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Partitions

Slavka Bodjanova

Abstract A fuzzy partition is usually described by a matrix U with elements from
the unit interval. For a variety of reasons, U is often approximated by simpler
matrices. The most popular are the maximum membership approximation and
approximations based on «-level cuts of U. Because they create crisp matrices
with membership grades either zero or one, most of the detailed information from
U is lost. Two methods of gradual non-crisp approximations of U based on a
set of parameters T derived from U are proposed. The first produces T-sharper
images of U with gradually decreasing amount of fuzziness. The final image is
a convex combination of all possible maximum membership approximations of
U. The second method generates T-level cuts of U. They represent a gradual
transformation from the lower crisp approximation of U by its core (x-cut at level
a = 1) to the upper crisp approximation of U by its support (strong «-cut at level
a = 0). Properties of both methods are discussed and illustrated with examples.

1 Introduction

The relevance of theory of fuzzy sets to cluster analysis has been well documented
by many research works and applications [1, 8, 10-12, 14, 16]. A fuzzy partition
U of n objects into ¢ clusters is usually described by a matrix of the size
¢ x n with elements from the unit interval. The use of the unit interval allows
to express membership grades of U with infinitely many values from 0 to 1.
However, this detailed information is not always needed. A large number of different
membership grades complicate interpretation and increase computational cost in
further applications. In decision-making, an approximation of U often provides
sufficient information. There has been extensive research related to approximation
of fuzzy sets [3-5, 9, 13, 15]. However, approximation of fuzzy partitions has
not received considerable attention. Some work in this direction can be found in
[1,2, 6-8].
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In practice, an approximation of a fuzzy partition U is usually performed by the
maximum membership method [1] or by an a-cut [5, 15] of U, where « is a real
number from the unit interval. Both methods produce crisp matrices with elements
from the set {0, 1} and therefore most of the detailed information provided by the
original fuzzy partition is lost. The aim of this contribution is to explore some
methods of gradual approximations of U by non-crisp matrices. Two approaches,
based on two different interpretations of the notion of a-cut of U, are considered.
First, the o-cut can be interpreted as a sharper approximation of U in which the
large membership grades (at least as large as o) are elevated to 1, while the small
membership grades (smaller than «) are reduced to 0. Second, it may be viewed
as a coarser approximation of U in which the total number of distinct membership
grades of U is reduced to only two values, namely to 0 and 1. In this case, 0 and 1
are the labels for the image of U in the partition of the unit interval into subintervals
[0, @) and [, 1], respectively.

The maximum membership approximation of U is a generalization of the o-
cut of U, where the parameter « is replaced by an n-tuple of parameters 7 =
(t1,...,t,) derived from U. Therefore, the concept of «-sharpness can be extended
to T-sharpness. Also, the maximum membership approximation of U can be
obtained from a sequence of its minimum membership approximations [2]. T-
sharper approximations and the minimum membership approximation based on
T-sharpness will be explored in Sect.3. Analogously, when the set T= {«} is
extended to the set T= {t1,...,1,} of parameters from (0, 1), the a-cut of U is
generalized to the T-level cut of U, which is a coarser image of U in the partition
of the unit interval into at most m + 1 subintervals. T-level cuts will be studied in
Sect. 4. T-sharper approximations and T-level cuts of a fuzzy partition U represent a
compromise between the original matrix U (too fuzzy) and its crisp approximation
(too coarse). The parameters in the n-tuple T or in the set T can be derived from
U or can be given by a researcher. The rest of this paper is organized as follows.
Section 2 reviews some basic concepts of fuzzy partitions. Section 5 provides some
concluding remarks.

2 Preliminaries

We assume that X is a finite universal set with the cardinality |X| = nand2 < ¢ < n.
Let V., denote the set of all real ¢ xn matrices. Then the hard (crisp) c-partition space
for X is the set [1]

c

n
Miyen = {U € Vi 11 € {013, foralli,j; Y uy =1, forallj; 0< Y wu;<n, forall i},

i=1 J
(1)
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the probabilistic fuzzy c-partition space for X is the set

C n
Mpen ={U € Von 1w € [0.1], foralliji Y uy =1, forallj: 0<» uy <n, forall i},
i=1 j

@)

and the possibilistic fuzzzy c-partition space for X is the set

c n
Mpey = {U € Vo 1wz € [0,1], foralli,j; » uz >0, forallj; 0< Y uy<n, foralli}.
i=1 J

3)

The degenerated partition spaces Mjycno, Mo, and Mye,, are supersets of
Mpen, Mgy, and My, respectively, obtained by the condition

0= uy<n, foralli. @)
J

The notation 7 will be used for the set of integers {1, ..., c} and the notation J will
be used for the set of integers {1,...,n}. For U,W € V,,

U < Wif and only if u; < wy; forall (i,j) € I x J. 5)

Fuzziness of a fuzzy partition U € My, can be evaluated by the partition entropy
defined by

1
H = ,
)= Z Z h(u). (6)
i€l jeJ
where h(u;) = wilogi/c(u;;), when u; > 0 and 2(0) = 0. Then

1.O<HU) <1
2. HU) = 0if and only if U € Mj,
3. H(U) = 1if and only if U has all elements equal to 1/c

For a € [0, 1], the a-cut of U € My, is the matrix U, € V,, with elements

1 ifu; > «a,
al)ij — T 7
(1) { 0 otherwise. ™
The strong «-cut of U is the matrix U,+ € V,, with elements
I ifu; > a,
i = . 8
(it ) { 0 otherwise . ®
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When o = 1, then U, is the core of U, denoted by cor U, and when a = 0, then
U,+ is the support of U, denoted by supp U.

The maximum membership approximation of U € My, is the partition MM (U) €
Mj., defined for all (i,j) € I x J by

1 if uy; = max{uy; k €1},

MM (u;;) =
(1) 0 otherwise.

€)

Note that U may have several different maximum membership approximations if
the maximum membership of a classified object in U is not unique.

3 T-Sharper Approximations of Fuzzy Partitions

Sharpening of membership grades of a fuzzy set is obtained by transformation of
large membership grades closer to 1 and small membership grades closer to zero.
The notions of large and small are understood with respect to a given threshold
a € [0, 1]. The following generalization of ¢-sharpening can be considered in the
case of fuzzy partitions.

Definition 1 Consider U, W € My, and n-tuple T = (1, ..., t,), t; € [0, 1] for all
j € J. Then W is T-sharper than U, denoted by W <7 U, if the membership grades
of W satisfy the following properties: for all (i,j) € I x J,

Wi S U =t Oor I = Ujj = wij. (10)

Further in this paper, the notation T = (¢;) will be used instead of 7' = (#1,...,1,).

Remark 1 f T = («), o € [0, 1], then T-sharpness is reduced to c-sharpness. In
order to obtain a T-sharper approximation of U which is a fuzzy partition different
from U, the n-tuple 7 must contain at least one parameter ; such that

min{u,;j|u,-j > 0,i € I} < 1 < max{u,-j|u,;,~ <l,ie I} (11)
Proposition 1 GivenT = (t1,...,t,) and U, V, W € My, the following properties
hold:

1. U<TU
2.IfU=<rVandV <7 U, thenU =V
3. IfU<TVandV<TW,thenU<TW

Corollary 1 My, is partially ordered by the relation <.

T-sharpening of fuzzy partitions reduces their fuzziness and therefore it can be
considered as a method of partial defuzzification.
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Proposition 2 Let U, W € My, and W <7 U. Then H(W) < H(U).

Note that if H(W) < H(U), then W does not need to be a T-sharper approximation
of U.

The notion of T-sharpness can be used in characterization of the minimum
membership approximation of a fuzzy partition. Recall that the method of the
maximum membership generates a crisp approximation of U , where the maximum
membership grade in each column of U is replaced by 1. On the contrary, the
minimum membership grade approximation should be a fuzzy partition where
the minimum membership grade in each column of U is replaced by 0. Since
this approximation should reduce the partition entropy of U, we request that the
minimum membership approximation of U be T-sharper than U.

Definition 2 Assume U € Mjy,. For each j € J, let s; = max{u;|,i € I} and
r; = min{u;j|u; > 0,i € I'}. Create matrix W € V., as follows: for all (i,j) € I x J

Uij if rj = s,
Wi = 0 if Ujj < T < Sjs (12)
3;; > 0 otherwise,

where > i_,w; = 1forall j € Jand W <7 U for some n-tuple 7. Then W is a
minimum membership approximation of U denoted by mm(U).

Note that minimum membership approximation of U is not unique.

Proposition 3 Assume U € My,. For each j € J, let s; = max{u;|,i € I}, r; =
min{uluy > 0,i € I}, [ ={i € I 1wy = r;}, and I = {i € I : u; > r;}. Consider
mapping ¢1 : My, — My, which assigns to each u;; € U element ¢1(u;) € ¢1(U)
as follows:

1 ifrj =sj,
Pr(u;) =10 ifuy <1 <sj, (13)
u; + y; otherwise,

where y; = q|l,~|/|1}"|. Then ¢1(U) = mm(U) and ¢(U) <7 U, where T = (ry).

Another way of obtaining a minimum membership approximation of U is based on
linear intensification [2].

Proposition 4 Assume U € My,. For each j € J, let s; = max{u;|,i € I}, r; =
min{u;j|lu; > 0,i € I}, I; = {i € I|lu; > 0}, and m; = |I;|. Consider the mapping
(linear intensification) > : My, — My, which assigns to each u; € U element
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©2(uij) € p2(U) as follows:
1 1 1 oo )
mj + I—mjr; (ulj mj) lfrj <sj,

u;j otherwise .

P2 (uy) = (14)

Then ¢2(U) = mm(U) and ¢2(U) <7 U, where T = (1/m;).
A slight modification of ¢, from Proposition 3 also generates mm(U).

Proposition 5 Assume U € My,. For eachj € J, rj = min{ulu; > 0,i € I}, I; =
{i €1l uy =r;}, s; = max{uy,i € I}, and I'* = {i € I| u; = s;}. Consider the
mapping ¢3 : My, — My, which assigns to each u; € U element ¢3(u;) € 3(U)
as follows:

u;j ifrj =sj0rr <u; <sj,
@3(uy) =10 ifuj <r; <sj, (15)
u; + vy otherwise,

where y; = rj|[j|/|1I*|. Then ¢3(U) = mm(U) and ¢3(U) <1 U, where T = (r)).

A sequence of gradual approximations of U by mm(U) can be created according to
Algorithm 1 below.

Algorithm 1 Let U € My, and ¢ : My, — My, such that o(U) = mm(U).

Step 1: Putk := 0 and mm*(U) := U.

Step 2:  Create mm* T (U) = o(mm*(U)).

Step 3:  If mm* T (U) = mm*(U) or k = ¢ — 2, stop. Else put k := k + 1 and go
to Step 2.

Proposition 6 Assume a sequence mm*(U), k=0, ..., c—2 of approximations of
U generated by Algorithm 1. Then mm* 1\ (U) <7, mm*(U) and Ty+1 > Ty.

Corollary 2 Assume a sequence mm*(U), k = 0, ...,c — 2 of approximations of
U generated by Algorithm 1. Then H(mm* T (U)) < H(mm*(U)).

Remark 2 When U has in each column only non-repeated positive membership
grades, then

 Fuzzy partition mm*(U), k = 1,...,c — 1 created by Algorithm 1 is the
kth minimum membership approximation of U. Consequently, mm‘~!(U) =
MM(U),

e If ¢, from Proposition 4 is used in Algorithm 1, then mm*TY(U) =g,
mm*(U), k = 0,...,c — 2, where Ty = (1/(c — k)) and hence Ty = (1/c)
and T.—; = (1/2).

Each mapping ¢ : My, — Mj., which creates a minimum membership approxima-
tion of a fuzzy partition U reduces the number m; of clusters to which object x; € X
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is classified (2 < m; < ¢). Then, in decision-making, the following guidelines can
be used for the choice of ¢.

e If there is no other condition placed on mm(U), use the mapping ¢; from
Proposition 6. In this case, membership grades of x; greater than the minimal
one are uniformly elevated.

« If the goal is to create a fuzzy partition mm(U) such that the membership grades
of x; distributed to m; clusters of U are sharpened with respect to the threshold
1/mj, use the mapping ¢, from Proposition 4.

o If the goal is to create a fuzzy partition mm(U) with more distinct maximum
membership grades, use the mapping ¢3; from Proposition 5. Note that ¢3 can
be considered as a combination of the minimum membership and the maximum
membership methods, because the minimal membership grade of x; is reduced to
zero and only its maximal membership grade is elevated.

Example 1 Let U be the fuzzy partition of elements from the set X =
{x1, X2, x3, x4, X5, X } represented by the matrix

X1 X2 X3 X4 X5 X6
0.270.550.1 0 0.250.40
U=0.030.150.1 0.60 0.25 0.30
0.350.30 0.2 0.28 0.25 0.09
0.35 0 0.60.120.250.21

Due to repeated maximum membership grades in column 1 and column 5, there
are 8 different maximum membership approximations of U. When Algorithm 1
with the mapping ¢; from Proposition 6 is applied to U, the following non-crisp
approximations are obtained. First,

0.120.625 0 0 0.250.43
0 0 0 0.660.250.33

0.44 037503034025 0

044 0 0.7 0 0,250.24

)

mm!(U) =

where mm!'(U) <7, (U) and Ty = (0.03,0.15,0.1,0.12,0.25,0.09).
Partition entropy H(U) = 0.821 was reduced to H(mm'(U)) = 0.643.
The second and the third approximations are

0 1000.250.55 0 1000251
mm? (U) = 0 0010.250.45 o (U) = 00010250 ’
05000025 0 050000250

05010025 0 050100,250
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where mm?*(U) <z, mm*(U) <z, mm'(U),
T: = (0.12,0.375,0.3,0.34,0.25,0.24) and 7> = (0.5,1,1,1,0.25,0.45),
H(mm?(U)) = 0.333 and H(mm?*(U)) = 0.250.

When Algorithm 1 with the mapping ¢, from Proposition 4 is applied to U, the
following non-crisp approximations are obtained. First,

0.2728 0.7273 0O 0 0.250.4844

0 0 0 0.750.250.3281
0.3636 0.2727 0.1667 0.250.25 0 ’
0.3636 0 0.8333 0 0.250.1875

mm! (U) =

where mm'(U) <7, (U) and Ty = (1/4,1/3,1/4,1/3,1/4,1/4).
Partition entropy H(U) = 0.821 was reduced to H(mm'(U)) = 0.614.
The second and the third approximations are

0 1000.25 0.324 01000251
mm? (U) = 0 0010.250.6786 . mmP(U) = 00010250
05000025 O 050000.250
05010025 O 050100250

where mm?(U) <7, mm*(U) <7, mm'(U),
T\=(1/3,1/2,1/2,1/2,1/4,1/3)and T, = (1/2,1,1,1,1/4,1/2),
H(mm?*(U)) = 0.325 and H(mm?(U)) = 0.250. When Algorithm 1 with the map-
ping @3 from Proposition 5 is applied to U, the following non-crisp approximations
are obtained. First,

0.2700.7 0 0 0.250.49
0 0 0 0.720.250.30
0.3650.30.2028025 0 |’
0.365 0 0.8 0 0.250.21

mm!' (U) =

where mm!'(U) <7, (U) and Ty = (0.03,0.15,0.1,0.12,0.25,0.09).
Partition entropy H(U) = 0.821 was reduced to H(mm'(U)) = 0.627.
The second and the third approximations are

0 1000.250.55 01000251
0 0010.250.45 00010250

2 _ 3 _
mm W) =105000025 0 |° ™ @ =1050000.250
05010025 0 050100250

where mm?*(U) <z, mm*(U) <z, mm'(U),
T, = (0.27,0.3,0.2,0.28,0.25,0.21) and 7> = (0.5, 1, 1, 1,0.25,0.45),
H(mm?(U)) = 0.333 and H(mm?*(U)) = 0.250.
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4 T-Level Cuts of Fuzzy Partitions

Another way of approximation of a fuzzy partition U is transformation of U to
a matrix with reduced number of distinct membership grades from interval (0, 1).
This type of transformation is called coarsening. Given U € My, the set

Ay =1{6€(0,1): § = uy for some u; € U} (16)

is called the level set of U. Obviously, the level set of a crisp partition is empty.

Definition 3 Consider a matrix W € V,,, with elements from [0, 1]. The coarseness
of W is evaluated by the coefficient

k(U)=1— Aol (17)

n.c

Proposition 7 Assume a fuzzy partition U € My,. Then

1.0<k(U) <1

2. k(U) = 1ifand only if U € My, (crisp partition)

3. k(U) = 0 if and only if all membership grades of U are non-repeated values
between zero and one

An «-cut of U can be considered as a coarser image of U in the partition of the
unit interval into subintervals [0, «) and [e, 1], or simply as the level cut of U based
on the set of parameters T= {a},a € (0, 1). Let {61, 8>, ...,d;} be the set of all
distinct membership grades of U such that 1 > §; > 8, > ... > & > 0. Then the
level cuts Us,, Us,, ..., Us, create a sequence of gradual crisp approximations of U
such that

corU<Us <Us, <...<Us, <supp U. (18)

Our goal is to find a sequence of gradual non-crisp coarser approximations of U
satisfying inequality (18). Based on the concept of p-level sets [3], the concept of
T-level cuts of a fuzzy partition U is introduced in the next definition.

Definition 4 Let U € My, and T= {t1. 12, ..., 1.} be a set of parameters such that
0<t <t <...<t, < 1. Then the T-level cut of U is the matrix T(U) € V,,
defined for all (i,j) € I x J as follows:

[{t €T :t < u}

=T

19)

The membership grade T(u;;) evaluates the proportion of parameters from T which
are dominated by u;;. If T includes r distinct parameters from (0, 1), then T(U) is
an image of U in the partition of the unit interval into r 4 1 subintervals. In general,
T(U) is a possibilistic fuzzy partition.
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Proposition8 Let U € My,. Assume a T-level cut T(U) with the membership
grades T(u;;). Then

1. TO) =0and T(1) =1

2. T(uy) €{0,1/m,2/m,...,(m—1)/m, 1}, where m = |T)|

3. Ifuyj < upg then T(uy;) < T(upg)

4. WhenT = {t1,to, ..., tw}, S ={51,82,...,Sm}, and t; < sjforallj=1,...,m,
then S(U) < T(U)

5. If T ={a}, @ €(0,1), then T(U) = U+

Corollary 3 Let |Ay| = m. If the set T has less than m parameters (not necessarily
distinct), then T(U) is a coarser approximation of U.

A sequence of gradual approximations of U by coarser T-level cuts of U can be
created according to Algorithm 2 below.

Algorithm 2 Consider U € M,.

Step 1: Let k& be the number of crisp columns in U (i.e., columns containing
elements equal only to zero and one). Put n* := n — k.

Step 2: Remove from U all crisp columns and arrange the elements in each
remaining column from the largest to the smallest. Denote the resulting matrix
by U*. Let ¢* be the total number of distinct rows in U* with all elements from
0, 1).

Step3: For g = 1,...c*, arrange the elements in the gth row of U* from the
smallest to the largest. Denote the resulting matrix by U**. Assign the gth-row
of U** to n*-tuple T, and create T, (U).

Proposition 9 Consider the T-level cuts of U € M, created by Algorithm 2.
Then

1. corU <T{(U) < Tr(U) < Tex(U) < supp U
2. k(Ty(U)) <k(U) forallg=1,...,c*
3. Ty(U) € My, forg > 2

Remark 3 T;(U) created by Algorithm 2 contains one column with all elements
equal to zero (the column, where the smallest from all » maximal membership
grades is located). Therefore, T} (U) is not a possibilistic fuzzy partition of n objects.

Example 2 Consider the fuzzy partition U from Example 1. Then Algorithm 2
applied to U creates the following matrix U*

0.350.55 0.6 0.60 0.25 0.40
0.350.30 0.2 0.28 0.25 0.30
0.27 0.150.1 0.12 0.25 0.21
0.03 0 0.1 0 0.250.09

U =
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Then T; = {0.25,0.35,0.4,0.55, 0.6, 0.6} and

1/63/6 0 0 02/6
0 0 0 4/601/6
1/61/6 0 1/60 0
1/6 0 4/6 0 0 0

T(U) =

Coefficient of coarseness k (U) = 0.375 is increased to « (71 (U)) = 0.833.
The second and the third approximations are

2/6 10 0 1/6 1 5/6 1 0 0 4/6 1
0 00 1 1/63/6 02/6 0 1 4/6 1
5/63/602/61/6 0 |’ 1 13/61 4/6 0
5/6 01 0 1/61/6 1 0 1 1/64/63/6

(U) = I3(U) =

with 7, = {0.2,0.25,0.28,0.3,0.3,0.35} and T3 = {0.1,0.12,0.15,0.21,0.25,
0.27},
and k(T2(U)) = «(T1(U)) = 0.833. Obviously,

core U <T\(U) < TL(U) < T5(U) < supp U.

5 Conclusion

Two methods of a gradual non-crisp approximation of a fuzzy partition U based on
parameters which may be derived from U were proposed. While the first method
focuses on reduction of fuzziness of U, the second method increases coarseness of
U. The relation of T-sharpness and the coefficient of coarseness were introduced.
Although the work in this paper refers to a fuzzy partition of n objects into ¢ clusters,
it can be applied to any situation where information is represented by a matrix with
elements from the unit interval. This includes, e.g., tables of relative frequencies or
normalized evaluations of n objects by ¢ experts. In future work, approximations of
fuzzy partitions based on combination of sharpening and coarsening will be studied.
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