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Abstract Usually, the aim of cluster analysis is to build prototypes, i.e., typologies
of units that present similar characteristics. In this paper, an alternative approach
based on consensus clustering between two different clustering methods is proposed
to obtain homogeneous prototypes. The clustering methods used are fuzzy c-means
(that minimizes the objective function with respect to centers of the groups) and
archetypal analysis (that minimizes the objective function with respect to extremes
of the groups). The consensus clustering is used to assess the correspondence
between the clustering solutions obtained and to find the prototypes as a compromise
between the two clustering methods.

1 Introduction

According to Rosch [24, 25], prototypes are those elements that represent a
category better than others. The degree of representativeness can be measured
using a distance function to a salient entity of the category, i.e., a prototype [13].
Prototypes can be observed or unobserved (abstract), and they can be represented
by a single value or by interval-valued variables. Several numerical techniques to
find prototypes in a given multivariate dataset have been proposed in the statistical
literature based on different criteria. The most widely used techniques are generally
based on non-hierarchical clustering algorithms [11, 18, 27], although many other
approaches can be adopted [19, 20, 22].
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This paper proposes a two-step procedure based on consensus clustering (CC)
to find prototypes within multidimensional data. The first step aims to define two
partitions of the N � J data matrix X in K groups, where K is assumed to be
known; the second step aims to find the correspondence between these two partitions
and define the partition solution as the compromise between the two partitions
[1, 7, 17, 29].

This work aims to represent a new approach to finding a set of K prototypes
through CC to pair the partitions obtained via two different partitioning methods:
fuzzy c-means (FCM) [5] and archetypal analysis (AA) [2, 8]. The former seeks
K homogeneous groups vis-à-vis their barycenters, while the latter identifies a set
of K extreme points, called archetypes, and creates a group around each archetype.
Formally, AA minimizes the sum of distances between each point and a set of K
archetypes, as defined by a convex combination of extreme points. K is given or
can be selected by running the algorithm for different values of K and choosing the
desired value according to the most commonly used methods. Such methods are
generally based on graphic displays.

The paper is structured as follows: Sect. 2 presents a brief background on CC,
FCM, and AA; Sect. 3 then demonstrates a simulation study in order to examine
the reliability of the method. Finally, Sect. 4 reports on the results of an application
using real data.

2 Methodology

Given a multivariate dataset and two or more partitioning criteria, consensus
analysis aims to find a compromise in the set of the partitions [17]. Consensus
clustering aims for the same goal among two or more partitions obtained via cluster
analysis approaches. Taking into account the final aim of the analysis, the researcher
chooses a consensus measure. The present proposal considers two fuzzy approaches
as partitioning methods that optimize two different criteria, given the number of
groupsK: fuzzy c-means (FCM) and archetypal analysis (AA). Proposed by Bezdek
et al. [6], the former aims to maximize the homogeneity within the K groups,
while the latter, proposed by Cutler and Breiman [8], identifies the K groups with
respect to a set of K extreme points, called archetypes, and aims to maximize the
heterogeneity among the K groups.

FCM and AA can be defined in terms of a factorization problem of the data
matrix X under different constraints. Formally, let X be a generic N � J data matrix,
and let P be an unknown K � J prototypes matrix; FCM and AA are based on the
solution of the following non-negative factorization problem [4]:

f .Y;P/ D argmin
Y;P

kX � YPk2
2 ; (1)

where the notation k:k2
2 denotes the quadratic norm, Y is the generic N � K

memberships matrix, and P refers to the matrix of the centers in the FCM context
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and to the archetypes matrix in the AA context. In order to avoid any confusion in
the remainder of this paper, the Y matrix will be referred to as � and � , and the P
matrix asC andA when we refer to the FCM or to the AA, respectively. The generic
elements yik vary in [0,1] and represent the membership degree of the generic unit
x0
i to the generic element pk.

2.1 Fuzzy c-Means

Both the fuzzy c-means clustering method [5, 6] and the traditional k-means method
minimize the sum of the weighted squared distances between the N units and the
K centers. Formally, given an N � J data matrix X FCM minimizes the objective
function shown in Eq. (2).

f .�;C/ D kX � � Ck2
2; (2)

where � represents the memberships matrix with elements �ik. The function in
Eq. (2) is minimized under the constraints

PK
kD1 �ik D 1 and �ik � 0. The elements

�ik of the � matrix are defined according to Eq. (3), while the C matrix is defined
according to Eq. (4).

�ik D
 

KX

k0D1

� kxi � ckk2

kxi � ck0k2

� 2
m�1

!�1

; (3)

C D .� T� /�1� TX (4)

Note that m is the fuzzifier parameter, commonly set to 2 [6]. Including Eq. (4) in
Eq. (2), the objective function becomes:

f .� / D �
�X � � .� T� /�1� TX

�
�2

2
(5)

Then, once the number of groupsK is fixed, the FCM algorithm runs through the
following steps [6, 9, 30]:

1. Randomly initialize the cluster centers C.t/ and set t D 0;
2. Calculate �ik using Eq. (3);
3. Calculate C.tC1/ using Eq. (4);
4. If

�
�C.t/ � C.tC1/

�
�2

2
� �, go to Step 5; otherwise, C.t/ D C.tC1/; set t D t C 1 and

go to Step 2;
5. Print centers matrix C and membership matrix � ;
6. Stop.
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2.2 Archetypal Analysis

The term archetype is used in the literature to define different meanings. In the
prototyping approach, the challenge is to find a few points (archetypes), not
necessarily observed, in a set of multivariate observations such that all the data can
be well represented as convex combinations of the archetypes.

Formally, given an N �J data matrix X, archetypal analysis [8, 10, 12] finds a set
of archetypes fa1; : : : ; aKg that are linear combinations of the data points, as shown
in Eq. (6).

A D BX; (6)

where B is the K � N coefficients matrix with
PK

kD1 ˇki D 1 and ˇki � 0, such
that the archetypes resemble the data as a convex mixture. For a given choice of
archetypes, AA minimizes the objective function shown in Eq. (7).

f .�;A/ D kX � �Ak2
2 ; (7)

under the constraints
PK

kD1 ıki D 1 and ıki � 0. Including Eq. (6) in Eq. (7), the
objective function becomes:

f .�;B/ D kX � �BXk2
2 : (8)

Once the number of groups K is fixed, the AA algorithm then runs through the
following steps [2, 8, 12]:

1. Randomly initialize the matrix B.t/ and set t D 0;
2. Find coefficient matrix �.t/, solving the problem in Eq. (8) under constraints

ıki � 0 and
PK

kD1 ıki D 1;

3. Given the coefficients ı
.t/
ki , compute the intermediate archetypes, solving the

equation in (8) for A.t/;
4. Update Eq. (8) over B under constraints

PK
kD1 ˇki D 1 and ˇki � 0;

5. Set t D t C 1, B.t/ D B.tC1/ and calculate A.t/ D B.t/X;
6. Compute the objective function and, unless it falls below a threshold, continue

with Step 2;
7. Stop.

Note that the matrices .� T� /�1� T and B play the same role, i.e., to project the
single points in a K-dimensional space. In fact, defining the .� T� /�1� T D B�, it
is possible to shown that the objective functions of FCM (9) and AA (10) optimize
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an equivalent criterion.

f .�;B/ D kX � � B�Xk2
2 : (9)

f .�;B/ D kX � �BXk2
2 : (10)

2.3 Consensus Clustering

In this paper, the consensus clustering procedure is structured in two fundamental
steps: (1) to find and represent the consensus between the partitions of fuzzy
c-means and archetypal analysis through correspondence analysis [3, 15, 16] and
(2) to measure the consensus through the principal indices of CC.

Let X be an N � J data matrix with T D fT1; : : : ;TRg and V D fV1; : : : ;VCg two
partitions of X: the consensus between partitions T and V is found by starting from
the entries shown in the cross-classifying contingency table (shown in Table 1) and
crossing the two partitions [17]. Many proposals have been put forth in the literature
for the consensus measurement, including Boulis and Ostendorf [7], Fowlkes and
Mallows [14], Hubert and Arabie [17], Steinley [28], Strehl and Ghosh [29], and
Yeung and Ruzzo [31]. This paper has used the Adjusted Rand Index (ARI) among
these different options [23, 26]. ARI was first proposed by Hubert and Arabie [17]
in such a context; the index assumes a generalized hypergeometric distribution as
a null hypothesis. The two clusterings are drawn randomly, with a fixed number of
clusters and a fixed number of elements in each cluster. ARI is then the normalized
difference between the Rand Index and its expected value under the null hypothesis.
The ARI is defined as shown in Eq. (11).

ARI D
PR

rD1

PC
D1

�nrc
2

� � �n
2

��1PR
rD1

�nr:
2

�PC
cD1

�n:c
2

�

1
2

hPR
rD1

�nr:
2

�CPC
cD1

�n:c
2

�i � �n
2

��1PR
rD1

�nr:
2

�PC
cD1

�n:c
2

� : (11)

ARI has an expected value of 0 for independent clusterings and a maximum value
of 1 for identical clusterings.

Table 1 Cross-table between
partition T and partition V

Partition V

v1 v2 � � � vC

Partition T t1 n11 n12 � � � n1C n1�

t2 n21 n22 � � � n2C n2�

:
:
:

:
:
:

:
:
:

: : :
:
:
:

:
:
:

tR nR1 nR2 � � � nRC nR�

n�1 n�2 � � � n�C n
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3 Simulation Study

This section demonstrates an application of simulated data; in particular, it evaluates
the consensus between fuzzy c-means and archetypal analysis in different experi-
mental conditions.

According to Fordellone and Palumbo [13], data were generated from four
multivariate Gaussian distributions, each with four dimensions. The first is a
multivariate Gaussian distribution with � D Œ0; 0; 0; 0�T and ˙̇̇ D I (i.e., noise);
the last three are multivariate Gaussian distributions that simulate three groups of
units according to the experimental conditions shown in Table 2; the groups follow
the scheme shown below:

Group 1: X � N .� D Œ -20 10 30 15�T ; ˙̇̇ /

Group 2: X � N .� D Œ 0 20 15 -5�T ; ˙̇̇ /

Group 3: X � N .� D Œ 15 5 -7 20�T ; ˙̇̇ /

Table 2 also shows the consensus results obtained from the eight experimental
conditions; in particular, the Rand and adjusted Rand indices are reported, which are
measurements of agreement/disagreement (i.e., consensus) between two different
partitions (FCM and AA in this case). It is worth noting that the maximum consensus
was achieved in the first two experimental conditions, where there was a low
correlation between the variables and a normal kurtosis level, whereas the minimum
level of consensus was shown in the experimental conditions, which demonstrated
platykurtic kurtosis levels (rows 3, 4, 7, and 8 in the table).

The aim of the simulation study was to establish the degree of reliability of
consensus prototyping under several different hypotheses. In the eight proposed
cases, the lowest levels of the consensus occurred most notably when platykurtic
distributions were present; this occurred because a low level of kurtosis stimulated
the presence of outlier points, and AA is very sensitive to extreme points.

Table 2 Consensus results from simulated data

Experimental conditions Prototyping results Consensus measurement
N Cor Kurt. Groups Size Rand Randadj
900 0.2–0.4 G D 3 3 900 (100.0%) 1.000 1.000

300 0.2–0.4 G D 3 3 300 (100.0%) 1.000 1.000

900 0.2–0.4 G < 3 3 625 (69.4%) 0.725 0.382

300 0.2–0.4 G < 3 3 185 (61.7%) 0.683 0.296

900 0.6–0.8 G D 3 3 599 (66.6%) 0.753 0.444

300 0:6 � 0:8 G D 3 3 202 (67.3%) 0.758 0.460

900 0:6 � 0:8 G < 3 3 533 (59.2%) 0.698 0.329

300 0:6 � 0:8 G < 3 3 189 (63.0%) 0.720 0.373
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4 Personality Traits Finding

In psychology, trait theory (also called dispositional theory) is an approach that
aims to study human personality. Trait theorists are primarily interested in the
measurement of different traits that can be defined as habitual patterns of behavior,
thought, and emotion [21, 22].

Consensus clustering between fuzzy c-means and archetypal analysis is used
in this section to delineate the personality traits (http://personality-testing.info/)
from a sample of 898 adults (493 males and 405 females). The dataset has 40
ordinal items (from “Strongly disagree” to “Strongly agree”), with ten items for
each measurement scale (numeric). Four different scales were used as part of an
experimental “DISC” personality test from the International Personality Item Pool
(http://ipip.ori.org/newCPIKey.htm):

• Assertiveness (AS): the quality of being self-assured and confident without being
aggressive;

• Social confidence (SC): generally described as a state of being certain about
something;

• Adventurousness (AD): represented by a desire to engage in activities with some
potential for physical danger;

• Dominance (DO): conceptualized as a measure of individual differences in levels
of group-based discrimination.

The following subsection shows the results that were obtained by the application
of the consensus-prototyping approach on the four quantitative measurement scales.
The scales were computed using principal component analysis (PCA) applied to the
fifty available items. The number of groups (K D 3) was chosen according to the
FCM and AA scree-plots shown in Fig. 1. The scree-plots show the reductions in
the objective functions at different values of K.
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Fig. 1 Scree-plots of the fuzzy c-means and archetypal analysis approaches for different numbers
of groups

http://personality-testing.info/
http://ipip.ori.org/newCPIKey.htm
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Table 3 Consensus table between the fuzzy c-means and archetypal analysis approaches

Archetypal analysis

Group 1 Group 2 Group 3 Total

Fuzzy c-means Group 1 126 35 125 286

Group 2 53 218 0 271

Group 3 0 1 340 341

Total 179 254 465 898

−2 −1 0 1 2

−2
−1

0
1

2

Group 1

Group 2 Group 3

Group 1

Group 2

Group 3

Fuzzy c−Means
Archetypal Analysis

Fig. 2 Correspondence analysis applied to contingency Table 3

The results of CC are shown in consensus Table 3. A correspondence analysis
is also applied on the consensus table to graphically illustrate the consensus level.
The results are represented in Fig. 2, where we may see that the three groups are
very close when they have a maximum level of inertia. In Table 3, in contrast,
the consensus prototypes represent roughly 76% of the sample; the Adjusted Rand
Index equals 0.499, while the Rand Index equals 0.768.

Figure 3 shows the defined groups and the single distributions of the scales. The
different colors (purple, blue, and red) and the different symbols (�, 4, and +) of
the points represent the three prototypes. The white points in Fig. 3 represent the
observation without consensus.

Due to space considerations, we cannot discuss in depth the profiles of the
prototypes that were found. Looking at the scatterplot matrix shown in Fig. 3,
however, we can state that prototype 1 (the red � symbol) is characterized by a
high level of scale AD; prototype 2 (the blue 4 symbol) presents low values for
scales SC, DO, AS; and the last prototype (the purple C symbol) is characterized by
high levels of scales SC, AS and a low level of AD.
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Fig. 3 Scatterplots of the three prototypes computed via consensus clustering

5 Concluding Remarks

The empirical results shown in the present paper lead us to argue that when
the groups are well defined (thus avoiding any overlap), the consensus clustering
between the two different partitioning methods (i.e., fuzzy c-means and archetypal
analysis) clarifies the presence of well-definable prototypes. The simulation study
was helpful for appreciating which causes can deeply affect the consensus among
the two approaches: the platykurtic level and the presence of multivariate outliers
in the data have greatly affected performance of the consensus analysis; the high
correlation among variables has worsened performance, but not much in comparison
with the previous perturbater effects.
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