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Abstract Several publications on collaborative transportation planning problems

(CTPPs) focus on schemes that ensure a fair assignment of collaborative profits.

However, it is seldom taken into account that an even allocation of transportation

resources (e.g. transportation requests) is also responsible for the viability and sta-

bility of horizontal carrier coalitions; particularly if dynamic CTPPs are considered.

In this paper, the winner determination problem (WDP) of an auction-based request

exchange is restricted by lower and upper bounds that respect an equality between

transferred and received requests for carriers. In a computational study, the restricted

WDP is applied to the dynamic collaborative traveling salesman problem.

1 Introduction

In dynamic transportation planning problems (TPPs), small and medium sized carri-

ers (SMCs) are confronted with customers demanding for quick fulfillment of (trans-

portation) requests. It means, new requests (referred to as incoming requests) appear

during a planning period and have to be dispatched in the same period [2]. To over-

come the uncertainty associated with incoming requests, rivaling SMCs ally in hori-

zontal coalitions for auction-based request exchanges (ABREs). Thereby, requests

are reallocated based on bids (maximal willingness to pay for request transfer).

ABREs are able to reduce the transportation costs up to 15% [4]. To ensure an even

assignment of collaborative profits, game theoretical schemes like the Shapley value

[5] are integrated in ABREs. However, those schemes do not respect shifts in the

request-portfolios of the individual SMCs that occur by repeatedly executed ABREs;

e.g. within a rolling horizon planning (cf. [6]). Over time, an uneven allocation of
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requests causes power-shifts among formerly commensurate and equal SMCs and

may decrease the stability within horizontal coalitions.

In this paper, the winner determination problem (WDP) of an ABRE is restricted

by lower and upper bounds that limit the number of reallocated requests. It means

that all agents (e.g. traveling salesmen) transfer and receive a proportional number

of incoming requests through an ABRE over a planning period. The effect of the

restricted WDP is analyzed in a computational study on the dynamic collaborative

traveling salesman problem (DCTSP). A mathematical formulation of the DCTSP

is given in Sect. 2. Section 3 introduces a two-stage solution framework (TSF) for

the DCTSP. While the restricted WDP and the agents’ specific TPPs are solved by

a mathematical solver, the calculation of bids is executed by a cheapest insertion

algorithm. The findings of the computational study are presented in Sect. 4.

2 Problem Description

Let us consider a horizontal coalition among a set of rivaling agents P = {1, 2,… ,

|P|}. At the start of a planning period T , each agent is in charge of a set of requests

Ns
p. The aim of agent p ∈ P is to find the round trip that dispatches each request

i ∈ Ns
p once, starts and ends at the own depot Op, and minimizes the transporta-

tion costs. Over time, each agent p ∈ P receives a set of incoming requests Nc
p. All

incoming requests have to be dispatched during T . To reduce transportation costs, the

agents use an ABRE for the reallocation of incoming requests. It means, an incom-

ing request i ∈ Nc
p can either be served by the round trip of agent p or transferred to

another agent p∗ ∈ P ⧵ {p} within the coalition. The DCTSP can be split in agents’

specific TPPs (Eqs. (1)–(7)) and a request reallocation problem (Eqs. (8)–(9)).

max z(p) =
∑

i∈Np

∑

j∈Np

(ej − cij) ⋅ x
p
ij, (1)

s.t.
∑

i∈Np

xpij = 1, ∀j ∈ Ns
p ∪ Op, (2)

∑

i∈Np

xpij ≤ 1, ∀j ∈ Nc
, (3)

∑

j∈Np

xpij =
∑

j∈Np

xpji = vpi , ∀i ∈ Np, (4)

∑

i,j∈S
xpij ≤

∑

j∈S⧵{k}
vpj , ∀S ⊂ Np ⧵ {0}, k ∈ S, (5)

xpij ∈ {0, 1} ∀i, j ∈ Np × Np, (6)

vpi ∈ {0, 1} ∀i ∈ Np. (7)
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The TPP relates to the traveling salesman problem with profits (cf. [1]) that iden-

tifies the most profitable round trip on the graph Gp = (Np,Ap) for each agent p ∈ P.

WhileAp is the edge set,Np ∶= Op ∪ Np ∪ Nc
builds the node set; letNc ∶=

∑
p∈P Nc

p
be the set union of incoming requests of all agents p ∈ P. The usage of an edge

(i, j) ∈ Ap requires transportation costs cij. The binary decision variable xpij is equal

to one if the edge (i, j) ∈ Ap is included in the round trip of agent p, and it is zero,

otherwise. Separately, the binary decision variable vpi = 1 shows that a request i is

dispatched by agent p. Since each request j generates a freight rate ej when it is dis-

patched, the Objective (1) maximizes the profits z(p) (i.e. freight rates minus trans-

portation costs). Constraints (2) and (3) ensure that each node is dispatched at most

once. Constraints (4) observe the flow and sets vpi . Constraints (5) exclude sub-cycles

(cf. [1]). Constraints (6)–(7) define the domains of the decision variables.

The request reallocation problem observes the exchange of incoming requests.

Objective (8) identifies the combination of agents’ specific round trips that maximize

the overall collaborative profits z(P), by respecting that each incoming request has

to be dispatched by one agent of the coalition (Constraints (9)).

max z(P) =
∑

p∈P
z(p), (8)

s.t.
∑

p∈P

∑

i∈Np

xpij = 1, ∀j ∈ Nc
. (9)

Due to the dynamic scenario of incoming requests, not all planning relevant data

are known at the beginning of the planning period. To consider this issue, we supple-

ment the previously presented mathematical models by a time factor. That is why the

following features of dynamic planning have to be respected by computing the math-

ematical models: (i) an incoming request cannot be reallocated/dispatched before it

is known; (ii) each request is deleted from the request pools after it is dispatched;

(iii) the start positions of the round trips have to be updated.

3 Solution Methodology

To solve the DCTSP, we developed a TSF that organizes the ABRE by a combi-

natorial auction (CA). The CA can be split in agents’ specific bid generations and a

common WDP. To retain the independent decision power for all agents, the planning

of the round trips and the bid generation are executed by separate planning steps that

each agent gets through in an isolated planning. Against this situation, the WDP is

solved by a mediator. Furthermore, our TSF suggests that the mediator assigns the

collaborative profits by the Shapley value [5] among the agents.

In the first stage of TSF, for each agent p ∈ P a round trip of all requests in

Ns
p is generated. Therefore, the TPP is computed by a mathematical solver. To

deal with incoming requests a periodic re-optimization (cf. [2]) is performed in the
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second stage of TSF; i.e. the ABRE is repeated at given times (referred to as plan-

ning updates). Let t identify an individual planning update. Each planning update

includes the following steps: (i) the planning relevant data (e.g. request pools, etc.)

are updated; (ii) each agent computes the own bid generation; (iii) the mediator

reallocates incoming requests by winner determination; (iv) the agents update their

round trips by resolving the TPP; (v) the mediator calculates Shapley values.

Our TSF suggests that each agent calculates a bid for any available request-cluster

(composition of incoming requests) in his bid generation (step (ii)). For the bid

generation, the earnings regarding the incoming requests of any request-cluster are

reduced by the increased transportation costs that each agent approximates by the

cheapest insertion algorithm of [3]. It means that the round trips of all agents are

extended by the incoming requests of a request-cluster (i.e. starting with the request

with lowest costs). For the bid generation, the difference of costs between the original

and the extended round trips are supposed as bids for all request-clusters.

The WDP (step (iii)) is formulated as a set partitioning problem (SPP; Eq. (10)–

(14)). LetB store all request-clusters, while b ∈ B identifies a specific request-cluster.

The constant dbi = 1 shows that incoming request i belongs to request-cluster b; oth-

erwise dbi = 0 applies. The bids gpb result from the bid generations. To ensure an

equality between transferred and received requests, we introduce a lower bound lbp
and an upper bound ubp for each agent p ∈ P. The bounds limit the number of incom-

ing requests that each agent is able to receive through the ABRE. The binary deci-

sion variable ypb is equal to one if agent p wins request-cluster b and zero, otherwise.

Objective (10) maximizes the sum of winning bids w by respecting that each incom-

ing request i is reallocated once (Constraints (11)). While Constraints (12) observe

that each agent wins only one request-cluster, Constraints (13) ensure that the sum of

reallocated incoming requests lies between lbp and ubp for all agents p. Constraints

(14) define the domains of the decision variables.

max w =
∑

p∈P

∑

b∈B
gpb ⋅ ypb, (10)

s.t.
∑

p∈P

∑

b∈B
ypb ⋅ dbi = 1, ∀i ∈ Nc, (11)

∑

b∈B
ypb = 1, ∀p ∈ P, (12)

lbp ≤
∑

i∈Nc

∑

b∈B
ypb ⋅ dbi ≤ ubp, ∀p ∈ P, (13)

ypb ∈ {0, 1}, ∀p ∈ P, b ∈ B. (14)

To improve the performance of our approach, we introduce a dynamic adjust-

ment (DA) of the lower and upper bounds for the individual planning updates (Eqs.

(15)–(16)). Thereby, the bounds are recalculated for all planning updates according

to the number of received incoming requests of the previously executed planning

update. It means that an agent that receives numerous incoming requests through the

ABRE of a planning updated will be restricted by strict bounds for the forthcoming
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planning update. On the other hand, an agent that receives less incoming requests will

be favored by increasing his lower and upper bound. Therefore, for each agent the

number of received incoming requests of an actual planning update is determined.

Let utp denote the number of received requests of agent p and planning update t. Sep-

arately, mbtp stores the requests that agent p offered for exchange of planning update

t. The lower bounds lbt+1p of all agents p ∈ P for the forthcoming planning update

t + 1 are calculated by Eq. (15). Thereby, the actual lower bound lbtp of each agent p
is reduced by the difference of utp and mbtp. Simultaneously, the upper bounds ubt+1p
for all agents p are updated by Eq. (16).

lbt+1p = lbtp − (utp − mbtp), ∀p ∈ P, t ∈ T (15)

ubt+1p = ubtp − (utp − mbtp), ∀p ∈ P, t ∈ T (16)

4 Computational Study

The restricted WDP is analyzed on new DCTSP-instances regarding collaborative

profits and an even allocation of requests. We consider 40 instances with different

parameter settings that are organized in 4 test sets. For a detailed description of the

instances, we refer to our homepage.
1

All instances provide that all agents receive

and offer the same number of incoming requests per planning update. To simulate the

dynamic execution of the round trips, we suppose that each agent is able to dispatch

mbtp requests in the time between two planning updates. Our TSF with the described

solution methodology was implemented in a C++-application on a Windows 7 PC

(3.4 GHz, 16 GB RAM). The mathematical solver CPLEX 12.5.1 was used to solve

the agents’ specific TPPs respectively the SPPs. To reduce the computational effort,

the computing time was limited to 600 s per optimization.

Table 1 presents the aggregated results per test set. The test sets are repeated with

different values of the bounds (lbp, ubp), respectively with and without DA. The

amount of the collaborative profits z(P) and the number of achieved best solutions

best are specified, while an even allocation of incoming requests is analyzed by the

minimal (rmin) and the maximal (rmax) number of dispatched requests by an agent

during the whole planning period. The range (|rmax − rmin|) results from the differ-

ence of both values. Since the solution space is not restricted, values of lbp = 0 and

ubp = ∞ averagely achieve superior collaborative profits for all test sets. However,

an uneven allocation of incoming requests cannot be excluded; i.e. maximal ranges.

Even values of the bounds (lbp = ubp = mbtp) exclude shifts in the request-pools of

the agents. Thereby, a decrease of the collaborative profits between 2.6 and 9.4%

has to be accepted. A balance between the collaborative profits and an even alloca-

tion of requests can be achieved by using different values for lbp and ubp. Thereby,

the application of DA increases the solution quality regarding both the amount of

1
http://www.logistik.uni-bremen.de/english/instances/.

http://www.logistik.uni-bremen.de/english/instances/
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collaborative profits and mean ranges. Particularly, the parameter setting lbp= mt
p − 1

and ubp = mt
p + 1 with DA achieves an excellent balancing between both aims; i.e.

decrease of collaborative profits between 0.4 and 5.5% against an unrestricted WDP

and ranges between 2.0 and 4.4 requests.

The results of our computational study verify that lower and upper bounds for the

WDP can enforce an even allocation of incoming request. Thereby, our approach is

appropriate for dynamic ABREs, while the solution quality can be increased by the

application of DA. The improved stability for horizontal coalitions may absorb the

slightly lower collaborative profits against an unrestricted WDP. In this paper a first

study on the restricted WDP in case of DCTSPs has been performed. To transfer our

results to the daily transport business of SMCs, further computational experiments

on more realistic scenarios have to be performed.
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