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Abstract The Train Dispatching Problem (TDP) is to schedule trains through a
network in a cost optimal way. Due to disturbances during operation existing track
allocations often have to be re-scheduled and integrated into the timetable. This has
to be done in seconds and with minimal timetable changes to guarantee smooth
and conflict free operation. We present an integrated modeling approach for the
re-optimization task using Mixed Integer Programming. Finally, we provide com-
putational results for scenarios provided by the INFORMS RAS Problem Soling
Competition 2012.

1 Introduction

The Train Dispatching Problem (TDP) deals with the determination of a railway
timetable by constructing train routes and corresponding arrival and departure times
to operate train requests in a given railway network. Due to the complex operation
rules, limited capacity, which is only upgradeable with massive financial effort, the
infrastructure network builds a natural bottleneck. Thus, it is appreciable to utilize
the existing infrastructure in the best way.

The TDP integrates several major requirements like safety system rules, train
characteristics, blocking and headway times, timetable requirements, and infrastruc-
ture capacities. A detailed problem description and a Mixed Integer Programming
formulation to solve this problem is described in detail in [5]. In this paper, we report
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on a Re-optimization or Re-scheduling approach for the TDP in a real time setting
using a state-of-the-art MIP solver.

The authors of [2] introduced a re-optimization approach for rolling stock rotation
planning problems. In case of the TDP, we adapted it as follows: At some point in
time a railway undertaking has to agree on a timetable, ideally, utilizing an opti-
mization algorithm or by manual planning. Later in time this problem or aspects
changes that much, such that the reference solution, in case of the TDP the timetable,
becomes infeasible. Thus, a modified problem has to be solved. In contrast to the first
process leading to the reference timetable the time limitations are in the second stage
rather strict. Since an operator has only minutes or seconds for his decisions, the
re-optimization algorithm has to calculate solutions within a real time management
system. Another major goal is to change as few as possible in comparison to the
original timetable. This should minimize the disturbance of the ongoing timetable
because fewer changes are easier to communicate, easier to apply, and hence more
reliable. Moreover, it is impossible for an operator to change many routes at the
same time, because the running and blocking times highly depend on the routes and
interaction between the trains. In case of the timetable construction this is evaluated
in detail by microscopic simulation which is not applicable in a real time setting.
Therefore, the reference solution highly influences the objective function. There are
various causes that can lead to a situation where the implemented timetable becomes
unexpectedly infeasible. Predictable and unpredictable construction sites and break-
downs that block a track must be integrated into the timetable as fast as possible. In
addition, delayed trains and modifications of speed limits may require an adjustment
of the timetable. The paper contributes an adaption of the Mixed Integer Program-
ming approaches presented in [5, 7] to re-optimize timetables. We show how to
incorporate re-optimization requirements into the disjunctive graph based formula-
tion, see [1, 3, 4, 6]. An iterative approach is used by [4] to solve real-time instances
of the Dutch railway network. They use a branch-and-bound algorithm for sequenc-
ing train movements and improving the solution by locally rerouting some trains.
The connection between adjacent dispatching areas is studied by [3]. Mascis and
Pacciarelli [6] use a disjunctive graph formulation to model and solve a job-shop
scheduling problem with blocking constraints. This paper is organized as follows.
Section2 defines the considered problem including an overview of the disjunctive
based formulation. In Sect. 3 we present some real world scenarios, consider com-
mon re-optimization use cases for the TDP, and presents computational results. This
indicates that the model and algorithmic approach produces high quality solutions
in a very short time and is able to tackle the real time re-optimization setting.

2 A Re-optimization Model for the TDP

Consider the following problem setting for the TDP. We model the infrastructure
network by a directed graphG = (V, A). The arcs correspond to track segments with
fixed running times τ r

(v,w) for each train r that is able to operate on track segment
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(v,w) ∈ A. For each track segment (v,w) and train pair r, r ′ exists a headway time
hr,r

′
(v,w) which is defined as the minimal time between two consecutive trains r and

r ′ that use the same track segment (v,w), see details in [9]. The set of scheduled
train requests is denoted by R. Each train r ∈ R is associated with an initial route
p∗ ∈ Pr , where Pr is the set of possible routes for request r . Additionally, there are
essential stops Sr ⊂ V for each train r ∈ R. Each stop s ∈ Sr of train r have to be
fulfilled during the time period [αr

s , α
r
s ]. A time unit of deviance from the scheduled

departure of train r , denoted by αr
s , is penalized by crs if the actual departure time

is before αr
s , and crs if the actual departure time is after αr

s . Furthermore, we denote
by δrp the cost that occur from re-routing train r on route p instead of its initial
route p∗ with cost δrp∗ = 0. By γ r ∈ R

− we denote a (negative) profit value for not
routing train r . Usually, this value should ensure that a maximal number of trains is
scheduled. Ifmeaningful data is available this could also be used to give the algorithm
a priority estimation for each train depending on the demand. The set B ⊆ A is the
set of arcs (v,w) where some kind of disturbance takes place during the period of
[β

(v,w)
, β(v,w)].

A solution of the TDP has to associate each scheduled train r ∈ R at most one
route p ∈ Pr with departure times for each node v ∈ p under consideration of the
headway constraints. The task of the model is to select a path for each train and to
determine departure times trv for each node v that is visited by train r on its path. For
this, we enforce relations between different departure times w. r. t. the chosen paths
and the order in which different trains traverse the same arc. In particular, we will
make use of the following three types of decisions:

1. r uses (v,w), which is satisfied if and only if the selected path for r contains arc
(v,w),

2. r ≺(v,w) r ′, which is satisfied if and only if r traverses (v,w) before r ′,
3. r ≺ b(v,w) and r � b(v,w), which are satisfied if and only if r uses (v,w) before

or after the disruption, respectively.

Depending on these conditions, we can formulate the following constraints for the
departure times:

running times:r uses (v,w) ⇒ trv + τ r
(v,w) ≤ trw,

(1)

headway times:r ≺(v,w) r
′ ⇒ trv + hr,r

′
(v,w) ≤ tr

′
v ,

(2)

disruption times:r ≺ b(v,w) ⇒ trw ≤ β
(v,w)

, and r � b(v,w) ⇒ trv ≥ β(v,w).

(3)

We using the following binary variables

1. zrp = 1 ⇐⇒ r runs on p ∈ Pr ,

2. xr,r
′

(v,w) = 1 ⇐⇒ r runs before r ′ on (v,w),
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3. br(v,w) = 1 ⇐⇒ r runs before disruption on (v,w)

and formulate the disjunctive constraints as linear big-M constraints.
With this notation the TDP can be stated as a mixed integer program as follows:

minimize
∑

v∈S
(crvΔ

r
v + crvΔ

r
v) +

∑

r∈R

∑

p∈Pr

δrpz
r
p +

∑

r∈R

γ r
∑

p∈Pr

zrp (4)

subject to (1), (2), (3), (5)
∑

p∈Pr

zrp ≤ 1, r ∈ R,

(6)

trv − Δ
r
v ≤ αr

v, r ∈ R, v ∈ Sr ,
(7)

trv + Δr
v ≥ αr

v, r ∈ R, v ∈ Sr ,
(8)

trv ∈ [αr
v, α

r
v], r ∈ R, v ∈ Sr ,

(9)

trv ,Δ
r
v,Δ

r
v ≥ 0, r ∈ R, v ∈ Sr ,

(10)

z, x, b binary (11)

In addition to the three types of binary variables, the continuous variables trw model
the departure time of train r at node w. The continuous cost variables Δr

w and Δ
r
w

measure the deviation between the departure time of the reference timetable and re-
allocated departures times of train r at node w. The linear objective function (4)
minimizes the sum of the total costs for deviance at stops, costs for alternative
routes, and costs for unscheduled trains. The constraints for the running times (1), the
headway times (2) and the disruption times (3) are formulated as big-M constraints as
mentioned above. The inequalities (7) and (8) ensure the correct values for the time
deviation cost variables and constraints (6) ensure that at most one route is selected
for each train. The departure time windows of the stops are modeled by (9).

If the trains have delays the model aims at pushing the trains back to its actual
routing and timing. In some cases this is not desired since the new schedule may
lead to a lot of modifications of the current timetable, which is not realizable. In this
case the reference departure times could be adjusted to keep the delays at the current
level. Of course, by setting the variables cost crs , c

r
s and δrp to zero for all stops, paths

and trains it is possible to calculate a timetable that is completely independent from
the reference timetable.
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Table 1 Key numbers of re-optimization scenarios from RAS

Instance |R| Disrupted arcs Disrupted routes Planning horizon
(h:m:s)

RAS_1 12 2 5(41%) 17:58:47

RAS_2 18 2 6(33%) 18:07:47

RAS_3 20 12 18(90%) 16:32:15

3 Computational Study

We implemented the proposed re-optimization model in a C++-framework. This
implementation takes use of MIP solver CPLEX 12.6. All our computations were
performed on a desktop computerwith an Intel XeonCPUE3-1245 v3with 3.40GHz
and 32GB of RAM. The set of instances are scenarios derived from the INFORMS
RAS Problem Solving Competition 2012, see [8].

The RAS instances include a microscopic infrastructure network containing 82
nodes and 184 arcs. There are three different scenarios with increasing complexity,
i.e., in terms of larger number of trains and disturbances. Table1 shows the corre-
sponding sizes.

In all cases we chose γ r = −103 for the profit value of routing train r . The
parameter δrp equals the number of deviating tracks between route p and reference
route p∗. The cost parameters are set in such a way that the optimization goals
are weighted in order of importance. First the number of cancelled trains should
be minimal, second the number of route changes should be minimal and third the
departure times should be as close as possible at the reference timetable. For theMIP
solvers we set a time limit of 1800s.

We limited the set of possible routes for each train since otherwise most of the
trains have 192 possible routes which is far too much to handle. In addition, most of
those ignored potential routes cannot be part of an optimal solution. An observation
is that the model can be solved in a few seconds if the number of alternative routes
per train is small. Therefore we sort accordingly to δrp the alternative routes for each
train and select the first 4, 8 and 16 alternative routes for each train, respectively. We
use the cost parameters δrp since there are the only costs that can be calculated in
advance.

The computational results are in Table2. The second column is the number of
alternative routes for each train and is followedby the number of trains in the reference
time table. Then we have the number of blocked trains and the number of planned,
cancelled and rerouted trains in the solution. If the time limit was reached than this
is indicated with TL in the running time column.

From the practical point of view even the restriction to four tours per train is more
than a dispatcher can overlook in a couple of minutes or even seconds. We are able to
solve the first two scenarios to optimality and solve the third with an optimality gap
of at most 5.3%. It turns out that for the RAS instances the first four selected tours



650 F. Fischer et al.

Ta
bl
e
2

So
lu
tio

ns
of

th
e
R
A
S
sc
en
ar
io
s
w
ith

4,
8
an
d
16

al
te
rn
at
iv
e
ro
ut
es

fo
r
ea
ch

tr
ai
n

In
st
an
ce

A
lt.

ro
ut
es

T
ra
in
s

B
lo
ck
ed

Pl
an
ne
d

C
an
ce
lle

d
R
ou
te

ch
an
ge
s

R
un
ni
ng

tim
e
(s
)

G
ap

(%
)

G
ap

af
te
r

20
s
(%

)
O
bj
ec
tiv

e

R
A
S_

1
4

12
0

12
0

0
3.
0

0.
0

0.
0

−1
18
52
.7
2

R
A
S_

1
8

12
0

12
0

0
17
.0

0.
0

0.
0

−1
18
52
.7
2

R
A
S_

1
16

12
0

12
0

1
51
.0

0.
0

21
.3

−1
19
93
.0
0

R
A
S_

2
4

18
0

18
0

2
12
.0

0.
0

0.
0

−1
78
69
.3
3

R
A
S_

2
8

18
0

18
0

2
89
.0

0.
0

>
10
0.
0

−1
78
69
.3
3

R
A
S_

2
16

18
0

18
0

2
14
92
.0

0.
0

>
10
0.
0

−1
78
71
.3
3

R
A
S_

3
4

20
0

19
1

1
98
2.
0

0.
0

5.
3

−1
87
31
.3
3

R
A
S_

3
8

20
0

19
1

1
T
L

5.
3

11
.4

−1
87
31
.3
3

R
A
S_

3
16

20
0

19
1

4
T
L

5.
4

40
.1

−1
87
13
.3
3



A Re-optimization Approach for Train Dispatching 651

are sufficient to provide high quality solutions. Furthermore the optimality gaps after
20 s indicate that we are able to get good solutions fast.

4 Conclusion

We extended a well known MIP formulation for the TDP to be able to tackle
re-optimization scenarios. Our computational study demonstrates that our
re-optimization approach can be used to produce high quality solutions in reasonable
computation time for a real time application.
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