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Abstract Standard data mining procedures are sensitive to the presence of outlying
measurements in the data. Therefore, robust data mining procedures are highly
desirable, which are resistant to outliers. This work has the aim to propose
new robust classification procedures for high-dimensional data and algorithms
for their efficient computation. Particularly, we use the idea of implicit weights
assigned to individual observation to propose several robust regularized versions of
linear discriminant analysis (LDA), suitable for data with the number of variables
exceeding the number of observations. The approach is based on a regularized
version of the minimum weighted covariance determinant (MWCD) estimator and
represents a unique attempt to combine regularization and high robustness, allowing
to down-weight outlying observations. Classification performance of new methods
is illustrated on real fMRI data acquired in neuroscience research.

1 Robustness and Regularization of Classification Methods

Classification methods (classifiers) have the aim to automatically assign new data to
one of K groups (K � 2) based on decision rules constructed over a training data
set. Sensitivity (non-robustness) of standard classifiers to the presence of outlying
measurements (outliers) in the data has been repeatedly reported as a serious
problem [3] and robust classification methods have been proposed as alternatives,
which are resistant to the presence of outliers [8].

Linear discriminant analysis (LDA) as a standard (supervised) classification
method assumes the data in each group to come from a Gaussian distribution, while
the covariance matrix ˙ is the same across groups. Its pooled estimator denoted
by S is singular for high-dimensional data with n < p or even n � p. For such data,
which commonly appear in a variety of applications (e.g., in medicine, molecular
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genetics, chemometrics, or econometrics), regularized versions of LDA have been
proposed to avoid the curse of dimensionality. They have become popular tools with
a clear comprehensibility.

One common approach to regularized LDA is known as shrunken centroid
regularized discriminant analysis (SCRDA) [4]. In this context, regularization brings
benefits from both the computational and statistical point of view [13], which is
true for n < p, as well as for n > p with a relatively small n [5]. Its results may
be superior to approaches based on a prior dimensionality reduction performed by
selection of the most relevant variables.

However, regularized versions of LDA are sensitive to the presence of outlying
values in the data. Unfortunately, most robust versions of LDA, which have been
proposed within the framework of robust statistics, are computationally infeasible
for n < p [3, 8]. Xanthopoulos et al. [19] estimated high-dimensional covariance
matrices allowing for measurement errors in the observed data. The resulting
estimates are robust (insensitive) only to noise, but not robust to the presence of
outliers. Robust procedures for high-dimensional data have been considered for
regression models, including the proposal of a canonical correlation analysis [18]
or partial least squares [7]. In the context of estimating a covariance matrix ˙

of multivariate data, nonparametric correlation coefficients have been investigated
by Croux and Öllerer [2] under the assumption that ˙�1 is sparse, which allows
interesting applications in the area of graphical modeling. None of these approaches
however exploits the idea of coupling the robustness with regularizing the estimated
covariance matrix.

This paper exploits principles of robust statistics with the aim to propose new
robust classification methods for high-dimensional data. We work with methods
which are robust in terms of the breakdown point, which can be characterized
as a global measure of robustness of an estimator against severe outliers in the
data [9]. Methods with a high breakdown point are commonly denoted as highly
robust. We presented a detailed overview of regularized versions of LDA in [11],
however without considering robustness aspects. On the other hand, our previous
work [10] on robust classification methods cannot be applied to high-dimensional
data. Only the current paper exploits a unique coupling of regularization for n � p
and statistical robustness, which is based on implicit weighting, and thus ensures a
high breakdown point.

In Sect. 2 of this paper, several new robust regularized methods for high-
dimensional data are proposed based on down-weighting less reliable observations.
The following Sects. 3 and 4 illustrate various methods on two real data sets and
bring a detailed discussion of the results. Finally, Sect. 5 concludes the paper.
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2 Classification Analysis Based on the Regularized Minimum
Weighted Covariance Determinant Estimator

In this section, we propose several different robust versions of regularized LDA
together with a discussion of their efficient computation. First, the robust regularized
estimates of the covariance matrix and the means will be defined.

2.1 Estimation of the Covariance Matrix

In the whole paper, we assume n observations with p variables observed in
K different groups

X11; : : : ;X1n1 ; : : : ;XK1; : : : ;XKnK ; (1)

where p > K � 2 and n D PK
kD1 nk:

Chen et al. [1] proposed regularized M-estimation of the population mean and
covariance matrix of multivariate data based on a popular M-estimator of Tyler [16]
and applied it to the task of mining wireless sensor data. While M-estimation
represents a popular approach to robust estimation of parameters, it does not possess
a high breakdown point in the multivariate model [9].

The minimum weighted covariance determinant (MWCD) estimator is one of
highly robust estimators of the mean and at the same time of the covariance
matrix ˙ of multivariate data [14]. The estimate of the mean has the form of
a weighted mean and the estimate of ˙ has the form of a weighted covariance
matrix. Prior to the computation, the user must specify magnitudes of weights, while
the weights themselves are assigned to individual observations after an optimal
permutation. Linearly decreasing weights in the form

w�
i D 1 � i � 1

n
; i D 1; : : : ; n; (2)

if standardized to have the sum equal to 1, represents a simple and reasonable choice
and will be considered also in the example of Sects. 3 and 4. The estimator remains
to be reliable for data containing a large percentage of outliers [14].

While robust LDA based on the MWCD estimator was proposed in [10], the next
sections propose classification methods based on the regularized MWCD estimator
of the covariance matrix ˙ in the form

QSMWCD D �SMWCD C .1 � �/T; � 2 .0; 1/; (3)

where a given target matrix T is symmetric positive definite of size p � p. Such
regularization ensures QSMWCD to be regular and positive definite even for n � p. The
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simplest choices for T are the identity matrix T D Ip or a diagonal (nonidentity)
matrix

T D NsIp; (4)

where Ns D Pp
iD1 Sii=p. Within the classification procedures defined below, a suitable

value of � may be found by a cross validation in the form of a grid search over all
possible values of � 2 .0; 1/.

2.2 Estimation of the Means

Based on general principles of regularization [4, 5], we propose to consider also
the regularization of the means to improve the classification performance of the
robust regularized LDA. While all of the classification methods, which will be newly
proposed in this paper, consider the pooled covariance matrix to be estimated by
the same regularized MWCD estimator QSMWCD, we will consider different ways for
estimating the means of each of the K groups. The MWCD estimator of each of the
mean will be denoted by NXk;MWCD for k D 1; : : : ;K.

The regularized MWCD-means will be now defined for the k-th group for k D
1; : : : ;K. They will be defined as shrinkage estimators in various norms including
the L2, L1, and L0 norm using a fixed value of the regularization parameter. We
use the notation NXMWCD for the overall MWCD-mean across groups, .x/C for the
positive part of x 2 IRp, and 1.B/ for the indicator function of a random event B.

Definition 1 (Robust Regularized Means)

1.

NX.2/
k;MWCD D ı.2/ NXk;MWCD C .1 � ı.2// NXMWCD; ı.2/ 2 IR (5)

2.

NX.1/
k;MWCD D sgn. NXk;MWCD/

�j NXk;MWCDj � ı.1/
�

C
D sgn. NXk;MWCD/ max

˚j NXk;MWCDj � ı.1/; 0
�

; ı.1/ 2 IR (6)

3.

NX.0/
k;MWCD D NXk;MWCD � 1 �j NXk;MWCD > ı.0/j� ; ı.0/ 2 IR (7)

All the estimators of Definition 1 can be interpreted as biased (Stein’s shrink-
age) versions of the MWCD-mean, while the biasedness allows to improve the
mean square error [5]. The shrinkage within the estimator (6) is known as soft
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thresholding, while (7) is known as hard thresholding, where the latter corresponds
to the solution of L0 regularization [6].

2.3 MWCD-RLDA

The first of the novel methods proposed in this paper, which is denoted as MWCD-
RLDA, assigns an observation Z D .Z1; : : : ;Zp/T to group j if

. NXk;MWCD � Z/T. QSMWCD/�1. NXk;MWCD � Z/ � 2 log �k (8)

over k D; 1; : : : ;K is minimal exactly for j, where �k denotes the prior probability
of observing an observation from the k-th group for k D 1; : : : ;K: Equivalently,
the classification rule can be also expressed by means of the robust and regularized
linear discriminant score

`�
k D . NXk;MWCD/T. QSMWCD/�1Z � 1

2
. NXk;MWCD/T. QSMWCD/�1 NXk;MWCD C log �k (9)

and an observation Z is assigned to group j if `�
j > `�

k for every k ¤ j.
The situation with equal regularized linear discriminant scores `�

k D `�
k0 for k0 ¤

k does not deserve a separate treatment, because it occurs with a zero probability for
data coming from a continuous distribution. We can say that the method is based on
a deformed (regularized) Mahalanobis distance between a new observation Z and
the mean of each group. Because QSMWCD depends on � 2 .0; 1/; its suitable value
should be found by cross validation.

Because both (9) and (8) are rather obscure from the computational point of
view, we propose to avoid computing the inverse matrix by solving a set of linear
equations within the following algorithm based on eigendecomposition of the robust
regularized covariance matrix.

Algorithm 1 avoids computing the inverse of QSMWCD. Instead, the group assign-
ment in (8) is done in a more efficient way, which easily follows from

. NXk;MWCD � Z/T. QSMWCD/�1. NXk;MWCD � Z/ � 2 log �k

D . NXk;MWCD � Z/T QQ QD�1 QQT. NXk;MWCD � Z/ � 2 log �k

D k QD�1=2 QQT. NXk;MWCD
k � Z/k2 � 2 log �k: (13)

Possible improvements of Algorithm 1 in terms of computational stability
include:

1. A possible tailor-made approach for the specific choice T D Ip.
2. Replacing the eigendecomposition by the Cholesky decomposition of QSMWCD in

the form QSMWCD D LLT , where L is a nonsingular lower triangular matrix. Then,
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Algorithm 1 MWCD-RLDA for a general T based on eigendecomposition.
1. For a given ı 2 .0; 1/, compute the matrix

A D Œ NX1;MWCD � Z; : : : ; NXK;MWCD � Z� (10)

of size p � K.
2. Compute QSMWCD with a fixed � 2 .0; 1/.
3. Compute and store the eigenvalues of QSMWCD in the diagonal matrix QD; and compute and store

the corresponding eigenvectors of QSMWCD in the orthogonal matrix QQ.
4. Compute the matrix

B D QD�1=2 QQTA (11)

and assign Z to group k, if

k D argmax
jD1;:::;K

˚jjBjjj2 � 2 log �j

�
; (12)

where jjBjjj2 is the Euclidean norm of the j-th column of B.
5. Repeat steps 1 to 4 with different values of � and find the classification rule with the best

classification performance.

an efficient computation may exploit that

. NXk;MWCD � Z/T . QSMWCD/�1. NXk;MWCD � Z/ � 2 log �k

D . NXk;MWCD � Z/TL�TL�1. NXk;MWCD � Z/ � 2 log �k

D kL�1. NXk � Z/k2 � 2 log �k: (14)

3. Using the truncated eigendecomposition instead of the (standard) eigendecom-
position. Let us recall the latter in the form

QSMWCD D
rX

iD1

diqiq
T
i ; (15)

where r is rank of QSMWCD, d1; : : : ; dr are nonzero eigenvalues, and q1; : : : ; qr
corresponding eigenvectors. The truncated eigendecomposition replaces
(i.e., approximates) the expression (15) by

QSMWCD �
sX

iD1

diqiq
T
i D QQ� QD� QQT�; (16)

where QQ� has size only p � s and QD� only s � s for a specified s < r.
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2.4 Other Classification Methods

We propose several other classification methods which, in contrary to MWCD-
RLDA, consider also regularizing the means of each of the groups of the data.
They are denoted as MWCD-RLDA2, MWCD-RLDA1, or MWCD-RLDA0, which
correspond to regularizing the means in the L2, L1, or L0 norm, respectively. Within
each classification method, suitable values of the regularization parameters � and
of (as the case may be) ı.l/ for l 2 f0; 1; 2g can be found by leave-one-out cross
validation. We use the notation diag.A/ to denote the diagonal matrix containing
diagonal elements of A. The linear discriminant rules of the novel methods are
defined as modifications of (9).

Definition 2 (MWCD-RLDA2)

Q̀.2/
k D . NX.2/

k;MWCD/T. QSMWCD/�1Z � 1

2
. NX.2/

k;MWCD/T. QSMWCD/�1 NX.2/
k;MWCD C log �k:

(17)

Definition 3 (MWCD-RLDA1)

Q̀.1/
k D . NX.1/

k;MWCD/T. QSMWCD/�1Z � 1

2
. NX.1/

k;MWCD/T. QSMWCD/�1 NX.1/
k;MWCD C log �k:

(18)

Definition 4 (MWCD-RLDA0)

Q̀.0/
k D . NX.0/

k;MWCD/T. QSMWCD/�1Z � 1

2
. NX.0/

k;MWCD/T. QSMWCD/�1 NX.0/
k;MWCD C log �k:

(19)

Definition 5 (MWCD-PAM)

`PAMk D . NX.1/
k;MWCD/T.diagf QSMWCDg/�1Z �

�1

2
. NX.1/

k;MWCD/T.diagf QSMWCDg/�1 NX.1/
k;MWCD C log �k: (20)

An efficient computation of the new methods can be performed by an analogy of
Algorithm 1. If the classification rule based on (20) is formulated by means of the
Mahalanobis distances, the formula (13) reduces to a simple form

pX

iD1

. NXki � Zi/2

QS2
i;MWCD

; (21)

where NXk D . NXk1; : : : ; NXkp/
T and QS2

i;MWCD denotes the i-th diagonal element of
QSMWCD. MWCD-PAM represents a robust counterpart of the Prediction Analysis
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of Microarrays [15], where the latter is nothing else than a diagonalized LDA with
means regularized in the L1 norm.

Here, MWCD-RLDA1 can be interpreted as a robust counterpart of SCRDA
[4]. Because MWCD-RLDA1 contains an intrinsic variable selection in (6), it is
especially suitable if the data set contains a small set of dominant (very relevant)
variables. On the other hand, MWCD-RLDA2 can be recommended if the data
contain a large number of variables with a small effect on the classification, but
without any clearly dominant small subset of variables.

3 Example: Brain Activity Data

A data set on the spontaneous activity of various parts of the brain will be now
analyzed, which has been captured by means of fMRI neuroimaging. We have
participated on a neuroscience research of the spontaneous brain activity in the
resting state (i.e., resting-state brain networks). Our aim now is to illustrate the
behavior of the newly proposed classification methods.

The brain activity of n D 24 probands is measured by means of fMRI under
seven different situations. One of them can be characterized as a resting state,
i.e., rest without any stimulus. Besides, the probands were watching each of
six different movies while the brain activity was measured. The fMRI divides the
brain into 90 regions and we are interested only in values of correlation coefficients
between a pair of brain regions. In this context, the correlation coefficient evaluates
a (functional) connectivity between the two regions. Thus, we consider p D 90 �
89=2 D 4005 variables containing values of correlation coefficients for each of the
24 probands.

The task is to learn a classification rule allowing to discriminate between two
groups (resting state and movie) over 24 individuals, i.e., all movies together
are considered to be one class. This is a classification to two groups with p D
4005 variables. The resting-state group contains 24 observations, but the group
corresponding to any movie contains 6 � 24 D 144 observations. In common
applications, fMRI measurements are known to be usually contaminated by noise as
well as outliers. It is also true with our data and therefore robust methods are highly
desirable for their analysis.

We performed the computations in R software. Standard machine learning
methods are used with default settings of their parameters. For various regularized
versions of LDA, we choose the target matrix T as either T D Ip or as (4). The
results of leave-one-out cross classification are overviewed in Table 1. Performance
of classifiers is measured by means of their accuracy, i.e., number of correctly
classified cases divided by the total number of cases.

SCRDA as one of available regularized LDA versions turns out to perform
reliably, while its classification rule is based only on 81 variables. Also the newly
proposed robust LDA versions yield a very good performance. We do not find
major differences in the classification performance of robust and non-robust various
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Table 1 Results of the examples of Sects. 3 and 4

Classification accuracy

Classification method Brain data AIM data

SCRDA 1:00 0:86

MWCD-RLDA 1:00 0:86

MWCD-RLDA1 1:00 0:86

MWCD-PAM 0:98 0:77

SVM (Gaussian kernel) 1:00 0:85

Multilayer perceptron Infeasible Infeasible

Number of principal components 10 20

PCA H) LDA 1:00 0:83

PCA H) SCRDA 1:00 0:83

PCA H) MWCD-RLDA with T D Ip 1:00 0:84

PCA H) MWCD-RLDA with (4) 1:00 0:84

PCA H) MWCD-RLDA2 1:00 0:84

PCA H) MWCD-RLDA1 1:00 0:84

PCA H) MWCD-RLDA0 1:00 0:84

PCA H) MWCD-PAM 0:96 0:75

Various classification methods are compared, while their classification accuracy is evaluated in a
leave-one-out cross validation study

regularized versions of LDA. This can be explained by the fact that the data
do not contain a remarkable percentage of outliers. Also the SVM method gives
a perfect classification rule, while a multilayer perceptron with one hidden layer is
computationally infeasible due to n � p in the implementation in R software.

Additionally, we investigated the effect of dimensionality reduction by means of
principal component analysis (PCA) on the classification performance. There seems
no remarkable small group of genes responsible for a large portion of variability
of the data and the first few principal components seem rather arbitrary. All the
novel robust methods have a good classification ability if applied on principal
components. Thus, the classification results after reducing the dimensionality bring
other arguments in favor of the regularization approaches used in this paper.

In order to investigate the performance of various classification methods on
data contaminated by noise, we generated proband-independent noise generated
from normal distribution N.0; �2/ for various values of � . The noise was added
to all measurements for each proband and classification rules are learned over
this contaminated data set. Such contamination was repeated 100 times and the
classification performance of various methods was evaluated for each case. We give
the averaged values of the classification accuracy computed over the 100 cases in
Table 2 only for selected classifiers, because their computation is rather demanding.

The results of the classification performance of various methods on data artifi-
cially contaminated by noise show an evidence of robustness of SCRDA. The larger
the value of � , the more influential outliers are present in the contaminated data set.
Indeed, the reduction of the classification performance of the standard data mining
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Table 2 Results of the brain activity analysis on data artificially contaminated by normally
distributed outliers N.0; �2/ for different values of �

Classification Classification accuracy

method � D 0:1 � D 0:2 � D 0:3

SVM (Gaussian kernel) 1:00 0:99 0:98

Classification tree 0:99 0:98 0:98

SCRDA 1:00 1:00 1:00

MWCD-RLDA1 with T D Ip 1:00 1:00 1:00

PCA H) LDA 0:99 0:99 0:99

The classification accuracy is evaluated by a leave-one-out cross validation. PCA is used with
a fixed number of ten principal components

methods is not caused by the noise itself, but rather by severe outliers. SCRDA and
the novel robust versions of LDA turn out to yield reliable results. The robustness of
SCRDA to noise has not however been systematically investigated although it has
been recommended as a promising alternative to the SVM [4].

Further, the classification rule distinguishing between the resting state and
a particular movie is constructed, which is again a classification to 2 groups with
p D 4005 variables. This time, each of the groups contains 24 observations.
We computed SVM, SCRDA, and PCA H) LDA for 6 different tasks, namely
classification between the resting state and movie 1; between the resting state and
movie 2, etc. In a leave-one-out cross validation study, every method yields a
100% classification accuracy in all the seven classification tasks. For the sake of
comprehensibility, it is important that MWCD-RLDA1 turns out to be based only
on a small number of variables, namely 1, 1, 2, 3, 3, and 7 variables. These are the
most relevant sets of variables for the particular classification task, while SVM and
PCA exploit observed values from the whole set of p variables. If PCA is performed
keeping ten principal components, each of the considered classifiers keeps the 100%
classification accuracy for each of the six classification tasks.

Additionally, classification between pairs of movies (e.g., classification between
movie 1 and movie 2) yields results with 100% classification accuracy, while the
number of variables contributing to the classification rule of MWCD-RLDA1 is
between 2 and 30 for each of the tasks.

4 Example: Cardiovascular Genetic Study

Further, we illustrate the performance of the novel robust classifiers on the data from
a cardiovascular genetic study performed in the Center of Biomedical Informatics
in Prague in the years 2006–2011. From the point of view of analyzing the data, the
very aim originally was to reduce the dimensionality [12], i.e., to find a small set
of genes responsible for the development of the acute myocardial infarction (AMI).
Gene expressions of p D 38;590 were measured across the whole genome. These
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correspond to the activity of individual genes leading to synthesis of proteins and
consequent biological processes. The BeadChip microarray technology was used to
acquire the data over n D 95 individuals, including 46 AMI patients and 49 controls.

Robust versions of regularized LDA perform well. We find it a success that the
method is computationally feasible for such p at all due to the high dimensionality,
which severely complicates a potential identification of outliers. While the SVM
classifier formally gives a perfect classification result, it suffers from a heavy
overfitting, not only because its optimization of parameters tends to a very local
optimum for n < p, but mainly because the SVM contains too many support vectors
and does not capture the multivariate structure of the data. Although it is designed
as a black box, we can say that it classifies each new observation with a too strong
emphasis on its nearest neighbors.

If the classification rule is learned only over the set of the 20 principal compo-
nents, robust versions of regularized LDA are able to slightly outperform available
(non-robust) classifiers. There seems however no difference among the individual
robust methods of Sect. 2, because only negligible values of the regularization
parameter for the means are selected for each of the methods and the effect of this
regularization is negligible itself.

5 Conclusions

Some of the standard methods of data mining or multivariate statistics are computa-
tionally infeasible for high-dimensional data, while others suffer from a numerical
instability and lack of robustness to noise or outlying measurements. Therefore, this
paper proposes new robust classification methods for high-dimensional observa-
tions, i.e., assuming the number of variables to exceed the number of observations.
We combine robustness to the presence of outliers with regularized estimation of the
population means and covariance matrix of the multivariate data in a unique way.

We propose several robust classifiers, which are based on implicit weighting of
individual observations in Sect. 2. The methods are based on a regularized version
of a robust covariance matrix, while also the mean of each group is computed by
means of a robust regularized estimator. At the same time, implicit weights ensure
a high breakdown point with respect to a larger percentage of outliers in a variety
of other situations [17]. All the methods require intensive computations. Efficient
algorithms allow the methods to be computed even for n � p.

The robust regularized versions of LDA can be interpreted as modifications
of robust LDA corrected for small sample sizes. At the same time, we point out
the connection to the shrinkage statistical approach, following Stein’s result of
estimating the mean of multivariate normal data [5].

We consider all of the newly proposed robust methods to be comprehensible.
Particularly, let us discuss the classification rule of MWCD-RLDA1. It assigns
an observation Z based on a deformed Mahalanobis distance between Z itself and
a (robust) centroid of each of the K groups. Such variables contribute the most to the
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classification rule, which are most relevant for the separation among groups. Also
the implicit weights assigned to individual observations allow a clear interpretation.
They deform the Mahalanobis distance, while less reliable observations (potential
outliers) obtain small or negligible weights.

In addition, we analyzed two high-dimensional data sets. The fMRI data come
from a brain research study, which has the aim to investigate connections among
brain parts during a resting state. Results of various classification methods show
distinct differences between the resting and non-resting state. At the same time,
different movies shown to the set of 24 probands turn out to activate different
connections between pairs of brain parts. Future neuroscience research is intended
to search for a small set of variables allowing to distinguish schizophrenic patients
from control individuals based only on the fMRI measurements of the brain in the
resting state. The cardiovascular genetic data set with a dimensionality even larger
(p D 38;590) compared to the fMRI data shows a slight advantage of the newly
proposed methods compared to available classifiers. The analysis of this data set
allows to detect a predisposition for infarction based only on gene expressions.

Concerning the limitations of our analysis, both SCRDA and its robust counter-
parts are reliable under an implicit assumption that the variability is not substantially
different across variables. Still, the methods seem to yield reliable results although
this assumption is violated in the data.

To summarize practical recommendations based on the example, the new robust
methods seem to perform reliably for high-dimensional data with a small number of
observations. The level of noise in the original data seems to be moderate and the
advantage of robust methods compared to non-robust ones is not revealed primarily
after adding an artificial contamination to the data. SCRDA itself turns out to be
reasonably robust, which can be explained as an effect of the regularization reducing
the influence of noise in the data. The main result of the examples is however
the reliability of the newly proposed methods for both original and contaminated
data sets.
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