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Abstract Electric vehicles (EVs) can play a central role in today’s efforts to reduce

CO2 emission and slow down the climate change. Two of the most important reasons

against purchase or use of an EV are its short range and long charging times. In the

project “E-WALD—Elektromobilität Bayerischer Wald”, we develop mathematical

models to predict the range of EVs by estimating the electrical power consumption

(EPC) along possible routes. Based on the EPC forecasts the range is calculated and

visualized by a range polygon on a navigation map. The models are based on data

that are constantly collected by cars within a commercial car fleet. The dataset is

modelled with three methods: a linear model, an additive model and a fully non-

parametric model. To fit the linear model, ordinary least squares (OLS) regression

as well as linear median regression are applied. The other models are fitted by mod-

ern machine learning algorithms: the additive model is fitted by boosting algorithm

and the fully nonparametric model is fitted by support vector regression (SVR). The

models are compared by mean absolute error (MAE). Our research findings show

that data preparation is more influential than the chosen model.

1 Introduction

The use of EVs can play a central role in today’s efforts to reduce CO2 emission and

slow down the climate change [10]. Despite research funding and public support,

consumers react cautiously to current offers of the EV market. Surveys show that
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two of the most important reasons against the purchase or use of an EV are its short

range and long charging times [13].

While the problem of long charging times is of technical nature, the problem of

short range has also a psychological dimension known as range stress, the fear of

running out of energy on an open road. Especially for new users in electric mobil-

ity this mental pressure is intensified by a highly unreliable range prediction offered

by car itself. The built-in range prognosis of cars is often based on the EPC of the

immediate past. Therefore, in mountainous regions, where elevation changes are fre-

quent and high, the range prognosis varies drastically with the elevation profile of

the passed route. To better support drivers, the project “E-WALD—Elektromobilität

Bayerischer Wald” equips EVs with tablet computers that visualize the remaining

range by a polygon drawn on navigation map.

One way to estimate the range of an EV is to predict the EPC along routes that may

be travelled. In this study, we describe the development and comparison of different

models to choose the best model for estimating the EPC. The considered models are

a simple multivariate linear regression fitted by OLS, a linear median regression also

known as least absolute deviation (LAD) regression fitted by quantile regression, an

additive model fitted by a boosting algorithm and a fully nonparametric model fitted

by a SVR. Our approach is driven by the goal to estimate EPC in a way that is as

independent from car model specific properties as possible. This will allow to apply

the modelling process to a wide variety of vehicles from different car manufacturers.

The structure of this paper is as follows: In Sect. 2 we describe how the data was

obtained and prepared. Section 3 presents the process of model development. The

model evaluation is given in Sect. 4, and Sect. 5 concludes this work with a short

discussion.

2 Data Description and Preparation

Data were collected from Nissan LEAF vehicles that are part of a commercial car

fleet operated by the E-WALD GmbH. To store the data, tablet computers which

constantly record the car trips have been installed in these EVs.

The data, such as battery power, ambient temperature, speed, heater consumption,

as well as GPS coordinates (latitude and longitude), were collected with an interval

of 1 s during the trips from September 2014 to January 2015 for 7 Nissan LEAF

vehicles. To improve the quality of the data base, erroneous data and outliers have

been removed. The features of the data are as follows: length of trips is between 3

and 75 km, duration of trips is between 5 min and 1 h, temperature is between −4
and 25

◦C. After filtering, about 385 trips can be used for further analysis.

Our approach is to estimate the EPC independent from specific car models. We

therefore concentrate on external factors such as elevation difference and temper-

ature, and investigate their influence on the EPC. To distinguish the influence of

ascending versus descending slope on the EPC, we introduce the notion of positive

elevation difference (PED) which is defined by the sum of meters a car travelled
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through ascending slope and negative elevation difference (NED) which is corre-

spondingly defined by descending slope. In this study, a trip is divided into parts of

by exactly 3 km travelled distance. In order to estimate EPC in GID (a Nissan LEAF

internal unit which amounts to 80 Wh) per 1 km and slope, the entries on EPC, PED

and NED have to be divided by the respective distance travelled (distance-based

dataset).

3 Model Development

In literature, there are a lot of different methods for fitting linear models. The

most prominent method is OLS regression. Besides, least absolute deviation (LAD)

regression is also often used. While OLS is based on estimating the mean of a dis-

tribution, LAD is based on estimating the median. The additive model is fitted by a

boosting algorithm. The first boosting algorithm in machine learning was designed

for binary classification [3, 4]. According to Friedman [5], boosting can be inter-

preted as a gradient descent algorithm in a function space. Bühlmann and Yu [2]

introduced component-wise functional gradient descent boosting for additive mod-

els. An overview is given by [1]. The variant of boosting algorithm that was used

is based on estimating the median. The fully nonparametric model is fitted by SVR.

SVR is a generalization of support vector machine (SVM), which was originally

designed for binary classification [11, 12, 14]. These methods belong to the wide

class of methods which are based on penalized risk minimization and, therefore, are

most suitable for fitting nonparametric models as they balance the trade-off between

complexity and goodness of fit, c.f. [7, Chap. 5].

Model Assumptions. At first, the dataset of the recorded tracks is used for a

descriptive analysis to reveal interdependencies and relevant variables that are use-

ful predictors for the EPC. Possible variables are shown in Table 1. Therefore we

selected PED and NED as important variables and assumed a linear influence on the

EPC. So the following basic functional structure was chosen:

EPC

km
= 𝛽0 + 𝛽1 ⋅ PED + 𝛽2 ⋅ NED + 𝛽3 ⋅ Temp

2 + 𝛽4 ⋅ Temp (1)

where 𝛽0,… , 𝛽4 denote the parameters to be estimated.

Table 1 Correlation analysis on continuous data of Nissan LEAF, most relevant data are bold

Variable PED/km NED/km Temperature Mean velocity

r (EPC∕km) 0.4084 −0.4413 −0.0446 0.0470
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TheModels. The dependent variable is EPC and independent variables are PED,

NED, and temperature. Three models with different degrees of generality have been

investigated. The simplest model is the linear model

y = 𝛽0 + 𝛽1 ⋅ xpos + 𝛽2 ⋅ xneg + 𝛽3 ⋅ x2temp + 𝛽4 ⋅ xtemp + 𝜀 (2)

where y denotes the EPC, xpos the PED, xneg the NED, xtemp the temperature, 𝜀 the

error term and 𝛽i the parameter vector. A convenient generalization of a linear model

is the additive model [6].

y = 𝛽0 + fpos(xpos) + fneg(xneg) + ftemp(xtemp) + 𝜀 . (3)

The difference to the linear model is that the additive model also captures nonlinear

effects ( fpos, fneg and ftemp are continuous functions). The study was done using the

statistical software R where we applied the function gamboost with smooth P-spline

base-learners PED, NED, and temperature [1, 8, 9]. Finally, we also considered the

fully nonparametric model

y = f (xpos, xneg, xtemp) + 𝜀 . (4)

As the additive model, the fully nonparametric model captures nonlinear effects.

In contrast to the additive model, it also captures all kinds of interactions between

independent variables so that the fully nonparametric model, in fact, is more general

than the additive model. This was done using the R package e1071.

4 Results

As a measure for quality, the MAE has been chosen. Where n denotes the number

of data points, yi denotes the EPC (in GID) of data point number i and ŷi contains

corresponding estimate from the model, the MAE is given by

MAE = 1
n

n∑

i=1
|yi − ŷi| . (5)

In case of more advanced nonlinear methods like Boosting and SVR, simply calcu-

lating MAE on the whole dataset is not appropriate; In order to avoid the problem

of overfitting and to obtain honest values, the MAE was calculated using 10-fold

cross-validation [7, Chap. 7]. Table 2 shows the results of the different models. All

estimators which are calculated nearly have the same quality. The MAE of the LAD

regression has the lowest value. Results were also compared with the global mean.

It is simply the mean of the whole dataset. In doing so, the estimate ŷi is always

equal to the mean so that ŷ1 = ŷ2 = ⋯ = ŷn =
1
n
∑n

i=1 yi = ȳ . The global mean acts
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Table 2 Results of MAE for each model

Model MAE Improvement to global

mean (%)

Improvement to OLS

(%)

Global mean 1.098 0 −47.12

OLS 0.746 32.03 0

LAD 0.742 32.45 0.62

Boosting 0.744 32.25 0.33

SVR 0.743 32.37 0.51

as a benchmark because this is the result which could be obtained without collecting

any data in the car. The 3rd and 4th column show the percentaged improvement to

global mean and OLS respectively. Because all applied models have nearly the same

performance, it is entirely sufficient to take the much simpler linear methods (OLS

and LAD regression) for predicting the EPC.

5 Discussion

The perhaps most interesting aspect of the results is that the performance of mod-

els hardly makes a difference which estimator is chosen. During analysis it was also

investigated how another data preparation will change the results. According to one

possible way to prepare the data is to divide the trips into parts of 1 GID (of consumed

energy) and to extrapolate the travelled distance to 1 km distance (energy-based

data). So energy-based dataset and distance-based dataset (Sect. 2) in this study can

be compared. As you see in Table 3 the estimated regression coefficients, the influ-

ence of independent variables are larger for the distance-based approach than for the

energy-based approach. The MAE of the OLS with energy-based dataset was 0.886,

very much higher than the MAE of OLS of the distance-based dataset (0.746, see

Table 2). So the quality of estimators heavily depends on the way how the dataset is

prepared but not which model is chosen. This is remarkable that the vast majority of

research in data analysis is concerned with the choice of model and not with the topic

of data preparation. In our case, the distance-based dataset is much smaller than the

energy-based dataset (n = 1476 vs. n = 4656) but yields much better results. This

Table 3 Estimated regression coefficients (rounded)

Model 𝛽0 𝛽pos 𝛽neg 𝛽temp2 𝛽temp

OLS (energy-based data) 2.61 0.028 0.028 0.00014 −0.026

OLS (distance-based data) 2.64 0.067 0.041 0.00084 −0.061

LAD (distance-based data) 2.55 0.068 0.042 0.00064 −0.055
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demonstrates, it is more important to have the right dataset, not the biggest dataset.

In order to further improve quality of forecasts, it is interesting to investigate the his-

tory of forecasts separately for each trip. The current estimates are static. Therefore,

it seems to be promising to improve estimations by adding dynamic and adaptive

components.
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