
Towards Mathematical Programming
Methods for Predicting User Mobility
in Mobile Networks

Alberto Ceselli and Marco Premoli

Abstract Motivated by optimal orchestration of virtual machines in mobile cloud

computing environments to support mobile users, we face the problem of retrieving

user trajectories in urban areas, when only aggregate information on user connections

and trajectory length distribution is given. We model such a problem as that of find-

ing a suitable set of paths-over-time on a time-dependent graph, proposing extended

mathematical programming formulations and column generation algorithms. We

experiment on both real-world and synthetic datasets. Our approach proves to be

accurate enough to faithfully estimate mobility on the synthetic datasets, and effi-

cient enough to tackle real world instances.

1 Problem Statement and Modeling

Motivated by optimal orchestration of virtual machines in mobile cloud computing

environments to support mobile users [1], we face the problem of retrieving user

trajectories in urban areas. We partition the region covered by a mobile network into

cells, one for each Access Point (AP), and we suppose to be given: (a) the adjacency

matrix between cells, and (b) the demand in each cell at each point in time, that is the

number of users connected to the corresponding AP. We also assume that an aggre-

gated information about user mobility is given, namely the probability distribution of

trajectory lengths. Our aim is to find an estimate on the trajectory, and more in gen-

eral on the path of each user, in terms of sequence of cells traversed by the user during

the considered time horizon. Since demand is usually easy to forecast, e.g. by time

series analysis, our methods can be seen in the long term as means of predicting the

corresponding user mobility. Our modeling approach (Sect. 1) is the following: first,

we perform a time discretization and a trajectory length categorization. Then, we

A. Ceselli (✉) ⋅ M. Premoli

Dipartimento di Informatica, Università Degli Studi di Milano, via Bramante 65,

Crema, Italy

e-mail: alberto.ceselli@unimi.it

M. Premoli

e-mail: marco.premoli@unimi.it

© Springer International Publishing AG 2018

A. Fink et al. (eds.), Operations Research Proceedings 2016,

Operations Research Proceedings, DOI 10.1007/978-3-319-55702-1_7

45

46 A. Ceselli and M. Premoli

introduce extended mathematical programming formulations, inspired by flows over

time models, having a polynomial number of constraints, but an exponential num-

ber of variables, and two hierarchical objectives. We devise column generation

algorithms (Sect. 2): pricing problems are resource constrained minimum cost path

problems, for which we provide ad-hoc dynamic programming procedures. We

experiment on both synthetic datasets, obtained through generative models from the

literature, and real world datasets from a major mobile carrier in Paris for which

ground truth is not available (Sect. 3). Our approach proves to be accurate enough to

faithfully estimate mobility on the synthetic datasets, and efficient enough to tackle

real world instances. Our model is the following.

Data Let T = {1,… , |T|} be a set of time slices and N be a set of APs, each lying at

coordinates (xi, yi) in a plane that models our urban area. For each t ∈ T and i ∈ N,

let dti ∈ ℤ∗
be the number of users connected to AP i during time slice t. We denote as

𝛺 the set of feasible paths-over-time (paths in the remainder), each being a sequence

of APs whose cells are adjacent, and which are assumed to be visited by users in

consecutive time slices. Notation-wise, for each p ∈ 𝛺, we indicate with p(t) the AP

visited at time t in path p, and we suppose p(t) to be set to a dummy value “–” if path

p starts after, or ends before t. Let l(p) be the total length of each path p ∈ 𝛺, that

is the sum of euclidean distances between consecutive APs in the path. The starting

and ending APs of each path (the first and last values of p(t) which are different from

“–”) identify a trajectory; the same trajectory can be identified by many feasible

paths. Let K = {1,… , |K|} be a set of classes, obtained by partitioning 𝛺 according

to the length of its paths. For each k ∈ K, let lk (resp. lk−1) be the upper (resp. lower)

bound on the length of each path in class k, with l0 = 0; let also nk ∈ ℤ∗
be the

number of users whose path is in class k. From an application point of view, we

assume (xi, yi) and dti to be given, e.g. by a telecommunication operator, 𝛺 to be

easily definable, e.g. by Voronoi tessellations and street maps, and lk and nk to be

estimated by previous knowledge on users travel distance distributions like [2].

VariablesOur aim is to assess how many users are expected to follow a path over our

time horizon, that we indicate as xp for each p ∈ 𝛺. We also consider the possibility

that users enter or quit the system, or that simply data dti is approximate, allowing a

positive (resp. negative) correction �̄�

t
i (resp. 𝜀

t
i) for each i ∈ N, t ∈ T .

Constraints A feasible solution respects the following constraints:

dti − dt−1i =
∑

j∈N

∑

p∈𝛺
|p(t−1)=j
∧p(t)=i

xp −
∑

j∈N

∑

p∈𝛺
|p(t)=j

∧p(t−1)=i

xp + �̄�

t
i − 𝜀

t
i

∀i∈N,
∀t∈T , t>1 (1)

∑

p∈𝛺
|l(p)<lk

xp ≥
∑

k′≤k
nk′ ∀k ∈ K (2)

xp ≥ 0, �̄�ti ≥ 0, 𝜀

t
i ≥ 0 (3)

Towards Mathematical Programming Methods for Predicting User Mobility . . . 47

Constraints (1) resemble flow conservation, imposing the expected variation at time

t in the number of users connected to AP i ∈ N at time t to be consistent with the

number of users arriving in i and those leaving i, potentially with corrections given

by �̄�

t
i and 𝜀

t
i. We experimented on variants of (1), including a pure flow conservation

formulation, without improvements. Constraints (2) imply that the number of users

following a path in class k is at least the estimated one: cumulative values are used.

Objective We adopt a hierarchical bi-objective approach. Our primary objective is

to find a setting of the variables explaining our data with minimum absolute value

correction, that is we optimize the following linear program (LP):

min 𝜀 =
∑

t∈T

∑

i∈N
(�̄�ti + 𝜀

t
i) s.t. (1), (2), (3)

Once an optimal 𝜀 value is found, as a secondary objective we try to match the

path lengths distribution as close as possible; that is, we minimize the maximum

difference between the number of users migrating on paths of each class k according

to our solution, and the estimated one:

min 𝜂 (4)

s.t.

∑

p∈𝛺
|l(p)∈[lk−1,lk)

xp − nk ≤ 𝜂, ∀k ∈ K (5)

∑

i∈N

∑

t∈T
�̄�

t
i + 𝜀

t
i ≤ 𝜀 (6)

(1), (2), (3)

2 Algorithms

Both problems are LPs. However, as the cardinality of 𝛺 grows combinatorially,

it is computationally infeasible to solve them directly. Instead we perform column

generation on the set of variables xp.

For the primary objective problem, let 𝜆
t
i and 𝜇k be the dual variables associated

to constraints (1) and (2), resp. The reduced cost of a variable xp is

c̄p = −
∑

t∈T |p(t)≠′′−′′

(𝜆tp(t−1) − 𝜆

t
p(t)) −

∑

k∈K |lk>l(p)
𝜇k.

For each k ∈ K, the search for the most negative reduced cost variable encoding

a path in class k can be mapped into the problem of finding a minimum cost path in

a time-expanded directed graph G = {N’, A}, that has one node (i, t) for each pair

of AP i ∈ N and time slice t ∈ T , together with two additional dummy nodes acting

as origin and destination; i.e. N′ = (N × T) ∪ {(o, t−1), (d, tT+1)}. The set A includes

one arc (i, t − 1; j, t) connecting nodes (i, t − 1) and (j, t) if and only if the cells of

48 A. Ceselli and M. Premoli

APs i and j are adjacent. The dummy origin (resp. destination) has an outgoing (resp.

incoming) arc to (resp. from) every other node. Each arc (i, t − 1; j, t) has costwt−1,t
i,j =

𝜆

t
j − 𝜆

t
i and length lt−1,ti,j = ‖(xi, yi) − (xj, yj)‖, except those incident to either the origin

(o, 0) or the destination (d,T + 1), whose cost and length are set to 0. Indeed, the

graph nodes are organized in layers, one for each time slice; paths in G can only be

composed by nodes of different layers, and by arcs connecting one layer with the

subsequent one. Modeling of waiting decisions is included, as represented by arcs

(i, t − 1; i, t).
Not all paths are considered feasible for each class k, but only those starting from

(o, 0) and ending in (d,T + 1) whose sum of arc lengths falls into the range [lk−1, lk).
In principle, performing column generation means to solve a resource constrained
minimum cost path problem for each k ∈ K. However, we propose an ad hoc dynamic

programming algorithm, that optimize over all classes simultaneously, working as

follows. We consider labels of the form (C,L, (i, t)), encoding partial paths starting

from (o, 0), ending in (i, t), whose sum of arc prizes and lengths are C and L resp. We

initialize the algorithm, creating a single starting label (−
∑

k∈K 𝜇k, 0, (i, t)) for each

i ∈ N, t ∈ T; then, we proceed layer by layer and node by node, that is, for each t ∈ T
and for each i ∈ N, we iteratively select each label (C,L, (i, t)) and extend it to all the

nodes (j, t + 1) having (i, t; j, t + 1) ∈ A, creating a new label (C′
,L′, (j, t + 1)) for

each of them that has L′ = L + lt,t+1i,j and

C′ = C + wt,t′
i,j +

∑

k∈K |L<lk∧L′≥lk

𝜇k.

The creation of labels having L′ ≥ l|K| is skipped, as encoding infeasible paths. After

treating each label we check dominance rules: if any label (C′′
,L′′, (j, t + 1)) has

already been created, having C′′ ≤ C′
and L′′ ≤ L′, at least one inequality being

strict, then (C′
,L′, (j, t + 1)) is fathomed; similarly, if C′′ ≥ C′

and L′′ ≥ L′, at least

one inequality being strict, then (C′′
,L′′, (j, t + 1)) is fathomed. We stop when all

pairs (i, t) have been considered. All labels whose cost C is negative encode paths

of negative reduced cost. We remark that, given the laminar structure of constraints

(2), this aggregated dynamic programming algorithm is able to produce in a single

run the labels of all non dominated paths for each class k; a formal proof is omitted.

This allows us on one side to improve efficiency, since only one resource constrained

minimum cost path problem needs to be solved at each column generation iteration,

and on the other side to obtain an effective multiple pricing strategy, that consists in

enlarging the set ̄
𝛺 at each column generation iteration with the minimum reduced

cost path for each class k ∈ K, if any of negative reduced cost exists.

The same algorithm is used for the secondary objective problem (1)–(6). For-

mally, since the structure of constraints (5) is not laminar anymore, the dominance

rules need to be slightly relaxed to take into account of the contribution of the new

dual variables. In our implementation, instead, we found it computationally useful

to keep the original rules and resort to heuristic pricing. As discussed in Sect. 3 the

routine obtained in this way proved to be able to produce high quality solutions with

limited effort.

Towards Mathematical Programming Methods for Predicting User Mobility . . . 49

3 Dataset Generation and Experiments

Unfortunately, no ground truth is available on our real-world dataset. Therefore, in

order to test both the computational viability and the prediction accuracy of our meth-

ods, we proceed as follows. First, we draw APs coordinates at random, and we gen-

erate instances as collections of user paths-over-time on this set of APs; we refer to

such a collection as the original paths. Then the number of users dti connected to

each AP i ∈ N at time t ∈ T , and the details lk and nk of path length classes k ∈ K,

are computed and used as sole input of our methods. Therefore the full collection

of original paths is kept only for cross-checking (as post-processing) the quality of

predicted paths, that are those produced as output solutions of our methods.

We propose two generative models of original paths. The first is a simple ad-hoc
model: given the number of users U as input, for each of them we create a path

whose length is drawn from a power law distribution, and whose starting time is

chosen uniformly at random. We assume that one hop is made in each time slice, in

a graph having one node for each AP, and one edge between each pair of APs whose

Voronoi cells are adjacent. The second is a Point of Interest (POI) generative model,

reproducing the behavior of users during rush hours [2]: we randomly define a set

S ⊆ N of residential points and a set D ⊆ N of destination POIs. We randomly draw

the starting (resp. final) position of each user from bivariate normal distributions

centered in a user residential point of S (resp. POI of D). Attractiveness of APs and

transition probabilities are built following [2]. One path is finally generated for each

user, choosing a residential point uniformly at random, a destination AP at random

according to the transition probabilities, computing the shortest path in the adjacency

graph described previously, assuming one hop for each time slice.

Our algorithms are implemented in C++ using CPLEX 12.6 as LP solver; the

tests are performed on a PC with i7 4.0 GHz CPU and 32 GB RAM. For experi-

ments we use a synthetic set of 300 APs with coordinates randomly drawn from a

single bivariate normal distribution, and considering 15 time slices. These values

match well those of real applications [1]. Given this fixed set of APs, we create 5

instances with U = 40000 for each generative model. Given the lengths of all paths

in each instance, we compute 100 path length classes, with lk values given by the

percentiles of lengths distribution. We first assess the computational viability of our

methods. Table 1 reports, for each stage of our algorithm (column blocks) and for

each generative model (table rows), the avg. number of column generation iterations,

Table 1 Computational efficiency

Gnr.

model

1st stage 2nd stage Total t.

CG iter Master

t.

Pricer t. n. paths CG iter Master

t.

Pricer t. n. paths

Ad-hoc 81.0 0.66 1.27 59.08 32.8 8.61 2.35 68.12 516.4

POI 121.4 1.96 1.75 57.89 19.8 26.94 2.82 60.45 1019.4

50 A. Ceselli and M. Premoli

Table 2 Prediction accuracy

𝛿 1st stage 2nd stage

3% 5% 10% 20% 40% 3% 5% 10% 20% 40%
Ad-hoc 17.81% 24.99% 34.81% 41.19% 56.33% 24.91% 35.03% 57.54% 79.30% 97.55%

POI 4.67% 8.29% 21.77% 50.63% 78.64% 5.60% 9.91% 26.16% 61.11% 94.20%

the avg. execution time of each master LP optimization (in sec.), the avg. execution

time of each dynamic programming pricing algorithm (in sec.), the avg. number of

paths added at each column generation iteration; the total execution time (in sec.) is

also reported. Values are averaged over the 5 instances of each generative model. Our

methods show to be computationally stable, the most critical point being the master

LP optimization during second stage optimization. Affordable computing times are

also observed on a real-world dataset concerning about 600 APs in Paris [1].

Then we assess the accuracy of our methods in rebuilding mobility patterns from

demand and path length distributions. Here we focus only in rebuilding user tra-

jectories in terms of origin and destination, being the target of both the original

application and related works in the literature [2]. We assume each prediction to

be correct if both origin and destination APs of predicted paths fall within distance

𝛿 from origin and destination APs of original ones. We designed a maximum likeli-

hood procedure, that is based on flow computations, and outputs the best matching

between predicted and original paths. Let N (i, j) (resp. ̃N (i, j)) be the number of

users whose origin is i and destination is j in the original paths (resp. predicted paths

according to such a maximum likelihood matching). As accuracy measure we con-

sider
∑

i∈N,j∈N min(N (i, j), ̃N (i, j))∕U. Table 2 reports, for each stage of our algo-

rithm (column blocks) and for each generative model (table rows), the average accu-

racy obtained when different 𝛿 correction levels are allowed; 𝛿 values are reported

as percentage of the radius of the instance region. As expected, exploiting second

stage optimization substantially improves accuracy. Values of 𝛿 as low as 10% are

enough to make predictions on ad-hoc models reach 57.5% accuracy, and values of

𝛿 of 20% yield average prediction accuracy of almost 80%. POI models are harder

to predict. Still 60% accuracy can be achieved when 𝛿 = 20%.

Acknowledgements The project has been partially funded by Regione Lombardia—Fondazione

Cariplo, grant n. 2015-0717, project REDNEAT.

References

1. Ceselli, A., Premoli, M., Secci, S.: Cloudlet Network Design Optimization. In: Proceedings of

2015 IFIP Networking, Toulouse (2015)

2. Liang, X., Zhao, J., Dong, L., Xu, K.: Unraveling the origin of exponential law in intra-urban

human mobility. Nature—Scientific Reports, vol. 3 (2013)

	Towards Mathematical Programming Methods for Predicting User Mobility in Mobile Networks
	1 Problem Statement and Modeling
	2 Algorithms
	3 Dataset Generation and Experiments
	References

