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Abstract Many real problems in supervised -classification involve high-
dimensional feature data measured for individuals of known origin from two or
more classes. When the dimension of the feature vector is very large relative
to the number of individuals, it presents formidable challenges to construct
a discriminant rule (classifier) for assigning an unclassified individual to one
of the known classes. One way to handle this high-dimensional problem is to
identify highly relevant differential features for constructing a classifier. Here a
new approach is considered, where a mixture model with random effects is used
firstly to partition the features into clusters and then the relevance of each feature
variable for differentiating the classes is formally tested and ranked using cluster-
specific contrasts of mixed effects. Finally, a non-parametric clustering approach
is adopted to identify networks of differential features that are highly correlated.
The method is illustrated using a publicly available data set in cancer research
for the discovery of correlated biomarkers relevant to the cancer diagnosis and
prognosis.

1 Introduction

In supervised classification, the data are classified with respect to g known classes
and the intent is to construct a discriminant rule or classifier on the basis of these
classified data for assigning an unclassified individual to one of the g classes on
the basis of its feature vector. Many real problems in supervised classification,
however, involve high-dimensional feature vectors. While there is a vast literature on
dimensional reduction and/or feature selection in supervised classification [4, 8, 13],
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some of the methods may become inapplicable or unreliable when the dimension of
the feature vector is very large relative to the number of individuals [2, 10, 15, 24].
An example of such an application is the analysis of gene-expression data, where
expression levels of genes (features) are available from patients in g known classes
of distinct disease stages or outcomes and the aim is to identify a small subset of
“marker” genes that characterize the different classes and construct a discriminant
rule to predict the class of origin of an unclassified patient [11, 17]. One way to
handle this high-dimensional problem is to identify genes that are differentially
expressed among the g classes of tissue samples. In this context, multiple hypothesis
test-based approaches [27-29] have been proposed to assess statistical significance
of differential expression for each gene separately, with control for the false
discovery rate (FDR) which is defined as the expected proportion of false positives
among the genes declared to be differentially expressed [1]. Clustering-based
approaches have also been considered, but these methods either work on gene-
specific summary statistics [14, 23] or reduced forms of gene-expression data [6].
Alternatively, clustering methods that can handle full gene-expression data rely
on the assumption that pure clusters of null (non-differentially expressed) genes
and differentially expressed genes exist [12, 26]; see also [25]. More recently, a
mixture model-based approach with random-effects terms was proposed to draw
inference on differences between classes using full gene-expression data [22]. This
method does not rely on the clusters being pure as to whether all cluster members
are differentially expressed or null genes. In this paper, we propose a new three-
step method that extends this mixture model-based approach in order to identify
networks of correlated differential features (genes) for supervised classification of
high-dimensional data.

The rest of the paper is organized as follows. In Sect. 2, we describe the mixture
model with random-effects terms [20] that is adopted in the first step to cluster the
genes using full gene-expression data. We also present the second step, where the
relevance of each feature variable for differentiating the classes is formally tested
and ranked on the basis of cluster-specific contrasts of mixed effects. In Sect. 3,
we describe the final third step in which a non-parametric clustering approach is
used to further explore the group structures of selected highly ranked differential
features for each cluster identified in the first step. Section 4 presents the application
of the proposed method to a publicly available gene-expression data set in cancer
research for the discovery of correlated biomarkers relevant to the cancer prognosis.
Discussion is given in Sect. 5.

2 Mixture Model with Random-Effects Terms

With supervised classification, it is supposed that an individual belongs to one
of g classes, denoted by Ci,...,C,, and that there is a vector of p feature
variables measured on each individual. Based on the observed feature vectors,
represented by an n X p matrix, the intent is to construct a discriminant rule for
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allocating an unclassified individual to one of the g classes [15]. For applications
in the context of supervised classification with gene-expression data, the number
of individual tissue samples n is very small relative to the number of genes
p. To handle this high-dimensional problem, it is proposed to adopt a mixture
model with random-effects terms to firstly cluster the p genes and then identify
those genes that are highly differentiated between the g classes of tissue sam-
ples.

Lety, = (yyj,--- ,¥j)T contain the measurements on the jth gene (j = 1,...,p),
where the superscript T denotes vector transpose and p is much greater than n. It
is assumed that y; has a h-component mixture distribution with probability 7; of
belonging to the ith cluster (i = 1,...,h), where the 7; sum to one. We let the
h-dimensional vector z; denote the cluster membership of y;, where z; = (z;); = 1
if y; belongs to the ith cluster and zero otherwise (i = 1, ..., h). A mixture model
with random-effects terms [20] is required because it is anticipated that repeated
measurements of gene expression for a tissue sample and expression levels for a
gene are both correlated; see also [19]. Specific random effects are thus consid-
ered in the mixture model to capture individual gene effects and the correlation
between gene-expression levels among the tissue classes [22]. Conditional on its
membership of the ith cluster, the distribution of y; is specified by the linear mixed
model

y; = Xn; + Ub; + Vei + &5, (1

where X, U, and V denote the known design matrices corresponding to the fixed
effects terms »; and to the random-effects terms b; and ¢; (i = 1,..., h;j =
1,...,p), respectively. The vector b; = (b, ..., bg;)" contains the unobserv-
able gene-specific random effects for each of the g tissue classes, and ¢; =
(ciiy ..., cm)T contains the random effects common to all genes from the ith cluster.
The measurement error vector €;; is taken to be multivariate normal N, (0, A;), where
A; is a diagonal matrix. The vectors b;; and ¢; of random-effects terms are taken to
be multivariate normal N, (0, B;) and N, (0, C;), respectively, where the variance
component C; is assumed to be diagonal and B; is a non-diagonal g X g matrix,
where the correlation between gene-specific random effects by; (I = 1, ..., g) is
modelled via the off-diagonal elements in B;; see, for example, [22]. The assignment
of the p genes into A clusters is implemented using the estimated conditional
posterior probabilities of cluster membership given y; and G =1,....,p;1 =

1,...,9):

ﬁif(.)’jlzij =1 '/Afi,éi)

) e
Zm:l ”mf(yjlzmj =1Lv,,Cn)

Ti(y) '@,é) =pr(Z; = 1|yj,é) =
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where ¥, is the parameter vector for the ith component density containing the
unknown parameters »; and distinct elements in A;, B;, and C;(i = 1, ..., h),
and

logf(yjlzy = L9, &) = —1 ] log |Di| + (y; — Xit; — V&) ™D (y; — X, — V&)

is the log density of y; conditioned on ¢; and the membership of the ith cluster, apart

from an additive constant, and where f),- = A,- + UﬁiUT; see [20].

To quantify the relevance of each gene for differentiating the g classes, we
consider an individual observation-specific contrast in the estimates of the fixed
and random effects weighted by the estimated posterior probabilities (2) of cluster
membership:

h
Wj:zfi(yj; 'I’aé)slj (G=1,....p), (3)

i=1

where
§y = al LB, &) [\l 2 @

is the cluster-specific normalized contrast with the BLUP estimator of the mixed
effects, and where d; is a vector whose elements sum to zero, bg, = (bg, R b;i)T
contains the gene-specific random-effects terms for the p; genes belonging to the ith
cluster G; (i =1, ..., h),and SAZi is the covariance matrix of the BLUP estimator of
the mixed effects, which can be partitioned conformally corresponding to #;|bg,|c;,
respectively, as described in [22].

Based on the weighted contrast W; (j = 1,...,p) given in (3), the p genes
can be ranked in the order of their relevance for differentiating the g classes (with
respect to the defined form of d; for the normalized contrast (4)). In the final
step of the proposed method to be described in the next section, we intend to
explore the group structure of top-ranked differentially expressed genes in each
identified cluster G;(i = 1,...,h), say, for those genes with contrast W; more
extreme than thresholds wg, or wg, for upregulated and downregulated genes,
respectively. A guide to plausible values of wg, and wy, can be obtained using the
percentile rank of W;(j = 1,...,p), whereby the percentiles are taken to be the
mixing proportions of the non-central portions of W; fitted by a three-component
mixture of #-distributions (these two components are considered as representing
the distribution of W; for upregulated and downregulated differentially expressed
genes).
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3 A Non-parametric Clustering Approach for Identification
of Correlated Features

We consider the r; top-ranked genes with W; more extreme than either wo, or wog
in Cluster G;(i = 1,...,h) and adopt a non-parametric method to cluster the r;
genes into networks of differentially expressed genes that are highly correlated.
The method starts with the calculation of pairwise correlation coefficients for each
pair of the r; genes in G;(i = 1,...,h). Significance of the pairwise correlation
coefficients is then assessed with the use of a permutation method [21] to determine
the null distribution of correlation coefficients. Precisely, the n class labels of tissue
samples are randomly permuted separately for each gene. We pool the permutations
for all N,, = ri(r; — 1)/2 pairs of genes to determine the null distribution of
correlation coefficients. In this paper, we consider the use of S = 100 repetitions of
permutations and estimate the P-value for each pair of genes by

S . p®)
#Hm: R, >R,m=1,...,N,}
p1:§ 0

I=1,...,Ny), 5
NS ( ) 5)

s=1

where Rf)“z is the null version of correlation coefficient for the mth pair of genes after
the sth repetition of permutations ;m = 1,...,N,; s =1,...,5). Let Pq) < --- <
P(y,,) be the ordered observed P-values obtained from (5). The Benjamini-Hochberg
procedure [1] is adopted to determine the cut-off k, where

k = arg max{k : Puy < ak/N,,}, (6)

with control of the FDR at level «. Pairwise correlation coefficients corresponding
to P-values Pqy < --- < P(;() are identified to be significant. Significance
of the pairwise correlation coefficients is represented by an r; X r; symmetric
binary matrix M with elements of one or zero indicating that the correspond-
ing correlation coefficients are significance or not. Finally, we search in M to
identify networks of differentially expressed genes in which all members in a
group significantly correlate with one another [21]. This non-parametric cluster-
ing approach obtains overlapping groups (networks) of correlated differentially
expressed genes.

4 Real Example

We consider the colorectal cancer gene-expression data set [5], which comprised
expression values of 15,552 genes for plasma samples from 12 colorectal cancer
patients and 8 healthy donors. The original study aims to validate the power of
four randomly selected markers (from a list of 40 genes differentially upregulated
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in cancer patients) in enabling differentiation of the tumour from the healthy
condition [5]. With the proposed three-step approach, we first fitted a mixture model
with random-effects terms to the column-normalized gene-expression data set with
h=3 to h=20 clusters, taking X = U to be a 20 x 2 zero-one matrix (the first 12
rows are (1, 0) and the next 8 rows are (0, 1)) and taking V to be I5y. Based on the
Bayesian information criterion (BIC) for model selection, we identified that there
are 15 clusters of genes. The ML estimates of the unknown parameters are presented
in Table 1. The ranking of differentially expressed genes is then implemented on the
basis of the weighted estimates of a contrast in the mixed effects (3). For the case
of g=2 classes of tissue samples (tumour versus healthy), we consider d; of the form
as

d=(1-1:00,...,00,1-1,00, ... :0...0), (7

where only one pair of (1 —1) exists in the second partition corresponding to
bg,; see Eq. (4). We then fitted a three-component mixture of z-distributions [16]
to W; and obtained the mixing proportions of the components corresponding
to the non-central portion of W;, which are 11.5 and 7.2% for upregulated
and downregulated genes in the tumour tissues, respectively. Thus we selected
wo, = 1.661 (the 88.5th percentile of W;) and wyy = —2.236 (the 7.2th
percentile of W;(j = 1,...,p)). There are a total of 2907 differentially
expressed genes with W; more extreme than wg, or wys (W; > 1.661 or
W; < —2.236). Among them, 1581 genes have valid identifiers (1073 upregulated

Table 1 Estimates of the mixture model with random-effects terms for the colorectal cancer data
set (15 clusters)

ni A; B; Ci
i T (M1i> m20) (01> 02) (Ob1is Ob2i> Ob12:i) (0ci)
1 0.024 —0.601, —0.591 0.643, 0.919 0.144, 0.085, 0.105 0.020
2 0.031 0.144,0.239 0.954, 2.790 0.033, 0.095, 0.039 0.006
3 0.109 —0.232,—0.030 0.578, 0.511 0.024, 0.029, 0.023 0.011
4 0.035 0.032,0.059 1.721, 0.336 0.054, 0.035, 0.013 0.001
5 0.114 0.070,0.126 0.646, 0.235 0.055, 0.053, 0.031 0.004
6 0.036 0.217,0.466 0.382, 0.567 0.035, 0.060, 0.037 0.004
7 0.092 —0.043, —0.299 0.265, 0.480 0.050, 0.037, 0.036 0.024
8 0.092 —0.004, —0.067 0.664, 1.304 0.028, 0.066, 0.030 0.000
9 0.026 —0.052,—0.535 1.622, 2.926 0.215, 0.156, 0.165 0.068
10 0.104 0.034,0.094 1.487, 1.590 0.039, 0.088, 0.039 0.008
11 0.034 0.151,0.037 2.770, 1.602 0.087, 0.119, 0.048 0.014
12 0.069 —0.418,—0.173 0.905, 0.715 0.022, 0.023, 0.018 0.034
13 0.130 0.211,0.151 1.314, 0.859 0.036, 0.094, 0.036 0.002
14 0.034 0.454,—0.016 0.680, 0.691 0.019, 0.053, -0.002 0.020
15 0.070 0.012,0.081 0.179, 0.196 0.049, 0.071, 0.048 0.004
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Table 2 Descriptive statistics of W; for the differentially expressed genes with valid gene

identifiers and W; more extreme than either wy, or wog (15 clusters)

i T Mean (SD) Median (IQR) (Minimum, maximum)
1 1 —2.269 (n.a.) —2.269 (n.a.) N.a.
2 0 N.a. N.a. N.a.
3 173 —2.412 (0.127) —2.378 (0.195) (—2.782, —2.240)
4 0 N.a. N.a. N.a.
5 27 —0.124 (2.167) 1.679 (4.232) (—2.486, 2.436)
6 44 —2.471 (0.194) —2.458 (0.255) (—3.052, —2.239)
7 714 2.391 (0.406) 2.429 (0.639) (1.662, 3.635)
8 2 1.772 (0.005) 1.772 (n.a.) (1.768, 1.776)
9 101 2.231 (0.415) 2.160 (0.567) (1.669, 3.244)
10 1 1.775 (n.a.) 1.775 (n.a.) N.a.
11 4 1.996 (0.142) 2.019 (0.262) (1.803, 2.142)
12 264 —2.607 (0.161) —2.725 (0.221) (—2.940, —2.237)
13 10 1.856 (0.186) 1.696 (0.277) (1.667, 2.185)
14 224 2.339 (0.468) 2.249 (0.719) (1.667, 3.873)
15 16 —1.660 (1.706) —2.362 (0.242) (—2.772, 1.876)

Notation: SD standard deviation, /QR interquartile range, n.a. not appropriate

and 508 downregulated). Descriptive statistics of W; for these 1581 differentially
expressed genes are provided in Table 2. It can be seen that Clusters 7-11
and 13-14 contain upregulated differentially expressed genes, Clusters 1, 3,
6, and 12 contain downregulated differentially expressed genes, and Clusters
5 and 15 contain both upregulated and downregulated differentially expressed
genes.

In the final step, we applied the non-parametric method to identify networks
of correlated differentially expressed genes from the r; genes in Cluster G;. We
set o to be between 0.1 and 0.00005 such that the expected number of false
positives among the pairs of genes identified to be significantly correlated is smaller
than one; see [21]. With the matrix M, networks of differentially expressed genes
were displayed using UCINET6 for Windows [3]. Figure 1 presents the identified
networks of upregulated differentially expressed genes in Clusters 7, 9, 13, and 14,
where the nodal size of a gene is proportional to the degree of the node (the number
of genes that are significantly correlated with the gene). Networks of downregulated
differentially expressed genes (Clusters 3, 6, and 12) were provided in Fig.2.
Clusters 5 and 15 had networks of up- and down regulated differentially expressed
genes (Fig. 3).
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(e)

ARALESTL

Fig. 1 Network of upregulated differentially expressed genes in (a) Cluster 7; (b) Cluster 9; (c)
Cluster 13; and (d) Cluster 14. Nodal size is proportional to the degree (the number of genes that
are significantly correlated with the gene). For Clusters 7, 9, and 13, only genes with the top 50
degrees were displayed
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(d)
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Fig. 1 (continued)
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(b)

SPOCKL

AA436456

Fig. 2 Network of downregulated differentially expressed genes in (a) Cluster 3; (b) Cluster 6; and
(c) Cluster 12. Nodal size is proportional to the degree (the number of genes that are significantly
correlated with the gene). For Clusters 3 and 12, only genes with the top 50 degrees were displayed
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Fig. 2 (continued)
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(a) TRIP10

#AA455350

(b) N51306

%Mﬁﬂ“
®AAA1TI82
H10059

Fig. 3 Network of upregulated and downregulated differentially expressed genes in (a) Cluster
5 and (b) Cluster 15. Nodal size is proportional to the degree (the number of genes that are
significantly correlated with the gene). From (a), it can be seen that two separate networks were
identified for genes belonging to Cluster 5. One of them contains upregulated genes HSPA12A,
RTCA, PID1, C200rf194, ACAP2, PPP2R5C, COX11, and TRAFDI1. Another one contains
downregulated genes N62132, AA455350, and TRIP10. For Cluster 15 (b), the network contains
genes that are downregulated except ARHGAP39 (upregulated), which significantly correlated
with downregulated genes {H74004, AA417982} and {H74004, AA463454}

A summary of the identified networks of correlated differentially expressed
genes for each cluster is given in Table 3. Two isolated networks of differentially
expressed genes were identified: {N62132, TRIP10, AA455350} downregulated
genes network from Cluster 5 and {CLK2, ENSA, AA416971} upregulated genes
network from Cluster 13. It is noted that four upregulated genes were considered
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Table 3 A summary of networks of highly correlated differentially expressed genes

i r; Highly correlated differentially expressed genes
1 1 NRGN
3 173* T97641, SPAG17, N24581, LARP4, N21233, R43250, GAS2LI1,
H85434, DISC1, FGFR1
5 27° (N62132, TRIP10, AA455350), HSPA12A, RTCA, PID1, C200rf194,
ACAP2, PPP2R5C, COX11, TRAFD1
6 442 KCNQ2, R92994, H88321, MBP, IKZF1, H78999, TACCI1, RIPKI,
CRHR1, AA463256, AA425131, EFCAB10, HERC2P9
7 714% CEP89, AA423970, C18orf34, N47425, SPZ1, MLL5, AA406063,
AA446346, AA446349, AA446859, W85709
8 2 SELT, PIP4K2A
101* ITM2B, CRMP1, AA131162, HISTIH2AC, RPL31, MAPK1,
H95960, R89610, LYRM1, AA112660, RPS6, METTL1
10 1 RGS2
11 4 MTG], QKI, EF, SPARCL1
12 264* FTO, KIAA1456, R10279, DNAJC14, POFUT1, NR2F6, PRDM15,
T64921, N52883, AA425773
13 10° (CLK2, ENSA, AA416971)
14 224* RAPI1B, BTF3, CCDC40, PCSK1, EIF4H, EIF4A2, AA449362,
ZMYNDI1, EPAS1, UBE2D2
15 16 H74004, GAB3, AA463454, N51306, AA454204, ORMDL3, CPSF6,

H10059, AA417982, ARHGAP39

2For large networks, only genes with the top ten degrees were listed
Genes that form an isolated network are grouped within a bracket (in Clusters 5 and 13)

in the original study and three of them (EPAS1, UBE2D3, KIAAO0101) were
validated to be significantly increased in cancer compared to healthy donors [5].
Our clustering results confirmed the same findings; these three genes were identified
as differentially expressed genes in Cluster 14 (with contrast W; = 3.7, 3.3, and
2.0, respectively, and ranked the 2nd, 8th, and 156th among the 224 differentially
expressed genes in Cluster 14). The original study could not validate the remaining
upregulated gene DDX46. However, our method has sufficient power to identify
DDX46 as a differentially expressed gene in Cluster 5, with W; = 2.4 and ranked the
1st among the 14 upregulated differentially expressed genes in Cluster 5.

5 Discussion

We have presented a new approach to identify correlated differential features for
supervised classification of high-dimensional data. The method adopts a mixture
model with random-effects terms to cluster the feature variables and then ranks them
in terms of their cluster-specific contrasts of mixed effects that quantify the evidence
of differentiation between the known classes. The final step of the method adopts a
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non-parametric clustering approach to identify networks of differential features that
are highly correlated in each identified cluster.

The proposed method is illustrated using an application on the analysis of
gene-expression cancer data. The identified differentially expressed genes and their
correlation structures can have significant contribution in the discovery of novel
biomarkers relevant to the cancer diagnosis and prognosis; see also [7, 9] for the
benefit of using the covariance information among genes for feature selection.
Moreover, these differentially expressed genes can be included in a model to
construct a classifier with a smaller subset of marker genes, using methods such
as mixtures of factor analysers [15, 16] or mixtures of multivariate generalized
Bernoulli distributions [18]. This work will be pursued in future research.

Acknowledgements Part of this work has been presented in the Conference of the International
Federation of Classification Societies, Bologna, July 2015. This work was supported by a grant
from the Australian Research Council.

References

1. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. R. Stat. Soc. B 57, 259-300 (1995)

2. Bickel, PJ., Levina, E.: Some theory for Fisher’s linear discriminant function, ‘naive Bayes’,
and some alternatives when there are many more variables than observations. Bernoulli 10,
989-1010 (2004)

3. Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for Windows: Software for Social Network
Analysis. Analytic Technologies, Harvard, MA (2002). Available via http://www.analytictech.
com/. Accessed 8 Dec 2015

4. Cai, T, Liu, W.: A direct estimation approach to sparse linear discriminant analysis. J. Am.
Stat. Assoc. 106, 1566-1577 (2011)

5. Collado, M., Garcia, V., Garcia, J.M., Alonso, 1., Lombardia, L., et al.: Genomic profiling of
circulating plasma RNA for the analysis of cancer. Clin. Chem. 53, 1860-1863 (2007)

6. Dahl, D.B., Newton, M.A.: Multiple hypothesis testing by clustering treatment effects. J. Am.
Stat. Assoc. 102, 517-526 (2007)

7. Donoho, D., Jin, J.: Higher criticism for large-scale inference, especially for rare and weak
effects. Stat. Sci. 30, 1-25 (2015)

8. Fan, J., Lv, J.: A selective review of variable selection in high dimensional feature space. Stat.
Sin. 20, 101-148 (2010)

9. Fan, J., Feng, Y., Tong, X.: A road to classification in high dimensional space: the regularized
optimal affine discriminant. J. R. Stat. Soc. B 74, 745-771 (2012)

10. Hall, P,, Pittelkow, Y., Ghosh, M.: Theoretic measures of relative performance of classifiers for
high-dimensional data with small sample sizes. J. R. Stat. Soc. B 70, 158-173 (2008)

11. Hall, P,, Jin, J., Miller, H.: Feature selection when there are many influential features. Bernoulli
20, 1647-1671 (2014)

12. He, Y., Pan, W., Lin, J.: Cluster analysis using multivariate normal mixture models to detect
differential gene expression with microarray data. Comput. Stat. Data Anal. 51, 641-658
(2006)

13. Kersten, J.: Simultaneous feature selection and Gaussian mixture model estimation for
supervised classification problems. Pattern Recogn. 47, 2582-2595 (2014)


http://www.analytictech.com/
http://www.analytictech.com/

Identifying Correlated Differential Features in Supervised Classification 57

14.
15.
16.
17.
18.
19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Matsui, S., Noma, H.: Estimating effect sizes of differentially expressed genes for power and
sample-size assessments in microarray experiments. Biometrics 67, 1225-1235 (2011)
McLachlan, G.J.: Discriminant analysis. WIREs Comput. Stat. 4, 421431 (2012)
McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

McLachlan, G.J., Do, K.A., Ambroise, C.: Analyzing Microarray Gene Expression Data.
Wiley, New York (2004)

Ng, S.K.: A two-way clustering framework to identify disparities in multimorbidity patterns of
mental and physical health conditions among Australians. Stat. Med. 34, 3444-3460 (2015)
Ng, S.K., McLachlan, G.J.: Mixture models for clustering multilevel growth trajectories.
Comput. Stat. Data Anal. 71, 43-51 (2014)

Ng, S.K., McLachlan, G.J., Wang, K., Ben-Tovim, L., Ng, S.-W.: A mixture model with
random-effects components for clustering correlated gene-expression profiles. Bioinformatics
22, 1745-1752 (2006)

Ng, S.K., Holden, L., Sun, J.: Identifying comorbidity patterns of health conditions via cluster
analysis of pairwise concordance statistics. Stat. Med. 31, 3393-3405 (2012)

Ng, S.K., McLachlan, G.J., Wang, K., Nagymanyoki, Z., Liu, S., Ng, S.-W.: Inference on
differences between classes using cluster-specific contrasts of mixed effects. Biostatistics 16,
98-112 (2015)

Pan, W, Lin, J., Le, C.T.: Model-based cluster analysis of microarray gene-expression data.
Genome Biol. 3, 0009.1-0009.8 (2002)

Pyne, S., Lee, S.X., Wang, K., Irish, J., Tamayo, P., et al.: Joint modeling and registration of
cell populations in cohorts of high-dimensional flow cytometric data. PLoS One 9, e100334
(2014)

Qi, Y., Sun, H., Sun, Q., Pan, L.: Ranking analysis for identifying differentially expressed
genes. Genomics 97, 326-329 (2011)

Qiu, W., He, W., Wang, X., Lazarus, R.: A marginal mixture model for selecting differentially
expressed genes across two types of tissue samples. Int. J. Biostat. 4, Article 20 (2008)
Smyth, G.: Linear models and empirical Bayes methods for assessing differential expression
in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article 3 (2004)

Storey, J.D.: The optimal discovery procedure: a new approach to simultaneous significance
testing. J. R. Stat. Soc. B 69, 347-368 (2007)

Zhao, Y.: Posterior probability of discovery and expected rate of discovery for multiple
hypothesis testing and high throughput assays. J. Am. Stat. Assoc. 106, 984-996 (2011)



	On the Identification of Correlated Differential Features for Supervised Classification of High-Dimensional Data
	1 Introduction
	2 Mixture Model with Random-Effects Terms
	3 A Non-parametric Clustering Approach for Identification of Correlated Features
	4 Real Example
	5 Discussion
	References


