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Abstract We consider the flow shop problem with two machines and time delays

with respect to the makespan, i.e., the maximum completion time. We recall the

lower bounds of the literature and we propose new relaxation schemes. Moreover,

we investigate a linear programming-based lower bound that includes the implemen-

tation of a new dominance rule and a valid inequality. A computational study that

was carried out on a set of 480 instances including new hard ones shows that our

new relaxation schemes outperform the state of the art lower bounds.

1 Introduction

This paper is devoted to dealing with the flow shop scheduling problem with two

machines and time delays, denoted by F2|lj|Cmax. Let I = (J, p1, l, p2) be an instance

of F2|lj|Cmax, where J = {1, 2,… , n} is a set of n jobs, p1 and p2 are the vectors of

processing times on the first and the second machines, and l is the vector of the time

delays. Each job j has two operations. The first operation (resp. the second operation)

must be executed without preemption during p1,j (resp. p2,j) time units on M1 (resp.

M2). For each job j ∈ J, a time delay of at minimum lj time units must separate the

end of the first operation and the start of the second one. The objective is to find a

feasible schedule that minimizes the completion time of the last scheduled job on

M2. A feasible schedule is such that at most one operation is processed at a time on a

given machine. In addition, the operations are executed without preemption, where

interruption and switching of operations are not allowed.
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Mitten [2] proves that the permutation flow shop F2𝜋|lj|Cmax, where a feasible

schedule consists in having the same job sequence on both machines, can be solved

in polynomial time. However, solving our problem as a permutation flow shop does

not necessarily provide an optimal solution. F2|lj|Cmax is an NP-hard problem in the

strong sense even with unit-time operations [3].

The objective of this paper is to introduce new lower bounds. First, we improve

the most promising lower bound of the literature. Second, we investigate a linear

programming-based lower bound.

2 Combinatorial Lower Bounds

We present here the lower bounds of the literature and propose new ones. Hereafter,

C∗
max(I) represents the optimal makespan value of instance I and Cmax(S) stands for

the makespan value of schedule S.

First, we survey four lower bounds of Yu [3]. We start by two O(n) basic lower

bounds LB1=max1≤j≤n(p1,j + lj + p2,j) and LB2=max(
∑n

j=1 p1,j + min1≤j≤n(lj + p2,j),
∑n

j=1 p2,j + min1≤j≤n(lj + p1,j)). Moreover, Yu [3] interested in the problem where

each job j ∈ J is splitted into min(p1,j, p2,j) unitary sub-jobs. The lower bound LB3 =
⌈(
∑n

j=1 min(p1,j, p2,j).luj )∕
∑n

j=1 min(p1,j, p2,j)⌉ + 1 +
∑n

j=1 min(p1,j, p2,j) was introdu-

ced, where luj = lj + max(p1,j, p2,j) − 1 is the time delay observed by each sub-job

derived from j ∈ J.

The fourth lower bound is presented as follows. Let S∗ be an optimal sched-

ule and pk,[𝓁] the processing time of the job scheduled at position 𝓁 on Mk, k ∈
{1, 2}. Moreover, let jk be the position of job j on Mk, k ∈ {1, 2}. For each job

j ∈ J, it holds that Cmax(S∗) ≥
∑j1

𝓁=1 p1,[𝓁] + lj +
∑n

𝓁=j2 p2,[𝓁]. By adding together

the above equations for all jobs and by considering that the makespan is integral,

LB4 = ⌈(
∑n

j=1 lj +
∑n

m=1 𝜌1,m +
∑n

m=1 𝜌2,m)∕n⌉ is a valid lower bound, where 𝜌k,m is

the sum of the m smallest values in {pk,1, pk,2,… , pk,n}.

The following lower bounds were introduced by Dell’Amico [1]. In the first one,

it is assumed that all jobs are executed at time 0 on M1. The problem is then a

single-machine scheduling problem with release dates denoted by 1|rj|Cmax. Let

Ir be the instance for 1|rj|Cmax with rj = p1,j + lj and pj = p2,j, j ∈ J. Obviously,

L1 = C∗
max(Ir) is a valid lower bound on the F2|lj|Cmax original instance, which can

be computed in O(n log n)-time by scheduling the jobs in a nondecreasing order of

rj, j ∈ J. By interchanging the role of M1 and M2, we yield a symmetric lower bound

called L2. Finally, we define the lower bound LB5 = max(L1,L2).
Solving our problem as a permutation flow shop does not necessarily provide an

optimal solution. However, special cases exist where it is true. Dell’Amico [1] proved

that permutation schedules are dominant if lj ≤ min1≤i≤n(p1,i + li), j ∈ J and then he

introduced the following lower bound. Let ̄I = (J, p1, ̄l, p2) be a new instance that is

derived from instance I = (J, p1, l, p2), where ̄lj = min(lj,min1≤i≤n(li + p1,i)), j ∈ J.

Since ̄I verifies Dell’Amico’s [1] conditions, an optimal solution for ̄I can be found
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in polynomial time using Mitten algorithm [2]. Therefore, LB6 = C∗
max(̄I) is a valid

lower bound.

Furthermore, we introduce two new lower bounds which can be considered as a

generalization of LB6. In fact, Yu [3] extended Dell’Amico’s [1] result after showing

that the permutation schedules are dominant if lj ≤ min1≤i≤n(li + max(p1,i, p2,i)), j ∈
J. Therefore, from an instance I = (J, p1, l, p2) of F2|lj|Cmax problem, we derive a

new instance ̃I(J, p1, ̃l, p2), where ̃lj = min(lj,min1≤i≤n(li + max(p1,i, p2,i))), j ∈ J. As

a consequence of Yu’s [3] result, LBN
1 = C∗

max(̃I) is a valid lower bound on instance

I, which is computed in O(n log n)-time using Mitten [2].

Moreover, we consider two instances I = (J, p1, l, p2) and I′ = (J′, p1, l, p2) of

F2|lj|Cmax, where J′ ⊂ J. Then, any valid lower bound on I′ is also a valid lower

bound on I. A new lower bound called LBN
2 can be obtained by invoking LBN

1 on dif-

ferent sub-instances of I. Interestingly, we consider n sub-instances. We start by the

original instance I, the next sub-instance is built from the one in hand by removing

the job that has the minimum value of lj + max(p1,j, p2,j), j ∈ J.

3 Linear Programming-Based Lower Bound

We consider a mathematical formulation that is based on determining the precedence

relationships between jobs on the two machines where it is supposed that the jobs are

continuously processed on M1 and M2. Indeed, any valid schedule on an F2|lj|Cmax
instance can be transformed to a schedule with the same makespan value C where

jobs are continuously processed on the two machines from time 0 and from time

C −
∑n

j=1 p2,j on M1 and M2, respectively.

The decision variables are defined for each pair of jobs i, j ∈ J, whereXk
i,j takes the

value 1 if i precedes j onMk and 0 otherwise, k ∈ {1, 2}. Furthermore,Ck,j represents

the completion time of job j on Mk and the total idle time on M2 is denoted by L.

Using these definitions, the model can be formulated as follows:

𝐦𝐢𝐧 L (1)

s.t. Xk
i,j + Xk

j,i = 1, ∀i, j ∈ J i ≠ j; k ∈ {1, 2} (2)

Xk
i,j ≥ Xk

i,v + Xk
v,j − 1, ∀i, j, v ∈ J; k ∈ {1, 2} (3)

C1,i =
∑n

j=1 p1,j.X
1
j,i + p1,i, ∀i ∈ J (4)

C2,i ≥ C1,i + li + p2,i, ∀i ∈ J (5)

C2,i = L +
∑n

j=1 p2,j.X
2
j,i + p2,i, ∀i ∈ J (6)

L ≥ 0, Ck,j ≥ 0, Xk
i,j ∈ {0, 1} ∀i, j ∈ J, k ∈ {1, 2} (7)

The objective function (1) minimizes the total idle time onM2. Constraints (2) ensure

that for each pair of jobs, one of them has to precede the other on each machine.

Constraints (3) guarantee the absence of cyclic precedence relationships between all
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jobs. Constraints (4) and (6) take into account the job’s precedence and enforce them

to be processed continuously without idle on M1 and M2, respectively. In addition,

Constraints (5) ensure that a job after being processed onM1 has to wait its time delay

to be executed on M2. The nature of decision variables L, Ck,j and Xk
i,j is displayed

by Constraints (7).

In order to strengthen the LP relaxation of the model, we propose a valid inequal-

ity, which is based on the additional waiting time that a job has to fulfill after being

available for processing on M2. We remark that given a sequence of jobs on M1,

solutions in which the jobs are scheduled on M2 according to their arrival times are

dominant. Therefore, if a job j is preceded by a job i on M1, then a lower bound

on the minimum additional waiting time observed by job j or job i is wi,j, where

(i)wi,j = max(0, li + p2,i − p1,j − lj), if li ≤ p1,j + lj (ii)wi,j = max(0, p1,j + lj + p2,j −
li), if li > p1,j + lj.

A lower bound on the total additional waiting time 𝛥 can be obtained by solving

the assignment problem where the assignment costs are 𝛿i,j, i, j ∈ {1,… , n}. In the

following, we describe how the assignment costs are computed. Note that the first

scheduled job (resp. the last scheduled job) on M1 is assumed to be preceded (resp.

followed) by a dummy job (job 0, resp. job n + 1). Obviously, since job 0 cannot

precede job n + 1, and a job cannot precede itself, then we set 𝛿0,n+1 = ∞ and 𝛿j,j =
∞, ∀j ∈ {1,… , n}.

Remark 1 Let us consider an instance I of F2|lj|Cmax and LB (resp. UB) a lower

bound (resp. an upper bound) on the value of the makespan. If a schedule of

makespan LB exists, then the jobs can be continuously processed without any idle

time, from time 0 on M1 and from time (LB −
∑n

j=1 p2,j) on M2. Then, we obtain the

following assignment costs:

∙ ∀i ∈ {1,… , n}, 𝛿0,i = max(0,LB −
∑n

j=1 p2,j − li − p1,i)
∙ ∀i ∈ {1,… , n}, if

∑n
j=1 p1,j + li + p2,i > UB, i cannot be processed at the last posi-

tion on M1, then 𝛿i,n+1 = ∞. Otherwise 𝛿i,n+1 = 0

In order to set 𝛿i,j, ∀i, j ∈ {1,… , n}, i ≠ j, we introduce in the following lemma

a new dominance rule.

Lemma 1 Let I = (J, p1, l, p2) be an instance of F2|lj|Cmax and two jobs i, j ∈ J such
that p1,j + lj ≤ p1,i + li ≤ p2,j + lj. For any schedule S of I, if j and i are adjacent on
M1 then j should precede i on M1.

Proof Let us suppose that j is executed before i on M1. First, thanks to the rela-

tion p1,i + li ≤ p2,j + lj, i is ready for processing on M2 while the processing of job

j has not yet ended. Then these two jobs are executed continuously without idle on

M2. Second, since p1,j + lj ≤ p1,i + li, the operations O2,j and O2,i would have started

earlier than if i had preceded j on M1.

Corollary 1 Let I = (J, p1, l, p2) be an instance of F2|lj|Cmax and two jobs i, j ∈ J.
If p1,j + lj ≤ p1,i + li ≤ p2,j + lj, then 𝛿i,j = ∞. Otherwise 𝛿i,j = wi,j.
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Similarly, by interchanging the role of M1 and M2, we obtain 𝛥

′
another lower

bound on the total additional waiting time. Therefore, the following valid inequality

holds:
∑n

j=1 C2,j ≥
∑n

j=1 C1,j +
∑n

j=1(p2,j + lj) + max(𝛥, 𝛥′ ).

4 Computational Results

We present in this section the computational results of the new lower bounds and we

compare their performance. We test them on a set of six classes A–F that was pro-

posed by Dell’Amico [1]. Furthermore, preliminary computational results conducted

on the literature classes show that previous lower bounds give bad performance when

time delays are very large compared to processing times. To that aim, we introduce

two new classes of instances where the processing times on M1 and M2 and the time

delays are randomly generated between [1… 𝛼], [1… 𝛽] and [1… 𝛾], respectively,

where 𝛼 = 𝛽 = 20 and 𝛾 = n
2
10 (resp. 𝛼 = 𝛽 = 100 and 𝛾 = n

2
100) for class 1 (resp.

class 2). For each class, the number of jobs is n = 10, 30, 50, 100, 150, 200. For each

combination of class and number of jobs, 10 instances were randomly generated. All

algorithms were coded in C++ and compiled under CentOS 6.6. Moreover, we used

CPLEX 12.6 to implement the linear programming-based lower bound. The exper-

iments were conducted on an Intel(R) Xeon(R) @ 2.67 GHz processor. For pages

limitation, we interest only to the most competitive lower bounds.

In the following, we denote by LBN
3 the optimal objective value that is obtained

after solving the LP relaxation of the mathematical model (1)–(7) including the valid

inequality and by LBN
4 a version of LBN

3 without Constraints (3). We conducted pre-

liminary computational results on LBN
3 and LBN

4 . Clearly, LBN
3 dominates LBN

4 . How-

ever, LBN
4 offers a good trade-off between effectiveness and efficiency. Indeed, for all

the considered instances where n < 100, LBN
4 achieves the same lower bound values

as LBN
3 within a very short time. The average computational time of LBN

4 on these

instances is 0.77 s while LBN
3 needs 61.54 s. Furthermore, LBN

3 fails to solve all large

scale instances (i.e. n ≥ 100) within 1800 s, while LBN
4 solves them in an average

time of 1.47 s.

In order to present a detailed image of the performance of lower bounds LB3, LB4,

LB5, LB6, LBN
2 and LBN

4 , a pairwise comparison between them is given in Table 1. In

this table, we illustrate for each pair of lower bounds LBrow and LBcol, which are dis-

played in some given row and column, respectively, the percentage of times where

LBcol > LBrow. We observe on classes A–F that LBN
2 outperforms LB5 in 10.83% of

instances and LB6 in 26.38% of instances. However, on the new classes 1–2, we

notice that LBN
4 provides a much better performance than the rest, since it outper-

forms LB5 and LBN
2 in 77.5% and 75% of instances, respectively.

To get a better picture of the lower bounds performance, we provide in Table 2

the average percentage deviation (over the instances of each class) with respect to

the maximal lower bound value, that is delivered by the considered lower bounds.

Note that (-) means that the average CPU time is less than 10−2 s. From Table 2, we



532 M.A. Mkadem et al.

Table 1 Pairwise comparison between lower bounds

Classes A–F Classes 1–2

LB3 LB4 LB5 LB6 LBN
2 LBN

4 LB3 LB4 LB5 LB6 LBN
2 LBN

4
LB3 – 63.33 99.44 98.05 99.44 100 – 46.66 60.83 52.5 61.66 100

LB4 36.66 – 99.72 98.33 99.72 100 50 – 61.66 54.16 61.66 100

LB5 0.55 0.27 – 3.33 10.83 2.5 39.16 38.33 – 7.5 52.5 77.5

LB6 1.94 1.66 23.33 – 26.38 2.77 47.5 45.83 67.5 – 72.5 79.16

LBN
2 0.55 0.27 0 0 – 1.94 38.33 38.33 0 0 – 75

LBN
4 0 0 97.5 97.22 98.05 – 0 0 20.83 19.16 23.33 –

Table 2 Relaxation performance by class

Class LB3 LB4 LB5 LB6 LBN
2 LBN

4
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

A 29.9 – 30.26 – 0.04 – 0.3 – 0 – 19.81 0.82

B 27.8 – 28.26 – 0.06 – 0.33 – 0.01 – 17.82 0.81

C 23.96 – 24.16 – 0.89 – 2.56 – 0.69 – 13.73 0.79

D 32.24 – 32.29 – 0.04 – 0.03 – 0 – 21.46 0.84

E 53.96 – 46.26 – 0.003 – 0.02 – 0 – 33.09 0.82

F 53.32 – 45.85 – 0.02 – 0.22 – 0 – 32.93 0.85

1 10.35 – 11 – 1.78 – 2.19 – 1.56 – 0.92 0.58

2 10.42 – 10.42 – 13.89 – 19.26 – 13.66 – 0.11 0.69

Avg 30.24 – 28.56 – 2.09 – 3.11 – 1.99 – 17.48 0.77

observe that the average gaps significantly depend on the classes. On one hand, LBN
2

exhibits an average gap of 1.99% on all classes. However, for the instances of class

2, its average gap jumps to 13.66%. On the other hand, LBN
4 presents a much better

performance on the new classes. Indeed, the average gap of this bound is equal to

0.92% and 0.11% on class 1 and class 2, respectively.

5 Conclusion

This paper addressed the two-machine flow shop problem with time delays. We

recalled the lower bounds of the literature and proposed new ones. In particular,

the linear relaxation of a mathematical formulation with the consideration of a valid

inequality and a dominance rule provides the best performance on a set of 120 new

instances. Future research needs to be focused on investigating new valid inequalities

and dominance rules in order to improve the resolution of the considered model.
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