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Abstract We present a new approach to create instances with high absolute

worst-case performance ratio of common lower bounds for the two-dimensional rec-

tangular Strip Packing Problem. The idea of this new approach is to optimize the

width and the height of all items regarding the absolute worst case performance ratio

of the lower bound. Therefore, we model the pattern related to the lower bound as a

solution of an ILP problem and merge this model with the Padberg-type model of the

two-dimensional Strip Packing Problem. The merged model maximizes the absolute

worst-case performance ratio of the lower bound. We introduce this new model for

the horizontal bar relaxation and the horizontal contiguous bar relaxation.

1 Introduction

In this paper, we consider the two-dimensional Strip Packing Problem (SPP) with

rectangular items. Let a set I ∶= {1,… , n} of non-rotatable rectangles Ri (items) of

width wi ≤ 1 and height hi ≤ 1 be given. The items have to be packed into a strip of

width 1 and minimal height OPT such that the items do not overlap each other.

A lot of lower bounds are known for this problem, but for most of them the exact

absolute worst-case performance ratio, which is the supremum over all instances of

the fraction of the optimal value and the lower bound, is unknown. To reduce the gap

between a proven upper bound of the absolute worst-case performance ratio and the

performance ratio of an instance having maximal ratio known so far, it is necessary

to decrease the theoretical upper bound or to find instances with greater performance

ratio.
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In the following, we introduce a new approach to compute such worst-case

instances. For several lower bounds, we show how to model this issue as an opti-

mization problem which maximizes the performance ratio within a subset of SPP

instances. In this way, we obtain the absolute worst-case performance ratio of these

lower bounds for the considered subsets.

2 Modeling Lower Bounds for the SPP

In this paper, we consider two lower bounds: (binary) horizontal bar relaxation and

contiguous (binary) horizontal bar relaxation [1]. We show how the optimization

problems addressed above can be modeled. Since we aim to maximize the absolute

worst-case performance ratio which is a fraction, we linearize this objective function

by fixing the optimal value and minimizing the height of the lower bound. For our

models we assume that all items can be packed using a strip height of at most 1,

i.e., OPT ≤ 1 holds. To ensure that this condition is fulfilled, our model contains

a Padberg-type model [2]. The second part of our model describes the considered

lower bound. Hence, we aim to minimize the height of the lower bound solution

depending on the widths and heights of the items.

2.1 Modeling an Optimal Pattern

The main issue of our approach is the managing of the optimal value of the SPP

instance which results by minimization and which should be maximized in compar-

ison to the lower bound at the same time. On the one hand, by definition of the SPP,

we search for a feasible pattern with minimal value but we also try to get an instance

with lower bound as small as possible. So, in order to get a large absolute worst-case

performance ratio the optimal value should be maximized with respect to the con-

sidered instance set. To resolve this issue, we fix the optimal value and iterate over

all possible patterns to provide the optimal solution, that means, the height of the

considered feasible pattern has to be 1 and all other patterns are either infeasible or

have height at least 1. Obviously, any particular pattern can be characterized by the

relative positions of each pair of items (left, right, above, below). Regarding sym-

metry and permutation aspects, we have only 4 different patterns with n = 3 items

(Fig. 1).

The pattern which should be the optimal pattern is called current pattern. For

the current pattern we have to guarantee that this pattern is feasible and has height

of at least 1. To model the feasibility of a current pattern, we consider maximal

subsets of items which are placed next to each other in this pattern. These subsets

are called horizontal slices of the considered pattern. Obviously, the current pattern

is only feasible if the total width of each horizontal slice of this pattern does not

exceed the width of the strip. Analogously to the horizontal slices, we denote the
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Fig. 1 Possible patterns of 3 items

maximal subsets of items which are placed above each other in the considered pattern

as vertical slices. To ensure that the current pattern has height of at least 1, we have

to enforce that the total height of at least one vertical slice of this pattern is at least 1.

To model these conditions, we introduce two binary variables xA and yA for each

possible subsetA ∈ Pn of items wherePn denotes the set of all subsets of {1,… , n}
with at least two elements. (Note that singletons are not meaningful in our approach.)

These variables belong to the horizontal and vertical slices which coincide with the

corresponding subsets of items. Since xA and yA indicate whether the total width or

the total height of item set A exceeds the respective boundary of the strip, we apply

the following inequalities with a small 𝜀 > 0:

(1 − xA) ∗ W +
∑

i∈A
wi ≥ W + 𝜀 for all A ∈ Pn, (1)

(1 − yA) ∗ 1 +
∑

i∈A
hi ≥ 1 for all A ∈ Pn. (2)

In the first inequality, if xA = 1, then the total width of the items of A has to exceed

the strip width, otherwise the horizontal slice can be feasible or not. Analogously, if

yA = 1, the second inequality ensures that the total height of the items of A is at least

1. Let CP denote the current pattern. Furthermore, let HS(P) and VS(P) denote the

set of horizontal and vertical slices of a pattern P, respectively. Then we model the

feasibility of CP by demanding the following inequalities:

∑

i∈A
wi ≤ W for all A ∈ HS(CP) ∩Pn. (3)

Note that these inequalities imply

xA = 0 for all A ∈ HS(CP) ∩Pn.

Moreover we ensure that the height of the current pattern is at least 1 by using the

following inequality:
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∑

A∈VS(CP)∩Pn

yA ≥ 1. (4)

Note that this inequality leads to an infeasible model for that pattern, where all items

are packed next to each other (pattern 1 in Fig. 1). But this is not relevant, since the

optimal value of the lower bound is equal to 1 in this case. Summarizing the usage of

all inequalities (1)–(4) within the model ensures that the current pattern is feasible

and has height of at least 1. However, We still have to guarantee that no other pattern

has a height less than 1.

2.2 Other Patterns

To ensure that no other feasible pattern gives a better solution than the current pattern

CP, we need to add appropriate inequalities for each other pattern. Let OP be any

other pattern. Then, to guarantee that pattern OP is not a better feasible pattern than

CP, we have to enforce that either OP is infeasible or that it requires a strip height

of at least 1. This is modeled by the following inequality:

∑

A∈HS(OP)∩Pn

xA +
∑

B∈VS(OP)∩Pn

yB ≥ 1. (5)

Adding this inequality for each other pattern we ensure that the current pattern

becomes an optimal pattern. Since the height of CP is enforced to be at least 1, now

we can minimize the value of the considered relaxation in order to find an instance

with a maximal absolute worst case performance ratio.

Since the whole problem is too complex, we consider particular subsets of

instances defined as follows: The maximum number of original rectangular items

of size wi × hi in the instance is restricted by a given number N. Clearly, the vari-

ables wi and hi, i ∈ I = {1,… ,N}, have to fulfill the constraints

𝜀 ≤ wi ≤ 1, i ∈ I, (6)

0 ≤ hi ≤ 1, i ∈ I. (7)

Let (xi, yi), i ∈ I, denote the allocation point (lower left corner) of item i, and let

uij and vij, i, j ∈ I, i ≠ j, be binary variables (according to [2]) to characterize the

mutual position of items i and j in the pattern, then the feasibility of the instance is

enforced by

0 ≤ xi ≤ 1 − wi, i ∈ I, (8)

0 ≤ yi ≤ 1 − hi, i ∈ I, (9)

xi + wi ≤ xj + 1 − uij, i, j ∈ I, i ≠ j, (10)

yi + hi ≤ yj + 1 − vij, i, j ∈ I, i ≠ j, (11)

uij + uji + vij + vji = 1, i, j ∈ I, i ≠ j. (12)



Creating Worst-Case Instances for Lower Bounds . . . 107

According to the horizontal (contiguous) bar relaxation, any item is partitioned into

s item parts of size wi × hik, k ∈ K = {1,… , s}, by horizontal cuts. Naturally, we

have the constraints

0 ≤ hik, i ∈ I, k ∈ K, (13)

s∑

k=1
hik = hi, i ∈ I. (14)

To model the feasibility of the solution related to the bound, let (xik, yik), i ∈ I, k ∈ K,

denote the allocation point of item part (i, k). Moreover, let uikjl and vikjl, i, j ∈ I,
k, l ∈ K, i ≠ j, be binary variables to characterize the mutual position of item parts

(i, k) and ( j, l) in the pattern of the bar relaxation. To guarantee that the item parts can

be packed into the strip, using an minimal height H, we add the following constraint:

yik + hik ≤ yi,k+1, i ∈ I, k = 1,… , s − 1, (15)

yis + his ≤ H, i ∈ I, (16)

0 ≤ xik ≤ 1 − wi, i ∈ I, k ∈ K, (17)

xik + wi ≤ xjl + 1 − uikjl, i, j ∈ I, k, l ∈ K, i ≠ j, (18)

yik + hik ≤ yjl + 1 − vikjl, i, j ∈ I, k, l ∈ K, (i, k) ≠ (j, l), (19)

uikjl + ujlik + vikjl + vjlik = 1, i, j ∈ I, k, l ∈ K, i ≠ j. (20)

Summarizing, the whole model to compute an instance with maximal worst-case

performance ratio is as follows:

H → min

subject to constraints

1. (6)–(7) for the size parameters of the items,

2. (8)–(12) for the feasibility of the instance computed,

3. (13)–(20) for the partition of items and feasible packability of all item parts,

4. (1)–(5) for the optimality of the (current) pattern and optimal height 1.

To extend the model to the horizontal contiguous bar relaxation, we just need to

replace constraints (15) by

yik + hik = yi,k+1, i ∈ I, k = 1,… , s − 1, (15 ∗)

which ensure that the solution of the relaxation fulfills the contiguous property.



108 T. Buchwald and G. Scheithauer

Fig. 2 Instance with

maximal worst-case

performance ratio for N = 4
and s = 2

Optimal pattern Relaxed pattern

3 Preliminary Results

Up to now, we have only solved the model with a given small number N of items

which are partitioned each into s = 2 item parts. For the horizontal bar relaxation

we observed, that the patterns of the solutions have the same structure, which is

displayed in Fig. 2 for the case N = 4.

The height of the solution of the bar relaxation is always equal to N∕(2N − 2)
which asymptotically proves that the absolute worst case performance ratio of the

horizontal bar relaxation is at least 2.

We also applied the model for the contiguous horizontal bar relaxation for only

small N and s. But up to now all solutions obtained provide lower bound 1, and

therefore, ratio 1. For larger n, we will get absolute worst-case performance ratios

larger than 1, due to [1]

4 Conclusions and Outlook

In this paper, we proposed a new approach to obtain worst-case instances for the

two-dimensional Strip Packing Problem when the number of items and item parts

is limited. We implemented this approach for two lower bounds and presented first

promising results for the horizontal bar relaxation. We are optimistic that we will

obtain similar results for the contiguous horizontal bar relaxation.

It will be part of our future work to apply this approach to other lower bounds.

Moreover, we will try to improve the model by further examining the structure of

the problem and optimizing the performance of our approach with respect to this

structure.
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