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Abstract The university course timetabling problem deals with the task of

scheduling lectures of a set of university courses into a given number of rooms

and time periods, taking into account various hard and soft constraints. The goal of

the International Timetabling Competitions ITC2002 and ITC2007 was to establish

models for comparison that cover the most frequently found use cases. Our model,

motivated by a project with University College London (UCL), builds on the stan-

dard model from track 3 of ITC2007. Compared to the standard model from the lit-

erature, we cover several new constraints and extra features. For example, we expand

the ITC2007 framework to generate a timetable for several weeks of the term instead

of only one and introduce the corresponding timetable regularity metric, which mea-

sures the consistency of time and room assignments for a course throughout the

term. We suggest an Integer Linear Programming approach for solving this expanded

timetabling problem and introduce a corresponding new benchmark library. Finally

we conduct computational experiments and discuss the results obtained with respect

to solution quality and practical suitability for UCL.

1 Introduction

The 2nd annual Timetabling Competition (ITC-2007) established a standardized

framework for the timetabling problem in terms of problem formulation and test

instances [5]. With knowledge of this, University College London (UCL) and Satalia

(NPComplete Ltd.) funded the research presented in this paper to investigate the
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value of optimization-based timetabling and to provide implementable results. The

UCL timetabling problem was modelled as closely to true complexity as possible,

using actual data from 2015 and new features and constraints not previously consid-

ered in the literature.

Reviewing the relevant literature we notice that while over the years local search

techniques have dominated the field of timetabling research [3], recently new

approaches based on SAT [1], Constraint Programming [6], Mathematical Program-

ming [2] and Metaheuristics [4] have successfully entered the field. Our approach

is based on the Mathematical Programming methodology, as we suggest an Integer

Linear Programming (ILP) algorithm to solve the optimization problem at hand.

This paper is structured as follows. In Sect. 2, we describe the curriculum-based

timetabling problem as it was proposed in the ITC-2007 competition and extend it

to include some of the extra constraints and features required by UCL. In Sect. 3,

we introduce our ILP approach and the way it encodes the different constraints. In

Sect. 4 we introduce several relevant metrics and we present and discuss the results

of our computational experiments. Section 5 concludes the paper.

2 Problem Formulation: UCL Extended Framework

The challenge of the curriculum-based course timetabling problem (CB-CTT) is to

schedule lectures belonging to a set of courses C = {c1, c2,… , cv} to k periods P =
{p1, p2,… , pk} and m rooms R = {r1, r2,… , rm}, accounting at the same time for

certain hard and soft constraints. In the CB-CTT the timetable is generated based

upon a set of s university curricula I = {i1, i2,… , is}, to which the courses belong.

Next let us introduce assignment vectors q whose entries are set to 1, if a course-

period-room combination is contained in timetable. Otherwise the entries are set

to 0. Now a feasible solution of the problem is a binary vector q that satisfies all

hard constraints. Finally the task of the CB-CTT is to find a vector q∗ such that

f (q∗) ⩽ f (q) for all q ∈ q̃, where f (⋅) is an evaluation function summing up all viola-

tions of the soft constraints and q̃ denotes the set of all feasible assignment vectors.

The exact problem formulation of the ITC-2007 framework and further details can

be found in [5].

The UCL timetabling problem presents a wide range of challenges, since its fea-

tures and additional constraints substantially exceed the ones from the ITC-2007

framework. Many of those features and additional constraints are omitted in this

short paper due to space limitations and will be provided in a forthcoming paper. We

include though the extensions that are most interesting from an academic viewpoint:

1. Our courses consist of activities with different durations, which relaxes the indis-

tinguishability assumption of lectures from the literature. Therefore we define the

set of all activities A = {a1, a2,… , an} with corresponding durations of activities

da, a ∈ A.

2. The UCL framework aims to generate feasible timetables for a setW of 10 consec-

utive weeks in a manner that guarantees the highest possible timetable regularity.
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This means that whenever possible, activities should be scheduled in the same

period and room over the different weeks.

3. Some activities within the same curriculum can be scheduled in parallel, e.g. if

students need to attend only one of the practical lessons offered.

4. The activities have a specific predefined type, which must match the room type

of the assigned room.

3 Integer Linear Programming Models

The Integer Linear Programming (ILP) solver presented in this paper is based on the

approach suggested by [2]. The problem is split into two stages. In the first stage, each

activity is assigned to an appropriate set of consecutive time periods. The assignment

of activities to rooms is done in the second stage. Due to space limitation, we state

the mathematical formulation only for the second stage and for the first stage we

solely mention the most important newly developed constraints.

While our solver is optimized for the UCL framework, we have also tested it on

the original ITC-2007 benchmark set. Preliminary results are very encouraging and

hence we plan to provide a detailed analysis showing the competitiveness of our

solver on the standard benchmarking sets from the literature in a forthcoming paper.

First Stage: In the first stage each activity has to be scheduled in a consecutive set

of time periods. The function D(p) gives the day of period p. Now if activity a is

scheduled at period p, then the binary variable xap is set to 1. Otherwise we have

xap = 0. To ensure that an activity is assigned to consecutive time periods, we also

need binary variables sap, which are set to 1, if activity a starts at period p. Otherwise

we have sap = 0. Note that variable sap is only introduced, if there are at least da − 1
consecutive time periods available after period p on the same day:

xap −
p∑

t=p−da+1
sat exists

sat = 0, a ∈ A, p ∈ P, (1)

∑

sap exists

sap = 1, a ∈ A. (2)

Equalities (1) ensure that each activity is assigned to a set of consecutive time periods

that all belong to the same day. Equalities (2) guarantee that each activity has exactly

one start time period.

One of our main goals for the UCL Timetabling Problem is to minimize the total

number of rooms required. While this goal is clearly part of the objective function

of the Second Stage, we also need to consider it during the First Stage. We propose

the following constraints in order to restrict the total number of activities scheduled

per time period:
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∑

a∈A
xap ≤ M, p ∈ P, (3)

where M is an integer variable that is multiplied by a penalty term pM in the objective

function of the First Stage. Without inequalities (3) arbitrarily many activities could

be assigned to the same time period during the First Stage, which could leave us with

no possibility to minimize the number of rooms required in the Second Stage.

Second Stage: After solving the First Stage, in the Second Stage we determine fea-

sible rooms for the activities, where we aim to minimize the following objectives:

(a) The number of students, which have no seat during an activity.

(b) The number of empty seats in a room during an activity.

(c) The total number of rooms.

In order to build an ILP model for the Second Stage, we introduce binary variables

ur, yar and zarp with the following interpretations:

∙ ur = 1, if at least one activity is scheduled in room r. Otherwise ur = 0.

∙ yar = 1, if activity a is scheduled in room r. Otherwise yar = 0.

∙ zarp = 1, if activity a is scheduled in room r at period p. Otherwise zarp = 0.

Note that the variables yar and zarp are only introduced, if it is feasible to schedule

activity a in room r at period p, i.e. if the activity type matches with the room type,

if the activity is assigned to period p in the First Stage and if the room is available at

period p. Accordingly we define P(a), P(r) and P(a, r) as the sets of available time

periods for activity a, for room r and for their combination respectively. Analogously

we specify A(r) and A(p, r) as the sets of feasible activities for room r at period p
and R(a, p) as the set of feasible rooms for activity a at period p.

For each feasible activity-room combination we introduce a penalty parameter par
that gives the absolute value of the difference between the available seats in room r
and the number of students registered for activity a. We also introduce the penalty

parameter pr giving the costs for using room r. Now we can state our ILP model:

min
∑

a∈A, r∈R(a,p)
paryar +

∑

r∈R
prur (4a)

s.t.

∑

r∈R(a)
zarp = 1, a ∈ A, p ∈ P(a), (4b)

dayar −
∑

p∈P(a,r)
zarp = 0, r ∈ R, a ∈ A(r), (4c)

∑

a∈A(p,r)
zarp − ur ≤ 0, r ∈ R, p ∈ P(r), (4d)

ur ∈ {0, 1}, yar ∈ {0, 1}, zarp ∈ {0, 1}, r ∈ R, a ∈ A(r), p ∈ P(a, r). (4e)

Equalities (4b) guarantee that exactly one room is assigned to an activity at each time

period. Equalities (4c) ensure that the same room is assigned to all time periods of
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an activity. Constraints (4d) guarantee that at most one activity is assigned to room

r at each time period and also ensure ur = 1, if at least one activity is scheduled in r.

4 Metrics and Results

In order to evaluate the quality of a timetable and its usefulness in practice, it is

necessary to introduce a wide range of metrics. In this paper we present a short

selection of metrics that were deemed most important by UCL.

Space utilization: The UK’s most important metric for determining how well uni-

versities use their facilities is space utilization su, which is defined as the sum of

room frequency and average room occupancy. For computing the room frequency rf
we divide the number of time periods occupied by the number of time periods that

are available in rooms, in which at least one activity is scheduled.

Next let us define the room occupancy oa,r of an activity a that is scheduled in

room r: oa,r = min
(
1, sa∕cr

)
, r ∈ R, a ∈ T(r), where sa denotes the number of stu-

dents registered for activity a, cr gives the capacity of room r and the set T(r) contains

all activities scheduled in room r. Now the average room occupancy r̄o is simply the

mean of all room occupancies of the considered timetable.

Note that the objective function of the Second Stage of our ILP approach is tai-

lored to minimize both space utilization and the number of students without seats.

Timetable regularity: Timetable regularity measures the consistency of time and

room assignments of a timetable throughout the term, assuming that each week of

the term has slightly different activities. We count the different start times s(a,w) and

room assignments r(a,w) of an activity a in week w ∈ W via the following function:

g(w1,w2, a) =
⎧
⎪
⎨
⎪⎩

2, if s(a,w1) ≠ s(a,w2) and r(a,w1) ≠ r(a,w2),
1, if either s(a,w1) ≠ s(a,w2) or r(a,w1) ≠ r(a,w2),
0, otherwise,

with w1,w2 ∈ W, i ∈ I and a ∈ A(i,w1,w2) is an activity that has to be scheduled

both in w1 and w2 in curriculum i. There are b different combinations of activ-

ities, pairs of weeks and curricula and the total number of students is given by

ht =
∑

i∈I hi, where hi, i ∈ I, is the number of students registered in curriculum i.
Now the timetable regularity TR can be defined as:

TR = 1 −
⎛
⎜
⎜
⎜⎝

∑

i∈I

⎛
⎜
⎜
⎜⎝

∑

w1,w2∈W
w1≠w2

(
∑

a∈A(i,w1,w2)
g(w1,w2, a)

)⎞
⎟
⎟
⎟⎠

⋅ hi

⎞
⎟
⎟
⎟⎠

∕
(
2 ⋅ b ⋅ ht

)
.
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We try to maximize TR by first including activities that have to be scheduled in most

weeks of the term in a base week that is solved with the two stage approach described

in the previous section. Afterwards we solve an ILP for each particular week, where

we maximize similarity to the base week by adding respective soft constraints.

Computational experiments: Finally we present the results obtained by using our

ILP approach on a selection of the original set of UCL curricula, available at http://

tinyurl.com/timetabling-lib. All experiments were performed on a Linux 64-bit

machine equipped with 4 × Intel(R) Xeon(R) CPU e5-2630 v3@2.40 GHz and 16

GB RAM. We use Gurobi 6.5.1 as our ILP-solver.

Our benchmark set consists of around 250 activities per week with an average

length of ≈3.5 time periods. Each week consists of 5 days with 18 time periods (a

30 min) per day. In each week we use around 20 of the available 279 rooms.

We obtained timetables for the whole term within 190 s computing time. The

corresponding metrics are:

(a) rf = 0.49, (b) r̄o = 0.78, (c) su = 1.27, (d) TR = 0.8723.

The very high timetable regularity of 87.23% is very important for the 35615 UCL

students. With our timetables determined they do not have to adapt to frequent

weekly timetable changes. Furthermore the high average occupancy metric shows

that on average, used rooms are more than
3
4

full, which ensures an efficient facility

usage. Finally the room frequency metric indicates that rooms, which are used at

least once, are occupied almost 50% of the total available time periods.

5 Conclusion

In this paper we presented a solution to the curriculum-based timetabling problem

of a real-world institution, the University College London, whose requirements and

specifications considerably exceed those of the ITC-2007 problem formulation. Due

to space restrictions, we selected only the most significant new problem features and

the most interesting metrics for this paper. An extended version of this publication

will include the solution to the complete problem with 1000 activities per week and

279 rooms, as well as the full set of modeling features, requirements and metrics.

References

1. Asín Achá, R., Nieuwenhuis, R.: Curriculum-based course timetabling with sat and maxsat.

Ann. Oper. Res. 218(1), 71–91 (2014)

2. Lach, G., Lübbecke, M.E.: Curriculum based course timetabling: new solutions to udine bench-

mark instances. Ann. Oper. Res. 194(1), 255–272 (2012)

3. Lü, Z., Hao, J.-K.: Adaptive tabu search for course timetabling. Eur. J. Oper. Res. 200(1), 235–

244 (2010)

http://tinyurl.com/timetabling-lib
http://tinyurl.com/timetabling-lib


New Constraints and Features for the University Course Timetabling Problem 101

4. Lewis, R.: A survey of metaheuristic-based techniques for university timetabling problems. OR

Spectr. 30(1), 167–190 (2008)

5. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J., Gaspero, L.D.,

Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: The second interna-

tional timetabling competition. INFORMS J. Comput. 22(1), 120–130 (2010)

6. Zhang, L., Lau, S.: Constructing university timetable using constraint satisfaction programming

approach. In: CIMCA-IAWTIC’06, vol. 02, pp. 55–60. IEEE Computer Society (2005)


	New Constraints and Features  for the University Course  Timetabling Problem
	1 Introduction
	2 Problem Formulation: UCL Extended Framework
	3 Integer Linear Programming Models
	4 Metrics and Results
	5 Conclusion
	References


