
Andrey Bogdanov (Ed.)

 123

LN
CS

 1
00

98

5th International Workshop, LightSec 2016
Aksaray, Turkey, September 21–22, 2016
Revised Selected Papers

Lightweight Cryptography
for Security and Privacy

Lecture Notes in Computer Science 10098

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Andrey Bogdanov (Ed.)

Lightweight Cryptography
for Security and Privacy
5th International Workshop, LightSec 2016
Aksaray, Turkey, September 21–22, 2016
Revised Selected Papers

123

Editor
Andrey Bogdanov
Technical University of Denmark
Kongens Lyngby
Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-55713-7 ISBN 978-3-319-55714-4 (eBook)
DOI 10.1007/978-3-319-55714-4

Library of Congress Control Number: 2017934459

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This year was marked by the fifth edition of the International Workshop on Light-
weight Cryptography for Security and Privacy (LightSec). With the increasing
deployment of ubiquitous systems and pervasive computing, the field of low-resource
cryptography is becoming more relevant and timely than ever. Following the series of
four previous events held in Turkey and Germany, LightSec 2016 was organized
during September 20–21, 2016, at Aksaray University in Cappadocia, Turkey. This
volume contains the papers presented at the workshop.

There were 18 submissions from ten countries. Each submission was reviewed by at
least three, and on average 3.5, Program Committee members in a careful double-blind
review process stretched over a month. Having performed a total of 63 reviews with the
help of 11 external reviewers, after an active discussion phase, the committee decided
to accept nine papers. The Program Committee consisted of 20 top-notch researchers in
the field of lightweight security from ten countries.

LightSec 2016 featured two invited talks. On the first day, based on her unique mix
of academic and industrial backgrounds, Elif Bilge Kavun from Infineon, Germany,
gave an insightful lecture on “Resource-Efficient Cryptography: Addressing the Gaps
in Lightweight Solutions.” On the second day, Orhun Kara from TUBITAK BILGEM,
representing the government sector, gave an excellent talk on “Block Ciphers vs.
Stream Ciphers on Ultra Lightweight Platforms” covering the recent trends in stream
cipher design.

We would like to express our gratitude to all the Program Committee members and
external reviewers for their exemplary review work that resulted in selecting the
high-quality papers that constitute this volume. We thank all authors for submitting
their work to LightSec 2016. We would also like to thank both invited speakers for
their invaluable contributions to the workshop. Special thanks go to Atilla Elçi, who
served as the general chair of the workshop and whose organization was outstanding.
We are indebted to the Aksaray University, Faculty of Engineering, Department of
Electrical-Electronics Engineering, for hosting the event. The workshop would have
been unthinkable without the constant support and astute advice of the Steering
Committee in general as well as of Orhun Kara and Ali Aydin Selcuk in particular. We
are also obliged to the International Association for Cryptologic Research for deciding
to grant LightSec 2016 the “In Cooperation with IACR” status.

December 2016 Andrey Bogdanov

Organization

General Chair

Atilla Elçi Aksaray University, Turkey

Program Chair

Andrey Bogdanov Technical University of Denmark, Denmark

Program Committee

Onur Aciicmez Samsung, USA
Toru Akishita Sony Corporation, Japan
Roberto Avanzi Qualcomm, Germany
Lejla Batina Radboud University Nijmegen, The Netherlands
Tim Güneysu University of Bremen and DFKI, Germany
Pascal Junod HEIG-VD, Switzerland
Orhun Kara TUBİTAK BiLGEM UEKAE, Turkey
Elif Bilge Kavun Infineon, Germany
Miroslav Knezevic NXP Semiconductors, Belgium
Gregor Leander Ruhr University Bochum, Germany
Albert Levi Sabanci University, Turkey
Amir Moradi Ruhr University Bochum, Germany
Shiho Moriai NICT, Japan
María Naya-Plasencia Inria, France
Ventzi Nikov NXP Semiconductors, Belgium
Thomas Peyrin Nanyang Technological University, Singapore
Francesco Regazzoni ALaRI — USI, Switzerland
Matt Robshaw Impinj, USA
Erkay Savas Sabanci University, Turkey
Ali Aydin Selcuk Bilkent University, Turkey
Kerem Varici Université catholique de Louvain, Belgium

Additional Reviewers

Selcuk Baktir
Dusan Bozilov
Keita Emura
Oğuzhan Ersoy
Takanori Isobe
Ferhat Karakoç

Anna Krasnova
Joost Renes
Tobias Schneider
Cihangir Tezcan
Alexander Wild

Contents

Cryptanalysis

Faster Key Recovery Attack on Round-Reduced PRINCE 3
Shahram Rasoolzadeh and Håvard Raddum

Differential Attacks on Lightweight Block Ciphers PRESENT, PRIDE,
and RECTANGLE Revisited . 18

Cihangir Tezcan, Galip Oral Okan, Asuman Şenol, Erol Doğan,
Furkan Yücebaş, and Nazife Baykal

Impossible Differential Cryptanalysis of 16/18-Round Khudra 33
Ferhat Karakoç, Öznur Mut Sağdıçoğlu, Mehmet Emin Gönen,
and Oğuzhan Ersoy

Distinguishing Attacks on (Ultra-)Lightweight WG Ciphers 45
Mabin Joseph, Gautham Sekar, and R. Balasubramanian

Cryptanalysis of QTL Block Cipher . 60
Mustafa Çoban, Ferhat Karakoç, and Mehmet Özen

A Brief Comparison of SIMON and SIMECK . 69
Stefan Kölbl and Arnab Roy

Lightweight Designs and Implementations

Bitsliced Masking and ARM: Friends or Foes? . 91
Wouter de Groot, Kostas Papagiannopoulos, Antonio de La Piedra,
Erik Schneider, and Lejla Batina

Classification of 6� 6 S-boxes Obtained by Concatenation of RSSBs 110
Selçuk Kavut and Sevdenur Baloğlu

Concealing KETJE: A Lightweight PUF-Based Privacy Preserving
Authentication Protocol . 128

Gerben Geltink

Author Index . 149

http://dx.doi.org/10.1007/978-3-319-55714-4_1
http://dx.doi.org/10.1007/978-3-319-55714-4_2
http://dx.doi.org/10.1007/978-3-319-55714-4_2
http://dx.doi.org/10.1007/978-3-319-55714-4_3
http://dx.doi.org/10.1007/978-3-319-55714-4_4
http://dx.doi.org/10.1007/978-3-319-55714-4_5
http://dx.doi.org/10.1007/978-3-319-55714-4_6
http://dx.doi.org/10.1007/978-3-319-55714-4_7
http://dx.doi.org/10.1007/978-3-319-55714-4_8
http://dx.doi.org/10.1007/978-3-319-55714-4_8
http://dx.doi.org/10.1007/978-3-319-55714-4_9
http://dx.doi.org/10.1007/978-3-319-55714-4_9

Cryptanalysis

Faster Key Recovery Attack on Round-Reduced
PRINCE

Shahram Rasoolzadeh and H̊avard Raddum(B)

Simula Research Laboratory, Bergen, Norway
{shahram,haavardr}@simula.no

Abstract. We introduce a new technique for doing the key recovery part
of an integral or higher order differential attack. This technique speeds
up the key recovery phase significantly and can be applied to any block
cipher with S-boxes. We show several properties of this technique, then
apply it to PRINCE and report on the improvements in complexity from
earlier integral and higher order differential attacks on this cipher. Our
attacks on 4 and 6 rounds were the fastest and the winner of PRINCE
Challenge’s last round in the category of chosen plaintext attack.

Keywords: PRINCE · Lightweight · Block cipher · Key recovery
attack · Integral · Higher-order differential

1 Introduction

PRINCE is a lightweight block cipher that was introduced in [1]. The cipher
has received a fair share of attention from cryptanalysts in the last years, with
many different attacks on round-reduced versions [3–15]. The Prince Challenge
website tracks the best attacks and promises cash prizes for attacks that will
have a serious impact in real-world applications [2].

In this paper we will revisit two earlier works [12,13] on PRINCE and improve
the complexities of the attacks described there. Both papers are concerned with
integral attacks, with [12] also giving details of a bit-pattern integral attack on 4
rounds and a higher order differential attack on 7 rounds of PRINCE. We re-use
the integral distinguishers described in [4,13].

The improvement we can do lies in the key recovery part. We introduce a
new technique to do key recovery, using a binary array. For PRINCE, the size
of this array is only 16 bits. Using this technique we can skip the partial trial
decryptions to check for balancedness in an integral or higher order differential
attack. This technique can be applied to speed up this type of attacks on any
block cipher with S-boxes. In addition to using this technique for key recovery
we also apply the accelerated key search technique described in [14,15] when
partial keys need to be guessed.

The improvements and comparisons to previous attacks are summarized in
Table 1. All time complexities are given in terms of number of r-round PRINCE
encryptions based on counting the number of S-box look-ups needed. The data
c© Springer International Publishing AG 2017
A. Bogdanov (Ed.): LightSec 2016, LNCS 10098, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-55714-4 1

4 S. Rasoolzadeh and H. Raddum

Table 1. Summary of cryptanalytic results on PRINCE

Rounds Time Data Memory Technique Ref.

4 264 16 CP 16 Integral [4]

243.4 32 KP 226.7 Diff./Logic [11]

5 s 210 CP �227 MitM [11]

223.9 48 CP 48 Integral [12]

29.7 160 CP 160 Integral [12]

27.4 64 CP negl. Integral Section 5.1

5 264 80 CP 16 Integral [4]

224.6 96 CP 96 Integral [12]

221.4 32 CP 32 Integral Section 5.2

213 213 CP 32 Integral Section 5.2

6 2101.1 64 KP 234 MitM [11]

296.8 2 KP negl. Acc. Exh. [15]

286 + 286M.A.a 2 KP 224.6 Acc. Exh. [15]

264 216 CP 216 Integral [4]

233.7 216 CP 231.9 MitM [11]

232.3 214.6 CP 214.6 Integral [13]

228.9 214.9 CP �227 Diff./Logic [11]

236.3 218.6 CP 218.6 Integral [12]

224.6 213 CP 213 Integral Section 5.3

7 252.1 234.6 CP 234.6 H.-O. Diff. [12]

244.3 233 CP 233 H.-O. Diff. Section 5.4

8 2124 2 KP 220 SitM [6]

2122.7 2 KP negl. Acc. Exh. [14]

2109.3 2 KP 265 MitM [14]

266.3 216 CP 249.9 MitM [11]

265.7b 216 CP 268.9 MitM [11]

260 253 CP 230 MitM [7]

250.7b 216 CP 284.9 MitM [11]

9 264 257 CP 257.3 MitM [7]

251.2 246.9 CP 252.2 Multiple Diff. [8]

10 2124 2 KP negl. Acc. Exh. [14]

2122.2 2 KP 253.3 MitM [14]

268b 257 CP 241 MitM [11]

260.6 257.9 CP 261.5 Multiple Diff. [8]
aMemory Access to a table with 225 indexes.
bOnline Time.

Faster Key Recovery Attack on Round-Reduced PRINCE 5

complexities are given as the number of chosen plaintext/ciphertext pairs needed.
The results from [12,13] have been transformed into this format, and in some
cases slightly corrected, to get a correct comparison.

2 PRINCE Block Cipher

PRINCE is an FX-constructed lightweight block cipher with block size of 64 bits
[1]. Two keys are used in PRINCE, both of length 64 bits, one for whitening (K0)
and the other as a round key (K1) for the core of the structure (see Fig. 1). The
round key is used in every round without any key schedule, and the whitening
key before the ciphertext (K ′

0) is derived by applying a simple linear mapping
to K0.

P'
PRINCEcore

C'P C

K1
K0 K0'

Fig. 1. PRINCE FX construction

The PRINCEcore is an AES-like block cipher that employs an involutive
12-round structure. PRINCEcore starts with two xors with K1 and a round
constant, followed by 5 forward rounds, a middle layer, 5 backward rounds and
at the end, two more xors with a round constant and K1. Figure 2 shows the
schematic view of PRINCEcore.

Fig. 2. PRINCE core

The state is defined as a 4 × 4 matrix similar to AES, but in PRINCE,
instead of bytes the cells contain nibbles. Each round of PRINCEcore consists
of 5 operations: S-box, mix column, shift row, round constant addition and key
addition. These are described as follows:

6 S. Rasoolzadeh and H. Raddum

– S-box (SB): Every nibble in the state is replaced using a 4-bit S-box.
– Mix Column (MC): The state is multiplied with an involutive 64×64 binary

matrix. More precisely, this large matrix can be expressed as sixteen 4 × 4
matrices where each of these mixes four bits in one column of the state.

– Shift Row (SR): Row i of the state is cyclically rotated by i positions to the
left (same as shift row operation in AES).

– Round Constant Addition (RC): A bit-wise xoring with a round constant
RCi, i = 0, ..., 11.

– Key Addition (AK): A bit-wise xoring with the key K1.

The two middle rounds contain only three layers, SB, MC and SB−1 which
makes it an involutive transformation. This transformation can also be separated
into four smaller transformations, one for each column in the state.

In the backward rounds, the operations come in the reverse order of the
forward rounds, and SB and SR are replaced with SB−1 and SR−1. The round
constants are also different, but related to the round constants in the forward
rounds. The difference RCi⊕RC11−i, i = 0, ..., 11 is always equal to the constant
value α = 0xc0ac29b7c97c50dd.

3 Integral and Higher-Order Differential Distinguishers
for PRINCE

In this section we will briefly introduce integral and higher-order differential
attacks. For each of the attacks we will revisit two integral and one higher-order
differential distinguisher for PRINCE that are used in previous attacks [4,12,13].

3.1 Integral Distinguishers

The integral or square attack was originally designed as a dedicated attack in
[16] against the Square block cipher. This cryptanalytic attack is particularly
applicable to block ciphers that use S-boxes. Integral cryptanalysis uses sets
of chosen plaintexts, where typically most parts of the plaintexts are set to
a constant (constant parts) and some parts vary through all possible values
(active parts). Then, the cryptanalyst studies how the xor-sum in the given
parts changes through the operations of the cipher. After a few rounds, the
cipher states still sum up to zero over one set (balanced state). This property
will distinguish a given cipher from a random permutation and can be used for
key recovery.

3.5-round Integral Distinguisher for PRINCE. The 3.5-round integral
distinguisher for PRINCE first used in [4] covers one forward round, two middle
rounds and one backward round except its SB−1 operation. In this distinguisher
we use 24 plaintexts which only differ in one nibble and the other 15 nibbles are
constant. When one S-box takes all its 24 possible inputs and the inputs for
all other S-boxes are constant, the states after the above 3.5 rounds (state right
before the last SB−1 operation) will be balanced, i.e. the xor-sum of these states
will be equal to zero.

Faster Key Recovery Attack on Round-Reduced PRINCE 7

4.5 Round Integral Distinguisher for PRINCE. The 4.5-round integral
distinguisher for PRINCE introduced by Posteuca and Negara in [13] contains
two forward rounds, two middle rounds and one backward round except its SB−1

operation. In this distinguisher we use 212 plaintexts which only differ in three
nibbles in the same column and the other 13 nibbles are constant. When three
S-boxes in a column take all their 212 possible inputs and the input for all other
S-boxes are constant, the state after 4.5 rounds will be balanced.

For explanations for why these sets are balanced after 3.5 and 4.5 rounds we
refer to [4,12,13].

3.2 Higher-Order Differential Distinguisher

The higher-order differential attack is a generalization of differential cryptanaly-
sis. While in a differential attack the difference between only two plaintexts is
used, higher-order differential attack studies the propagation of a set of differ-
ences between a larger set of plaintexts. Lai, in 1994, laid the groundwork by
showing that differentials are a special case of the more general case of higher
order derivatives [17] and Knudsen, in the same year, was able to show how
the concept of higher order derivatives can be used to mount attacks on block
ciphers [18].

Higher-order differential attacks are applicable to ciphers where the bits of
the cipher state at some point can be represented as Boolean polynomials of a
low algebraic degree. In PRINCE the only non-linear operation is the SB, so
the algebraic degree of the output of one round is three. Using this property
of PRINCE, in [12] one 5.5-round higher-order differential for PRINCE is pre-
sented. This distinguisher calculates the i-th derivative at some selected state
and uses a set of 2i plaintexts, where i plaintext bits vary over all possible values,
while the rest of the state is set to an arbitrary constant.

5.5-round Higher-Order Differential Distinguisher for PRINCE. The
expression of state variables after 3 SB layers have algebraic degree at most 33.
Therefore, any 28-th or higher order derivative of the state must be zero. The
distinguisher uses two more rounds with no cost in algebraic degree to arrive at
a 5.5-round distinguisher.

The distinguisher uses 232 chosen plaintexts, where two columns take all
possible input values. As the S-box is bijective, the first SB operation preserves
the property that the two selected columns take all 232 possible values. In the
next step MC works on columns independently, thus still there are 32 state bits
taking all possible combinations. The SR operation will move constant value
nibbles into columns with all-valued nibbles, so the MC operation in the second
round destroys the property.

Therefore, the distinguisher gets the first two SB layers for free and then
it covers another three SB and SB−1 operations. So, it gives a balanced state
after 5.5 rounds (the state right before SB−1 in the sixth round).

8 S. Rasoolzadeh and H. Raddum

4 New Technique for Key Recovery

Assume that the S-boxes used in the target block cipher is n bits. Let A be a
2n-bit binary array, A = [a0, a1, . . . , a2n−1]. For any such array, we define KA to
be the following set of n-bit values:

KA = {k ∈ GF (2)n|
2n−1⊕

i=0

ai · S(k ⊕ i) = 0} (1)

For example, for the PRINCE S-box where n = 4, if A = [1, 1, 1, 0, 1, 0, . . . , 0],
the only solutions for

S(k) ⊕ S(k ⊕ 1) ⊕ S(k ⊕ 2) ⊕ S(k ⊕ 4) = 0

is KA = {c}.
The computation cost for finding the corresponding KA for an array of A

is wA × 2n S-box evaluations, where wA denotes the Hamming weight of array
A. This is because for each n-bit value of key we have to compute one S-box
look-up for each set bit in A.

Assume that we want to attack an R-round cipher using an (R − 0.5)-round
distinguisher which says that for a set of 2d chosen plaintexts, the xor-sum of the
cipher states after (R−0.5) rounds is equal to zero. After these (R−0.5)-rounds
there is an S-box layer before reaching the ciphertext.

The usual key recovery method would be to guess the 2n possible values for
each of the last round key words in the output of an S-box, and then partially
decrypt through the SB operation for every ciphertext. If the xor-sum of these
2d nibbles are equal to zero we accept the guessed value of subkey as a candidate
and if not we reject it. The time complexity for finding key candidates for one
n-bit word of the last round key using one set of 2d ciphertexts is equal to 2n×2d

S-box evaluations.
In the following we introduce our technique which is faster than the straight-

forward method. In our technique we will build an A array for each word in the
state from the 2d ciphertexts. Then for each array, we will find key candidates
for the corresponding word of last round key.

At the start of the attack, for each word of state we allocate a 2n-bit array A
initialized to all zeroes. Then we look at the corresponding word in each of the 2d

ciphertexts. When the value of this word is equal to x, we will flip the x-th bit in
the corresponding A. After doing this for all the 2d ciphertexts, we can just find
the corresponding set KA for the created array. The values in KA are the key
candidates for this word of last round key. So for a set of 2d ciphertexts, instead
of 2d+n S-box evaluations, our key recovery method will need about nSB ×2n S-
box evaluations to find the candidates for each word of the last round key, where
nSB denotes the average number of S-box evaluations for the created arrays.

Compared with the usual key recovery method, using A arrays is faster, which
helps to reduce the complexity of integral or higher-order differential attacks.
Specially when size of data sets are big (d is large), the speed-up factor 2d

nSB
of

our technique gets bigger.

Faster Key Recovery Attack on Round-Reduced PRINCE 9

4.1 Some Features of A Arrays

Here we introduce some facts about possible (A,KA) values which help us to
evaluate the average number of S-box operations needed nSB and also make it
smaller.

Lemma 1. In an actual attack, the weight of A is always even.

Proof. The set of ciphertexts is of size 2d, and hence even. We flip exactly one
bit in A for each ciphertext, so starting from the all-zero array the weight will
always be even after processing an even number of ciphertexts.

Lemma 2. If A = [0, . . . , 0] or A = [1, . . . , 1], then KA = GF (2n).

Proof. In the first case, all terms in the xor-sum in (1) are 0 regardless of k, so
the statement is trivially true. The second case follows from the fact SB is a
bijective operation.

Lemma 3. Let Ā be the complement of A, that is, Ā = [1, 1, ..., 1] ⊕ A. Then
KĀ = KA.

Proof. Since SB is bijective, we know that
⊕2n−1

i=0 S(k ⊕ i) = 0 for any fixed k.
If the subset of terms selected by A sum to 0 (so k ∈ KA), the complementary
subset of terms must also sum to 0, hence k ∈ KĀ.

Lemma 4. If the weight of A is 2 or 2n − 2, then KA = ∅.
Proof. SB is bijective, so S(x) ⊕ S(y) �= 0 for x �= y and the case of weight 2 is
proven. The case for weight 2n − 2 follows from Lemma 3.

Using the properties introduced in the above lemmas, it is sufficient to
find the key candidates only for arrays where the weight wA is even and
4 ≤ wA ≤ 2n−1. This technique is possible to apply to any integral or higher-
order differential attacks on block ciphers that use S-boxes, but in the following
we will just focus on the PRINCE block cipher.

4.2 Using the A Arrays

Having an (R − 0.5)-round distinguisher we can do the key-recovery phase on
both R-round and R + 1-round PRINCE using the technique introduced above.
For attacking R rounds we allocate one array to each of the nibbles in a state.
Each array will suggest some candidates for one nibble of K1 ⊕ K ′

0, including
the right value. So the corresponding KA to these arrays can never be empty.
In these attacks we will not save the ciphertexts in the memory, so the memory
complexity will just be saving the arrays, which is negligible.

For attacking R + 1-round PRINCE, instead of a half-round (one SB−1

operation), there is one and a half rounds (one SB−1 operation and one complete
round) between the ciphertext and the end of the distinguisher. For key recovery
we then guess one column of K ′

0 ⊕ K1 and partially decrypt the corresponding

10 S. Rasoolzadeh and H. Raddum

column in all of the 2d ciphertexts for one round. Then we build A-arrays for
the partially decrypted nibbles and find candidates for 4 corresponding nibbles
of K1. Since we do not know whether the guessed value of K ′

0 ⊕ K1 is the right
one or not, the arrays related to these 4 nibbles of K1 could have a empty set
of KA. In this case, when an array suggests an empty KA it means the guessed
value for K ′

0 ⊕ K1 was wrong. We call this a false array.
Both of the R- and R + 1-round PRINCE attacks are illustrated in Figs. 3

and 4, respectively.

A set of 2d

chosen plaintexts A balanced state

R-0.5 Rounds

SB-1

K0' + K1

A set of 2d

ciphertexts

Creating an array
for each nibble

RCR-1
A0

A1

A2

A3

A4

A5

A6

A7

A12

A13

A14

A15

A8

A9

A10

A11

Table looking-up
for each array

Suggested
values for

each nibble of
K0' + K1

Fig. 3. Attack on R-round PRINCE using (R − 0.5)-round distinguisher

A set of 2d

chosen plaintexts A balanced state

R-0.5 Rounds

SB-1

K1

A set of 2d

ciphertexts
RCR-1

A0

A1

A2

A3

Suggested
values for one

column of
K1

An unbalanced state

SB-1/MC/SR-1

K0' + K1

RCR

Guessing 4 nibbles of
K0' + K1

Partially
Decrypting

Creating an array
for each nibble

Table looking-up
for each array

A set of 2d columns

Fig. 4. Attack on R + 1-round PRINCE using (R − 0.5)-round distinguisher

4.3 Average Number of S-box Evaluations for an Array

For computing the cost of finding key candidates we need to know the average
number of S-box evaluations for an array. By using the lemmas, this number will
be equal to

nSB = 4 × (P4 + P12) + 6 × (P6 + P10) + 8 × P8 (2)

where Pw is the probability that the weight of array A is w.
In fact, the value for Pw depends on the number of texts used to produce

the array A. For example, when d = 4 then P16 < P0 even though there is only
one array of weight 0 and one of weight 16. We can evaluate Pw, by using a
recursive formula that we explain in the following. Let Ai be the array for one
nibble, after processing i ciphertexts in one set. Assume we have processed i− 1

Faster Key Recovery Attack on Round-Reduced PRINCE 11

nibble values and found that the weight of Ai−1 is w. By processing one more
nibble in the set, we have the relations below for the weight w′ of the array Ai:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pr(w′ = 1) = 1 w = 0
Pr(w′ = 15) = 1 w = 16

Pr(w′ = w − 1) = w
16 w �= 0,16

Pr(w′ = w + 1) = 1 − w
16 w �= 0,16

(3)

Let fi = [fi(0), fi(1), . . . , fi(16)] be the probability distribution for the weight
of the array Ai. In an actual attack, the array A is initialized to all-zeroes, so
f0 = [1, 0, . . . , 0]. Given fi−1, the probability distribution fi is given as

⎧
⎪⎨

⎪⎩

fi(0) = 1
16 · fi−1(1)

fi(j) = (1 − j−1
16) · fi−1(j − 1) + j+1

16 · fi−1(j + 1) 0 < j < 16
fi(16) = 1

16 · fi−1(15)
(4)

The values of Pw to be used in (2) are the values in f2d when using a set of
2d chosen plaintexts, and these values can be computed by using (4) recursively.
When d is equal to 4, nSB will be 6.37419 and it converges quickly to 6.51904
for larger d’s.

4.4 Average Number of Key Candidates for an Array

By running through the all 16-bit arrays with weight of 4, 6 and 8, we can
count the number of arrays giving KA’s of the same size. These numbers are
summarized in Table 2. For each possible weight w we find the average size of
KA, denoted n̄w, both with and without false arrays.

Table 2. Average number for suggested key candidates

number of arrays with |KA| = average value for |KA|, n̄w

w 0 1 2 3 4 16 with F.A. without F.A.

0 0 0 0 0 0 1 16 16

2 120 0 0 0 0 0 0 –

4 392 816 432 160 20 0 1.2308 1.5686

6 3120 3040 1488 288 72 0 0.8951 1.4664

8 4502 4320 2976 640 432 0 1.0816 1.6635

10 3120 3040 1488 288 72 0 0.8951 1.4664

12 392 816 432 160 20 0 1.2308 1.5686

14 120 0 0 0 0 0 0 –

16 0 0 0 0 0 1 16 16

12 S. Rasoolzadeh and H. Raddum

In a set of 2d ciphertexts produced according to the distinguisher, the average
number for |KA| is equal to

¯|K| =
15∑

w=0

Pw · n̄w (5)

The values of Pw to be used in (5) are the values in f2d when using a set
of 2d chosen plaintexts. We can now compute the exact value of the expected
number of suggested keys from one set of plaintexts in an attack, given by (5).
In our attacks with false arrays ¯|K| is always 1. In attacks without false arrays
n̄K is about 1.5360 using 24 ciphertexts, and ¯|K| converges quickly to 1.5453 for
larger sets.

5 Cryptanalysis of Round-Reduced PRINCE

In this section we will use the distinguishers from Sect. 3 and the key recovery
method introduced in Sect. 4 to cryptanalyze round-reduced PRINCE.

5.1 Attack on 4-round PRINCE

For 4-round PRINCE, we will use the 3.5-round integral distinguisher. One set
consists of 16 chosen plaintexts that gets encrypted through 4-round PRINCE.
One bit-array A is initialized to all zero for each of the 16 nibbles in a state.
For the value x in a nibble, we flip the bit ax in the corresponding A for each
ciphertext as they are produced. Finally we use the arrays to find the key candi-
dates, and repeat with one more set to get unique values. The exact procedure
for recovering a unique value for K ′

0 ⊕ K1 using s sets of data is summarized
in Algorithm 1. In the algorithm we use Cj,t

i to denote i-th nibble in the j-th
ciphertext of the t-th set. Ki denotes candidate subkeys for the i-th nibble.

After finding K ′
0 ⊕ K1, we follow the attack in [12] and use a 2.5-round

distinguisher starting from the second round of the 3.5-round distinguisher to
find the exact value of K1. The internal states will be balanced after 2.5 rounds,
just before the S-box layer in the third round. We use the recovered K ′

0 ⊕ K1 to
decrypt the 4-round ciphertexts one round, and follow Algorithm1 on the cipher
states after three rounds to recover K1. When both K ′

0 ⊕ K1 and K1 are known
it is trivial to find the user-selected key.

Complexity: This attack is without false arrays and each set of data has 24

pairs. Each array will suggest on the average m = 1.5360 keys. After the first
set of data is processed we expect m16 = 29.91 key candidates remaining for
the whole K ′

0 ⊕ K1. Using another set of data we will only have an expected
(29.91)2 × 2−64 = 2−44.19 key candidates remaining for the value of K ′

0 ⊕ K1.
With very high probability, only the correct value for K ′

0 ⊕ K1 will remain. So
we need only two sets of data for finding K ′

0 ⊕K1 and similarly another two sets
of data for finding K1.

Faster Key Recovery Attack on Round-Reduced PRINCE 13

Algorithm 1. Key recovery attack without false arrays
for i = 0 : 15 do

Ki = F
4
2;

end for
for t = 1 : s do

for i = 0 : 15 do
Ai = [0, . . . , 0];

end for
for j = 0 : 2d − 1 do

for i = 0 : 15 do
Put x = Cj,t

i and flip the bit ai
x;

end for
end for
for i = 0 : 15 do

Find ki, the key candidates for Ai;
Ki = Ki ∩ ki;

end for
end for
Return K = [K0, . . . ,K15];

The data complexity of the attack is 24 × (2 + 2) = 26 chosen plaintexts and
its memory complexity is just saving 16 × m nibbles for storing the initial key
candidates and 16 arrays of 16-bits each which is negligible.

The time complexity of this attack will be producing the chosen data (26

4-round encryptions), 16 times finding the key candidates for each nibble of
K ′

0 ⊕ K1 for each set (on average 2 × 16 × 24 × 6.37419 SB operations), one
round partial decryption of second data sets (25 one round encryptions) and 16
times finding the key candidates for each nibble of K1 for each set. In total this
is equal to about 27.44 4-round PRINCE encryptions.

5.2 Attack on 5-round PRINCE

For cryptanalyzing 5-round PRINCE, we can use either the 3.5-round or 4.5-
round integral distinguishers. Using the 3.5-round distinguisher will lead to lower
data complexity, but a higher time complexity than using the 4.5-round distin-
guisher. We present both attacks below.

Attack with 4.5-round Distinguisher: The attack has a similar procedure to the
4-round one, except that in each set there are 212 ciphertexts instead of 24. First
we find a unique value for K ′

0 ⊕K1 using Algorithm 1. Then we can decrypt one
round and use the 3.5-round distinguisher to find the value of K1. For the 3.5-
round distinguisher it is not necessary to ask for more data, we can use subsets
of size 24 that exist in the sets of 212 pairs we already have. Using the recovered
value for K ′

0 ⊕ K1 we will partially decrypt only two subsets of 24 ciphertexts
for one round to reach the internal state after 4 rounds and use them to find the
exact value of K1 with Algorithm 1.

14 S. Rasoolzadeh and H. Raddum

Complexity: This attack is without false arrays and each set of data has 212 pairs.
So each array will suggest m = 1.5453 keys. After the first set of data is processed
we can expect to have m16 = 210.05 key candidates for the whole K ′

0 ⊕ K1.
Using another set of data we expect to have only (210.05)2 × 2−64 = 2−43.91 key
candidates for the value of K ′

0 ⊕K1. So we need only two sets of data for finding
K ′

0 ⊕ K1, and reuse subsets within these to find K1.
The data complexity of the attack is 2 × 212 = 213 chosen plaintexts and its

memory complexity is saving two set of 24 data for recovering K1. The time for
producing the chosen data sets is dominating the time complexity in the attack.
Hence the time complexity is approximately 213 5-round PRINCE encryptions.

Attack with 3.5-round Distinguisher: In this attack, we will guess one column of
K ′

0 ⊕K1 and partially decrypt the ciphertexts for one round. The values for four
nibbles at the end of the fourth round can be computed for each guessed column.
We build A-arrays from these values. Then we will find the corresponding can-
didates for 4 nibbles of K1. When the guess for a column of K ′

0 ⊕ K1 is wrong,
we may end up with an A array such that KA is the empty set, that is, we have
a false array. In this case we can reject the guessed value for K ′

0 ⊕ K1 as wrong
and go to next value. The exact procedure for recovering a unique value for the
c-th column of K ′

0 ⊕ K1 and its corresponding 4 nibbles in K1 is summarized in
Algorithm 2.

Algorithm 2. Key recovery attack with false arrays
for K ∈ F

16
2 do

for i = 0 : 3 do
Ki

1 = F
4
2;

end for
for t = 1 : s do

for i = 0 : 3 do
Ai = [0, . . . , 0];

end for
for j = 0 : 2d − 1 do

Using K partially decrypt Cj,t
4c:4c+3 to reach [x0, x1, x2, x3];

for i = 0 : 3 do
Flip the bit ai

xi ;
end for

end for
for i = 0 : 3 do

Find ki, the key candidates for Ai;
Ki

1 = Ki
1 ∩ ki;

if Ki
1 is empty then

Reject the current value of K and go to next value;
end if

end for
end for
Return K and [K0

1 ,K
1
1 ,K

2
1 ,K

3
1];

end for

Faster Key Recovery Attack on Round-Reduced PRINCE 15

Complexity: In this attack we may get false arrays and each set of data has 24

pairs. Then each array will suggest one key on the average. So after processing
the first set of data we will have one candidate for 4 nibbles of K1 related to
the guessed value for 4 nibbles of K ′

0 ⊕ K1. Using another set of data, there
will remain only 216 × 2−16 = 1 key candidate for 4 nibbles of K ′

0 ⊕ K1 and
the related 4 nibbles in K1. For finding the other subkeys related to the other
columns we will use these sets of data again, so we need only these two sets.

The data complexity of the attack is 24 × 2 = 25 chosen plaintexts. The
memory complexity is saving the 25 ciphertexts.

The time complexity is in the worst case (when we never exit early due to
empty Ki

1)
4 × 216 × 2 × (24 × 4 + 4 × 24 × 6.519) = 227.91

SB operations which is about 221.59 5-round PRINCE encryptions. Using the
accelerating techniques from [14] (which stores S-box evaluations that are not
affected by new guesses of K1⊕K ′

0), the time complexity can be further reduced
to 227.76 SB operations or 221.44 5-round PRINCE encryptions.

5.3 Attack on 6-round PRINCE

For attacking 6-round PRINCE, we will use the 4.5-round integral distinguisher
with partial key guessing following Algorithm 2. With two sets of 212 chosen
plaintext/ciphertext pairs, we will guess one column of K ′

0⊕K1, partially decrypt
the ciphertexts for one round and build A-arrays, and then find the corresponding
values for 4 nibbles of K1.

This attack will need only two sets of data, so the data complexity of the
attack is 212×2 = 213 chosen plaintexts. The memory complexity is again saving
the ciphertexts. The time complexity will be

4 × 216 × 2 × (212 × 4 + 4 × 24 × 6.519) = 233.04

SB operations, and by using the accelerating techniques from [14] when guessing
the 4 nibbles of K ′

0 ⊕ K1, the time complexity can be reduced to 231.22 SB
operations or approximately 224.64 6-round PRINCE encryptions.

5.4 Attack to 7-round PRINCE

For the attack on 7-round PRINCE, we use the 5.5-round higher-order differen-
tial distinguisher and Algorithm2 with two sets of 232 pairs of data. Each set of
data will be balanced right before the S-box layer in the sixth round, so the key
recovery procedure in Algorithm 2 can be applied.

Again this attack will need only two sets of data, so its data complexity is
233 chosen plaintext/ciphertext pairs. Saving the ciphertexts is the substantial
memory complexity. The time complexity will be

4 × 216 × 2 × (232 × 4 + 4 × 24 × 6.519) = 253

SB operations which by applying the accelerating technique the time complexity
can be reduced to 251.09 SB operations or 244.29 7-round PRINCE encryptions.

16 S. Rasoolzadeh and H. Raddum

6 Conclusion

In this paper we have introduced a technique of using arrays for the key recovery
part of an integral or higher order differential attack. In particular, integral and
higher order differential attacks on block ciphers with S-boxes will benefit from
this technique.

We have applied the faster key recovery to the same integral or higher order
differential distinguishers used in earlier attacks on PRINCE. The improvements
in complexity, as measured by the number of S-box evaluations, gains a signif-
icant factor from the earlier attacks. Our attacks on 4 and 6 rounds were the
fastest and the winner of PRINCE Challenge’s last round in the category of
chosen plaintext attack.

References

1. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

2. The PRINCE Team: PRINCE challenge. https://www.emsec.rub.de/research/
research startseite/prince-challenge/

3. Abed, F., List, E., Lucks, S.: On the security of the core of PRINCE against biclique
and differential cryptanalysis. IACR Cryptology ePrint Archive, Report 2012/712
(2012)

4. Jean, J., Nikolić, I., Peyrin, T., Wang, L., Wu, S.: Security analysis of PRINCE.
In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 92–111. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-43933-3 6

5. Soleimany, H., et al.: Reflection cryptanalysis of PRINCE-like ciphers. In: Moriai,
S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 71–91. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-43933-3 5

6. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 222–240. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 13

7. Li, L., Jia, K., Wang, X.: Improved meet-in-the-middle attacks on AES-192 and
PRINCE. IACR Cryptology ePrint Archive, Report 2013/573 (2013)

8. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.-R.: Multiple
differential cryptanalysis of round-reduced PRINCE. In: Cid, C., Rechberger, C.
(eds.) FSE 2014. LNCS, vol. 8540, pp. 591–610. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46706-0 30

9. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, even-mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45611-8 22

10. Dinur, I.: Cryptanalytic time-memory-data tradeoffs for FX-constructions with
applications to PRINCE and PRIDE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 231–253. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46800-5 10

11. Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-
reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48116-5 10

http://dx.doi.org/10.1007/978-3-642-34961-4_14
https://www.emsec.rub.de/research/research_startseite/prince-challenge/
https://www.emsec.rub.de/research/research_startseite/prince-challenge/
http://dx.doi.org/10.1007/978-3-662-43933-3_6
http://dx.doi.org/10.1007/978-3-662-43933-3_5
http://dx.doi.org/10.1007/978-3-662-43933-3_5
http://dx.doi.org/10.1007/978-3-642-40041-4_13
http://dx.doi.org/10.1007/978-3-662-46706-0_30
http://dx.doi.org/10.1007/978-3-662-46706-0_30
http://dx.doi.org/10.1007/978-3-662-45611-8_22
http://dx.doi.org/10.1007/978-3-662-45611-8_22
http://dx.doi.org/10.1007/978-3-662-46800-5_10
http://dx.doi.org/10.1007/978-3-662-46800-5_10
http://dx.doi.org/10.1007/978-3-662-48116-5_10

Faster Key Recovery Attack on Round-Reduced PRINCE 17

12. Morawiecki, P.: Practical attacks on the round-reduced PRINCE? IACR Cryptol-
ogy ePrint Archive, Report 2015/245 (2015)

13. Posteuca, R., Negara, G.: Integral cryptanalysis of round-reduced PRINCE cipher.
Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 16, 265–269 (2015).
Special issue

14. Rasoolzadeh, S., Raddum, H.: Cryptanalysis of PRINCE with minimal data. In:
Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol.
9646, pp. 109–126. Springer, Cham (2016). doi:10.1007/978-3-319-31517-1 6

15. Rasoolzadeh, S., Raddum, H.: Cryptanalysis of 6-round PRINCE using 2 Known
Plaintexts. Presented at ArcticCrypt 2016, also available at IACR Cryptology
ePrint Archive. Report 2016/132 (2016)

16. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). doi:10.1007/
BFb0052343

17. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello Jr., D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryp-
tography, vol. 276, pp. 227–233. Springer, New York (1994)

18. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). doi:10.1007/
3-540-60590-8 16

http://dx.doi.org/10.1007/978-3-319-31517-1_6
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-60590-8_16

Differential Attacks on Lightweight
Block Ciphers PRESENT, PRIDE,

and RECTANGLE Revisited

Cihangir Tezcan1,2(B), Galip Oral Okan1, Asuman Şenol1, Erol Doğan1,
Furkan Yücebaş1, and Nazife Baykal1

1 CYDES Laboratory, Department of Cyber Security, Informatics Institute,
Middle East Technical University, Ankara, Turkey

cihangir@metu.edu.tr
2 Department of Mathematics, Middle East Technical University, Ankara, Turkey

Abstract. Differential distribution and linear approximation tables are
the main security criteria for S-box designers. However, there are other
S-box properties that, if overlooked by cryptanalysts, can result in erro-
neous results in theoretical attacks. In this paper we focus on two such
properties, namely undisturbed bits and differential factors. We go on
to identify several inconsistencies in published attacks against the light-
weight block ciphers PRESENT, PRIDE, and RECTANGLE and present
our corrections.

Keywords: Block cipher · Lightweight · Differential attack ·
Differential factor · Undisturbed bit

1 Introduction

Confusion layer of symmetric cryptography algorithms mostly consists of sub-
stitution boxes (S-boxes) and in order to provide better security against known
attacks, S-boxes are selected depending on their cryptographic properties. Low
non-linear and differential uniformity [16] provide resistance against linear [15]
and differential cryptanalysis [3], respectively and most of the time these are
the only properties designers focus on. However, it has been shown that high
algebraic degrees and branch numbers make the cipher more resistant against
algebraic [7] and cube [9] attacks. Moreover, lack of undisturbed bits [22] provides
resistance against truncated [12], impossible [2], and improbable [21] differential
cryptanalysis. It was shown in [14] that undisturbed bits are actually linear struc-
tures in coordinate functions. Therefore, linear structures should be avoided to
be more secure against these kinds of attacks. Resistance against side-channel
attacks like differential power analysis [13] can be obtained depending on the
number of shares [4] in threshold implementations. Implementation invariant
resistance against these attacks can be obtained by using S-boxes with a low
transparency order [17], but this alone is not sufficient to ensure a satisfactory

c© Springer International Publishing AG 2017
A. Bogdanov (Ed.): LightSec 2016, LNCS 10098, pp. 18–32, 2017.
DOI: 10.1007/978-3-319-55714-4 2

Differential Attacks on Lightweight Block Ciphers 19

level of security [6]. Finally, it was shown in [24] that S-boxes may have prop-
erties called differential factors which partition the key space into two or more
disjoint sets that are indistinguishable by differential cryptanalytic techniques.

In this work, we focus on undisturbed bits and differential factors which
appear mostly in lightweight ciphers since they generally use small S-boxes.
These properties are sometimes overlooked by attackers and designers alike. We
analyzed the differential attacks in the literature on lightweight ciphers and
we show that the differential attacks on Present, Pride, and Rectangle
require some correction. We first show that the 16-round differential attack of
[25] on Present needs to guess 8 more bits of the key to work due to the
undisturbed bits. Secondly, we show that the 18-round differential attack of [29]
and 19-round differential attack of [26] on Pride cannot capture 6 and 4 bits of
the key, respectively due to differential factors. Thus, the true time complexities
of the exhaustive searches performed at the end of these attacks are greater by
a factor of 26 and 24 compared to the claimed values. Finally, we show that
the time complexity of the 19-round related-key differential attack of [19] on the
initial version of Rectangle can be reduced by a factor of 21.07 with the help
of two differential factors.

2 Preliminaries

2.1 PRESENT

Present [5] is a 31-round SPN (Substitution Permutation Network) type block
cipher with block size of 64 bits that supports 80 and 128-bit secret keys. It has
been internationally standardized by ISO/IEC 29192-2:2012 [10] as a lightweight
block cipher. The round function of Present, which is depicted in Fig. 1, is the
same for both versions of Present and consists of standard operations such
as subkey XOR, substitution and permutation. At the beginning of each round,
the 64-bit input of the round function is XORed with the subkey. Immediately
after the subkey XOR, 16 identical 4×4 S-boxes are used in parallel as a non-
linear substitution layer and finally a permutation is performed so as to provide
diffusion.

S
15
S

14
S

13
S

12 11
S S

10
S S S S S S S S S S

89 7 6 5 4 3 2 1 0

K i

Fig. 1. Round function of Present

20 C. Tezcan et al.

2.2 PRIDE

Pride [1] is a 20-round SPN type block cipher with a block size of 64 bits and
128-bit secret key. It uses the FX construction [11], where the first half of the
secret key is used for pre-whitening and post-whitening. The latter half is used
to generate round keys. The overall structure is shown in Fig. 2.

Fig. 2. Overall structure of Pride

The first 19 rounds use the same round function R, composed of succes-
sive key addition, substitution and linear layers. The substitution layer features
16 identical 4 × 4 S-boxes in parallel. Pride’s linear layer is made up of three
sublayers, and has been specially designed to run efficiently in software imple-
mentations on 8-bit micro-controllers. The last round function R′ omits the
linear layer. The round functions are shown in Fig. 3.

Fig. 3. Round function of Pride

In order to be consistent with the previous attacks on Pride, we use the
notation that is presented in Table 1.

Differential Attacks on Lightweight Block Ciphers 21

Table 1. Pride notation conventions

Ir The input of the r-th round

Xr The state after the key addition layer of the r-th round

Yr The state after the substitution layer of the r-th round

Zr The state after the permutation layer of the r-th round

Wr The state after the matrix layer of the r-th round

Or The output of the r-th round

ΔX The XOR difference of X and X ′

2.3 RECTANGLE

Rectangle [28] is a lightweight block cipher with an SPN structure. This algo-
rithm allows lightweight and fast implementations using bit-slice techniques. Its
block length is 64 bits and its key length can be 80 bits or 128 bits. The substi-
tution layer consists of 16 identical 4 × 4 S-boxes applied in parallel. This S-box
can be implemented with only 12 basic logical instructions. The permutation
layer contains only 3 rotations. 64-bit intermediate values of the cipher state can
be showed as 4 × 16 rectangular array of bits

⎡

⎢⎢⎣

w15 w14 w13 . . . w0

w31 w30 w29 . . . w16

w47 w46 w45 . . . w32

w63 w62 w61 . . . w48

⎤

⎥⎥⎦

Rectangle has 25 rounds. Each round is composed of three steps:
AddRoundkey, SubColumn and ShiftRow. In the AddRoundkey step, the cipher
state is XORed with the rightmost 64 bits of the round subkey. In the SubCol-
umn step, the S-box is applied to each column of the cipher state in parallel.
In the ShiftRow step, the last three rows are left rotated 1, 12, and 13 bits,
respectively. After 25 rounds of iterations, there is a final subkey XOR.

The key schedule of Rectangle is composed of three steps. The S-box is
the same as in a round transformation. The key arranged as a 5× 16 array of
bits like in figure:

⎡

⎢⎢⎢⎢⎣

k0,15 k0,14 k0,13 . . . k0,0
k1,15 k1,14 k1,13 . . . k1,0
k2,15 k2,14 k2,13 . . . k2,0
k3,15 k3,14 k3,13 . . . k3,0
k4,15 k4,14 k4,13 . . . k4,0

⎤

⎥⎥⎥⎥⎦

The 64-bit round subkey is composed of the first 4 rows of the current con-
tents of the key. After this step, the key is updated as follows:

22 C. Tezcan et al.

1. Applying S-box to the bits at the 4 uppermost and the 4 rightmost columns
2. Applying a 1-round generalized Feistel transformation
3. XORing a 5-bit round constant with the 5-bit key state

Finally K25 is extracted from the updated key state. The round constants
are generated by a 5-bit LFSR.

The initial design of Rectangle, which is now referred to as Rec-0, has a
different key schedule and uses the inverse of Rectangle’s S-box.

2.4 Differential Factors

Definition 1 ([24]). Let S be a function from F
n
2 to F

m
2 . For all x, y ∈ F

n
2 that

satisfy S(x)⊕S(y) = μ, if we also have S(x⊕λ)⊕S(y⊕λ) = μ, then we say that
the S-box has a differential factor λ for the output difference μ. (i.e. μ remains
invariant for λ).

Theorem 1 ([24]). If a bijective S-box S has a differential factor λ for an output
difference μ, then S−1 has a differential factor μ for the output difference λ.

Before showing the effect of differential factors on differential attacks, we
recall the definition of advantage.

Definition 2 ([18]). If an attack on an m-bit key gets the correct value ranked
among the top r out of 2m possible candidates, we say the attack obtained an
(m − log(r))-bit advantage over exhaustive search.

Theorem 2 ([24]). In a block cipher let an S-box S contain a differential factor
λ for an output difference μ and the partial round key k is XORed with the input
of S. If an input pair provides the output difference μ under a partial subkey
k′, then the same output difference is observed under the partial subkey k′ ⊕ λ.
Therefore, during a differential attack involving the guess of a partial subkey
corresponding to the output difference μ, the advantage of the cryptanalyst is
reduced by 1 bit and the time complexity of this key guess step is halved.

Differential factors of Present, Pride and Rectangle’s S-boxes are pro-
vided in Table 2.

2.5 Undisturbed Bits

Definition 3 ([22]). For a specific input difference of an S-box, if some bits of
the output difference remain invariant, then we call such bits undisturbed.

Undisturbed bits of Present, Pride and Rectangle’s S-boxes are pro-
vided in Table 3.

Differential Attacks on Lightweight Block Ciphers 23

Table 2. Differential factors of Present, Pride and Rectangle’s S-boxes

S-box 0123456789ABCDEF λ μ

Present C56B90AD3EF84712 1 5

Present C56B90AD3EF84712 F F

Pride 048F15E927ACBD63 1 1

Pride 048F15E927ACBD63 8 8

Rectangle 65CA1E79B03D8F42 2 4

Rectangle 65CA1E79B03D8F42 E C

Table 3. Undisturbed bits of Present, Pride and Rectangle’s S-boxes

S-box Input diff. Output diff. Output diff. Input diff.

Present 1001 ???0 0101 ???0

Present 0001 ???1 0001 ???1

Present 1000 ???1 0100 ???1

Pride 0001 01?? 0001 01??

Pride 0010 1??? 0010 1???

Pride 0011 1??? 0011 1???

Pride 1000 ?0?? 1000 ?0??

Pride 1001 ?1?? 1001 ?1??

Rectangle 0001 ??1? 0010 ?11?

Rectangle 0100 ??11 0100 ?1??

Rectangle 0101 ??0? 0110 ?0??

Rectangle 1000 ???1 1100 ??1?

Rectangle 1100 ???0 1110 ??0?

3 Differential Attacks on Lightweight Block Ciphers

3.1 Differential Attacks on PRESENT

Resistance of Present against differential cryptanalysis is provided by the
designers [5] in terms of active S-boxes. The best known differential attack on
Present is provided in [25] by adding two rounds to the bottom of the 24
different 14-round differentials which has different input and same output dif-
ference. Recently, it was shown in [23] that this attack overlooks 6 differential
factors and therefore the number of bits that are actually captured is 6 fewer
than what is claimed. In this work we give another correction to this attack due
to undisturbed bits.

16-Round Differential Attack. The 16-round differential attack of [25] adds
two rounds to the bottom of the 24 different 14-round differentials which has

24 C. Tezcan et al.

different input and same output difference. These differentials hold with proba-
bility p = 2−62 and Δ1 is an example for these differentials

Δ1 : 0700000000000700 →14r 0000000900000009

The output difference of the characteristics activates the S-boxes S0 and S8

in the round 15 and S4, S6, S8, S10, S12, and S14 in the round 16 which is
shown in Table 4. Thus, this differential attack captures 32 bits of the key with
a time complexity of 233.18 2-round Present encryptions, a data complexity
of 264 chosen plaintexts, and a memory complexity of 232 6-bit counters. This
part of the attack works with a success probability of 99.9999939% and then the
remaining 48 bits are obtained via exhaustive search which requires 248 16-round
Present encryptions.

Table 4. 16-round differential attack of [25]. Values that need to be obtained are shown
in bold.

Rounds x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

Differences in Bits

X1,I 0000 0111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0111 0000 0000

14-Round Differential Δ1

X14,P 0000 0000 0000 0000 0000 0000 0000 1001 0000 0000 0000 0000 0000 0000 0000 1001

X15,S 0000 0000 0000 0000 0000 0000 0000 ???0 0000 0000 0000 0000 0000 0000 0000 ???0

X15,P 0000 000? 0000 000? 0000 000? 0000 000? 0000 000? 0000 000? 0000 0000 0000 0000

X16,S 0000 ???? 0000 ???? 0000 ???? 0000 ???? 0000 ???? 0000 ???? 0000 0000 0000 0000

However, the activated S-boxes of the round 16 have the input difference 1
and inverse of Present’s S-box has a differential factor λ = 5 for μ = 1. Thus,
μ = 1 coincides with the input difference of these six S-boxes and it was shown
in [23] that the advantage of this attack is actually 26 bits instead of 32 bits.
This theoretical result is also experimentally verified by removing the first few
rounds of the 14-round differential so that it remains within our computational
power.

This observation reduces the time complexity of the first part of the attack
to 227.18 2-round Present encryptions and the memory complexity to 226 6-bit
counters. However, the time complexity of exhaustive search for the remaining
bits of the key is 254 16-round Present encryptions, instead of 248 as it was
claimed.

We further give a correction to this attack due to the undisturbed bits. Since
the input difference 9 for the S-box only activates the most significant three bits,
it was assumed that we need to capture the values of three S-boxes in the 16-th
round. However, we cannot verify the characteristic without knowing the all four
bits of the S-box output in the 15-th round. We provided the parts that need
to be obtained in bold in Table 4. Thus, the attacker also needs to guess the
16-th round subkeys corresponding to S0 and S2. But the attackers advantage
increases by 6 instead of 8 bits due to the following property.

Differential Attacks on Lightweight Block Ciphers 25

Property 1. Inverse of Present’s S-box S has the property lsb(S−1(x)) =
lsb(S−1(x ⊕ 5)) where lsb is the least significant bit.

Thus, a correct differential attack on 16-round Present needs to guess 32
key bits in the 16-th round that correspond to the nibbles x0, x2, x4, x6, x8, x10,
x12, x14 and 8 key bits in the 15-th round. However, this attack provides 32-bit
advantage to the attacker instead of 40 bits because of the 6 differential factors
corresponding to the nibbles x4, x6, x8, x10, x12, x14 and the application of
Property 1 to the nibbles x0 and x2. Thus, the whole 80-bit key can be obtained
after an exhaustive search that requires 248 16-round Present encryptions.

3.2 Differential Attacks on PRIDE

18-Round Differential Attack. An 18-round differential attack on Pride is
provided in [29] by adding one round to the top and two rounds to the bottom
of a 15-round characteristic. This attack is summarized in Table 5.

Since this attack activates 16 S-boxes, authors try to capture correspond-
ing 64-bit round keys which require 266 18-round Pride encryptions and
recover the remaining 64 bits via exhaustive search with time complexity of 264

18-round Pride encryptions. However, this attack overlooks both the differen-
tial factors and undisturbed bits of Pride which can be used to reduce the time
complexity of first part of the attack. On the other, the 6 differential factors
that are shown in Table 5 prevent the attacker from capturing 6 bits of the key.
Hence the exhaustive search at the end of the attack requires 270 18-round Pride
encryptions instead of 264. Thus, the correct time complexity of this attack is
270 18-round Pride encryptions, not 266.

Table 5. 18-round differential attack of [29]. Differences μ = 8 which have differential
factors λ = 8 are shown in bold.

Rounds x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

Differences in Bits

ΔI1 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000

ΔX1 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000

ΔY1 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000

ΔZ1 0000 0100 0100 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔW1 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔI2 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

15-Round Differential

ΔX17 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000

ΔY17 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000

ΔZ17 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00

ΔW17 0?00 0?00 0?00 0?00 00?0 ???0 0??0 0??0 ???0 00?0 0??0 0??0 0?00 0?00 0?00 0?00

ΔI18 00?0 ?0?? 0??0 0000 0?00 ??0? 0??0 0000 0000 ???? 0??? 0000 0000 ???? 0?00 0000

ΔX18 00?0 ?0?? 0??0 0000 0?00 ??0? 0??0 0000 0000 ???? 0??? 0000 0000 ???? 0?00 0000

ΔY18 ???? ???? ???? 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000

ΔO18 ???? ???? ???? 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000

26 C. Tezcan et al.

19-Round Differential Attack. The 18-round attack of [29] neglects the
undisturbed bits in Pride. This observation has been noted in [26], and the
attack has been improved to cover 19 rounds. However, this attack also fails to
recognize the implications of the differential factors present in Pride’s S-box.

The attack leverages the fact that an input difference of 8 yields an S-box
output difference of 8 with statistically significant probability in order to iden-
tify 109 1-round characteristics that are used to construct 15-round iterative
characteristics. Coincidentally, 8 happens to be a differential factor. The only
difference amongst the various characteristics is which of the two nibbles holds
a value of 8. It follows that the published attack fails to recover 4 bits of the
key: two in the second round and another two in the penultimate round. These
corrections increase the overall time complexity from 263 to 264 19-round Pride
encryptions (Table 6).

Table 6. 19-round differential attack of [26]. Differences μ = 8 which have differential
factors λ = 8 are shown in bold.

Rounds x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Differences in Bits

ΔI1 ???? ???? ???? 0000 ???? 0000 ???? 0000 ???? ???? 0000 0000 ???? ???? 0000 0000

ΔX1 ???? ???? ???? 0000 ???? 0000 ???? 0000 ???? ???? 0000 0000 ???? ???? 0000 0000

ΔY1 ?00? 00?0 00?0 0000 ?00? 0000 00?0 0000 ?0?? 00?0 0000 0000 ?00? 00?0 0000 0000

ΔZ1 ?000 ?000 ?000 ?000 0000 0000 0000 0000 0??0 00?0 ??00 0?00 ?000 ?000 ?000 ?000

ΔW1 0000 ?000 ?000 0000 0000 0000 0000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000

ΔI2 0000 0000 0000 0000 ?0?? 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000

ΔX2 0000 0000 0000 0000 ?0?? 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000

ΔY2 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

ΔZ2 0000 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔW2 0000 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔI3 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

15-Round Differential

ΔX18 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

ΔY18 0000 0000 0000 0000 ?0?? 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000

ΔZ18 0000 ?000 ?000 0000 0000 0000 0000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000

ΔW18 ?000 ?000 ?000 ?000 0000 0000 0000 0000 ??00 000? ??00 0000 ?000 ?000 ?000 ?000

ΔI19 ?0?? 00?0 0000 0000 ?00? 0000 0000 00?0 ?0?? 00?0 0000 0000 ?00? 0000 0000 0000

ΔX19 ?0?? 00?0 0000 0000 ?00? 0000 0000 00?0 ?0?? 00?0 0000 0000 ?00? 0000 0000 0000

ΔY19 ???? ???? 0000 0000 ???? 0000 0000 ???? ???? ???? 0000 0000 ???? 0000 0000 0000

ΔO19 ???? ???? 0000 0000 ???? 0000 0000 ???? ???? ???? 0000 0000 ???? 0000 0000 0000

20-Round Related-Key Differential Attack. 20-round related-key differ-
ential attacks that break the full Pride are provided in [8]. One of the attacks
tries to capture 68 bits of the key by using an 18-round path and performs 260

encryptions to capture the remaining bits. Due to a single differential factor,
this attack’s actual time complexity is 261. Another attack of [8] tries to capture
80 bits of the key by using a 17-round path and performs 248 encryptions to
capture the remaining bits. This time there are four differential factors and the

Differential Attacks on Lightweight Block Ciphers 27

Table 7. One of the 20-round differential attacks of [8]. Differences μ = 8 which have
differential factors λ = 8 are shown in bold.

Rounds x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Differences in Bits

ΔI1 ???? 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔX1 ???? 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔY1 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔZ1 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔW1 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔI1 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔI19 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔX19 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔY19 ???? 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ΔZ19 ?000 ?000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000 0000

ΔW19 ?000 ?000 ?000 ?000 ?00? ?00? ?000 ?000 ?00? ?00? ?000 ?000 ?000 ?000 ?000 ?000

ΔI20 ???? 0000 0000 0??0 ???? 0000 0000 0??0 ???? 0000 0000 0000 ???? 0000 0000 0000

ΔX20 ???? 0000 0000 0??0 ???? 0000 0000 0??0 ???? 0000 0000 0000 ???? 0000 0000 0000

ΔY20 ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 0000 ???? 0000 0000 0000

⊕Δk0 ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 0000 ???? 0000 0000 0000

ΔC ?00? ?00? ?000 ?000 ?00? ?00? ?000 ?000 ?00? ?00? ?000 ?000 ?00? ?00? ?000 ?000

exhaustive search at the end of the attack should be 252 encryptions instead of
248. This attack is summarized in Table 7. Moreover, like the 18-round attack
of [29], these attacks neglect the undisturbed bits of Pride’s S-box that are
provided in Table 3 and therefore an improvement can be made as in the case
of 19-round attack of [26]. However, since “Pride does not claim any resistance
against related-key attacks” [1], these 20-round related-key attacks do not violate
the security claims of the designers.

3.3 Differential Attacks on RECTANGLE

A 19-round related-key differential attack on the initial version of Rectangle,
which is now referred to as Rec-0, is presented in [19] (also published in Chinese
[20]). Due to this attack and the software performance, the designers revised the
key schedule.

19-Round Related-Key Differential Attack. In order to obtain related-
key differential characteristics, differences of the 2nd round and the 16th round
subkeys ΔK2 and ΔK16 are fixed in [19]. Then the input and output differences
ΔI2 and ΔO18 are fixed as in Table 8 and 1254 characteristics with a total
probability of 260.5 is obtained with MILP based methods. 19 rounds are attacked
by adding two rounds to the top and the bottom of these characteristics and the
attack is summarized in Table 8.

The attack of [19] collects data using 2x structures having the difference ΔI0
and it is expected that 2x+34.54 pairs satisfy ΔO18. The key guess part of the
attack consists of 4 steps which are partial encryption of the 1st round, partial

28 C. Tezcan et al.

Table 8. 19-round differential attack of Rec-0. Output differences μ = 4 that have
differential factors λ = 2, and input differences μ = 2 that have differential factors
λ = 4 are shown in bold.

Rounds x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

Differences in Bits

ΔI0 0000 ???? ???? ???? 0000 ???? ???? ???? ???? ???? 0000 0000 ???? 0000 0000 0000

ΔO0 0000 0?00 ??00 ?000 0000 000? 001? 0?10 0?00 ?000 0000 0000 000? 0000 0000 0000

ΔI1 0000 0000 0000 0000 0000 ??1? ???? 0000 0000 0000 0000 0000 ??0? 0000 0000 0000

ΔO1 0000 0000 0000 0000 0000 0001 0010 0000 0000 0000 0000 0000 0101 0000 0000 0000

15-Round Differential Δ1

ΔI17 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0100

ΔO17 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 ?1??

ΔI18 0000 0000 ?000 0100 0100 00?0 00∗? 0000 000∗ ?000 0?00 0000 0000 0000 00?0 000?

ΔO18 0000 0000 ???? ?1?? ?1?? ???? ???? 0000 ???? ???? ???? 0000 0000 0000 ???? ????

encryption of the 2nd round, partial decryption of the 18th round, and partial
decryption of the 17th round. These steps have approximate time complexities
of 2x+40.54, 2x+39.54, 2x+38.54, and 2x+28.54 19-round Rec-0 encryptions, respec-
tively.

Since Rec-0 uses the inverse S-box of Rectangle, it has a differential λ = 4
for μ = 2 by Theorem 1. Since these differential factors are two rounds away
from the characteristic, Theorem 2 do not apply. However, we can still use the
differential factors of the round 1 to reduce the time complexity of the attack
due to the following property.

Property 2. The differential factor λ = 4 for μ = 2 flips the value of the bit
that corresponds to μ = 2. Namely, the second bits from the right of S(x) and
S(y ⊕ 4) are the same (similarly for S(y) and S(x ⊕ 4)).

Property 2 allows us to guess only half of the keys that correspond to the two
S-boxes x14 and x7 in the first round. Therefore, if we start guessing keys from
these two S-boxes, we reduce the time complexity of the first step of the attack
of [19] by a factor of 22. However, since the differential factors flips the values
of the bits according to Property 2, we need to also try the complements of the
two key bits K

(3,10)
0 =K

(3,3)
1 and K

(0,16)
0 =K

(0,3)
1 in step 2 to avoid missing the

correct key. We do not make any changes on the steps 3 and 4 of the attack
because the inverse of Rec-0 does not have property like Property 2. Thus, the
differential factors at round 18 do not have any effect on the attack. Steps of
our modified attack have time complexities of 2x+38.29, 2x+39.29, 2x+38.55, and
2x+28.54 19-round encryptions, respectively. If we choose x = 26 as in [19], we
get a time complexity of 266.35 19-round encryptions compared to 267.42 of the
original attack. Details of our modified attack is provided in AppendixA.

Differential Attacks on Lightweight Block Ciphers 29

Table 9. 14-round difference propagation of [27]. Output differences which have dif-
ferential factors are shown in bold, which are μ = 2 for the S-box and μ = 4 for its
inverse.

Input difference of round 0 Output difference of round 13

0000000000000000 0000000000000000

0010000100000000 0000000000000010

0000000100000000 0001000000000000

0000000000000000 0000000000000000

18-Round Differential Attack. Revising the key schedule of Rec-0 made
Rectangle more secure against related-key attacks and the above 19-round
related-key differential attack is not applicable to Rectangle. In the single-
key scenario, designers provided in [27] a 14-round difference propagation with
probability 2−62.83 and it is presented in Table 9. Designers claim that they can
mount an attack on 18-round Rectangle using this 14-round characteristic
without giving the exact details of this attack. This is the highest number of
rounds the designers can break.

Since Rectangle replaced the S-box of Rec-0 with its inverse, the 14-round
characteristic contains two differential factors as shown in Table 9. Therefore
attacks on Rectangle using this or similar characteristics should consider the
effects of differential factors. The time complexity of the 18-round attack is
given as 278.67 18-round encryptions for an 80-bit seed key and 2126.66 18-round
encryptions for a 128-bit seed key. However, these complexities can be marginally
larger in practice due to these two differential factors.

4 Conclusion

In this work, we have shown that there exist properties of S-boxes other than dif-
ference distribution and linear approximation that are fundamental to the secu-
rity of lightweight block ciphers. In general, verifying theoretical attacks exper-
imentally is infeasible due to the time, data, and memory complexity involved.
Nevertheless, we were able to verify the theoretical results we have put forward
through a series of experiments using reduced versions of the attacks in ques-
tion. We believe that cryptanalysis would benefit from the practice of verifying
theoretical results by experimenting on the reduced versions.

Acknowledgment. The work of Cihangir Tezcan was supported by The Scientific
and Technological Research Council of Turkey (TÜBİTAK) under the grant 115E447
titled “Quasi-Differential Factors and Time Complexity of Block Cipher Attacks”.

30 C. Tezcan et al.

A Modified 19-Round Related-Key Attack on REC-0

Step 1: Guess the value of a part of subkey bits of K0.

1. Guess K
(14)
0 and compute the output difference of the 14rd S-box for each

remaining plaintext pair; i.e. S(P (14) ⊕ K
(14)
0) ⊕ S(P ′(14) ⊕ K

(14)
0 ⊕ ΔK

(14)
0).

This step has time complexity 2·2x+34.54 ·23 · 1
16 · 1

19 = 2x+30.29 If the difference
does not have the form ?000, discard the pair. Then the number of expected
remaining pairs is 2x+28.54.

2. Guess K
(7)
0 and compute the output difference of the 7th S-box for each

remaining plaintext pair; i.e. S(P (7) ⊕ K
(7)
0) + S(P ′(7) ⊕ K

(7)
0 ⊕ ΔK

(7)
0). This

step has time complexity 2 · 2x+31.54 · 26 · 1
16 · 1

19 = 2x+30.29. If the difference
does not have the form ?000, discard the pair. Then the number of expected
remaining pairs is 2x+28.54.

3. Repeatedly guess K
(3)
0 , K

(6)
0 , K

(8)
0 , K

(9)
0 , K

(10)
0 , K

(12)
0 , K

(13)
0 . There are

2x+8.54 right pairs left. This step has time complexity 2 · (2x+38.54 · 2x+39.54 ·
2x+40.54 · 2x+41.54 · 2x+42.54 · 2x+43.54 · 2x+44.54) · 1

16 · 1
19 = 2x+38.29.

Step 2: Guess the value of a part of subkey bits of K0 by guessing some bits of
K0 and K1.

1. Since many bits of K1 are obtained from K0 directly by shifting and adding
constant, we only need to guess some bits for a column in K1. For the 3rd
column of K1, by the key schedule we have
(K(0,3)

1 , K
(1,3)
1 , K

(2,3)
1 , K

(3,3)
1) = (K(0,16)

0 , K
(1,14)
0 , K

(2,12)
0 , K

(3,10)
0) Therefore,

we need to guess K
(0,16)
0 = K

(0,3)
1 and we also need K

(3,10)
0 = K

(3,3)
1 because

K
(3,3)
1 was flipped when we apply Substitution operation to K

(2,7)
1 , K

(3,10)
1

are flipped when we apply Substitution operation to K
(2,15)
1 because of Prop-

erty 2. Then the number of expected remaining pairs is 2x+4.54.
2. Guess the bits K

(1,1)
0 , K

(2,19)
0 , K

(3,17)
0 , and then check up whether S(I(10)1 ⊕

K
(10)
1) ⊕ S(I ′(10) ⊕ K

(10)
1 ⊕ ΔK

(10)
1) = 1000. On average, there are 2x+0.54

right pairs left.
3. Similarly, as the previous step, guess the bits K

(0,2)
0 , K

(1,9)
1 , K

(2,18)
0 , K

(3,16)
0 ,

then there are 2x−3.46 right pairs left on average.

In step 2, time complexity is 2 · (2x+45.54 · 2x+44.54 · 2x+44.54) · 1
16 · 1

19 = 2x+39.29.

Step 3: Guess the value of a part of subkey bits of K19. This step is identical
to the Step 3 of [19] and has a time complexity of 238.55.

Step 4: The involved secret bits of K18 have guessed in Step 1–3, and we do
not need to guess any other secret bits. Add one to the corresponding counter,
if there is a right pair left. This step is identical to the Step 3 of [19] and has a
time complexity of 228.54.

Differential Attacks on Lightweight Block Ciphers 31

Step 5: If the counter is larger than 1, keep the guess of the subkey bits as the
candidates of the right subkeys. For each survived candidate, compute the seed
key by doing an exhaustive search for other secret bits.

Therefore, the total time complexity is 266.35 19-round Rec-0 encryptions,
data complexity is 262 chosen plaintexts since x = 26, and the memory complex-
ity is 272 key counters.

References

1. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44371-2 4

2. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. J. Cryptol. 18(4), 291–311 (2005)

3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

4. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implemen-
tations of all 3 × 3 and 4 × 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33027-8 5

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

6. Chakraborty, K., Sarkar, S., Maitra, S., Mazumdar, B., Mukhopadhyay, D.,
Prouff, E.: Redefining the transparency order. Cryptology ePrint Archive, Report
2014/367 (2014)

7. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2 17

8. Dai, Y., Chen, S.: Cryptanalysis of full pride block cipher. Cryptology ePrint
Archive, Report 2014/987 (2014). http://eprint.iacr.org/2014/987

9. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-01001-9 16

10. ISO/IEC 29192–2:2012: Information technology - security techniques - lightweight
cryptography - part 2: Block ciphers (2011)

11. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search (an
analysis of DESX). J. Cryptol. 14(1), 17–35 (2001)

12. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). doi:10.1007/
3-540-60590-8 16

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

14. Makarim, R.H., Tezcan, C.: Relating undisturbed bits to other properties of sub-
stitution boxes. In: Eisenbarth, T., Öztürk, E. (eds.) LightSec 2014. LNCS, vol.
8898, pp. 109–125. Springer, Cham (2015). doi:10.1007/978-3-319-16363-5 7

http://dx.doi.org/10.1007/978-3-662-44371-2_4
http://dx.doi.org/10.1007/978-3-642-33027-8_5
http://dx.doi.org/10.1007/978-3-642-33027-8_5
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/3-540-36178-2_17
http://eprint.iacr.org/2014/987
http://dx.doi.org/10.1007/978-3-642-01001-9_16
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-319-16363-5_7

32 C. Tezcan et al.

15. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
doi:10.1007/3-540-48285-7 33

16. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994).
doi:10.1007/3-540-48285-7 6

17. Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005). doi:10.1007/
11502760 29

18. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptol. 21(1), 131–147 (2008)

19. Shan, J., Hu, L., Song, L., Sun, S., Ma, X.: Related-key differential attack on round
reduced rectangle-80. Cryptology ePrint Archive, Report 2014/986 (2014). http://
eprint.iacr.org/2014/986

20. Shan, J., Hu, L., Song, L., Sun, S., Ma, X.: Related-key differential attack on
19-round reduced rectangle-80. J. Cryptol. Res. 2(1), 54 (2015). http://www.jcr.
cacrnet.org.cn:8080/mmxb/EN/abstract/abstract73.shtml

21. Tezcan, C.: The improbable differential attack: cryptanalysis of reduced round
CLEFIA. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498,
pp. 197–209. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17401-8 15

22. Tezcan, C.: Improbable differential attacks on present using undisturbed bits. J.
Comput. Appl. Math. 259, 503–511 (2014)

23. Tezcan, C.: Differential factors revisited: corrected attacks on PRESENT and SER-
PENT. In: Güneysu, T., Leander, G., Moradi, A. (eds.) LightSec 2015. LNCS, vol.
9542, pp. 21–33. Springer, Cham (2016). doi:10.1007/978-3-319-29078-2 2

24. Tezcan, C., Özbudak, F.: Differential factors: improved attacks on SERPENT.
In: Eisenbarth, T., Öztürk, E. (eds.) LightSec 2014. LNCS, vol. 8898, pp. 69–84.
Springer, Cham (2015). doi:10.1007/978-3-319-16363-5 5

25. Wang, M.: Differential cryptanalysis of reduced-round PRESENT. In: Vaudenay,
S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-68164-9 4

26. Yang, Q., Hu, L., Sun, S., Qiao, K., Song, L., Shan, J., Ma, X.: Improved differential
analysis of block cipher PRIDE. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS,
vol. 9065, pp. 209–219. Springer, Cham (2015). doi:10.1007/978-3-319-17533-1 15

27. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: Rectangle: a
bit-slice lightweight block cipher suitable for multiple platforms. Cryptology ePrint
Archive, Report 2014/084 (2014). http://eprint.iacr.org/2014/084

28. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: Rectangle:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf.
Sci. 58(12), 1–15 (2015)

29. Zhao, J., Wang, X., Wang, M., Dong, X.: Differential analysis on block cipher
pride. Cryptology ePrint Archive, Report 2014/525 (2014). http://eprint.iacr.org/

http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1007/3-540-48285-7_6
http://dx.doi.org/10.1007/11502760_29
http://dx.doi.org/10.1007/11502760_29
http://eprint.iacr.org/2014/986
http://eprint.iacr.org/2014/986
http://www.jcr.cacrnet.org.cn:8080/mmxb/EN/abstract/abstract73.shtml
http://www.jcr.cacrnet.org.cn:8080/mmxb/EN/abstract/abstract73.shtml
http://dx.doi.org/10.1007/978-3-642-17401-8_15
http://dx.doi.org/10.1007/978-3-319-29078-2_2
http://dx.doi.org/10.1007/978-3-319-16363-5_5
http://dx.doi.org/10.1007/978-3-540-68164-9_4
http://dx.doi.org/10.1007/978-3-319-17533-1_15
http://eprint.iacr.org/2014/084
http://eprint.iacr.org/

Impossible Differential Cryptanalysis
of 16/18-Round Khudra

Ferhat Karakoç1(B), Öznur Mut Sağdıçoğlu1, Mehmet Emin Gönen1,2,
and Oğuzhan Ersoy3

1 TÜBİTAK - BİLGEM - UEKAE, PK 74, 41470 Gebze, Kocaeli, Turkey
{ferhat.karakoc,oznur.sagdicoglu,mehmet.gonen}@tubitak.gov.tr

2 Gebze Technical University, Gebze, Kocaeli, Turkey
3 Boğaziçi University, Istanbul, Turkey

oguzhan.ersoy@boun.edu.tr

Abstract. Khudra is a recently proposed lightweight block cipher
specifically dedicated for Field Programmable Gate Arrays (FPGAs)
implementation. It is a 4-branch type-2 generalized Feistel structure
(GFS) of 18 rounds with 64-bit block size and 80-bit security margin.
This paper studies the security of Khudra against impossible differential
cryptanalysis. In the single-key scenario, the best impossible differen-
tial attack given by the designers works for 11 rounds with 257 chosen
plaintexts and 261 encryptions. In this paper, by exploiting the struc-
ture of Khudra and the redundancy in its key schedule, we significantly
improve previously known results. First, we propose an impossible dif-
ferential attack on 14-round Khudra with 254.06 chosen plaintexts, 250.26

encryptions and 249 memory. Then, we extend the attack by includ-
ing pre-whitening keys with 259.03 known plaintexts, 267.06 time and
259.03 memory complexities. Finally, we present an impossible differential
attack against 16-round Khudra where whitening-keys are omitted. The
16-round attack requires 249.58 chosen plaintexts, 279.26 encryptions and
264 memory. To the best of our knowledge, these attacks are the best
known attacks in the single-key scenario.

Keywords: Khudra · Generalized feistel structure · Lightweight ·
Impossible differential cryptanalysis

1 Introduction

In recent years, lightweight cryptography has become a subject undergoing
intense study in the area of cryptography. The underlying reason comes from
growing demand on secure resource-constrained devices, like RFID tags and
sensors in wireless network. Therefore, designing secure and efficient lightweight
block cipher engages interest of both industrial and academic communities.
In the last decade, several lightweight block ciphers have been proposed such
as RoadRunneR [2], SIMON and SPECK [3], PRESENT [5], PRINCE [6],

c© Springer International Publishing AG 2017
A. Bogdanov (Ed.): LightSec 2016, LNCS 10098, pp. 33–44, 2017.
DOI: 10.1007/978-3-319-55714-4 3

34 F. Karakoç et al.

KATAN/KTANTAN [9], LED [12], ITUbee [14], Khudra [16], TWINE [20] and
LBlock [22].

While most of the lightweight algorithms aim efficiency in software and ASIC-
based platforms, Khudra is specifically designed for FPGAs. In the SPACE 2014
conference, Kolay and Mukhopadhyay introduced Khudra a 4-branch type-2 GFS
of 18 rounds with 64-bit block size and 80-bit key size [16]. Key schedule is simply
composed of 16-bit partitions of the main key where 32-bit pre-whitening, 32-bit
post-whitening and 32-bit round keys are generated.

Although Khudra is a very recent design, there have been several studies
regarding its security margin [10,17,18,21,23]. In [17], the authors investigate
Khudra in a related-key scenario. They mount rectangle attack on 16-round ver-
sion of the algorithm without whitening layers, and time complexity of 278.68

memory accesses, 259.77 encryptions and 257.72 decryptions and data complexity
of 257.82 chosen plaintexts are required. Another related-key attack is applied
in [23] where impossible differential attack is used against full round of the
algorithm. The workload of the attack are 268.46 encryption operations, 263 cho-
sen plaintexts and 264 memory. Third related key attack is given in [10]. The
authors present rectangle and differential attacks on 16- and 18-round versions
of the algorithm. Moreover, in the paper there is an impossible differential attack
on 14-round version of the algorithm. The details regarding the complexities of
these attacks are given in Table 1.

There are also single-key scenario attacks presented in [18,21]. The first
attack in the single key model was given in [21] where a meet-in-the-middle
type attack is applied. It works on 14-round version of the algorithm with 266.19

time, 251 data and 264.8 memory complexities. Finally, in [18], the previous
attack is improved by reducing the memory complexity from 264.8 to 232.8. Also,
the authors introduce a new guess-and-determine type attack on 14 rounds with
2 known plaintext-ciphertext pairs and 264 time complexity. In addition, the
authors found 240 weak keys for the full cipher.

This paper studies the security of Khudra against impossible differential
cryptanalysis which is a form of differential cryptanalysis. It was introduced
by Knudsen and Biham et al. to analyze DEAL [15] and Skipjack [4], respec-
tively. The attack uses differentials that hold with probability zero to derive the
right key by discarding the wrong keys which lead to the impossible differen-
tial. There is no harm to say that GFSs are vulnerable to impossible differential
attack because of the slow diffusion.

The best impossible differential attack found by the designers works on 11-
round version of the algorithm with 257 chosen plaintexts and 261 encryptions.
In [7], several Feistel structures are analyzed regarding differential propagation,
including CAST [1], MARS [8] and RC6 [19] ciphers. Since Khudra is a RC6-
like block cipher, 9-round impossible characteristic for such a structure given in
[7] can be adapted. With the help of this characteristic, we attack 14 rounds
of Khudra with data complexity of 254.06 chosen plaintexts, time complexity of
250.26 encryptions and memory complexity of 249. Then, we extend the attack
by including pre-whitening keys with 259.03 data, 267.06 time and 259.03 memory

Impossible Differential Cryptanalysis of 16/18-Round Khudra 35

complexities. Finally, we present an impossible differential attack against 16-
round Khudra where whitening-keys are omitted. The 16-round attack requires
249.58 chosen plaintexts, 279.26 encryptions of Khudra and 264 memory.

We summarize all cryptanalytic results of Khudra in the Table 1.

Table 1. Comparison of the known attacks against Khudra.

Rounds Data Time Memory Attack type Source

16a 257.82 CP 259.77 negligible RK-R [17]

14b 257 CP 269.3 negligible RK-ID [10]

16 253 CP 264.08 negligible RK-R [10]

18a 253 CP 263.97 negligible RK-R [10]

18 263 CP 268.46 264 RK-ID [23]

14a 251 CP 266.19 264.8 MITM [21]

14a 251 CP 266.19 232.8 MITM [18]

14b 2 KP 264 negligible GD [18]

14a 254.06 CP 250.26 249 ID Sect. 3

14c 259.03 KP 267.06 259.03 ID Sect. 3

16a 249.58 CP 279.26 264 ID Sect. 4
awithout whitening keys, bwithout pre-whitening key, cwithout
post-whitening key, KP: known plaintexts, CP: chosen plaintexts,
RK: related key, R: rectangle attack, ID: impossible differential
attack, MITM: meet in the middle, GD: guess and determine.

Our paper is organized as follows. Section 2 provides a brief description of
Khudra. Section 3 presents an attack on 14-round cipher. In Sect. 4, we improve
the attack to 16-round version of Khudra. We conclude our paper in Sect. 5.

2 Definition of Khudra

Notation: Throughout the paper we use the following notation. We show the 16
bit partitions of 80-bit master key K as ki where K = k0‖k1‖k2‖k3‖k4. x(i,j)

denotes j-th left-most 16 bits of i-th round output for j ∈ 0, 1, 2, 3 and i ≥ 1. We
use ΔX to denote the difference of X and X ′. The difference used in this paper
is the XOR (⊕) difference, i.e., ΔX = X ⊕ X ′. a(m) is used to represent a in m
bits (e.g. 0(16) is the 16-bit string of 0). RCi = 0‖i(6)‖00‖i(6)‖0 for i ∈ 0, ..., 35
are the round constants. We use F i

L and F i
R to distinguish the left and the right

F functions in i-th round.

Khudra: Khudra is a 4-branch type-2 GFS of 18 rounds [13]. Addition to 18
rounds, the cipher includes pre- and post-whitening layers. Whitening and round
keys are generated from the master key in a very simple way. The block size and
key length of the cipher is 64 and 80 bits, respectively. The pseudo code of the

36 F. Karakoç et al.

Algorithm 1. Khudra encryption operation.
1: Input: Plaintext P = P0‖P1‖P2‖P3 and Key K
2: Output: Ciphertext C = C0‖C1‖C2‖C3

3: k0‖k1‖k2‖k3‖k4 ← K.
4: x(0,0)‖x(0,1)‖x(0,2)‖x(0,3) ← (P ⊕ (k0‖0(16)‖k1‖0(16))).
5: for r=1 to 18 do
6: x(r,0) ← F (x(r−1,0)) ⊕ x(r−1,1) ⊕ k(2r−2) mod 5 ⊕ RC2r−2

7: x(r,1) ← x(r−1,2)

8: x(r,2) ← F (x(r−1,2)) ⊕ x(r−1,3) ⊕ k(2r−1) mod 5 ⊕ RC2r−1

9: x(r,3) ← x(r−1,0)

10: end for
11: C ← (x(18,0)‖x(18,1)‖x(18,2)‖x(18,3)) ⊕ (0(16)‖k4‖0(16)‖k3)

P0 P1 P2 P3

x(1,0)
x(1,1)

x(1,2) x(1,3)

C0

k0 k1

k0 k1

k2 k3

k3 k4

k2 k3

k4 k0

Encryption Function of Khudra

S S

SS

S S

S S

SS

S S

The F Function

F 1
L F 1

R

F 2
RF 2

L

F 17
L F 17

R

F 18
R

F 18
L

18 rounds

16 16 16
16

4 4 4 4

C1 C2 C3

x(0,0)

x(0,1)

x (0,2)

x(0,3)

Fig. 1. The structure of Khudra

encryption operation is given in Algorithm 1. Figure 1 shows the structure of
Khudra.

The function F is a 6-round 4 branch type-2 generalized Feistel Structure
and uses 4-bit PRESENT’s S-box S [5] given in Table 2. Note that since key is
not included in F , the function can be considered as a 16-bit S-box.

Impossible Differential Cryptanalysis of 16/18-Round Khudra 37

Table 2. 4-bit S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Since round constants does not affect our attack, we refer to [16] for the
constants and other details of the cipher.

3 Impossible Differential Attack on 14 Rounds

In this section, we present impossible differential attacks on 14 rounds of Khudra
with and without pre-whitening keys (for both versions post-whitening keys are
omitted). First, we show the attack excluding whitening keys. Then, we briefly
explain how to extend the attack to cover pre-whitening keys.

To attack on 14-round Khudra with and without pre-whitening layer we use
the generic 9-round distinguisher on 4-branch type-2 GFS

0(16)0(16)0(16)α(16)
9 rounds

� 0(16)0(16)α(16)0(16)

where α represents a 16-bit non-zero difference. When the input difference is
0(16)0(16)0(16)α(16) and the output difference is 0(16)0(16)α(16)0(16), Δx(4,3) and
Δx(5,2) becomes α(16). It means that output of F 5

R have to have zero-difference.
As seen in Fig. 2, input of F 5

R have a non-zero difference with probability of 1.
Since F is a permutation, it is impossible that its output has zero difference
while there is a none-zero difference in the input. With this contradiction we
have an impossible distinguisher on 9 rounds.

We add 3 rounds to the top and 2 rounds to the bottom of the distinguisher
to attack on 14 rounds.

As seen in Fig. 3, if the plaintext pair (P, P’) and corresponding ciphertext
pair (C,C’) satisfies the following conditions

– Δx(0,2) = Δx(14,0)

– Δx(1,0) = 0
– Δx(14,3) = 0
– Δx(13,3) = 0

the probability that a wrong key causes the impossible differential for 9 rounds is
2−48 because of the three conditions Δx(2,2) = 0, Δx(3,0) = 0 and Δx(12,3) = 0.

The key parts used to check these conditions are k0, k1 and k2 which have
48-bit length in total. Thus, the required number of plaintext pairs (M) which
can be used in the attack can be calculated as

M ≥ |k| × 2c × ln(2) = 48 × 248 × ln(2) ≈ 253.06

where |k| is the length of guessed key and c is the number of conditions in
bits to eliminate all wrong candidates for k0, k1 and k2. A plaintext pair hav-
ing the condition Δx(1,0) = 0 can be used in the attack with a probability of

38 F. Karakoç et al.

0 0 0 α

F F

FF

F F

FF

F F 5
R

FF

F F

FF

F F

α

*

α

0 0 0α

α

α

α

Contradiction

α

0 0

0

0

0

*α * 0

*? *

0 0 0

0 0

0 α

*

* *

* * ?

0 : zero-difference
α : a non-zero difference
* : non-zero difference
? : zero or non-zero difference

α

Δx(4,3)

Δx(5,2)

Fig. 2. A 9-round impossible differential characteristic

2−48, because the corresponding ciphertext pairs should satisfy the conditions
Δx(0,2) = Δx(14,0), Δx(14,3) = 0 and Δx(13,3) = 0. Note that these conditions
can be checked without any key information. Thus, 253.06+48 = 2101.06 plaintext
pairs satisfying Δx(1,0) = 0 are required. Let a structure be the set of 248 plain-
texts where F (x(0,0))⊕x(0,1) are the same for all plaintexts. Using one structure,
approximately 295 plaintext pairs can be constructed. To have 2101.06 pairs, 67
structures are needed. After having required amount of plaintext-ciphertext pairs

Impossible Differential Cryptanalysis of 16/18-Round Khudra 39

9-round characteristic

k1

k3

k0k4

k0k4

k2k1

k0

k2

α00Δx(3,0) = 0

α Δx(12,3) = 000

α * Δx(2,2) = 0 0

Δx(1,0) = 0 * *α

Δx(0,2) = α* * *

α0 Δx(13,3) = 0*

* *Δx(14,0) = α Δx(14,3) = 0

F 1
L

F 2
L

F 3
L

F 1
R

F 2
R

F 3
R

F 13
L F 13

R

F 14
L F 14

R

Fig. 3. 14-round impossible differential attack.

we apply the attack as given in Algorithm 2. In the attack, we use the following
well-known property of invertible S-boxes.

Property 1. [11] Given an input difference and an output difference of an invert-
ible S-box, there is on average one input that satisfies these differences.

In the attack, we use 67 × 248 = 254.06 chosen plaintexts and about 249

memory to store the candidate keys and plaintexts. While we are calculating
time complexity of the attack, we assume that 1 F calculation and 1 table look-
up for Property 1 have similar complexity cost. Step 5, 6, 7 and 12 dominates
the complexity of the attack.

In the Step 5, since the input and the output difference of F 13
R are known we

can find the input of F 13
R by using the Property 1 with just 1 table look-up. In

Step 6, we can get k1 without any effort as k1 is the sum of F 14
L (x(13,0)), x(13,1)

and x(14,0). Note that F 14
L (x(13,0)) can be calculated in Step 3. In step 7, in order

to get Δx(2,2) we need to calculate F 1
R and F 2

R for pairs. But easily F 1
R can be

obtained in Step 3. Thus in Step 7, 2 F computations will be needed. Finally in
Step 12, F 1

L can be computed in Step 3, we have just 1 F computation for F 2
L.

Thus in these steps, 4 F function computations are performed 67×247 times.
This computation cost can be approximated to 4×67×247

14×2 ≈ 250.26 14-round
encryption operations. The cost of 232 encryption operations to find the other

40 F. Karakoç et al.

Algorithm 2. Impossible differential attack on 14 rounds.
1: Store all possible values of k0, k1 and k2 in a table (candidate table).
2: for each of 67 structures do
3: Store plaintext-ciphertext pairs in the structure in a hash table (Table A)

indexed by x(14,3), x(13,3) and x(0,2) ⊕ x(14,0).
4: for each of approximately 295−48 = 247 plaintext pairs where the conditions are

satisfied Δx(0,2) = Δx(14,0), Δx(14,3) = 0 and Δx(13,3) = 0 do
5: With the knowledge of input and output difference of F 13

R find the input of
F 13
R (x(12,2)) by using Property 1.

6: Compute k1 from x(12,2).
7: Compute Δx(2,2) by using k1.
8: if Δx(2,2) = 0 then
9: Compute Δx(2,1)

10: Find x(2,0) by using Property 1 with the input and output difference of
F 3
L.

11: for each possible value for k0 do
12: Compute k2 and remove (k0, k1, k2) from the candidate table.
13: end for
14: end if
15: end for
16: end for

key parts k3 and k4 does not add a considerable effect on the time complexity
of the attack.

3.1 Extending the Attack with Pre-whitening Keys

In order to include pre-whitening keys, a modified version of the attack can be
used. Because of the whitening keys, Δx(1,0) = 0 condition cannot be satisfied
directly from the choice of plaintext pairs. Therefore, it should be added to the
elimination part of wrong keys. In that case, a wrong key causes the impossible
differential with a probability of 2−64 instead of 2−48. Hence, the required num-
ber of plaintext pairs (M) which can be used in the attack can be calculated
as

M ≥ |k| × 2e × ln(2) = 48 × 264 × ln(2) ≈ 269.06

Thus, in order to mount the attack, 269.06+48 = 2117.06 plaintext pairs are
required. Approximately 259.03 plaintexts are enough to generate that much of
pairs. Since there is no condition on the plaintexts, the type of the attack falls
into known plaintext model.

In this attack, approximately 259.03 memory is required to store the candi-
date keys and plaintexts. The time complexity suffers from the same dominating
parts with different number of plaintext pairs. The number of F computations
becomes 7. Then, the time complexity can be computed as 269.06×7

14×2 ≈ 267.06 14-
round encryption operations.

Impossible Differential Cryptanalysis of 16/18-Round Khudra 41

4 Impossible Differential Attack on 16 Rounds of Khudra

In this section, we improve the attack for 16-round Khudra using the 9-round
impossible differential used in the previous section. In the attack, we assume
that the whitening keys are omitted. Because of the key schedule of Khudra,
the round keys are used in the same order in every 5 rounds. This helps us to
increase the number of rounds attacked. We add 3 and 4 rounds to the top and
bottom of the distinguisher, respectively.

To attack on 16-round Khudra, we first construct 3 structures which contain
248 plaintexts where x(1,0) is fixed and x(0,0), x(0,2) and x(0,3) takes all possible
values as seen in Fig. 4.

Using each structure, we are able to generate 295 plaintext pairs. The prob-
ability that a wrong subkey survives after elimination with one pair is 1 − 2−96.
As we have 3 · 295 ≈ 296.58 pairs,

280 × (1 − 2−96)2
96.58 ≈ 277.84

values of the 80-bit target key remain as the output of the attack algorithm given
in Algorithm 3. We perform exhaustive search for the remaining keys.

Algorithm 3. Impossible differential attack on 16 rounds.
1: for each possible value of k0 do
2: Store all possible values of k1, k2, k3, k4 in Table A.
3: for each of 3 structures do
4: for each plaintext and ciphertext pairs in the structure do
5: Compute F 15

R (x(14,2))⊕x(15,2) and F 16
R (x(15,2))⊕x(16,2)⊕x(0,2) and store

the pairs in a hash table (Table B) indexed by the computed values.
6: end for
7: for each plaintext pairs generated from Table B which satisfies the condi-

tions Δ(F 15
R (x(14,2)) ⊕ x(15,2)) = 0 and Δ(F 16

R (x(15,2)) ⊕ x(16,2)) = Δx(0,2) do
8: Compute Δx(2,1) that is the output difference of F 3

L.
9: By using Property 1 with the knowledge of input and output difference

pair of F 3
L, find x(2,0).

10: Compute k2.
11: Find x(1,2) by using Property 1 and derive k1.
12: Compute the input and output differences of F 14

R .
13: Extract the input x(13,2) by using Property 1.
14: Compute k3 from x(13,2).
15: Compute input and output difference pair of F 13

R .
16: Find x(12,2) from the difference pair.
17: Extract k4 and remove computed value for k1, k2, k3, k4 from Table A.
18: end for
19: end for
20: For k0 and each key in Table A check the keys using two plaintext-ciphertext

pairs. Output the key as the correct key which satisfies the pairs.
21: end for

42 F. Karakoç et al.

9-round characteristic

k1

k3

k0k4

k0

k2

α000

α * 0 0

0 * *α

α* * *

Δx(16,1) Δx(16,2)Δx(16,0) Δx(16,3)

k0k4

k2k1

α 000

α0 0*

k4k3

k1k0

* 0*α

? α

F 1
L

F 1
R

F 2
L

F 3
L

F 2
R

F 3
R

F 13
R

F 14
R

F 15
R

F 16
R

F 13
L

F 14
L

F 15
L

F 16
L

Δx(0,0) Δx(0,2) Δx(0,3)

Δx(1,0)

Δx(14,2)

Δx(15,2)

Fig. 4. 16-round impossible differential attack.

The complexity of the attack is calculated as follows. Time complexity
is dominated by Step 8-17 where 8 F function computations are performed
216+64.58 times in total. The time for these step is equivalent to approximately
216+64.58·8

32 = 278.58 16-round Khudra encryption operations. Considering the
brute force attack for the remaining keys, the total time complexity of the 80-bit
key recovery is approximately 278.58 +277.84 = 279.26 encryption operations. The
data complexity of the attack is 3 · 248 ≈ 249.58 chosen plaintexts. In Step 2 and
5, we use tables of size 264 and 248, respectively. Thus, the memory complexity
is about 264.

Impossible Differential Cryptanalysis of 16/18-Round Khudra 43

5 Conclusion

In this paper, we study the security of the block cipher Khudra against impos-
sible differential cryptanalysis. The best impossible differential attack found by
the designers works on 11-round version of the algorithm. By using 9-round
impossible differential, first, we attack 14 rounds of Khudra. Then, we extend
the attack by including pre-whitening keys. Finally, we present impossible differ-
ential attack against 16-round Khudra without whitening-keys. To the extent of
our knowledge, these attacks are the best known attacks in a single-key scenario.

References

1. Adams, C., Gilchrist, J.: The CAST-256 encryption algorithm. Technical report
(1999)

2. Baysal, A., Şahin, S.: RoadRunneR: a small and fast bitslice block cipher for
low cost 8-bit processors. In: Güneysu, T., Leander, G., Moradi, A. (eds.) Light-
Sec 2015. LNCS, vol. 9542, pp. 58–76. Springer, Cham (2016). doi:10.1007/
978-3-319-29078-2 4

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013). http://eprint.iacr.org/2013/404

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 2

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

6. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

7. Bouillaguet, C., Dunkelman, O., Fouque, P.-A., Leurent, G.: New insights on
impossible differential cryptanalysis. In: Miri, A., Vaudenay, S. (eds.) SAC
2011. LNCS, vol. 7118, pp. 243–259. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28496-0 15

8. Burwick, C., Coppersmith, D., DAvignon, E., Gennaro, R., Halevi, S., Jutla, C.,
Matyas, S.M., OConnor, L., Peyravian, M., Safford, D., et al.: The Mars Encryption
Algorithm. IBM, 27 August 1999

9. Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K.
(eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04138-9 20

10. Dai, Y., Chen, S.: Security analysis of Khudra: a lightweight block cipher for
FPGAs. Secur. Commun. Netw. 9(10), 1173–1185 (2016). http://dx.doi.org/
10.1002/sec.1409

11. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-Round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8 10

http://dx.doi.org/10.1007/978-3-319-29078-2_4
http://dx.doi.org/10.1007/978-3-319-29078-2_4
http://eprint.iacr.org/2013/404
http://dx.doi.org/10.1007/3-540-48910-X_2
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-34961-4_14
http://dx.doi.org/10.1007/978-3-642-28496-0_15
http://dx.doi.org/10.1007/978-3-642-28496-0_15
http://dx.doi.org/10.1007/978-3-642-04138-9_20
http://dx.doi.org/10.1002/sec.1409
http://dx.doi.org/10.1002/sec.1409
http://dx.doi.org/10.1007/978-3-642-17373-8_10

44 F. Karakoç et al.

12. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23951-9 22

13. Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14623-7 33

14. Karakoç, F., Demirci, H., Harmancı, A.E.: ITUbee: a software oriented lightweight
block cipher. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp.
16–27. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40392-7 2

15. Knudsen, L.: DEAL - a 128-bit Block Cipher. Technical report no. 151 (1998)
16. Kolay, S., Mukhopadhyay, D.: Khudra: a new lightweight block cipher for FPGAs.

In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol.
8804, pp. 126–145. Springer, Cham (2014). doi:10.1007/978-3-319-12060-7 9

17. Ma, X., Qiao, K.: Related-key rectangle attack on round-reduced khudra block
cipher. In: Qiu, M., Xu, S., Yung, M., Zhang, H. (eds.) NSS 2015. LNCS, vol.
9408. Springer, Cham (2015). doi:10.1007/978-3-319-25645-0 22

18. Özen, M., Çoban, M., Karakoç, F.: A guess-and-determine attack on reduced-round
khudra and weak keys of full cipher. IACR Cryptology ePrint Archive 2015, 1163
(2015). http://eprint.iacr.org/2015/1163

19. Rivest, R.L., Robshaw, M., Sidney, R., Yin, Y.L.: The RC6TM block cipher. In:
First Advanced Encryption Standard (AES) Conference (1998)

20. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35999-6 22

21. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Meet-in-the-middle attacks on round-
reduced khudra. In: Chakraborty, R.S., Schwabe, P., Solworth, J. (eds.) SPACE
2015. LNCS, vol. 9354, pp. 127–138. Springer, Cham (2015). doi:10.1007/
978-3-319-24126-5 8

22. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21554-4 19

23. Yang, Q., Hu, L., Sun, S., Song, L.: Related-key impossible differential analysis of
full khudra. IACR Cryptology ePrint Archive 2015, 840 (2015). http://eprint.iacr.
org/2015/840

http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/978-3-642-14623-7_33
http://dx.doi.org/10.1007/978-3-642-14623-7_33
http://dx.doi.org/10.1007/978-3-642-40392-7_2
http://dx.doi.org/10.1007/978-3-319-12060-7_9
http://dx.doi.org/10.1007/978-3-319-25645-0_22
http://eprint.iacr.org/2015/1163
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-319-24126-5_8
http://dx.doi.org/10.1007/978-3-319-24126-5_8
http://dx.doi.org/10.1007/978-3-642-21554-4_19
http://eprint.iacr.org/2015/840
http://eprint.iacr.org/2015/840

Distinguishing Attacks on (Ultra-)Lightweight
WG Ciphers

Mabin Joseph1,2(B), Gautham Sekar2,3,
and R. Balasubramanian2,3

1 Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
mebinjp@gmail.com

2 Homi Bhabha National Institute, Training School Complex,
Anushakti Nagar, Mumbai 400094, India

3 The Institute of Mathematical Sciences, Taramani, Chennai, Tamil Nadu, India
gautham.sekar@gmail.com, balu@imsc.res.in

Abstract. The Welch-Gong (WG) family of stream ciphers include
two subfamilies, which we call WG-A and WG-B, of patented (ultra-)
lightweight ciphers designed by Gong et al. The Waterloo Commer-
cialization Office, Canada, has included the WG-A in an RFID anti-
counterfeiting system and has proposed the WG-B for securing 4G
networks. The WG-A and WG-B ciphers support 80- and 128-bit keys,
respectively. In this paper, we detect input-output correlations in the non-
linear transformations used by these ciphers. Exploiting these, we show
distinguishing attacks that require, to nearly ensure success, between
222.20 and 229.07 keystream samples for WG-A and not more than 256.84

keystream samples for WG-B. We are not aware of any prior attacks on
these ciphers.

Keywords: WG · Lightweight cipher · Distinguishing attack

1 Introduction

Lightweight ciphers. Recently there has been a considerable surge in the popu-
larity of lightweight ciphers due to the advent of Internet of Things. Such ciphers
typically use linear feedback shift registers (LFSRs), especially in constrained
hardware environments. To augment the linear complexity of the keystream,
LFSR-based ciphers use balanced nonlinear functions—the resulting keystream
generator is called a nonlinear filter generator and well-known examples are the
generators of the WG family of ciphers.

The WG family of ciphers. The WG ciphers are based on the WG trans-
formations [17] which are balanced nonlinear filter functions. The possibility of
using the WG transformations for cryptographic purposes was first explored by
Gong et al. [9]. The transformations are defined over finite fields of orders 25,
27, 28, 216 and 229; the corresponding ciphers are respectively denoted by WG-5

c© Springer International Publishing AG 2017
A. Bogdanov (Ed.): LightSec 2016, LNCS 10098, pp. 45–59, 2017.
DOI: 10.1007/978-3-319-55714-4 4

46 M. Joseph et al.

Table 1. Attacks on the WG family of stream ciphers

Year Cipher Key size
(in bits)

IV size
(in bits)

Type of attack Requirements Success
rate (%)

2005 WG-29a 80 80 Key recovery [20] 231.3 chosen IVs,
O(232.69) time

99.95

2007 WG-29b 80, 96,
112, 128c

32, 64 or
same as
key sizec

Key recovery [16] O(245.04) data,
O(265.71) time

99.99

2012 WG-7 80 81 Distinguishing [14] O(213.5) data 99.99

2012 WG-7 80 81 Key recovery [14] O(219.38) data,
O(227) time

100

2014 WG-8 80 80 Key recovery [2] 221 chosen IVs,
O(223.29) time

99.99

2015 WG-29b 128 128 Key recovery [3] O(289) time,
O(248) memory

63.21

2015 WG-5
(d = 7)

80 80 Key recovery [15] O(215) data,
O(230) time

100

2015 WG-5
(d = 15)

80 80 Key recovery [15] O(215) data,
O(230) time

100

2015 WG-7 80 81 Key recovery [15] O(214) data,
O(225) time

100

2015 WG-8 80 80 Key recovery [15] O(222) data,
O(248) time

100

2015 WG-16 128 128 Key recovery [15] O(263) data,
O(2106) time

100

2016 WG-A 80 80 Distinguishing
(This paper)

Up to 233.46

bits, less than
O(229.07) time

99.99

2016 WG-B 128 128 Distinguishing
(This paper)

Up to 261.87

bits, less than
O(256.84) time

99.99

aECRYPT eSTREAM Phase 1 version.
bECRYPT eSTREAM Phase 2 version.
cAttack works for any combination of key size and IV size.

[1], WG-7 [10], WG-8 [6], WG-16 [5] and WG-29 [13]. Beginning with WG-29
(a well-received entrant to the ECRYPT eSTREAM project [4] designed by
Nawaz et al.), the WG ciphers have been studied extensively, over a period
spanning more than a decade. Table 1 lists the ciphers and results of their best
known security evaluations.

The WG-A and WG-B,1 designed by Gong et al. [7], are subfamilies of the
WG family and comprise of patented (# US8953784 B2) variants of the WG-8

1 We follow this nomenclature to distinguish between the patented and unpatented
variants of WG-8 and WG-16.

Distinguishing Attacks on (Ultra-)Lightweight WG Ciphers 47

and WG-16, respectively [7]. WG-A has 3 constituent ultra-lightweight ciphers,
each corresponding to a unique decimation factor or d. Each of these ciphers
supports an 80-bit key and an 80-bit initialization vector. Likewise, WG-B com-
prises of 31 lightweight ciphers, each using a 128-bit key and a 128-bit initial-
ization vector. The designs of WG-A and WG-B are remarkably simple and the
ciphers are well suited for hardware applications. At TechConnect World Inno-
vation Conference 2015, the Waterloo Commercialization Office had exhibited
an RFID system for anti-counterfeiting enabled with WG-A [19]. Furthermore,
information available through the website of the Waterloo Commercialization
Office suggests that WG-B is proposed for securing 4G networks [18]. Conse-
quently, there appear to be good chances for these ciphers to be commercially
deployed on a wide scale.

Contributions of this paper. We present linear distinguishing attacks on
WG-A and WG-B families of ciphers. The attacks on WG-A are highly practical,
requiring fewer than 229.07 keystream samples for nearly guaranteed success, and
have been experimentally verified. Our attacks on WG-B, however, are not very
practical and require up to 256.84 keystream samples to nearly guarantee success.
The security claim of the designers of WG-A and WG-B suggests that these
ciphers offer better security compared to their predecessors (this is attributed to
the decimation factor). Table 1 shows that our attacks refute this claim.2

Organisation of the paper. The remaining paper is organised as follows.
Section 2 describes the ciphers along with the notation and convention that we
follow. We present our motivational observations for WG in Sect. 3. The biases
in the keystream distribution are computed in Sect. 4 and our distinguishing
attacks are presented in Sect. 5. In Sect. 6, we discuss how the remaining members
of the WG family fare against linear distinguishing attacks. We conclude in
Sect. 7. AppendixA explains the computation of a probability associated with
our attacks on WG-A and WG-B.

2 Specifications of the Ciphers

Table 2 lists the notation and convention that we follow.

2.1 WG-A

The ultra-lightweight cipher WG-A uses an 80-bit key K and an 80-bit initial-
ization vector IV . The internal state of WG-A consists of a 20-stage LFSR
(the stages of which are denoted by sA[·]) defined over the finite field F28 .
The cipher uses an 8-bit nonlinear WG transformation WA : F28 → F2. The
256 elements of the finite field F28 are generated by the primitive polynomial
RA(x) = x8 + x4 + x3 + x2 + 1 over F2. Let ω be a root of the primitive
polynomial. Any element of F28 can be represented as an 8-bit binary vector
2 To facilitate comparisons, we reasonably assume that the success rates of the attacks

on WG-16 and WG-B are equal.

48 M. Joseph et al.

Table 2. Notation and convention

Symbol/notation Meaning

F2n Finite field of order 2n

s[i + k] (k + 1)th LFSR stage at time i

x(j) jth bit of x where j = 0 denotes the least significant bit

�8 Addition in F28

�8 Multiplication in F28

xn, x ∈ F28 x �8 x �8 x �8 · · · �8 x
︸ ︷︷ ︸

n

�16 Addition in F216

�16 Multiplication in F216

xn, x ∈ F216 x �16 x �16 x �16 · · · �16 x
︸ ︷︷ ︸

n

⊕ Exclusive OR

(a7a6 . . . a0) corresponding to a7ω
7 + a6ω

6 + · · · + a0. The feedback polynomial
of the LFSR is given by lA(x) = x20 + x11 + x9 + ω38, where ω38 corresponds
to the binary vector (10010100). The WG transformation, whose input is the
20th LFSR stage, is comprised of a permutation PA and a trace function TA.
The permutation takes an 8-bit input x and outputs qA(x �8 1) �8 1, where
qA(x) = x �8 x9 �8 x57 �8 x73 �8 x71. Likewise, the trace function takes an 8-bit
input x and outputs x �8 x2 �8 x22 �8 · · · �8 x27 . The trace function acts on
PA(x) to yield WA(x) as TA(PA(x)). For better security of the cipher, the design-
ers propose to have xd (see Table 2) instead of x, where d is the decimation
factor, as the input to the WG transformation [7]. Although the value of d is
not mentioned in the patent document, Mandal et al. identify three values (13,
19 and 61) as “optimal” choices [11]. These values, they argue, impart the best
cryptographic properties such as maximum algebraic degree, maximum algebraic
immunity, largest possible nonlinearity and smallest possible additive correlation
to the output of WA. Denote by WG-Ad the cipher corresponding to d. Then,
WG-Ad operates in two phases: initialization and keystream generation.

Initialization: The LFSR is initially loaded with K and IV and updated for
40 clock cycles.

Algorithm 1. Initialization of WG-Ad

1: for i = 1 to 10 do
2: sA[2i] = (IV(8i+3), IV(8i+2), IV(8i+1), IV(8i), K(8i+3), K(8i+2), K(8i+1), K(8i));
3: sA[2i+1] = (IV(8i+7), IV(8i+6), IV(8i+5), IV(8i+4), K(8i+7), K(8i+6), K(8i+5), K(8i+4));
4: endfor
5: for i = 1 to 40 do
6: sA[i + 20] = sA[i + 11] ⊕ sA[i + 9] ⊕ (sA[i] �8 ω38) ⊕ PA((sA[i + 19])d);
7: endfor

Distinguishing Attacks on (Ultra-)Lightweight WG Ciphers 49

Algorithm 2. Keystream generator of WG-Ad

1: i = 0;
2: do until enough keystream is generated
3: zA(i) = WA((sA[i + 19])d);
4: sA[i + 20] = sA[i + 11] ⊕ sA[i + 9] ⊕ (sA[i] �8 ω38);
5: i ← i + 1;

Keystream generation: During the (i+1)th cycle of keystream generation, one
keystream bit zA(i) is generated. The keystream generation process of WG-Ad is
shown in Fig. 1.

Fig. 1. Keystream generation of WG-Ad; exp computes (sA[19])d

2.2 WG-B

The structure of the lightweight cipher WG-B is very similar to that of WG-A.
Here, the key K and the initialization vector IV are of length 128 bits each. The
LFSR has 32 stages (which are denoted by sB[·]) and is defined over the finite field
F216 . The elements of F216 are generated by β, a primitive root of the polynomial
RB(x) = x16 + x5 + x3 + x2 + 1 over F2. The feedback polynomial is given by
lB(x) = x32+x13+x3+β2+1. The permutation is of 16-bit values and is given by
PB(x) = qB(x�16 1)�16 1, where qB(x) = x�16 x2049�16 x2111�16 x2113�16 x63552.
The trace function and the nonlinear filter function are from F216 to F2 and are
given by:

TB(x) = x �16 x2 �16 x22 �16 · · · �16 x215 ,

WB(x) = TB(PB(x)) .

50 M. Joseph et al.

Algorithm 3. Initialization of WG-Bd

1: for i = 1 to 16 do
2: sB[i] = (IV(8i+7), IV(8i+6), . . . , IV(8i), K(8i+7), K(8i+6), . . . , K(8i));
3: sB[i + 16] = sB[i];
4: endfor
5: for i = 1 to 64 do
6: sB[i + 32] = sB[i + 13] ⊕ sB[i + 3] ⊕ (sB[i] �16 (β2 + 1)) ⊕ PB((sB[i + 31])d);
7: endfor

Algorithm 4. Keystream generator of WG-Bd

1: i = 0;
2: do until enough keystream is generated
3: zB(i) = WB((sB[i + 31])d);
4: sB[i + 32] = sB[i + 13] ⊕ sB[i + 3] ⊕ (sB[i] �16 (β2 + 1));
5: i ← i + 1;

As for WG-A, optimal decimation factors (31 in total) have also been identified
for WG-B in [11] and WG-Bd refers to the cipher corresponding to d. It operates
in two phases: initialization and keystream generation.

Initialization: The LFSR is initially loaded with K and IV and updated for
64 clock cycles.
Keystream generation: During (i + 1)th cycle of the keystream generation
phase, one keystream bit zB(i) is generated. Figure 2 shows the keystream gen-
eration of WG-Bd.

Fig. 2. Keystream generation of WG-Bd; exp computes (sB[19])d

Distinguishing Attacks on (Ultra-)Lightweight WG Ciphers 51

3 Motivational Observation

The sizes of the inputs to WA and WB render an exhaustive search over the
input space feasible. Performing the search, we detect d independent input-
output correlations in the WG transformations. The bitwise correlation prob-
abilities for WA(x61) and WB(x157) are listed in Tables 3(a) and 4(a), respec-
tively. Similarly, the probabilities that WA(x61) = (x �8 ω38)(i) and WB(x157) =
(x �16 (β2 + 1))(i), for several values of i, are listed in Tables 3(b) and 4(b),
respectively. All the results presented in this paper are based on the polynomial
basis representation of the field elements.

Tables 3(a), 3(b), 4(a) and 4(b) suggest that the WG transformations can be
linearly approximated—using this, we state and prove Theorems 1 and 2.

Theorem 1. If the conditions

WA(xd) = x(i) , (1)

WA(xd) = (x �8 ω38)(i) , (2)

are satisfied for any i ∈ {0, 1, . . . , 7}, then the keystream of WG-Ad satisfies
zA(t+1) ⊕ zA(t−8) ⊕ zA(t−10) ⊕ zA(t−19) = 0 for t ≥ 19.

Proof. The recurrence relation of the constituent LFSR of WG-Ad can be
deduced from its feedback polynomial as:

sA[t + 20] = sA[t + 11] ⊕ sA[t + 9] ⊕ (sA[t] �8 ω38) , for t ≥ 0. (3)

From (3), we get:

sA[t + 20](i) = sA[t + 11](i) ⊕ sA[t + 9](i) ⊕ (sA[t] �8 ω38)(i) , (4)

Table 3. WG: Probabilities that (a) WA(x61) = x(i) and (b) WA(x61) = (x �8 ω38)(i),
for several values of i

(a)

i Pr WA(x61) = x(i)

)

0 0.5 + 2−4.68

1 0.5 + 2−6.00

2 0.5 + 2−5.00

3 0.5 − 2−6.00

4 0.5 − 2−5.00

5 0.5 − 2−4.00

6 0.5 + 2−6.00

7 0.5 + 2−6.00

(b)

i Pr WA(x61) = (x 8 ω38)(i)
)

0 0.5 − 2−5.00

1 0.5 + 2−4.00

2 0.5 − 2−7.00

3 0.5 + 2−4.00

4 0.5 + 2−7.00

5 0.5 − 2−6.00

6 0.5 + 2−6.00

7 0.5 − 2−3.83

52 M. Joseph et al.

Table 4. WG: Probabilities that (a) WB(x157) = x(i) and (b) WB(x157) = (x �16

(β2 + 1))(i), for several values of i

(a)

i Pr WB(x157) = x(i)

)

0 0.5 + 2−9.79

1 0.5 + 2−12.4

2 0.5 + 2−10.8

3 0.5 + 2−8.96

4 0.5 + 2−10.2

5 0.5 − 2−13.0

6 0.5 + 2−14.0

7 0.5 + 2−10.4

8 0.5 − 2−9.75

10 0.5 − 2−9.48

11 0.5 + 2−9.19

12 0.5 + 2−11.7

13 0.5 − 2−9.00

14 0.5 − 2−11.0

15 0.5 + 2−10.5

(b)

i Pr WB(x157) = (x 16 (β2 + 1))(i)
)

0 0.5 − 2−10.8

1 0.5 + 2−10.1

2 0.5 − 2−9.17

3 0.5 − 2−9.48

4 0.5 − 2−9.48

5 0.5 + 2−13.0

6 0.5 + 2−8.51

7 0.5 − 2−13.0

8 0.5 − 2−7.91

10 0.5 − 2−13.0

11 0.5 + 2−13.0

12 0.5 + 2−13.0

13 0.5 − 2−9.42

14 0.5 + 2−10.1

15 0.5 + 2−10.1

for any i ∈ {0, 1, . . . , 7}, t ≥ 19. Substituting (1) and (2) in (4) yields:

WA((sA[t + 20])d) = WA((sA[t + 11])d) ⊕ WA((sA[t + 9])d) ⊕ WA((sA[t])d) , (5)

for t ≥ 19. Since zA(t) = WA((sA[t + 19])d), (5) reduces to:

zA(t+1) ⊕ zA(t−8) ⊕ zA(t−10) ⊕ zA(t−19) = 0 , for t ≥ 19.

The proof completes. ��

Theorem 2. If the conditions

WB(xd) = x(i) , (6)

WB(xd) = (x �16 (β2 + 1))(i) , (7)

are satisfied for any i ∈ {0, 1, . . . , 15}, then the keystream of WG-Bd satisfies
zB(t+1) ⊕ zB(t−18) ⊕ zB(t−28) ⊕ zB(t−31) = 0 for t ≥ 31.

Proof. The LFSR of WG-Bd is given by the following recursion:

sB[t + 32] = sB[t + 13] ⊕ sB[t + 3] ⊕ (sB[t] �16 (β2 + 1)) , for t ≥ 0. (8)

For the ith bit, (8) becomes:

sB[t + 32](i) = sB[t + 13](i) ⊕ sB[t + 3](i) ⊕ (sB[t] �16 (β2 + 1))(i) , (9)

Distinguishing Attacks on (Ultra-)Lightweight WG Ciphers 53

for any i ∈ {0, 1, . . . , 15} , t ≥ 31. Substituting (6) and (7) in (9), we get:

WB((sB[t+32])d) = WB((sB[t+13])d)⊕WB((sB[t+3])d)⊕WB((sB[t])d) , for t ≥ 31.
(10)

Since zB(t) = WB((sB[t + 31])d), (10) reduces to:

zB(t+1) ⊕ zB(t−18) ⊕ zB(t−28) ⊕ zB(t−31) = 0 , for t ≥ 31.

This completes the proof. ��

4 Bias Estimation

Using the results of Sect. 3, we proceed to compute Pr(ẑA = 0) and Pr(ẑB = 0),
where

ẑA = zA(t+1) ⊕ zA(t−8) ⊕ zA(t−10) ⊕ zA(t−19) , t ≥ 19 ,

ẑB = zB(t+1) ⊕ zB(t−18) ⊕ zB(t−28) ⊕ zB(t−31) , t ≥ 31 .

4.1 Biases in the Keystream of WG-A61

If Pr
(
WA(xd) = x(i)

)
= pi and Pr

(
WA(xd) = (x �8 ω38)(i)

)
= qi then:

Pr(ẑA = 0) = p3i qi +3(1− pi)2piqi +3p2i (1− pi)(1− qi)+ (1− pi)3(1− qi) . (11)

Equation (11) follows from a simple application of the Matsui’s Piling-up Lemma
[12]. Nevertheless, to make it convenient for the reader, we detail the derivation in
AppendixA. The value of Pr(ẑA = 0) varies with i and the probability for which
|Pr(ẑA = 0) − 0.5| is maximised is considered as its best estimation. The values
of pi and qi for d = 61 are listed in Tables 3(a) and 3(b), respectively. Among
the available choices of i, the following linear approximations, corresponding to
i = 5, maximise the bias.

WA(x61) ≈ x(5) ,

WA(x61) ≈ (x �8 ω38)(5) .

Since Pr
(
WA(x61) = x(5)

)
= 0.5 − 2−4 and Pr

(
WA(x61) = (x �8 ω38)(5)

)
=

0.5−2−6, the best estimation of the probability that ẑA equals zero is 0.5+2−15.

4.2 Biases in the Keystream of WG-B157

If Pr
(
WB(xd) = x(i)

)
= pi and Pr

(
WB(xd) = (x �16 (β2 + 1))(i)

)
= qi then

Pr(ẑB = 0) is again given by the RHS of (11). The values of pi and qi for
d = 157 are listed in Tables 4(a) and 4(b), respectively. If the keystream bits are
generated by WG-B157 , the probability that ẑB equals zero is estimated to be
0.5 − 2−33.36 based on the following linear approximations:

WB(x157) ≈ x(3) ,

WB(x157) ≈ (x �16 (β2 + 1))(3) .

54 M. Joseph et al.

4.3 Improvements to the Bias Estimations

The probabilities Pr(ẑA = 0) and Pr(ẑB = 0) of Sects. 4.1 and 4.2 were cal-
culated, in each case, with one of the input bits of the WG transformations.
Since multiple input bits of WA and WB are correlated to the corresponding
output bits, we explore the possibility to obtain a better estimation of the prob-
abilities by combining input bits. The probabilities Pr

(
WA(x61) =

⊕
i∈S x(i)

)

and Pr
(
WA(x61) =

⊕
i∈S (x �8 ω38)(i)

)
, where S ⊆ {0, 1, . . . , 7} for WG-A61

and equivalently for WG-B157, were experimentally calculated with arbitrary
choices of S. The correlation probabilities which further improved the estimated
keystream biases of WG-A61 and WG-B157 are given below.

Pr(WA(x61) =
⊕

i∈S1

x(i)) = 0.5 − 2−3.83 , (12)

Pr(WA(x61) =
⊕

i∈S1

(x �8 ω38)(i)) = 0.5 + 2−4 , (13)

Pr(WB(x157) =
⊕

i∈S2

x(i)) = 0.5 + 2−6.83 , (14)

Pr(WB(x157) =
⊕

i∈S2

(x �16 (β2 + 1))(i)) = 0.5 − 2−8 , (15)

where S1 = {0, 3, 5, 6} and S2 = {1, 3, 5, 6, 8, 9, 14, 15}. Assigning the proba-
bilities of (12) and (13) respectively for pi and qi, (11) yields Pr(ẑA = 0) =
0.5 − 2−12.49 for WG-A61. Similarly, the assignments pi = 0.5 + 2−6.83 and
qi = 0.5 − 2−8 yield Pr(ẑB = 0) = 0.5 − 2−25.49 for WG-B157. The WG-A and
WG-B families are restricted to ciphers corresponding to the optimal d; the val-
ues of Pr(ẑA = 0) and Pr(ẑB = 0) for all these ciphers are listed in Tables 5(a)
and 5(b), respectively.

Table 5. Probabilities that (a) ẑA = 0 and (b) ẑB = 0, for each of the WG-Ad and
WG-Bd ciphers

(a) WG-Ad

d Pr(ẑA = 0)

13 0.5 − 2−9.25

19 0.5 + 2−12.68

61 0.5 − 2−12.49

(b) WG-Bd

d Pr(ẑB = 0) d Pr(ẑB = 0) d Pr(ẑB = 0)

157 0.5 − 2−25.49 2137 0.5 − 2−24.01 5213 0.5 + 2−26.23

409 0.5 − 2−25.74 2251 0.5 + 2−24.90 6043 0.5 + 2−26.03

451 0.5 − 2−25.21 2473 0.5 − 2−26.09 7673 0.5 − 2−25.04

469 0.5 + 2−26.52 2741 0.5 − 2−25.07 7771 0.5 − 2−26.19

1057 0.5 + 2−25.36 3223 0.5 − 2−25.86 10651 0.5 − 2−26.32

1187 0.5 − 2−26.20 3419 0.5 − 2−26.48 10667 0.5 − 2−25.38

1327 0.5 − 2−26.43 3449 0.5 − 2−25.62 13631 0.5 − 2−25.99

1393 0.5 + 2−25.55 3581 0.5 − 2−25.59 14327 0.5 − 2−25.66

1397 0.5 − 2−25.29 4411 0.5 − 2−26.19 32767 0.5 + 2−26.57

1771 0.5 + 2−25.51 4681 0.5 + 2−26.17

1933 0.5 + 2−25.38 4789 0.5 − 2−26.56

Distinguishing Attacks on (Ultra-)Lightweight WG Ciphers 55

5 Attack Complexities

In this section, we compute the complexities of our distinguishing attacks on
WG-A and WG-B using the results of Sect. 4. Let n denote the number of ẑA’s
available to the attacker, D′ denote the distribution of Z :=

∑
n ẑA, p′ = Pr(ẑA =

0), D denote the distribution of Z given that WG-A61 is an ideal cipher and
p = 0.5. If the ẑA’s are independent and identically distributed random variables
(i.i.d.), then Z has a binomial distribution. The means (μ′, μ) and standard
deviations (σ′, σ) of the distributions D′, D are given by: μ′ = np′, μ = np,
σ′ =

√
np′(1 − p′) and σ =

√
np(1 − p).

If n is large (a commonly used rule of thumb is that np > 5 and n(1−p) > 5),
one can approximate each binomial distribution with the normal distribu-
tion with the same mean and standard deviation. Given this, if |μ′ − μ| >
3.62(σ′ + σ) ⇒ n > 13.1/(p′ − 0.5)2 = 228.69, the cipher WG-A61 can be dis-
tinguished from an ideal cipher with 99.99% success rate (since the cumulative
distribution function gives the value 0.9999 at μ + 3.62σ) and 0.01% false pos-
itive rate. Similarly, 254.69 keystream samples (ẑB) are required to distinguish
WG-B157 from an ideal cipher, with a success probability of 0.9999. In order to
generate the keystream samples ẑA and ẑB, in the worst case, the attacker col-
lects 21 keystream bits and 33 keystream bits, respectively per (K, IV) pair (but
actually 4 bits will suffice). The data complexities of our distinguishing attacks
on the other members of the WG-A and WG-B families are respectively listed
in Tables 6(a) and 6(b)—in each case, the success rate is 99.99%.

Table 6. Data requirements of our attacks (corresponding to 0.9999 success probabil-
ity) on the WG-Ad and WG-Bd ciphers

(a) WG-Ad

d log2(# samples)

13 22.20

19 29.07

61 28.69

(b) WG-Bd

d log2(# samples) d log2(# samples) d log2(# samples)

157 54.69 2137 51.74 5213 56.16

409 55.19 2251 53.51 6043 55.78

451 54.13 2473 55.90 7673 53.78

469 56.76 2741 53.85 7771 56.09

1057 54.43 3223 55.43 10651 56.35

1187 56.11 3419 56.66 10667 54.47

1327 56.57 3449 54.95 13631 55.70

1393 54.80 3581 54.89 14327 55.03

1397 54.30 4411 56.09 32767 56.84

1771 54.73 4681 56.06

1933 54.47 4789 56.82

5.1 Experimental Verification

From Table 6(a), it is clear that the distinguishing attacks on WG-A are of
practical complexities. In order to verify our analysis, we simulated the attacks

56 M. Joseph et al.

on WG-A13, WG-A19 and WG-A61. In each case, the keystream bits, as per
the data requirement given in Table 6(a), were generated from 220 (K, IV) pairs
chosen uniformly at random with each pair generating 103 keystream bits and
the required probability was computed.3 This process was repeated 104 times.
The mean probabilities for WG-A13, WG-A19 and WG-A61 were found to be
0.5 − 2−9.40, 0.5 + 2−15.10 and 0.5 − 2−12.51, respectively. The theoretical and
experimental results for WG-A13 and WG-A61 agree very well; the reason why
the agreement is not as pronounced in the case of WG-A19 is being currently
investigated.

6 Discussion

In [14], Orumiehchiha et al. report a linear distinguishing attack, that is similar
to our attacks, on WG-7. Our investigations, in fact, show that every member
of the WG family, with the sole exception of the WG-29, is vulnerable to such
linear attacks. The low correlation immunity and the low resilience of the WG
transformations allow us to identify linear approximations of the kind provided
in Sect. 4.3.

For WG-29, the input size of the WG transformation is too large to perform
an exhaustive search over the input space using a general purpose computer.
Nawaz et al. report that it is 1-order resilient and can be approximated by linear
functions [13]. Therefore, the possibility of the existence of a set, similar to the
set S of Sect. 4.3, that renders WG-29 vulnerable to linear distinguishing attacks
cannot be eliminated.

7 Conclusions

In this paper, we have showed distinguishing attacks on the stream ciphers
WG-A and WG-B. To nearly guarantee success, the attacks require between
222.20 and 229.07 keystream samples for WG-A, and fewer than 256.84 keystream
samples for WG-B. Let TA,ini and TA,kga respectively denote the run-times of
the initialization algorithm and keystream generation algorithm of WG-A. Then,
assuming that one sample is collected per (K, IV) pair, our attacks on the WG-A
ciphers each requires at the most 229.07(TA,ini + 21 · TA,kga) time.4 Likewise, our
attacks on the WG-B ciphers each requires at the most 256.84(TB,ini+33 ·TB,kga)
time, where TB,ini and TB,kga are the respective run-times of the initialization
algorithm and keystream generation algorithm of WG-B. For a success rate of

3 In this paper, to compute the time complexity of our distinguishing attacks we
assume that the attacker collects one keystream sample per (K, IV) pair. It is rea-
sonable to expect the results of our simulations to agree with simulations performed
with 230 (K, IV) pairs chosen uniformly at random and one keystream sample per
(K, IV) pair.

4 An inherent assumption is that the decimation factor has no bearing on the run-time
of the cipher.

Distinguishing Attacks on (Ultra-)Lightweight WG Ciphers 57

60%, the attacks on WG-A and WG-B respectively require not more than 221.47

and 249.24 keystream samples, and equivalent time. To the best of our knowledge,
these are the first attacks on the WG-A as well as the WG-B.

The low nonlinearity and the low correlation immunity of the WG transfor-
mations appear to be the main causes of these attacks. As pointed out in [6]
and [8], increasing the number of tap positions of the LFSRs used in the WG
ciphers may increase the complexity of the distinguishing attacks. For instance,
if there are 9 tap positions instead of 3 in the LFSR of WG-A61, our attack
will require 262.65 keystream samples for a success rate of 99.99%. Neverthe-
less, to preclude these attacks, we recommend using filter functions having good
correlation immunity.

Acknowledgements. The authors would like to thank the anonymous reviewers of
LightSec 2016 for their comments and suggestions.

A Derivation of the Probability Pr(ẑA = 0)

Let us define the Boolean variables Y1, Y2, Y3, Y4 and Y5 as follows:

Y1 = WA((sA[t + 20])d) ⊕ sA[t + 20](i) ,

Y2 = WA((sA[t + 11])d) ⊕ sA[t + 11](i) ,

Y3 = WA((sA[t + 9])d) ⊕ sA[t + 9](i) ,

Y4 = WA((sA[t])d) ⊕ (sA[t] �8 ω38)(i) ,

Y5 = zA(t+1) ⊕ zA(t−8) ⊕ zA(t−10) ⊕ zA(t−19) ,

for any i ∈ {0, 1, . . . , 7}, t ≥ 19. From Theorem 1, we construct the Boolean
truth table given in Table 7.

From Sect. 4.1, we get:

Pr(Y1 = 0) = pi , (16)
Pr(Y2 = 0) = pi , (17)
Pr(Y3 = 0) = pi , (18)
Pr(Y4 = 0) = qi , (19)
Pr(Y5 = 0) = Pr(ẑA = 0) . (20)

We assume that the events corresponding to Y1, Y2, Y3 and Y4 are independent
and the events corresponding to the rows of the truth table given in Table 7 are
mutually exclusive. Then, the truth table given in Table 7 and (16)–(20) yield:

Pr(ẑA = 0) = p3i qi+3(1−pi)2piqi+3p2i (1−pi)(1−qi)+(1−pi)3(1−qi) . ��

58 M. Joseph et al.

Table 7. Truth table that satisfies the relation between the Boolean variables
Y1, Y2, Y3, Y4 and Y5

Y1 Y2 Y3 Y4 Y5

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

References

1. Aagaard, M., Gong, G., Mota, R.K.: Hardware implementations of the WG-5 cipher
for passive RFID tags. In: IEEE International Symposium on Hardware-Oriented
Security and Trust, Proceedings of HOST 2013, pp. 29–34 (2013). doi:10.1109/
HST.2013.6581561

2. Ding, L., Jin, C., Guan, J., Wang, Q.: Cryptanalysis of lightweight WG-8 stream
cipher. IEEE Trans. Inf. Foren. Secur. 9(4), 645–652 (2014). doi:10.1109/TIFS.
2014.2307202

3. Ding, L., Jin, C., Guan, J., Zhang, S., Cui, T., Han, D., Zhao, W.: Cryptanalysis of
WG family of stream ciphers. Comput. J. 58(10), 2677–2685 (2015). doi:10.1093/
comjnl/bxv024

4. ECRYPT: The eSTREAM project. http://www.ecrypt.eu.org/stream
5. Fan, X., Gong, G.: Specification of the stream cipher WG-16 based confidentiality

and integrity algorithms. University of Waterloo Technical report, CACR 2013–06
(2013). http://cacr.uwaterloo.ca/techreports/2013/cacr2013-06.pdf

6. Fan, X., Mandal, K., Gong, G.: WG-8: a lightweight stream cipher for resource-
constrained smart devices. In: Singh, K., Awasthi, A.K. (eds.) QShine 2013.
LNICSSITE, vol. 115, pp. 617–632. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37949-9 54

7. Gong, G., Aagaard, M., Fan, X.: Lightweight stream cipher cryptosystems. US
Patent 8,953,784 (2015). https://www.google.com/patents/US8953784

http://dx.doi.org/10.1109/HST.2013.6581561
http://dx.doi.org/10.1109/HST.2013.6581561
http://dx.doi.org/10.1109/TIFS.2014.2307202
http://dx.doi.org/10.1109/TIFS.2014.2307202
http://dx.doi.org/10.1093/comjnl/bxv024
http://dx.doi.org/10.1093/comjnl/bxv024
http://www.ecrypt.eu.org/stream
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-06.pdf
http://dx.doi.org/10.1007/978-3-642-37949-9_54
http://dx.doi.org/10.1007/978-3-642-37949-9_54
https://www.google.com/patents/US8953784

Distinguishing Attacks on (Ultra-)Lightweight WG Ciphers 59

8. Gong, G., Aagaard, M., Fan, X.: Resilience to distinguishing attacks on WG-7
cipher and their generalizations. Cryptogr. Commun. 5(4), 277–289 (2013). doi:10.
1007/s12095-013-0089-7

9. Gong, G., Youssef, A.M.: Cryptographic properties of the Welch-Gong transfor-
mation sequence generators. IEEE Trans. Inf. Theory 48(11), 2837–2846 (2002).
doi:10.1109/TIT.2002.804043

10. Luo, Y., Chai, Q., Gong, G., Lai, X.: A lightweight stream cipher WG-7 for RFID
encryption and authentication. In: IEEE Global Telecommunications Conference,
Proceedings of GLOBECOM 2010, pp. 1–6 (2010). doi:10.1109/GLOCOM.2010.
5684215

11. Mandal, K., Gong, G., Fan, X., Aagaard, M.: Optimal parameters for the WG
stream cipher family. Cryptogr. Commun. 6(2), 117–135 (2013). doi:10.1007/
s12095-013-0091-0

12. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
doi:10.1007/3-540-48285-7 33

13. Nawaz, Y., Gong, G.: WG: a family of stream ciphers with designed randomness
properties. Inf. Sci. 178(7), 1903–1916 (2008). doi:10.1016/j.ins.2007.12.002

14. Orumiehchiha, M.A., Pieprzyk, J., Steinfeld, R.: Cryptanalysis of WG-7: a light-
weight stream cipher. Cryptogr. Commun. 4(3), 277–285 (2012). doi:10.1007/
s12095-012-0070-x

15. Rønjom, S.: Powers of subfield polynomials, cyclic codes and algebraic attacks with
applications to the WG stream ciphers. In: International Workshop on Coding and
Cryptography, WCC 2015 (2015). https://hal.inria.fr/hal-01276274

16. Rønjom, S., Helleseth, T.: Attacking the filter generator over GF (2m). In:
Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 264–275. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-73074-3 20

17. Seon, N.J., Golomb, S.W., Gong, G., Lee, H.K., Gaal, P.: Binary pseudorandom
sequences of period 2n − 1 with ideal autocorrelation. IEEE Trans. Inf. Theory
44(2), 814–817 (1998). doi:10.1109/18.661528

18. Waterloo Commericalization Office: Lightweight Security Algorithm for 4G Net-
works. https://uwaterloo.ca/research/waterloo-commercialization-office-watco/
business-opportunities-industry/lightweight-security-algorithm-4g-networks

19. TechConnect World, Innovation Conference, Expo: A Secure RFID System
for Product Anti-Counterfeiting. http://www.techconnectworld.com/World2015/
participate/innovation/pop.html?id=205

20. Wu, H., Preneel, B.: Resynchronization attacks on WG and LEX. In: Robshaw,
M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 422–432. Springer, Heidelberg (2006).
doi:10.1007/11799313 27

http://dx.doi.org/10.1007/s12095-013-0089-7
http://dx.doi.org/10.1007/s12095-013-0089-7
http://dx.doi.org/10.1109/TIT.2002.804043
http://dx.doi.org/10.1109/GLOCOM.2010.5684215
http://dx.doi.org/10.1109/GLOCOM.2010.5684215
http://dx.doi.org/10.1007/s12095-013-0091-0
http://dx.doi.org/10.1007/s12095-013-0091-0
http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1016/j.ins.2007.12.002
http://dx.doi.org/10.1007/s12095-012-0070-x
http://dx.doi.org/10.1007/s12095-012-0070-x
https://hal.inria.fr/hal-01276274
http://dx.doi.org/10.1007/978-3-540-73074-3_20
http://dx.doi.org/10.1109/18.661528
https://uwaterloo.ca/research/waterloo-commercialization-office-watco/business-opportunities-industry/lightweight-security-algorithm-4g-networks
https://uwaterloo.ca/research/waterloo-commercialization-office-watco/business-opportunities-industry/lightweight-security-algorithm-4g-networks
http://www.techconnectworld.com/World2015/participate/innovation/pop.html?id=205
http://www.techconnectworld.com/World2015/participate/innovation/pop.html?id=205
http://dx.doi.org/10.1007/11799313_27

Cryptanalysis of QTL Block Cipher

Mustafa Çoban1,2, Ferhat Karakoç2(B), and Mehmet Özen1

1 Department of Mathematics, Faculty of Arts and Sciences,
Sakarya University, Adapazarı, Sakarya, Turkey

ozen@sakarya.edu.tr
2 TÜBİTAK - BİLGEM - UEKAE, PK 74, 41470 Gebze, Kocaeli, Turkey

{mustafa.coban,ferhat.karakoc}@tubitak.gov.tr

Abstract. QTL is an ultra-lightweight block cipher designed for
extremely constrained devices. The cipher has two versions, QLT-64 and
QTL-128 supporting key lengths of 64 and 128 bits, respectively. In this
paper, we present the first third party cryptanalysis of QTL. We first
introduce related key distinguishers for full versions of the cipher. We
propose attacks on full QTL in single key model by using the related key
distinguishers. With these attacks we are able to reduce the security of
QTL-64 and QTL-128 by 16 bits. We also enumerate 248 weak keys and
propose a practical key recovery attack on full QTL-64 for these keys.
This attack requires 216 data and recovers the key in a time complexity
of 232 encryptions. We also give some observations disprove designers’
claims about number of active S-boxes and actual value of differential
branch number.

Keywords: Cryptography · Lightweight block cipher · Related-key
attacks · Self-similarity cryptanalysis · QTL cipher

1 Introduction

Lightweight cryptography is a hot topic in the crypto community because of the
industrial needs. A lot of lightweight block ciphers have been proposed for the
usage in constrained platforms. Some of them are PRIDE [1], SIMON and SPECK
[2], PRESENT [5], LED [7], ITUbee [10], PRINTcipher [11], Prince [6].

QTL is a recently published ultra-lightweight and competitive block cipher
according to the performance results given in the design paper [12]. The cipher
has a block size of 64 bits and supports key lengths of 64 and 128 bits for two
variants QTL-64 and QTL-128, respectively. The cipher is based on a variant of
generalized Feistel structure and QTL-64 (QTL-128) consists of 16 (20) rounds.
In each round, a 64-bit round key is used. Because of having a very simple key
schedule, round constants are used to differentiate the round functions.

In this paper, we present the first third party cryptanalysis of QTL in single
key and related key scenarios. We first introduce related key distinguishers with
a probability of one using complementation property [8] for full cipher in spite
of designers’ claim on the security against related key attacks. By using the
c© Springer International Publishing AG 2017
A. Bogdanov (Ed.): LightSec 2016, LNCS 10098, pp. 60–68, 2017.
DOI: 10.1007/978-3-319-55714-4 5

Cryptanalysis of QTL Block Cipher 61

technique given in [3], we present attacks on both versions of full QTL which
exploits the related key distinguishers. The time complexity of the attacks on full
QTL-64 and full QTL-128 is 248 and 2112 encryption operations, respectively. We
also observe that the round constants of QTL-64 have a property which reduces
the security of the cipher dramatically. By the help of this observation we are able
to mount a practical attack on full QTL-64 for 248 out of 264 keys performing
232 encryptions. The attack requires only 216 chosen plaintexts and negligible
memory. We experimentally confirmed the attack and found the correct key in
a few minutes using a standard PC. Finally, we present our results about the
number of differentially active S-Boxes and differential branch numbers which
are smaller than the ones given by the designers.

We organized the paper as follows. In Sect. 2, we introduce the notations used
in the paper and give the definition of QTL. In Sect. 3, we present full round related
key distinguishers and by using these distinguishers, we introduce attacks in sin-
gle key model on full QTL. We define 248 weak keys for QTL-64 and propose a
very practical key recovery attack on full QTL-64 in Sect. 4. In Sect. 5, we give our
observations on the number of differentially active S-boxes in three-round charac-
teristic and differential branch number. Section 6 concludes the paper.

2 Definition of QTL

2.1 Notation

Throughout the paper, we use the following notation. Xi
j denotes the left-most

j-th 16 bits of i-th round input where 0 ≤ j ≤ 3 and 0 ≤ i ≤ 15 (19) for QTL-64
(QTL-128). Kj and RKj are used for the left-most j-th 16 bits of master key K
and round key RK where K0 and RK0 are the left-most 16 bits of K and RK,
respectively. CON i

1 and CON i
2 represent 8-bit parts of ith round constant.

2.2 QTL

QTL [12] is a recently published ultra-lightweight block cipher. It has a variant
of Generalized Feistel Network structure and has two versions QTL-64 and QTL-
128 supporting 64 and 128-bit key lengths, respectively. Both versions have a
block size of 64 bits and use the same round function. The number of rounds for
QTL-64 and QTL-128 are 16 and 20, respectively. In one round, 64-bit round
key is used. While for QTL-64 round keys are the master key K, for QTL-128
the left and right halves of 128-bit master key are used in odd and even rounds,
respectively. 64-bit round key is divided into four 16 bits to be used in four F
functions as seen in Fig. 1.

The output of i-th round is computed as:

– Xi+1
0 = F2(Xi

2, RK1, CON i
2) ⊕ Xi

3

– Xi+1
2 = F1(Xi

0, RK0, CON i
1) ⊕ Xi

1

– Xi+1
1 = F1(Xi+1

2 , RK2, CON i
1) ⊕ Xi

0

– Xi+1
3 = F2(Xi+1

0 , RK3, CON i
2) ⊕ Xi

2

62 M. Çoban et al.

F1 F2

F1 F2

Xi
0 Xi

1 Xi
2 Xi

3

Xi+1
0 Xi+1

1 Xi+1
2 Xi+1

3

RK0 CON i
1 RK1

RK2 RK3

CON i
2

CON i
2CON i

1

Fig. 1. i-th round function

where the input of first round (X0) is the plaintext P and the ciphertext C is
Xr

2‖Xr
1‖Xr

0‖Xr
3 where r is 16 (20) for QTL-64 (QTL-128).

F1 and F2 permutations pictured in Fig. 2 are S-P-S Networks.

K

CON

X

Y

sl sl sl sl

sl sl sl sl

S-layer

P -layer

S-layer

Fig. 2. Fl function where l ∈ {1, 2}

The only difference between F1 and F2 is the usage of different S-boxes. The
S-boxes s1 and s2 used in F1 and F2 are the PRESENT S-box [5] and one of
the S-boxes used in mCRYPTON [13], respectively. Note that the left-most bits
entering the S-boxes are the most significant bits. In F permutation, 8-bit round
constant part and 16-bit round key part are xored to the left most 8 bits and
16 bits of the input, respectively. The result is divided into four 4 bits and for
each 4 bits the S-box is applied. Then the bit permutation given in Table 1 is
performed. Finally, the S-box operation is again used on the bit permutation
output to produce the output of F permutation.

Cryptanalysis of QTL Block Cipher 63

Table 1. Bit permutation. Note that the left most bit position is 0.

Bit position in the input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit position in the output 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

The S-boxes and round constants are given in Tables 2 and 3, respectively. A
detailed description of the algorithm can be found in [12].

Table 2. S-boxes

Input 0 1 2 3 4 5 6 7 8 9 a b c d e f

Output of s1 c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

Output of s2 4 f 3 8 d a c 0 b 5 7 e 2 6 1 9

Table 3. Round constants

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

For QTL-64 CON i
1 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

CON i
2 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

For QTL-128 CON i
1 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13

CON i
2 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27

3 Single Key Recovery Attacks from Related Key
Distinguishers

The designers claim that QTL is also secure against related key attacks giving
bounds on the number of active S-boxes in the related key scenario. However,
because of the complementation property [8] of QTL, we show that by encrypting
different plaintexts under related keys both versions of QTL can be distinguished
from a random permutation trivially. In addition, by following the idea in [3] we
use the related key distinguishers to attack on full QTL in single key scenario.
We present the related key distinguishers and the attack only for QTL-64, the
same distinguishers and a similar attack are also valid for QTL-128.

Let δ be any non-zero 16-bit value, P = P0‖P1‖P2‖P3, and P ′ = (P0 ⊕
δ)‖(P1 ⊕ δ)‖(P2 ⊕ δ)‖(P3 ⊕ δ) be two plaintexts. C and C ′ are the corresponding
ciphertexts of P and P ′ under key K and K ′ = K ⊕ (δ‖δ‖δ‖δ), respectively.
Since the 16-bit inputs of F functions and 16-bit round key parts will have the
same difference, the xor operations cancel the differences and the output of F
functions have zero-differences with a probability of 1. It is trivial to see from
the definition of the cipher that each round output have the same difference
δ‖δ‖δ‖δ. As a result, the probability of having the equation C ⊕ C ′ = δ‖δ‖δ‖δ
is 1 while it is expected to be 2−64 for a random permutation.

64 M. Çoban et al.

Here for each non-zero value of δ we have a deterministic distinguisher that
is we have 2|δ| −1 = 216−1 distinguishers in total. By using these distinguishers,
we are able to reduce the security of QTL-64 by 16 bits applying the attack given
in Algorithm 1.

Algorithm 1. Single key recovery attack by using related key distinguishers
1: Take a plaintext P0

2: for each possible value of δ do
3: Get corresponding ciphertext Cδ for P0 ⊕ (δ‖δ‖δ‖δ).
4: Store δ and Cδ ⊕ (δ‖δ‖δ‖δ) in a hash table T index by Cδ ⊕ (δ‖δ‖δ‖δ).
5: end for
6: for each possible value of K1, K2, K3 do
7: Compute C encrypting P0 with the key (016‖K1‖K2‖K3).
8: Search C in Table T .
9: if a match is found then

10: Return (δ‖(K1 ⊕ δ)‖(K2 ⊕ δ)‖(K3 ⊕ δ)) as the correct key where δ is the value
in the matching row in Table T .

11: end if
12: end for

In Algorithm 1, Table T has 216 values and 248 computed ciphertexts are
searched in the table. Thus 264 possible match is checked in Step 9. Since the
probability of the condition in this step is 2−64, Step 10 is reached approximately
two times, one for the correct key and one for a wrong key.

The complexity of the attack is 248 encryptions which can be seen easily from
the attack algorithm. The attack requires 216 chosen plaintexts and needs 216

(64+16)-bit memory.
With this attack we give another example which shows that although related

key attack model is sometimes controversial and some cipher proposals ignore
this type of attacks, it may be important to design a cipher regarding related
key attacks to make the ciphers secure against single key attacks.

4 A Key Recovery Attack on QTL-64 for Weak Keys

Because of the simple and symmetric structure of the key schedule, round con-
stants were used to break the similarity between round functions to prevent the
cipher from self similarity attacks such as slide [4] and reflection [9].

We propose a practical key recovery attack on full QTL-64 by exploiting
the symmetry in rounds and a relation between round constants. Our attack
resembles the attack on reduced-round ITUbee in a related key scenario given
in [14]. For some reduced-round ITUbee, the xor difference of the first i-th and
last i-th round constants have same difference. [14] uses this property to make
all non-linear parts in the cipher passive in a related key scenario. Like ITUbee,
round function of QTL-64 has a symmetric structure except for round constant

Cryptanalysis of QTL Block Cipher 65

operation. Full QTL-64 has the same property on round constants which is for
0 ≤ i ≤ 15 (CON i

1‖CON i
2) ⊕ (CON15−i

1 ‖CON15−i
2) = 0x0F0F . By using this

property and giving a 16-bit condition on the key, we are able to attack on full
QTL-64. Because of the 16-bit condition, our attack works only for 248 out of
264 keys. We call the keys having the property K0⊕K2 = K1⊕K3 as weak keys.
For these keys, we present a practical key recovery attack on the full cipher.

Let P = P0‖P1‖P2‖P3 and C = C0‖C1‖C2‖C3 be a plaintext and the
corresponding ciphertext produced by QTL-64 under a weak key K = K0 ‖
K1 ‖ K2 ‖ (K1 ⊕ (K0 ⊕ K2)). F1(X,K0, CON i

1) equals to F1(X ⊕ 0x0F00 ⊕
K0 ⊕ K2,K2, CON15−i

1) since the inputs of the S-P-S layer for the two inputs
are the same (X ⊕ K0 ⊕ (CON i

1‖0x00)) = (X ⊕ 0x0F00 ⊕ K0 ⊕ K2 ⊕ K2 ⊕
(CON15−i

1 ‖0x00)) (remember that CON i
1⊕CON15−i

1 = 0x0F). A similar result
can be found as F2(X,K1, CON i

2) = F2(X ⊕0x0F00⊕K0 ⊕K2,K3, CON15−i
2).

Because of these two equations, encryption of P ′ = (C0 ⊕ 0x0F00 ⊕ K0 ⊕
K2)‖(C1 ⊕ 0x0F00 ⊕ K0 ⊕ K2)‖(C2 ⊕ 0x0F00 ⊕ K0 ⊕ K2)‖(C3 ⊕ 0x0F00 ⊕
K0 ⊕ K2) under the same weak key gives the ciphertext with the equation
C ′ = (P0 ⊕ 0x0F00 ⊕ K0 ⊕ K2)‖(P1 ⊕ 0x0F00 ⊕ K0 ⊕ K2)‖(P2 ⊕ 0x0F00 ⊕
K0 ⊕ K2)‖(P3 ⊕ 0x0F00 ⊕ K0 ⊕ K2) with a probability of 1 as seen in Fig. 3.

We mount a practical key recovery attack by using this distinguisher. The
attack procedure is given in Algorithm 2.

F2

K0 CON0
1

F1

F1 F2

K1 CON0
2

K2 CON0
1 CON0

2K3

F2

K0 CON15
1

F1

F1 F2

K1 CON15
2

K2 CON15
1 CON15

2K3

F2

K2 CON15
1

F1

F1 F2

K3 CON15
2

K0 CON15
1 CON15

2K1

F2

K2 CON0
1

F1

F1 F2

K3 CON0
2

K0 CON0
1 CON0

2K1

P0 P1 P2 P3

X1
0 X1

1 X1
2 X1

3

X15
3X15

2X15
1X15

0 X15
0 ⊕ β X15

1 ⊕ β X15
2 ⊕ β X15

3 ⊕ β

X1
3 ⊕ βX1

2 ⊕ βX1
1 ⊕ βX1

0 ⊕ β

C0 C1 C2 C3 C3 ⊕ βC2 ⊕ βC1 ⊕ βC0 ⊕ β

P0 ⊕ β P1 ⊕ β P2 ⊕ β P3 ⊕ β

Fig. 3. Distinguisher on full QTL-64. β = (0x0F00 ⊕ K0 ⊕ K2).

66 M. Çoban et al.

Algorithm 2. Practical Key Recovery Attack on QTL-64 for weak keys
1: Input: One plaintext-ciphertext pair (P = P0‖P1‖P2‖P3, C = C0‖C1‖C2‖C3)
2: Output: 64-bit key (K = (K0‖K1‖K2‖K3))
3: for all possible values of 16-bit (K0 ⊕ K2) do
4: Compute β = 0x0F00 ⊕ K0 ⊕ K2.
5: Ask to the encryption oracle for the ciphertext C′ = C′

0‖C′
1‖C′

2‖C′
3 of P ′ =

(C0 ⊕ β)‖(C1 ⊕ β)‖(C2 ⊕ β)‖(C3 ⊕ β).
6: if (C′

0 ⊕ P0) = (C′
1 ⊕ P1) = (C′

2 ⊕ P2) = (C′
3 ⊕ P3) = β then

7: for all possible values of (K0, K1) do
8: if 64-bit key (K0, K1, K0 ⊕ (K0 ⊕ K2), K1 ⊕ (K0 ⊕ K2)) satisfies a (P, C)

pair then
9: Output the key

10: end if
11: end for
12: end if
13: end for

In Step 5 in Algorithm2, 216 query to the encryption oracle are performed
for all possible values of K0⊕K2. For the correct value of K0⊕K2, the condition
in Step 6 will be satisfied if the unknown key is a weak key. On the other hand,
if the guess is not correct or the key is not a weak key, the condition is passed
with a probability of 2−64. Thus, the probability of satisfying the condition in
Step 6 more than one times is 2−48, that is only for the correct guess Step 7
is reached with a high probability. In Step 8, 232 different values for K0 and
K1 are checked by using a plaintext and ciphertext pair. As a result, the attack
algorithm detects whether or not the key is weak in a time complexity of 216 and
returns correct key if the key is weak performing 232 encryption queries. In the
attack, 216 adaptively chosen plaintexts are used and the memory requirement
is negligible. We tested the attack on a standard PC and were able to recover
the key in a few minutes.

5 Other Observations

5.1 Branch Number

It is stated in the proposal that the differential branch number in F1 and F2 is
5. Since the output values of one active S-box can have only one-bit difference,
the second S-box layer in the F1 and F2 can have only one active S-box. By
this observation we conclude that the differential branch number in F1 and F2

is only 2.

5.2 Differential Properties

Designers claimed that any three-round differential characteristic has at least
21 active S-boxes. We found the following three-round differential characteristic

Cryptanalysis of QTL Block Cipher 67

Table 4. 3-round differential characteristic in hexadecimal form

First round input difference 0003 0004 0008 0800

Intermediate difference in first round 0007 0003 0000 0008

Second round input difference 0000 0000 0007 0008

Intermediate difference in second round 0000 0000 0000 0007

Third round input difference 0000 0000 0000 0007

Intermediate difference in third round 0000 0000 0007 0000

Third round output difference 0007 0000 0000 0008

which contains only 10 active S-boxes. This shows that the result about differ-
ential active S-boxes for any consecutive three-round is much lower than the
number given by designers. In Table 4, we present a 3-round differential charac-
teristic with 10 active S-Boxes:

In the differential characteristic, there are two active F1 and three active F2

functions. In the first round, two F1 and one F2 functions are active. We pass
first F1 and F2 with the differential path 0003 S−→ 0001

P,S−−→ 0003 and 0008 S−→
0004

P,S−−→ 0800, respectively. We pass second F1 with 0007 S−→ 0001
P,S−−→ 0003.

In the second round, one F2 function is active. First F2 function in second round
and second F2 function in third round have the same differential trail which is
0007 S−→ 0001

P,S−−→ 0008. All active Fi functions in this characteristic have 2
active S-boxes. Therefore, it has 10 active S-boxes. This result shows there is a
differential path having less number of active S-boxes than the minimum number
of S-boxes claimed by the designers.

6 Conclusion

We have analyzed the security of QTL. We have introduced related key distin-
guishers for full two versions of the cipher in contrast to the claims of designers.
We have also proposed attacks taking advantage of the related key distinguish-
ers by using the technique given in [3]. With these attacks we have shown that
QTL-64 and QTL-128 provides at most 48 and 112-bit security, respectively.
Although QTL-64 has 16 rounds (actually each round consists of two rounds)
and uses S-P-S structure in each F functions, we present a practical key recov-
ery attack on full QTL-64 for 248 weak keys showing that a wrong choice for
round constants can reduce the security of the cipher dramatically. Moreover, we
disprove the claims of the designers about number of active differential S-boxes
and branch number.

68 M. Çoban et al.

References

1. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44371-2 4

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference, San Francisco, CA, USA, 7–11 June 2015,
pp. 175:1–175:6. ACM (2015)

3. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptology
7(4), 229–246 (1994)

4. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999). doi:10.1007/3-540-48519-8 18

5. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

6. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

7. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23951-9 22

8. Hellman, M.E., Merkle, R.C., Schroeppel, R., Washington, L., Diffie, W., Pohlig,
S., Schweitzer, P.: Results of an Initial Attempt to Cryptanalyze the NBS Data
Encryption Standard. Information Systems Laboratory, Stanford University (1976)

9. Kara, O.: Reflection cryptanalysis of some ciphers. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 294–307. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89754-5 23

10. Karakoç, F., Demirci, H., Harmancı, A.E.: ITUbee: a software oriented lightweight
block cipher. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp.
16–27. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40392-7 2

11. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher:
a block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES
2010. LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15031-9 2

12. Li, L., Liu, B., Wang, H.: QTL: a new ultra-lightweight block cipher. Microprocess.
Microsyst. (2016)

13. Lim, C.H., Korkishko, T.: mCrypton – a lightweight block cipher for security of
low-cost RFID tags and sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006). doi:10.1007/
11604938 19

14. Soleimany, H.: Self-similarity cryptanalysis of the block cipher ITUbee. IET Inf.
Secur. 9(3), 179–184 (2015)

http://dx.doi.org/10.1007/978-3-662-44371-2_4
http://dx.doi.org/10.1007/3-540-48519-8_18
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-34961-4_14
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/978-3-540-89754-5_23
http://dx.doi.org/10.1007/978-3-642-40392-7_2
http://dx.doi.org/10.1007/978-3-642-15031-9_2
http://dx.doi.org/10.1007/978-3-642-15031-9_2
http://dx.doi.org/10.1007/11604938_19
http://dx.doi.org/10.1007/11604938_19

A Brief Comparison of SIMON and SIMECK

Stefan Kölbl(B) and Arnab Roy

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
{stek,arroy}@dtu.dk

Abstract. Simeck is a new lightweight block cipher design based on
combining the design principles of the Simon and Speck block cipher.
While the design allows a smaller and more efficient hardware implemen-
tation, its security margins are not well understood. The lack of design
rationals of its predecessors further leaves some uncertainty on the secu-
rity of Simeck.

In this work we give a short analysis of the impact of the design
changes by comparing the upper bounds on the probability of differ-
ential and linear trails with Simon. We also give a comparison of the
effort of finding those bounds, which surprisingly is significantly lower
for Simeck while covering a larger number of rounds at the same time.

Furthermore, we provide new differentials for Simeck which can cover
more rounds compared to previous results on Simon and study how to
choose good differentials for attacks and show that one can find better
differentials by building them from a larger set of trail with initially lower
probability.

We also provide experimental results for the differentials for Simon32
and Simeck32 which show that there exist keys for which the probability
of the differential is significantly higher than expected.

Based on this we mount key recovery attacks on 19/26/33 rounds of
Simeck32/48/64, which also give insights on the reduced key guessing
effort due to the different set of rotation constants.

Keywords: SIMON · SIMECK ·Differential cryptanalysis ·Block cipher

1 Introduction

Simeck is a family of lightweight block ciphers proposed in CHES’15 by Yang,
Zhu, Suder, Aagaard and Gong [13]. The design combines the Simon and Speck
block ciphers proposed by NSA [4], which leads to a more compact and efficient
implementation in hardware. The block cipher Simon is built by iterating a very
simple round function which uses bitwise AND and rotation while the block
cipher Speck uses modular addition as non-linear operations. The designers of
Simeck chose a different set of rotation constants from Simon to construct the
round function.

The efficiency of Simon and Speck on hardware and software platform has
a natural appeal to use similar design principles for constructing efficient primi-
tives. The designers of Simon and Speck do not provide rationales for the origi-
nal choices apart from implementation aspects. These modifications are likely to
c© Springer International Publishing AG 2017
A. Bogdanov (Ed.): LightSec 2016, LNCS 10098, pp. 69–88, 2017.
DOI: 10.1007/978-3-319-55714-4 6

70 S. Kölbl and A. Roy

have an impact on the security margins, which often are already small for light-
weight designs and can be a delicate issue. Hence it is important to understand
the effect of the parameter change on the security of Simon like design.

The Simon block cipher family has been studied in various paper [1,2,5,9,
10,12] and the attacks covering the most rounds are based on differential and
linear cryptanalysis, which therefore will also be the focus of this work. However
very few analyses [7] were done to study the choice of parameters for Simon and
Speck and their effect on the security of these block ciphers.

Our Results. In this paper we give a first analysis on the impact of these
design changes by comparing the bounds for differential and linear trails with
the corresponding variants of Simon. An unexpected advantage for Simeck is,
that it takes significantly less time to find those while also covering more rounds
(see Table 1). Additionally we investigate strategies to find differentials which
have a high probability and are more suitable for efficient attacks.

Surprisingly, we can find differentials with higher probability for Simeck32
by not using the input and output difference from the best differential trails.
Furthermore, we also provide new differentials which cover 4 and 5 rounds for
Simeck48 and Simeck64 respectively which also have a slightly higher proba-
bility compared to previous results on Simon.

We verified the estimated probability with experiments for both Simon32
and Simeck32 to confirm our model and also noticed that for some keys a
surprisingly large number of valid pairs can be found.

This is followed by key-recovery attacks for reduced round versions of Simeck
(see Table 6). These attacks are similar to previous work [5] done on Simon and
give insight into the lower complexity for the key recovery process for Simeck
as we need to guess fewer key bits.

Table 1. A comparison between the number of rounds for which upper bounds on the
probability of differential and linear trails exist, the probability of differentials utilized
in attacks and the best differential attacks on Simon and Simeck. Results contributed
by this work are marked in bold.

Cipher Rounds Upper Bounds Differentials Key Recovery

differential linear Rounds Pr(α −→ β)

Simon32/64 32 32 32 13 2−28.79 [5] 21 [11]

Simeck32/64 32 32 32 13 2−27.28 22 [8]

Simon48/96 36 19 20 16 2−44.65 [10] 24 [11]

Simeck48/96 36 36 36 20 2−43.65 26 [8]

Simon64/128 44 15 [7] 17 21 2−60.21 [10] 29 [11]

Simeck64/128 44 40 41 26 2−60.02 35 [8]

A Brief Comparison of SIMON and SIMECK 71

2 The SIMECK Block Cipher

Simeck2n is a family of block ciphers with n-bit word size, where n = 16, 24, 32.
Each variant has a block size of 2n and key size of 4n giving the three variants
of Simeck: Simeck32/64, Simeck48/96 and Simeck64/128. As for each block
size there is only one key size we will omit the key size usually.

Fig. 1. The round function of Simeck.

The block cipher is based on the Feistel construction and the round function
f is the same as in Simon apart from using (5, 0, 1) for the rotation constants
(as depicted in Fig. 1). The key-schedule on the other hand is similar to Speck,
reusing the round function to update the keys. The key K is split into four words
(t2, t1, t0, k0) and the round keys k0, . . . , kr−1 are given by:

ki+1 = ti

ti+3 = ki ⊕ f(ti) ⊕ C (1)

3 Preliminaries

Differential cryptanalysis is a powerful tool for analyzing block ciphers using a
chosen plaintext attack. The idea is to find a correlation between the difference
of a pair of plaintexts and the corresponding pair of ciphertexts. Resistance
to differential cryptanalysis is an important design criteria but it is difficult,
especially for designs like Simon, to proof the resistance against it.

Definition 1. A differential trail Q is a sequence of difference patterns

Q = (α0
f0−→ α1

f1−→ · · · αr−1
fr−1−−−→ αr). (2)

In general, as the key is unknown to an attacker, we are interested in the
probability that a random pair of inputs follows such a differential trail and the
goal for the attacker is to find a correlation between input and output difference
with high probability.

72 S. Kölbl and A. Roy

Definition 2. The probability of a differential trail Q is defined as

Pr(α0
f0−→ α1

f1−→ · · · αr−1
fr−1−−−→ αr) =

r−1∏

t=0

Pr(αt → αt+1) (3)

and gives the probability that a random input follows the differential trail. The
last equality holds if we assume independent rounds.

In most attack scenarios we are not interested in the probability of a differ-
ential trail, as we are only interested in the input difference α0 and the output
difference αr, but not what happens in between.

Definition 3. The probability of a differential is the sum of all r round differ-
ential trails

Pr(α0
f−→ αr) =

∑

α1,...,αr−1

(α0
f0−→ α1

f1−→ · · · αr−1
fr−1−−−→ αr) (4)

which have the same input and output difference.

4 Analysis of SIMON and SIMECK

In [7] the differential and linear properties of Simon were studied, including
variants using a different set of rotation constants. Following up on this work,
we can use the same methods to analyze the round function of Simeck. This
allows us to find lower bounds for the probability of a differential trail resp.
square correlation of a linear trail for a given number of rounds.

4.1 Diffusion

An important criteria for the quality of a round function in a block cipher is the
amount of diffusion it provides, i.e. how many rounds r it takes until each bit
at the input effects all bits of the output. For Simon this was already studied
in [7] for the whole parameter set and we only explicitly state the comparison
to Simeck here in Table 2.

Table 2. Number of rounds required for full diffusion.

Wordsize 32-bit 48-bit 64-bit

Simon 7 Rounds 8 Rounds 9 Rounds

Simeck 8 Rounds 9 Rounds 11 Rounds

A Brief Comparison of SIMON and SIMECK 73

4.2 Bounds on the Best Differential Trails

We carried out experiments for the parameter set of Simeck using CryptoSMT1

to find the optimal differential and linear trails for Simeck32, Simeck48 and
Simeck64 and compare it with the results on Simon. The results of this exper-
iment are given in Fig. 2. The bounds on the square correlation for linear trails
are given in the Appendix.

Fig. 2. Lower bounds on the probability of the best differential trails for variants of
Simon and Simeck. For the different variants of Simeck the bounds are the same.

While the bounds for Simon32 and Simeck32 are still comparable we noticed
a significant difference for the larger variants. While the required number of
rounds for Simon48, such that the probability of the best trail is less than 2−48,
is 16, Simeck48 achieves the same property only after 20 rounds. It is also
interesting to note that the bounds for the different word sizes of Simeck are
the same, which is not the case for Simon.

In our experiments we noticed that the different set of rotation constants plays
a huge role in the running time of the SMT solver. For instance finding the bounds
in Fig. 2 took 51 h for Simon32 and 10 h for Simeck322. Especially for larger block
sizes it allows us to provide bounds for a significant larger number of rounds includ-
ing full Simeck48. For Simon64 computing the bounds up to 15 rounds takes
around 19 h, while the same process only takes around 30 min for Simeck64. We
computed the bounds for Simeck64 up to round 40 in around 53 h.

1 CryptoSMT https://github.com/kste/cryptosmt Version: 70794d83.
2 Using Boolector 2.0.1. running on an Intel Xeon X5650 2.66 GHz 48 GB RAM (1 core).

https://github.com/kste/cryptosmt

74 S. Kölbl and A. Roy

4.3 Differential Effect in SIMON and SIMECK

As noted in previous works Simon shows a strong differential resp. linear hull
effect, which invalidates an often made assumption that the probability of the
best trail can be used to estimate the probability of the best differential. There-
fore bounds on differential and linear trails have to be treated with caution. The
choice of constants for Simon-like round functions also plays a role in this as
shown in [7].

One approach to find good differentials is to first find the best trail for a
given number of rounds of Simeck using CryptoSMT [6] and then find a large
set of trails with the same input and output difference. However, as we will see
later this will not always give the highest probability differential. The results of
these experiments are summarized in Table 3.

If we compare those with previous results on Simon we can cover more
rounds. The best previous differential attack by Wang, Wang, Jia and Zhao [11]
utilizes a 13-round differential for Simon32, a 16-round differential for Simon48
and a 21-round differential for Simon64. We show that with the same or slightly
better probability (Table 1) differentials can be found for a higher number of
rounds for both Simeck48 and Simeck64.

Table 3. Overview of the differentials we found for Simeck which can likely be used
to mount attacks. The probability is given by summing up all trails up to probability
2max taking a time T .

Cipher Rounds Q = (α → β) log2(p) max T

Simeck32 13 (8000, 4011) → (4000, 0) −27.28 −49 17 h

Simeck48 20 (20000, 450000) → (30000, 10000) −43.65 −98 135 h

Simeck48 20 (400000, e00000) → (400000, 200000) −43.65 −74 93 h

Simeck48 21 (20000, 470000) → (50000, 20000) −45.65 −100 130 h

Simeck64 25 (2, 40000007) → (40000045, 2) −56.78 −90 110 h

Simeck64 26 (0, 4400000) → (8800000, 400000) −60.02 −121 120 h

While we let our experiments run for a few days, the probability only
improves marginally after a short time. For instance, for Simeck32 and
Simeck48 the estimates after three minutes are only 2−2 lower than the final
results and after two hours the improvements are very small. Some additional
details on the differential utilized in the key-recovery attack on Simeck48 can
be found in the Appendix 9, including the exact running times to obtain the
results.

4.4 Choosing a Good Differential for Attacks

For an attack we want a differential with a high probability, but also the form
of the input and output difference can have an influence on the resulting attack

A Brief Comparison of SIMON and SIMECK 75

complexity. Ideally we want differentials with a sparse input/output difference
resp. of the form (x, 0) → (0, x). When expanding such a differential it leads to
a truncated differential with fewer unknown bits which reduces the complexity
in the key recovery part of the attack as will be seen later.

The best differential trail of the form (x, 0) −→ (0, x) only has a probabil-
ity of 2−42 for Simeck32 resp. 2−47 for Simon32. The corresponding differ-
ential improves the probability to ≈ 2−36.7, but is still unlikely to be useful
for an attack. If we relax the restriction and allow differentials of the form
(x, x) −→ (0, x) we can find differential trails with a probability of 2−38 (the
same bound exists for Simon32). However, the corresponding differentials still
seem impractical for an attack. As both this approaches fail for finding good
differentials we do not impose any restrictions on the form of the input resp.
output difference of the differentials.

Table 4. Number of differential trails for 13-round Simeck32.

Pr(α
f13

−−→ β) Trails

2−32 640

2−33 128

2−34 31616

2−35 49152

We looked at all 40 rotation invariant differentials constructed from the best
differential trail with probability 2−32 for Simeck32 (see Table 4). There are only
two possible distributions for the trails contributing to the differential, which we
denote as Type 1 and Type 2 (see Fig. 3 and Table 8). There are 8 trails of
Type 1, all with at least one word having 0 difference, and the corresponding
differential gives a slightly higher probability. For a list of these differentials see
Table 7.

However, by expanding our search we could find a better differential. By not
using the optimal differential trail we can find the differential (8000, 4011) −→
(4000, 0) which has a higher probability even though the best trail contributing
only has a probability of 2−36. This is due to the higher number of trails con-
tributing to this specific differential (see Type 3 in Fig. 3 respectively Table 8).

For 20-round Simeck48 the best trails with pattern only has a probability
of 2−62 and for (x, x) → (0, x) it is 2−54. The corresponding differentials are not
usable for an attack in this case. Therefore, we again do not impose any of these
restrictions and use the 20-round trails with highest probability. For Simeck48
there are 768 such trails with a probability of 2−50 (32 rotation invariant) and
we choose the one where the input and output difference is most sparse.

For Simeck64 the best differentials we found are also based on the best trail
and given in Table 3.

76 S. Kölbl and A. Roy

Fig. 3. Distribution of trails contributing to the differentials for 13 rounds of Simeck32
and the accumulated probability by summing up all trails up to a specific probability.

4.5 Experimental Verification

While the previous approach can give a good estimate for the probability one can
expect for a differential, it is not entirely clear how good these approximations
are. As both Simon32 and Simeck32 allow us to run experiments on the full
codebook we can verify the probabilities at least for these variants. For a random
function we expect that the number of valid pairs are a Poisson distribution.

Definition 4. Let X be a Poisson distributed random variable representing the
number of pairs (a, b) with values in F

n
2 following a differential Q = (α

f−→ β),
that means f(a) ⊕ f(a ⊕ α) = β, then

Pr(X = l) =
1
2
(2np)l e

−(2np)

l!
(5)

where p is the probability of the differential.

We ran experiments for both Simon32 and Simeck32 reduced to 13 rounds
by encrypting the full code book for a large number of random keys. The dif-
ferential we used for Simon32 is (0, 40) −→ (4000, 0), which is also used in the
best attack so far [11] and has an estimated probability of 2−28.56. The expected
number of valid pairs is E(X) ≈ 5.425. We encrypted the full code book using
202225 random master keys and counted the number of unique pairs. The full
distribution is given in Fig. 4. The distribution follows the model in Eq. 5, but
we observe some unusual high number of pairs for some keys. For example the
key K = (k0, k1, k2, k3) = (8ec1, 1cf8, e84a, cee2) gives 1082 pairs following the
differential. If 13 rounds of Simon32 would behave like a random function, this
would only occur with an extremely low probability Pr(X = 1082) � 2−1000.

For Simeck32 we used the new differential (8000, 4011) −→ (4000, 0) with
E(X) ≈ 13.175. Again, we encrypt the full code book for 134570 random keys
and the distribution follows our model as can be seen in Fig. 5. Similar, to Simon
for some keys a surprisingly large number of valid pairs can be found. In both

A Brief Comparison of SIMON and SIMECK 77

Fig. 4. Distribution of how many times we observe l valid pairs for the differential

(0, 40)
f13

−−→ (4000, 0) for Simon32 using a random key.

Fig. 5. Distribution of how many times we observe l valid pairs for the differential

(8000, 4011)
f13

−−→ (4000, 0) for Simeck32 using a random key.

cases our method provides a good estimate for the probability of a differential
and we can use Eq. 5 for estimating the number of pairs.

5 Recovering the Key

In the following subsection we describe the key recovery attack on Simeck48
based on the differential given in Table 3. Extending this differential both in
forward and backward directions gives the truncated differential shown in Table 5
which will be used in the attack. The input difference to round r is denoted as
Δr and kr denotes the round key for round r. The difference in the left resp.
right part of the state we denote as ΔLr and ΔRr.

78 S. Kölbl and A. Roy

Table 5. Truncated differential obtained by extending (400000, e00000)
20−→

(400000, 200000) in both directions until all bits are unknown.

Round ΔL ΔR ∗ ∗
−5 ***0***0**************** ************************ 22 24

−4 ***000000***0*********** ***0***0**************** 17 22

−3 ***00000000000***0****1* ***000000***0*********** 11 17

−2 ***0000000000000000***01 ***00000000000***0****1* 6 11

−1 111000000000000000000000 ***0000000000000000***01 0 6

0 010000000000000000000000 111000000000000000000000 0 0

20 rounds

20 010000000000000000000000 001000000000000000000000 0 0

21 1*100000000000000000*000 010000000000000000000000 2 0

22 ***000000000000*000***01 1*100000000000000000*000 7 2

23 ***0000000*000***0****1* ***000000000000*000***01 12 7

24 ***00*000***0*********** ***0000000*000***0****1* 18 12

25 ***0***0**************** ***00*000***0*********** 22 18

26 ************************ ***0***0**************** 24 22

5.1 Attack on 26-Round SIMECK48

Our attack on 26-round Simeck48 uses four 20-round differentials in a similar
way as in [5]. Let Di denote the differentials

D1 : (400000, e00000)
f20

−−→ (400000, 200000)

D2 : (800000, c00001)
f20

−−→ (800000, 400000)

D3 : (000004, 00000e)
f20

−−→ (000004, 000002)

D4 : (000008, 00001c)
f20

−−→ (000008, 000004)

each having probability ≈ 2−44. We add 4 rounds at the end and 2 rounds on
top and obtain the truncated difference (see Table 5). The truncated difference
at round 0 for each differential is given by

000000000000000001, ***00000000000***0****1*

0000000000000000*01*, **00000000000***0****1**

000000000000000***01***0, 0000000000***0****1****0

00000000000000***01***00, 000000000***0****1****00 .

A Brief Comparison of SIMON and SIMECK 79

Fig. 6. Filtering for the correct pairs which we use in the key guessing part. (The key
has no influence on the input to the non-linear function in the last round.)

By identifying the unknown and known bit positions in these differentials we
can construct a set of 230 plaintext pairs where the bit positions corresponding
to the aligned 0s in the truncated differentials are fixed to an arbitrary value for
all plain-texts. By guessing 6 round key bits we can also identify the 231 pairs
satisfying the difference (ΔL2,ΔR2) after the first two round encryption. Hence
we can get 4 sets of 231 pairs of plain-texts where the difference is satisfied after
the first two rounds of encryption. By varying the fixed bit positions we can get
4 sets of 246 pairs of plain-texts, each satisfying the difference after two rounds
for each key guess.

Filtering the Pairs. First we encrypt the 246 plaintext pairs. Then we unroll
the last round and use the truncated differential to verify if a pair is valid.
This is possible due to the last key addition not having any influence on the
difference (ΔL25,ΔR25). As there are 12 + 17 bits known in this round we will
have 246−29 = 217 plaintext pairs left (Fig. 6).

Key Guessing. In the key guessing phase we guess the necessary round key
bits (or linear combination of round key bits) to verify the difference at the
beginning of round 22, i.e. Δ22. For each differential we counted that a total of
30 round key bits and linear combinations of round key bits are necessary to be
guessed during this process. The required key bits DK

1 for D1 are

K23 = {2, 17}
K24 = {2, 3, 4, 8, 12, 16, 17, 18, 22}
K25 = {1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23}

We describe this process for one round in Fig. 7. An interesting difference to
Simon in the key guessing part is that the required number of key guesses is
much lower, as many bits required to guess coincide when partially recovering

80 S. Kölbl and A. Roy

Fig. 7. Outline of the process of key guessing and filtering for a single round.

the state which can reduce the overall complexity. This is always the case if one
of the rotation constants is zero, but similar effects can occur with other choices
as well.

For the key guessing part, we keep an array of 230 counters and increment a
counter when it is correctly verified with the difference after partial decryption
of the cipher-text pairs. For each differential we can verify the remaining 19(=
48 − 29) bits with the key guessing process. For the 230 counters we expect
to have (217 × 230)/219 = 228 increments. The probability of a counter being
incremented is 228/230 = 2−2. Since 4 correct pairs are expected to be among
the filtered pairs, the expected number of counters having at least 4 increments is

230 · (1 − Pr(X < 4)) ≈ 217.13. (6)

We observe that there are 18 common key guesses required for the differentials
D1 and D2. Hence combining the corresponding array of counters T1 and T2

we can get 217.13 × 217.13/218 = 216.26 candidates for 42 bits. Continuing in
the same way we observe that |DK

3 ∩ (DK
1 ∪ DK

2)| = 24, hence we get 216.26 ×
217.13/224 = 29.39 candidates for 48 bits. Using D4 this can be further reduced,
as |DK

4 ∩ (DK
1 ∪DK

2 ∪DK
3)| = 28 we expect 29.39 × 217.13/228 ≈ 2−1.5 candidates

for 50 bits. For the remaining 46 bits we perform an exhaustive search.

Complexity. The complexity of the attack is dominated by the key recovery
process. For the partial decryption process we need 217 × 230 × 4

26 ≈ 245 encryp-
tions, hence the complexity of one key recovery attack is 254. This key recovery
is performed for each differential and each 26 round key guesses of the initial
rounds. Hence the overall complexity of the attack is 254 × 26 × 4 = 262.

We expect in our attack that at least 4 out of 246 pairs follow our differential,
which has probability ≥ 2−43.65, for the correct key. Therefore we get a success
rate of

1 − Pr(X < 4) ≈ 0.75 (7)

A Brief Comparison of SIMON and SIMECK 81

However, in practice this will be much higher as we only use a lower bound on
the probability of the differential.

5.2 Key Recovery for 19-Round SIMECK32

For Simeck32 we also use 4 differentials

D1 : (8000, 4011)
f13

−−→ (4000, 0000)

D2 : (0001, 8022)
f13

−−→ (8000, 0000)

D3 : (0008, 0114)
f13

−−→ (0004, 0000)

D4 : (0010, 0228)
f13

−−→ (0008, 0000)

each having probability ≈ 2−28 (for the truncated differences see Table 10). We
add two rounds at the top of the 13-round differential and identify a set of 230

pairs of plain-texts each satisfying the specific difference (ΔL2,ΔR2) after the
first two round encryption. Identifying a set of plaintext pairs requires to guess
6 key bits.

Filtering. We can filter some wrong pairs by unrolling the last round and
verifying the truncated difference (with 18 known bits) at the beginning of the
last round. This will leave us with 230−18 = 212 pairs.

Key Guessing. We counted that 22 round key bits are necessary to guess for
verifying the difference at the end of round 14. The required key bits DK

1 for D1

are

K16 = {3, 9}
K17 = {2, 3, 4, 8, 9, 10, 14}
K18 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15}

We use the same method as described for Simeck48 during this phase. Out
of the filtered pairs we expect to get at least 4 correct pairs (those follow the
13-round differential). Hence the number of candidates for 22 key bits are ≈ 29.1.
The number of common key bits amongst the differentials is given by

DK
1 ∩ DK

2 = 14

DK
3 ∩ (DK

1 ∪ DK
2) = 16

DK
4 ∩ (DK

1 ∪ DK
2 ∪ DK

3) = 20

and we expect to 1 key candidate for 38 bits. For the remaining 26 bits of the
last four round keys we perform exhaustive search.

82 S. Kölbl and A. Roy

Complexity. The complexity of the partial decryption (for the last 4 rounds)
is 212 × 222 × 4

19 ≈ 232 which is the dominating part of the complexity. Since
we perform the key recovery for each differential and for each 6-bit round key
guesses of the first two rounds the overall complexity of the attack is 232+8 = 240.

5.3 Key Recovery for 33-Round SIMECK64

We use the following 4 differentials for Simeck64

D1 : (0, 04400000)
f26

−−→ (08800000, 00400000)

D2 : (0, 44000000)
f26

−−→ (88000000, 04000000)

D3 : (0, 40000004)
f26

−−→ (80000008, 40000000)

D4 : (0, 00000044)
f26

−−→ (00000088, 00000004)

each having probability ≈ 2−60 (for the truncated differences see Table 11). We
add two rounds at the top of the 26 round differential and identify a set of 262

pairs of plain-texts by guessing 4 round key bits from the first two rounds.

Filtering Wrong Pairs. We add 5 round truncated difference at the end of
the 26 round differential. The last round may be unrolled to verify the difference
at the beginning of the last round. This helps to filter some wrong pairs using
the known bits of the truncated difference and after filtering we are left with
262−30 = 232 pairs of plaintext out of which we expect 22 correct pairs (those
followed 26 round differential).

Key Guessing. In this phase we guess the necessary key bits from the last four
rounds to verify the difference at the beginning of round 28. We counted that
76 key bits are necessary to guess for verifying (ΔL28,ΔR28). The required key
bits DK

1 for D1 are

K29 = {0, 18, 22, 28}
K30 = {0, 1, 5, 13, 17, 18, 19, 21, 22, 23, 27, 28, 29, 31}
K31 = {0, 1, 2, 4 − 6, 8, 10, 12 − 14, 16 − 24, 26 − 31}
K32 = {0 − 31}

Out of the filtered pairs we expect to get at least 4 correct pairs (those that
follow the 26-round differential). Hence the number of candidates for 76 key bits
are ≈ 263.12. The number of common key bits amongst the differentials is given
by

DK
1 ∩ DK

2 = 66

DK
3 ∩ (DK

1 ∪ DK
2) = 70

DK
4 ∩ (DK

1 ∪ DK
2 ∪ DK

3) = 64

A Brief Comparison of SIMON and SIMECK 83

By combining all the four differentials we expect to get 252 key candidates for 104
bits. For the remaining 24 bits of the last four round keys we perform exhaustive
search.

Complexity. The complexity of the partial decryption (for last 4 rounds) is
232 × 276 × 5

33 ≈ 2105 which is the dominating part of the complexity. Since we
perform the key recovery for each differential and for each 6-bit round key guesses
of the first two rounds the overall complexity of the attack is 2105+10 = 2115

(Fig. 8).

6 Conclusion and Future Work

We gave a brief overview of the Simeck and Simon block cipher and their
resistance against differential and linear cryptanalysis. From our comparison we
can see that statistical attacks can cover a significant larger number of rounds
for Simeck48 and Simeck64. Our key recovery attacks still have a significant
margin compared to generic attacks (see Table 6) in regard to time complex-
ity, therefore additional rounds can be covered using the dynamic key-guessing
approach at the costs of a higher complexity (Table 9).

This also shows that the impact of small design changes in Simon-like block
ciphers can be hard to estimate and requires a dedicated analysis, as the under-
lying design strategy is still not well understood. Especially for variants with a
larger block size it is difficult to find lower bounds or estimate the effect of

Table 6. Comparison of the attacks on Simeck.

Cipher Rounds Time Data Memory Type

Simeck32/64 20/32 262.6 232 256 Imp. Differential [13]

Simeck32/64 22/32 257.9 232 − Diff.(dynamic key-guessing) [8]

Simeck32/64 18/32 263.5 231 − Linear [3]

Simeck32/64 19/32 240 231 231 Differential (Sect. 5.2)

Simeck48/96 24/36 294.7 248 274 Imp. Differential [13]

Simeck48/96 28/36 268.3 246 − Diff.(dynamic key-guessing) [8]

Simeck48/96 24/36 294 245 − Linear [3]

Simeck48/96 26/36 262 247 247 Differential (Sect. 5.1)

Simeck64/128 25/44 2126.6 264 279 Imp. Differential [13]

Simeck64/128 34/44 2116.3 263 − Diff.(dynamic key-guessing) [8]

Simeck64/128 35/44 2116.3 263 − Diff.(dynamic key-guessing) [8]

Simeck64/128 27/44 2120.5 261 − Linear [3]

Simeck64/128 33/44 2115 263 263 Differential (Sect. 5.3)

84 S. Kölbl and A. Roy

differentials. An open question is whether better differentials exist for both
Simon and Simeck which give a surprisingly higher probability as in the case
of our differential for Simeck32. This effect could be more significant for larger
word sizes and lead to improved attacks.

In this sense Simeck also has an unexpected advantage over Simon and
Speck, as the analysis is simpler and requires less computational effort with
our approach. This is a property that is especially important in the light of
not having cryptanalytic design documentation, nor design rationales for the
constants regarding security available by the designers of Simon and Speck.

For both Simon32 and Simeck32 reduced to 13 rounds we observed that for
some keys a surprisingly large number of valid pairs can be found. This gives an
interesting open problem in classifying the keys which give a significant higher
probability for a given differential.

A Bounds for Linear Trails

Fig. 8. Bounds for the best linear trails for variants of Simon and Simeck. For the
different variants of Simeck the bounds are the same.

A Brief Comparison of SIMON and SIMECK 85

Table 7. Classification of all the 40 rotation invariant 13-round differentials for
Simeck32.

Type 1

(0, 22)
f13

−−→ (2a, 1) (4, 8a8)
f13

−−→ (88, 0) (4, 8e8)
f13

−−→ (88,) (0, 11)
f13

−−→ (1d, 8)

(0, 11)
f13

−−→ (115, 8) (0, 88)
f13

−−→ (8e8, 4) (4, a8)
f13

−−→ (88, 0) (1, 3a)
f13

−−→ (22, 0)

Type 2

(4, 8a)
f13

−−→ (aa, 4) (4, 8a)
f13

−−→ (ae, 4) (1, a8)
f13

−−→ (228, 1) (4, aa)
f13

−−→ (a, 4)

(4, 8e)
f13

−−→ (aa, 4) (4, 2e)
f13

−−→ (a, 4) (4, 2e)
f13

−−→ (e, 4) (2, 57)
f13

−−→ (5, 2)

(2, 5)
f13

−−→ (55, 2) (4, 8e)
f13

−−→ (2a, 4) (1, 2a8)
f13

−−→ (228, 1) (2, 7)
f13

−−→ (55, 2)

(4, aa)
f13

−−→ (8e, 4) (4, ae)
f13

−−→ (e, 4) (4, 8a)
f13

−−→ (2e, 4) (2, 15)
f13

−−→ (5, 2)

(2, 7)
f13

−−→ (17, 2) (4, e)
f13

−−→ (ae, 4) (4, ae)
f13

−−→ (8e, 4) (4, 8a)
f13

−−→ (2a, 4)

(4, e)
f13

−−→ (2a, 4) (4, a)
f13

−−→ (2a, 4) (4, 2e)
f13

−−→ (8a, 4) (4, 2a)
f13

−−→ (8e, 4)

(4, a)
f13

−−→ (ae, 4) (4, 8e)
f13

−−→ (ae, 4) (1, 28)
f13

−−→ (b8, 1) (4, 8e)
f13

−−→ (2e, 4)

(1, b8)
f13

−−→ (238, 1) (4, ae)
f13

−−→ (8a, 4) (2, 15)
f13

−−→ (7, 2) (1, 2a8)
f13

−−→ (38, 1)

Table 8. Distribution of the trails for the different type of differentials in 13-round
Simeck32.

log2 Pr(Q) Type 1 Type 2 Type 3

−32 1 1 0

−33 0 0 0

−34 9 7 0

−35 6 5 0

−36 38 24 8

−37 44 28 2

−38 124 71 87

−39 166 96 79

−40 367 210 560

−41 521 308 868

−42 1014 625 2911

−43 1566 1002 5170

−44 2629 1752 12485

−45 4232 2975 22007

−46 6448 5101 43969

−47 9620 8234 75212

−48 13952 14439 133341

−49 19425 24653 220359
∑

2−27.88 2−28.43 2−27.29

86 S. Kölbl and A. Roy

Table 9. Number of trails and time to find them for the Simeck48 differential

(400000, e00000)
f20

−−→ (400000, 200000).

log2 Pr(Q) #Trails Pr(Differential) T

−50 1 −50.0 3.72s

−51 0 −50.0 6.9s

−52 12 −48.0 19.78s

−53 6 −47.7520724866 31.77 s

−54 80 −46.7145977811 42.62 s

−55 68 −46.4301443917 55.68 s

−56 413 −45.804012702 77.58 s

−57 484 −45.5334136623 104.69 s

−58 1791 −45.1367816524 180.02 s

−59 2702 −44.8963843436 265.5 s

−60 7225 −44.6271009401 528.39 s

−61 12496 −44.4289288164 1068.95 s

−62 28597 −44.2312406041 2603.59 s

−63 52104 −44.0720542548 6146.77 s

−64 111379 −43.9193398907 19276.9 s

−65 207544 −43.7902765446 41938.08 s

−66 238939 −43.7209043818 70720.98 s

−67 228530 −43.6888725691 96657.81 s

−68 229018 −43.6730860168 123706.38 s

−69 276314 −43.6636455186 160688.8 s

−70 271192 −43.6590352669 197354.41 s

−71 269239 −43.6567522016 232641.34 s

−72 267563 −43.6556191172 271083.28 s

−73 266716 −43.6550547005 308072.68 s

−74 227971 −43.6548135551 336027.17 s

Table 10. Truncated differential for Simeck32 obtained by extending (8000, 4011)
f13

−−→
(4000, 0) in both directions until all bits are unknown.

Round ΔL ΔR ∗ ∗
−4 ***0************ **************** 15 16

−3 **000***0****1** ***0************ 11 15

−2 0*0000*000***01* **000***0****1** 6 11

−1 0100000000010001 0*0000*000***01* 0 6

0 1000000000000000 0100000000010001 0 0

13 rounds

13 0100000000000000 0000000000000000 0 0

14 1*0000000000*000 0100000000000000 2 0

15 **00000*000**001 1*0000000000*000 5 2

16 ***000**00***01* **00000*000**001 9 5

17 ***00***0******* ***000**00***01* 13 9

18 ***0************ ***00***0******* 15 13

19 **************** ***0************ 16 15

A Brief Comparison of SIMON and SIMECK 87

Table 11. Truncated differential for Simeck64 obtained by extending (0, 4400000)
f26

−−→
(8800000, 400000) in both directions until all bits are unknown.

Round ΔL ΔR ∗ ∗
−8 *************0****************** ******************************** 31 32

−7 **********0**00***0************* *************0****************** 28 31

−6 **********00*000**00***0******** **********0**00***0************* 24 28

−5 **********0000000*000**00***0*** **********00*000**00***0******** 19 24

−4 *0****1***000000000000*000**00** **********0000000*000**00***0*** 13 19

−3 *00***01**00000000000000000*000* *0****1***000000000000*000**00** 8 13

−2 *000**001*0000000000000000000000 *00***01**00000000000000000*000* 4 8

−1 00000100010000000000000000000000 *000**001*0000000000000000000000 0 4

0 00000000000000000000000000000000 00000100010000000000000000000000 0 0

26 rounds

26 00001000100000000000000000000000 00000000010000000000000000000000 0 0

27 000**001*1000000000000000000000* 00001000100000000000000000000000 4 0

28 00***01***0000000000000000*000** 000**001*1000000000000000000000* 9 4

29 0****1****00000000000*000**00*** 00***01***0000000000000000*000** 14 9

30 **********000000*000**00***0**** 0****1****00000000000*000**00*** 20 14

31 **********0*000**00***0********* **********000000*000**00***0**** 25 20

32 ************00***0************** **********0*000**00***0********* 29 25

33 ************0******************* ************00***0************** 31 29

34 ******************************** ************0******************* 32 31

References

1. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540,
pp. 525–545. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46706-0 27

2. Alizadeh, J., Alkhzaimi, H.A., Aref, M.R., Bagheri, N., Gauravaram, P., Kumar,
A., Lauridsen, M.M., Sanadhya, S.K.: Cryptanalysis of SIMON variants with con-
nections. In: Saxena, N., Sadeghi, A.-R. (eds.) RFIDSec 2014. LNCS, vol. 8651,
pp. 90–107. Springer, Cham (2014). doi:10.1007/978-3-319-13066-8 6

3. Bagheri, N.: Linear cryptanalysis of reduced-round SIMECK variants. In:
Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 140–152.
Springer, Cham (2015). doi:10.1007/978-3-319-26617-6 8

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/

5. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
546–570. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46706-0 28

6. Kölbl, S.: CryptoSMT: an easy to use tool for cryptanalysis of symmetric primitives
(2015). https://github.com/kste/cryptosmt

http://dx.doi.org/10.1007/978-3-662-46706-0_27
http://dx.doi.org/10.1007/978-3-319-13066-8_6
http://dx.doi.org/10.1007/978-3-319-26617-6_8
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-46706-0_28
https://github.com/kste/cryptosmt

88 S. Kölbl and A. Roy

7. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
161–185. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 8

8. Qiao, K., Hu, L., Sun, S.: Differential security evaluation of simeck with dynamic
key-guessing techniques. Cryptology ePrint Archive, Report 2015/902 (2015).
http://eprint.iacr.org/

9. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu, K.:
Constructing mixed-integer programming models whose feasible region is exactly
the set of all valid differential characteristics of SIMON. Cryptology ePrint Archive,
Report 2015/122 (2015). http://eprint.iacr.org/

10. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 9

11. Wang, N., Wang, X., Jia, K., Zhao, J.: Differential attacks on reduced simon ver-
sions with dynamic key-guessing techniques. Cryptology ePrint Archive, Report
2014/448 (2014). http://eprint.iacr.org/

12. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of
reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014). doi:10.
1007/978-3-319-13039-2 9

13. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck fam-
ily of lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES
2015. LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48324-4 16

http://dx.doi.org/10.1007/978-3-662-47989-6_8
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-13039-2_9
http://dx.doi.org/10.1007/978-3-319-13039-2_9
http://dx.doi.org/10.1007/978-3-662-48324-4_16
http://dx.doi.org/10.1007/978-3-662-48324-4_16

Lightweight Designs and
Implementations

Bitsliced Masking and ARM: Friends or Foes?

Wouter de Groot2, Kostas Papagiannopoulos1(B), Antonio de La Piedra1,
Erik Schneider2, and Lejla Batina1

1 Radboud University Nijmegen, Nijmegen, The Netherlands
kostaspap88@gmail.com

2 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. Software-based cryptographic implementations can be vul-
nerable to side-channel analysis. Masking countermeasures rank among
the most prevalent techniques against it, ensuring formally the protection
vs. value-based leakages. However, its applicability is halted by two fac-
tors. First, a masking countermeasure involves a computational overhead
that can render implementations inefficient. Second, physical effects such
as glitches and distance-based leakages can cause the reduction of the
security order in practice, rendering the masking protection less effec-
tive. This paper, attempts to address both factors. In order to reduce
the computational cost, we implement a high-throughput, bitsliced, 2nd-
order masked implementation of the PRESENT cipher, using assembly
in ARM Cortex-M4. The implementation outperforms the current state
of the art and is capable of encrypting a 64-bit block of plaintext in 6,532
cycles (excluding RNG), using 1,644 bytes of data RAM and 1,552 bytes
of code memory. Second, we analyze experimentally the effectiveness of
masking in ARM devices, i.e. we examine the effects of distance-based
leakages on the security order of our implementation. We confirm the the-
oretical model behind distance leakages for the first time in ARM-based
architectures.

Keywords: PRESENT · ARM Cortex-M · Bitslicing · Masking · SCA

1 Introduction

Nowadays, everyday devices, sensors, vehicles and other items are embedded
with electronics, allowing network connectivity and information exchange. Often,
these fairly simple devices need to maintain a high level of security against power-
ful adversaries with passive monitoring, as well as active tampering capabilities.

For instance, side-channel attacks (SCA) allow attackers to learn sensitive
data by observing physical characteristics of a cryptographic implementation.
Their discovery in 1999 by Kocher et al. [32] exposed a blind spot in theoret-
ical, proof-driven cryptography and has motivated researchers to find efficient

The work described in this paper has been supported by the Netherlands Organiza-
tion for Scientific Research NWO under project ProFIL (628.001.007).

c© Springer International Publishing AG 2017
A. Bogdanov (Ed.): LightSec 2016, LNCS 10098, pp. 91–109, 2017.
DOI: 10.1007/978-3-319-55714-4 7

92 W. de Groot et al.

countermeasures. A very common option for provably secure software counter-
measures is masking [18], which uses secret-sharing techniques to hinder key
recovery.

However, the masking countermeasure can imply a severe performance over-
head in terms of processing speed due to the quadratic computational complexity
required [30]. Moreover, masking can formally ensure protection against a theo-
retical leakage model, namely the value-based model. As a result, device-specific
divergence from the assumed model can lead to security order reduction. For
instance, software devices often exhibit distance-based leakages, which have been
theorized to reduce the order of a masked scheme by 50% [2].

This paper attempts to answer whether masking countermeasures and ARM
devices are friends or foes. The contribution is twofold and extends to both the
performance factor as well as the security order factor.

First, we improve the current state of the art by creating an efficient, bit-
sliced, 2nd-order implementation of PRESENT. The PRESENT cipher was
selected due to its widespread applicability in the Internet of Things context.
Our implementation requires 1,644 bytes of RAM, 1,552 bytes of code memory
and encrypts 32 blocks of data in 209,023 clock cycles, achieving a throughput
of 6,532 clock cycles per block, excluding the cost of random number generation.
Thus, we demonstrate that ARM-based architectures can host masked imple-
mentations efficiently, given that the implementors opt for full-scale assembly
programs and use efficient state representations.

Second, we examine potential distance-based leakages in ARM architectures.
That is, we perform side-channel experiments in order to test whether our ARM
Cortex-M4 device is prone to causing order reduction in our 2nd-order imple-
mentation. In addition, we confirm that the observed order reduction follows
the theorized reduction established by Balasch et al. [2]. That is, we confirm the
order-reduction theorem (Sect. 5) in ARM-based architectures for the first time.

In the next section, we describe the work of other practitioners who imple-
mented PRESENT and relate their performance figures with our work. In Sect. 3
we offer a brief description of the PRESENT cipher. Section 4 discusses the
design options and optimizations w.r.t. the masked ARM implementation, as
well as the performance results. Section 5 links the order reduction model sug-
gested by Balasch et al. [2] to our ARM-based device. Finally, Sect. 6 concludes
and discusses future work.

2 Related Work

In this section, we describe the work of those implementors that addressed the
implementation of PRESENT in software. We do this in ascending order of
word size according to the architecture.

4-Bit Architectures. Poschmann implemented PRESENT in different soft-
ware platforms [39]. In a 4-bit μC, particularly an Atmel ATAM893-D at 2 MHz

Bitsliced Masking and ARM: Friends or Foes? 93

he obtained a performance figure of 55,734 cycles per block. He also implemented
PRESENT in an 8-bit ATmega μC clocked at 4 MHz, obtaining a performance
of 10,089 cycles.

8-Bit Architectures. Papagiannopoulos presented a bitsliced implementation
of PRESENT on the 8-bit ATtiny85 μC. He applied bitslicing to the permuta-
tion and substitution layers using a bitslice factor of 8 [38]. That work relied on
the PRESENT Sboxes resulting from the application of 2-stage Boyar-Peralta
heuristic in tandem with SAT solvers [12]. He obtained a throughput (cycles
per block) of 2,967 using 3,816 bytes of Flash and 256 bytes of SRAM. In this
work, we use the same Sbox. Dinu et al. also analyzed the suitability of a wide
range of lightweight block ciphers in sensor-based applications in three differ-
ent architectures: an 8-bit ATmega, 16-bit MSP430 and 32-bit ARM proces-
sor. They do not apply bitslicing and implemented the Cipher Block Chaining
(CBC) and counter (CTR) modes of operation [23]. The CBC implementation
requires 121,906 cycles on the ATmega processor whereas the CTR implemen-
tation can obtain one block of ciphertext in 15,239 cycles. Furthermore, the
authors from [25] implement PRESENT in an ATiny 8-bit μC, using 80 bits
keys the required 11,343 cycles, 1,000 bytes of code and 18 bytes of RAM. Using
the same platform Papagiannopoulos decreased the amount of cycles to 8,712
cycles in [37] by using a merged SP layer, squared and compact representations
of the Sbox and minimal key register rotations. Finally Rauzy et al. presented
a design methodology for inserting Dual-rail with Precharge Logic (DPL) in a
software implementation of PRESENT in an automatic way [41]. They relied
on an 8-bit AVR ATmega 163 implementation (bitsliced). They require 235,427
cycles for obtaining a single block of ciphertext.

16-Bit Architectures. Poschmann also implemented PRESENT on an 16-
bit Infineon C167CR processor, obtaining a performance figure 19,460 cycles per
block [39]. On the other hand, Dinu et al. relied on the MSP430 of 16-bit for
implementing both the CBC and CTR modes of PRESENT, obtaining a perfor-
mance of 100,786 and 12,226 cycles respectively. In [17], Cazorla et al. evaluated
a variety of lightweight primitives on the 16-bit MSP430 μC that sensor nodes
usually equip due to its low-power and cost. Clocked at 8 MHz, their perfor-
mance figures are 364,587 cycles and 45,573 cycles/byte (they do not employ
bitslicing).

32-Bit Architectures. Dinu et al. implemented PRESENT on the ARM
Cortex architecture [23]. Their CBC implementation requires 138,947 cycles on
the ARM processor whereas their CTR implementation can obtain one block of
ciphertext in 16,919 cycles.

64-Bit Architectures. Benadjila et al. explored the software implementation
of the LED, Piccolo and PRESENT block ciphers [5,29,43]. They relied on

94 W. de Groot et al.

table-based implementations, vector permutations and bitslice approaches. The
best results for bitsliced PRESENT-80 are 18.7 cycles/byte for 16 plaintexts
in 2,221 cycles in an Intel Core i3 2367M clocked at 1.4 GHz. Matsuda et al.
proposed in [34] the utilization of PRESENT in sensor-related applications for
processing a high-amount of data gathered by nodes. They relied on 3 Intel
architectures, particularly on the Core 45 nm and Nehalem (equipped with the
Streaming SIMD extensions (SSE) 4.1 and 128-bit XMM registers) and on the
Sandy Bridge, equipped with the Advanced Vector Extension (AVX). Executing
32 plaintexts simultaneously via a bitsliced implementation, the require 4.73
cycles/byte on the Sandy Bridge architecture.

Contribution. In this manuscript we present a very fast and 2nd-order pro-
tected implementation of the PRESENT block cipher by combining bitslicing
and 2nd-order masking. We rely on the 32-bit ARM Cortex-M4 CPU1. The
analytical results can be seen in Sect. 4.3. Our implementation can encrypt one
PRESENT plain text in 6,532 cycles using 1,644 bytes of RAM and 1,552 bytes
of ROM. To our knowledge, this is the first high-order protected implementa-
tion of PRESENT that includes side-channel evaluation. We have evaluated our
implementation against first, second and third-order security using state-of-the
art techniques (Sect. 5). None of the works described in this section performed
such exhaustive evaluation on their implementation while protecting it against
second-order attacks [5,17,23,25,34,37–39,41]. Our performance figures suggest
that our implementation is between 2.5 and 21.2 times faster than prior art
relying on the same architecture (Sect. 4.4). Further, we have made our imple-
mentation available under the General Public License (GPL)2.

Finally, since the constructions found in PRESENT are also used on the
hash functions SPONGENT and H-PRESENT [8,10], the same approaches we
present in this manuscript can be applied to their implementation.

3 PRESENT

Given the need of alternative cryptographic primitives aimed at low-power and
compact applications such as RFID and sensor networks, a variety of lightweight
primitives such as PRESENT has been proposed in the last few years [9]. Stan-
dardized in ISO/IEC 29192-2:20123, it consists of a substitution-permutation
(SP) network, 80/128-bit key sizes and 64-bit data blocks. PRESENT applies
the following layers during 31 rounds to a 64-bit state b:

1. addRoundKey: During the execution of PRESENT, 32 round keys
(Ki w.r.t. 1 ≤ i ≤ 32) are generated via a key schedule using the encryp-
tion key K as an input. The last subkey, K32 is used for post-whitening.

1 In particular, we used an STM32F417IG SoC by ST clocked at 168MHz with 1,024
Kbytes of Flash and 196 Kbytes of RAM.

2 http://tinyurl.com/zw7zlkv (Accessed 24 June 2016).
3 http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?

csnumber=56552 (Accessed 24 June 2016).

http://tinyurl.com/zw7zlkv
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56552
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56552

Bitsliced Masking and ARM: Friends or Foes? 95

Each round key Ki has a size of 64 bits. Thus, each execution of addRound-
Key is comprised of the XOR operation between the state and the round
key, i.e. b′ ← b ⊕ Ki.

2. sBoxLayer: This layer is a non-linear substitution operation that relies on
a 4-bit Sbox (F4

2 → F
4
2), applied 16 times per round to the state. The 64-

bit state is divided in 16 groups of 4 bits that feed the PRESENT Sbox
(Table 1).

3. pLayer: This layer consists of a linear bit-wise permutation where each bit i
of the state (bi) is moved to another position P (i) according to Table 2.

Table 1. 4-bit PRESENT Sbox

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

Table 2. Permutation table of PRESENT

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Finally, the round subkeys are generated as follows. Given a key K of 80
bits s.t. K79,K78, ...,K0, a round key i of 64 bits is the 64 left most bits of K
updated via the following operations:

1. 61 bits rotations to the left of K.
2. The left most 4 bits are processed in the PRESENT Sbox.
3. The round counter is exclusive-ored with the bits K19, ...,K15 of K.

4 Bitsliced Masking of PRESENT for ARM Cortex-M4

The current section describes the design choices investigated in order to develop
a protected, high-throughput, assembly-based PRESENT implementation.
Sections 4.1 and 4.2 describe the logic-level optimizations performed, while
Sect. 4.3 discusses the instruction-level improvements.

96 W. de Groot et al.

4.1 Bitslicing and Efficient Sbox Representation

CPU architectures tend to operate best on their native word size or half-words
and they encounter performance issues with bit-level manipulation. To deal
with this issue, the Cortex-M4 features bit-banding support4, as well as a wide
selection of bit-field instructions. However, applying them in the context of
PRESENT requires extensive use of load and store instructions or numerous
bit extractions/insertions, often resulting in poor performance.

Bitslicing is a technique introduced by Biham to tackle this inefficiency for
DES [6]. Instead of using registers to store consecutive bits of a state, one uses
them to hold one specific bit from several different states, effectively transforming
bit-level operations into SIMD equivalents.

In our implementation, we employ a bitsliced representation of factor 32, i.e.
we process in parallel 32 cipher blocks, 64 bits each, resulting in 256 bytes per
bitsliced encryption. Doing so, allows us to efficiently compute both the substi-
tution and the permutation layer of PRESENT. Analytically, the Sbox can be
decomposed into GF (2) operations which can be accelerated by via the SIMD-
like instructions and it no longer requires the application of memory lookup
tables.5 Similarly, the bit permutations can be accelerated by directly exchang-
ing the memory contents of the corresponding bitsliced bits according to the
permutation pattern, instead of relying on bit extraction, insertion and shifting.

The GF (2) decomposition of the Sbox has sparked interest in the optimiza-
tion of boolean circuits w.r.t. computational efficiency. In our implementation, we
use the optimized boolean circuit suggested for PRESENT by Courtois et al. [21].
The optimized representation was generated by applying the Boyar-Peralta
heuristic [12], which reduces the circuit’s gate complexity, i.e. the number of AND,
OR, XOR, NOT operations. The representation is shown below.

T1 = X2^X1; T2 = X1&T1; T3 = X0^T2; Y4 = X3^T3; T2 = T1&T3;
T1 ^= Y4; T2 ^= X1; T4 = X3|T2; Y3 = T1^T4; X3 =~ X3;
T2^ = X3; Y1 = Y3^T2; T2 |= T1; Y2 = T3^T2;

Values X1–X4 represent an Sbox input, T1–T4 hold temporary values and Y1-Y4
are output values. The total cost is 14 operations, 4 non-linear (AND, OR) and
10 linear (XOR,NOT).

4.2 Boolean Masking

Chari et al. [18] were among the first to suggest that splitting intermediate values
using a secret sharing scheme would force attackers to analyze joint distribution
functions on multiple points. That is, a dth-order masking scheme splits a sen-
sitive value x into d + 1 shares (x0, x1, . . . , xd) as follows:

x = x0 ⊕ x1 · · · ⊕ xd (1)
4 Bit-banding allows individual bits to be addressed as though they were bytes in

RAM.
5 Note that implementations based on lookup tables can be prone to timing side-

channel attacks in the presence of memory caches.

Bitsliced Masking and ARM: Friends or Foes? 97

Assuming sufficient noise, it has been shown that the number of traces required
for a successful attack grows exponentially w.r.t. the order d [18,40].

Masking involves several implementation angles, e.g. Goubin et al. [26],
Messerges [35] and recently Coron [19] applied the masking principle in lookup
tables used in Sbox computation. Adopting a different implementation angle,
Trichina [47], Canright [14], Akkar et al. [1] and Blömer et al. [7] applied masking
in the context of GF operations used in Sbox computation. This operation-based
approach was formalized by Ishai, Sahai, and Wagner’s shared secret approach
(ISW), which introduced the notion of private boolean circuits [30]. ISW pro-
vided implementors with a provably secure method to mask operations in GF (2)
for any masking order d.

This work employs a bitsliced representation of PRESENT and enhances
the implementation using a 2nd-order protection scheme. As demonstrated in
Sect. 4.1, the Sbox is decomposed into GF (2) operations. Thus, ISW is our tech-
nique of choice in order to apply 2nd-order protection on the boolean operations
required for the Sbox computation.

Table 3 shows the ISW equivalent of common boolean operations when
applied to bitsliced operands a and b, as well as the computational cost involved
for each operation. The values zi,j where 1 ≤ i < j ≤ (d + 1) are drawn
from a uniform random distribution and the remaining zi,j are computed using
(zi,j ⊕aibj)⊕ajbi. Note that the cost of the NOT operation is a single negation,
the cost of the XOR operation is linear and the cost of the AND,OR operations
is quadratic. In our implementation, the OR operation is converted to a single
AND and three NOT operations in order to apply the ISW method.

Table 3. ISW equivalents of common boolean operations

Operation ISW equivalent Cost

NOT(a) ¬a0 O(1)

XOR(a,b) ai ⊕ bi O(d)

OR(a,b) NOT(AND(NOT(a),NOT(b))) O(d2)

AND(a,b) aibi ⊕⊕i�=j zi,j O(d2)

The quadratic computational complexity of non-linear operations can result
in a computationally demanding masked Sbox. To avoid this, several tech-
niques [15,16,21,27,45] on reducing the multiplicative complexity of an Sbox, i.e.
the number of AND,OR operations. The decomposition that we currently use
(shown in Sect. 4.1) is optimal w.r.t. multiplicative complexity, since brute-force
techniques [28] demonstrate that the minimal complexity in GF (2) of crypto-
graphically relevant, 4-bit Sboxes is 4 non-linear operations.

98 W. de Groot et al.

4.3 ARM-Based Optimizations

Our implementation targets the ARM Cortex-M4 microcontroller architecture
using ARM assembly with Thumb2 encoding. Thus, we use a 32-bit architec-
ture with 14 general purpose registers designed for low-cost, low-power applica-
tions. The implementation board is the Riscure Pinata6 which is based on the
STM32F417IG SoC by ST and embeds an ARM 32-bit Cortex-M4 CPU clocked
at 168 MHz. It features 1,024 Kbytes of Flash and 196 Kbytes of RAM. The
device is also equipped with a TRNG on the board in order to generate the
random values associated to our masking implementation. In the case of the
STM32F417IG, the TRNG generates 32-bit random numbers via an integrated
analog circuit. Note that the computational penalty w.r.t. random number gen-
eration is particularly steep when implemented on-the-fly, amounting to roughly
25% of the total computation. Still, we note that the random numbers can be
precomputed in advance, given that the application context allows for idle inter-
vals between consecutive encryptions. Below, we discuss implementation details
and efficiency improvements pertaining to the ARM architecture, memory orga-
nization and assembly instructions.

1. Memory organization: Our design requires two full bitsliced states in
RAM, each comprising of three sub-states corresponding to the three-share
masking scheme. The two full bitsliced states are needed because the per-
mutation layer would otherwise overwrite unprocessed data. We optimize for
cycles by integrating the permutation into the Sbox and writing words to
their permuted destination immediately after the Sbox computation.
Wherever the code operates on shares we organize our fetch and store data
in batches so as to reduce overhead. In most cases we use the LDM and STM
instructions to load or store three or four words at a time. This yields improve-
ments in the Sbox computation when reading in the next four words to be
substituted, in the key schedule, where three words at a time are read in for
processing and also when converting a regular state representation from/to a
bitsliced one.

2. Loop Unrolling: To improve the efficiency of our Sbox implementation,
which encrypts twelve shares (four bit-sliced data blocks of three shares each),
we unroll the substitution process to reduce the unnecessary read/write steps
required for a looped construction. The unrolling adds considerable size to
the code, yet we achieve trading code size for throughput. Note that unrolling
is performed with memory access in mind. For example, we mentioned that
adding the key schedule is performed in a loop of three words. This optimizes
the key schedule operation and maximizes the amount of data we can bring
from/to the RAM.

3. Key Schedule: The round key is not stored in a bitsliced fashion and the
key schedule is computed on the fly. Note that round key precomputation is
also a valid implementation option, assuming that the key does not need to be
renewed often. Since, key refreshing can act as a side-channel countermeasure,

6 https://www.riscure.com/security-tools/hardware/pinata (Accessed 24 June 2016).

https://www.riscure.com/security-tools/hardware/pinata

Bitsliced Masking and ARM: Friends or Foes? 99

we chose to retain the on-the-fly key updates. Updating the round key requires
a push through the Sbox for four bits each round. To that purpose, we use
Cortex-M4’s UBFX instruction for extracting a contiguous series of bits from
a word in an efficient manner. In addition, we used ARM’s barrel shifter
function, which allows the second operand to be shifted with no additional
cost before an instruction is performed.

4.4 Performance Results

The current section summarizes the achieved performance results w.r.t. through-
put and size. We depict in Tables 4 and 5 the performance figures of the works
described in Sect. 2. As mentioned, we outperform prior art on the same archi-
tecture between 2.5 and 21.2 times [23].

Table 4. PRESENT implementations, comparison with prior art (performance)

Work Implementation Bitslicing Bitslicing

factor

Protected Platform No. cycles per

block

This work PRESENT-80 yes 32 yes ARM Cortex–M4 6,532

[23] PRESENT-80, CBC no - no ATmega 121,906

[23] PRESENT-80, CBC no - no MSP430 100,786

[23] PRESENT-80, CBC no - no ARM Cortex-M3 138,947

[23] PRESENT-80, CTR no - no ATmega 15,239

[23] PRESENT-80, CTR no - no MSP430 12,226

[23] PRESENT-80, CTR no - no ARM 16,919

[37] PRESENT-80 no - no ATiny 8,721

[41] PRESENT-80 yes 8 no ATMega163 78,403

[41] PRESENT-80, DPL yes 8 yes ATMega163 235,427

[38] PRESENT-80 yes 8 no ATiny85 2,967

[5] PRESENT-80, table no - no Corei3-2367M 988

[5] PRESENT-80, vperm yes 2 no Corei3-2367M 890

[5] PRESENT-80 yes 8 no Corei3-2367M 2,039

[5] PRESENT-80 yes 16 no Corei3-2367M 3,138

[34] PRESENT-80 yes 32 no Xeon E3-1280 37.84

[34] PRESENT-80 yes 16 no Xeon E3-1280 52.16

[34] PRESENT-80 yes 8 no Xeon E3-1280 67.68

[17] PRESENT-80 no - no MSP430 364,587

[39] PRESENT-80 no - no ATAM893-D 55,734

[39] PRESENT-80 no - no ATMega163 10,089

[39] PRESENT-80 no - no C167CR 19,460

As expected, the ISW implementation of the Sbox dominated CPU time,
accounting for 95,88% of all clock cycles within the encryption process. A com-
plete breakdown of the memory and time overheads required for different mod-
ules is provided in Table 6.

100 W. de Groot et al.

Table 5. PRESENT implementations, comparison with prior art (size)

Work Implementation Code (bytes) RAM (bytes)

This work PRESENT-80 1,548 1,644

[38] PRESENT-80 3,816 256

[39] PRESENT-80, ATMega 1,494 272

[39] PRESENT-80, C167CR 45.9·103 -

[23] PRESENT-80, CBC, ATMega 1,388 56

[23] PRESENT-80, CBC, MSP430 1,108 52

[23] PRESENT-80, CBC, ARM 1,304 124

[23] PRESENT-80, CTR, ATMega 1,416 54

[23] PRESENT-80, CTR, MSP430 1,244 58

[23] PRESENT-80, CTR, ARM 1,532 140

[37] PRESENT-80 1,794 -

[41] PRESENT-80, bitslicing 1,620 288

[41] PRESENT-80, bitslicing + DPL 3,056 352

Table 6. SW transformations of common logical operations

Operation Code size (%) No. cycles (%)

main 208 (13.44) 3,807 (1.82)

sbox 892 (57.62) 200,404 (95.88)

updatekey 146 (9.43) 1,688 (0.81)

addroundkey 176 (11.37) 1,209 (0.58)

split data 60 (3.88) 1,292 (0.62)

unsplit data 66 (4.26) 623 (0.30)

5 Masking Effectiveness in ARM Cortex-M4

In this section, we assess experimentally the security level (masking order) pro-
vided by the ISW masking scheme, taking into account the possibility of distance-
based leakages in ARM Cortext-M4. In addition, we investigate whether the
theoretical repercussions of distance-based leakages can be confirmed experi-
mentally. In other words, we examine whether the cost of “lazy engineering” as
introduced by Balasch et al. [2] is applicable to an ARM-based microcontroller.

5.1 Experimental Pitfalls

The effective and efficient evaluation of the actual mask order of cryptographic
implementations remains an open problem due to several evaluation pitfalls.

Effectivity-wise, when evaluating a masking scheme via the measured
power consumption, we face the pitfall of the limited attack scope. That is, a

Bitsliced Masking and ARM: Friends or Foes? 101

particular attack technique in use may fail to exploit the available leakage due
to e.g. an unsuitable choice of intermediate values or an incorrect power model
assumption7. Moreover, introducing additional countermeasures on top of the
masking scheme may render particular exploitation techniques ineffective, while
the implementation remains vulnerable to different lines of attack.

In order to tackle this issue, the research community followed several
approaches. Prior research established generic side-channel distinguishers such
as Mutual Information Analysis (MIA) [4], the Kolmogorov-Smirnov and the
Cràmer-von Mises tests [48,49], which require minimal assumptions about
the noise and the power model of the device under test. On the other side of the
spectrum, Standaert et al. [44] proposed an evaluation framework assuming the
strongest possible adversary, equipped with extensive profiling capabilities and
Bayesian templates.

While being effective, the aforementioned approaches focus on leakage
exploitation and perform key recovery, which may require a large number of
traces. Thus, they face the efficiency pitfall w.r.t. computational and storage
requirements. Note that this increased demand for resources is magnified when
inserting extra countermeasures in a masked implementation. Thus, it can be
difficult to decide with confidence whether the masking order is reduced or not.

In order to evaluate the effective masking order, we opt for a more recent app-
roach called leakage detection methodology [31]. This approach focuses on leakage
detection and disregards exploitation. Thus, the acquisition and the computa-
tional cost is reduced while the methodology can retain its generic nature.

Despite the gain achieved via decoupling detection and exploitation, the leak-
age detection methodology still presents challenges w.r.t. efficiency. In the con-
text of software masking, we need to combine multiple time samples in order to
evaluate the masked implementation. Thus, we rely on the work by Schneider
et al. [42], who extended the leakage detection methodology into higher-order
evaluations by providing efficient, incremental formulas that can handle the com-
putation involved with minimal memory requirements. In certain cases, we also
resort to traditional evaluation techniques such as correlation-power analysis
(CPA) [13], despite their limited attack scope, so as to enhance our discussion.

5.2 Bitsliced Masking and Distance-Based Leakages

In order to perform leakage detection and determine the actual masking order,
we opt to use the fixed vs. random, non-specific t-test statistic. The process
involves two steps: a custom acquisition of two trace sets (populations) and a
population comparison based on statistical inference.

In the first step, we perform a fixed vs. random acquisition and obtain two
distinct trace sets for comparison: Sfixed and Srandom, under the same encryp-
tion key. For Sfixed, the input plaintext is set to a fixed value, while for Srandom,

7 Knowledge about the device can often be limited in the context of black-box
evaluations.

102 W. de Groot et al.

the input is drawn from a uniformly random distribution. Following the sugges-
tion from Shneider et al. [42], the implementation receives the fixed or random
plaintext in a non-deterministic and randomly-interleaved manner. This type
of acquisition is performed in order to randomize the implementation’s internal
state and avoid measurement-related variations over time, e.g. due to environ-
mental parameters. The evaluation test to be performed is non-specific, i.e. we
target all sensitive values computed during encryption. Thus, we maintain a wide
attack scope, without any prior assumptions on the leakage model or intermedi-
ate values.

The acquisition is performed on the ARM-based Pinata device, using a Pico-
scope 5203 oscilloscope and the Riscure current probe8. The device clock operates
on 168 MHz and the oscilloscope’s sample rate is 1 GSample/sec. We also apply
post-processing in the form of signal resampling.

For the second step, we model the sets Sfixed and Srandom as inde-
pendent random samples {S1

fixed . . . Sn
fixed} and {S1

random . . . Sm
random} drawn

from normal distributions with means μfixed, μrandom, standard deviations
σfixed, σrandom and σfixed �= σrandom. Subsequently, leakage detection meth-
ods will test the equality of means μfixed, μrandom (null hypothesis). Finding a
statistic for this test is known as the Behrens-Fisher problem and an approximate
solution is the Welch t-test [33] with υ degrees of freedom, as shown below.

Hnull : μfixed = μrandom

Halt : μfixed �= μrandom

(2)

w =
μfixed − μrandom√

σ2
fixed

n + σ2
random

m

(3)

υ =
(σ2

fixed

n + σ2
random

m)2

σ4
fixed

n2(n−1) + σ4
random

m2(m−1)

(4)

The null hypothesis Hnull is rejected at a given level of significance α, if
|w|> tα/2,υ, where tα/2,υ is the value of the Student t distribution with υ degrees
of freedom9. In the evaluation context, rejecting Hnull implies leakage detection,
i.e. potential evidence of an ineffective masking scheme. A common rejection
criterion that we also use in our analysis is |w|> 4.5, which corresponds to υ >
1000 and α > 0.99999 [22]. Note that Hnull rejection shouldn’t be interpreted
directly as an applicable vulnerability. Even after detection, the amount of traces
required for exploitation may render an attack infeasible.

In this work, we need to evaluate the masking order provided by our ARM-
based, 2nd-order masked cipher. From a theoretical point of view, a 2nd-order
ISW masking countermeasure is capable of preventing value-based leakages

8 https://www.riscure.com/security-tools/hardware/current-probe (Accessed 24 June
2016).

9 Note that side-channel analysis usually employs two-tailed tests.

https://www.riscure.com/security-tools/hardware/current-probe

Bitsliced Masking and ARM: Friends or Foes? 103

of order 2 or less. However, practice has demonstrated that software imple-
mentations, including ARM microcontrollers, may exhibit leakages with large
divergence from the value-based leakage abstraction. An exemplary case is the
distance-based leakage model, observed by Daemen et al. [46], addressed by
Coron et al. [20] and recently formalized by Balasch et al. [42]. This particular
divergence leads in the reduction of the security order. Balasch et al. theorized
that a dth-order scheme can reduce to order �d

2� and provided experimental val-
idation using an AVR-based microcontroller. We will refer to this formalization
as the order-reduction theorem. To address such leakage divergence issues in our
implementation, we use the Welch t-test in order to verify experimentally the
theoretical security claims.

We commence the evaluation by testing the 1st-order security of our masked
cipher. We perform the 1st-order t-test on the first round of bitsliced PRESENT.
The size of both Sfixed and Srandom is 10 k traces with 30 k samples per trace.
The trace waveform and t-test results are visible in Figs. 1 and 2. We observe that
we remain well below the 4.5 threshold, indicating that our 2nd-order masked
PRESENT implementation is able to maintain 1st-order security.

Fig. 1. Trace waveform of 1st round,
masked, bitsliced PRESENT after
resampling.

Fig. 2. 1st-order t-test evaluation for
2nd-order masked PRESENT cipher.
The results suggest absence of 1st-order
leakage.

To enhance our confidence, we also perform a 1st-order CPA attack, with
a large amount of traces (800 k) to exploit potential 1st-order leakages. We use
the HW model and a custom-made selection function due to the bitsliced Sbox
computation. Similarly to Balasch et al. [3], the selection function must take into
account that not all Sbox output bits leak at the same time due to the GF (2)-
oriented Sbox implementation. Thus, our selection function focuses on key bits
from different registers that once combined through the Sbox, affect a single
bit of the Sbox output. Attacking a section of the 1st round with 10 k traces,

104 W. de Groot et al.

while the RNG is disabled, is successful, confirming the validity of our choice
w.r.t. the leakage model (HW) and selection function. The results are visible in
Fig. 3. We also perform the CPA attack with enabled RNG and the results are
visible in Fig. 4. In order to manage the computation required, we employ the
techniques suggested by Bottinelli et al. [11], i.e. we partition the 800 k traces,
compute correlation coefficient per partition, then recombine in order to reduce
the execution and memory workload.

Fig. 3. 1st-order CPA attack results with
RNG turned off, in selected section of the
1st round.

Fig. 4. 1st-order CPA attack results with
RNG turned on, from 100 k to 800 k
traces. The attack does not exploit any
leakage.

The results demonstrate that no 1st-order leakage can be exploited in the
presence of our 2nd-order scheme. Both the t-test and the CPA result is in accor-
dance with the order-reduction theorem, since a 2nd-order masked implemen-
tation can maintain � 2

2� = 1 order of security in the presence of distance-based
leakages.

Assuming that our device exhibits distance-based leakage, it is of particular
interest to prove experimentally that the order-reduction theorem holds when
we test the 2nd-order security of our ARM-based masked implementation. Per-
forming a 2nd-order evaluation requires pre-processing the acquired trace sets
in order to generate all possible 2-tuples (pairs) of distinct samples via a combi-
nation function. Subsequently, the multivariate 2nd-order t-test is performed on
the generated trace sets in order to determine the robustness of the 2nd order.

The main hindrance of this process is the computational complexity per-
taining to generating and processing all

(
NoSamples

2

)
sample pairs. Even with a

small number of samples per trace, the evaluation cost can quickly become pro-
hibitive. To address this issue, researchers have relied on intuitive selection of
points of interest in conjunction with naive search [36] or they deployed heuristic
techniques such as projection pursuits [24] to perform point of interest selection

Bitsliced Masking and ARM: Friends or Foes? 105

for higher-order attacks. In our evaluation, we follow the intuitive approach by
focusing on a reduced version of the 1st round which contains the substitution
layer. Inside this reduced round, we enumerate naively all possible pairs. Given
the bitsliced nature of the implementation and the considerable RNG overhead,
the reduced round has a length of 800 samples. In order to keep the processing
cost manageable, we use the incremental formulas suggested by Schneider et al.
which enable the efficient computation of the multivariate statistical moments
required for 2nd-order t-tests. The memory-less feature of the computation yields
significant improvement compared to straightforward computation techniques.
In addition, we partition the reduced round into windows of 150 samples each
and perform the attack in each window independently. Figure 6 shows the t-test
results using 10k fixed input traces and 10 k random input traces for the sample
window with the largest detected leakage (Fig. 5).

Fig. 5. Trace waveform of reduced 1st
round masked, bitsliced PRESENT.

Fig. 6. 2nd-order t-test results. The rejec-
tion of Hnull indicates potential leakage.

The test value slightly exceeds the threshold, indicating potential leakage.
Thus, it hints the experimental verification of the order-detection theorem in
our ARM-based device for 2nd-order ISW schemes. However, several concerns
were raised over the t-test robustness, usually w.r.t. the exact threshold value
(Appendix A from [2,22]). As a result, it remains an open question whether
2nd-order leakages are practically exploitable in our context. To investigate this,
we perform a 2nd-order CPA-based attack using the centered product combi-
nation function and the custom bitsliced selection function on the 1st round of
PRESENT. The point selection window has size 100 samples and we use 100 k
traces. The results are visible in Fig. 7 and show that the leakage is exploitable
with roughly 60 k traces.

As a result, we suggest that the order-reduction theorem remains applicable
in software-based, masked implementations for the ARM Cortex-M4. However,
we recommend that the exploitation is always verified in practice.

106 W. de Groot et al.

Moreover, we need to stress the fact that this type of behavior has been
observed in a specific ARM-based device. Although it provides indications on
the behavior of similar architectures, this experimental result should not be
extrapolated as a hard fact w.r.t. all ARM Cortex-M devices. Naturally, a 3rd-
order multivariate t-test is able to detect a large amount of leakage, as shown in
Fig. 8 and indicates that a 3rd-order attack is also applicable.

Fig. 7. 2nd-order CPA on section of the
1st round exploiting the available leakage.

Fig. 8. 3rd-order t-test results on a
section of the 1st round, indicating strong
3rd-order leakage.

6 Conclusions

This paper investigated the speed and space requirements of a bitsliced imple-
mentation of PRESENT on the ARM Cortex-M4 architecture, protected with
2nd-order ISW masking. In addition, we explore and confirm the applicability
of the order-reduction theorem in the context of ARM-based devices. From the
attacker point of view, future work can involve deciding on the optimal strat-
egy to attack masked implementations, given the amount of leakage available
in different security orders. From the defender’s point of view, implementors
need to also investigate the computational cost of the randomness required for
masking, which itself may pose a bigger issue than the quadratic computational
complexity of masking.

Acknowledgments. We would like to thank Rafael Boix–Carpi from Riscure BV for
his advice and help.

References

1. Akkar, M.-L., Bévan, R., Goubin, L.: Two power analysis attacks against one-mask
methods. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 332–347.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-25937-4 21

http://dx.doi.org/10.1007/978-3-540-25937-4_21

Bitsliced Masking and ARM: Friends or Foes? 107

2. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). doi:10.
1007/978-3-319-16763-3 5

3. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and mask-
ing at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293,
pp. 599–619. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4 30

4. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X.,
Veyrat-Charvillon, N.: Mutual information analysis: a comprehensive study.
J. Cryptology 24(2), 269–291 (2011)

5. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block
ciphers on x86 architectures. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 324–351. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 17

6. Biham, E.: A fast new DES implementation in software. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997). doi:10.1007/
BFb0052352

7. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In:
Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30564-4 5

8. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
SPONGENT: the design space of lightweight cryptographic hashing. IEEE Trans.
Comput. 62(10), 2041–2053 (2013)

9. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

10. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.:
Hash functions and RFID tags: mind the gap. In: Oswald, E., Rohatgi, P. (eds.)
CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85053-3 18

11. Bottinelli, P., Bos, J.W.: Computational aspects of correlation power analysis.
IACR Cryptology ePrint Archive, 2015: 260 (2015)

12. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
178–189. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13193-6 16

13. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

14. Canright, D., Batina, L.: A very compact “perfectly masked” s-box for AES (cor-
rected). IACR Cryptology ePrint Archive 2009:11 (2009)

15. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order mask-
ing schemes for S-Boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp.
366–384. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34047-5 21

16. Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for probing
security. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 742–763. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 36

17. Cazorla, M., Gourgeon, S., Marquet, K., Minier, M.: Survey and benchmark of
lightweight block ciphers for MSP430 16-bit microcontroller. Secur. Commun.
Netw. 8(18), 3564–3579 (2015)

http://dx.doi.org/10.1007/978-3-319-16763-3_5
http://dx.doi.org/10.1007/978-3-319-16763-3_5
http://dx.doi.org/10.1007/978-3-662-48324-4_30
http://dx.doi.org/10.1007/978-3-662-43414-7_17
http://dx.doi.org/10.1007/978-3-662-43414-7_17
http://dx.doi.org/10.1007/BFb0052352
http://dx.doi.org/10.1007/BFb0052352
http://dx.doi.org/10.1007/978-3-540-30564-4_5
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-540-85053-3_18
http://dx.doi.org/10.1007/978-3-540-85053-3_18
http://dx.doi.org/10.1007/978-3-642-13193-6_16
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-642-34047-5_21
http://dx.doi.org/10.1007/978-3-662-47989-6_36

108 W. de Groot et al.

18. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 26

19. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 25

20. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conver-
sion of security proofs from one leakage model to another: a new issue. In: Schindler,
W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29912-4 6

21. Courtois, N., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems in
cryptography and cryptanalysis. IACR Cryptology ePrint Archive 2011:475 (2011)

22. Adam Ding, A., Chen, C., Eisenbarth, T.: Simpler, faster, and more robust t-test
based leakage detection. IACR Cryptology ePrint Archive, 2015:1215 (2015)

23. Dinu, D., Le Corre, Y., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.:
Triathlon of lightweight block ciphers for the internet of things. NIST Lightweight
Cryptography Workshop 2015, 2015:209 (2015)

24. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N., Mairy, J.-B., Deville, Y.:
Efficient selection of time samples for higher-order DPA with projection pursuits.
In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp.
34–50. Springer, Cham (2015). doi:10.1007/978-3-319-21476-4 3

25. Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S.,
Kerckhof, S., Koeune, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F.-X.,
Oldeneel tot Oldenzeel, L.: Compact implementation and performance evalua-
tion of block ciphers in attiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31410-0 11

26. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 15

27. Goudarzi, D., Rivain, M.: On the multiplicative complexity of boolean functions
and bitsliced higher-order masking. IACR Cryptology ePrint Archive, 2016:557
(2016)

28. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46706-0 2

29. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23951-9 22

30. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

31. Goodwill, G., Jae, J., Kenworthy, G., Cooper, J., DeMulder, E., Rohatg, P.: Test
vector leakage assessment (tvla) methodology in practice

32. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

33. Larsen, R.J., Marx, M.L.: An Introduction to Mathematical Statistics and its
Applications, 5th edn. Prentice Hall, Boston, MA (2012)

http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/978-3-642-55220-5_25
http://dx.doi.org/10.1007/978-3-642-29912-4_6
http://dx.doi.org/10.1007/978-3-319-21476-4_3
http://dx.doi.org/10.1007/978-3-642-31410-0_11
http://dx.doi.org/10.1007/3-540-48059-5_15
http://dx.doi.org/10.1007/978-3-662-46706-0_2
http://dx.doi.org/10.1007/978-3-662-46706-0_2
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25

Bitsliced Masking and ARM: Friends or Foes? 109

34. Matsuda, S., Moriai, S.: Lightweight cryptography for the cloud: exploit the
power of bitslice implementation. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 408–425. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33027-8 24

35. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In:
Goos, G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol.
1978, pp. 150–164. Springer, Heidelberg (2001). doi:10.1007/3-540-44706-7 11

36. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA
attacks for masked smart card implementations of block ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006).
doi:10.1007/11605805 13

37. Papagiannopoulos, K., Verstegen, A.: Speed and size-optimized implementations of
the PRESENT cipher for tiny AVR devices. In: Hutter, M., Schmidt, J.-M. (eds.)
RFIDSec 2013. LNCS, vol. 8262, pp. 161–175. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-41332-2 11

38. Papapagiannopoulos, K.: High throughput in slices: the case of PRESENT,
PRINCE and KATAN64 Ciphers. In: Saxena, N., Sadeghi, A.-R. (eds.) RFID-
Sec 2014. LNCS, vol. 8651, pp. 137–155. Springer, Cham (2014). doi:10.1007/
978-3-319-13066-8 9

39. Poschmann, A.: Lightweight cryptography - cryptographic engineering for a per-
vasive world. Cryptology ePrint Archive, Report 2009/516 (2009). http://eprint.
iacr.org/

40. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 9

41. Rauzy, P., Guilley, S., Najm, Z.: Formally proved security of assembly code against
power analysis: A case study on balanced logic. CoRR, abs/1506.05285 (2015)

42. Schneider, T., Moradi, A.: Leakage assessment methodology - a clear roadmap
for side-channel evaluations. In: Güneysu, T., Handschuh, H. (eds.) CHES
2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48324-4 25

43. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Pic-
colo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23951-9 23

44. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analy-
sis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 26

45. Stoffelen, K.: Optimizing s-box implementations for several criteria using SAT
solvers. IACR Cryptology ePrint Archive, 2016:198 (2016)

46. Keccak team.: Note on side-channel attacks and their countermeasures
47. Trichina, E.: Combinational logic design for AES subbyte transformation on

masked data. IACR Cryptology ePrint Archive 2003:236 (2003)
48. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: how, when

and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9 30

49. Whitnall, C., Oswald, E., Mather, L.: An exploration of the kolmogorov-smirnov
test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS
2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-27257-8 15

http://dx.doi.org/10.1007/978-3-642-33027-8_24
http://dx.doi.org/10.1007/978-3-642-33027-8_24
http://dx.doi.org/10.1007/3-540-44706-7_11
http://dx.doi.org/10.1007/11605805_13
http://dx.doi.org/10.1007/978-3-642-41332-2_11
http://dx.doi.org/10.1007/978-3-642-41332-2_11
http://dx.doi.org/10.1007/978-3-319-13066-8_9
http://dx.doi.org/10.1007/978-3-319-13066-8_9
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-38348-9_9
http://dx.doi.org/10.1007/978-3-662-48324-4_25
http://dx.doi.org/10.1007/978-3-662-48324-4_25
http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-04138-9_30
http://dx.doi.org/10.1007/978-3-642-27257-8_15
http://dx.doi.org/10.1007/978-3-642-27257-8_15

Classification of 6 × 6 S-boxes Obtained
by Concatenation of RSSBs

Selçuk Kavut1(B) and Sevdenur Baloğlu2

1 Department of Computer Engineering, Balıkesir University, 10145 Balıkesir, Turkey
skavut@balikesir.edu.tr

2 Institute of Applied Mathematics, Middle East Technical University,
06800 Ankara, Turkey

sevdenur.baloglu@metu.edu.tr

Abstract. We give an efficient exhaustive search algorithm to enumer-
ate 6×6 bijective S-boxes with the best known nonlinearity 24 in a class of
S-boxes that are symmetric under the permutation τ(x) = (x0, x2, x3, x4,
x5, x1), where x = (x0, x1, . . . , x5) ∈ F

6
2. Since any S-box S : F6

2 → F
6
2

in this class has the property that S(τ(x)) = τ(S(x)) for all x, it can
be considered as a construction obtained by the concatenation of 5 × 5
rotation-symmetric S-boxes (RSSBs). The size of the search space, i.e.,
the number of S-boxes belonging to the class, is 261.28. By performing our
algorithm, we find that there exist 237.56 S-boxes with nonlinearity 24 and
among them the number of differentially 4-uniform ones is 233.99, which
indicates that the concatenation method provides a rich class in terms of
high nonlinearity and low differential uniformity. Moreover, we classify
those S-boxes achieving the best possible trade-off between nonlinear-
ity and differential uniformity within the class with respect to absolute
indicator, algebraic degree, and transparency order.

1 Introduction

The design of vectorial Boolean functions, or so-called S-boxes, is one of the most
important subjects in secret-key cryptography since the S-boxes are the only non-
linear parts of iterated block ciphers, providing confusion for the cryptosystem. It
is usually crucial for an S-box to be bijective, e.g. in a Substitution-Permutation
Network (SPN), which in practice is required to exist in even dimension for imple-
mentation efficiency. Constructing such S-boxes with desirable cryptographic
properties such as high nonlinearity, low differential uniformity, and high alge-
braic degree is essential in order to resist against linear [20], differential [1],
and higher order differential [17] cryptanalyses, respectively. For instance, the
SPN-based block cipher Advanced Encryption Standard (AES) uses the S-box
affine equivalent to the inverse function [24] over F28 , which achieves the best
known trade-off (in dimension 8) among these cryptographic properties, i.e.,
the nonlinearity 112, differential uniformity 4, and maximum possible algebraic
degree 7. Yet, in even dimension n, there are very few differentially 4-uniform
constructions that are bijective with the nonlinearity 2n−1 − 2

n
2 (conjectured [7]

c© Springer International Publishing AG 2017
A. Bogdanov (Ed.): LightSec 2016, LNCS 10098, pp. 110–127, 2017.
DOI: 10.1007/978-3-319-55714-4 8

Classification of 6 × 6 S-boxes Obtained by Concatenation of RSSBs 111

to be the maximum) in the relevant literature (e.g., Gold [10], Kasami [11], the
binomial function [3], and the constructions in [2,18,19,31]). In fact, most of
these constructions exhibit some potential weaknesses; for instance, the bino-
mial function and the power mappings except the inverse and Kasami functions
have low algebraic degrees, which should be greater than 3 to provide robustness
against higher order differential cryptanalysis. In addition, there exists only one
sporadic example of an Almost Perfect Nonlinear (APN; that is, differentially
2-uniform) permutation in dimension n=6, identified [4] in 2009. It is well-known
that there is no APN bijections over F22 and F24 , and the construction of more
APN bijections over F2n for even n ≥ 6 is an important open problem.

Recall that in [9], a cryptographic criterion, so-called the non-possession of
linear redundancy, was proposed as an indicator of randomness for S-boxes. Let
mlr denote the number of distinct (extended) affine equivalence classes to which
the component Boolean functions of an S-box belong. For any S-box described as
a power map over F2n , it is well-known that mlr = 1 (notice that mlr = 1 for the
AES S-box), and hence such S-boxes are considered [9] as a potential source of a
new cryptanalysis. For our case, if we take the symmetric S-boxes into account
in terms of linear redundancy, mlr can be at most one less than the number
of distinct orbits (which can be deduced from Corollary 5 in [13]). However,
we here focuse only on the most important cryptographic properties mentioned
previously and do not analyze our results in terms of linear redundancy.

While the aforementioned cryptanalytic attacks are realized independently
from the hardware or software implementation of a cryptographic system, the
side channel analysis (SCA) can be mounted using the information leaked
through its implementation such as the timing of operations [15], power con-
sumption [16], and electromagnetic radiation [28]. Therefore, the resistance of
cryptographic primitives against SCA attacks is of great importance as well. In
this class of attacks, one of the most powerful is the differential power analysis
(DPA) attacks, which have received significant attention from cryptographers
for nearly two decades. In 2005, the DPA resistivity of an S-box was quanti-
fied [27] introducing the notion of transparency order (TO). A decade later, the
definition of TO was modified [6] by taking the cross-correlation terms between
the coordinate functions into account. We here use the former definition [27] in
our classification, for which its validity has been verified by several implemen-
tation results on cryptographic devices such as SASEBO-GII board [21–23] and
ATmega163 smartcard [25,26].

In this paper, we aim to classify 6×6 bijective S-boxes with nonlinearity ≥ 24
and differential uniformity ≤ 4 belonging to a rich class in terms of these cryp-
tographic properties, for which the search space is of size 261.28, with respect
to absolute indicator, algebraic degree, and transparency order. This class cor-
responds to the S-boxes that are symmetric under the permutation τ(x) = (x0,
x2, x3, x4, x5, x1), where x= (x0, x1, . . . , x5) ∈ F

6
2 (an n × n S-box is called sym-

metric under a permutation π if it satisfies S(π(x)) = π(S(x)) ∀x ∈ F
n
2). In [13],

all 6! permutations are classified up to the linear equivalence of 6×6 S-boxes that
are symmetric under them, and 11 different classes are obtained. Among these

112 S. Kavut and S. Baloğlu

classes, the one for which the S-boxes are symmetric under the representative
permutation σ(x) = (x0, x4, x1, x2, x5, x3) seems to be rich in terms of desirable
cryptographic properties, since highly nonlinear S-boxes with low differential
uniformity could be obtained [13] in this class by heuristic search. In fact one
can find that (using Proposition 13 in [13]) the latter class is linearly equivalent
to the former one. We here prefer using the former permutation, since in this
case the S-boxes can be interpreted as those obtained by the concatenation of
two 5 × 5 RSSBs and of two 5-variable rotation-symmetric Boolean functions
(RSBFs). Notice that since an RSSB can be represented by a single rotation-
symmetric Boolean function (RSBF), all the output bits of an S-box that is
symmetric under τ can be described by only four 5-variable RSBFs, which can
be utilized to provide implementation advantages in both hardware or software.

Note that the class of 6 × 6 bijective RSSBs with nonlinearity 24 and dif-
ferential uniformity 4 (which is the best possible trade-off within the class) are
classified in [13] in terms of algebraic degree and absolute indicator (later their
TOs are computed in [8]). This class corresponds to another one among the
aforementioned 11 classes. The search strategy in [13] uses the fact that some of
the component functions of an n × n RSSB are k-rotation-symmetric Boolean
functions (k-RSBFs) [12], and thus it is mainly based on first sieving some of
these k-RSBFs and then regenerating the RSSBs containing those k-RSBFs.
Here, since none of the component functions of an S-box (symmetric under the
permutation τ) is a k-RSBFs, it is not possible to apply the search method
of [13]. Hence, we give a different search strategy in which the 5 × 5 RSSBs
mentioned above are eliminated efficiently.

The remainder of this paper is organized as follows. In the following section,
we provide some preliminaries and technical background on the symmetric S-boxes
constructed by the concatenation of RSSBs. In Sect. 3, we present our search strat-
egy to enumerate 6×6 bijective S-boxes having nonlinearity 24 that are symmetric
under the permutation τ . The classification results of those with differential uni-
formity 4 are presented in Sect. 4, and we draw our conclusions in Sect. 5.

2 Preliminaries

2.1 Cryptographic Properties

For completeness, we briefly review the basic definitions regarding to the crypto-
graphic properties of the S-boxes. Let us consider an n × m S-box S : Fn

2 → F
m
2

and represent S as a composition of m Boolean functions f0, f1, . . . , fm−1 each of
which is a mapping from F

n
2 to F2, that is, S(x) = (f0(x), f1(x), . . . , fm−1(x)) for

all x ∈ F
n
2 . The functions (fi)0≤i≤m−1 are called the coordinate functions, and

their linear combinations
⊕m−1

i=0 vifi with non all-zero masking (or coefficient)
vectors v = (v0, v1, . . . , vm−1) ∈ F

m
2 are called the component functions.

Algebraic Degree. There are two notions of the algebraic degree relevant
to cryptography [5]: The maximum degree of the coordinate functions and the

Classification of 6 × 6 S-boxes Obtained by Concatenation of RSSBs 113

minimum degree of the component functions, which we denote as dmax and
dmin respectively. The degree of a component (or coordinate) function can be
computed using the algebraic normal form (ANF) of a Boolean function f(x) of
n-variable x = (x0, x1, . . . , xn−1) ∈ F

n
2 , which is a unique representation in the

form of a multivariate polynomial over F2,

⊕

u∈F
n
2

au

(
n−1∏

i=0

xui
i

)
,

where the coefficients au ∈ F2. The algebraic degree, or simply the degree of f
is defined as the maximum Hamming weight of u such that au �= 0. A Boolean
function is called affine if its algebraic degree is ≤ 1. An affine function with zero
constant term is called a linear function.

Nonlinearity. Nonlinearity of S is defined as the minimum Hamming distance
of all 2m −1 component functions from all n-variable affine functions, which can
be expressed in terms of its Walsh transformation defined as an even integer-
valued function WS : Fn

2 × F
m
2 → [−2n, 2n]:

WS(ω, v) =
∑

x∈F
n
2

(−1)ω·x⊕v·S(x),

where the inner product is over F2, ω ∈ F
n
2 , and v ∈ F

m
2

∗. It can be seen that
if one of the component functions v · S(x) is affine, then the maximum value in
the absolute Walsh spectrum is 2n, giving rise to zero nonlinearity. Nonlinearity
of S is then given by

NLS = 2n−1 − 1
2

max
ω∈F

n
2 ,

v∈F
m
2

∗

|WF (ω, v)|.

Differential Uniformity. The differential uniformity δ [24] of S is defined as
the maximum number of solutions of the equation S(x) ⊕ S(x ⊕ γ) = β, where
γ �= (0, 0, . . . , 0), i.e.,

δ = max
γ∈F

n
2

∗,
β∈F

m
2

|{x ∈ F
n
2 |S(x) ⊕ S(x ⊕ γ) = β}| ,

Accordingly, S is called differentially-δ uniform.

Absolute Indicator. The absolute indicator is an important cryptographic
criterion related to the autocorrelation spectrum, which is used to have good
diffusion properties. The autocorrelation function of S is defined as

rS(a, v) =
∑

x∈F
n
2

(−1)v·(S(x)⊕S(x⊕a)),

114 S. Kavut and S. Baloğlu

where a ∈ F
n
2 . The maximum absolute value in the autocorrelation spectrum,

except those values for all-zero input difference and masking vectors, is referred
to as the absolute indicator, denoted as

ΔS = max
a∈F

n
2

∗,
v∈F

m
2

∗

|rS(a, v)|.

Transparency Order. For an n × m S-box S, it is given [6] by

τS = m − 1
22n − 2n

∑

a∈F
n
2

∗

∣∣∣∣∣∣∣∣

∑

v∈F
m
2 ,

wt(v)=1

rS(a, v)

∣∣∣∣∣∣∣∣
.

In the following, we first restate some basic definitions related to RSSBs and
then explain our method to construct a bijective S-box that is symmetric under
the permutation τ(x) = (x0, x2, x3, x4, x5, x1) as a concatenation of two 5×5
RSSBs. After that, the search space of size 261.28 (mentioned in Introduction) is
partitioned into four subspaces, each of which is traversed efficiently as explained
in Sect. 3.

2.2 (Concatenation of) RSSBs

Rotation-symmetric S-boxes (RSSBs) were defined in [29]. Let

ρk(x0, x1, . . . , xn−1) = (x0+k (mod n), x1+k (mod n), . . . , xn−1+k (mod n))

be the k-cyclic shift operator. An S-box S : F
n
2 → F

m
2 is called rotation-

symmetric if ρk(S(x)) = S(ρk(x)) ∀ x = (x0, x1, . . . , xn−1) ∈ F
n
2 and 1 ≤ k ≤ n.

If m = 1, then it is called rotation-symmetric Boolean function (RSBF). Let S
be generated from s : F2n → F2n using a normal basis for F2n . Then, as indicated
in [29], the S-boxes satisfying (s(α))2 = s(α2), ∀ α ∈ F2n , can be regarded as
rotation-symmetric. In the rest of this paper, we consider the S-boxes for which
m = n.

The orbit of x ∈ F
n
2 under the cyclic rotation is given by the set Gn(x) =

{ρk(x) | 1 ≤ k ≤ n}. Let gn be the number of distinct orbits. Using Burnside’s
Lemma, it can be shown [30] that gn = 1

n

∑
t|n φ(t)2

n
t (≈ 2n

n), where φ(t) is the
Euler’s phi-function. The lexicographically first element within the ith orbit is
called the orbit representative and denoted by Λi, where 1 ≤ i ≤ gn.

Since an n × n RSSB S is uniquely defined by its outputs for the orbit
representatives Λi’s, the concatenation F : Fn+1

2 → F
n
2 of two n × n RSSBs S1

and S2, described by F (x) = (x0 ⊕ 1)S1(x1, ..., xn)+x0S2(x1, ..., xn), is denoted
as

(S1(Λ1), ..., S1(Λgn
))||(S2(Λ1), ..., S2(Λgn

)),

Classification of 6 × 6 S-boxes Obtained by Concatenation of RSSBs 115

or simply as S1||S2, where x = (x0, x1, ..., xn) ∈ F
n+1
2 . Let f : Fn+1

2 → F2 be
a Boolean function such that the S-box S : F

n+1
2 → F

n+1
2 , given by S(x) =

(f(x), F (x)), is bijective and symmetric under the permutation τ(x) = (x0, x2,
x3, . . . , xn, x1). Then, notice that as f is invariant under τ , f(x) is either equal
to 1 or 0 for all cyclic rotations of (x1, ..., xn). In addition, since S is bijective,
the outputs of F contain all the orbit representatives Λi’s, i = 1, 2, . . . , gn, and
these orbit representatives are pairwise the same with one another. Accordingly,
for such a pair f(x) = 1 for one orbit and f(x) = 0 for the other one.

More specifically, let Hn(x) and Hn(x′) be two distinct sets with the same
cardinality, where Hn(x) = {τk(x)|1 ≤ k ≤ n}. Then, for all Λi there exist ν, μ ∈
Gn(Λi) such that F (τ l(x)) = ρl(ν) and F (τ l(x′)) = ρl(μ) for which f(τ l(x)) = e
and f(τ l(x′)) = e ⊕ 1 ∀ l = 1, . . . , n, where e ∈ F2. As a consequence, f is a
balanced function such that it is a concatenation of two n-variable RSBFs f1
and f2, i.e., f(x) = (x0 ⊕ 1)f1(x1, . . . , xn) + x0f2(x1, . . . , xn), and the number
of f ’s to construct a bijective S given the concatenation F is equal to 2gn .

2.3 Partitioning Search Space

As already mentioned, the concatenation F = S1||S2 contains each orbit repre-
sentative Λi pairwisely in its outputs, from which one can see that both the S-boxes
S1 and S2 follow a certain structure. For instance, if one of the RSSBs has a pair
of the same orbit representatives in its outputs, then the other one cannot have
these outputs. Following this argument, the output orbit representatives of S1 can
be completely determined given those of S2, and vice versa. For our case n = 5,
the number of orbits g5 = 8 such that six of them are of size 5 and the rest two
are of size 1. Therefore, F contains four orbits of size 1, that is,

(F (0, Λ1), F (0, Λ8), F (1, Λ1), F (1, Λ8)) = (S1(Λ1), S1(Λ8), S2(Λ1), S2(Λ8))
∈ P(Λ1, Λ1, Λ8, Λ8),

where Λ1 and Λ8 are the all-zero and all-one vectors, respectively, and P(Λ1,
Λ1, Λ8, Λ8) is the set of permutations of {Λ1, Λ1, Λ8, Λ8}. Similarly, the outputs
(f(0, Λ1), f(0, Λ8), f(1, Λ1), f(1, Λ8)) ∈ P(0, 0, 1, 1).

Now, let us consider the output orbits of size 5. In this case, since the S-box
S = (f, F) is bijective, any choice of the output orbit representatives for both
S1 and S2 belong to one of the following four sets:

1. S0 = {(Λ2, . . . , Λ7)},
2. S1 = {(Λi1 , . . . , Λi6) | i1 = i2, i1 �= i3 �= i4 �= i5 �= i6},
3. S2 = {(Λi1 , . . . , Λi6) | i1 = i2, i3 = i4, i1 �= i3 �= i5 �= i6},
4. S3 = {(Λi1 , . . . , Λi6) | i1 = i2, i3 = i4, i5 = i6, i1 �= i3 �= i5},

where i1, . . . , i6 ∈ {2, . . . , 7} and (Λi1 , . . . , Λi6)’s are different up to permutation.
As can be seen, the set S0 consists of only one choice (Λ2, . . . , Λ7) for the output
orbit representatives, which implies that all the output orbits (of size 5) are
different from each other for both S1 and S2. The other sets are interpreted

116 S. Kavut and S. Baloğlu

similarly, e.g., if the representatives of the output orbits of S1 belong to S1, then
those of S2 should also belong to S1, and each of S1 and S2 have one pair of
the same orbit representatives in their outputs. Notice that the numbers of the
choices for the sets S1, S2, and S3 are

(
6
1

)(
5
4

)
= 30,

(
6
2

)(
4
2

)
= 90, and

(
6
3

)
= 20,

respectively.
Here, we give an example which shows that given the output orbit represen-

tatives of S1, those of S2 and all possible choices of the Boolean function f can
be completely found.

Example 1. Let

(S1(Λ1), . . . ,S1(Λ8)) = (F (0, Λ1), . . . , F (0, Λ8))

=(1, π1(ρk1(Λ4), ρk2(Λ4), ρk3(Λ7), ρk4(Λ7), ρk5(Λ2), ρk6(Λ3)),0),

where (k1, ..., k6) ∈ {1, ..., 5}6, π1 is any permutation of the six outputs, 0 and 1
are the all-zero and all-one vectors, respectively. It can be seen that the output
orbit representatives (of size 5) of S1 belong to the set S2. Hence, those of S2

should also belong to the same set as given below:

(S2(Λ1), . . . ,S2(Λ8)) = (F (1, Λ1), . . . , F (1, Λ8))

=(u, π2(ρl1(Λ5), ρl2(Λ5), ρl3(Λ6), ρl4(Λ6), ρl5(Λ2), ρl6(Λ3)), u ⊕ 1),

where u ∈ {0,1}, (l1, ..., l6) ∈ {1, ..., 5}6, and π2 is also a permutation. Further,
if F (x) = F (x′) for two distinct x, x′ ∈ F

6
2, then f(τ l(x′)) = f(τ l(x)) ⊕ 1 ∀ 1 ≤

l ≤ 5. For instance, considering the orbits Λ1 and Λ8, if (F (0, Λ1), F (0, Λ8),
F (1, Λ1), F (1, Λ8)) = (1,0,0,1) (i.e. u = 0), then

(f(0, Λ1), f(0, Λ8), f(1, Λ1), f(1,Λ8)) ∈
{(0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0)}.

Otherwise, if (F (0, Λ1), F (0, Λ8), F (1, Λ1), F (1, Λ8)) = (1,0,1,0) (i.e., u = 1),
then

(f(0, Λ1), f(0, Λ8), f(1, Λ1), f(1,Λ8)) ∈
{(0, 0, 1, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 1, 0, 0)}.

Let us refer to the set of S-boxes S = (f, F) for which the output orbit
representatives (other than Λ1 and Λ8) of both S1 and S2 belong to Sk as ‘Set-
k’, k = 0, 1, 2, 3. Then, each Set-k is generated by the algorithm given below.

Classification of 6 × 6 S-boxes Obtained by Concatenation of RSSBs 117

Algorithm 1. Forming Set-k from the orbit representatives in Sk.
Input: Sk

Output: Set-k
1 Set-k is empty;
2 for each (S1(Λ1), S1(Λ8), S2(Λ1), S2(Λ8)) ∈ P(Λ1, Λ1, Λ8, Λ8) do
3 for each (S1(Λ2), ..., S1(Λ7)) ∈ Sk do
4 for each (S1(Λ2), ..., S1(Λ7)) ∈ P(S1(Λ2), ..., S1(Λ7)) do
5 Determine the output orbits of S2 from S1;
6 for each (S2(Λ2), ..., S2(Λ7)) ∈ P(S2(Λ2), ..., S2(Λ7)) do
7 for each (k1, ..., k6) ∈ {1, ..., 5}6 do
8 S1 = (S1(Λ1), ρk1(S1(Λ2)), ..., ρk6(S1(Λ7)), S1(Λ8));
9 for each (l1, ..., l6) ∈ {1, ..., 5}6 do

10 S2 = (S2(Λ1), ρl1(S2(Λ2)), ..., ρl6(S2(Λ7)), S2(Λ8));
11 F = S1||S2;
12 F = {f : F6

2 → F2|f(τ l(x)) = f(τ l(x′)) ⊕ 1,
for all two distinct x, x′ ∈ F

5
2 s.t. F (x) = F (x′)};

13 for each f ∈ F do
14 Add S = (f, F) to the Set-k;
15 end
16 end
17 end
18 end
19 end
20 end
21 end

In the algorithm, we see that |P(Λ1, Λ1, Λ8, Λ8)| = 6, |F| = 28, and the
number of all rotations is equal to 512 (as can be seen from the fifth and
sixth loops of the algorithm) for each Set-k. Hence, the number of S-boxes,
e.g., in Set-1 is computed as 6 × 30 × 3602 × 512 × 28 ≈ 260.34, since
|S1| = 30 and |P(S1(Λ2), ..., S1(Λ7))| = |P(S2(Λ2), ..., S2(Λ7))| = 360 for all
(S1(Λ2), ..., S1(Λ7)), (S2(Λ2), ..., S2(Λ7)) ∈ S1. Similarly, the numbers of S-boxes
in Set-0, Set-2, and Set-3 are found to be 257.43, 259.92, and 255.75, respectively.

3 Search Strategy

In this section, we present our search strategy, which can be considered as a
three step process, to enumerate the S-boxes with nonlinearity 24 in each of the
subsets Set-k, k = 0, 1, 2, 3, formed by Algorithm 1.

3.1 Sieving Affine Equivalent Concatenations

Recall that the number of pairwise the same orbit representatives in the outputs
of S1 should be the same as the number of those in the outputs of S2. Let

118 S. Kavut and S. Baloğlu

S
(k)
j denote the RSSB Sj (j = 1, 2) for which this number is represented by

k ∈ {0, 1, 2, 3}. Then, taking all possible permutations of (S(k)
1 (Λ1), S

(k)
1 (Λ8),

S
(k)
2 (Λ1), S

(k)
2 (Λ8)) into account, the number of choices in Sk is multiplied by 6.

More specifically, it can be computed as
(
6
k

) × (
6−k
6−2k

) × 6 for each Sk. Here, we
sieve some of these choices leading to affine equivalent S-boxes, due to the fact
that the nonlinearity is invariant under affine transformations.

Let us define the circulant matrix Ci(a), used in the following proposition,
which is formed by taking a = (a0, a1 . . . , an−1) ∈ F

n
2 as the first row and

rotating each row i-bit to the left relative to the preceding row, where 1 ≤ i ≤ n:

Ci(a) =

⎡

⎢⎢⎢⎣

a
ρi(a)

...
ρ(n−1)i (mod n)(a)

⎤

⎥⎥⎥⎦ .

The proposition given below defines some affine transformations (which can be
obtained using those among the RSSBs given by Proposition 8 in [13]) among
the concatenations.

Proposition 1. Let F = (S1||S2) be a concatenation of two n×n RSSBs S1 and
S2. Then each of the following functions, denoted by F ′, is also a concatenation
of two n × n RSSBs and affine equivalent to F :

1. (complement) F ′(x) = F (x) ⊕ 1,
2. (reverse) F ′(x) = F (x ⊕ 1),
3. (transposition) F ′ = (S2||S1),
4. (circulant matrix multiplication) F ′(x) = F (xDq(a))Cp(b),

where p, q are co-prime to n such that pq ≡ 1 (mod n),

Dq(a) =

⎡

⎢⎢⎣

1 0 · · · 0
0

Cq(a)
...
0

⎤

⎥⎥⎦ ,

a, b ∈ F
n
2 , x ∈ F

n+1
2 , and Cq(a), Cp(b) are nonsingular circulant matrices

over F2.

Using these transformations (or their compositions) we sieve the aforementioned
choices for the output orbit representatives, which generate affine equivalent S-
boxes as shown by the next proposition.

Proposition 2. Let S(x) = (f(x), F (x)) be an (n+1)×(n+1) symmetric S-box
under the permutation τ(x) = (x0, x2, x3, . . . , xn, x1), where x = (x0, x1, . . . , xn)
∈ F

n+1
2 , f is an (n + 1)-variable Boolean function, and F is a concatenation of

two n × n RSSBs. Assume that F ′, also a concatenation of two n × n RSSBs, is
obtained by the affine transformations given by Proposition 1. Then, there exists
an (n + 1)-variable Boolean function f ′ such that S ′ = (f ′, F ′) is symmetric
under τ and affine equivalent to S.

Classification of 6 × 6 S-boxes Obtained by Concatenation of RSSBs 119

Proof. It is easy to prove for the first three affine transformations in Proposition 1.
Let us consider the last one, i.e., circulant matrix multiplication. Then, we have

S ′(x) = (f ′(x), F ′(x))
= (f(xDq(a)), F (xDq(a))Cp(b))
= (f(xDq(a)), F (xDq(a)))Dp(b)
= S(xDq(a))Dp(a),

where f ′(x) = f(xDq(a)) ∀ x ∈ F
n+1
2 , which shows that S and S ′ are affine

equivalent. Next, we get the following:

S ′(τ(x)) = S(τ(x)Dq(a))Dp(b)
= (f(τ(x)Dq(a)), F (τ(x)Dq(a))Cp(b))
= (f(x0, ρ(x1, . . . , xn)Cq(a)), F (x0, ρ(x1, . . . , xn)Cq(a))Cp(b))
= (f(x0, ρ

n−q((x1, . . . , xn)Cq(a))), F (x0, ρ
n−q((x1, . . . , xn)Cq(a)))Cp(b))

= (f(τn−q(x0, (x1, . . . , xn)Cq(a))), ρn−q(F (x0, (x1, . . . , xn)Cq(a)))Cp(b))
= (f(x0, (x1, . . . , xn)Cq(a)), ρ(n−q)(n−p)(F (x0, (x1, . . . , xn)Cq(a))Cp(b)))
= (f(x0, (x1, . . . , xn)Cq(a)), ρ(F (x0, (x1, . . . , xn)Cq(a))Cp(b)))
= (f(xDq(a)), ρ(F (xDq(a))Cp(b)))
= τ(S(xDq(a))Dp(b))
= τ(S ′(x)),

which follows from the fact that ρ(x1, . . . , xn)Cq(a) = ρn−q((x1, . . . , xn)Cq(a)),
where ρ is the cyclic shift operator. Hence, S ′ is also symmetric under τ . ��

As mentioned previously, for k = 0, 1, 2, 3 the number of choices (obtained
by considering the 6 combinations of the orbits of size 1) for Sk can be found
as 6, 180, 540, 120, respectively. After sieving those yielding affine equivalent
concatenations these numbers are reduced to 2, 8, 21, and 9, respectively. In
Table 1, we give these representative choices for each Sk along with the number
of those generating affine equivalent S-boxes.

In addition, it is clear that any S-box obtained by rotating all of the outputs
of an RSSB by the same number of positions is also an RSSB and this operation is
an affine transformation (for which a more general form is given by the last item
of Proposition 1). Hence, we set F (0, 0, 0, 0, 0, 1) = Λi, for any i ∈ {2, 3, . . . , 7},
where Λi is an orbit representative with orbit size 5, in order to remove affine
equivalent concatenations. This provides a reduction of the search space by a
factor of 1

5 .
At the end of this step, the number of S-boxes in Set-k reduces from 257.43,

260.34, 259.92, and 255.75 to 253.52, 253.52, 252.92, and 249.69, respectively. Hence,
the total search space reduces from 261.28 to 254.97.

120 S. Kavut and S. Baloğlu

Table 1. The representative choices and the number (Ni) of those for which the con-
catenations (S1||S2) are affine equivalent for Sk, k = 0, 1, 2, 3.

i S1 S2 Ni

S0 1 (Λ1,Λ2,Λ3,Λ4,Λ5,Λ6,Λ7,Λ1) (Λ8,Λ2,Λ3,Λ4,Λ5,Λ6,Λ7,Λ8) 2

2 (Λ1, Λ2, Λ3, Λ4, Λ5, Λ6, Λ7, Λ8) (Λ8, Λ2, Λ3, Λ4, Λ5, Λ6, Λ7, Λ1) 4

S1 1 (Λ1,Λ2,Λ2,Λ3,Λ4,Λ5,Λ6,Λ1) (Λ8,Λ3,Λ4,Λ5,Λ6,Λ7,Λ7,Λ8) 6

2 (Λ1, Λ2, Λ2, Λ3, Λ4, Λ5, Λ7, Λ1) (Λ8, Λ3, Λ4, Λ5, Λ6, Λ6, Λ7, Λ8) 24

3 (Λ1,Λ2,Λ2,Λ3,Λ5,Λ6,Λ7,Λ1) (Λ8,Λ3,Λ4,Λ4,Λ5,Λ6,Λ7,Λ8) 12

4 (Λ8, Λ2, Λ2, Λ3, Λ4, Λ5, Λ6, Λ8) (Λ1, Λ3, Λ4, Λ5, Λ6, Λ7, Λ7, Λ1) 6

5 (Λ8, Λ2, Λ2, Λ3, Λ5, Λ6, Λ7, Λ8) (Λ1, Λ3, Λ4, Λ4, Λ5, Λ6, Λ7, Λ1) 12

6 (Λ1, Λ2, Λ2, Λ3, Λ4, Λ5, Λ6, Λ8) (Λ8, Λ3, Λ4, Λ5, Λ6, Λ7, Λ7, Λ1) 24

7 (Λ1,Λ2,Λ2,Λ3,Λ4,Λ5,Λ7,Λ8) (Λ8,Λ3,Λ4,Λ5,Λ6,Λ6,Λ7,Λ1) 48

8 (Λ1, Λ2, Λ2, Λ3, Λ5, Λ6, Λ7, Λ8) (Λ8, Λ3, Λ4, Λ4, Λ5, Λ6, Λ7, Λ1) 48

*S2 1 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ4, Λ5, Λ1) (Λ8, Λ4, Λ5, Λ6, Λ6, Λ7, Λ7, Λ8) 12

2 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ4, Λ6, Λ1) (Λ8, Λ4, Λ5, Λ5, Λ6, Λ7, Λ7, Λ8) 12

3 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ4, Λ7, Λ1) (Λ8, Λ4, Λ5, Λ5, Λ6, Λ6, Λ7, Λ8) 24

4 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ5, Λ7, Λ1) (Λ8, Λ4, Λ4, Λ5, Λ6, Λ6, Λ7, Λ8) 24

5 (Λ1, Λ2, Λ2, Λ3, Λ5, Λ5, Λ6, Λ1) (Λ8, Λ3, Λ4, Λ4, Λ6, Λ7, Λ7, Λ8) 12

6 (Λ1,Λ2,Λ2,Λ3,Λ5,Λ5,Λ7,Λ1) (Λ8,Λ3,Λ4,Λ4,Λ6,Λ6,Λ7,Λ8) 12

7 (Λ1, Λ2, Λ2, Λ4, Λ5, Λ5, Λ6, Λ1) (Λ8, Λ3, Λ3, Λ4, Λ6, Λ7, Λ7, Λ8) 6

8 (Λ1, Λ2, Λ2, Λ3, Λ5, Λ7, Λ7, Λ1) (Λ8, Λ3, Λ4, Λ4, Λ5, Λ6, Λ6, Λ8) 12

9 (Λ8, Λ2, Λ2, Λ3, Λ3, Λ4, Λ5, Λ8) (Λ1, Λ4, Λ5, Λ6, Λ6, Λ7, Λ7, Λ1) 12

10 (Λ8,Λ2,Λ2,Λ3,Λ3,Λ4,Λ7,Λ8) (Λ1,Λ4,Λ5,Λ5,Λ6,Λ6,Λ7,Λ1) 24

11 (Λ8, Λ2, Λ2, Λ3, Λ5, Λ5, Λ6, Λ8) (Λ1, Λ3, Λ4, Λ4, Λ6, Λ7, Λ7, Λ1) 12

12 (Λ8, Λ2, Λ2, Λ3, Λ5, Λ5, Λ7, Λ8) (Λ1, Λ3, Λ4, Λ4, Λ6, Λ6, Λ7, Λ1) 12

13 (Λ8, Λ2, Λ2, Λ4, Λ5, Λ5, Λ6, Λ8) (Λ1, Λ3, Λ3, Λ4, Λ6, Λ7, Λ7, Λ1) 6

14 (Λ1,Λ2,Λ2,Λ3,Λ3,Λ4,Λ5,Λ8) (Λ8,Λ4,Λ5,Λ6,Λ6,Λ7,Λ7,Λ1) 48

15 (Λ1,Λ2,Λ2,Λ3,Λ3,Λ4,Λ6,Λ8) (Λ8,Λ4,Λ5,Λ5,Λ6,Λ7,Λ7,Λ1) 24

16 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ4, Λ7, Λ8) (Λ8, Λ4, Λ5, Λ5, Λ6, Λ6, Λ7, Λ1) 96

17 (Λ1,Λ2,Λ2,Λ3,Λ3,Λ5,Λ7,Λ8) (Λ8,Λ4,Λ4,Λ5,Λ6,Λ6,Λ7,Λ1) 48

18 (Λ1, Λ2, Λ2, Λ3, Λ5, Λ5, Λ6, Λ8) (Λ8, Λ3, Λ4, Λ4, Λ6, Λ7, Λ7, Λ1) 48

19 (Λ1, Λ2, Λ2, Λ3, Λ5, Λ5, Λ7, Λ8) (Λ8, Λ3, Λ4, Λ4, Λ6, Λ6, Λ7, Λ1) 48

20 (Λ1, Λ2, Λ2, Λ4, Λ5, Λ5, Λ6, Λ8) (Λ8, Λ3, Λ3, Λ4, Λ6, Λ7, Λ7, Λ1) 24

21 (Λ1,Λ2,Λ2,Λ3,Λ5,Λ7,Λ7,Λ8) (Λ8,Λ3,Λ4,Λ4,Λ5,Λ6,Λ6,Λ1) 24

S3 1 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ4, Λ4, Λ1) (Λ8, Λ5, Λ5, Λ6, Λ6, Λ7, Λ7, Λ8) 6

2 (Λ1,Λ2,Λ2,Λ3,Λ3,Λ5,Λ5,Λ1) (Λ8,Λ4,Λ4,Λ6,Λ6,Λ7,Λ7,Λ8) 12

3 (Λ1, Λ2, Λ2, Λ5, Λ5, Λ6, Λ6, Λ1) (Λ8, Λ3, Λ3, Λ4, Λ4, Λ7, Λ7, Λ8) 2

4 (Λ8,Λ2,Λ2,Λ3,Λ3,Λ4,Λ4,Λ8) (Λ1,Λ5,Λ5,Λ6,Λ6,Λ7,Λ7,Λ1) 6

5 (Λ8, Λ2, Λ2, Λ3, Λ3, Λ5, Λ5, Λ8) (Λ1, Λ4, Λ4, Λ6, Λ6, Λ7, Λ7, Λ1) 12

6 (Λ8, Λ2, Λ2, Λ5, Λ5, Λ6, Λ6, Λ8) (Λ1, Λ3, Λ3, Λ4, Λ4, Λ7, Λ7, Λ1) 2

7 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ4, Λ4, Λ8) (Λ8, Λ5, Λ5, Λ6, Λ6, Λ7, Λ7, Λ1) 24

8 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ5, Λ5, Λ8) (Λ8, Λ4, Λ4, Λ6, Λ6, Λ7, Λ7, Λ1) 48

9 (Λ1, Λ2, Λ2, Λ5, Λ5, Λ6, Λ6, Λ8) (Λ8, Λ3, Λ3, Λ4, Λ4, Λ7, Λ7, Λ1) 8

Classification of 6 × 6 S-boxes Obtained by Concatenation of RSSBs 121

3.2 Sieving RSSBs S1 and S2

In this step, we generate all the RSSBs S1’s and S2’s used to form the con-
catenation F = (S1||S2). One can see that to construct an S-box S = (f, F)
with nonlinearity ≥ 24, the nonlinearities of S1 and S2 have to be ≥ 8. We find
that for some choices given in Table 1 there are no RSSBs (S1 and S2) with
nonlinearity ≥ 8. More specifically, 6 out of the 21 choices (for S2) and 3 out of
the 9 choices (for S3) in Table 1 generate neither S1 nor S2 with nonlinearity ≥
8, and hence they are removed from the search space. These eliminated choices
are N5, N7, N11, N13, N18, N20 for S2 and N3, N6, N9 for S3. Thus, after this
preprocessing, the search space slightly reduces from 254.97 to 254.86.

Next, we apply a more efficient sieving method to reduce the number of
choices for the output orbit representatives of S1 and S2. Let the sets Ω1 and
Ω2 contain all the S1’s and S2’s generated from one of the remaining choices
after the above elimination, respectively. Let the subset Ω

[t,(ω,v)]
1 of Ω1 denote

the S1’s for which the absolute Walsh spectrum value of a component function
v · S1 at a position ω ∈ F

5
2 is equal to t (i.e., |WS1(ω, v)| = t), where v �= 0 ∈ F

5
2

and t ∈ {0, 2, ..., 16}. Similarly, given the triplet [t, (ω, v)], we constitute the
subsets Ω

[0,(ω,v)]
2 , Ω

[2,(ω,v)]
2 , . . ., Ω

[16−t,(ω,v)]
2 of Ω2. As can be seen, the S1’s in

Ω
[t,(ω,v)]
1 can be concatenated only with the S2’s in ∪i∈{0,2,...,16−t}Ω

[i,(ω,v)]
2 , since

otherwise the nonlinearity of the concatenation F cannot reach to or exceed 24,
leading to the fact that the nonlinearity of S is less than 24. Hence, if there is
no S2 in ∪i∈{0,2,...,16−t}Ω

[i,(ω,v)]
2 , then we update Ω1 by Ω1 \Ω

[t,(ω,v)]
1 . Note that

the set Ω2 can also be updated similarly considering the concatenations formed
by the S2’s in Ω

[t,(ω,v)]
2 and S1’s in ∪i∈{0,2,...,16−t}Ω

[i,(ω,v)]
1 . In addition, since for

an RSSB S the component functions (v ·S) for which the corresponding masking
vectors (v) belong to the same orbit are affine equivalent (Proposition 4 in [13]),
it suffices to apply this procedure only for the masking vectors that are orbit
representatives.

Hence, we have performed the above method for all the triplets [t, (ω, v)],
where the v’s are orbit representatives, and found that the updated sets Ω1 and
Ω2 are empty for some of the remaining choices in Table 1. More specifically, we
find that these choices are N1 for S0, N2, N4, N5, N6, N8 for S1, N1, N2, N3,
N4, N8, N9, N12, N16, N19 for S2, and N1, N5, N7, N8 for S3. Thus, the search
space reduces from 254.86 to 253.63. In Table 1, the choices left after the first two
steps of our search strategy are shown by bold font.

3.3 Sieving Concatenations with Nonlinearity < 24

Let the updated sets of Ω1 and Ω2 after the previous step be Ω1 and Ω2, respec-
tively. In this last step, we add the coordinate functions f ’s to the concatenations
F = (S1||S2) obtained from the S1’s in Ω1 and S2’s in Ω2. Here, as we enumer-
ate the S-boxes in the form of S = (f, F) with nonlinearity ≥ 24, we select only
those f ’s that achieve nonlinearity ≥ 24 among all possible f ’s (recall that given
F , there can be only 2g5 = 28 f ’s making S bijective and symmetric under τ).

122 S. Kavut and S. Baloğlu

In addition, since the nonlinearities of S = (f, F) and S ′ = (fc, F) are the same,
where fc is the complement of f , we fix f(0) = 0, which reduces the search
space by half.

To make this step more efficient, we apply a method similar to the one used
in the previous step. Consider the subsets Ω1

[t,(ω,v)]
and ∪i∈{0,2,...,16−t}Ω2

[i,(ω,v)]

of Ω1 and Ω2, respectively. We choose each of the S1’s in the former subset and
each of the S2’s in the latter one. If for some S1 and S2, the nonlinearity of
F ≥ 24, then we add each possible coordinate function f to form the S-box S.
If the nonlinearity of S ≥ 24, then we save S in a file. After that, as in the
preceding step, since the S1’s in Ω1

[t,(ω,v)]
cannot be concatenated with any S2’s

in Ω2 except those in ∪i∈{0,2,...,16−t}Ω2
[i,(ω,v)]

, we update Ω1 by Ω1 \ Ω1
[t,(ω,v)]

.

Note that when we eliminate the S1’s in Ω1
[t,(ω,v)]

, we also eliminate these S1’s
belonging to the other subsets of Ω1. Finally, by performing this procedure for
all the triplets [t, (ω, v)], we reduce the search space to 248.47.

4 Results

We find that in the class of 6×6 bijective S-boxes that are symmetric under the
permutation τ , there are 237.56 S-boxes with nonlinearity 24 and there is no S-box
exceeding this nonlinearity. Further, among these S-boxes, the best differential
uniformity is 4 and the number of differentially 4-uniform S-boxes is 233.99.
In [13], the S-boxes with the same cryptographic properties are enumerated
in the class of bijective RSSBs for which the search space is of size 247.90. In
this class, it has been found that there are 228.25 S-boxes with nonlinearity 24
and among them the number of those that are differentially 4-uniform is 224.74.
Compared to these results, our search identifies a much larger set of S-boxes
achieving the same cryptographic properties than those found in [13].

Since the TO of an S-box is not in general invariant under the affine trans-
formations, in our classification we generate (after completing the search) the
S-boxes using those under which the TO is not invariant and compute the
corresponding TOs. More specifically, let us consider an n × n S-box T (x) =
S(xA ⊕ d)B ⊕ e, where A,B are nonsingular binary matrices and d, e ∈ F

n
2 .

In [8], it was shown that the TO of T (x) is the same as that of S(xA ⊕ d) ⊕ e,
and later in [14] it has been shown that the TO of T (x) is also invariant under
the column permutation of B. Hence, we note that only the affine equivalent S-
boxes obtained by the circulant matrix multiplication in Proposition 1 can have
different the TOs.

In Table 2, we present the classification of the 233.99 differentially 4-uniform
S-boxes in terms of their absolute indicator (AI), algebraic degrees (dmin and
dmax, i.e., the minimum and maximum algebraic degrees among the component
functions of a given S-box, resp.), and transparency order (TO). For each Set-
k, k = 0, 1, 2, 3, the classification results are also given in Tables 3, 4, 5 and
6, from which it is seen that the numbers of differentially 4-uniform S-boxes
with nonlinearity 24 are 229.91, 232.87, 232.82, and 229.09, respectively. It is seen

Classification of 6 × 6 S-boxes Obtained by Concatenation of RSSBs 123

Table 2. The classification of the 6 × 6 bijective S-boxes, constructed by the concate-
nation of RSSBs, with nonlinearity 24 and differential uniformity 4.

AI dmin dmax TO Number of S-boxes

24 3 4 ≥ 5.619, ≤ 5.786 10368 × 10

24 4 4 ≥ 5.413, ≤ 5.889 42695424 × 10

32 3 4 ≥ 5.548, ≤ 5.849 165888 × 10

32 4 4 ≥ 5.349, ≤ 5.905 629213184 × 10

32 4 5 ≥ 5.607, ≤ 5.813 10368 × 10

40 4 4 ≥ 5.421, ≤ 5.905 97096320 × 10

48 4 4 ≥ 5.480, ≤ 5.889 3400704 × 10

64 2 2 ≥ 5.714, ≤ 5.714 5184 × 10

64 2 3 ≥ 5.381, ≤ 5.873 730944 × 10

64 2 4 ≥ 5.270, ≤ 5.905 176613696 × 10

64 3 3 ≥ 5.500, ≤ 5.905 383616 × 10

64 3 4 ≥ 5.341, ≤ 5.905 753769152 × 10

64 3 5 ≥ 5.655, ≤ 5.817 10368 × 10

64 4 4 ≥ 5.607, ≤ 5.770 10368 × 10

Table 3. The classification of the S-boxes in Set-0 with nonlinearity 24 and differential
uniformity 4.

AI dmin dmax TO Number of S-boxes

24 3 4 ≥ 5.619, ≤ 5.730 288 × 40

24 4 4 ≥ 5.440, ≤ 5.889 438336 × 40

32 3 4 ≥ 5.655, ≤ 5.734 288 × 40

32 4 4 ≥ 5.421, ≤ 5.905 9214560 × 40

32 4 5 ≥ 5.675, ≤ 5.738 288 × 40

40 4 4 ≥ 5.448, ≤ 5.905 1978848 × 40

48 4 4 ≥ 5.500, ≤ 5.845 126144 × 40

64 2 2 ≥ 5.714, ≤ 5.714 288 × 40

64 2 3 ≥ 5.381, ≤ 5.873 26496 × 40

64 2 4 ≥ 5.302, ≤ 5.885 2320704 × 40

64 3 3 ≥ 5.540, ≤ 5.905 25632 × 40

64 3 4 ≥ 5.341, ≤ 5.905 11161440 × 40

64 4 4 ≥ 5.607, ≤ 5.770 288 × 40

from Table 2 that the minimum transparency order the S-boxes have in this
classification is 5.270. This value is attained from Set-2 and Set-3 as can be seen
from Tables 5 and 6 (shown by bold font).

124 S. Kavut and S. Baloğlu

Table 4. The classification of the S-boxes in Set-1 with nonlinearity 24 and differential
uniformity 4.

AI dmin dmax TO Number of S-boxes

24 3 4 ≥ 5.619, ≤ 5.778 3456 × 10

24 4 4 ≥ 5.417, ≤ 5.889 20560896 × 10

32 3 4 ≥ 5.556, ≤ 5.849 91008 × 10

32 4 4 ≥ 5.349, ≤ 5.905 290878848 × 10

32 4 5 ≥ 5.667, ≤ 5.813 3456 × 10

40 4 4 ≥ 5.429, ≤ 5.905 43205760 × 10

48 4 4 ≥ 5.480, ≤ 5.889 1359360 × 10

64 2 2 ≥ 5.714, ≤ 5.714 1152 × 10

64 2 3 ≥ 5.381, ≤ 5.873 271872 × 10

64 2 4 ≥ 5.341, ≤ 5.905 80786304 × 10

64 3 3 ≥ 5.500, ≤ 5.905 118656 × 10

64 3 4 ≥ 5.361, ≤ 5.905 350350848 × 10

64 3 5 ≥ 5.655, ≤ 5.817 4608 × 10

64 4 4 ≥ 5.607, ≤ 5.770 3456 × 10

Table 5. The classification of the S-boxes in Set-2 with nonlinearity 24 and differential
uniformity 4.

AI dmin dmax TO Number of S-boxes

24 3 4 ≥ 5.619, ≤ 5.786 5760 × 10

24 4 4 ≥ 5.413, ≤ 5.889 19401984 × 10

32 3 4 ≥ 5.548, ≤ 5.849 71424 × 10

32 4 4 ≥ 5.349, ≤ 5.905 280242432 × 10

32 4 5 ≥ 5.607, ≤ 5.813 5760 × 10

40 4 4 ≥ 5.421, ≤ 5.905 41551488 × 10

48 4 4 ≥ 5.480, ≤ 5.889 1299456 × 10

64 2 2 ≥ 5.714, ≤ 5.714 2304 × 10

64 2 3 ≥ 5.381, ≤ 5.873 313344 × 10

64 2 4 ≥ 5.270, ≤ 5.905 81669888 × 10

64 3 3 ≥ 5.500, ≤ 5.905 110592 × 10

64 3 4 ≥ 5.361, ≤ 5.905 333317376 × 10

64 3 5 ≥ 5.655, ≤ 5.817 5760 × 10

64 4 4 ≥ 5.607, ≤ 5.770 5760 × 10

Classification of 6 × 6 S-boxes Obtained by Concatenation of RSSBs 125

Table 6. The classification of the S-boxes in Set-3 with nonlinearity 24 and differential
uniformity 4.

AI dmin dmax TO Number of S-boxes

24 4 4 ≥ 5.468, ≤ 5.873 979200 × 10

32 3 4 ≥ 5.599, ≤ 5.746 2304 × 10

32 4 4 ≥ 5.417, ≤ 5.873 21233664 × 10

40 4 4 ≥ 5.460, ≤ 5.865 4423680 × 10

48 4 4 ≥ 5.516, ≤ 5.837 237312 × 10

64 2 2 ≥ 5.714, ≤ 5.714 576 × 10

64 2 3 ≥ 5.500, ≤ 5.794 39744 × 10

64 2 4 ≥ 5.270, ≤ 5.873 4874688 × 10

64 3 3 ≥ 5.540, ≤ 5.778 51840 × 10

64 3 4 ≥ 5.341, ≤ 5.873 25455168 × 10

As mentioned in the previous section, we do not take the concatenations
obtained by rotating all of the outputs by a fixed number of positions into
account reducing the search space by a factor of 1

5 . Recall that, in addition, we
fix f(0) = 0, which further reduces the search space by a factor of 1

2 . Hence, the
numbers of the S-boxes in Tables 2, 3, 4, 5 and 6 are the multiples of 10.

The search algorithm is performed on a workstation with 2 CPUs of Intel
Xeon Processor E5-2620v3 (15M Cache, 2.40 GHz, 6 cores) and 16 GB RAM
under Windows 8.1 Professional 64-bit operating system. It takes around 10 days
(236 h) exploiting all the cores.

5 Conclusions

We have presented an efficient exhaustive search algorithm to enumerate the
6 × 6 bijective S-boxes with the best known nonlinearity 24 within the class of
symmetric S-boxes under the permutation τ(x) = (x0, x2, x3, x4, x5, x1), where
x = (x0, x1 . . . , x5) ∈ F

6
2. Carrying out the search algorithm, which reduces the

space from 261.28 to 248.47, we have classified differentially 4-uniform S-boxes
among them in terms of absolute indicator, algebraic degree, and transparency
order. Our results provide a large pool of choices for small-size S-boxes with
desirable cryptographic properties such as low differential uniformity and high
nonlinearity, especially suitable for lightweight cryptography.

Acknowledgement. This work is a part of a project supported financially by The
Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant
114E486.

126 S. Kavut and S. Baloğlu

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

2. Bracken, C., Leander, G.: A highly nonlinear differentially 4 uniform power map-
ping that permutes fields of even degree. Finite Fields Appl. 16(4), 231–242 (2010)

3. Bracken, C., Tan, C.H., Tan, Y.: Binomial differentially 4 uniform permutations
with high nonlinearity. Finite Fields Appl. 18(3), 537–546 (2012)

4. Browning, K.A., Dillon, J.F., McQuistan, M.T., Wolfe, A.J.: An APN permutation
in dimension six. In: The 9th Conference on Finite Fields and Applications - Fq9,
Contemporary Mathematics, vol. 518, pp. 33–42, AMS USA (2010)

5. Carlet, C.: Vectorial Boolean functions for cryptography. Chapter of the Monog-
raphy In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in
Mathematics, Computer Science, and Engineering, pp. 398–469. Cambridge Uni-
versity Press (2010)

6. Chakraborty, K., Sarkar, S., Maitra, S., Mazumdar, B., Mukhopadhyay, D., Prouff,
E.: Redefining the transparency order. In: Workshop on Coding and Cryptography
(WCC), Paris, France (2015). http://eprint.iacr.org/2014/367.pdf

7. Dobbertin, H.: Almost perfect nonlinear power functions on GF(2n): the Welch
case. IEEE Trans. Inf. Theory 45(4), 1271–1275 (1999)

8. Evci, M.A., Kavut, S.: DPA resilience of rotation-symmetric S-boxes. In: Yoshida,
M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 146–157. Springer, Cham
(2014). doi:10.1007/978-3-319-09843-2 12

9. Fuller, J., Millan, W.: Linear redundancy in S-Boxes. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 74–86. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39887-5 7

10. Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation
functions. IEEE Trans. Inform. Theory 14, 154–156 (1968)

11. Kasami, T.: The weight enumerators for several classes of subcodes of the second
order binary Reed-Muller codes. Inform. Control 18, 369–394 (1971)

12. Kavut, S., Yücel, M.D.: 9-variable Boolean functions with nonlinearity 242 in
the generalized rotation symmetric class. Inf. Comput. 208(4), 341–350 (2010).
Elsevier

13. Kavut, S.: Results on rotation-symmetric S-boxes. Inf. Sci. 201, 93–113 (2012)
14. Kavut, S.: DPA resistivity of small size S-boxes. In: Proceedings of the 3rd Inter-

national Symposium on Digital Forensics and Security, ISDFS 2015, pp. 64–69
(2015)

15. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

16. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

17. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Symposium on Communication
Coding and Cryptography, in Honor of J.L. Massey on the Occasion of his 60’th
Birthday. The Springer International Series in Engineering and Computer Science,
vol. 276, pp. 27–233. Springer, Heidelberg (1994)

18. Li, Y., Wang, M., Yu, Y.: Constructing differentially 4-uniform permutations over
GF (22k) from the inverse function revisited (2013). http://eprint.iacr.org/2013/
731

http://eprint.iacr.org/2014/367.pdf
http://dx.doi.org/10.1007/978-3-319-09843-2_12
http://dx.doi.org/10.1007/978-3-540-39887-5_7
http://dx.doi.org/10.1007/978-3-540-39887-5_7
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://eprint.iacr.org/2013/731
http://eprint.iacr.org/2013/731

Classification of 6 × 6 S-boxes Obtained by Concatenation of RSSBs 127

19. Li, Y., Wang, M.: Constructing differentially 4-uniform permutations over
GF (22m) from quadratic APN permutations over GF (22m+1). Des. Codes Cryp-
togr. 72(2), 249–264 (2014)

20. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
doi:10.1007/3-540-48285-7 33

21. Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: Constrained search for a class of
good bijective S-boxes with improved DPA resistivity. IEEE Trans. Inf. Forensics
Secur. 8(12), 2154–2163 (2013)

22. Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: Design and implementation of
rotation symmetric S-boxes with high nonlinearity and high DPA resiliency. In:
IEEE International Symposium on Hardware-Oriented Security and Trust - HOST,
pp. 87–92 (2013)

23. Mazumdar, B., Mukhopadhyay, D.: Construction of RSSBs with high nonlinearity
and improved DPA resistivity from balanced RSBFs. IEEE Trans. Comput. (2016).
doi:10.1109/TC.2016.2569410

24. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994).
doi:10.1007/3-540-48285-7 6

25. Picek, S., Ege, B., Batina, L., Jakobovic, D., Chmielewski, �L., Golub, M.: On using
genetic algorithms for intrinsic side-channel resistance: the case of AES S-box. In:
The First Workshop on Cryptography and Security in Computing Systems, CS2
2014, pp. 13–18. ACM, New York (2014)

26. Picek, S., Ege, B., Papagiannopoulos, K., Batina, L., Jakobović, D.: Optimality
and beyond: the case of 4 × 4 S-boxes. In: IEEE International Symposium on
Hardware-Oriented Security and Trust - HOST, pp. 80–83 (2014)

27. Prouff, E.: DPA attacks and S-Boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005). doi:10.1007/
11502760 29

28. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart
2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). doi:10.1007/
3-540-45418-7 17

29. Rijmen, V., Barreto, P.S.L.M., Filho, D.L.G.: Rotation symmetry in algebraically
generated cryptographic substitution tables. Inf. Process. Lett. 106(6), 246–250
(2008)

30. Stănică, P., Maitra, S.: Rotation symmetric boolean functions − count and cryp-
tographic properties. Discrete Appl. Math. 156(10), 1567–1580 (2008)

31. Yu, Y., Wang, M., Li, Y.: Constructing differential 4-uniform permutations from
know ones (2011). http://eprint.iacr.org/2011/047)

http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1109/TC.2016.2569410
http://dx.doi.org/10.1007/3-540-48285-7_6
http://dx.doi.org/10.1007/11502760_29
http://dx.doi.org/10.1007/11502760_29
http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/3-540-45418-7_17
http://eprint.iacr.org/2011/047

Concealing KETJE: A Lightweight PUF-Based
Privacy Preserving Authentication Protocol

Gerben Geltink(B)

Institute for Computing and Information Sciences,
Radboud University, Nijmegen, The Netherlands

g.geltink@gmail.com

Abstract. In this paper, we focus on the design of a novel authentica-
tion protocol that preserves the privacy of embedded devices. A Physi-
cally Unclonable Function (PUF) generates challenge-response pairs that
form the source of authenticity between a server and multiple devices. We
rely on Authenticated Encryption (AE) for confidentiality, integrity and
authenticity of the messages. A challenge updating mechanism combined
with an authenticate-before-identify strategy is used to provide privacy.
The major advantage of the proposed method is that no shared secrets
need to be stored into the device’s non-volatile memory. We design a
protocol that supports server authenticity, device authenticity, device
privacy, and memory disclosure. Following, we prove that the protocol is
secure, and forward and backward privacy-preserving via game transfor-
mations. Moreover, a proof of concept is presented that uses a 3-1 Dou-
ble Arbiter PUF, a concatenation of repetition and BCH error-correcting
codes, and the AE-scheme Ketje. We show that our device implemen-
tation utilizes 8,305 LUTs on a 28 nm Xilinx Zynq XC7Z020 System
on Chip (SoC) and takes only 0.63 ms to perform an authentication
operation.

Keywords: Privacy-preserving authentication protocol · Physically
Unclonable Function · Authenticated Encryption · SoC · FPGA

1 Introduction

Nowadays, RFID-technology and the Internet of Things (IoT) are hot topics due
to the increasing desire to simplify our everyday lives via the use of pervasive
devices. Hence, we see a shift from simple identification of devices towards com-
plex authentication protocols, in which a challenging feature to implement is the
protection of the entity’s privacy. Because these entities belong to individuals
who may want to preserve their privacy, we notice a shift on focusing more on
privacy-preserving authentication protocols [6]. With the use of state-of-the-art
cryptographic techniques, device-to-server authentication can be implemented
while protecting the privacy with respect to outsiders.

One solution is to use symmetric key cryptography, with a pre-shared key
and a key-updating mechanism in order to randomize device credentials at each
c© Springer International Publishing AG 2017
A. Bogdanov (Ed.): LightSec 2016, LNCS 10098, pp. 128–148, 2017.
DOI: 10.1007/978-3-319-55714-4 9

Concealing Ketje 129

successful authentication. However, storing these keys requires non-volatile mem-
ory which is easily compromised by an attacker. Another option is to use PUFs,
physical entities that are similar to algorithmic one-way functions. PUFs act
on challenges, returning noisy PUF responses that are close enough between
equal challenges on the same PUF instance, but far enough between different
instances. As a result, one only needs to store a challenge which, similar to
the aforementioned construction, is updated on a successful authentication. The
strength of this construction is that these challenges are not secret and can safely
be stored in non-volatile memory. By using a PUF, one needs to implement a
Fuzzy Extractor (FE) [7] that can produce an unpredictable key from the noisy
PUF responses. On top of that, a FE provides for the recovery of old PUF
responses from fresh PUF responses using error-correcting codes.

This research focusses on integrating a single, compact mode, namely
Authenticated Encryption, into a PUF-based privacy-preserving authentication
protocol. In contrast to [2], we construct a secure FE and abstain from using
a pre-shared key between server and devices. With this, we hope to improve
overall efficiency of the protocol.

The remainder of this paper is structured as follows. Section 2 describes the
related work and our contributions. In Sect. 3 we introduce the protocol, describ-
ing the security considerations and overall design. Following, in Sect. 4 we theo-
retically support the protocol by proving the security and privacy of the protocol.
In Sect. 5 we give a proof of concept of the proposed protocol, showing that a
concrete software/hardware realization is possible. Then, in Sect. 6 we present
the results, giving an analysis of the implemented PUF as well as giving the
performance and a comparison to relevant previous works, i.e. [2,15]. Finally, in
Sect. 7 we conclude the paper.

2 Related Work

Many PUF based protocols have been proposed [2,9,15]. Herrewegge et al. pro-
pose using a reverse Fuzzy Extractor, putting the computationally less complex
generation procedure in the device, and the more complex reproduction proce-
dure on the server [9]. However, the proof of concept is subjected to a PRNG
exploitation [6]. Moriyama et al. propose a provably secure privacy-preserving
authentication protocol that uses a different PUF response at every authenti-
cation, and thus changing the device credential after every successful authenti-
cation [15]. Aysu et al. [2] propose a provably secure protocol based on [9,15].
While the authors present the first effort to describe an end-to-end design and
evaluation of a provable secure privacy-preserving PUF-based authentication
protocol, the interleaved FE construction is vulnerable to linear equation analy-
sis [2, p. 12]. Moreover, the authors use an additional pre-shared key that does
not increase the entropy of the communication messages.

We summarize the contributions of this research as follows: (i) We introduce
a novel PUF-based privacy-preserving authentication protocol using AE. (ii)
Further, we prove that the protocol is mathematically secure, and forward and

130 G. Geltink

backward privacy-preserving. (iii) Finally, we present a proof of concept of the
device on a development board and the server on a PC.

3 Protocol Design

In this section, we present the novel protocol design. Before doing that, we
describe the notation that is used throughout this paper and we describe the
security considerations for the protocol.

3.1 Notation

We denote the security level as k (in bits). A,A′, A1 ∈ A ⊆ {0, 1}∗ denote three
distinct binary strings. Bi denotes the i’th bit of B. 〈C,D〉 denotes a tuple
of strings C and D. HD(Y, Y ′) denotes the Hamming distance between two
vectors Y, Y ′ ← Y of the same length. HW(Y) denotes the Hamming weight
of vector Y ← Y. H(Y) denotes the Shannon entropy of a discrete random
variable Y ← Y. H̃∞(Y) denotes the min-entropy of a random variable Y ∈ Y.
The entropy of a binary variable Y ← {0, 1}l with probabilities Pr(Yi = 1) = p
and Pr(Yi = 0) = 1 − p (0 ≤ i < l) is defined in the binary entropy function:

h(p) = −p log2(p) − (1 − p) log2(1 − p). (1)

Besides, Y ← puf i(X) ∈ P denotes a PUF instance puf i ∈ P which takes
challenge X and produces response Y . Here, the P denotes the PUF class that
contains all PUF instances of a PUF construction. A Fuzzy Extractor (FE)
consists of two algorithms: a key generation algorithm Gen and a reconstruction
algorithm Rec. Gen takes as input variable Z and outputs key R and helper
data H, Rec recovers the key R from input variable Z ′ and helper data H. An
AE-scheme with associated data (AEAD-scheme) is a three-tuple Π = (K, E ,D)
[16]. Associated to Π are sets of strings N ⊆ {0, 1}∗ indicating the nonce, M ⊆
{0, 1}∗ indicating the message and AD ⊆ {0, 1}∗ indicating the associated data.
The key space K is a finite nonempty set of strings. The encryption algorithm
E is a deterministic algorithm that takes strings K ∈ K, N ∈ N , M ∈ M and
A ∈ AD and returns string 〈C, T 〉 = EN,A

K (M). The decryption algorithm D is a
deterministic algorithm that takes strings K ∈ K, N ∈ N , A ∈ AD, C ∈ {0, 1}∗

and T ∈ {0, 1}∗ and returns DN,A
K (〈C, T 〉), which is either a string in M or the

distinguished symbol Invalid. We require that DN,A
K (EN,A

K (M)) = M for all
K ∈ K, N ∈ N , M ∈ M and A ∈ AD.

3.2 Security Considerations

The security considerations we take are based on assumptions made in earlier
work on lightweight authentication protocols [2,9,15].

Devices are enrolled in a secure environment using a one-time interface. Fol-
lowing, a trusted server and a number of devices will authenticate each other

Concealing Ketje 131

while devices need to remain anonymous. For the communication, we consider
that our channel is ideal, i.e. no errors will occur in the channel. After enroll-
ment, the server remains trusted but devices are subjected to an attacker. The
attacker may not know the identity of a device such that the device cannot be
tracked.

We identified that the attacker may have two goals, i.e. the attacker may
want to: (i) impersonate a device which will result in a violation of the security;
(ii) trace devices in between authentications which will result in a violation of
the privacy. The power of the attacker is that he can change all communica-
tion between the server and devices. Moreover, he may know the result of the
authentication and can access the non-volatile memory of the devices, which
he cannot modify (which is needed for the privacy-preserving proof)1. He can
also not perform implementation attacks on the device and the server or reverse
engineer the PUF such that he can predict PUF responses. Also, he does not
have access to the intermediate registers on the device and cannot physically
trace every device in between authentications. Furthermore, the attacker is not
able to use other (non-cryptographic) mechanisms to identify a device [11].

3.3 Protocol

The setup phase of the proposed protocol is illustrated in Protocol 1, the authen-
tication phase is illustrated in Protocol 2. The protocol is based on a PUF that
produces noisy, but recoverable, responses on equal challenges due to the unique
physical characteristics of the IC [13]. Because of this behavior, the PUF is iden-
tifiable from other PUFs. A FE can extract a key from this noisy data produced
by the PUF using helper data generated from a previous key-extraction [7].
However, the recovery procedure is of a higher complexity than the generation
of the helper data that is used for this reconstruction. A reverse FE reverses
this behavior by placing the helper data generation in the device and the more
complex reconstruction in the server [9]. In order to preserve privacy, the device
credential is updated every successful authentication, which results in fresh PUF
responses, and thus fresh keys.

The setup phase (Protocol 1) works as follows. In a trusted environment,
the server produces a random challenge X1. The device uses this challenge to
produce a PUF response Y 1 which is being sent to the server. The challenge is
being stored in the device non-volatile memory. The server stores the response
in a database on index n, indicating the number of the device. Notice that the
response is stored at Y and Y old in order to prevent desynchronization, which
occurs when there is a loss of communication in the transmission of T 2 in the
authentication phase and only Y is stored.

The authentication phase (Protocol 2) works as follows. First, the server gen-
erates an unpredictable challenge A and sends this to the device. The device uses
1 A modification of challenge X in non-volatile memory does not break the security

of the protocol, only the theoretical privacy preservation because an attacker can
distinguish a device with modified challenge X (cannot successfully authenticate)
from a device with unmodified challenge X (can successfully authenticate).

132 G. Geltink

Server S({〈Y, Y old〉}n) Device Devi(puf i(·), X)

X1 ← TRNG

X1

−−−−−−→
Y 1 ← puf i(X

1)
X := X1

Y 1

←−−−−−−
〈Y, Y old〉n := 〈Y 1, Y 1〉
n := n + 1

Protocol 1. Setup phase.

Server S({〈Y, Y old〉}n) Device Devi(puf i(·), X)

A ← TRNG
A−−−−−→

Y 1′ ← puf i(X)

〈R, H〉 ← FE.Gen(Y 1′
)

X2 ← TRNG
Y 2 ← puf i(X

2)
N ← TRNG

〈C1, T 1〉 ← EN‖0,A
R (Y 2)

〈H, N, C1, T 1〉←−−−−−−−−−−−
T 2 ← TRNG
for 0 ≤ i < n :

R = FE.Rec(Y, H)

if Y 2 ← DN‖0,A
R (〈C1, T 1〉) :

〈 · , T 2〉 ← EN‖1,A
R (·)

〈Y, Y old〉num := 〈Y 2, Y 〉
“if no device was authenticated” :

“repeat search with old values”

T 2

−−−−−−→
〈 · , T 2′〉 ← EN‖1,A

R (·)

if T 2′
== T 2 :

X := X2

Protocol 2. Authentication phase. |A|, |H|, |N |, |C1|, |T 1|, |T 2| ≥ k and PUF responses
Y should contain enough entropy w.r.t. H s.t. |R| ≥ k.

the challenge X stored in its non-volatile memory to produce a PUF response
Y 1′

. From this PUF response, helper data H and an unpredictable key R is
generated using the FE’s generation procedure FE.Gen. Consecutively, a new
challenge X2 is randomly generated by the device such that it can be updated

Concealing Ketje 133

on a successful authentication. This challenge is fed to the device’s PUF in order
to receive a new PUF response Y 2. Following, a nonce N is randomly generated
such that the PUF response can be encrypted using the AEAD-scheme. The
resulting cipher-text C1, its tag T 1 and the nonce N will be sent to the server.
The server performs an exhaustive search over the database, recovering a key
for each index. These keys are used to try to decrypt the cipher-text C1 using
the tag T 1, challenge A and nonce N . If there is a successful authentication, the
server produces another tag T 2 using E , but with nonce N2 ‖ 1 instead of N2 ‖ 0
in order to create another instance of E . This tag is sent to the device. More-
over, the server updates the old PUF-response Y with the new PUF response
Y 2. If there were no successful authentications, the server repeats the procedure
over the previous PUF responses in the database. If after this there were still
no successful authentications, the server responds with a random value for T 2.
Finally, the device checks the tag T 2 with its own produced tag in order to
reveal whether the authentication succeeded. If the authentication succeeded,
the device updates the old challenge X with the new challenge X2.

4 Security Analysis

In this section, we describe the security analysis of the proposed protocol. We
first present the security model and the formal security definitions before proving
the security, and forward and backward privacy.

4.1 Security Model

The security model is composed of the communication model, the security exper-
iment and the privacy experiment.

Communication Model. We take one trusted server S({〈Y, Y old〉}n) with
n devices Devi(puf i(·),X). Here, the set of n devices is denoted as Δ :=
{Dev0,Dev1, . . . ,Devn−1}. We denote the security parameter as k.

Following [2,15], devices will be enrolled in a trusted environment using a one-
time interface, this happens in a setup phase using a setup algorithm Setup(1k)
which generates public parameter P and shared-secret Y . Here P denotes all
the public parameters available to the environment and Y denotes the secret
PUF response. During the authentication phase, the server S remains trusted,
however, the devices Δ and the communication channel will be subjected to the
actions of an attacker. At the end of the authentication phase, both the server
and the device will output acceptance (B0 = 1) or rejection (B0 = 0) as result
of the authentication.

We call the sequence of communication between the server and the device
a session, which is distinguished by a session identifier I, the transcript of the
authentication phase. Whenever the communication messages generated by the
server and the device are honestly transferred until they authenticate each other,
we call that a session has a matching session. The correctness of the proposed

134 G. Geltink

authentication protocol is that the server and the device always accept the session
if the session has the matching session.

Security. Following [2,15], we consider the canonical security level for authen-
tication protocols, namely the resilience to the man-in-the-middle attack. This
means that power of an attacker is modeled by letting the attacker control
all communication between server and devices. Supplementary to the security
requirement of resilience to man-in-the-middle attacks, we permit the attacker
to access the information stored in the non-volatile memory of the device in
between sessions.

Experiment 1 illustrates the security evaluation on a theoretical level. In this
experiment, ExpSec

Ψ,A(k) denotes the security experiment between the proposed
protocol Ψ and an attacker A with security parameter k.

ExpSec
Ψ,A(k)

〈P, Y 〉 ← Setup(1k)

〈Devi, I
′〉 ← A〈Launch,SendServer,SendDev,Result,Reveal〉(P, S, Δ)

B0 := Result(Devi, I
′)

Output B0

Experiment 1. Security experiment.

After the setup phase, and thus after receiving 〈P,S,Δ〉, the attacker A can
query the server S and the device Devi with the oracle queries
O := 〈Launch,SendServer,SendDev,Result,Reveal〉, where

– Launch(1k): launch the server S to start a new session with security parame-
ter k;

– SendServer(M): send an arbitrary message M to the server S;
– SendDev(Devi,M): send an arbitrary message M to device Devi ∈ Δ;
– Result(G, I): output whether the session I of G is accepted or not where

G ∈ {S,Δ};
– Reveal(Devi): output all the information stored in the non-volatile memory

of Devi.

The advantage of attacker A against Ψ is defined as:

AdvSec
Ψ,A(k) := Pr(ExpSec

Ψ,A(k) → 1 | “I of G has no matching session”) (2)

We define security of an authentication protocol as follows:

Definition 1 (Security). An authentication protocol Ψ holds the security
against man-in-the-middle attacks with memory compromise if for any prob-
abilistic polynomial time attacker A, AdvSec

Ψ,A(k) is negligible in k (for large
enough k).

Concealing Ketje 135

Privacy. Following [2,15], we define the privacy using indistinguishability
between two devices. Here, an attacker selects two devices and tries to distinguish
the communication, and thus the identification, between the two devices.

We use the privacy experiment between an attacker A := 〈A1,A2,A3〉 as
illustrated in Experiment 2.

ExpIND∗−b
Ψ,A (k)

〈P, Y 〉 ← Setup(1k)

〈Dev∗
0, I

0′
,Dev∗

1, I
1′〉 ← AO

1 (P, S, Δ)
b ← {0, 1}
Δ′ := Δ \ 〈Dev∗

0,Dev∗
1〉

ψ0 ← Execute(S,Dev∗
0)

ψ1 ← Execute(S,Dev∗
1)

〈I0′′
, I1′′〉 ← AO

2 (S, Δ′, I(Dev∗
b), ψ0, I

0′
, ψ1, I

1′
)

ψ′
0 ← Execute(S,Dev∗

0)
ψ′

1 ← Execute(S,Dev∗
1)

B0 ← AO
3 (S, Δ′, ψ′

0, I
0′′

, ψ′
1, I

1′′
)

Output B0

Experiment 2. Privacy experiment in which it is allowed to communicate with two
devices.

After the setup-phase, and similar to the security experiment, the attacker
interacts with the server and two randomly chosen devices through the oracle
queries O. These two devices Dev∗

0,Dev∗
1 are being sent to the challenger who

flips a coin to choose with which device the attacker will communicate anony-
mously. This anonymous communication is accomplished by adding a special
identity I which honestly transfers the communication messages between A and
Dev∗

b .
It is trivial that the attacker can trace devices in case the Reveal query

is issued when there are no successful authentications. Hence, we provide re-
synchronization before and after the anonymous access by adding the Execute
query. This query does a normal protocol execution between the server S and
the device Dev∗

i . During this execution, the attacker cannot modify the commu-
nication, however the transcript ψi is delivered to the attacker. Once an honest
protocol execution is finished, no one can trace the device even if the information
from the non-volatile memory before and after the session is continuously leaked
to the attacker. The advantage of the attacker is defined as:

AdvIND∗
Ψ,A (k) := |Pr(ExpIND∗−0

Ψ,A (k) → 1) − Pr(ExpIND∗−1
Ψ,A (k) → 1)| (3)

We define privacy of an authentication protocol as follows:

Definition 2 (Privacy). An authentication protocol Ψ holds forward and back-
ward privacy if for any probabilistic polynomial time attacker A, AdvIND∗

Ψ,A (k) is
negligible in k (for large enough k).

136 G. Geltink

4.2 Formal Security Definitions

We define Physically Unclonable Functions, the Fuzzy Extractor and the AEAD-
scheme.

Physical Unclonable Functions. We define PUFs using the definition
described in [2, p. 24].

We denote the set of all possible challenges X which can be applied to an
instance of P as XP . We say that the PUF class P is a 〈n, l, d, h, ε〉-secure PUF
class P if the following conditions hold:

1. For any PUF instance puf i(·) ← P and for any input X ← XP ,

Pr(HW(Y ← puf i(X), Y ′ ← puf ′
i(X)) < d) = 1 − ε

2. For any two PUF instances puf i(·),puf j(·) ← P, where i
= j and for any
input X ← XP ,

Pr(HW(Y ← puf i(X), Y ′ ← puf j(X)) > d) = 1 − ε

3. For any PUF instance puf i(·) ← P and for any two inputs Xa,Xb ← XP ,
where a
= b,

Pr(HW(Y ← puf i(X
a), Y ′ ← puf i(X

b)) > d) = 1 − ε

4. For any PUF instance puf i(·) ← P and for any input Xa ← XP ,

Pr(H̃∞(Y ← puf i(X
a) | {Y j ← puf j(X

b)}0≤j<n, 0≤b<l, i �=j, a�=b) > h)=1−ε

These conditions provide that the intra-distance Dintra
P is smaller than d, the

inter-distance Dinter
P (from two metrics) is larger than d and the min-entropy of

the PUF class P is always larger than h.

Definition 3 (〈n, l, d, h, ε〉-secure PUF class P). A PUF class P satisfies
〈n, l, d, h, ε〉-secure PUF class P if all the above conditions hold.

Fuzzy Extractor. We define a Fuzzy Extractor using the definition described
in [2, p. 24].

A 〈d, h, ε〉-FE consists of two algorithms: a key generation algorithm Gen
and a reconstruction algorithm Rec. Gen takes as input variable Z and outputs
key R and helper data H. For correctness, Rec recovers the key R from input
variable Z ′ and helper data H if the HD between Z and Z ′ is at most d. The
FE provides unpredictable outputs if the min-entropy of input Z is at least h.
In that case, R is statistically ε-close to a uniformly random variable in {0, 1}k,
even if the helper data H is disclosed.

Definition 4 (〈d, h, ε〉-secure FE). A FE satisfies 〈d, h, ε〉-secure FE if the
following conditions hold:

1. Pr(R := Rec(Z ′,H) | 〈R,H〉 = Gen(Z), HD(Z,Z ′) ≤ d) = 1
2. If H̃∞(Z) ≥ h, 〈R,H〉 = Gen(Z) is statistically ε-close to 〈R′,H〉 where

R′ ← {0, 1}k is chosen uniformly at random.

Concealing Ketje 137

AEAD-Scheme. The security of the AEAD-scheme Π is defined by the
following experiment (chosen-plaintext attack) between a challenger and an
attacker A: First, the challenger randomly selects coin b ← {0, 1} and secret
key K ← {0, 1}k. The challenger then prepares a truly random function RF.
Following, the attacker A can adaptively issue an oracle query to the challenger
to obtain a response of a function. If b = 1 and the attacker A sends message
M ← {0, 1}∗, challenge N ← {0, 1}k and associated data A ← {0, 1}∗, the
challenger responds with 〈C, T 〉 = EN,A

K (M). On the other hand, if b = 0, the
challenger inputs the message M ← {0, 1}∗, challenge N ← {0, 1}k and associ-
ated data A ← {0, 1}∗ to RF and responds with its result 〈C ′, T ′〉. Finally, the
attacker outputs a guess b′. If b′ = b, the attacker wins the experiment. Similarly,
this construction can be applied to test the security of the decryption algorithm
DN,A

K (〈C, T 〉).
The advantage of the attacker to win the experiment is defined by

AdvΠ
A(k) = |2 · Pr(b′ = b) − 1|.

Definition 5 (ε-secure AEAD-scheme). An AEAD-scheme is an ε-secure
AEAD-scheme if for any probabilistic polynomial time attacker A, AdvΠ

A(k) ≤ ε.

4.3 Security Proofs

In this section, we give the security proof and privacy proof for the proposed
protocol. We follow the proof by game transformations as described in [2,15].

Theorem 1 (Security). Let PUF instance puf∗ ← P be a 〈n, l, d, h, ε1〉-secure
PUF, FE be a 〈d, h, ε2〉-secure FE and the AEAD-scheme be an ε3-secure AEAD-
scheme. Then our protocol Ψ is secure against man-in-the-middle attacks with
memory compromise. Especially, we have AdvSec

Ψ,A(k) ≤ l · n · (ε1 + ε2 + ε3).

Proof. The aim of the attacker A is to violate the security experiment which
means that either the server or a device accepts a session without it being the
matching session. We call Si the advantage that the attacker wins the game in
Game i. We consider the following game transformations:

Game 0: This is the original game between the challenger and the attacker.
Game 1: The challenger randomly guesses the device Dev∗ ← Δ. If the

attacker does not impersonate Dev∗ to the server, the challenger aborts the
game. Thus, the attacker needs to participate in session I∗ and cannot tamper
with the communication.

Game 2: Assume that l is the upper bound of the number of sessions that the
attacker can establish in the game. For 0 ≤ j < l, we evaluate or change the
variables related to the session between the server and Dev∗ up to the l-th
session as the following games:
Game 2-j-1: The challenger evaluates the output from the PUF instance

puf∗ implemented in Dev∗ at the j-th session. If the intra-distance is
larger than d, the inter-distance is smaller than d or the min-entropy of
the output is smaller than h, the challenger aborts the game.

138 G. Geltink

Game 2-j-2: The output from the FE H is changed to a random variable.
Game 2-j-3: The output from the encryption algorithm EN‖0,A

R (Y) of the
AEAD-scheme is derived from a truly random function RF.

Game 2-j-4: The output from the encryption algorithm EN‖1,A
R (·) of the

AEAD-scheme is derived from a truly random function RF.

The strategy of the security proof is to change the communication messages
corresponding to the target device Dev∗ to random variables. However, we must
take care of the PUF construction and challenge-update mechanism in our pro-
tocol that updates the PUF response. Hence, we must proceed with the game
transformation starting from the first invocation of device Dev∗. The communi-
cation messages gradually change from Game 2-j-1 to Game 2-j-4, and when
these are finished, we can move to the next session. This strategy is recursively
applied up to the upper bound of l of the sessions that the attacker can establish.

In short, if the implemented PUF instance creates enough entropy, the FE
can provide variables that are statistically close to random strings. Then, this
output can be applied as a key for the AEAD-scheme which both authenticate
the device as well as encrypt the next PUF response. Finally, the server can be
authenticated using the AEAD-scheme without encrypting a message.

Lemma 1 (Random Guess). S0 = n · S1 (where n is the number of devices).

Subproof. The violation of security means that there is a session which the server
or device accepts while the communication is modified by the attacker. Since we
assume that the number of devices is at most n, the challenger can correctly
guess the related session with a probability of at least 1/n. �
Lemma 2 (PUF Response). |S1 − S2-1-1| ≤ ε1 and |S2-(j−1)-4 − S2-j-1| ≤ ε1
for any 1 ≤ j < l if the PUF instance puf∗ is a 〈n, l, d, h, ε1〉-secure PUF.

Subproof. We now assume that the PUF instance puf∗ satisfies a 〈n, l, d, h, ε1〉-
secure PUF in advance. This means that the intra-distance Dintra

P is smaller
than d, the inter-distance Dinter

P is larger than d and the min-entropy of the
PUF class P is always larger than h except the negligible probability ε1. Since
S1 and S2-(j−1)-4 assume these conditions except the negligible probability ε1
and S2-1-1 and S2-j-1 require these conditions with probability 1, respectively,
the gap between them is bounded by ε1. �
Lemma 3 (FE Output). ∀ 0 ≤ j < l, |S2-j-1 − S2-j-2| ≤ ε2 if the FE is a
〈d, h, ε2〉-secure FE.

Subproof. From the subproof of Lemma 2, we can assume that the PUF instance
puf∗ provides enough min-entropy h. Then the property of the 〈d, h, ε2〉-secure
FE guarantees that the output for the FE is statistically close to random and
no attacker can distinguish the difference between the two games. �
Lemma 4 (Authenticated Encryption). ∀ 0 ≤ j < l, |S2-j-2 − S2-j-3| ≤
AdvΠ

A(k) for a probabilistic polynomial time algorithm B.

Concealing Ketje 139

Subproof. We construct the algorithm B which breaks the security of our AEAD-
scheme Π. B can access the real encryption algorithm EN‖0,A

R (Y), the real
decryption algorithm DN‖0,A

R (〈C1, T 1〉) or the truly random function RF. B
sets up all secret keys and simulates our protocol except the n-th session (the
current session). When the attacker invokes the n-th session B sends the uni-
formly random distributed challenge A ← {0, 1}k as the output of the server.
When the attacker A sends the challenge A∗ to a device Devi, B randomly
selects a nonce N and issues this to the oracle instead of the real computation
of EN‖0,A

R (Y). Upon receiving 〈C, T 〉, B continues the computation as the pro-
tocol specification and outputs 〈H,N,C1, T 1〉 as the device’s response. When
the attacker sends 〈H∗, N∗, C1∗

, T 1∗〉, B issues challenge A and nonce N∗ to the
oracle and obtains either Y or the distinguished symbol Invalid.

If B accesses the real encryption and decryption algorithms 〈E ,D〉, this sim-
ulation is equivalent to Game 2-j-2. Otherwise, the oracle query issued by B is
completely random and this distribution is equivalent to Game 2-j-3. Thus we
have |S2-j-2 − S2-j-3| ≤ AdvΠ

A(k). �
Lemma 5 (Authentication). ∀ 0 ≤ j < l, |S2-j-3 − S2-j-4| ≤ 2 · AdvΠ

A(k) for
a probabilistic polynomial time algorithm B.
Subproof. Consider an algorithm B which interacts with the encryption algo-
rithm EN‖1,A

R (·) and truly random function RF. B runs the setup procedure
and simulates the protocol up to the n-th session. Similarly to the subproof of
Lemma 4 when the attacker invokes the n-th session B sends the uniformly ran-
dom distributed challenge A ← {0, 1}k as the output of the server. B continues
the computation as the protocol specification and outputs 〈H,N,C1, T 1〉 as the
device’s response. If the attacker A has sent the challenge A∗ to a device Devi,
B randomly selects nonce N and issues this to the oracle instead of the real
computation EN‖1,A

R (·). When the attacker sends 〈H∗, N∗, C1∗
, T 1∗〉, B issues

challenge A and nonce N∗ to the oracle and obtains T 2.
If B accesses the real encryption algorithm E , this simulation is equivalent to

Game 2-j-3. Otherwise, the oracle query issued by B is completely random and
this distribution is equivalent to Game 2-j-4. Thus we have |S2-j-3 − S2-j-4| ≤
AdvΠ

A(k). �
When we transform Game 0 to Game 2-l-4, there is no advantage of the

attacker to violate the security. Given the fact that the attacker knows the PUF
challenge X from the device’s non-volatile memory, the attacker cannot produce
a corresponding PUF response. This results in the fact that the attacker cannot
produce a key R which matches any of the recovered keys from the server’s
database. This means that the cryptogram produced by an attacker will never
be accepted by the decryption algorithm of the AEAD-scheme in the server.
Additionally, changing the authenticator T 2 will only prevent the device from
updating its PUF challenge, this is why the server also performs an exhaustive
search over the old (j − 1) PUF responses.

Therefore, no attacker can successfully mount the man-in-the-middle attack
in our proposed protocol. ��

140 G. Geltink

Theorem 2 (Privacy). Let PUF instance puf∗ ← P be a 〈n, l, d, h, ε1〉-secure
PUF, FE be a 〈d, h, ε2〉-secure FE and the AEAD-scheme be an ε3-secure AEAD-
scheme. Then our protocol Ψ holds forward and backward privacy.

Proof This proof is similar to the proof of Theorem 1. However, we remark that
it is important to assume that our protocol satisfies security first for privacy to
hold. This is because if security does not hold, a malicious attacker might be
able to desynchronize the PUF response Y of device Dev∗ to a chosen one. In
that case, even if the attacker honestly transfers the communication message
between I(Dev∗) and the server in the challenging phase the authentication
result is always B0 = 0 and the adversary can observe whether device Dev∗ was
selected as the challenge device.

Based on the same game transformation that was describes in the proof of
Theorem 1, we continuously change the communication messages for the device
Dev∗, however, we now call this device Dev∗

1. We do a similar game transforma-
tion for a second target device Dev∗

2. In Game 1, the attacker can guess which
device will be chosen by the challenger in the privacy game with probability of
at least 1/n2. Upon continuing, the game transformation in Game 2 is applied
to the sessions related to device Dev∗

1 and device Dev∗
2. Then, all the message

transcripts of the Game transformations are changed to random variables and
no biased information which identifies the challenger’s coin is leaked. The infor-
mation stored in the non-volatile memory of devices Dev∗

1 and Dev∗
2 will not

disclose any information because these are updated from random sources.
Therefore, no attacker can distinguish any two devices with probability higher

than 1/n2, hence, the proposed protocol satisfies the forward and backward
privacy. ��

5 Proof of Concept

In this section we present a proof of concept with security level k = 128 bits.
Figure 1 illustrates the system architecture of the device and server. The

device is implemented on a Zedboard [1] which contains a Xilinx Zynq-7000 All
Programmable System on Chip (SoC) XC7Z020-CLG484-1 [17]. The server is
implemented on a Linux PC. We design the system architecture using Xilinx
Vivado and Xilinx Vivado SDK.

The Zynq SoC is composed of 28 nm programmable logic and a processing
system, which can both be programmed through the USB JTAG. Apart from
other components, the processing system contains two ARM Cortex-A9 cores,
of which only one is used to: (i) control the communication between the device
and the server by reading and writing AXI-addresses from the device and sending
and receiving serial data through the UART; (ii) update the PUF challenge on
the device non-volatile memory by re-writing to a SD-card pugged into the Zed-
board. The central communication travels through a bus, the Central Interconnect
(CI), which is connected with the components on the Zedboard. Communication
between the logic and the ARM-core is supported with a 32-bit AXI.

Concealing Ketje 141

Fig. 1. System architecture of the device and server.

5.1 3-1 Double Arbiter PUF

The type of PUF used in the protocol will motivate most of the other design
parameters for the rest of the protocol. For example, depending on the bit-error-
probability pe of a PUF response-bit, the inter- and intra-distances of the PUF
responses, the entropy of the PUF responses ρ and the desired maximum for the
failure rate of the authentications pfail, both the number of PUF responses as
well as the type and size of error-correcting codes is motivated.

Figure 2 illustrates the 3-1 Double Arbiter PUF (DAPUF, P3-1) as proposed
by Machida et al. [12], which we implement because its characteristics are promis-
ing for the parameters of our protocol. As an example, the authors state the
prediction rate is approximately 57%, which approximates a random guess (i.e.
50%). This is a considerable improvement for arbiter PUF constructions because
the prediction rate of conventional arbiter PUFs is 86% [12, p. 8]. In the figure,
a selector chain composes of 64 switch blocks that, depending on the input
challenge bit, can switch signals from the two paths. The DAPUF is composed
of three of these selector chains all acting on the same challenge X. Using an
‘enable’ signal E (EL and ER), the competition is started between the left sig-
nals EL and the right signals ER. For each of the combination of left- or right
signals an arbiter is used to measure which path arrived first at the arbiter. After
measuring these race conditions, the results are XORed to collect the 1-bit PUF
response Y . By challenging the DAPUF with n different challenges, we obtain a
n-bit PUF response.

In order to design a FE that produces a key with sufficient entropy, we
analyze the performance parameters of the DAPUF. The authors have based the
performance results on a Xilinx Virtex-7 device. Because the architecture of our
SoC is similar to the Xilinx 7-series Field Programmable Gate Arrays (FPGAs),
we take their performance as a starting point for our design. According to [12],

142 G. Geltink

Fig. 2. 3-1 DAPUF as proposed by Machida et al. [12]. denotes a bitwise XOR,

denotes the input of the DAPUF and denotes the output of the DAPUF.

the steadiness is approximately 12%, which means that the bit-error-probability
pe is 0.12 [12]. The average uniqueness of P3-1 is approximately 50%, which
is close to ideal. Finally, the authors achieved a randomness of approximately
54%, meaning that the probability that a response bit is ‘1’ is Pr(Yi = 1) = 0.54.
Using Formula 1 we calculate the entropy of the PUF responses ρ:

ρ = −0.54 log2(0.54) − 0.46 log2(0.46) = 0.9954 (4)

5.2 Reverse Fuzzy Extractor

In order to be able to recover the PUF responses, we use a concatenation of
error-correcting codes as introduced by Bosch et al. [5], which is a technique to
increase the correction rate while minimizing the computational overhead. Our
proposed reverse FE uses a concatenation code of a repetition code and a BCH
code. The aim is to construct a 128-bit key from the DAPUF responses with
quality 〈pe = 0.12, ρ = 0.9954〉. Also, we aim for a fail rate of pfail = 10−6, which
is considered an acceptable fail rate for standard performance levels [13].

The probability that a received codeword of n bits has more than t errors is
given by [5,8]:

Pr(“>t errors”) = 1 −
t∑

i=0

(
n

i

)
pi

e(1 − pe)n−i, (5)

Concealing Ketje 143

where pe is the bit-error-probability. When using a CREP(5, 1, 2) repetition code,
we can decrease the bit-error-probability pe = 0.12 to pe,REP = 0.01432 (t = 2,
n = 5). Using a CBCH(255, 139, 15) BCH code on top of that further decreases
the bit-error-probability pe,REP = 0.01432 to a fail rate pfail = 1.176 · 10−6

(t = 15, n = 255), which we consider sufficient. As a result, we use 1275 PUF
responses on 64-bit PUF challenges, of which 40 bits are used for the challenge
that is stored in the device non-volatile memory, 12 bits are used to obtain the
1275 unique PUF responses and 12 bits are used to produce random numbers,
including a seed that is updated at the beginning of every authentication. In
order to obtain these responses, we diffuse both sets of 12 challenge bits over
the challenge space such that one set is updated every clock cycle using a linear-
feedback shift register (LFSR) and the other is fixed to a constant value. As
a consequence, every unique 40-bit (stored) challenge produces unique 64-bit
PUF challenges, and thus produces unpredictable PUF responses. For the 1275
unique PUF responses we start the LFSR with a fixed value each authentication,
whereas for the random number responses we start the LFSR with the updated
(random) seed.

In order to analyze whether this construction leaves enough entropy in
the key, we calculate the entropy losses in the communicated helper data.
When using a CREP(5, 1, 2) repetition code on 5-bit words of the 1275-bit PUF
response, 4 bits per word are disclosed as helper data. As a result, the entropy loss
of using the repetition code is HREP loss = 4 · 255 = 1020 bits. The entropy loss
of the CBCH(255, 139, 15) BCH code is introduced by the random string that is
needed to construct the code. As a result, the entropy loss of using this BCH code
is HBCH loss = n−k = 255− 139 = 116 bits. Hence, the total entropy loss of the
1275-bit PUF response by disclosing the helper data is Hloss = 1020+116 = 1136
bits. This leaves (1275 − 1136) · ρ = 139 · 0.9958 = 138 bits of entropy left in the
255 bits of the BCH codeword.

These 255 bits will be compressed in a 128-bit key. This method is similar
to the constructions in [10,14]. An advantage is that the AEAD-scheme can be
used for this construction, minimizing the number of primitives that need to be
implemented on the device.

5.3 AEAD-Scheme

In our implementation of the protocol we use the AEAD-scheme Ketje [4] with
security level k = 128, one of the 56 candidates of the CAESAR competition [3].
We use the AEAD-scheme Ketje for the key construction in the reverse FE, the
encryption and decryption of the second PUF response Y 2 and the computation
of the authenticator T 2. Ketje relies on nonce uniqueness to be secure, which
we have taken into account when designing the implementation.

6 Results

In this section we present the results of the proposed protocol. First, we analyze
the PUF responses. Second, we present the hardware and software performance

144 G. Geltink

of the proof of concept. Following, we give the benchmark results. Finally, we
present the comparison of this work to other, similar authentication protocols.

6.1 PUF Response Analysis

Although we assumed that all the PUF response bits are independent, we found
out this is not the case. To illustrate this, take two challenges that have a low
Hamming distance. The probability that the responses of both challenges differ
is only small because the majority of the travelled paths will match in both
measurements. A possible reason why this is not reflected in [12] is that the
authors challenge the PUF instances with random challenges. Moreover, the
machine learning algorithm is trained with only 1, 000 training samples, which
means that the probability of having two challenges with low Hamming distance
is small. This characteristic means that the 12 bits that are used to retrieve
the PUF responses, and the 12 bits that are used to retrieve the random vari-
ables, need to be diffused throughout the challenge space such that the highest
probability of having different data paths is achieved.

As an experiment we implemented three PUF instances using this construc-
tion. These three PUFs were implemented on the same SoC at different locations,
which gives us a good approximation of the PUF response quality on distinct
SoCs. The metrics are calculated similarly as [12]. However, these results have
been achieved by challenging three PUF instances with 40-bit challenges mul-
tiple times, obtaining multiple 1275-bit responses. More specifically, steadiness
is calculated by challenging the PUF a number of m = 1275 times with a set
of n = 128 equal challenges, averaging the Hamming distances between two
arbitrary responses. Uniqueness is calculated by challenging two PUF instances
a number of m = 1275 times with a set of n = 500 randomly chosen chal-
lenges, averaging the Hamming distances of each pair. Finally, randomness is
calculated by challenging a PUF instance a number of m = 1275 times with a
set of n = 500 randomly chosen challenges, averaging the Hamming weight of
the responses. We find an average steadiness of 5.64%, an average uniqueness of
45.19% and an average randomness of 66.41%.

From this experiment, we see that for the DAPUF in our SoC the measure
for steadiness is lower (6% versus 12%), which means that the responses in our
implementation have a higher reproducibility. However, the randomness of our
implementation is higher (66% versus 54%), meaning that the probability of a
response bit being ‘1’ is higher. In order to find out whether the output from
our FE still provides enough entropy, we recalculate ρ. Using Formula 1 we find
ρ = 0.9208. Thus, 139 · 0.9248 = 128 bits of entropy is left to accumulate the
255-bit BCH codeword, which is just enough to construct the 128-bit key. As a
result, our implementation can be considered secure and thus privacy-preserving.
Next, we recalculate the fail rate using Formula 5. We find pfail = 8.438 · 10−15,
which is a considerable improvement.

Concealing Ketje 145

6.2 Hardware Performance

The results have been generated by Vivado without the use of BRAM or DSPs
and without optimization of the DAPUF design. Synthesis settings are set at
Default and optimization settings at Area. Furthermore, we allow race condi-
tions to occur due to the nature of the DAPUF.

Because of the long paths the signals have to travel through the DAPUF, the
path delay is high. In the worst case scenario, the data path delay is 76.509 ns
which means that the maximum frequency of the SoC is 12 MHz. The authen-
tication phase of the device takes 8, 205 clock cycles, which on the frequency of
12 MHz takes 0.63 ms. As a result, our proof of concept might be applicable to
devices in the IoT and in RFID systems.

In total, our proof of concept utilizes 8, 305 LUTs. The controller utilizes
5, 464 LUTs, Ketje 2, 630 LUTs, the DAPUF 195 LUTs and the BCH encoder
16 LUTs. Similar to the timing results, these utilization results are suboptimal.
In this case the registers take a lot of area because of the long variables in the
protocol.

6.3 Software Performance

The computation time of the server-side protocol increases linear in the number
of devices in the database due to the exhaustive search. In our naive software
implementation the execution time of the server-side protocol is approximately
0.05 · n seconds. In a real world scenario, the server would be implemented in
hardware which substantially decreases the execution time.

6.4 Benchmark Analysis

We analyze our protocol using the recently proposed benchmark for PUF-based
authentication protocols [6]. Our device uses a PUF, TRNG, FE Gen procedure,
cryptographic primitive (AEAD-scheme) and a one-time interface. Our PUF is
a so-called strong PUF, indicating that the number of challenge-response pairs
(CRPs) is at most 2l, where l is the number of bits in the challenge. The amount
of CRPs for n authentications is n + 1 because we use a one-time interface for
the setup. The protocol supports server authenticity, device authenticity, device
privacy, and memory disclosure. The protocol can support d-authentications
for a perfect privacy use-case and ∞-authentications without device anonymity.
Our PUF is noise-robust because of the error correction and modeling-robust
because of the entropy accumulator in the FE. Mutual authentication provides
both server and device authenticity. There is no internal synchronization which
means that our implementation is not susceptible to DoS attacks. The execution
time of the server per authentication is linear in the amount of devices.

6.5 Protocol Comparison

Table 1 summarizes the comparison between the proposed protocol and the pro-
tocols by Moriyama et al. [15] and Aysu et al. [2].

146 G. Geltink

Table 1. Comparison with previous work.

Reference Moriyama [15] Aysu [2] This work

Proofs for
security and
privacy

✓ ✓ ✓

Implemented
parties

✗ device, server device, server

Security flaws ✗ ✓a ✗

Reconfiguration
method

✗ modify SW, update
microcode

follow generic
approach, modify HW
and SW

Demonstrator ✗ FPGA, PC SoC, PC

Security-level k 64-bit/128-bit 128-bit

Memory PUF challenge &
key

PUF challenge & key PUF challenge

Device FE
procedure

Rec Gen Gen

PUF type ✗ weak PUF strong PUF

PUF instance ✗ SRAM DAPUF

Hardware
platform

✗ XC5VLX30 XC7Z020

Execution time
(clock cycles)

✗ 18,597 8,205

Logic cost (w/o
PUF)

✗ 1,221 LUTs 8,110 LUTs

a Due to a vulnerability in the implemented FE [2, p. 12].

The characteristic that all these protocols have in common is that they are
all provably secure PUF-based privacy-preserving protocols. However, [15] only
provides a theoretical basis for the proposed protocol, instead of also giving
a proof of concept. As a result, no sensible answer can be given to the ques-
tion whether the protocol is practical or not. On the other hand, [2] uses [15]
as a basis, but is vulnerable to linear equation analysis of the FE output [2,
p. 12]. As a consequence, this protocol does not provide a secure and privacy-
preserving implementation. The performance results would highly likely be wors-
ened because the FE needs to be redesigned. Correspondingly, most likely they
need more PUF response bits to meet the failure rate requirements. Moreover,
the implementation stores a key in non-volatile memory that does not increase
the unpredictability of the communication messages. This overhead is eliminated
in our protocol. Finally, with a different PUF (or a weak PUF) our results can
be improved substantially, decreasing the execution time and logic cost.

Concealing Ketje 147

7 Conclusion

In this paper we have proposed a new PUF-based privacy-preserving authentica-
tion protocol. In the process, we have presented proofs for security and privacy
preservation, and an implementation serving as a proof of concept. We have seen
that in comparison to other similar authentication protocols our protocol does
not need a key stored in the non-volatile memory of the devices and is simpler in
its design. Although our implementation is slower and consumes more resources
in relation to [2], we claim to have an implementation that is both secure and
privacy-preserving. On top of that, the performance results of [2] would highly
likely be worsened because the FE needs to be redesigned because of the security
flaw [2, p. 12].

Although we have presented a functional implementation, a faster and smaller
proof of concept is possible. This is mainly due to the implemented PUF which
defines the design of the FE and the variable sizes in the protocol. Moreover,
the authentication time of the server is linear in the number of devices in the
database, which could make the protocol impractical with a substantially large
number of devices. A sound design of the server can settle this issue.

The design of our protocol might be optimized further, similar to what this
research has achieved in relation to [2]. Mainly, future research has to be car-
ried out towards strong PUF implementations, because these form the basis of
our protocol. A strong PUF that has better quality of PUF responses can sub-
stantially reduce the consumption of the device. However, although our protocol
is based on a strong PUF, a weak PUF can be used decreasing the maximum
amount of authentications per device. Also, biometric data and a single PUF
fingerprint can be used at the cost of device anonymity.

Acknowledgments. I would like to thank Lejla Batina, Joan Daemen, Gergely Alpár
and Antonio de la Piedra of the Digital Security Group at the Radboud University for
their guidance and support which lead to the publication of this work.

References

1. Avnet Inc.: ZedBoard (2016). http://zedboard.org/product/zedboard. Accessed 19
August 2016

2. Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., Yung, M.: End-to-end
design of a puf-based privacy preserving authentication protocol. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 556–576. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48324-4 28

3. Bernstein, D., et al.: CAESAR: Competition for Authenticated Encryption: Secu-
rity, Applicability, and Robustness (2016). http://competitions.cr.yp.to/caesar.
html

4. Bertoni, G., Daemen, J., Peeters, M., Van Asche, G., Van Keer, R.: CAESAR
submission: Ketje v1. http://ketje.noekeon.org/Ketje-1.1.pdf

5. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient
helper data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES
2008. LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85053-3 12

http://zedboard.org/product/zedboard
http://dx.doi.org/10.1007/978-3-662-48324-4_28
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
http://ketje.noekeon.org/Ketje-1.1.pdf
http://dx.doi.org/10.1007/978-3-540-85053-3_12
http://dx.doi.org/10.1007/978-3-540-85053-3_12

148 G. Geltink

6. Delvaux, J., Peeters, R., Gu, D., Verbauwhede, I.: A survey on lightweight entity
authentication with strong pufs. ACM Comput. Surv. 48(2), 26:1–26:42. http://
doi.acm.org/10.1145/2818186

7. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24676-3 31

8. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Physical unclonable functions
and public-key crypto for FPGA IP protection. In: 2007 International Conference
on Field Programmable Logic and Applications, pp. 189–195, August 2007

9. Herrewege, A., Katzenbeisser, S., Maes, R., Peeters, R., Sadeghi, A.-R.,
Verbauwhede, I., Wachsmann, C.: Reverse fuzzy extractors: enabling lightweight
mutual authentication for PUF-enabled RFIDs. In: Keromytis, A.D. (ed.) FC
2012. LNCS, vol. 7397, pp. 374–389. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32946-3 27

10. Kelsey, J., Schneier, B., Ferguson, N.: Yarrow-160: notes on the design and analysis
of the yarrow cryptographic pseudorandom number generator. In: Heys, H., Adams,
C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 13–33. Springer, Heidelberg (2000).
doi:10.1007/3-540-46513-8 2

11. Lee, M.Z., Dunn, A.M., Waters, B., Witchel, E., Katz, J.: Anon-pass: practical
anonymous subscriptions. In: 2013 IEEE Symposium on Security and Privacy (SP),
pp. 319–333, May 2013

12. Machida, T., Yamamoto, D., Iwamoto, M., Sakiyama, K.: A New Arbiter PUF for
Enhancing Unpredictability on FPGA. Sci. World J. http://dx.doi.org/10.1155/
2015/864812

13. Maes, R.: Physically unclonable functions: Constructions, properties and applica-
tions. Ph.D. thesis, Dissertation, University of KU Leuven (2012)

14. Maes, R., Herrewege, A., Verbauwhede, I.: PUFKY: a fully functional PUF-
based cryptographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33027-8 18

15. Moriyama, D., Matsuo, S., Yung, M.: PUF-Based RFID Authentication Secure
and Private under Memory Leakage. Cryptology ePrint Archive, Report 2013/712
(2013). http://eprint.iacr.org/2013/712.pdf

16. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the 9th ACM Conference on Computer and Communications Security, CCS 2002,
NY, USA, pp. 98–107 (2002). http://doi.acm.org/10.1145/586110.586125

17. Xilinx Inc.: Zynq-7000 All Programmable SoC Overview, Product Specifica-
tion DS190 (v1.9). http://www.xilinx.com/support/documentation/data sheets/
ds190-Zynq-7000-Overview.pdf. Accessed 19 August 2016

http://doi.acm.org/10.1145/2818186
http://doi.acm.org/10.1145/2818186
http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/978-3-642-32946-3_27
http://dx.doi.org/10.1007/978-3-642-32946-3_27
http://dx.doi.org/10.1007/3-540-46513-8_2
http://dx.doi.org/10.1155/2015/864812
http://dx.doi.org/10.1155/2015/864812
http://dx.doi.org/10.1007/978-3-642-33027-8_18
http://dx.doi.org/10.1007/978-3-642-33027-8_18
http://eprint.iacr.org/2013/712.pdf
http://doi.acm.org/10.1145/586110.586125
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

Author Index

Balasubramanian, R. 45
Baloğlu, Sevdenur 110
Batina, Lejla 91
Baykal, Nazife 18

Çoban, Mustafa 60

de Groot, Wouter 91
de La Piedra, Antonio 91
Doğan, Erol 18

Ersoy, Oğuzhan 33

Geltink, Gerben 128
Gönen, Mehmet Emin 33

Joseph, Mabin 45

Karakoç, Ferhat 33, 60
Kavut, Selçuk 110
Kölbl, Stefan 69

Okan, Galip Oral 18
Özen, Mehmet 60

Papagiannopoulos, Kostas 91

Raddum, Håvard 3
Rasoolzadeh, Shahram 3
Roy, Arnab 69

Sağdıçoğlu, Öznur Mut 33
Schneider, Erik 91
Sekar, Gautham 45
Şenol, Asuman 18

Tezcan, Cihangir 18

Yücebaş, Furkan 18

	Preface
	Organization
	Contents
	Cryptanalysis
	Faster Key Recovery Attack on Round-Reduced PRINCE
	1 Introduction
	2 PRINCE Block Cipher
	3 Integral and Higher-Order Differential Distinguishers for PRINCE
	3.1 Integral Distinguishers
	3.2 Higher-Order Differential Distinguisher

	4 New Technique for Key Recovery
	4.1 Some Features of A Arrays
	4.2 Using the A Arrays
	4.3 Average Number of S-box Evaluations for an Array
	4.4 Average Number of Key Candidates for an Array

	5 Cryptanalysis of Round-Reduced PRINCE
	5.1 Attack on 4-round PRINCE
	5.2 Attack on 5-round PRINCE
	5.3 Attack on 6-round PRINCE
	5.4 Attack to 7-round PRINCE

	6 Conclusion
	References

	Differential Attacks on Lightweight Block Ciphers PRESENT, PRIDE, and RECTANGLE Revisited
	1 Introduction
	2 Preliminaries
	2.1 PRESENT
	2.2 PRIDE
	2.3 RECTANGLE
	2.4 Differential Factors
	2.5 Undisturbed Bits

	3 Differential Attacks on Lightweight Block Ciphers
	3.1 Differential Attacks on PRESENT
	3.2 Differential Attacks on PRIDE
	3.3 Differential Attacks on RECTANGLE

	4 Conclusion
	A Modified 19-Round Related-Key Attack on REC-0
	References

	Impossible Differential Cryptanalysis of 16/18-Round Khudra
	1 Introduction
	2 Definition of Khudra
	3 Impossible Differential Attack on 14 Rounds
	3.1 Extending the Attack with Pre-whitening Keys

	4 Impossible Differential Attack on 16 Rounds of Khudra
	5 Conclusion
	References

	Distinguishing Attacks on (Ultra-)Lightweight WG Ciphers
	1 Introduction
	2 Specifications of the Ciphers
	2.1 WG-A
	2.2 WG-B

	3 Motivational Observation
	4 Bias Estimation
	4.1 Biases in the Keystream of WG-A61
	4.2 Biases in the Keystream of WG-B157
	4.3 Improvements to the Bias Estimations

	5 Attack Complexities
	5.1 Experimental Verification

	6 Discussion
	7 Conclusions
	A Derivation of the Probability Pr(A = 0)
	References

	Cryptanalysis of QTL Block Cipher
	1 Introduction
	2 Definition of QTL
	2.1 Notation
	2.2 QTL

	3 Single Key Recovery Attacks from Related Key Distinguishers
	4 A Key Recovery Attack on QTL-64 for Weak Keys
	5 Other Observations
	5.1 Branch Number
	5.2 Differential Properties

	6 Conclusion
	References

	A Brief Comparison of SIMON and SIMECK
	1 Introduction
	2 The SIMECK Block Cipher
	3 Preliminaries
	4 Analysis of SIMON and SIMECK
	4.1 Diffusion
	4.2 Bounds on the Best Differential Trails
	4.3 Differential Effect in SIMON and SIMECK
	4.4 Choosing a Good Differential for Attacks
	4.5 Experimental Verification

	5 Recovering the Key
	5.1 Attack on 26-Round SIMECK48
	5.2 Key Recovery for 19-Round SIMECK32
	5.3 Key Recovery for 33-Round SIMECK64

	6 Conclusion and Future Work
	A Bounds for Linear Trails
	References

	Lightweight Designs and Implementations
	Bitsliced Masking and ARM: Friends or Foes?
	1 Introduction
	2 Related Work
	3 PRESENT
	4 Bitsliced Masking of PRESENT for ARM Cortex-M4
	4.1 Bitslicing and Efficient Sbox Representation
	4.2 Boolean Masking
	4.3 ARM-Based Optimizations
	4.4 Performance Results

	5 Masking Effectiveness in ARM Cortex-M4
	5.1 Experimental Pitfalls
	5.2 Bitsliced Masking and Distance-Based Leakages

	6 Conclusions
	References

	Classification of 66 S-boxes Obtained by Concatenation of RSSBs
	1 Introduction
	2 Preliminaries
	2.1 Cryptographic Properties
	2.2 (Concatenation of) RSSBs
	2.3 Partitioning Search Space

	3 Search Strategy
	3.1 Sieving Affine Equivalent Concatenations
	3.2 Sieving RSSBs S1 and S2
	3.3 Sieving Concatenations with Nonlinearity < 24

	4 Results
	5 Conclusions
	References

	Concealing KETJE: A Lightweight PUF-Based Privacy Preserving Authentication Protocol
	1 Introduction
	2 Related Work
	3 Protocol Design
	3.1 Notation
	3.2 Security Considerations
	3.3 Protocol

	4 Security Analysis
	4.1 Security Model
	4.2 Formal Security Definitions
	4.3 Security Proofs

	5 Proof of Concept
	5.1 3-1 Double Arbiter PUF
	5.2 Reverse Fuzzy Extractor
	5.3 AEAD-Scheme

	6 Results
	6.1 PUF Response Analysis
	6.2 Hardware Performance
	6.3 Software Performance
	6.4 Benchmark Analysis
	6.5 Protocol Comparison

	7 Conclusion
	References

	Author Index

