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Abstract In analogy to clinical trials, in a benchmark experiment based on real
datasets we can see the considered datasets as playing the role of patients and
the compared methods as playing the role of treatments. This view of benchmark
experiments, which has already been suggested in the literature, brings to light
the importance of statistical concepts such as testing, confidence intervals, power
calculation, and sampling procedure for the interpretation of benchmarking results.
In this paper we propose an application of these concepts to the special case
of benchmark experiments comparing clustering algorithms. We present a simple
exemplary benchmarking study comparing two classical clustering algorithms based
on 50 high-dimensional gene expression datasets and discuss the interpretation
of its results from a critical statistical perspective. The R-codes implementing the
analyses presented in this paper are freely available from: http://www.ibe.med.uni-
muenchen.de/organisation/mitarbeiter/020_professuren/boulesteix/boulesteixhatz.

1 Introduction

Real data are more complex than simulated data. In practice data never follow well-
known distributions. To assess the behavior of data analysis methods in concrete
situations of practical relevance, benchmarking on real data is essential.

Whereas supervised learning methods can be evaluated in real data settings based
on, e.g., their cross-validation error, there is no obvious criterion to be used to
evaluate clustering methods. Quite generally, benchmarking—in particular bench-
marking using real data—is a very complex issue in the context of unsupervised
learning and to date there still exists no guidance in the literature on how to design
and interpret such an experiment. One of the goals of the so-called Task Force on
Benchmarking initiated bymembers of the International Federation of Classification
Societies (IFCS) [12] is to provide such guidance.
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In the special case where a/the true cluster structure is known, it can be used
as a target to be achieved by the clustering method. The agreement between this
true cluster structure and the cluster structure output by the method of interest can
then be considered as a goodness criterion for evaluating the considered clustering
method.

Papers comparing clustering methods typically include simulation studies and
an application to a small to moderate number of real datasets. In the present paper,
we critically discuss these real data applications from a statistical point of view. In
particular, we draw a parallel between benchmark experiments and clinical trials
as already suggested by Boulesteix and colleagues [1, 3] for the case of real data
and Doove et al. [6] in the context of simulations. In our framework, real datasets
play the role of patients, and clustering methods play the role of therapies. With this
metaphor in mind, we claim that, in order to make clear statements from real data
benchmark experiments, one has to analyze and interpret their results following
statistical principles, as illustrated through an exemplary benchmark experiment
based on 50 microarray datasets.

Our goal is fourfold: (1) illustrating the variability of benchmarking results
across real datasets, (2) propagating statistical thinking in the context of benchmark
experiments, where datasets are considered as statistical units, (3) discussing
the notion of power in this context, (4) illustrating a possible strategy for the
interpretation of benchmark studies based on real datasets through an exemplary
study.

The paper is structured as follows. Section 2 briefly presents the clustering meth-
ods, data and evaluation criterion used in the exemplary benchmark experiment. The
statistical interpretation of the results is given in Sect. 3, including discussions of
the concepts of statistical testing, sample size calculation, dependence on datasets’
characteristics, and sampling.

2 An Illustrative Benchmark Study: Methods and Data

This section briefly presents the clustering methods, data and evaluation criterion
used in the exemplary benchmark experiment.

2.1 Data

The collection of datasets used in our exemplary study was first described by
de Souza et al. [5] and used in the context of benchmarking for supervised
classification by Boulesteix et al. [4]. It includes 50 clinical gene expression datasets
with binary response variable (e.g., diseased vs. healthy), with numbers of patients
between n D 23 and n D 286 and number of variables (genes) between 1098
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and 54,680 variables. The datasets can be freely downloaded from the companion
website of the paper by Boulesteix et al. [4].

In our study, the interest is in clustering the patients, a task commonly performed
in clinical research with the aim, say, to identify typical patient profiles or to discover
new disease subtypes. In this context, we would like clustering methods to be able
to recover the true cluster structure given by the binary response variable, since it
is known to be clinically relevant. Our study includes datasets with binary response
variables only to make the comparison of the results across datasets easier.

2.2 Goodness Criterion

As a goodness criterion for clustering methods, we thus simply consider the adjusted
Rand index (ARI) [8] measuring the agreement between the true cluster structure
(denoted as “partition Ctrue” of f1; : : : ; ng) defined by the binary response variable
and the cluster structure (“partition CM”) output by the clustering method M of
interest. The Rand index (RI) can be seen as the proportion of pairs of objects that
are either in the same cluster or in different clusters according to both Ctrue and CM :
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Table 1 Partition CM output
by clustering method M and
true clustering Ctrue given by
the binary variable (e.g.,
diseased vs. healthy)

Ctrue

CM Y D 0 Y D 1 ˙

C D 1 n11 n12 n1:

C D 2 n21 n22 n2:

˙ n:1 n:2 n
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2.3 Clustering Methods

In this paper we consider two simple standard clustering methods, since our focus is
on issues related to benchmarking and interpretation rather than on the methods
themselves. These very widely used methods can be seen as representatives of
two important families of clustering methods, namely partitioning methods and
hierarchical methods. The first method we consider is partitioning around medoids
(PAM) as implemented in the function “pam” of the R package “cluster.” The
second method is agglomerative hierarchical clustering with euclidean distance as
implemented in the function “hclust.” These two methods are applied to obtain
K D 2 clusters, by setting the number of clusters to 2 in “pam” and by cutting
the tree in order to obtain two clusters. The choice of K D 2 corresponds to the
true cluster structure reflected by the binary response variable (note that it would be
interesting to also perform analyses with other values of K but this would lead to
the problem of the choice of K, which goes beyond the scope of this paper).

3 Statistical Interpretation of Results

In this section, the results of our exemplary benchmark experiment presented in
Sect. 2 are discussed from a statistical perspective. Most importantly, we propose to
adopt and extend the statistical framework presented by Boulesteix et al. [4] to the
context of unsupervised learning.

3.1 Main Results

We obtain the results in the form of a 50�2 matrix containing the ARI-values for all
50 datasets and both methods. A straightforward way to visualize the results is to
display the ARI-values and differences in the form of boxplots as depicted in Fig. 1.

Paired tests can be performed to compare the ARI-values of the two methods, as
described in Boulesteix et al. [4] in the different case of error rates of classification
methods. p-Values of 0.001 and 0.0005 are obtained from the Wilcoxon test
and t-test, respectively, whereby the Wilcoxon test seems to be more appropriate
considering the skewness of the difference’s distribution. In the same vein, one can
compute confidence intervals for the median: the bootstrap confidence interval for
the median is .0; 0:053/ with the percentile method and .0; 0:046/ with the bias-
corrected accelerated bootstrap method [7].

Beyond statistical tests and the consideration of confidence intervals, further
issues related to benchmarking can be advantageously considered from a statistical
perspective, in particular in light of clinical trials methodology. They are discussed
in the following subsections.
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Fig. 1 Adjusted Rand Index (ARI) for the 50 datasets for PAM clustering (left) and agglomerative
hierarchical clustering with complete linkage (middle); difference between these two ARI values
(right) with the confidence intervals (of the median) obtained by the bias-corrected accelerated
bootstrap method represented as dashed lines

3.2 Sample Size Calculation

Obviously, the number of datasets included in a benchmark experiment greatly
influences the results of the testing procedure. The larger the number of datasets the
higher the power to detect differences, and the lower the variance of the estimated
difference between the two methods.

To illustrate this issue, we determine the median ARI-difference and the p-value
of Wilcoxon’s test obtained for 1000 random subsets of datasets drawn out of the 50
considered datasets. The corresponding boxplots are displayed in Fig. 2 for different
subset sizes (J D 3, J D 5, J D 10, J D 25 datasets). As expected, the more
datasets one includes in the benchmark experiment, the higher the stability of the
median difference in ARI and the lower the p-values. If one performs the benchmark
experiment based on only J D 3; 5, or 10 datasets instead of J D 50, the result may
look completely different from the results with J D 50 datasets. Of note, a number
of very large differences (> 0:2) are obtained for J D 3; 5; 10. Furthermore, most
subsets of size J D 10 yield p-values> 0:05.

The notion of power of benchmark experiments in relationship with the num-
ber of included datasets can be formally addressed within the statistical testing
framework. For simplicity, we assume that the paired t-test is used to compare
the two methods. Considering the slightly skewed distribution of the differences
between ARI-values of the two methods displayed in the right boxplot of Fig. 1, the
Wilcoxon is certainly more appropriate. But sample size calculation is essentially
an approximative procedure intended to provide orders of magnitude, so considering
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Fig. 2 Left: Median difference in ARI between the two methods for 1000 subsets of J D
3; 5; 10; 25 datasets drawn randomly out of the 50 datasets. Right: p-Value of the Wilcoxon test
comparing the ARI-values of the two methods for 1000 subsets of J D 3; 5; 10; 25 datasets drawn
randomly out of the 50 datasets

the t-test for the purpose of sample size calculation is acceptable in our context if
one keeps in mind that the size has to be slightly increased if the Wilcoxon test is
applied instead of the t-test.

The number of observations required to detect a difference of � at a significance
level of ˛ with a power of 1 � ˇ using a two-sided paired t-test is approximated by

J � .z˛=2 C zˇ/2

.�=�/2
(1)

where � denotes the standard deviation of the difference and zq denotes the
q-quantile of the standard normal distribution. Note that this formula is based on
the approximation of the Student distribution as standard normal distribution (the
exact formula is less easy to apply since it involves the quantiles of the Student
distribution, which themselves depend on J).

In our context, � corresponds to the standard deviation of the difference that
is displayed in the right boxplot of Fig. 1 for the 50 datasets. We obtain O� D
0:18. Using Eq. (1), we compute that 25 resp. 102 datasets are required to detect
differences of � D 0:1 and � D 0:05, respectively. Thus, even for a large difference
of � D 0:1, and for a relatively homogenous set of datasets as considered here (gene
expression data, continuous variables, small to moderate sample size), the number
of required datasets by far exceeds the size of typical benchmark experiments.

Our results, even if based on a particular example, suggest that it is unrealistic
to draw statistically valid conclusions on average superiority of a method over the
other based on real datasets without much time and effort. This problem becomes
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even more pointed if one does not consider average effects but tries to establish
relationships between superiority of methods and datasets’ characteristics. This
issue is discussed and illustrated in the next section.

3.3 Dependence on Datasets’ Characteristics

It can be argued that average superiority over a whole area of application is
of poor relevance, since it is expected that the behavior of methods varies a
lot depending on datasets’ characteristics. Investigating the relationship between
datasets’ characteristics and methods’ performance amounts to examining average
superiority within a reduced area defined by particular datasets’ characteristics. In
this perspective, the issues discussed in the previous sections are also relevant when
relating performance/superiority to datasets’ characteristics based on real data—and
certainly even more since the numbers of datasets are smaller.

It is important to investigate average superiority when elaborating guidelines and
establish standard approaches. In an ideal world, methods that establish themselves
as standard are those which are superior to other “on average”—even if this is not
explicitly tested. Similarly, in an ideal world drugs that are routinely prescribed to
patients are those that work best on average according to adequate statistical testing
within clinical trials.

However, in the same way as the superior drug may not be the same for
two different patients, the superior algorithm may not be the same for different
datasets. In both cases, part of these differences might be explained by individual
characteristics such as, say, age and sex of the patient and size and number of
variables of the dataset, to cite only a few trivial examples. In the same way as a
doctor wants to know which drug will best help the patient sitting in front of him,
the data analyst wants to know which method performs best for the dataset at hand.

In the clinical context, two strategies have been pursued to address this problem:
the search for subgroups in which treatment effects are different, on the one hand,
and regression analysis for relating treatment effects to patients’ characteristics, on
the other hand. In a classical clinical trial with two parallel groups receiving a dif-
ferent treatment, regression analysis is usually performed as follows. The regression
model relates the outcome of interest (dependent variable) to the treatment group,
the patient’s characteristic and their interaction (independent variables). In the
context of benchmarking considered here, both methods are applied to all datasets,
so the regression model simplifies to a model with the difference of performance as
dependent variable and the dataset’s characteristic as independent variable.

The search for subgroups can be performed using recursive partitioning methods
both in clinical settings [11] and benchmarking settings. This is the approach
adopted by Doove et al. [6] in the context of simulation-based benchmarking
for clustering methods. In analogy to the term “treatment regime” used in the
clinical context, Doove et al. [6] aim at deriving the “optimal data-analytic regime”
depending on the dataset’s characteristic in the context of benchmark studies.
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With real data, however, things are more complex [6], not only because of the
lack of straightforward goodness criterion. Firstly, the problem of the limited power
is even more of an issue when relating performance to datasets’ characteristics than
when simply testing average superiority as described in Sect. 3.2. That is because the
focus is now essentially on subgroups of datasets. Secondly, datasets’ characteristics
may be highly correlated, making it different to distinguish their respective effects.
In simulation-based benchmarking, some of the relevant datasets’ characteristics are
controlled by design, hence mitigating this problem. The combination of these two
problems makes the investigation of relationships between datasets’ characteristics
and methods’ performance very difficult when using real datasets. On the one
hand, the independent effects of the datasets’ characteristics can only be assessed
by including many of them in the model (keeping in mind that they are not all
observable in real data settings!). On the other hand, increasing the number of
datasets’ characteristics in the model also decreases the power to identify individual
effects.

To sum up, claims on the relationships between datasets’ characteristics and
methods’ performance based on real datasets should be formulated very cautiously.

3.4 Sampling Issues and Over-Optimism

In clinical trials precise inclusion criteria for patients are defined before starting
patient recruitment, for example, “age>18,” “male sex,” “no diabetes,” etc. All
patients fulfilling these criteria are considered for inclusion in the study and asked
for their consent. After the data have been collected, it is not allowed to exclude
patients from the analysis a posteriori based on their response to therapy.

Such sensible rules should ideally also be adopted in real data-based benchmark
studies. Obviously, not all datasets are appropriate to be included in the benchmark
study. Or the other way around, a method is not appropriate to all datasets. If some
criteria that the dataset has to fulfill to be analyzed with the method are known
before performing the benchmark study, candidate datasets should be checked for
these criteria and included in the benchmark study only if they fulfill them. All
datasets allowed to enter the study should be considered when reporting the results,
even those yielding very bad results for the authors’ “favorite” method.

Removing these bad datasets from the results has two detrimental consequences:
(1) potential important relationships between method performance and datasets’
characteristics in the vein of Sect. 3.3 may be overlooked; (2) the overall perfor-
mance of the “favorite” method may be substantially over-estimated, as outlined
theoretically [13] and empirically [9, 10] in the case of supervised learning.
By eliminating bad datasets from reporting, one violates rule 4 from the “Ten
simple rules to avoid over-optimism in computational research” [2]. This kind of
“fishing for datasets” makes the results of real data-based benchmarking even less
representative of further datasets.
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The definition of inclusion criteria for benchmarking could ideally follow similar
principles as in clinical trials. Too strict inclusion criteria lead to study results
that are very specific to the considered settings and may not be of broad interest.
Conversely, including heterogeneous datasets may make interpretation difficult.

An important difference between benchmarking settings and clinical settings
is the “recruitment procedure.” For a clinical trial one may, for example, recruit
consecutive patients presenting to the hospital with some given symptoms. In the
context of benchmarking, however, datasets have to be actively looked for (e.g., in
databases or from the companion websites of published papers). This active role of
the researcher in the recruitment introduces some arbitrariness and complicates the
statistical formalization of the sampling procedure.

There is no straightforward sampling procedure for the population of datasets
and the datasets can often not be considered as an i.i.d. sample drawn from the
population of interest. This may induce biases and dependencies between observa-
tions that are difficult to avoid. They should be taken into account when interpreting
the results of the benchmarking study. Otherwise, the statistical interpretation of
benchmarking may give the readers a false sense of security/scientific correctness.
Such issues may be devoted more attention in the context of benchmarking research
in the future.

4 Conclusion

Applications to “one or few real datasets” are useful and important. However, they
should be considered as illustrative and not representative of what we would obtain
with further datasets [1] as long as no statistical inference is performed. Statistical
inference requires many datasets and raises important challenges. In particular, there
is no straightforward sampling procedure for the population of datasets. Bias is
difficult to avoid. In conclusion, results of benchmark experiments based on real
datasets should be interpreted with highest caution.
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