the primary aim is to
evolve artistic and creative outputs through an evolutionary process [4–7]. The
use of evolutionary algorithms for the generation of art has attracted strong
research interest. Different representations have been used to create works of
greater complexity in 2D and 3D [8–10], and in image animation [11–13]. The
great majority of this work relates to the use of evolution to produce a final
artistic product in the form of a picture, sculpture or animation.

Another application of evolutionary algorithms to art is the creation of image
transitions. Earlier work by Sims [11] described methods for cross-dissolving
of images by changes in an expression genotype. Banzhaf [14] used interac-
tive evolution to help determine parameters for image morphing. Furthermore,
Karungaru [15] used an evolutionary algorithm to automatically identify features
for morphing faces. More recently, deep neural networks have recently been used
to create artistic images through the transfer of artistic style from one image to
another [16].

Neumann et al. [17] described an image transition process where the key
idea is to use the evolutionary process itself in an artistic way. The focus of our
paper is to study how random walk algorithms can be used in the evolutionary
image transition process defined in [17] as mutation operators. We consider the
well-studied (1+1) EA, popular random walk algorithms and provide new app-
roach to evolutionary art by using theoretical approaches for evolutionary image
transition.
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The transition process consists of evolving a given starting image S into a
given target image T by random decisions. Considering an error function which
assigns to a given current image X the number of pixels where it agrees with
T and maximizes this function boils down to the classical ONEMAX problem
for which numerous theoretical results on the runtime behaviour of evolutionary
algorithms are available [18–20]. An important topic related to the theory of
evolutionary algorithms are random walks [21,22]. We consider random walks
on images where each time the walk visits a pixel its value is set to the value of the
given target image. By biasing the random walk towards pixels that are similar
to the current pixel we can study the effect of such biases which might be more
interesting from an artistic perspective. After observing these two basic random
processes for image transition, we study how they can be combined to give the
evolutionary process additional interesting new properties. We study the effect of
running random walks for short periods of time as part of a mutation operator
in a (1+1) EA. Furthermore, we consider the effect of combining them with
the asymmetric mutation operator for evolutionary image transition introduced
in [17]. Our results show that the area of evolutionary image transition based on
random walks provides a rich source of artistic possibilities for creating video art.
All our approaches are pixel-based and creating videos based on the evolutionary
processes show frames corresponding to the images created every few hundred
generations1.

After introducing these different approaches to evolutionary image transition
based on random walks, we study their behaviour with respect to different aes-
thetic features. Feature-based analysis of heuristic search methods has gained
increasing interest in recent years [23–25]. In other application areas feature-
based analysis is an important method to increase the theoretical understanding
algorithm performance and in particularly useful for algorithm selection and
configuration [26,27]. For evolutionary image transition, we study how artistic
features behave during the transition process. This allows the measurement of
the evolutionary image transition process in a quantitative way and provides a
basis to compare our different approaches with respect to artistic measures.

The outline of the paper is as follows. In Sect. 2, we introduce the evolutionary
transition process. In Sect. 3, we study how variants of random walks can be used
for the image transition process. We examine the use of random walks as part
of mutation operators and study their combinations with asymmetric mutation
during the evolutionary process in Sect. 4. In Sect. 5, we analyse the different
approaches for evolutionary image transition with respect to aesthetic features.
Finally, we finish with some concluding remarks.

2 Evolutionary Image Transition

We consider the evolutionary image transition process introduced in [17]. It
transforms a given image S = (Sij) of size m × n into a given target image
T = (Tij) of size m × n. This is done by producing images X for which Xij ∈
1 Images and videos are available at https://vimeo.com/anetaneumann.

https://vimeo.com/anetaneumann


232 A. Neumann et al.

Fig. 1. Starting image X (Yellow-Red-Blue, 1925 by Wassily Kandinsky) and target
image T (Soft Hard, 1927 by Wassily Kandinsky) (Color figure online)

Algorithm 1. (1+1) EA for evolutionary image transition
– Let S be the starting image and T be the target image.
– Set X:=S.
– Evaluate f(X,T ).
– while (not termination condition)

• Obtain image Y from X by mutation.
• Evaluate f(Y, T )
• If f(Y, T ) ≥ f(X,T ), set X := Y .

{Sij , Tij} holds. Given a starting image S = (Sij) a target image T = (Tij), and
a current image X = (Xij), we say that pixel Xij is in state s if Xij = Sij , and
Xij is in state t if Xij = Tij . Our goal is to study different ways of using random
walk algorithms for evolutionary image transition.

Throughout this paper, we assume that Sij �= Tij as pixels with Sij = Tij can
not change values and therefore do not have to be considered in the evolutionary
process. To illustrate the effect of the different methods presented in this paper,
we consider the Yellow-Red-Blue, 1925 by Wassily Kandinsky as the starting
image and the T Soft Hard, 1927 by Wassily Kandinsky as the target image (see
Fig. 1). In principle, this process can be carried out with any starting and target
image. Using artistic images for this has the advantage that artistic properties
of images are transformed during the evolutionary image transition process. We
will later on study how the different operators used in the algorithms influence
artistic appearance in terms of different artistic features.

We use the fitness function for evolutionary image transition used in [17] and
measure the fitness of an image X as the number of pixels where X and T agree.
This fitness function is equivalent to the OneMax problem when interpreting
the pixels of S as 0’s and the pixels of T as 1’s. Hence, the fitness of an image
X with respect to the target image T is given by

f(X,T ) = |{Xij ∈ X | Xij = Tij}|.
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Algorithm 2. Asymmetric mutation
– Obtain Y from X by flipping each pixel Xij of X independently of the others with

probability cs/(2|X|S) if Xij = Sij , and flip Xij with probability ct/(2|X|T ) if
Xij = Tij , where cs ≥ 1 and ct ≥ 1 are constants, we consider m = n.

We consider simple variants of the classical (1+1) EA in the context of image
transition. The algorithm is using mutation only and accepts an offspring if it is
at least as good as its parent according to the fitness function. The approach is
given in Algorithm 1. Using this algorithm has the advantage that parents and
offspring do not differ too much from the number of pixels. This ensures a smooth
process for transitioning the starting image into the target. Furthermore, we can
interpret each step of the random walks flipping a visited pixel to the target
outlined in Sect. 3 as a mutation step which according to the fitness function is
always accepted.

Fig. 2. Image Transition using asymmetric mutation with cs = 100 and ct = 50

As the baseline mutation operator we consider the asymmetric mutation
operator which has been studied in the area of runtime analysis for special linear
functions [18] as well as the minimum spanning tree problems [28]. Using this
mutation operator instead of standard bit mutations for OneMax problems has
the advantage that it does not suffer from the coupon collectors effect at the end
of the transition process.

We use the generalization of this asymmetric mutation operator already pro-
posed in [17] and shown in Algorithm2. Let |X|T be the number of pixels where
X and T agree. Similarly, let |X|S be the number of pixels where X and S
agree. Each pixel is starting state s is flipped with probability cs/(2|X|S) and
each pixel in target state t is flipped with probability ct/(2|X|T ). The special case
of cs = ct = 1 has been mathematically analyzed with respect to the runtime
behaviour on OneMax and other pseudo-Boolean functions.

We set cs = 100 and ct = 50 as in [17]. This allows both a decent speed for
the image transition process and enough exchanges of pixels for an interesting
evolutionary process. We should mention that obtaining the last pixels of the
target image may take a long time compared to the other progress steps when
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Algorithm 3. Uniform Random Walk
– Choose the starting pixel Xij ∈ X uniformly at random.
– Set Xij := Tij .
– while (not termination condition)

• Choose Xkl ∈ N(Xij) uniformly at random.
• Set i := k, j := l and Xij := Tij .

– Return X.

using large values of ct. However, for image transition, this only effects steps
when there are at most ct/2 source pixels remaining in the image. From a prac-
tical perspective, this means that the evolutionary process has almost converged
towards the target image and setting the remaining missing target pixels to their
target values provides an easy solution.

All experimental results for evolutionary image transition in this paper are
shown for the process of moving from the starting image to the target image
given in Fig. 1 where the images are of size 200 × 200 pixels. The algorithms
have been implemented in Matlab. In order to visualize the process, we show
the images obtained when the evolutionary process reaches 12.5%, 37.5%, 62.5%
and 87.5% pixels of target image for the first time. We should mention that
all processes except the use of the biased random walk are independent of the
starting and target image which implies that the use of other starting and target
images would show the same effects in terms of the way that target pixels are
displayed during the transition process.

In Fig. 2 we show the experimental results of the asymmetric mutation app-
roach as the baseline. On the first image from left we can see the starting image S
with lightly stippling dots in randomly chosen areas of the target image T . Con-
sequently the area of the yellow dimensional abstract face disappears and black
abstract figure appears. Meanwhile the background has adopted a dot pattern,
where a nuance of dark and light develops steadily. In the last image we barely
see the starting image S and the target image T appearing permanently with
the background becoming darker blue ton, whereby the stippling effect shown in
the middle two frames decreases. The most valuable image in terms of aesthetic
and evolutionary creativity emerge at the picture at 62,5% of the evolutionary
processes. We can see in this third picture elements of both images compounded
with the very special effect that imitate an artistic painting technique.

3 Random Walks for Image Transition

Our evolutionary algorithms for image transition build on random walk algo-
rithms and use them later on as part of a mutation step. We investigate the use
of random walk algorithms for image transition which move, at each step, from
a current pixel Xij to one pixel in its neighbourhood.
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Algorithm 4. Biased Random Walk
– Choose the starting pixel Xij ∈ X uniformly at random.
– Set Xij := Tij .
– while (not termination condition)

• Choose Xkl ∈ N(Xij) according to probabilities p(Xkl).
• Set i := k, j := l and Xij := Tij .

– Return X.

Fig. 3. Image transition for uniform random walk (top) and biased random walk (bot-
tom) (Color figure online)

We define the neighbourhood N(Xij) of Xij as

N(Xij) = {X(i−1)j ,X(i+1)j ,Xi(j−1)Xi(j+1)}
where we work modulo the dimensions of the image in the case that the values
leave the pixel ranges, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. This implies that from a
current pixel, we can move up, down, left, or right. Furthermore, we wrap around
when exceeding the boundary of the image.

The classical random walk chooses an element Xkl ∈ N(Xij) uniformly at
random. We call this the uniform random walk in the following. The cover time of
the uniform random walk on a n×n torus is upper bounded by 4n2(log n)2/π [22]
which implies that the expected number of steps of the uniform random walk
until the target image is obtained (assuming m = n) is upper bounded by
4n2(log n)2/π)).

We also consider a biased random walk where the probability of choosing
the element Xkl is dependent on the difference in RGB-values for Tij and Tkl.
Weighted random walks have been used in a similar way in the context of image
segmentation [29]. We denote by T r

ij , 1 ≤ r ≤ 3, the rth RGB value of Tij and
define
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γ(Xkl) = max

{
3∑

r=1

|T r
kl − T r

ij |, 1
}

In our random walk, we want to prefer Xkl if γ(Xkl) is small compared to
the other elements in N(Xij). In order to compute the probability of moving to
a new neighbour we consider (1/γ(Xkl)) ∈ [0, 1] and prefer elements in N(Xij)
where this value is large.

In the biased random walk, the probability of moving from Xij to an element
Xkl ∈ N(Xij) is given by

p(Xkl) =
(1/γ(Xkl))∑

Xst∈N(Xij)
(1/γ(Xst))

.

The biased random walk is dependent on the target image when carrying out
mutation or random walk steps and the importance of moving to a pixel with
similar color. Introducing the bias in terms of pixels that are similar, the bias
can take the evolutionary image transition process to take exponentially long as
the walk might encounter effects similar to the gambler’s ruin process [30]. For
our combined approaches described in the next section, we use the random walks
as mutation components which ensures that the evolutionary image transition
is carried out efficiently. We will use the biased random walk for evolutionary
image transition in Sect. 4.

In Fig. 3 we show the experimental results of the uniform random walk and
biased random walk. At the beginning, we can observe the image with the char-
acteristic random walk pathway appearing as a patch in the starting image S.
Through the transition process, the clearly recognisable patches on the target
image T emerge. In the advanced stages the darker patches from the background
of the target image dominate. The effect in animation is that the source image
is scratched away in a random fashion to reveal an underlying target image.

The four images of the biased random walk are clearly different to the images
of the uniform random walk. During the course of the transition, the difference
becomes more prominent, especially in the background where at 87.5% pixels of
the target image there is nearly an absolute transition to the target image T . In
strong contrast, the darker abstract figure of the images stay nearly untouched,
so that we see a layer of the yellow face in starting image S in the centre of
the abstract black figure in target image T . In this image the figure itself is also
very incomplete with much of the source picture showing through. These effects
arise from biased probabilities in the random walk which makes it difficult for
the walk to penetrate areas of high contrast to the current pixel location.

4 Combined Approaches

The asymmetric mutation operator and the random walk algorithms have quite
different behaviour when applied to image transition. We now study the effect of
combining the approaches for evolutionary image transition into order to obtain
a more artistic evolutionary process.
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4.1 Random Walk Mutation

Firstly, we explore the use of random walks as mutation operators and call this
a random walk mutation.

The uniform random walk mutation selects the position of a pixel Xij uni-
formly at random and runs the uniform random walk for tmax steps (iterations
of the while-loop). We call the resulting algorithm EA-UniformWalk. Similarly,
the biased random walk mutation selects the position of a pixel Xij uniformly
at random and runs the biased random walk for tmax steps. This algorithm is
called EA-BiasedWalk. For our experiments, we set tmax = 100.

Figure 4 shows the results of the experiments for EA-UniformWalk and EA-
BiasedWalk. The transitions produced were significantly different from the pre-
vious ones. In both experiments we can see the target image emerging through
a series of small patches at first, then steadily changing through a more chaotic
phase where elements of the source and target image appear with roughly equal
frequency. On the last image of each experiment we can see most details of the
target image.

The images from EA-BiasedWalk appear similar to those in EA-UniformWalk
in the beginning but differences emerge at the final stages of transition where,
in EA-BiasedWalk, elements of the source image still show through in areas of
high contrast in the target image, which the biased random walk has difficulty
traversing. This mirrors, at a more local scale the effects of bias in the earlier
random walk experiments. At a global scale it can be seen that the blue back-
ground, which is a low contrast area, is slightly more complete in the final frame
of EA-BiasedWalk than the same frame in EA-UniformWalk.

Fig. 4. Image transition for EA-UniformWalk (top) and EA-BiasedWalk (bottom)
(Color figure online)
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4.2 Combination of Asymmetric and Random Walk Mutation

Furthermore, we explore the combination of the asymmetric mutation operator
and random walk mutation. Here, we run the asymmetric mutation operator
as described in Algorithm 2 and a random walk mutation every τ generations.
We explore two combinations, namely the combination of the asymmetric muta-
tion operator with the uniform random walk mutation (leading to the algorithm
EA-AsymUniformWalk) as well as the combination of the asymmetric muta-
tion operator with the biased random walk mutation (leading to Algorithm EA-
AsymBiasedWalk). We set τ = 1 and tmax = 2000 which means that the process
is alternating between asymmetric mutation and random walk mutation where
each random walk mutation carries out 2000 steps.

In Fig. 5, we show the results of EA-AsymUniformWalk and EA-
AsymBiasedWalk. From a visual perspective both experiments combine the stip-
pled effect of the asymmetric mutation with the patches of the random walk. In
EA-AsymBiasedWalk there is a lower tendency for patches generated by random
walks to deviate into areas of high contrast. As the experiment progresses, the
pixel transitions caused by the asymmetric mutation have a tendency to degrade
contrast barriers.

However, even in the final frames there is clearly more background from the
target image in EA-AsymBiasedWalk than in EA-AsymUniformWalk. Moreover,
there are more remaining patches of the source image near the edges of the base
of the abstract figure, creating interesting effects.

Fig. 5. Image transition for EA-AsymUniformWalk (top) and EA-AsymBiasedWalk
(bottom)
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5 Feature-Based Analysis

We now analyze the different introduced approaches for evolutionary image tran-
sition with respect to some features that measure aesthetic behaviour. Our goal
is twofold. First, we analyze how the aesthetic feature values change during the
process of transition. Furthermore, we compare the different approaches against
each other and show where they differ with respect to the examined features
when used for evolutionary image transition. For our investigations, we examine
the starting and target image of Fig. 1, the transition of a black starting image
into a white target image, and the transition of the starting image Color1 into
the target image Color2 as shown in Fig. 6. Taking the last two pairs of images
allows us to get additional systematic insights into the process of evolutionary
image transition. Note that the images of Fig. 6 are only swapping the colored
squares.

Fig. 6. Starting image S (Color1) and target image T (Color2) (Color figure online)

The set of features we use are, in order of appearance, Benford’s Law [31],
Global Contrast Factor [32], Mean Hue, and Colorfulness [33]. We describe each
of them in the following.

The Benford’s Law feature (Ben) is a measure of naturalness in an image X.
Jolion [31] observed that the sorted histogram of luminosities in natural images
followed the shape of Benford’s Law distribution of first digits. Here we use the
encoding of the Benford’s Law feature based on the one used by den Heijer [34].

To calculate Ben(X) we first calculate a nine-bin histogram HX of the lumi-
nosities of X. The bins of HX are then sorted by frequency and scaled to sum
to 1.0. We define

Ben(X) = 1 − dtotal/dmax

where

dtotal =
9∑

i=1

HX(i) − Hbenford(i)
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and Hbenford is a 9-bin histogram, encoding Benford’s Law distribution, with
the bin frequencies 0.301, 0.176, 0.125, 0.097, 0.079, 0.067, 0.058, 0.051, 0.046. The
value

dmax = (1 − Hbenford(1)) +
9∑

i=2

Hbenford(i)

is the maximum possible value for dtotal which is the largest possible deviation
of HX from Hbenford.

Global Contrast Factor , GCF is a measure of mean contrast between neigh-
bouring pixels at different image resolutions. To calculate GCF(X) we cal-
culate the local contrast at each pixel at a given resolution r: lcr(Xij) =∑

Xkl∈N(Xij)
|lum(Xkl) − lum(Xij)| where lum(P ) is the perceptual luminos-

ity of pixel P and N(Xij) are the four neighbouring pixels of Xij at reso-
lution r. The mean local contrast at the current resolution is defined Cr =
(
∑m

i=1

∑n
j=1 lcr(Xij))/(mn). From these local contrasts, GCF is calculated as

GCF =
∑9

r=1 wr · Cr.
The pixel resolutions correspond to different superpixel sizes of

1, 2, 4, 8, 16, 25, 50, 100, and 200. Each superpixel is set to the average luminosity
of the pixel’s it contains. The wr are empirically derived weights of resolutions
from [32] giving highest weight to moderate resolutions.

The Mean Hue (Hue) of an image X is

Hue(X) =

⎛
⎝ m∑

i=1

n∑
j=1

h(Xij)

⎞
⎠ /(m × n)

where h(Xij) is the hue value for pixel Xij in the range [0, 1]. The function Hue
measures where on average the image X sits on the color spectrum. Because the
color spectrum is a circular construct one color, cyan in our case, is mapped to
both 1 and 0.

Colorfulness (Color) is a measure of the perceived color of an image. We use
Hasler’s simplified metric for calculating colorfulness [33]. This measure quanti-
fies spreads and intensities of opponent colors by calculating for the RGB values
in each pixel Xij the red-green difference: rgij = |Rij −Gij |, and the yellow-blue
difference: ybij = |(Rij + Gij)/2 − Bij |. The means: μrg, μyb and standard-
deviations: σrg, σyb for these differences are then combined to form a weighted
magnitude estimate for colorfulness for the whole image:

Color(X) =
√

σ2
rg + σ2

yb + 0.3
√

μ2
rg + μ2

yb

Figure 7 shows how the features evolve over time during the image transi-
tion process. The first column refers to the transition process of the starting
and target image given in Fig. 1. The second column shows the transition of a
complete black image starting image to a complete white target image, and the
third column shows the transition of the color starting image to the color target
image of Fig. 6. Each figure shows the results of 10 runs for each algorithm that
we have considered for evolutionary image transition.
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Fig. 7. Features during transition for images for Asymmmetric Mutation (•), Uniform
Random Walk (•), Biased Random Walk (•), EA-UniformWalk (•), EA-BiasedWalk
(•), EA-AsymUniformWalk (•) and EA-AsymBiasedWalk (•) for images from Fig. 1
(left), Black-White (middle), Fig. 6 (right). Generation number is shown on the x-axis
and features values on the y-axis. (Color figure online)
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Considering the results for the images of Fig. 1 (left column), it can be
observed that the feature values for Benford’s Law reduce at the first half of
the transition process and increase afterwards. Furthermore, the value for the
target image is quite low, but the evolutionary image transition process produces
images where the value for Benford’s Law is significantly higher than the one
for the starting and the target image in the last third of the image transition
process. In terms of global contrast, it can also be observed that the transition
process creates images of higher feature value than the ones of the starting and
target image. All considered algorithms follow the same pattern for these two
features, but it can be observed that the pure random walk algorithms of Sect. 3
overall achieve higher values for Benford’s Law and the combined approaches
are able to obtain a trajectory of higher values for Global Contrast Factor.

Considering the features Mean Hue and Colorfulness, the features values are
following a more direct trajectory from the value of the starting image to the
one of the target. For Hue, this trajectory is also very concentrated around the
linear function connecting these two values where as for Colorfulness a strong
deviation, especially for the pure random walk algorithms of Sect. 3, can be
observed.

The transition process for the images of Fig. 6 carries out a process where the
features values of the starting and target image are of the same value. Again it
can be observed that the algorithms obtain higher values for Benford’s Law and
Global Contrast Factor during the transition for most of the runs. An exception
is the biased random walk algorithm of Sect. 3 that sometimes produces lower
values for these two figures during the transition. Mean Hue and Colorfulness
again exhibit a more direct trajectory between the starting and target feature
value with the random walk algorithms showing a stronger fluctuation and in
particular lower values with respect to Colorfulness.

Considering the transition for Black to White images, it can be observed
that Benford’s Law and Global Contrast Factor increase during the transition
process. The concentrated behaviour for Benford’s Law is due to the calculation
of this feature as the feature value is fully determined by the number of black
and white pixel. Furthermore, there are no changes during the transition process
for Mean Hue and Colorfulness.

6 Conclusions and Future Work

Evolutionary image transition uses the run of an evolutionary algorithm to trans-
fer a starting image into a target image. In this paper, we have investigated
how random walk algorithms can be used in the evolutionary image transi-
tion process. We have shown that mutation operators using different ways of
incorporating uniform and biased random walks lead to different effects during
the transition process. Furthermore, we have studied the impact of the differ-
ent approaches with respect to different artistic features and observed that the
process creates images which significantly differ from the starting and target
image with respect to these features.
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All our investigations are based on a fitness function that is equivalent to the
well-known OneMax problem. For future research it would be interesting to
study more complex fitness functions and their impact on the artistic behaviour
of evolutionary image transition.
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