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Abstract This study aims to improve the efficiency of container loading process at
a seaport by optimizing the dynamic assignment of internal vehicle fleet in the
process of moving containers from storage yards at maritime terminals to the train
at the rail terminal. We formulate the problem into a stochastic dynamic pro-
gramming model taking into account uncertain processing times. Numerical
experiments based on a case study are performed to illustrate the effectiveness and
the sensitivity of the model.

1 Introduction

The growing traffic volume puts a huge pressure on container port as an interface
between seaborne transport and hinterland transport. Rail transport is regarded as an
effective way to tackle the above challenges due to its high capability and low
emission. Therefore, improving the efficiency of rail terminal operations at seaports
is essential to ensure the sustainability of global container transport chains. This
study aims to improve the efficiency of container loading process at a seaport by
optimizing the dynamic assignment of internal vehicle fleet in the process of
moving containers from storage yards at maritime terminals to the train at the rail
terminal.

A number of survey papers have reviewed operations management at container
ports and terminals, e.g. Stahlbock and Voss [6]; Carlo et al. [4]. However, the
operations management issues directly associated with rail terminals at seaports
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have been understudied. A few papers focused on the container loading problem,
which aims to assign containers to the wagon slots of the train by minimizing the
unproductive operations at the rail terminal and/or in the storage areas [1, 2].
Caballini et al. [3] developed a mixed integer linear mathematical programming
model to optimize the timings of the trains and the use of the handling resources
devoted to rail port operations. The authors further extended the deterministic
model to deal with unexpected situations or uncertainty by adopting an
event-triggered receding-horizon planning approach. Their model does not consider
the regular uncertainty in the container processing times.

There is a high level of uncertainty/variability in the process of moving con-
tainers from storage yards to the rail terminal. A need has emerged for tools that
have the capability of appropriately determining the dynamic internal vehicle
assignment in order to load containers onto the train within the time window. In this
paper, we focus on the container loading process at a seaport from storage yards to
trains. We will formulate the problem into a stochastic dynamic programming
model, with the aim to minimize the total logistics costs associated with moving
containers from storage yards to the train plus the penalty cost of underutilizing the
train capacity.

2 Model and Solution

The process of transporting containers from storage yards to the train includes the
following main activities (see Fig. 1): Internal Moving Vehicle (IMV) receives a
message to collect a container; the container is landed on the IMV; IMV transports
the container to the rail terminal (either to the Rail Terminal (RT) buffer area before
the working time window, which is called pre-staging, or to the Rail Mounted
Gantry crane (RMG) directly during working time window); the pre-staged con-
tainers are moved from the RT buffers to the RMG; RMG loads the container to a
wagon slot on the train.

Consider the loading process of a single train under periodic-review scheme with
a working time window (0, T). The decision variables include: q: the number of
containers to be pre-staged from storage yards to the rail terminal (RT) buffer before
the working time window; uV(t): the planned flow rate (i.e., the number of assigned

Fig. 1 The process of transporting containers from yards to train
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IMV) to move containers from yards to the RMG over the working time window;
and uB(t): the planned flow rate (i.e., the assigned number of IMV) to move con-
tainers from RT buffer to the RMG over the working time window. We assume that
one IMV carries one container. Other parameters are introduced and shown in
Tables 1 and 2. The objective is to minimize the total cost incurred during
pre-staging containers, transporting containers from yards to RMG, transporting
containers from RM buffer to RMG, RMG crane handling containers, container
storage at buffers, and penalty for underutilizing the train capacity.

2.1 Model

The discrete-time dynamics of the transportation system can be described by

xB tð Þ= xB t− 1ð Þ− ξB tð Þ, for t=1, 2, . . . , T; ð1Þ

xT tð Þ= xT t− 1ð Þ+ ξV tð Þ+ ξB tð Þ, for t=1, 2, . . . ,T . ð2Þ

xB 0ð Þ= q; xT 0ð Þ=0; 0≤ q≤QB; ð3Þ

Table 1 Notation of static parameters

T: The planning horizon, assuming the working time window is (0, T)

QB: The capacity of the RT buffer space
QC: The maximum handling capacity of the RMG within one period
QT: The capacity of the train
cP: The unit cost of pre-staging containers (including transport and storage)
cV: The unit cost of vehicle deployed to transport a container from yard to RMG
cB: The unit cost of vehicle deployed to transport a container from RT buffer to RMG
cC: The unit cost of the RMG loading a container to train
cS: The storage cost at RT buffer per container per period
cU: The unit penalty cost of underutilizing the train capacity

Table 2 Notation of dynamic parameters and variables

UV(t): The maximum number of assigned IMV from yard to RMG in period t

UB(t): The maximum number of assigned IMV from RT buffer to RMG in period t

ξV(t): The random flow rate from yard to RMG in period t

ξB(t): The random flow rate from RT buffer to the RMG in period t

xB(t): The number of containers in the RT buffer at the end of time period t

xT(t): The number of containers on the train at the end of time period t
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0≤ ξV tð Þ≤ uV tð Þ; 0≤ ξB tð Þ≤ uB tð Þ; ð4Þ

0≤ uV tð Þ≤UV tð Þ; 0≤ uB tð Þ≤min xB t− 1ð Þ,UB tð Þ� �
; ð5Þ

uV tð Þ+ uB tð Þ≤min QT − xT t− 1ð Þ,QC� �
; ð6Þ

The initial number of containers in the RT buffer is q, and the initial number of
containers on the train is 0. It should be noted that due to the uncertainty in
container processing time, the actual number of containers that reach the RMG in
one period, represented by ξ(t), is often lower than the planned flow rate u(t). Thus
we have constraints in (4). The planned flow rate u(t) is also constrained by the
maximum number of IMVs available, by the capacity of the train and by the
capacity of the RMG, as shown in (5, 6).

The objective function is given by:

J0 q, 0, 0ð Þ=E½q ⋅ cP + ∑T
t=0 c

SxBðtÞ+ ∑T
t=1 ðcVuV tð Þ+ cBuB tð Þ+ cC B tð Þ+ VðtÞ� �Þ

+ cU ⋅ ðQT − ξT Tð ÞÞ�
ð7Þ

On the right-hand-side of the above equation, the first term is the pre-staging
cost; the second term is the storage costs at RT buffer; the third term represents the
container movement costs from yard to RMG, from RT buffer to RMG, from RMG
to train; the fourth term represents the penalty cost for underutilizing the train
capacity. Following the stochastic dynamic programming theory [5], the backwards
optimality equation is given by (for t = 0, 1, …, T):

Jt xB tð Þ, xT tð Þ� �
=minfq ⋅ cP ⋅ I t=0f g+ cSxBðtÞ+ cVuV ðt+1Þ

+ cBuBðt+1ÞcU ⋅ QT − xT tð Þ� �
⋅ I t=Tf g

+E½cCðξBðt+1Þ+ ξV ðt+1ÞÞ+ Jt+1 xB t+1ð Þ, xT t+1ð Þ� ��g
ð8Þ

where JT +1 xB T +1ð Þ, xT T +1ð Þð Þ=0, and I{condition} is an indicator function. It
takes 1 if the condition in {} is true, 0 otherwise.

2.2 Solution

The stochastic dynamic programming problem in (1)–(8) can be solved using the
backwards value iteration algorithm (c.f. [5]).

Step 1: Let JT +1 xB, xTð Þ=0 for any (xB, xT). Let t = T.
Step 2: Use (8) to calculate the optimal value function Jt xB tð Þ, xT tð Þð Þ subject to

(1)–(6), and the optimal control uVt xB tð Þ, xT tð Þð Þ and uBt xB tð Þ, xT tð Þð Þ.

346 Y. Xie and D.-P. Song



Step 3: Let t = t − 1. If t ≥ 0, go to Step 2.
Step 4: Identify the optimal q*. Return the optimal cost J0(q

*, 0); the optimal
decision variables q*, uVt xB tð Þ, xT tð Þð Þ, uBt xB tð Þ, xT tð Þð Þ.

3 Numerical Examples

In this section, we first provide an empirical case to demonstrate the container
loading process at a seaport rail terminal and calibrate the input data. Secondly, we
perform a range of experiments to illustrate the application of the proposed models.

Figure 2 shows the empirical data of container loading rates at a real rail ter-
minal within a day (from a real case study in the UK). In total six trains are handled
within a day, and each time period is 30 min. The number of containers handled per
period ranges from 0 to 15. The working time window for each train ranges from 4
periods (i.e. 2 h) to 8 periods (i.e. 4 h). We calibrate the input data of the reference
scenario as follows: the time period is 30 min; QT = 40; QB =30; QC =15;
UV tð Þ=15; UB tð Þ=15. We assume xB tð Þ≡ uB tð Þ and ξxV tð Þ= uV tð Þ ⋅ z, where
z follows a uniform distribution. Here we want to focus on the uncertainty in the
process from yards to rail terminal by assuming deterministic operations from RT
buffer to RMG. Moreover, let cP =4; cV =5; cB =2; cC =1; cS =1; cU =100. It
should be noted that the above cost coefficients are hypothetical and only the
relative values of these cost elements are meaningful.

Now we apply the model to optimize the pre-staging decision and the dynamic
IMV assignment. As the length of working time window is an important factor, we
experiment with three levels of working window, i.e. T = 4, 6, 8, which correspond
to 2, 3, and 4 h working windows respectively. The results are given in Table 3.

From Table 3, it can be seen that: (i) in the deterministic situation, we have
q* = 0, which means zero pre-staging is optimal. This is intuitively true due to the
facts: (a) pre-staging plus moving containers from RT buffer to RMG costs more
than directly moving containers from yard to RMG; (b) the working time window is

Fig. 2 Empirical data of container loading rate at a rail terminal within a day
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sufficiently large to move containers directly from yards to RMG to fully load the
train; (ii) J0(q

*, 0) is increasing in the degree of uncertainty; and q* is increasing in
the degree of uncertainty; (iii) by comparing the results with that of zero pre-staging
cases (not included in this paper due to page limit), the cost saving of the best
pre-staging decision from zero pre-staging is increasing as the degree of uncertainty
increases. This indicates the importance of determine appropriate pre-staging.
(iv) At the same degree of uncertainty, J0(q

*, 0) is decreasing as the time window
increases; and q* is decreasing as the time window increases. When the time
window is adequately large, zero pre-staging tends to be optimal.

4 Conclusions

This study considers the optimal assignment of IMV fleet and container pre-staging
at a seaport rail terminal in the presence of uncertainty. The mathematical model
developed using stochastic dynamic programming can plan the container flow at
aggregate level, without the need to address the detailed discrete events, therefore
can avoid the NP hard combinational optimization problem. Another innovation of
the developed model is the ability of yielding optimal plans under dynamic mode
and accommodating stochastic factors. However, when the dimension of state and
decision variables increases, the computation complexity of the model also
increases significantly. Numerical examples based on a real case are provided to
illustrate the effectiveness of the model. Further research includes combining both
discharge and load trains into a single optimization model.
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