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Abstract The decomposition method for non-product form networks with

non-exponentially distributed interarrival and service times assumes that nodes

within the network can be treated being stochastically independent and internal flows

can be approximated by renewal processes. The method consists of three phases to

calculate the interarrival times of a node: merging, flow, splitting. Some well-known

approximation formulas for ordinary single class open queueing networks calculate

the characteristics in each phase for each node as shown by Kuehn, Chylla, Whitt and

Pujolle/Ai. Node performance measures such as mean queue length are determined

by using approximation formulas for non-Markovian queues. In 2011 the decom-

position method was extended to open queueing networks with batch processing

using the approximation formula described by Pujolle/Ai. A comparison with dis-

crete event simulation as benchmark shows that the approach provides good results.

Thus, the approach was expanded for the approximation given by Kuehn, Chylla and

Whitt. Since the method consists of several phases it is possible to combine different

formulas. For example, merging will be approximated by Kuehn and flow by Whitt.

To perform an evaluation the benchmark was done in regard to the 2011 publication.

Approximation formulas with the same approach generate similar results. In some

cases, it is apparent that some formulas have advantages over other ones and a few

tend to larger errors. Thus, the focus of interest particularly addresses the load and

batch size changes within the network and the impact on the accuracy of the decom-

position method as a fast solver or pre-evaluation for optimization using simulation.

1 Introduction

The importance of analysis of non-product form networks by applying approxima-

tions has increased steadily in recent years. The most important strategy approach is

given by the decomposition method. The decomposition method enables an
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isolated treatment of the nodes within the network. The method is particularly

applied in planning and optimization of production systems by calculating character-

istics of each node. In this paper, a decomposition method will be presented serving

primarily as a pre-evaluation tool. If the calculated characteristics move in accept-

able ranges Monte-Carlo simulations can be performed.

Until now the decomposition method for open queuing networks with batch ser-

vice was developed using the approach of Pujolle/Ai [1]. The aim is to expand the

method to common approximations developing the approaches to batch service and

to transfer them to the developed method of [1]. This includes the approximate for-

mation of the superposition of the input streams by Kühn [2] and Chylla [3] as well

as the approximation of the departure stream by Whitt [4], Kühn and Chylla.

2 Description of the Model

The open network consists of 1 to N nodes numbering successively and presenting

GIXi∕GI(bi,bi)∕ci queueing systems. Jobs arrive in groups of size b0 from outside the

network according to a renewal process with rate λ0 < ∞ and the squared coefficient

of variation SCV[I0] < ∞. 0 ≤ pij ≤ 1 describes the transition probability that an

arriving batch reaches node j from node i and
∑N

i=1 p0i = 1 applies meaning jobs

enters the network from outside. Each queueing systems have ci identical servers,

an unlimited waiting room and the FCFS queueing discipline. The service starts if a

batch of the required size bi was generated. The service times are distributed as some

random variables Si with rates μi < ∞ and SCV[Si]. It is assumed that the interarrival

and service times are independent. After a complete service of a batch it will arrive

in a form of a batch to the subsequent node according to the transition probabilities.

Xi is described by an integer random variable and represents the input size of the

groups at node i. The first and second moment are calculated by

E[Xi] =

N∑

j=0
bj ⋅ τj ⋅ pji

N∑

j=0
τj ⋅ pji

E[X2
i ] =

N∑

j=0
b2j ⋅ τj ⋅ pji

N∑

j=0
τj ⋅ pji

.

τi denotes the relative throughput and can be determined by a modified traffic equa-

tion:

τi = p01 ⋅
b0
bi

+
N∑

j=1
τj ⋅ pji ⋅

bj
bi

τ0 ∶= 1.

The modified arrival rate of batches can be calculated by λ∗
i = λ0 ⋅ τi and the modi-

fied utilization by ρ∗
i = λ∗

i ∕(ciμi) < 1.
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3 Decomposition of Open Queueing Networks
with Batch Service

3.1 Phase 1: Merging

There exist three different approaches to form the superpositions of the arrival

streams. The first approach was developed by Pujolle/Ai [5]. The counting process

representing the incoming jobs and incoming groups, respectively is described by

knowledge of the asymptotic behavior of renewal processes:

SCV[Ii] =

( N∑

j=0
τjpji

)−1 N∑

j=0
τj ⋅ pji ⋅ SCV[Aji]

Chylla uses the approach in order to approximate the splitting of the departure stream

(see phase 3):

SCV[Ii] = 1 +
N∑

j=0

λ∗
j

λ∗
i
pji(SCV[Aji] − 1).

The approach of Kühn is based on a case-by-case analysis which depends on the

values of SCV[Aji] (see phase 3):

SCV[Ii] = 2 ⋅
t1 + t2
(t1 ⋅ t2)2

⋅ (I1 + I2 + I3 + I4) tj =
1

pjiτj
, j = 1, 2.

The components I1,… , I4 are either a composition of hypoexponentially, hyperex-

ponentially distributed sub-processes or a mixture. For details see [2].

After the interarrival times of the single jobs has been determined the interarrival

times of batches will be approximated by [1]:

SCV[I∗i ] ≈
E[Xi]
bi

(SCV[Xi] + SCV[Ii]).

3.2 Phase 2: Flow

There are fundamentally two approaches to approximate the departure stream in a

non-product form network. Pujolle/Ai and Chylla use the approach

Di =
{

Si ∶ with probability ρ∗
i

Si + I∗i ∶ with probability 1 − ρ∗
i
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and it results for Pujolle/Ai according to the calculation of the first and second

moment of the process Di

SCV[Di] ≈ ρ∗2
i SCV[Si] + (1 − ρ∗

i )SCV[I
∗
i ] + ρ∗

i (1 − ρ∗
i )

and a slightly modified version of Chylla

SCV[Di] = 1 + P2
i (SCV[Si] − 1) + (1 − Pi)(SCV[I∗i ] − 1),

where Pi is described by the Erlang-C formula. Whitt and Kühn use the approach of

Marshall [6] to approximate the departure stream basing on Lindley’s recursion of

waiting times. The formula

SCV[Di] ≈ 1 + (1 − ρ∗2
i ) ⋅ (SCV[I∗i ] − 1) +

ρ∗2
i

√
ci

⋅ (SCV[Si] − 1)

represents the approximation of Whitt and Kühn developed the approximation

SCV[Di] = SCV[I∗i ] + 2𝜌∗2i SCV[Si] − 𝜌

∗2
i (SCV[I∗i ] + SCV[Si])gKLB,

where gKLB is the correction factor given by Krämer/Langenbach-Belz [7].

3.3 Phase 3: Splitting

The splitting of the departure stream in accordance with the transition probabilities

can be considered as a Bernoulli experiment. After service completion at node i,
jobs are directed to node j with probability pij and with probability 1 − pij they are

routed elsewhere. The number of the first batch to be directed to node j is geomet-

rically distributed. The first moment and the variances of the splitting process are

calculated by using the Wald’s equation respectively the Blackwell-Girshick equa-

tion. The squared coefficient of variation results by SCV[⋅] = (E[⋅2]∕E[⋅]2) − 1:

SCV[Aij] = 1 + pij(SCV[Di] − 1).

If the phases are inserted successively into each other a system of linear equations

is formed whose solutions provide the squared coefficient of variation of the interar-

rival times of the batches. Characteristics like the average number of individual jobs

in the system of the various queueing systems can be determined by the modified for-

mula of Allen-Cunneen [1] and the correction factor of Krämer/Langenbach-Belz:

E[Ni] ≈ E[Z∞,i] + bi ⋅ E[Q]GI∕GI∕cgKLB(ρ∗
i , SCV[I

∗
i ], SCV[Si]) + biciρ∗

i + h.
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4 Numerical Results

Due to the independence of the phases, the presented approaches can be arbitrar-

ily combined, e.g. merging will be approximated by Kühn and flow by Whitt. The

benchmark which was done in regard to [1] was used to evaluate the decomposition

method using all possible combinations of the presented approximation approaches.

The Fig. 1 shows the reference network. All in all, 16 cases were investigated in detail

differing in the characteristics of the utilization, batch sizes, number of servers and

SCV[Si].
Exemplarily, case 11 (benchmark: table 3, case 3) will be evaluated shortly.

Table 1 presents the parameterization of the open queueing network. Table 2 summa-

rizes the results and shows the relative errors. The relative error is the discrepancy

between calculated approximate values by the decomposition method and the mean

of the simulation results. The ratio of mean input batch size (E[X4] = 6.048) and

batch size b4 at node 4 explains the increased discrepancies. A similar phenomenon

occurs at the node 2 (E[X2] = 3 > b2). These situations affects an overestimation of

the SCV[I∗i ] and at last of the approximate characteristics. The approximations of

the input stream of Pujolle/Ai and Kühn are robust. In contrast Chylla’s approxima-

tion caused larger errors at node 2. The study of this case also clearly shows that

Chylla’s approximation combined with the approximation of the departure stream

based on Marshall does not work well if there exist large changes of batch size (node

3). The formation of the superposition of the arrival streams under the circumstances

of larger batch size changes revealed weaknesses of the approximation from Kühn

(node 4).

Fig. 1 Reference model

Table 1 Queueing network with λ0 = 2, SCV[I0] = 1, b0 = 1, E[S1] = 3.6, E[S2] = 0.45, E[S3] =
4.5, E[S4] = 4, E[S5] = 8.889 and E[S6] = 11.4
Node bi ci ρi SCV[Si]
1 3 3 0.8 0.25

2 1 1 0.72 0.25

3 10 1 0.648 0.25

4 5 2 0.8 0.25

5 2 4 0.6 0.25

6 3 3 0.887 0.25
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5 Conclusions

All approaches yield acceptable results being useful as pre-evaluation for optimiza-

tion. Generally it has been shown that the approximation of the input streams from

Pujolle/Ai and Kühn are robust. The approximate approach from Chylla on the other

hand caused in cases of larger batch size changes high errors (cases 9–16, bench-

mark: tables 3 and 4). The approach of Kühn, who has a complex case distinction is

more difficult to handle than the approach of Pujolle/Ai.

The two approaches of the approximation of the departure streams yield simi-

lar results which could be expected since the approaches provide similar approxi-

mations. An interesting phenomenon discovered in many cases is that if bi < E[Xi]
and SCV[Si] → 0 the approach based on Marshall’s method works better than the

approach from Pujolle/Ai and in case of bi > E[Xi] and SCV[Si] → 0 Pujolle/Ai’s

approach provides better approximations than the approach of Marshall. In the appli-

cation it is possible to make a case analysis for each node to approximate the depar-

ture streams to reduce the error of the decomposition method.
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