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Abstract This paper introduces the generative model of representability for hier-
archical clustering methods in asymmetric networks, i.e., the possibility to describe
a method through its action on a collection of networks called representers. We
characterize the necessary and sufficient structural conditions needed on these
representers in order to generate a method which is scale preserving and admissible
with respect to two known axioms and, based on this result, we construct the family
of cyclic clustering methods.

1 Introduction

The relevance of clustering in modern data analysis is indubitable given its usage in
multiple fields of knowledge from, e.g., medicine [22] to marketing [16]. There
are literally hundreds of methods that can be applied to the determination of
hierarchical [8, 11] and non-hierarchical clusters in finite metric (thus symmetric)
spaces—see, e.g., [17]. Even in the case of asymmetric networks [18], multiple
methods have been developed to extend the notion of clustering into this less
intuitive domain [1, 7, 14, 15, 19, 20]. Although not as developed as its practice
[6], the theoretical framework for clustering has been developed over the last
decade for non-hierarchical [2, 3, 10, 12, 13, 21, 24] and hierarchical clustering
[2, 4, 5]. Of special interest to us is this last direction, where two axioms were used
to determine a bounded family of admissible clustering methods for asymmetric
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networks. However, we consider that admissibility is an insufficient characterization
criterion to identify clustering methods of practical importance, thus, we introduce
additional features with the objective to further winnow the space of admissible
methods.

In the current paper, we introduce and analyze the notion of representability
for hierarchical clustering methods. A representable method is one that can be
specified by determining its action on a collection of networks called representers.
Our main characterization result [cf. Theorem 2] states the conditions needed on
these representers to obtain an associated clustering method with desirable practical
properties. In Sect. 3, we present the notion of scale preservation and highlight
its practical utility. In Sect. 4 we introduce the concept of representability through
a reinterpretation of reciprocal clustering and build upon this to develop a more
general theory. We also connect representability to the more practical concepts
of scale preservation and admissibility (Sect. 4.2), and we introduce the family of
cyclic clustering methods (Sect. 4.3).

Proofs, algorithmic details, and computational results are omitted due to space
constraints.

2 Preliminaries

We define a network N as a pair .X;AX/ where X is a set of n points or nodes and
AX W X � X ! RC is a dissimilarity function. Dissimilarities AX.x; x0/ from x to x0
are nonnegative, null if and only if x D x0, need not satisfy the triangle inequality
and may be asymmetric, i.e., AX.x; x0/ ¤ AX.x0; x/ for some x; x0 2 X. We focus our
study on asymmetric networks since these general structures include, as particular
cases, symmetric networks and finite metric spaces.

The output of hierarchically clustering a network N D .X;AX/ is a dendrogram
DX , i.e., a nested collection of partitions DX.ı/ indexed by a resolution parameter
ı � 0 [9]. Dendrograms can be represented as trees. The interpretation of a
dendrogram is that of a structure which yields different clusterings at different
resolutions.

Given a network .X;AX/ and x; x0 2 X, a chain C.x; x0/ is an ordered sequence
of nodes, C.x; x0/ D Œx D x0; x1; : : : ; xl�1; xl D x0�, which starts at x and
finishes at x0. The cost of chain C.x; x0/ is defined as the maximum dissimilarity
maxijxi2C.x;x0/ AX.xi; xiC1/ encountered when traversing its links in order. We define
the directed minimum chain cost Qu�

X.x; x
0/ between x and x0 as the minimum cost

among all the chains connecting x to x0,

Qu�
X.x; x

0/ D min
C.x;x0/

max
ijxi2C.x;x0/

AX.xi; xiC1/: (1)
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An ultrametric uX on the set X is a function uX W X�X ! RC that satisfies symmetry
uX.x; x0/ D uX.x0; x/, identity uX.x; x0/ D 0 ” x D x0, and the strong triangle
inequality

uX.x; x
0/ � max

�
uX.x; x

00/; uX.x00; x0/
�
; (2)

for all x; x0; x00 2 X. It can be shown that dendrograms and finite ultrametric spaces
are equivalent [2], where the ultrametric value between two points is given by the
resolution at which they first merge in the dendrogram. However, ultrametrics are
more convenient than dendrograms for the results developed in this paper.

Remark 1 For the particular case when N is a finite metric space, the minimum
chain cost (1) is an ultrametric and coincides with the ultrametric output of the
single linkage clustering method [5].

A hierarchical clustering method is defined as a map H W N ! D from
the space of networks N to the space of dendrograms D , or, equivalently, as a
map H W N ! U from N to the space U of networks with ultrametrics
as dissimilarity functions. This loose definition permits the existence of an ample
diversity of methods, many of them carrying limited practical utility. Thus, we
recall an axiomatic construction formulated to determine a subclass of admissible
clustering methods.

2.1 Admissible Hierarchical Clustering Methods

In [4, 5], the authors impose the two following requirements on clustering methods:

(A1) Axiom of Value

Consider a two-node network N D .X;AX/ with X D fp; qg, AX.p; q/ D ˛, and
AX.q; p/ D ˇ. The ultrametric .X; uX/ D H .N/ output by H satisfies uX.p; q/ D
max.˛; ˇ/.

(A2) Axiom of Transformation

Given networks NX D .X;AX/ and NY D .Y;AY/ and a dissimilarity reducing
map � W X ! Y, that is a map � such that for all x; x0 2 X it holds
AX.x; x0/ � AY.�.x/; �.x0//, the output ultrametrics .X; uX/ D H .X;AX/ and
.Y; uY/ D H .Y;AY / satisfy uX.x; x0/ � uY.�.x/; �.x0//.

Axiom (A1) states that in a network with two nodes p and q, the dendrogram
DX has them merging at the maximum value of the two dissimilarities ˛ and ˇ.
This is reasonable because at resolutions ı < max.˛; ˇ/ one node can influence
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Fig. 1 Reciprocal clustering. x; x0 cluster at resolution ı if they are joined by a bidirectional chain
of max. dissimilarity ı [cf. (3)]

the other but not vice versa, which in most situations means that the nodes are not
alike. Axiom (A2) states that a contraction of the dissimilarity function AX entails a
contraction of the ultrametric uX .

A hierarchical clustering methodH is admissible if it satisfies axioms (A1) and
(A2). Two admissible methods of interest are reciprocal and nonreciprocal cluster-
ing. The reciprocal clustering methodH R with output .X; uRX/ D H R.X;AX/ is the
one for which the ultrametric uRX.x; x

0/ between points x and x0 is given by

uRX.x; x
0/ D min

C.x;x0/
max

ijxi2C.x;x0/
NAX.xi; xiC1/; (3)

where NAX.x; x0/ D max.AX.x; x0/;AX.x0; x// for all x; x0 2 X. Intuitively, in (3) we
search for chains C.x; x0/ linking nodes x and x0. Then, for a given chain, walk
from x to x0 and determine the maximum dissimilarity, in either the forward or
backward direction, across all links in the chain. The reciprocal ultrametric uRX.x; x

0/
is the minimum of this value across all possible chains; see Fig. 1. We define the
nonreciprocal clustering method H NR as one where the ultrametric between x
and x0 is given by the maximum of the directed minimum chain costs (1) in both
directions

uNRX .x; x0/ D max
�

Qu�
X.x; x

0/; Qu�
X.x

0; x/
�
: (4)

In (4) we implicitly consider forward chains C.x; x0/ going from x to x0 and
backward chains C.x0; x/ from x0 to x. We then determine the respective maximum
dissimilarities and search independently for the forward and backward chains that
minimize the respective maximum dissimilarities. The nonreciprocal ultrametric
uNRX .x; x0/ is the maximum of these two minimum values; see Fig. 2. Reciprocal
and nonreciprocal clustering bound the range of ultrametrics generated by any other
admissible methodH .

Theorem 1 ([4]) Given any network N D .X;AX/ and the associated reciprocal
uRX and nonreciprocal uNRX ultrametrics as defined in (3) and (4). Then, for any
admissible method H , the output ultrametric .X; uX/ D H .X;AX/ is such that
uNRX .x; x0/ � uX.x; x0/ � uRX.x; x

0/ for all x; x0.
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Fig. 2 Nonreciprocal clustering. x; x0 cluster at resolution ı if they are joined in both directions by
chains of max. dissimilarity ı [cf. (4)]

3 Scale Preservation

In this section we begin to explore additional conditions to winnow the space
of admissible methods. One such condition is the concept of a scale preserving
hierarchical clustering method.

(P1) Scale Preservation

Consider a network NX D .X;AX/ and a nondecreasing function  W RC ! RC
with  .0/ D 0,  .z/ > 0 for all z > 0 and limz!1 .z/ D 1. Define the network
N X D .X;  .AX// with the same set of nodes and dissimilarities transformed by  .
A hierarchical clustering methodH is said to be scale preserving if for an arbitrary
network NX D .X;AX/ and a function  satisfying the above requirements, the
outputs .X; uX/ D H .NX/ and .X; u

 
X / D H .N X / satisfy u

 
X D  ı uX .

Scale preservation entails two consequences of practical relevance. First, since
ultrametric outcomes vary according to the same function that transforms the
dissimilarities, scale preserving methods are invariant with respect to units. Second,
in some applications we may be interested in clustering a network of which we are
given a similarity function instead of dissimilarities. In such case, in order to apply
a dissimilarity based method, we must apply a decreasing function to the similarity
information to transform it into dissimilarities. Scale preservation ensures that the
structure of the clustering hierarchy does not depend on the decreasing function used
to turn similarities into dissimilarities. This property is helpful in many practical
instances. In, e.g., trust networks it is more natural for subjects to express their trust
of neighbors rather than their distrust. In social networks, proximity indicators—like
number of exchanged messages—are more common than distance indicators.



88 G. Carlsson et al.

4 Representability

We build upon the notion of representable methods—introduced for non-
hierarchical clustering in [3]—to specify the hierarchical clustering of arbitrary
networks through the clustering of particular examples that we call representers.
To explain the concept of a representable method we first present an alternative
definition for the reciprocal ultrametric (3). Start by considering a given asymmetric
network N D .X;AX/ and define ˚2 D .f p; qg;Ap;q/ as a two-node network
with both dissimilarities equal to 1. Define the �-multiple of the network ˚2 as
the network � � ˚2 D .fp; qg; �Ap;q/ whose underlying set is the same and its
dissimilarities are linearly scaled by a given � > 0. Further define the Lipschitz
constant of a map � W fp; qg ! X from˚2 to N as

L.�I˚2;N/ D max .AX.�.p/; �.q//;AX.�.q/; �.p/// ; (5)

i.e., the maximum dissimilarity into which one of the unit dissimilarities in ˚2 is
mapped. For any nodes x; x0 2 X we define the optimal multiple �˚2

X .x; x0/ between
x and x0 with respect to˚2 as

�
˚2

X .x; x0/D˚
L.�I˚2;N/ j� W fp; qg!X; x; x0 2 Im.�/

�
: (6)

Notice that �˚2
X .x; x0/ is the minimum multiple needed for the existence of a

dissimilarity reducing map with x and x0 in its image between a multiple of ˚2

and N.
We define the representable clustering method H ˚2 associated with the rep-

resenter network ˚2 as the method with ultrametric output .X; u˚2

X / D H ˚2 .N/
given by

u˚2

X .x; x0/ D min
C.x;x0/

max
ijxi2C.x;x0/

�
˚2

X .xi; xiC1/; (7)

for all x; x0 2 X. Definition (7) is illustrated in Fig. 3.
It is immediate that the method H ˚2 with output ultrametrics as in (7) is

equivalent to reciprocal clustering H R with output ultrametrics as in (3). Indeed,
given a network N D .X;AX/ and points x; x0 2 X, there are only two possible maps
from ��˚2 to N containing nodes x and x0 in their images. One map takes p to x and
q to x0 and the other reverses the images and takes p to x0 and q to x. However, either
maps have the same Lipschitz constant as defined in (5), ensuring that the optimal
multiple in (6) is well defined. Consequently, we obtain that

�
˚2

X .x; x0/ D max
�
AX.x; x

0/;AX.x
0; x/

� D NAX.x; x
0/: (8)

Comparing (7) with (3) and using the observation in (8) the equivalence H R �
H ˚2 follows, i.e., H R.N/ D H ˚2 .N/ for all networks N. Thus, we say that
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Fig. 3 Representable method H ˚2 with ultrametric output as in (7). For every pair xi; xiC1 of
consecutive nodes in the chain C.x; x0/ we multiply the network ˚2 by the minimum multiple
�
˚2

X .xi; xiC1/ that allows the existence of a dissimilarity reducing map �xi;xiC1
containing nodes xi

and xiC1 in its image. The maximum among all these multiples determines the cost of the chain
C.x; x0/. The value u˚2

X .x; x0/ is the minimum chain cost over all possible chains linking x to x0

the reciprocal clustering method is represented by the network ˚2. That is, if
we consider ˚2 as an interaction modality defining a basic clustering unit, the
hierarchical clustering of a generic network follows from application of (7).

The definition in (7) is certainly more cumbersome than (3). However, the former
can be generalized to cases in which we consider arbitrary representers in lieu of˚2

as we explain next.

4.1 Representable Hierarchical Clustering Methods

Generalizing H ˚2 entails redefining the Lipschitz constant of a map and the
optimal multiples so that they are calculated with respect to an arbitrary representer
network ! D .X!;A!/ instead of ˚2. In representer networks !, we allow the
domain dom.A!/ of the dissimilarity functionA! to be a proper subset of the product
space, i.e., we may have dom.A!/ ¤ X! � X! . This is a technical modification that
allows representer networks to have some dissimilarities that can be interpreted as
arbitrarily large. Generalizing (5), given an arbitrary networkN D .X;AX/we define
the Lipschitz constant of a map � W X! ! X from ! to N as

L.�I!;N/ D max
.z;z0/2dom.A!/

z¤z0

AX.�.z/; �.z0//
A!.z; z0/

: (9)

Notice that L.�I!;N/ is the minimum multiple of the network ! such that the
considered map � is dissimilarity reducing from L.�I!;N/ � ! to N. Further,
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observe that (9) reduces to (5) when ! D ˚2. Notice as well that the maximum
in (9) is computed for pairs .z; z0/ in the domain of A! . Pairs not belonging to
the domain could be mapped to any dissimilarity without modifying the value of
the Lipschitz constant. Mimicking (6), for arbitrary nodes x; x0 2 X we define the
optimal multiple �!X .x; x

0/ between x and x0 with respect to ! as

�!X .x; x
0/Dmin

˚
L.�I!;N/ j� WX! ! X; x; x0 2 Im.�/

�
: (10)

This means that �!X .x; x
0/ is the minimum Lipschitz constant among those maps that

have x and x0 in its image. Observe that (10) reduces to (6) when ! D ˚2.
Representable methods are generalized to cases in which we are given a

nonempty set ˝ of representer networks !. In such case we define the function
�˝X by considering the infimum across all representers ! 2 ˝ ,

�˝X .x; x
0/ D inf

!2˝ �!X .x; x
0/; (11)

for all x; x0 2 X. The value �˝X .x; x
0/ is the infimum across all multiples � > 0 such

that there exists a dissimilarity reducing map from � � ! to the network containing
x and x0 in its image for some representer ! 2 ˝ . For a given network N D
.X;AX/, the representable clustering method H ˝ associated with the collection
of representers ˝ is the one with outputs .X; u˝X / D H ˝.X;AX/ such that the
ultrametric u˝X is given by

u˝X .x; x
0/ D min

C.x;x0/
max

ijxi2C.x;x0/
�˝X .xi; xiC1/; (12)

for all x; x0 2 X. The definition in (12) is interpreted in Fig. 4.
We say that ˝ is uniformly bounded if there exists a finite M such that for all

! D .X!;A!/ 2 ˝ we have that max.z;z0/2dom.A!/ A!.z; z0/ � M . We now formally
define the notion of representability.

(P2) Representability

We say that a clustering method H is representable if there exists a uniformly
bounded collection˝ of weakly connected representers each with finite number of
nodes such that H � H ˝ where H ˝ has output ultrametrics as in (12). If the
collection˝ is finite, we say thatH is finitely representable.

For every collection of representers ˝ satisfying the conditions in property
(P2), (12) defines a valid ultrametric. Moreover, every representable clustering
method abides by axiom (A2), as stated next.

Proposition 1 Given a collection of representers ˝ satisfying the conditions in
(P2), the representable methodH ˝ is valid, i.e., u˝X defined in (12) is an ultrametric
for all networks N D .X;AX/, and satisfies the Axiom of Transformation (A2)
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Fig. 4 A representable clustering method H ˝ . The collection of representers ˝ is composed by
two representers !1 and !2 shown at the bottom of the figure. In order to compute the ultrametric
value u˝X .x; x

0/ we link x and x0 through a chain, e.g., Œx; x1; : : : ; x6; x0� in the figure, and link pairs
of consecutive nodes with multiples of the representers. We depict these multiples for pairs .x; x1/,
.x2; x3/, and .x6; x0/ and the corresponding dissimilarity reducing maps �x;x1 , �x2;x3 , �x6;x0 from the
multiple of the representers to the network, containing the corresponding pair of nodes in their
images. The ultrametric value u˝X .x; x

0/ is given by minimizing over all chains joining x and x0 the
maximum multiple of a representer used to link consecutive nodes in the chain (12)

The condition in (P2) that a valid representable method is defined by a set
of weakly connected [23] representers is necessary and sufficient. However, the
condition in (P2) that ˝ be uniformly bounded is sufficient but not necessary
for H ˝ to output a valid ultrametric. Although (A2) is guaranteed for every
representable method, the Axiom of Value (A1) need not be satisfied. Thus,
admissibility and representability are independent properties.

Remark 2 Representability is a mechanism for defining universal hierarchical
clustering methods from given representative examples. Each representer ! 2 ˝

can be interpreted as defining a particular structure that is to be considered a
cluster unit. The scaling of this unit structure [cf. (10), (11)] and its replication
through the network [cf. (12)] indicate the resolution at which nodes become part
of a cluster. The interest in representability is that it is easier to state desirable
clustering structures for particular networks rather than for arbitrary ones. We refer
the reader to Sect. 4.3 for particular examples of representer networks that give rise
to intuitively appealing clustering methods.
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4.2 Representability, Scale Preservation, and Admissibility

Are all representable clustering methods relevant in practice? To answer this
question we seek to characterize methods that satisfy some desired properties that
we deem reasonable. In particular, we consider methods that are admissible with
respect to the axioms of value and transformation (A1) and (A2) as well as scale
preserving in the sense of (P1).

In characterizing admissible, representable, and scale preserving methods, the
concept of structure representer appears naturally. We say that a representer ! D
.X!;A!/ is a structure representer if and only if jX!j � 2 and

A!.z; z
0/ D 1; for all z ¤ z0 s.t. .z; z0/ 2 dom.A!/: (13)

The requirement in (13) implies that structure representers define the relationships
that are necessary in a cluster unit but do not distinguish between different levels
of influence. In the following theorem we claim that admissible, representable,
and scale preserving hierarchical clustering methods are those represented by a
collection˝ of strongly connected, structure representers.

Theorem 2 A representable clustering method H satisfies axioms (A1)–(A2) and
scale preservation (P1) if and only ifH � H ˝ where˝ is a collection of strongly
connected, structure representers as defined by the condition in (13).

Recalling the interpretation of representability as the extension of clustering
defined for particular cases, Theorem 2 entails that the definitions of particular
cases cannot present dissimilarity degrees if we require scale preservation. That
is, the dissimilarity between every pair of distinct nodes in the representers must be
either 1 or undefined. The edges with value 1 imply that the corresponding influence
relations are required for the formation of a cluster whereas the influence relations
associated with undefined edges are not required. Conversely, Theorem 2 states that
encoding different degrees of required influence for different pairs of nodes within
the representers is impossible if we want the resulting clustering method to be scale
preserving.

4.3 Cyclic Clustering Methods

Let ˚t D .f1; : : : ; tg;At/ denote a cycle network with t nodes such that the domain
of the dissimilarity function dom.At/ D f.i; i C 1/gt�1iD1 [ .t; 1/ and every defined
dissimilarity is equal to 1. In this section we study representable methods where
the representer collections contain cycle networks. We first note that the method
defined by a representer collection that contains a finite number of cycle networks
is equivalent to the method represented by the longest cycle in the collection.
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Proposition 2 Given a finite collection˝ D f˚tjt 2 T g of cyclic representers, we
have thatH ˝ � H ˚tmax , where tmax D maxT .

The method H ˚t is referred to as the tth cyclic method. Cyclic methods H ˚t

for all t � 2 are admissible and scale preserving as stated in the following corollary
of Theorem 2.

Corollary 1 Cyclic methods H ˚t satisfy axioms (A1)–(A2) and the scale preser-
vation property (P1).

The corollary follows from the fact that networks ˚t are strongly connected
and structure representers. The second cyclic method H ˚2 was used to introduce
the concept of representable clustering in (5)–(7) and shown to coincide with
the reciprocal clustering method H R in (8). Interpreting ˚2 as a basic cluster
unit we can then think of reciprocal clustering H R � H ˚2 as a method that
allows propagation of influence through cycles that contain at most two nodes.
Likewise, the methodH ˚3 can be interpreted as a method that allows propagation
of influence through cycles that contain at most three nodes, and so on.

As we increase t, the output ultrametrics of methods H ˚t become smaller,
in particular smaller than those output by H ˚2 � H R. This is consistent with
Theorem 1 and is indicative of the status of these methods as relaxations of the
condition of direct mutual influence. As we increase the length of the cycles, the
question arises of whether we recover nonreciprocal clustering. This is not true for
any ˚t where t is finite. However, if we define C1 D f˚tg1

tD1 the following result
holds.

Proposition 3 The clustering method H C1 represented by the family of all cycle
networks C1 is equivalent to the nonreciprocal clustering methodH NR with output
ultrametrics as defined in (4).

Combining the results in Propositions 2 and 3, it follows that by considering
methodsH ˚t for finite t and methodH C1 we are considering every method that
can be represented by a countable collection of cyclic representers. The reformula-
tion in Proposition 3 expresses nonreciprocal clustering through the consideration
of particular cases, namely cycles of arbitrary length. This not only uncovers a
drawback of nonreciprocal clustering—propagating influence through cycles of
arbitrary length is perhaps unrealistic—but also offers alternative formulations
that mitigate this limitation—restrict the propagation of influence to cycles of
certain length. In that sense, cyclic methods of length t can be interpreted as a
tightening of nonreciprocal clustering. This interpretation is complementary of their
interpretation as relaxations of reciprocal clustering that we discussed above. Given
this dual interpretation, cyclic clustering methods are of practical importance.
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5 Conclusion

The notion of representability was introduced as the possibility of specifying a
hierarchical clustering method through its action on a collection of representers.
Moreover, the characteristics needed on the representers to obtain an admissible
and scale preserving method were detailed. We then focused our attention on cyclic
methods, a particular family within the representable methods.
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