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Abstract The article describes our work on an extension of the Inventory Routing

Problem (IRP). While the basic formulation of the IRP combines delivery volume

with vehicle routing decisions, and thus includes tactical and operative aspects, we

here consider the strategic placement of the depot, also. In some first experiments,

the effect of such a strategic decision on the inventory levels and routing costs in

the supply chain is studied. Besides, potential improvements, i.e., savings in trans-

portation costs are investigated. Our findings indicate that efficiency improvements

are indeed achievable by extending the problem formulation towards the strategic

planning level.

1 Introduction and Problem Statement

Facility location problems, vehicle routing problems and inventory management are

key problem areas in supply chain management [11]. The bi-objective IRP incorpo-

rates decisions on a tactical as well as on an operational planning level, such as the

combination of inventory management with a Capacitated Vehicle Routing Prob-

lem (CVRP). For a detailed IRP literature review we refer to the work of [3, 4].

Furthermore, it seems promising to include a strategic planning level in the IRP to

analyze the tradeoff between the two proposed objectives. Without the integration of

the depot decision, previous studies show that the two objectives are clearly in con-

flict to each other: the simultaneously minimization of the total sum of all inventory

levels at each customer at the end of each period and the total sum of all distances

traveled by the vehicles in each period. While small delivery quantities lead to low

inventory levels over time, large delivery quantities allow a minimization of the rout-

ing costs [5, 8]. The surveys of [6, 7, 9] investigate the combined location routing
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and inventory problem. Choosing depots from several potential locations and deter-

mining routes to meet customers’ demands is the aim of these works [9].

We propose a single-item IRP with repeated deliveries in a distribution network

with one depot and a geographically dispersed set of n customers over a finite plan-

ning horizon. Inventory costs and capacities are considered at the customers, but not

at the depot. Also, the number of vehicles is unconstrained and capacitated vehicles

are used [5]. A deterministic IRP is assumed where the consumption for each cus-

tomer and each period is known beforehand. When the current inventory is insuf-

ficient to satisfy the forthcoming demands dit of a customer i at each period t, an

action (delivery) of the supplier is needed. For satisfying the demand at the cus-

tomers, we consider the strategy that the inventory currently held at the customers

is either able to fully cover the customers demands at period t or the inventory is

zero. Following this idea, our replenishment strategy is to avoid stockout situations

by shipping enough goods in advance or just in time. With respect to the data, the

customers demand can vary from period to period, resulting in changing delivery

quantities over the time horizon T (dynamic IRP [8]).

This IRP model description must deal with the following decisions: (1) the depot

location must be selected for the whole planning horizon, (2) delivery quantities

qit for each customer i, i = 1,… , n and each period t ∈ T must be determined, and

(3) the VRP must be solved for each period t, t = 1,… ,T including the delivery

quantities qit into tours for the involved vehicles with the already selected depot.

Two objectives are considered for the IRP: The total sum of inventory levels f1 =∑T
t=1

∑n
i=1 L

t
i is minimized, where Lti is the inventory level for customer i for period t.

This objective function f2 =
∑T

t=1 VRPt(qit,… , qnT ) expresses the minimization of

the total sum of the routing costs [5]. An overview of models with different objectives

is described in [2].

2 Solution Method

Our solution method separates the problem into two decision levels: (1) the deter-

mination of delivery volumes and (2) the subsequent computation of the routing for

each period which takes into account the previous calculated delivery quantities.

In terms of the delivery strategy, alternatives are encoded by a n-dimensional vector

𝜋 = (𝜋1,… , 𝜋n) of integers. Each element 𝜋i corresponds to a customer i and reflects

for how many periods the demand of customer i, i = 1,… , n is covered (delivery

period). A delivery takes place when the demand cannot be satisfied with the inven-

tory level at the customer.

We define an initial solution by identical periods for all customers, starting with 1

and increasing them by steps of 1 until the alternative cannot be added to the archive

of non-dominated solutions. This is e.g. due to the fact that capacity constraints of

the vehicles and at the customers must be met. For example, when the delivery period

is defined as 𝜋i = 4, then the exact demand of customer i is satisfied for the next four
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consecutive periods. When the ‘delivery period’ is set to four for every customer, it

is called ‘identical delivery periods’.

Based on this delivery strategy, the supplier ensures that the customer does not

run out of products. Also, a growing demand over the time horizon results in higher

delivery quantities. This is a rather direct idea of representing delivery policies.

Alternatively, a ‘constant-delivery-quantity-approach’ could be applied, which leads

to changing delivery periods. A more general solution is provided in [1], where cus-

tomers are synchronized.

To improve the initial solutions, a run of the local search is performed on the

n-dimensional vector 𝜋 which represents the delivery periods. Particularly, an algo-

rithm is used to change every value within 𝜋 by ±1. Values < 1 are avoided since we

assume 1 as the smallest measurement of a period and a customer cannot be deliv-

ered twice a day. Throughout the search, an unbounded archive is kept which deletes

solutions by dominance comparisons. Previous results indicate that the memory of

a typical computer is sufficient to store these solutions [8].

3 Computational Experiments

Experiments are carried out to investigate the performance of the integration of

depot decisions. In particular, two research questions are raised: (1) To which extent

does the choice of the depot influence the long-term consequences of the subsequent

vehicle routing and the inventory management? (2) Can we, even in rather straight-

forward experiments, find improved depot locations and if so, what is the magnitude

of the improvement?

The instances are proposed by [10] and usually the depot is positioned in the

‘center’ of the network so-called ‘original depot’. Here, the x-coordinate is 30 and

the y-coordinate is 40. To get an idea of the graph, the x-coordinates range from a

minimal value of 5 to a maximum value of 63 and the y-coordinates lie in the range

from 6 to 69.

From a strategic planning level viewpoint, it might be beneficial to relocate the

depot at some future time. Thus, we compare the ‘original depot’ with other depot

locations. We assume that the possible depot location is at the customer’s site. For

example, when an instance has 50 customers, 50 different depot locations can be ana-

lyzed. Since previous studies achieved similar results for different instances [8], we

here restrict the presentation on GS-b-01 with 30 periods and 50 customers. Demand

data of the customers increase over time. With respect to every period, the demand

values can vary by ±25% around the average demand. In order to verify a similar

behaviour of the algorithm, further test runs for different data sets must be performed.

Note that all experiments are executed on a single core of an Intel Core i7-6600U

CPU 2.60 GHz with 8 GB RAM. Also, the maximal number of evaluations is set to

300,000. Note that it takes 177 min to compute the approximation of the Pareto front

for the ‘original depot’ (GS-b-01). In each evaluation, 30 vehicle routing problems

have to be solved, so the computation time is considerably higher in comparison to
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what we commonly find in the literature. However, an earlier termination is possible

when the local search has already investigated all alternatives in the archive. It is

also possible that some alternatives in the archive are not yet explored by the local

search.

Obviously, the depot decision has long-term influences on the objectives. Exem-

plarily the comparison of the approximations between the ‘original depot’ and ‘depot

with identification number (ID) 39’ are presented in Fig. 1. Note that the number

39 corresponds to identification number of the customer in the data set which has

the x-coordinate 59 and y-coordinate 15. The whole approximation of the Pareto

front for the ‘original depot’ lies below the other approximation, i.e. the approxi-

mation is considerable better. This presentation gives an idea how much influence a

long-term decision, such as a ‘bad’ choice of the depot location, has on the inven-

tory management and the vehicle routing. The approximations are compared after

235,000 number of evaluations, and e.g. not 300,000 evaluations as illustrated in

Fig. 2 respectively Fig. 3, since all alternatives in the archive for ‘depot with identi-

fication number 39’ are already investigated by the local search.

The results presented in Fig. 2 for the ‘original depot’ and ‘depot with identi-

fication number 12’ (x-coordinate 31 and y-coordinate 32) are not as clear as the

aforementioned findings. The gap between these approximations is much smaller

compared to the approximations in Fig. 1. The advantage of choosing ‘depot with

ID 12’ over the ‘original depot’ depends on the preferred part of the Pareto front. In
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Fig. 3 magnified results are illustrated for the approximations at the extreme end of

the Pareto front. Here, it is highlighted that the solution quality is mainly better when

‘depot with ID 12’ is selected. In order to identify the magnitude of the improvement,

we compute the difference between the routing distances for any given inventory

level. Over the entire approximation of the Pareto front, the best improvement for

the ‘depot selection with ID 12’ is 3.31%. This reduction can be meaningful since

such decisions are made for a long-term planning horizon.

4 Conclusion

We have conducted experiments to study the two proposed research questions. Our

main contributions are twofold. The maximal influence on the inventory levels and

the routing distances of a ‘bad’ depot decision is rather significant. We could show

with straight-forward experiments for benchmark data sets with a given depot that

savings in transportation costs (around 3%) can be achieved with a revised depot

selection. Based on these findings, it seems promising to include depot decisions

in the IRP for long-term planning decisions. However, counterexamples exist for

GS-b-01, where the ‘original depot’ achieves better results. For future research this

must be further analyzed for more test instances with different demand patterns.
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