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Abstract We present new findings in regard to data analysis in very high dimen-
sional spaces. We use dimensionalities up to around one million. A particular
benefit of Correspondence Analysis is its suitability for carrying out an orthonormal
mapping, or scaling, of power law distributed data. Power law distributed data are
found in many domains. Correspondence factor analysis provides a latent semantic
or principal axes mapping. Our experiments use data from digital chemistry and
finance, and other statistically generated data.

1 Introduction

We present new findings in regard to data analysis in very high dimensional
spaces. We use dimensionalities up to around one million. A particular benefit of
Correspondence Analysis is its suitability for carrying out an orthonormal mapping,
or scaling, of power law distributed data. Power law distributed data are found
in many domains. Correspondence factor analysis provides a latent semantic or
principal axes mapping. Our experiments use data from digital chemistry and
finance, and other statistically generated data.

Correspondence Analysis of an infinite (unbounded) number of rows or observa-
tions, crossed by 1000 attributes, was discussed in [2] and also in [3]. Our objective
in this article is to describe useful properties of data spaces, of high dimensionality.
Our particular interest is in properties that are of benefit to “big data” analytics. See
[12] for further examples of application.

It was shown experimentally in [8] how points in high dimensional spaces
become increasingly equidistant with increase in dimensionality. Both [5] and [6]
study Gaussian clouds in very high dimensions. The former finds that “not only
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are the points [of a Gaussian cloud in very high dimensional space] on the convex
hull, but all reasonable-sized subsets span faces of the convex hull. This is wildly
different than the behavior that would be expected by traditional low-dimensional
thinking.”

That very simple structures come about in very high dimensions can have
far-reaching implications. Firstly, even very simple structures (hence with many
symmetries) can be used to support fast, and perhaps even constant time worst
case, proximity search [8]. Secondly, as shown in the machine learning framework
by [6], there are important implications ensuing from the simple high dimensional
structures. Thirdly, [9] shows that very high dimensional clustered data contain sym-
metries that in fact can be exploited to “read off” the clusters in a computationally
efficient way. Fourthly, following [4], what we might want to look for in contexts of
considerable symmetry are the “impurities” or small irregularities that detract from
the overall dominant picture.

In general, data analysis considered as the search for symmetries in data is
discussed in [10]. This relates in particular to hierarchical clustering. That can be
considered as a natural extension of the work described in this paper.

2 Properties of Very High Dimensional Data Spaces

2.1 Piling and Concentration of Data, with Increase
in Dimensionality

With high dimensional, sparse data [6], there is a very strong concentration of
our clouds (rows/points, columns/projection vectors) into concentrated (i.e., small
variance) Gaussians. Therefore, there is a good approximation of our cloud by
its mean. This in turn means that the mean random projection is a very good
representative of our data cloud.

From the given, non-negative valued data, kIJ , our I cloud and J cloud are
converted to frequencies, denoted fIJ with associated mass distributions, fI and fJ .

We use the following notation. Our given data table values are kij where i 2
I; j 2 J, for row i and column j. The complete data table is denoted kIJ . Now, the
row sum ki D P

j2J kij, and analogously for the column sum, kj. Next, we form the
frequencies as follows: fIJ D kIJ=k where the denominator, k D P

i2I
P

j2J kij. In a
similar manner, the row and column marginal distributions, taking the frequencies
as empirical probabilities, are as follows: fI D kI=k and fJ D kJ=k.

The conditional distribution of fJ knowing i 2 I, also termed the jth profile with
coordinates indexed by the elements of I, is

f iJ D f f ij D fij=fi D .kij=k/=.ki=k/I fi ¤ 0I j 2 Jg
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and analogously for f jI . Thus our data are points in a high dimensional data cloud,
defining row or column profiles.

Analysis is carried out on row profiles, i.e., vector f iJ , with associated mass fi. The
dual space of column profiles is analogous to this.

Through high dimensional piling, i.e., concentration, we have that the profile
vectors tend towards the average profile. What gives rise to this is sparsity through
high dimensionality, which also implies low sample (or population) size. It implies
this because we are not considering here the case of both population size and
dimensionality tending to infinity at the same, or related, rate.

By the central limit theorem, and by the concentration (data piling) effect of high
dimensions [6, 15], we have as dimension m ! 1: pairwise distances become
equidistant; orientation tends to be uniformly distributed. We find also: the norms
of the target space axes are Gaussian distributed; and as typifies sparsified data, the
norms of the points in our high dimensional data cloud, in the factor space, are
distributed as a negative exponential or a power law.

2.2 Relative and Absolute Contributions

The moment of inertia of the clouds NJ.I/ and NI.J/, relative to the ˛ axis, is �˛ .
Let � be the Euclidean distance from the cloud center in the factor space, and let the
projection of i 2 I on the ˛ factor be F˛.i/. Decomposition of the cloud’s inertia is
then as follows:

M2.NJ.I// D
X

˛D1::�

�˛ D
X

i2I
fi�

2.i/ (1)

The maximum number of non-zero factors is � D minfjIj � 1; jJj � 1g where jIj; jJj
are, respectively, the cardinalities of the observations or row set, and the cardinality
of the attributes or column set. In greater detail, we have for this decomposition:

�˛ D
X

i2I
fiF

2
˛.i/ and �2.i/ D

X

˛D1::�

F2
˛.i/ (2)

Contributions to inertia are fundamental in order to define the mapping into the
factor space. Contributions by row points, or by column points, in their respective
dual spaces, define the importance of those given data elements for the constructed
mapping. Supported by the experimental results to be reported on in the following
sections, we will use the average contribution to the inertia as a measure of
cloud concentration. The inertia is the fundamental determinant of not just relative
positioning, but of essential cloud properties.

Why we use the contributions to the total inertia of the cloud, as the basis for
a measure of concentration is motivated for the following reason. Consider the
following hypothetical scenario. Consider where massive points in the cloud were
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moved towards the center or origin, leaving light points to drift away from the
center. Through inertia, we would characterize such a scenario as concentration. Or
consider where massive points drift apart, and their inertia contributions outpace the
inertia contributions of less massive points that move closer to the origin. Again
in that scenario, our inertia measure of concentration would be appropriate for
quantifying the lack of concentration. In these hypothetical scenarios, we see how
contribution to inertia is a key consideration for us. Inertia is more important than
projection (i.e., position) per se.

We now look at absolute versus relative contributions to inertia. The former one
of these is the more relevant for us. This will be seen in our experiments below.
What we consider for the attributes (measurements, dimensions) holds analogously
for the observations.

• fj�2. j/ is the absolute contribution of attribute j to the inertia of the cloud,
M2.NI.J//. Therefore, from expressions (2), this absolute contribution of point j
is also: fj

P
˛D1::� F

2
˛. j/.

• fjF2
˛. j/ is the absolute contribution of point j to the moment of inertia �˛ .

• fjF2
˛. j/=�˛ is the relative contribution of point j to the moment of inertia �˛ .

Analogous to expression (1), we have that �˛ D P
j2J fjF2

˛. j/. So the relative
contribution of point j to the moment of inertia �˛ is: fjF2

˛. j/=
P

j2J fjF2
˛. j/. The

total relative contribution of j, over all j 2 J, is 1. The total contribution over
all factors, indexed by ˛, then becomes �, the number of factors. So the mean
contribution (here, the mean relative contribution) of the attributes is �

jJj . In the
evaluations below, the trivial first eigenvalue, and associated axis, is included
here.

We have now the technical machinery needed to evaluate data clouds in very
high dimensions. We will keep our cloud of observables, small. This is N.I/. It is in
a jJj-dimensional space. That dimensionality, jJj, will be very large. That is to say,
the cloud of what we take as attributes, N.J/, will be huge. While the cloud itself,
N.J/, is huge, each point in that cloud j 2 J is in a space of dimension jIj, which is
not large.

Now we will carry out our evaluations. Our choice of cloud cardinality and
dimensionality are motivated by inter-study comparison. The R code used is
available at the web site, www.correspondances.info.

3 Evaluation 1: Uniformly Distributed Points in Data Clouds
of Dimensionality Up To One Million

Uniformly distributed values, in Œ0; 1�, were used for five data clouds, each of 86
points in dimensionalities of: 100, 1000, 10,000, 100,000, and 1,000,000. In the
usual analysis perspective, we have 86 observations, and the dimensionalities are

www.correspondances.info
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Table 1 Five data clouds, each of 86 points in spaces of dimensionality: 100, 1000, 10,000,
100,000, and 1,000,000

Contributions to inertia of factors by the columns

Dim. Contributions Mean Std. dev. Median

100 Absolute 0.01322144 0.0005623589 0.01325343

Relative 0.86 0.04588791 0.869127

1000 Absolute 0.001331763 5.440168e�05 0.001333466

Relative 0.086 0.009729907 0.08547353

10;000 Absolute 0.0001332053 5.279421e�06 0.0001332981

Relative 0.0086 0.0009742588 0.008577748

100;000 Absolute 1.330499e�05 5.269165e�07 1.332146e-05

Relative 0.00086 9.783086e�05 0.0008574684

1;000;000 Absolute 1.330706e�06 5.278487e�08 1.332186e-06

Relative 8.6e�05 9.788593e�06 8.576992e�05

Maximum factor projection

Dim. Projection

100 0.3590788

1000 0.2777193

10;000 0.2799913

100;000 0.3678137

1;000;000 0.3750852

The original coordinate values are randomly uniform in Œ0; 1�

associated with the attributes or features. This input data is therefore dense in value.
Results obtained are shown in Table 1.

Note how increasing dimensionality implies the following. We base concen-
tration, or compactness, on the absolute contribution to the inertia of the factors.
The average absolute contribution to the factors tends towards zero. The standard
deviation also approaches zero. Thus the cloud becomes more compact.

We provide median as well as mean as an indication of distributional character-
istics of the absolute contribution that we are examining. We observe a relatively
close match between mean and median values, implying an approximate Gaussian
distribution of the absolute contributions. For all cases (including the 1,000,000-
dimensional case), we checked that the distributions of absolute and relative
contributions, and norms squared of the input data, are, visually, close to Gaussian.

The maximum projection values, that do not decrease, serve to show that
concentration with increasing dimensionality is a phenomenon relating to the whole
cloud, and therefore to the average (or median).
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3.1 Computational Time Requirements

The machine used in this work was a MacBook Air, with a 2GHz processor, and
8GB of memory, running OS X version 10.9.4. The version of R in use was 2.15.2.

The largest, uniformly random generated, data set used was of dimensions
86 � 1000000. In order to create this data array, an elapsed time of 82.8 s was
required. Carrying out the main processing, furnishing the results in Table 1,
involved a basic Correspondence Analysis of this input data matrix. The projections
and contributions (to inertia) of the 86 points were to be determined.

Standard processing proved satisfactory for these evaluations. For this large data
set, our main processing took an elapsed time of 95.6 s.

4 Evaluation 2: Time Series of Financial Futures in Varying
Embedding Dimensions

The following data were used in [9]. In that work we used the sliding window
approach to embed the financial signal in spaces of varying dimensionality. The
work in [9] showed, in various examples, how there may be no “curse of dimen-
sionality,” in Belman’s [1] famous phrase, in very high dimensional spaces. There
is no such obstacle if we seek out, and make use of, the “remarkable simplicity” [9]
of very high dimensional data clouds.

We use financial futures, from circa March 2007, denominated in euros from
the DAX exchange. Our data stream, at the millisecond rate, comprised 382,860
records. Each record includes: 5 bid and 5 asking prices, together with bid and
asking sizes in all cases, and action.

We extracted one symbol (commodity) with 95,011 single bid values, on which
we now report results. These values were continuous and avoided missing values.
The data values were between 6788 and 6859.5 in value. There were either integer
valued, or ending in 0.5. Very often this signal contained short sequences of
successive identical values.

Similar to [9], we define embeddings of this financial signal as follows. Each
embedding begins at the following time steps in the financial signal: 1, 1000, 2000,
: : : , 85,000. The lengths of the successive embeddings were, in our three case
studies: 100, 1000, 10,000. That provided matrices, in these three case studies, of
sizes: 86 � 100; 86 � 1000; 86 � 10000.

Results obtained are presented in Table 2. The histograms of projections on the
factors were visually observed to be Gaussian-distributed.We observe how the mean
absolute contribution, as well as the median absolute contribution, decreases as
the embedding dimensionality increases. The standard deviation of absolute and
of relative contributions decrease too, indicating the increasing concentration. Our
measure of concentration is the average (or median) contribution by the embedding
dimensionality values (what we may consider as attributes or characterizing features
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Table 2 Embeddings, of dimensionalities 100, 1000, and 10,000, for a financial time series

Dim. Contribution Mean Std. dev. Median

100 Absolute 0.01 9.260615e�08 0.01000002

Relative 0.86 0.05399462 0.8672608

1000 Absolute 0.001 3.297399e�08 0.001000008

Relative 0.086 0.0121773 0.08518253

10;000 Absolute 0.0001000001 2.168381e�08 9.999872e�05

Relative 0.0086 0.001159708 0.008477465

Maximum factor projection

Dim. Projection

100 0.0001054615

1000 0.0002979516

10;000 0.0008869227

of the “sliding window” over the signal) to the inertia of the factors. We observe
also how the maximum projection on the factors does not decrease. This just means
that the cloud in the overall sense, and on the whole, gets increasingly compact or
concentrated, as the attribute dimensionality increases.

5 Evaluation 3: Chemistry Data, Description of Its Power
Law Property

5.1 Data and Determining Power Law Properties

The following data were used in our earlier work in [14]. We used a set of 1,219,553
chemical structures coded through 1052 presence/absence values, using the Digital
Chemistry bci1052 dictionary of fragments [16]. That binary-valued matrix was
sparse: occupancy (i.e., presence = 1 values) of the chemicals crossed by attribute
values was 8.6%.

Our motivation here is to investigate the effect of greatly increasing the attribute
dimension. In the next section we will develop a novel way to do this. In this section
we determine the relevant statistical properties of our data.

Here, we will use 425 chemicals from this set, in 1052-dimensional space. We
took 425 chemicals in order to have a limited set, jIj D 425, in the attribute space,
J. Each chemical had therefore presence/absence (i.e., 1 or 0, respectively) values
on jJj D 1052 attributes. The occupancy of the 425 � 1052 data set used was 5.9%.
Since we wanted this sample of 425 of the chemicals to be representative of the
larger set from which they came, we now look at the most important distributional
properties.
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Fig. 1 Histogram of column, i.e., chemical attribute, sums

A power law (see [7]) is a frequency of occurrence distribution of the general
form x�˛ where constant ˛ > 0; whereas an exponential law is of the form e�x. For
a power law, the probability that a value, following the distribution, is greater than
a fixed value is as follows: P.x > x0/ � cx�˛ , c; ˛ > 0. A power law has heavier
tails than an exponential distribution. In practice, 0 � ˛ � 3. For such values, x
has infinite (i.e., arbitrarily large) variance; and if ˛ � 1, then the mean of x is
infinite. The density function of a power law is f .x/ D ˛cx�˛�1, and so ln f .x/ D
�˛ ln xCC, whereC is a constant offset. Hence a log–log plot shows a power law as
linear. Power laws have been of great importance for modeling networks and other
complex data sets.

The marginal distribution, shown in Fig. 1, is not unlike the marginal distribution
displayed in [14]. In that previous work, we found the power law distribution of the
chemical attributes to be of exponent �1:23. Let us look at the power law of the
baseline distribution function used here, i.e., relating to the 425 chemicals.

Figure 2 shows a log–log plot based on the 1052 presence/absence attributes,
using the 425 chemicals. In a very similar way to the power law properties of large
networks (or file sizes, etc.) we find an approximately linear regime, ending (at the
lower right) in a large fan-out region. The slope of the linear region characterizes
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Fig. 2 Log–log plot of numbers of chemicals per attribute, based on the data set of 425 chemicals

the power law. For this data, we find that the probability of having more than n
chemicals per attribute to be approximately c=n1:49 for large n.

The histogram of attributes per chemical, on the other hand, is approximately a
Gaussian. This is as observed in [14].

5.2 Randomly Generating Power Law Distributed Data
in Varying Embedding Dimensions

In Sect. 3 we used dense uniformly distributed data. In Sect. 4, our financial futures
were slow-moving, in the sense of small variation between successive values. But
there too the data were dense and real-valued. Our chemistry context is sparse and
boolean-valued (for presence/absence). We use this context to generate data that
keep the property of the attributes (i.e., the columns or dimensions) following a
power law in regard to their distribution.

To generate new random data sets that fully respect the distributional charac-
teristics of our known data, we will use the distribution function that is displayed
in Fig. 1. This is the data distribution of coding attributes that characterize the
chemicals, i.e., presence of molecules.

In line with our earlier notation, the marginal distribution in Fig. 1 is fJ for
attribute set, J. The chemicals set is I. The presence/absence cross-tabulation of
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Fig. 3 Histograms of marginal distributions of the original 425�1052 chemicals by attributes, and
the generated data with similar marginal distributions of 425 � 1052000 chemicals by attributes.
Marginal distribution values greater than 0 were taken into account

chemicals by their attributes is, in frequency terms, fIJ . The .i; j/ elements, again in
frequency terms, are fi;j. In whole number terms, representing presence or absence,
i.e., 1 or 0, the chemicals-attributes cross-tabulation is denoted kIJ .

We generate a new data set that cross-tabulates a generated set of chemicals, I0,
crossed by a generated set of attributes, J0. Let j:j denote cardinality. We randomly
sample (uniformly) jJ0j values from kJ . Therefore we are constructing a new,
generated set of attribute marginal sums. The generated values are of the same
distribution function. That is, both fJ0 � fJ and kJ0 � kJ . The next step is to consider
the newly generated chemicals, in the set I0, of cardinality jI0j. Given kj0 , we generate
jkj0 j values of 1 in the set of jI0j elements. In this way, we generate the chemicals
that contribute the kj0 attribute presences found for attribute j0.

For the generated chemical data, we use 425 chemicals, in attribute spaces of
dimensions 1052, and then, 10 times this, 100 times this, and 1000 times this
dimensionality.

See the R code used at www.correspondances.info (see under “Evaluation 3”).
This code shows the case of 1000 times the dimensionality. That is, for 425
chemicals with 1052 presence/absence or one/zero values, we generate a matrix of
425 chemicals � 1052000 presence/absence attributes. For the 425 � 1052 matrix,
we have 26,405 presence values, and a density (i.e., presence or 1 values) of 5.9%.
For the generated 425 � 1052000 presence/absence attributes, we have 5,645,075
presence values, and a density of 1.26%.

Figure 3 displays the marginal distributions. This shows visually how well our
generated data approximates the original data. Let us also look at how close the

www.correspondances.info
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Table 3 Power law exponents for generated chemical data, with 425 chemicals, with pres-
ence/absence (respectively 1 or 0) in attribute dimensions: 1052, 10,520, 105,200, and 1,025,000

425 chemicals

Dim. Exponent

1052 �1.49

10;520 �1.75

105;200 �1.64

1;052;000 �1.78

Table 4 Four hundred and twenty five chemicals with presence/absence values on the following
numbers of characterizing attributes: 1052, 10,520, 105,200, and 1,052,000

425 chemicals Absolute contribution

Dimensionality Mean Std. dev. Max. projection

1052 0.01161321 0.007522956 16.27975

10;520 0.00133034 0.002798697 12.31945

105;200 0.000140571 0.0002946923 10.91465

1;052;000 1.39319e�05 2.919471e�05 11.06306

The dimensionality of the space in which the chemicals are located is given by the number of
characterizing attributes

power law distributional properties are. Table 3 lists the power law exponents for
our generated data sets.

Table 4 shows clearly how the absolute contribution to the inertia of the factors,
which is mass times distance squared, becomes of smaller mean value, and of
smaller standard deviation (hence the mean is a tighter estimate), as dimensionality
increases. The degree of decrease of the mean value is approximately linear in
the increase of dimensionality (i.e., tenfold for each row of Table 4). Once again,
we show very conclusively how increasing dimensionality brings about a very
pronounced concentration of the data cloud that is considered. As dimensionality
increases, the cloud becomes much more compact, i.e., far more concentrated.

6 Conclusion

Our main objective with this work has been to demonstrate practical applicability.
Beginning with methodology, we generated data sets that were modeled on various
application domains.

We explored a wide range of evaluation settings. We have shown that it is easy
and straightforward to analyze data that are in very high attribute dimensions (or
feature dimensions, in other words, typically the number of columns of our input
data matrix). Of course one needs to understand the nature of one’s analysis. It is
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not a “black box” process. Instead it is necessary to investigate how to “let the data
speak.”

The benefits of this work are to be found in how the clustering of data,
hierarchical clustering or partitioning, can benefit from very high dimensionality
data. Furthermore the dual spaces of rows and columns can allow us to draw
benefit from this same work, now though for massive sized row sets, in low to
moderate dimensionality, i.e., column set. Respectively, these themes are at issue
in the following work in progress: [11, 13].
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