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Abstract This work proposes an approach to the optimal placement of a weather

radar network based on solutions to a multi-objective optimization problem. Given

a finite number of weather radars, a network is produced by taking into account the

maximization of network coverage area and the minimization of network general

cost. Several constraints on the solutions are considered such as terrain blockage,

radar beam elevation and distance from power grid and roads. By transforming the

search space into a gridded system, a reduction in the number of possible combi-

nations of radar networks is achieved making the problem manageable in size. The

multiobjective optimization problem is solved by four different evolutionary algo-

rithms and the obtained results are analysed using different performance metrics.

The proposed approach can serve as an analysis tool for a decision support system

by providing meteorologists a set of Pareto-optimal solutions to assist in the selection

of future prime sites for the installation of weather radars.

1 Introduction

Weather Radar Networks (WRN) have been initially used by meteorologists in study-

ing severe weather phenomenons and the issuing of important and essential weather

bulletins and information to all major agencies such as civil and military aviation,

oil and gas companies, and civil defence. WRN have been commonly used in both

the prevision and research of weather systems. The Next Generation Weather Radar

(NEXRAD) system [9] for example has been efficiently used in the prediction, study

and research of severe weather systems such as supercells, mesocyclones, tornado

vortices, and various types of precipitation.

A difficult task in constructing these networks is determining adequate sitting sites

of radars in order to meet certain conditions. A clear propagation of the radar beam

for an altitude below one kilometre without being obstructed by terrain features is
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of extreme importance as the core of heavier precipitation lies within a hight above

ground of 1000 m as pointed out by [10].

A mathematical model of the problem was achieved by [5] by establishing a well

defined optimization problem. A recent work in determining the placement of WRs

is investigated by [4]. Through the utilization of a genetic algorithm (GA) a maxi-

mization of the coverage area within a set of physical boundary condition is achieved.

2 Multiobjective Evolutionary Algorithms

Multiobjective Evolutionary Algorithms (MOEAs) are methods which approximate

the Pareto Front (PF) by mimicking processes found in biological evolution. Hence,

their aim is to find solutions that converge as close as possible to the true opti-

mal solutions obtained so far during optimization. In the following paragraph, we

mention some details about the MOEAs selected for the resolution of our below-

mentioned problem. MOPSO algorithm [1] starts by generating a swarm with N
random particles along with a set of leaders representing the nondominated parti-

cles. Position and velocity of each particle in the swarm is initialized and the fit-

ness of each particle is evaluated. NSGA-II [2] computes a crowding distance for

each individual by measuring the distance to its neighbouring individuals along each

objective function dimension. The obtained crowding distance is then used to mod-

ify the fitness of each individual. The algorithm SPEA2 [12] uses an external archive

A containing the nondominated solutions found so far. A strength value is assigned

to both individuals in the archive and in the population. The MOGWO is an algo-

rithm proposed by [6] in which the social and hunting technique of grey wolves are

mimicked.

2.1 Performance Metrics

As a Pareto noncompliant metric, the Nondominated Vector Generation (ONVG)

[8] measures the number of elements in a nondominated solutions set obtained by

MOEA generation. Hence, a solution set with a largeONVG is preferred. The spacing

(S) [7] is Pareto noncompliant metric which measures the minimum value of the sum

of distances between consecutive solutions in a nondominated set. Zitzler and Thiele

[11] proposed the performance metric dominated hypervolume (HV) as the union of

hypercubes constructed using a reference point R, which can be taken as the vector

of worst objective function values and a solution i of PFknown as the diagonal corners

of the hypercube.
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3 Problem Formulation

The latitudinal and longitudinal co-ordinates of the radars (𝜙1, 𝜆1), (𝜙2, 𝜆2),… are

considered as design variables which are to be optimized. The following two objec-

tives are considered.

Terrain Coverage In our work, a modified explicit enumeration method is used

similar to the one used in [4]. The selected geographical region is discretized into

a grid with a resolution of approximatively 0.09◦ (1 km) M latitudinal and N longi-

tudinal spacing stored in a matrix 𝐀M×N . We incorporate a new factor to our model

using global digital elevation data at a resolution of 30 arc seconds (≈1 km) provided

by the United States Geological Survey. The radar propagated beam is checked for

terrain blockage at each grid point that either represent a potential radar site or is

included inside the theoretical coverage layer of a radar [3] through the 4/3 law:

h =
√

r2 + R2
e + 2rRe sin 𝜃e − Re (1)

where h is the height of beam in km, r is the range of beam in km, 𝜃e is the elevation

angle, and Re is the effective earth’s radius in km (4/3 the earth’s radius). Using a

binary encoding, all grid points are set initially to zero. The radar site along with the

points which hight are below the radar beam and their slant range from the radar site

is less than the maximum beam range are all set to one. The coverage area of a radar

is the sum of all values of the grid points,

Cr =
M∑
i=1

N∑
j=1

ai,j (2)

The minimization problem is then formulated with respect to (2) as

f1 = 1 −

R∑
r=1

Cr

T
(3)

where R is the number of radars in the network and T =
M∑
i=1

N∑
j=1

1, is the total area of

the studied region.

Network cost The economic and maintenance cost of installing a WR in R dif-

ferent sites is given by:

f2 =
R∑
i=1

Cixi (4)

where Ci = q1ECi + q2MCi and q1,2 ∈ [0, 1], q1 + q2 = 1 are weighting parameters.

The parameter ECi is the minimum economic cost of installing a WR in site i which
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depends on the infrastructure and power availability. MCi is the minimum mainte-

nance cost parameter related to the distance of a site i to the nearest road accessible

to truck traffic. Both ECi and MCi are obtained as the minimum haversine distance

between the radar site and the nearest power line for the economic cost and road for

the maintenance cost.

Ξk
i = min

𝜒k
j ∈𝛺k

{2Re

arcsin
(√

sin2(𝛥𝜙) + cos(𝜙i) cos(𝜙j) sin2(𝛥𝜆)
)
}, k = a, b

(5)

where 𝛥𝜙 = 𝜙i−𝜙j

2
, 𝛥𝜆 = 𝜆i−𝜆j

2
, (𝜙i, 𝜆i) are the latitude and longitude coordinates of

the radar site, and (𝜙j, 𝜆j) are the latitude and longitude coordinates of a location

𝜒k
j ∈ 𝛺k

. The formula in (5) was used for both the economical cost, with k = a and

𝛺a
being the power grid and for the maintenance cost with k = b and𝛺b

representing

the road network.

4 Numerical Results and Discussion

The selected geographical region is the north of Algeria bounded by parallels 34◦ N

and 36◦ N and meridians 3◦ E and 6◦ E with a total surface area of 6.076 × 104km2
.

The area is a mix of flat and complex surfaces supporting a diverse testing of the

presented strategy. The analysis was conducted with a 1.1◦ radar beam elevation

angle and the tower height of the radar is set to 15 m in order to reduce the effect

of ground clutter. A theoretical coverage range of the radars is set to 45 km. For all

the results presented in this section, the number of radars was limited to 5. Figure 1

Fig. 1 Pareto front of

MOPSO, NSGA − II,
MOGWO, and SPEA2
obtained after 500 iterations

for a population of 100

individuals
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(a) Comparison of Hyper-
volume metric results

(b) Comparison of Execution time

(c) Comparison of ONVG
 metric results

(d) Comparison of Spacing
 metric results

Fig. 2 Comparison of the results obtained in 10 different runs by the four algorithms with a pop-

ulation of 100 individuals and after 500 generations

was produced by running each MOEA algorithm ten times with a population of 100

individuals and a maximum of 500 generations. From the figure we can see that the

solution quality with respect to Pareto optimality obtained by MOGWO was quite

low. MOPSO, NSGA-II, and SPEA2 produced a PF with similar patterns but differ-

ent values. For this test, the NSGA-II algorithm had a better convergence. Starting

with a comparison of the hypervolume metric, it becomes clear that the NSGA-II PF

score comes first, followed by SPEA2, MOPSO, and finally MOGWO as shown in

Fig. 2a. A similar order is also obtained with respect to ONVG and spacing metrics

as indicated in Fig. 2c, d. As for computational time, the boxplot in Fig. 2b clearly

indicates that MOGWO outperformed all algorithms while NSGA-II scored last.
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5 Conclusion

The multioptimization method developed in this study can provide an efficient strat-

egy for the radars optimal placement problem, resulting in network configurations

at a relatively short time and with sufficient accuracy. For our study region, the pro-

posed strategy gave results that were relatively insensitive to the number of individ-

uals in the population of MOEA involved in the selection of a single best network.

The radar coverage and cost objective functions selected for this study appear to be

suitable for guiding network selection in support for a better weather observation.

This tool could reduce valuable time and cost through the reduction of suitable sites

that are evaluated on field by experts.
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