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Abstract We consider the modeling of operation modes for complex compressor

stations (i.e., ones with several in- or outlets) in gas networks. In particular, we pro-

pose a refined model that allows to precompute tighter relaxations for each operation

mode. These relaxations may be used to strengthen the compressor station submodels

in gas network optimization problems. We provide a procedure to obtain the refined

model from the input data for the original model.

1 Introduction

Gas transmission networks are a crucial part of the European energy supply

infrastructure. The gas flow is driven by pressure potentials. To maintain the nec-

essary pressure levels and control the routing of the gas in the network, compressor

stations are used. In the German network compressor stations usually interconnect

two or more pipeline systems. They often have a complex internal structure, allowing

them to realize different routing patterns between the boundary nodes, which may

serve as inlet or outlet depending on the requirements of the surrounding network [2].

An example of such a complex compressor station is shown in Fig. 1.

In this paper, we consider the compressor station modeling introduced in [2]. This

model combines a network containing compressors and valves and a set of switching

states for these elements to describe all feasible operation modes of a compressor
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(a) (b) (c) (d)

Fig. 1 Two operation modes of a large compressor station (a, b) and their reduced representations

(c, d) obtained with the methods of Sect. 3

station. The constraints describing the technical capability of a compressor may be

nonlinear and nonconvex, leading to hard-to-solve MINLP models for a compressor

station. To improve the model, a natural idea is to precompute, for each operation

mode, bounds on the minimum and maximum flow and pressure that can be handled

and to include this information in the model. This should help the solution process

to detect unsuitable operation modes early. However, the modeling of an operation

mode from [2] does not specify whether a compressor is actively compressing or

bypassed. Thus, no nontrivial flow bounds may be obtained for an operation mode.

Contribution We develop techniques for analyzing the original representation of

operation modes to obtain a more detailed representation prescribing for each com-

pressor whether it is compressing or in bypass. This allows to compute tight bounds

(or even convex hulls) for the pressure/flow combinations that can be handled by each

operation mode. The crucial ingredient is a method to obtain a reduced representation

of an operation mode to cope with redundancies due to the original representation.

Examples of such reduced representations are also shown in Fig. 1.

Related work We briefly mention some related papers and refer to [5] for a com-

prehensive overview. Most work on optimization of compressor stations has focused

on simple compressor stations compressing from a single inlet to a single outlet.

The fact that a compressor station usually features several (often distinct) compres-

sor units has been dealt with by using an aggregated model, like a range for the power

required by the compression process [3], box constraints for flows and pressures [1],

or a polyhedral model [6]. Papers using a detailed model for the operation of a single

compressor unit usually assume that a compressor station consists of several paral-

lel identical units [7], the only discrete decision being the number of units switched

on. A recent exception is the work of [4], considering configurations consisting of

serial stages of units used in parallel. Complex multi-way compressor stations with

multiple operating modes are only considered in [2] and related work.

The remaining paper ist structured as follows. Section 2 recalls the model intro-

duced in [2]. In Sect. 3, we propose a method that reduces the description of a single

operation mode to a kind of “normal form”. This is used in order to detect redundancy

and generate a set of redundancy-free operation modes that, as a set, are equivalent

to the original operation modes. Finally, we report on some computational results in

Sect. 4.
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2 Model for Complex Compressor Stations

Our model for compressor stations closely follows that proposed in [2]. We represent

a compressor station as a directed graph (V ,Ava ∪ Acg ∪ Asc), where the arc set con-

sists of the set of valves Ava, the set of compressors Acg, and the set of shortcuts Asc.

Moreover, we partition the set of nodes into boundary nodes V± and inner nodes V0.

For each node u ∈ V we introduce a variable for the pressure pu with non-negative

lower and upper bounds pu and pu. For each arc a ∈ A there is a variable for the mass

flow qa with lower and upper bounds qa and qa. Positive mass flow values indicate

flow in the direction of the arc, whereas negative values represent flow in the oppo-

site direction. The precise values of the bounds depend on the type and state of an

element. We define the excess of mass flow at nodes by

bu ∶=
∑

a∈𝛿−(u)
qa −

∑

a∈𝛿+(u)
qa for all u ∈ V . (1)

where 𝛿

−(u) and 𝛿

+(u) denote the sets of ingoing and outgoing arcs for node u. At

inner nodes, the mass flow is conserved, i.e., we have bu = 0 for u ∈ V0.

Valves can be open or closed and are used to control the route of gas through the

compressor station. A binary variable sa distinguishes between these states (sa = 1:

open, sa = 0: closed). A closed valve is like a missing connection, i.e., there is no

flow and the pressures are decoupled. An open valve admits arbitrary flow and the

pressures at its nodes are identical.

Compressors may operate in one of the states closed (no gas flow), active (com-

pressing), and bypass (gas flow without compression). Binary variables sa, saca , s
bp
a

distinguish between the states active, bypass and closed where sa = 1, saca = 1 cor-

responds to active, sa = 1, sbpa = 1 corresponds to bypass and sa = 0 corresponds to

closed. A closed compressor again corresponds to a missing connection and one in

bypass to an open valve. We model the capabilities of an active compressor a ∈ Acg
by an abstract set Pa ⊆ R3

≥0 of feasible inlet pressure, outlet pressure, and mass flow.

Thus our methods apply to a large range of compressor models. The constraints

describing Pa, the capability set of a compressor, may be nonlinear and nonconvex,

leading to hard-to-solve MINLPs for the entire compressor station.

Shortcuts are convenient modeling elements that allow arbitrary gas flow between

two nodes without pressure drop.

An operation mode specifies the switching state of each active element (valves,

compressors) and thus the route of the gas flow through the compressor station.

Operation modes are modeled in [2, Section 6.1.8] by a triple (Aactive,M , d), where

Aactive = Ava ∪ Acg is the set of active elements. The set M ⊆ {0, 1}Aactive describes

each operation mode m ∈ M by stating whether an active element a is open (ma =
1) or closed (ma = 0). In the case of an open compressor it is not yet specified

whether this compressor is in bypass or is active. Finally, the function d ∶ Aactive ×
M → {−1, 0, 1} describes whether the flow direction for an active arc a = (u, v) is
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restricted or not (−1: flow in opposite direction of arc, 0: direction unspecified, −1:

flow in arc direction).

As mentioned in the introduction, the fact that this representation does not specify

whether an open compressor is active or running in bypass precludes us from obtain-

ing tight bounds for flows and pressures obtainable by an operation mode. We thus

propose a more detailed representation where each operation mode is fully specified
by prescribing for each compressor whether it is active or in bypass. To obtain this

representation from the original one we enumerate all active/bypass combinations

for each operation mode. Since this leads to many and redundant operation modes,

we apply the methods from Sect. 3 to obtain an equivalent smaller set of fully speci-

fied operation modes. These are described by a tuple (Aactive,M
va
,M cg

, d′), where

M va
⊆ {0, 1}Ava prescribes the state of each valve and M cg

⊆ {0, 1}A
2
cg prescribes

the state of each compressor. For each of these operation modes, we can now com-

pute tight pressure and inflow bounds by solving the optimization problem given

by (4)–(8) together with respective objective functions. Then, with pu(m), pu(m) and

bu(m), bu(m) denoting the pressure and mass flow excess bounds for node u in oper-

ation mode m, the following inequalities are valid:

∑

m∈M
pu(m) sm ≤ pu≤

∑

m∈M
pu(m) sm for all u ∈ V , (2)

∑

m∈M
bu(m) sm ≤ bu≤

∑

m∈M
bu(m) sm for all u ∈ V . (3)

We call the model using the original operation modes the compact model, the one

using fully specified operation modes the extended model and the extended model

together with (2)–(3) the bounded extended model.

3 Topology Simplification for a Single Operation Mode

Our goal is to simplify the topology of a single operation mode of a compressor

station to obtain a small “canonical” representation suitable for comparing operation

modes via graph isomorphism detection (see Fig. 1).

We consider the network Nm = (V ,Am
, q, q, p, p) corresponding to a fully speci-

fied operation mode m derived from the station network as follows. First, all closed

elements are removed. Second, every shortcut, open valve and compressor in bypass

is replaced by two opposing shortcuts with lower flow bound equal to zero. This is

an equivalent transformation since the constraints for open valves or bypassed com-

pressors are equivalent to those of shortcuts. Hence, the arc set Am
consists only

of shortcuts and active compressors. Thus the model for a single operation mode

becomes

0 ≤ pu ≤ pu ≤ pu for all u ∈ V , (4)
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bu = 0 for all u ∈ V0, (5)

qa = 0, qa = ∞ for all a ∈ Asc, (6)

pu = pv for all (u, v) ∈ Asc, (7)

(pu, pv, qa) ∈ Pa ⊆ R3
≥0 for all (u, v) ∈ Acg. (8)

However, the network may be highly redundant, as a shortcut usually indicates that

the incident nodes are identical. Thus we can reduce the size of the network by con-

tracting a shortcut as follows. We identify the incident nodes of the shortcut and

update the pressure bounds of the remaining node to be the intersection of the pres-

sure intervals for the original nodes. If there are any other arcs between the two

nodes, we do keep them as self-loops. But we need to be careful when applying this

contraction since shortcuts sometimes do carry important information on the topol-

ogy of feasible flows. We now devise a criterion for safely removing shortcuts. For

this, we consider the shortcut subgraph of Nm
, Gsc

, its set of entries Vsc
+ , its set of

exits Vsc
− and for all entries w ∈ Vsc

+ the set ⃖⃗RN(w) ⊆ Vsc
− of exits reachable using only

shortcuts:

Gsc ∶= (V ,Asc) (9)

Vsc
+ ∶= V± ∪ {w ∈ V | ∃u ∈ V ∶ (u,w) ∈ Acg} (10)

Vsc
− ∶= V± ∪ {w ∈ V | ∃u ∈ V ∶ (w, u) ∈ Acg} (11)

⃖⃗RNm(w) ∶= {u ∈ Vsc
− ∶ ∃ w − u − path in Gsc} for allw ∈ Vsc

+ (12)

Proposition 1 Consider a shortcut ã = (u, v)with u ∈ V ⧵ {Vsc
+ } and the network N

′

arising from N when contracting ã to v. If

⃖⃗RN(w) = ⃖⃗RN′ (w) for all w ∈ Vsc
+ (13)

then for every admissible flow-pressure combination (p′, q′) for N′ there exists an
admissible flow-pressure combination (p, q) for N such that

q′a = qa for all a ∈ Acg, (14)

b′w = bw for all w ∈ V±, (15)

p′w = pw for all w ∈ V±, (16)

and vice-versa.

4 Computational Results

To investigate the effect of our method, we consider the compressor station network

with three boundary nodes and four compressors shown in Fig. 1. We model the

operating range Pa = {(pu, pv, qa)} ⊆ R3
≥0 of each compressor a = (u, v) ∈ Acg by a
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Table 1 Computational results on sample compressor station network. The first number is for

feasible, the second number for infeasible instances

Compact model Extended model Bounded

extended model

Number of binary variables after presolve 29.6/33.5 34.1/33.2 27.6/33.2

Number of solving nodes 9.2/16.3 10.4 / 24.4 11.1/20.5

Presolving detected infeasibility –/80.4% –/80.1% –/84.2%

simplified polyhedral model since we are only interested in the combinatorics of the

compressor station model. In the original data there are 53 operation modes; these

are used in the compact model. Enumerating all combinations of active and bypass
for compressors leads to 655 fully specified operation modes. Removing infeasible

operation modes and eliminating redundant modes using graph isomorphism detec-

tion after applying topology simplifications presented in Sect. 3 leaves 109 operation

modes. These are used in our extended and bounded extended models.

We generated a large set of 58463 instances with varying flow amounts from one

boundary node to one or both of the others at multiple different pressure levels, and

checked whether each instance is feasible. We have used SCIP to solve our problems

and the results showed that ca. 55% of the instances were feasible. To compare the

performance of our extended models to the original compact one we consider the

mean number of binary variables that have not been fixed by SCIP presolving and

the mean number of branch-and-bound nodes required for solving. The solving times

were negligible in all cases due to the absence of nonlinear constraints (see Table 1).

The results show that our preprocessing methods only have limited impact on the

solver performance. We conjecture this to be due to the fact that we are considering

the compressor station in isolation where combinatorics are simple enough for SCIP

to perform well without further support. The next step is thus to apply our methods

to optimizing large-scale gas networks.
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