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Abstract Microarray technologies become a powerful technique for simulta-
neously monitoring expression patterns of thousands of genes under different
conditions. However, it is important to identify gene groups that manifest similar
expression profiles and are activated by similar conditions.ClusterMPP: Clustering
by Marked Point Process is a new microarray data clustering algorithm performed
in two steps. The first one detects cluster modes representing regions of high density
observations in the raw space. Based on the simulation of a proposed Marked Point
Process by the well-known Reversible Jump Markov Chain Monte Carlo algorithm,
where we consider several movements like birth and death, this algorithm step
identifies prototype observations of each cluster. The second step of ClusterMPP is
the K nearest neighbors (KNN) assignation that affects the remaining observations
to the corresponding clusters. We experiment ClusterMPP on several complex
and scalable microarray datasets. The results show the efficiency of ClusterMPP
compared to well-knownmicroarray data clustering methods like K-means, Spectral
Clustering, and Mean-Shift.
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1 Introduction

With the recent advances of biomedical technology, a lot of “OMICS” data from
genomic, transcriptomic, and proteomic domain can now be collected quickly and
cheaply. Microarray technology analyzes genome-wide gene expression patterns
and is used in many areas including biotechnology, pharmacology, medicine, and
environment.

Identifying the patterns hidden in gene expression data allows an enhanced
understanding of functional genomics. However, the large number of genes and
their complexity make difficult comprehending and interpreting the resulting
mass of data. Therefore, high-throughput expression profiling exploitation requires
advanced analysis tools to extract knowledge from the huge amount of data [8].

When experimental conditions are not known, an unsupervised treatment is
recommended. Clustering is a powerful unsupervised technique which needs no a
priori information, it helps to understand gene function, gene regulation, cellular
processes in cell subtypes [8, 14]. Clustering aims to organize similar data into
clusters in which data are similar to each other. This data can be genes, samples,
or both genes and samples simultaneously (two-way clustering).

K-means [9], Self OrganizingMap (SOM) [8], and Hierarchical clustering [8, 13]
are widely used in gene expression analysis field. But they are unable to deal with
noise, high dimensionality, complexity, and nonlinear separability associated with
microarray gene expression data. K-means [9, 13] is a fast and simple algorithm, but
it is sensible to initialization and number of clusters, it converges to local minima.
SOM is a very used clustering algorithm with a visual output, but suffers from
strong initialization dependency, outputs instability, and is powerless in unbalanced
classes’ cases. Hierarchical clustering [6, 13] is sensible to data modification, noise,
and to outliers; they are also powerless over unbalanced classes and convex shapes.
The biclustering algorithms (two-way clustering) [8, 14] are also widely used to
cluster simultaneously gene and expression. They are organized in four families:
(1) variance minimization methods, (2) two-way clustering methods, (3) motif and
pattern recognition methods, and (4) probabilistic and generative approaches.

In gene expression data analysis, the quality and robustness of clustering results
is crucial. Thus, the choice of clustering algorithm should be quite selective and
depends on several issues such as: the separation of genes or samples whatever
the complexity and overlapping level of clusters, the result accuracy, its stability
(results do not depend on initialization nor parameters), its scalability, and its ability
to handle noise.

Today, a huge number of clustering algorithms are available [8], with an
impressive practical performance and desirable theoretical grantees. However, many
of them are not able to cover all recent applications needs. Clustering algorithms
must be multi-objective and cover all clustering issues, they should consider all
existing highlights and minimize theirs disadvantages. Meanwhile, proposing a
new clustering algorithm has become a multi-objective optimization problem. The
solution is to identify all issues and find a way to take them all into account.
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To this aim, we propose a new unsupervised clustering algorithm called “Cluster-
ing byMarked Point Process (ClusterMPP),” it is a multi-objective algorithm able to
deal with cited issues. This algorithm belongs to the density-based algorithms family
[10] and it is based on a probabilistic model called Marked Point Process (MPP)
[1, 15, 16], used in imaging field to mark and to detect geometrical objects. The
main idea ofClusterMPP is: first seeking cluster patterns to establish a classification
model. To ensure that, it defines cluster as a dense region and simulates a proposed
MPP to locate objects (hyper-spheres) on these regions of interest. It gives rise, kills,
moves, and resizes objects, under interaction constraints, in attempt to place them
in dense regions also called clusters.

At the end of this iterative object manipulating process done by an adapted
Reversible Jump Markov Chain Monte Carlo (RJMCMC) [7], objects will be
located on clusters. They will delimit cluster fundamental area (cluster mode) by
their overlapping (connected component). Mostly, objects do not cover all available
data, and covered data are named “Prototypes”. The second step of ClusterMPP is
to assign remaining data (data not covered by objects) to the detected clusters using
an improved version of KNN algorithm [4].

In this chapter, Sect. 2 presents a background on clustering problem, introduces
some definitions of the MPP theory, and describes a proposed MPP model.
Section 3 gives details about “ClusterMPP” implementation. The performance of
this clustering algorithm is demonstrated in Sect. 4 using benchmarks of microarray
databases.

2 Background and Marked Point Process Model

Let us define the observed data (genes, samples) as multidimensional field Y, with
y D fyqgqD1;:::;Q, Q is the number of observations and yq D Œ yq;1; : : : ; yq;M�T 2 � �
R

M .M is the space dimension (number of conditions).
This study aims to organize the Q observations (genes, samples) in k clusters,

where a cluster is a set of observations sharing similar M conditions. Each
cluster groups genes with similar expression patterns (co-expressed genes) or
samples based on the corresponding expression profiles. Clusters have a biological
significance. They may further understanding many gene functions, reveal the
similar cellular functions or sub-cell types which are hard to identify by traditional
morphology-based approaches [8].

This purpose defines cluster by their modes; modes delimit the domains of
high local observation concentration, called after prototypes. These cluster modes
are assumed to be randomly distributed in the multidimensional raw data space,
they reflect carefully the observation patterns inside the raw data space. Thus,
the problem comes down to modes seeking by capturing the cumulative density
distribution of observations in �.
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2.1 Definitions and Notations

MPP is a random process which models point patterns where the points are mainly
positions or centers of geometrical marks in a multidimensional space [1, 15, 16].
If there is no interaction between points and no mark, the process is called Poisson
Point Process and it plays a fundamental role in the definition of probability density
functions of more advanced point processes [1]. When processes use neighboring
relations between points, they belong to the family of Markov Point Processes. This
kind of processes was used in statistical physics, under the name of Gibbs processes
(see [1–3] for more details).

Let X be an MPP living in a finite simple point process, it is composed of finite
random configurations of points; these points are positions of marks; they are chosen
randomly from a compact subspace � � R

M (� has a finite measure: �.�/ < 1
with � the Lebesgue measure). In this paper, a realization of X is a set of hyper-
spheres x D fxlglD1;:::;n.x/ (also called a configuration). Each hyper-sphere xl is
defined by its center cl 2 � (a point) and its radius rl 2 Œrmin; rmax� (its mark)
which also defines the object neighboring. n.x/ is the number of hyper-spheres in
the configuration x. A hyper-sphere (or object or marked point) will be denoted
xl.cl; rl/ and the configuration of points of x, px D fclglD1;:::;n.x/. The spherical shape
is flexible and easy to adapt in the multidimensional space.

The probability density functions f .x/ of the MPP are defined by the reference to
the Poisson process. They can be expressed as a Gibbs distribution with an energy
U.x/ [1]:

f .x/ / eU.x/ (1)

We assume now that a subset of observations constitutes the positions of a
realization of the MPP X; this subset will be the initial set of cluster prototypes. The
object of the proposed clustering algorithm is to find this subset by selecting the
observations with an associated set of marks that maximize the probability density
function of the MPP. This optimal object configuration, Ox, is:

Ox D argmaxx;px�yf .x/ (2)

The density f [see Eq. (1)] is related to a normalizing constant which cannot
be calculated. A typical solution for this drawback is the use of Markov Chain
Monte Carlo (MCMC) simulator. Several MPP simulators have been proposed in
the literature [1, 15], but the one that has been mainly used these twenty last years
is the RJMCMC algorithm [7]. This is due to the good convergence speed, its low
computational time, and its flexibility. The RJMCMC samplers can employ several
movements and use the Green’s ratio (GR) [7] to accept or decline them. The GR
depends on the move probability and the process state before and after the move
application.
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2.2 Proposed Model

The probability density function of the MPP is proportional to the exponential of
a Gibbs energy function [see Eq. (1)]. The energy of MPP is classically the sum of
two terms [1, 3]:

U.xj�/ D Udata.xj�/ C Uinter.xj�/ (3)

where � is the set of model parameters. Udata.xj�/ is the data driven energy and
Uinter.xj�/ is the internal energy.

The Data Driven Energy Udata.xj�/ represents relationships between objects and
observed data. For our purpose, objects are placed in high density regions. This
energy is the sum of local contributions of each object xi (detector model):

Udata.xj�/ D
X

xi2x
V.xi/ (4)

where V.xi/ is the potential function of hyper-sphere xi.ci; ri/.
In order to obtain realizations with objects localized in high concentration areas,

this function must favor the acceptation of well-positioned objects. Let us define
no.xi/, the number of covered observations by xi.ci; ri/ and do.xi/ the density of
observations inside xi.ci; ri/. We consider that an object xi is well positioned if it
satisfies two criteria: no.xi/ > nmin and do.xi/ > dmin, where nmin and dmin belong
to the set of model parameters � .

Therefore, V.xi/ can be expressed as follows:

V.xi/ D
�
no.xi/ if no.xi/ > nmin & do.xi/ > dmin

�no.xi/ � vmax otherwise.
(5)

where vmax is a high value that allows to greatly reduce the probability of a
configuration which contains badly positioned objects. In order to strongly penalize
objects that are not correctly localized, vmax must be a high value (equal to 1000, for
example).

The Internal Energy Uinter.xj�/ interactions between objects are modeled by the
use of potential functions which are chosen according to a priori information about
searched configurations. Thus, two basic rules are imposed: (1) estimate the exact
number of connected components by driving the creation of connected objects to
the observed data and their dispersion in space. (2) Prevent the object overlapping
phenomenon which leads to exponential growth of objects number. According to
those considerations, we propose the following internal energy:

Uinter.xj�/ D n.x/ logˇ � jco.x/j log� C nv log ı (6)
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where ˇ > 0 is the point process intensity [15]. The two first terms of this internal
energy are those of the connected component process [2] with co.x/ the set of
connected objects in x, jco.x/j the number of connected components in x, and � > 0

the interaction parameter. The connected component process is chosen regarding
to the first constraint previously written. In the internal energy, each connected
component defined by x, coi 2 co.x/, i D 1; : : : ; jco.x/j has a contribution equal
to n.coi/logˇ � log� with n.coi/ the number of hyper-spheres contained in coi. See
[15] for more details.

The third term of the internal energy is inspired from the pairwise point process
such as defined in [15], and is used to penalize the hyper-sphere tangle. This term is
based on the definition of the following neighboring relation, for xi 2 x and xj 2 x,
i ¤ j:

xi � xj if d.ci; cj/ < .ri C rj/=5 (7)

the denominator value was chosen experimentally. This third term is also based on
the following interaction potentials of second order:

�.xi; xj/ D
�
log ı if xi � xj
0 otherwise.

(8)

The contribution of this term in the internal energy is written as
P

.xi;xj/;i<j

�.xi; xj/ D nv log ı with nv the total number of neighboring relations in x and
ı 2 Œ0; 1�. In the following we will choose ı near to O (such that log ı D �1000,
for example) in order to strongly penalize overlapping objects.

Following the definition of the data driven energy and the internal energy, it is
now possible to define the set of parameters associated with the proposed MPP:

� D fˇ; �; nmin; dmin; rmin; rmaxg: (9)

with rmin and rmax, the minimum and maximum radius of the hyper-spheres,
respectively.

3 ClusterMPP: A New Clustering Algorithm

ClusterMPP is a new density-based clustering algorithm of microarray datasets
able to cover all main clustering requirements. This algorithm is composed of two
steps:

• Cluster modes detection: is a simulation of the proposed MPP to capture and
delimit the high density regions.

• Classification performing: is a classification process finalization, it classifies the
remaining observations to the detected cluster modes.
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3.1 Cluster Modes Detection

This section presents the mode detection algorithm (the first step of ClusterMPP).
It is a sampling algorithm designed to discover regions of high observation
concentration by simulating the proposed MPP model (see Sect. 2.2). The proposed
mode detection algorithm is a variant of RJMCMC algorithm, it is an iterative and
three-step procedure that generates an MPP configuration at each iteration. In what
follows, we will write: xi, i � 0, the configuration of objects at the ith iteration of
ClusterMPP. pbirth, pdeath, pdisp, and pmchg are, respectively, movement probabilities
choose: birth, death, move, or changing radius of an object.

MPP Initialization In this step, ClusterMPP generates an initial configuration
x0 D fxlglD1;:::;n.x0/: an objects set which cover all available observations (see
Algorithm 2). Parameter estimation() is a function which estimates parameter
values as follows:

• ˇ is the intensity parameter of process. The desired number of objects in the
proposed MPP realizations depends on observed data, we propose to fix it equal
to the cardinality of y (n.y/).

• � is the interaction parameter of a connected component Markov Point Process.
� can be chosen equal to the variance of the observed data. Here we focus on
multidimensional datasets, we use the total variance (the trace of the variance–
covariance matrix, i.e., the sum of variances).

Algorithm 2 Initialization
Input: Observed data y D fy1; : : : ; yn.y/g, rmax.
Output: x0 D fx1; : : : ; xn.x0/g, � .

1: x1 D .y1; rmax/

2: x0 D fx1g
3: n.x0/ D 1

4: j D 1

5: while (j � n.y/) do
6: l D 1

7: while (l � n.x0/) do
8: if (d.yj; cl/ > rmax) then
9: n.x0/ D n.x0/ C 1

10: xn.x0/ D .yj; rmax/

11: x0 D x0 [ ˚
xn.x0/

�

12: end if
13: l D l C 1

14: end while
15: j D j C 1

16: end while
17: � =Parameter estimation()
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• nmin and dmin are the parameters defining the data driven energy, they are
calculated from the initial configuration and equal to the average number of
covered points by hyper-spheres and the average density of objects inside hyper-
spheres, respectively.

• rmin and rmax describe the object scales: the first one is the minimum value of
object radii. We propose to fix it equal to the minimum distance between points
in y, in order to have objects that cover at least two observations. rmax is the
maximum of the object radii, it is estimated by a learning stage.

MPP Simulation ClusterMPP repeats the following steps, until the stabilization
of the number of objects and the process energy: at the .i C 1/th iteration a random
draw to select one of the four movements: birth, death, moving, or changing marks.
In the birth movement, a new object !.c!; r!/ is created by drawing randomly a
center from y and choosing randomly a radius in Œrmin; rmax�. Next, ! will be added
to the configuration Qxb D xi [ f!g. The death is performed if the configuration xi

contains at least one object (n.xi/ > 0). The movement is simulated by selecting
an object ! randomly from the current configuration xi. Then ! is removed from
xi. The proposal configuration in a death case becomes Qxd D xnf!g. Move and
changing marks movements are performed if the configuration xi contains at least
one object (n.xi/ > 0). Movements are simulated by selecting an object ! randomly
from the current configuration xi. Choosing randomly a new center c Q! from the
observed data field y (Moving case) or a new radius r Q! from the interval Œrmin; rmax�
(changing marks case). Then, ! is replaced by Q!, Qx D fxinf!gg [ f Q!g.

In order to accept or reject movement, the algorithm computes the GR for
each move (see Table 1). This iterative algorithm step manipulates the MPP by
applying different movements on this process objects. It shifts the MPP from the
initial configuration in which objects cover all observations to the configurations
where objects move toward the desired regions, the connected components give the
searched modes. Details of the MPP simulation step are given in Algorithm 3.

Mode Extraction The final configuration will contain objects located in regions
of high concentration of observed data. Thus, the connected components of objects
give the searched modes. For each component, ClusterMPP extracts all covered
observations (prototypes) and assigns them by trivial way to the corresponding
clusters. The remaining observations are non-prototypes, they will be classified in
the second step of ClusterMPP.

Table 1 Green’s ratio [7]

Movements Birth Death Move or changing marks

Green’s ratio GRBirth D pdeath
pbirth

f .Qxb/

f .xi/
�.�/

n.x/C1
GRDeath D pbirth

pdeath

f .Qxd /

f .x/
n.x/
�.�/

GRdisp=mchg D f .Qx/
f .x/
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Algorithm 3MPP simulation algorithm
Input: Observed data y D fy1; : : : ; yn.y/g, x0,� .
Output: xf .

1: i D 0

2: while not converged do
3: Qx=Movement simulation (y,xi,� )
4: Compute density f .Qx/=f .xi/ using Eq. (1) and Eq. (3).
5: Compute the corresponding Green’s ratio GR (Table 1).
6: ˛ D min.1;GR/

7: Draw accept � U.0I1/

8: if accept < ˛ then
9: xiC1 D Qx
10: else
11: xiC1 D xi

12: end if
13: i D i C 1

14: end while

3.2 Classification Performing

Prototype observations will be directly assigned to the corresponding clusters. They
are mostly well classified in the first stage of “ClusterMPP”. So, the problem
lies basically in the classification of the remaining observations (non-prototype
observations). In order to classify all observations, we propose to use an improved
version of the KNN algorithm [4], which assigns non-prototype observations one
by one to the nearest cluster, in a specific order, respecting their distances to the
prototype observations. ClusterMPP detects different prototype observations and
assigns non-prototype observations to the corresponding clusters.

4 Experiments

Distance functions are an important factor of clustering procedures. They measure
the similarity between two observations. In this chapter, ClusterMPP uses the
Euclidean distance which measures the geometric relation between two vectors
(the generalization of other distances poses no particular problem). ClusterMPP is
compared with three well-known algorithms Mean-Shift, Spectral Clustering, and
K-means. Note that K-means [9] and Spectral Clustering [12] require the number of
clusters K. Mean-Shift [17] requires the use of an appropriate value of bandwidth.
ClusterMPP does not need a priori knowledge and parameters are chosen from
observed data. All five algorithms were tested with six benchmarks of microarray
datasets [5], used to validate performance of clustering algorithms (see Table 2).
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Table 2 Datasets description [5]

Datasets Rat CNS Leukemia Lymphoma NCI60 Novartis Yeast cell cycle

Samples 17 100 100 200 1000 72

Attributes 112 38 80 57 103 698

Classes 6 3 3 8 4 5

Assessment methods of clustering algorithms measure how well a computed
clustering solution agrees with the gold solution [5] for the given dataset, where
the gold solution is a known data partition. We propose to use Receiver Operating
Characteristic curve (ROC) [5] and External validation indexes (Balanced Mis-
classification Index [5] (BMI), Rand index, Jaccard coefficient (JC), Folkes and
Mallows index (FM)) [11] to evaluate the performance of ClusterMPP algorithm
by comparing it with other algorithms.

Receiver Operating Characteristic Curve (ROC) is a graphical technique to com-
pare classifiers and visualize their performance. ROC plane maps the True Positive
Rate TPR (sensitivity) versus False Positive Rate FPR (specificity) [5].

External Validation Indexes different external validation indexes have been used:
(1) BMI [5] compares the performance of different clustering algorithms by measur-
ing their ability to capture the structure in a dataset. BMI uses the misclassification
error rate and the balancing error rate (the average of the errors on each clusters
[5]). The BMI index takes values between 0 and 1 and needs to be minimized. (2)
RS, JC, and FM [11], these indexes are computed by four terms which indicate if a
pair of points in both solutions (gold and resulting solution) share the same cluster.
These indexes need to be maximized.

Figure 1 shows the partition in the ROC plane for each considered algorithm
and for each dataset. We plot different ClusterMPP results obtained by varying the
value of rmax parameter, and the best result of the other algorithms. Figures 2, 3,
and 4 display the comparison of the classification error rates and the external
validation indexes (BMI, RS, JC, and MF). ClusterMPP has superior performance
against Mean-Shift and Spectral Clustering even in the worst cases. ClusterMPP
outperforms K-means on most datasets and its strength is the estimation of its
important parameter (rmax) through a learning step. However, K-means requires the
number of clusters k, which can be computed by several methods like the Bayesian
Information Criterion (BIC) [9].
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Fig. 2 Comparison of classification results based on error rates

Fig. 3 Comparison of classification results based on BMI values (BS denotes the best solution
obtained in [5])
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5 Conclusion

This work was intended to describe a new unsupervised clustering algorithm
belonging to density-based family. It also implements a probabilistic technique,
which makes it able to solve the clustering problem taking into account different
issues. The algorithm seeks cluster modes by the simulation of proposed MPP and
use an improved KNN version to finalize the classification process. ClusterMPP
outperforms the other clustering algorithms. In the future, we will integrate onto-
logical information about genes as an a priori information to improve clustering
process of biological data.
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