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Abstract This research work is concerned with integrated location-inventory

optimization in spare parts networks. A semi-Markov decision process (SMDP)

is developed, formulated as linear program (LP) and finally, embedded into a set-

covering problem framework. The resulting model is a mixed integer linear program

(MILP) which integrates (1) strategic facility choice, (2) tactical base-stock level set-

ting and (3) operational sourcing decisions. Due to the integration of these decision

stages, physical and virtual inventory pooling opportunities can be evaluated at the

same time. Experimental results emphasize the value of the integrated model com-

pared to the sequential ‘location first, inventory and sourcing second’ approach. The

cost savings are particularly high in networks with low fixed facility location cost,

high shipment cost and high demand rates as virtual inventory sharing opportunities

increase in these cases.

1 Introduction

After-sales service becomes increasingly important in today’s marketplace as com-

petition is strong and companies are looking for ways to distinguish themselves from

their competitors. At the heart of after-sales service is providing the customer with

spare parts in case of breakdowns that happen during regular operation. This work

focuses on expensive and critical spare parts which are characterized by low demand

rates and fast delivery requirements. The inventory holding cost of such parts are typ-

ically high which sets incentives to keep inventories low. Traditionally, low inventory

levels have been achieved by consolidating multiple stocking points into one physical

location and thereby, reducing the amount of system-wide safety stock [3]. However,

the downside of this approach is that delivery times and outbound shipment cost

typically increase since the centralized inventory is stored relatively far away from

the markets. Instead of pooling inventory physically, there is also the possibility of

P. Zech (✉)

Logistics and Supply Chain Management, Technische Universität München,

Arcisstr. 21, 80333 Munich, Germany

e-mail: patrick.zech@tum.de

© Springer International Publishing AG 2018

A. Fink et al. (eds.), Operations Research Proceedings 2016,

Operations Research Proceedings, DOI 10.1007/978-3-319-55702-1_6

37



38 P. Zech

sharing inventory virtually among warehouses [5]. With this approach, the system-

wide inventory level can be reduced as well while the distance between warehouses

and markets tends to be shorter.

In this research work, we consider a spare parts manufacturer that outsources

supply chain management to a third-party logistics service provider (3PL) and that

needs to decide at which of the (already existing) warehouse locations to stock spare

parts. This decision problem has the notion of the classical strategic facility loca-
tion decision but, in fact, it is rather a facility choice or an assignment problem. For

solving this decision problem, we propose a mixed integer linear program (MILP)

that simultaneously evaluates physical and virtual sharing opportunities. Current

research mostly focuses on physical pooling opportunities with the notable exception

of Mak [4] who considers virtual inventory sharing in a location-inventory frame-

work. To the best of our knowledge, there is no study yet that integrates both pooling

variants in one model. The proposed MILP contains the following decision stages.

1. Strategic supply network design, i.e. at which warehouses to store spare parts.

2. Tactical inventory level optimization, i.e. which base-stock level to choose at each

warehouse.

3. Operational sourcing, i.e. from which warehouse to satisfy spare part orders.

To evaluate virtual inventory sharing opportunities, it is necessary to include the

inventory and sourcing decisions into the framework. The idea is that sourcing ware-

houses may vary dynamically depending e.g. on the current inventory level at each

of the warehouses. Thus, demand can be allocated to multiple warehouses which

then exhibit virtual inventory sharing. The MILP consists of a semi-Markov deci-

sion process (SMDP) that is formulated as linear program (LP) and embedded into a

set-covering framework. The model is briefly presented in this article and our find-

ings from an experimental study are provided. For further details on the model or

the solution algorithm deployed, the reader is referred to [8].

2 Model Formulation

We consider a three-tiered supply chain consisting of one supplier, multiple ware-

houses r ∈ R and markets m ∈ M. Each warehouse r replenishes items from an

external supplier with infinite supply according to an (S − 1, S) review policy, i.e.

the delivery of a part to a market immediately triggers a replenishment order at the

respective sourcing warehouse r. Furthermore, the replenishment lead-time of ware-

house r is exponentially distributed with mean 1∕𝜇r, where 𝜇r constitutes the replen-

ishment rate of warehouse r per time unit. Assuming an exponential lead-time distri-

bution appears rather restrictive at first glance—however, Alfredsson and Verrijdt [1]

have shown that the overall system performance is rather insensitive with regard to

the chosen lead-time distribution which makes our assumption robust. Each market

m faces a Poisson demand process with an expected number of demand arrivals 𝜆m
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per time unit. Furthermore, every market m can only be served by a subset of ware-

houses Rm because of service time constraints related to the geographical distance

between warehouses and markets.

Cost of tr,m are incurred for shipping one item from warehouse r to market m.

If no item is available at a warehouse within a market’s service region, the part is

express-shipped from an external supplier at cost of lm. The unit replenishment cost

of warehouse r are vr and the unit inventory holding cost at warehouse r are hr per

time unit. Moreover, fixed cost of fr are incurred if warehouse r is used to store spares.

For solving the outlined three-stage decision problem, we propose a MILP which

integrates an SMDP with a classical set-covering model. The latter is concerned with

the strategic network design decision and selects a subset out of a set of candidate

warehouses. Inventory and sourcing decisions are modeled with an SMDP which is a

reformulated version of the one in Seidscher and Minner [6]. The SMDP essentially

models an inventory system that contains the candidate warehouses r ∈ R as stocking

points. By minimizing replenishment cost, inventory holding cost, shipment cost and

express-shipment cost, the SMDP specifies in each state of the system from which

warehouse to source an incoming part order. Thus, it determines the optimal sourcing

policy for a given set of stocking points and base-stock levels.

The states i ∈ I of the SMDP represent the allocation of inventory to the stocking

points. We distinguish between auxiliary states i ∈ IA and decision states i ∈ ID.

The former is used to determine whether the next event will happen at a warehouse

(arrival of an outstanding replenishment order) or at a market (arrival of a new spare

part order). In those states, the system is not allowed to take a sourcing decision,

i.e. to specify from which warehouse to source the demand of a market. In contrast,

decision states i ∈ ID are concerned with taking these sourcing decisions q ∈ Rci for

a particular market ci ∈ M.

Let us introduce the following sets and parameters. First, the sets VA(r, u) and

VD(r, u) contain those states i ∈ IA and i ∈ ID that have an inventory level larger than

u at warehouse r ∈ R, respectively. Second, O(r) comprises those decision states

i ∈ ID where warehouse r ∈ R is out of stock. Furthermore, let Umax
r denote the

(preprocessed) maximum possible base-stock level at warehouse r. Umax
r is not to

be confused with a maximum storage capacity and is determined by optimizing an

M|M|S|S queue [8]. Moreover, the following decision variables are introduced.

yr Binary decision variable that indicates whether warehouse r ∈ R is used for

inventory placement.

Sr,u Binary decision variable that indicates whether the base-stock level u at ware-

house r ∈ R is active.

xi,q Decision variable that denotes the long-run fraction of decision epochs where

the system is in decision state i ∈ ID and decision q ∈ Rci is taken.

xi,0 Decision variable that denotes the long-run fraction of decision epochs where

the system is in auxiliary state i ∈ IA.

zi,0,r,u Decision variable that replaces the product Sr,u ⋅ xi,0, ∀i ∈ IA,∀r ∈ R, u =
0, 1,… ,Umax

r .
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min
∑

r∈R
fr ⋅ yr + C(SMDP) (1)

s.t.
∑

r∈Rm

yr ≥ 1 ∀m ∈ M (2)

Sr,u+1 ≤ Sr,u ∀r ∈ R, u = 0,… ,Umax
r − 1 (3)

Sr,0 = 1 ∀r ∈ R (4)

Umax
r∑

u=1
Sr,u ≤ Umax

r ⋅ yr ∀r ∈ R (5)

∑

i∈VA(r,u)
xi,0 +

∑

i∈VD(r,u)

∑

q∈Rci

xi,q ≤ Sr,u+1 ∀r ∈ R,∀u = 0,… ,Umax
r − 1 (6)

∑

i∈O(r)

∑

q∈Rci |q=r

xi,q ≤ yr ∀r ∈ R (7)

zi,0,r,u ≤ Sr,u ∀i ∈ IA,∀r ∈ R,∀u = 1, 2,… ,Umax
r (8)

zi,0,r,u ≤ xi,0 ∀i ∈ IA,∀r ∈ R,∀u = 1, 2,… ,Umax
r (9)

zi,0,r,u ≥ xi,0 −
(

1 − Sr,u
)

∀i ∈ IA,∀r ∈ R,∀u = 1, 2,… ,Umax
r (10)

yr ∈ {0, 1} ∀r ∈ R (11)

Sr,u ∈ {0, 1} ∀r ∈ R,∀u = 0, 1, 2,… ,Umax
r (12)

xi,0 ≥ 0 ∀i ∈ IA (13)

xi,q ≥ 0 ∀i ∈ ID,∀q ∈ Rci (14)

zi,0,r,u ≥ 0 ∀i ∈ IA,∀r ∈ R,∀u = 1, 2,… ,Umax
r (15)

+SMDP constraints (16)

The objective function is given by (1) which consists of two cost terms. The first

part refers to the costs associated with the strategic facility choice decision. The

second term denotes the total SMDP costs which is the sum of inventory holding

cost in auxiliary states as well as shipment, express-shipment and replenishment

cost in decision states associated with sourcing decisions.

Constraint (2) ensures that at least one warehouse location that can serve marketm
within the required service time window is used to stock spares. Constraint (3) repre-

sents the incremental definition of the Sr,u variables and ensures that base-stock level

u + 1 can only be active if the predecessor base-stock level u is also active. More-

over, constraint (4) requires that base-stock level u = 0 is active at each warehouse

r ∈ R. Furthermore, constraint (5) connects the inventory and location decision, i.e.

only at the selected warehouses inventory can be placed.
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Constraints (6) and (7) connect the set-covering problem framework with the

SMDP model. Constraint (6) applies the following logic: Those states that would

involve inventory levels higher than the base-stock levels need to be forbidden, i.e.

the relative fraction of being in that state (taking any decision) have to be equal to

zero. Additionally, constraint (7) ensures that demand can only be assigned to out-of-

stock warehouses that are also open (incurring unfavorable express-shipment cost).

When integrating the SMDP with the set-covering framework, the model (at first)

becomes non-linear as binary (Sr,u) and continuous decision variables (xi,0) are mul-

tiplied with each other. We resolve the non-linearity by introducing a new set of

continuous decision variables zi,0,r,u that replace the product term. Furthermore, we

add constraints (8)–(10) to the model. This approach is consistent with the literature,

see e.g. [2]. Moreover, constraints (11)–(15) define the variable domains.

For the sake of clarity, the SMDP constraints as well as the SMDP objective

function are not formulated explicitly in this article. The interested reader is referred

to [8] for a full exposition of the MILP, in particular the SMDP. Nevertheless, in

order to give a notion of the SMDP model, we provide the general LP formulation

that can be used to solve SMDPs [7]. 𝜏i is the average time of being in state i ∈ I and

pi,j,q denotes the transition probability from state i ∈ I into state j ∈ I under decision

q ∈ Q(i). Ci,q denotes the cost in state i ∈ I associated with decision q ∈ Q(i).

min
∑

i∈I

∑

q∈Q(i)
Ci,q ⋅

xi,q
𝜏i

(17)

s.t.
∑

q∈Q(j)

xj,q
𝜏j

−
∑

i∈I

∑

q∈Q(i)
pi,j,q ⋅

xi,q
𝜏i

= 0 ∀j ∈ I (18)

∑

i∈I

∑

q∈Q(i)
xi,q = 1 (19)

xi,q ≥ 0 ∀i ∈ I,∀q ∈ Q(i) (20)

The objective function (17) minimizes the sum of the expected long-run average

cost per time unit. Constraint (18) refers to a set of balance equations which ensure

that for any state j ∈ I the long-run average number of transitions from state j per

time unit are equal to the long-run average number of transitions into state j per

time unit. Moreover, the convexity constraint (19) forces the sum of all xi,q variables

(over all states and decisions) to be equal to 1. Furthermore, (20) requires xi,q to be

non-negative.

3 Findings and Conclusion

The integrated model is compared to the sequential ‘location first, inventory and

sourcing second’ approach which essentially maximizes physical pooling opportu-

nities. In a network with 3 warehouses and 6 markets (3× 6), three model input



42 P. Zech

Fig. 1 Cost comparison between integrated and sequential approach in a 3× 6 network

parameters are varied and the cost differences between integrated and sequential

approach are measured. The experiments reveal that the cost savings (𝛥COST ) are par-

ticularly high in networks with low fixed facility location cost ( fr), high shipment cost

(tf ) and high demand rates (𝜆m) as virtual inventory sharing opportunities increase

in these cases, see Fig. 1. Note that tf is a linear scaling factor for the shipment

cost tr,m.

Our results clearly show that there is a huge cost saving potential in evaluating

both physical and virtual inventory sharing opportunities simultaneously rather than

focusing on only one of the extremes.
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