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Abstract Weather routing in maritime shipping is related to a shipping company’s

objective to achieving maximum efficiency, economy and cost competitiveness by

optimizing each voyage of a ship. A voyage can be optimized regarding cost, time,

safety or a combination of these factors, while considering forecasted meteorologi-

cal and oceanographic information as well as constraints given by geographic condi-

tions, ship characteristics, emission regulations, safety requirements or time restric-

tions. A wide variety of mathematical models of the ship weather routing problem as

well as different approaches to solve it can be found in the literature and are applied

by numerous software systems. This paper presents two approaches to solve the ship

weather routing problem, a graph algorithm and an evolutionary approach. Both

approaches aim to minimize fuel costs, allowing for route and speed optimization.

They are compared based on numerical examples with real-world data.

1 Ship Weather Routing Problem

Voyage planning and optimization represents a widespread measure to improve cost

and energy efficiency of maritime shipping. Ship weather routing generally aims to

find an optimal route and speed profile for a ship’s voyage based on the analysis

of metocean weather forecasts. Meteorological institutes commonly use the mathe-

matically concise data format GRIB (General Regularly-distributed Information in

Binary form) to store weather data numerically predicted for each node of a grid.

The ship weather routing problem is mathematically modeled in various ways [16].
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Formulations not only range from one to multiple objective optimization problems,

but also from constrained graph problems to nonlinear optimization problems. In

order to solve the optimization problem, different approaches are applied by several

commercial systems which now support voyage optimization on vessels, as well as

by numerous academic software developments. These vary from calculus of varia-

tions [2], dynamic programming [1, 6, 12] or graph algorithms [4, 7, 14] to evo-

lutionary approaches [5, 9, 13]. Superiority of an approach producing satisfactory

results with adequate computational effort significantly depends on the degree to

which the specific requirements regarding optimization objectives, variables, con-

straints and implementation are met [16]. For the ship weather routing problem

described below, two popular approaches, a graph algorithm and an evolutionary

method, are presented, compared and discussed.

Objective Function The objective is either minimum fuel costs, minimum voyage

time, or maximum safety, or these objectives are combined giving rise to a multi-

objective problem. As cost and energy efficiency are key aspects in maritime ship-

ping, in this study the objective is minimum fuel costs CFuel.

Variables To allow route and speed optimization, the ship’s heading 𝛼G and speed

over ground vG are introduced as control variables. A certain speed requires vari-

able engine power considering different environmental impacts. Speed and weather

conditions are assumed to be constant between two waypoints of the ship’s route.

Constraints Constraints on the variables are given by the ship itself, by time, safety

and geographic restrictions. For simplicity reasons, safety constraints such as critical

wave heights or periods are neglected. Geographic constraints primarily refer to land,

but can also include traffic separation schemes, icebergs or mines. As a deep sea

voyage is assessed, these constraints are not further elaborated. Time restrictions

are most likely related to the estimated time of arrival (ETA). A certain arrival time

tArrival is assumed to be obligatory. Referring to constraints due to ship characteristics,

the ship’s design and propulsion system influence its behavior, speed profile and fuel

consumption when facing environmental impacts such as waves or wind. Considered

constraints include a maximum speed through water due to a maximum power of the

ship’s engine and a minimum speed to maintain course control.

2 Optimization Approaches

The ship weather routing problem as described above is a single-objective determin-

istic and constrained optimization problem. It is approached below using a graph

algorithm and a genetic algorithm. Both approaches aim to minimize fuel costs,

while varying the ship’s heading and speed to allow route and speed optimization.

GraphAlgorithm The described ship weather routing problem is discretized in time

and space. An according graph is used, which is connected, directed and acyclic [15].

A common deterministic method for solving a discrete single-objective optimization
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problem related to finding the optimal path in a graph is Dijkstra’s algorithm [3],

which is applied in ship weather routing [11, 14]. To reduce computational effort

the A* algorithm is applied in this study [15]. An optimal path in this case is the

path of minimum fuel costs, thus the arc weights are the fuel costs between the two

respective nodes. It is aimed to minimize the total estimated costs F(k), which is the

sum of the exact fuel costs G(k) according to Sect. 3 from the start to any node k and

the heuristic estimated fuel costs H(k) from k to the destination, which are derived

equivalently to G(k) but neglecting the predicted weather conditions. The selection

criterion is expressed in Eq. (1) with B denoting a set of nodes not considered on the

route from start to k [15].

F(k) = G(k) + H(k) ≤ min{G(i) + H(i) | i ∈ B} (1)

Genetic Algorithm Evolutionary methods, mainly genetic algorithms (GA), are

becoming increasingly popular as it is more often aimed at decision support by solv-

ing a multi-objective optimization problem [5, 13]. The objective is to find the route

rj of minimum fuel costs CFuel(rj) from the set of all feasible routes R. A route’s fuel

costs are the sum of the costs between two neighboring waypoints i and i + 1 with

rj = {xj1, x
j
2,… , xjn, y

j
1, y

j
2,… , yjn, v

j
1, v

j
2,… , vjn} being a vector of decision variables

describing the waypoints (xji, y
j
i) and the speed profile (vji). To apply the GA in this

case, it is made use of the GA from the optimization toolbox of Matlab R2016a,

which is integrated in the C++ framework. An initial population rinitial is given for

each voyage (see Sect. 4). Using the GA default selection, reproduction, crossover

and mutation mechanisms further generations are created until a local optimal solu-

tion is provided [8].

3 Ship Hydrodynamics and Calculation of Fuel Costs

The optimization aims to minimize fuels costs. These can be derived based on time-

and location-dependent meteorological and oceanographic impacts, especially ocean

currents, wind and waves, as well as the ship’s characteristics, mainly resistance and

propulsion system. As the current is neglected in this study, the ship’s speed vS and

heading 𝛼S through water are equal to those over ground. The same applies to true

wind speed uT and direction 𝛼T and those relative to the ground.

Ship Resistance The total resistance of a ship Rtotal is composed of its resistance

in calm water RCalm and an added resistance influenced by the ship’s roughness and

appendages as well as environmental impacts [10]. Here, the added resistances due

to wind RWind and waves RWave are considered, as in Eq. (2). Wind speed uT and

direction 𝛼T as well as wave period TW , direction 𝜇0 and height HS are given in

weather forecasts, while ship speed vS and heading 𝛼S are variables.

Rtotal = RCalm(vS) + RWind(uT , 𝛼T , vS, 𝛼S) + RWave(TS, 𝜇0,HS, vS, 𝛼S) (2)
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Calm Water Resistance The calm water resistance RT of a ship can be derived

amongst others from model tests or empirical formulae. It can be expressed as a

polynomial function of the ship’s speed through water vS, as in Eq. (3).

RCalm(vS) = a4v4S − a3v3S + a2v2S − a1vS + a0 (3)

Added Resistance due to Wind Due to the effect of the true wind speed uT at an

angle 𝛼T , the ship’s speed vS and heading 𝛼S, the ship experiences an apparent wind

speed uA. To estimate the wind resistance RWind the simplified approach in Eq. (4) is

used that depends on the apparent wind along the ship’s center line uA,S = vS + uT ⋅
cos (𝛼T − 𝛼S), the ship’s frontal projected area above sea level AF, the density of air

𝜌Air and a coefficient cA, which is 0.8–1.0 for cargo ships [10]. Accordingly, head

wind causes an additional resistance, while tailwind reduces the ship’s resistance.

RWind(uT , 𝛼T , vS, 𝛼S) =

{
0.5 ⋅ 𝜌Air ⋅ cA ⋅ AF ⋅ u2A,S , uA,S ≥ 0

− 0.5 ⋅ 𝜌Air ⋅ cA ⋅ AF ⋅ u2A,S , uA,S < 0
(4)

Added Resistance due to Waves The added resistance RWave can be derived from

hydrodynamic calculations. It depends on wave period Tw, encounter angle between

ship and wave 𝜇e, wave height HS and ship speed vS. The encounter angle 𝜇e is

the angle between main wave direction 𝜇0 and ship’s heading 𝛼S. Here, the added

resistance RWave,H standardized with the square of the wave height HS is given in a

matrix used to interpolate the added resistance due to waves RWave(TS, 𝜇0,HS, vS, 𝛼S).

Engine Power and Fuel ConsumptionAccounting for the ship’s propulsion system,

the ship’s resistance results in a required engine power, the fuel consumption and

finally the costs of the route. Total resistance Rtotal, ship speed vS and propulsion

efficiency 𝜂D compose the delivered shaft power with a corresponding specific fuel

consumption be,Fuel. Combined with voyage time t and price per ton of heavy fuel

oil PFuel it leads to the fuel costs CFuel as per Eq. (5), which are the time- and space-

dependent arc weights of the graph. Losses in shaft or bearings are neglected.

CFuel =
Rtotal ⋅ vS

𝜂D
⋅ be,Fuel ⋅ t ⋅ PFuel (5)

4 Comparison of Results, Discussion and Conclusions

The two approaches are compared based on transatlantic voyages of a bulk carrier

transporting coal from Venezuela to Europe using weather forecasts from 2013-12-

16. The ship has a length between perpendiculars of 220 m, a breadth of 32.24 m,

a draught of 14.5 m, a displacement of 90,617 t and an engine power available for

propulsion of 17,240 kW. The weather data covers the Atlantic ocean with a latitu-

dinal and longitudinal resolution of 0.25
◦
, a temporal resolution of 3 h and a fore-
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Fig. 1 Transatlantic voyage of bulk carrier from Venezuela to the English Channel within 12 days.

Left side shows result from graph algorithm and right from genetic algorithm including boundaries

cast range of 7.5 days. The described objective, constraints, variables, implementa-

tion in C++ and system settings are considered to allow direct comparison of both

approaches regarding computation time and quality of results. To allow on-board

voyage optimization an ordinary personal computer is used.

Comparison A scenario with a minimum speed of 5 kn, a maximum speed of 15 kn

and a voyage duration of 12 days is solved using the A* algorithm. For the duration

outside the forecast range, the shortest distance is assumed. The result shown in Fig. 1

is achieved in less than one hour. This scenario is used as baseline for comparison.

The time consuming part of the computation is the calculation of fuel costs, hence

the arc weights, due to the consideration of 130 neighbors described by latitude, lon-

gitude and time. Assuming a variable arrival time and a constant speed which elim-

inates the time discretization, the computation time is less than one minute. Halving

the geographic resolution returns a result in 7% of the baseline computation time,

while halving the geographic resolution and simultaneously doubling the temporal

resolution requires approximately 50% of the baseline computation time. Distance

and fuel costs differ by less than 5% compared to the baseline. As to the genetic algo-

rithm, an initial population is given by the Great Circle Route (GCR) and an average

speed of 13 kn. An upper (UB) and lower boundary (LB) are displayed in Fig. 1.

ETA, minimum and maximum speed are the same as above. A population size of

20 and 30 variables describing route and speed profile results in the route shown in

Fig. 1, but takes 37% more time than the baseline, thus more than one hour. Distance

and fuel costs are almost equal to the baseline. Decreasing the number of variables

to 18 reduces time by 30% compared to the baseline without impairing distance and

costs. When setting the LB to the initial population the result is not acceptable as

it does not resemble the minimum found with the A* algorithm or with the GCR

as the initial population. The results are not improved when using LB, 18 variables

and a population size of 50. Only increasing the population size to 100 results in a

good output in this case, but this also leads to a seven times higher computation time.
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Further tests regarding mutation rate, crossover mechanisms or other options would

be interesting, but are not addressed in this study.

Discussion and Conclusions The graph algorithm is mainly influenced by the dis-

cretization in space and time. As expected, the results of the genetic algorithm

strongly depend on initial population, population size and number of variables. A

suitable initial population with a small number of variables provides sound results

in adequate computation time, even at a rather small population size. However, when

it comes to initial populations not close to the optimum, population size needs to be

increased significantly implying a major rise in computation time. First, the optimum

cannot always be predicted to set the initial population accordingly, but a variation of

the initial population may contribute to decision support. Second, bearing in mind

that updated weather forecasts can be provided e.g. every 6 h, computation time

needs to be as short as possible. Consequently, due to more reliable results that do

not depend as strongly on the input data, the graph algorithms is considered to be

advantageous for the described problem and application.
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