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Abstract We apply methods of tropical optimization to handle problems of rating
alternatives on the basis of the log-Chebyshev approximation of pairwise comparison
matrices. We derive a direct solution in a closed form, and investigate the obtained
solution when it is not unique. Provided the approximation problem yields a set of
score vectors, rather than a unique (up to a constant factor) one, we find those vectors
in the set, which least andmost differentiate between the alternatives with the highest
and lowest scores, and thus can be representative of the entire solution.

1 Introduction

Tropical (idempotent) mathematics, which deals with the theory and applications of
semirings with idempotent addition [4, 6], finds use in operations research, computer
science and other fields. Optimization problems that are formulated and solved in the
framework of tropical mathematics constitute an important research domain, which
offers new solutions to old and novel problems in various applied areas, including
project scheduling [7, 10], location analysis [9] and decision making [8, 11]. The
problems are usually defined to minimize or maximize functions on vectors over
idempotent semifields (semirings with multiplicative inverses).

In this paper, we apply methods of tropical optimization to handle problems of
rating alternatives on the basis of the log-Chebyshev approximation of pairwise
comparison matrices. We derive a direct solution in a closed form, and investigate
the solution when it is not unique. Provided the approximation problem yields a set
of score vectors, rather than a unique (up to a constant factor) one, we find those
vectors in the set, which least and most differentiate between the alternatives with
the highest and lowest scores, and thus can be representative of the entire solution.
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2 Rating Alternatives via Pairwise Comparisons

The method of rating alternatives from pairwise comparisons finds use in decision
making when a direct evaluation of the ratings is unacceptable or infeasible (see, e.g.,
[12] for further details). The outcome of the comparisons is described by a square
symmetrically reciprocal matrix A = (ai j ), where ai j shows the relative preference
of alternative i over j , and satisfies the condition ai j = 1/a ji > 0 for all i, j .

To provide consistency of the data given by pairwise comparison matrices, the
entries of the matrices must be transitive to provide the equality ai j = aikak j for all
i, j, k. A pairwise comparison matrix with only transitive entries is called consistent.

For each consistent matrix A = (ai j ), there is a positive vector x = (xi ) whose
elements completely determine the entries ofA by the relation ai j = xi/x j . Provided
that a matrix A is consistent, its corresponding vector x is considered to represent
directly, up to a positive factor, the individual scores of alternatives in question.

The pairwise comparison matrices encountered in practice are generally incon-
sistent, which leads to a problem of approximating these matrices by consistent
matrices. To solve the problem, the approximation with the principal eigenvector
[12, 13], least squares approximation [2, 13] and other techniques [1, 3, 5] are used.

Another approach involves the approximation of a reciprocal matrixA = (ai j ) by
a consistent matrix X = (xi j ) in the log-Chebyshev sense, where the approximation
error is measured with the Chebyshev metric on the logarithmic scale. Since both
matricesA andX have positive entries, and the logarithm ismonotone increasing, the
error can be written as maxi, j |logai j − log xi j | = logmaxi, j max{ai j/xi j , xi j/ai j }.

Considering that the minimization of the logarithm is equivalent to minimizing its
argument, and that the matrixX can be defined through a positive vector x = (xi ) by
the equality xi j = xi/x j for all i, j , the error function to minimize is replaced by
maxi, j max{ai j/xi j , xi j/ai j } = maxi, j max{ai j x j/xi , a ji xi/x j }. The application of
the condition ai j = 1/a ji yields maxi, j max{ai j x j/xi , a ji xi/x j } = maxi, j ai j x j/xi ,
which finally reduces the approximation problem to finding positive vectors x to

minimize max
i, j

ai j x j/xi . (1)

Assume that the approximation results in a set S of score vectors x, rather than
a unique (up to a constant factor) one. Then, further analysis is needed to reduce to
a very few representative solutions, such as some “worst” and “best” solutions.

As the purpose of calculating the scores is to differentiate alternatives, one can
concentrate on two vectors x = (xi ) from S , which least and most differentiate
between the alternatives with the highest and lowest scores by minimizing and max-
imizing the contrast ratio maxi xi/mini xi = maxi xi · maxi x

−1
i . Then, the problem

of calculating the least (the most) differentiating solution is to find vectors x ∈ S
that

minimize (maximize) max
i

xi · max
i

x−1
i . (2)
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Below, we reformulate problems (1) and (2) in terms of tropical mathematics, and
then apply recent results in tropical optimization to offer complete, direct solutions.

3 Preliminary Definitions, Notation and Results

We start with a brief overview of the basic definitions and notation of tropical algebra.
For further details on tropical mathematics, see, e.g., recent publications [4, 6].

Consider the set of nonnegative reals R+, which is equipped with two operations,
addition⊕ defined asmaximum, andmultiplication⊗ defined as usual, and has 0 and
1 as their neutral elements. Addition is idempotent, since x ⊕ x = max(x, x) = x
for all x ∈ R+. Multiplication is distributive over addition and invertible to give each
x �= 0 an inverse x−1 such that x ⊗ x−1 = xx−1 = 1. The system (R+,⊕,⊗, 0, 1) is
called the idempotent semifield or the max-algebra and denoted Rmax. In the sequel,
the sign ⊗ is omitted for brevity. The power notation has the standard meaning.

The set of matrices over R+ with m rows and n columns is denoted by R
m×n
+ .

A matrix with all zero entries is the zero matrix. The matrices without zero rows
are called row-regular. Matrix operations employ the conventional entry-wise for-
mulae, where the scalar operations ⊕ and ⊗ play the role of the usual addition and
multiplication.

Themultiplicative conjugate transpose of a nonzeromatrixA = (ai j ) is thematrix
A− = (a−

i j ) with the entries a
−
i j = a−1

j i if a ji �= 0, and a−
i j = 0 otherwise.

Consider the square matrices in the set R
n×n
+ . A matrix with 1 along the diagonal

and 0 elsewhere is the identitymatrix denoted I. The power notation specifies iterated
products as A0 = I and Ap = Ap−1A for any matrix A and integer p > 0.

The tropical spectral radius of a matrix A = (ai j ) ∈ R
n×n
+ is the scalar given by

λ =
⊕

1≤k≤n

⊕

1≤i1,...,ik≤n

(ai1i2ai2i3 · · · aik i1)1/k . (3)

The asterate operator (the Kleene star) maps the matrix A onto the matrix

A∗ = I ⊕ A ⊕ · · · ⊕ An−1. (4)

The columnvectorswith n elements form the setRn+. The vectorswith all elements
equal to 0 and to 1 are denoted by 0 and 1. A vector is regular if it has no zero elements.
For any nonzero column vector x = (xi ), its conjugate transpose is the row vector
x− = (x−

i ), where x−
i = x−1

i if xi �= 0, and x−
i = 0 otherwise.

We conclude the overview with examples of tropical optimization problems. Sup-
pose that, given a matrix A = (ai j ) ∈ R

n×n
+ , we need to find vectors x ∈ R

n+ that

minimize x−Ax. (5)
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The next complete, direct solution to the problem is obtained in [7].

Lemma 1 Let A be a matrix with spectral radius λ > 0. Then, the minimum value
in (5) is equal to λ, and all regular solutions are given by x = (λ−1A)∗u, u �= 0.

Given a matrix A ∈ R
m×n
+ and vectors p ∈ R

m+, q ∈ R
n+, we now find x ∈ R

n+ that

minimize q−x(Ax)−p. (6)

A solution given by [9] uses a sparsification technique to provide the next result.

Lemma 2 LetA = (ai j ) be a row-regularmatrix,p = (pi ) be nonzero andq = (q j )

be regular vectors, and Δ = (Aq)−p. Let Â = (̂ai j ) denote the matrix with entries
âi j = ai j if ai j ≥ Δ−1 piq

−1
j , and âi j = 0 otherwise. Let A be the set of matrices

obtained from Â by fixing one nonzero entry in each row and setting the others to 0.
Then, the minimum value in problem (6) is equal to Δ = (Aq)−p, and all regular

solutions are given by the conditions x = (I ⊕ −1A−
1 pq

−)u, u �= 0, A1 ∈ A .

Finally, we consider a maximization version of problem (6) to find vectors x that

maximize q−x(Ax)−p. (7)

A complete solution to the problem is obtained in [10]. Below, we describe this
solution in a more compact vector form using the representation lemma in [9].

Lemma 3 Let A = (a j ) be a matrix with regular columns a j = (ai j ), and p = (pi )
and q = (q j ) be regular vectors. LetAsk denote the matrix obtained fromA by fixing
the entry ask for some indices s and k, and replacing the other entries by 0.

Then, the maximum value in (7) is equal toΔ = q−A−p, and all regular solutions
are given by x = (I ⊕ A−

skA)u, u �= 0, k = argmax j q
−1
j a−

j p, s = argmaxi a
−1
ik pi .

4 Application to Rating Alternatives

We are now in a position to represent optimization problems (1) and (2) stated above
in the tropical mathematics setting, and then to solve them in an explicit form.

Consider problem (1) of evaluating the score vector based on the log-Chebyshev
approximation of a pairwise comparison matrixA. In terms of the max-algebra Rmax

the problem takes the form (5). Application of Lemma 1 yields the following result.

Theorem 1 Let A be a pairwise comparison matrix with spectral radius λ, and
denoteAλ = λ−1A andB = A∗

λ. Then, all score vectors are given by x = Bu, u �= 0.

Example 1 Suppose the result of comparing n = 4 alternatives is given by thematrix
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A =

⎛

⎜⎜⎝

1 1/3 1/2 1/3
3 1 4 1
2 1/4 1 2
3 1 1/2 1

⎞

⎟⎟⎠ . (8)

To apply Theorem 1, we use (3) to find λ = (a23a34a42)1/3 = 2, and calculate

Aλ =
(

1/2 1/6 1/4 1/6
3/2 1/2 2 1/2
1 1/8 1/2 1
3/2 1/2 1/4 1/2

)
. Then, we follow (4) to compute A∗

λ =
(

1 1/6 1/3 1/3
3 1 2 2
3/2 1/2 1 1
3/2 1/2 1 1

)
.

As the last three columns of the matrixA∗
λ are collinear, we take one of them, say,

the second. Combining with the first column multiplied by 1/3 leads to the solution

x = Bu, B =

⎛

⎜⎜⎝

1/3 1/6
1 1
1/2 1/2
1/2 1/2

⎞

⎟⎟⎠ , u = (u1, u2)
T , u1, u2 �= 0. (9)

Note that all the solutions assign the highest score to the second alternative and
the lowest to the first. Moreover, the solutions which least and most differentiate
between these alternatives, are the first and the second columns in the matrix B.

In the general case, the least and most differentiating solutions from a set of vec-
tors, given in the form x = Bu, are determined by solving problems (2). The prob-
lems are to minimize and maximize the contrast ratio for the elements of the vector
x, which, in terms of tropical mathematics, takes the form 1T xx−1 = 1TBu(Bu)−1.

To find a vector x = Bu with the least differentiation between scores, we solve
the problem

minimize 1TBu(Bu)−1.

Assuming the matrix B is obtained as in Theorem 1, we have the next result.

Theorem 2 Let B̂ be a sparsified matrix derived from B by setting to 0 all entries
below Δ−1 = ((B(1TB)−)−1)−1, and B be the set of matrices obtained from B̂
by fixing one nonzero entry in each row and setting the others to 0. Then, the least
differentiating score vectors are given by x = B(I ⊕ Δ−1B−

1 11
TB)v, v �= 0,B1 ∈ B.

Proof We reduce the problem under study to (6) by the substitutions q− = 1TB,
A = B, p = 1 and x = u. Since the matrix B has only nonzero entries, the regularity
conditions of Lemma 2 are satisfied. Application of this lemma involves evaluating
the minimum value Δ = (B(1TB)−)−1, calculating the sparsified matrix b̂ f B, and
forming the matrix setB. The solution is given by u = (I ⊕ Δ−1B−

1 11
TB)v, where

v �= 0 and B1 ∈ B. Turning back to the vector x = Bu yields the desired result. �

Example 2 Consider the solution obtained in the form (9) in Example 1 for the
matrix (8). To apply the result of Theorem2,we successively calculate 1TB = (

1 1
)
,

B(1TB)− =
(

1/3
1
1/2
1/2

)
, Δ = (B(1TB)−)−1 = 3, and B̂ =

(
1/3 0
1 1
1/2 1/2
1/2 1/2

)
.
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We now examine the matrices obtained from B̂ by leaving one nonzero entry in

each row. For instance, consider the matrix B1 =
(

1/3 0
1 0
1/2 0
1/2 0

)
, which leaves the first

column in B̂ unchanged, and has all zero entries in the second. We have B−
1 1 = (

3
0

)
,

B−
1 11

TB = (
3 3
0 0

)
, I ⊕ Δ−1B−

1 11
TB = (

1 1
0 1

)
, andB(I ⊕ Δ−1B−

1 11
TB) =

(
1/3 1/3
1 1
1/2 1/2
1/2 1/2

)
.

As both columns in the last matrix coincide, we take one to write the least dif-
ferentiating solution in the form x = (

1/3 1 1/2 1/2
)T

v, v �= 0. Calculations with
the other matrices obtained from B̂ yield the same result, and are thus omitted.

To obtain the most differentiating score vectors we need to solve the problem

maximize 1TBu(Bu)−1.

Similarly as before, we reduce this problem to (7), conclude that the conditions
of Lemma 3 are fulfilled, and finally apply this lemma to obtain the next solution.

Theorem 3 Let B = (b j ) be a matrix with columns b j = (bi j ), and Bsk denote the
matrix obtained from B by fixing the entry bsk and replacing the others by 0.

Then, the most differentiating score vectors are given by x = B(I ⊕ B−
skB)v, v �=

0, k = argmax j 1Tb jb−
j 1, s = argmaxi b

−1
ik .

Example 3 We start with the solution at (9), and compute 1Tb1 = 1, 1Tb2 = 1,
b−
1 1 = 3, andb−

2 1 = 6. Since1Tb1b−
1 1 = 3 and1Tb2b−

2 1 = 6,we take k = 2, s = 1.

We have B12 =
(

0 1/6
0 0
0 0
0 0

)
, I ⊕ B−

12B = (
1 0
2 1

)
, and B(I ⊕ B−

12B) =
(

1/3 1/6
2 1
1 1/2
1 1/2

)
.

Since the columns in the last matrix are collinear, we take one of them, say, the
second, to write the most differentiating vector as x = (

1/6 1 1/2 1/2
)T

v, v �= 0.
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