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Preface

This book contains a selection of refereed short papers presented at the Annual
International Conference of the German Operations Research Society (OR2016),
which took place at the Helmut-Schmidt-Universität/Universität der Bundeswehr
Hamburg, Germany, August 30–September 2, 2016. Over 700 participants attended
the conference—practitioners and academics from mathematics, computer science,
business/economics, and related fields. The scientific program included 475 pre-
sentations. The conference theme, Analytical Decision Making, has placed
emphasis on the process of researching complex decision problems and devising
effective solution methods toward better decisions. This includes mathematical
optimization, statistics, and simulation techniques, yet such approaches are com-
plemented by methods from computer science for the processing of data and the
design of information systems. Recent advances in information technology enable
the treatment of big data volumes and real-time predictive and prescriptive business
analytics to drive decisions and actions. Problems are modeled and treated under
consideration of uncertainty, behavioral issues, and strategic decision situations.

Altogether 86 submissions have been accepted for this volume (acceptance rate
66%), which includes papers from the GOR doctoral dissertation and master’s
thesis prize winners. The submissions have been evaluated by the stream chairs for
their suitability for publication with the help of selected referees. Final decisions
have been made by the editors of this volume.

We would like to thank the many people who made the conference a tremendous
success, in particular the members of the organizing and the program committees,
the 40 stream chairs, our 12 invited plenary and semi-plenary speakers, our exhi-
bitors and sponsors, the many people organizing behind the scenes, and, last but not
least, the participants from 40 countries. We hope that you enjoyed the conference
as much as we did.

Hamburg, Germany Andreas Fink
December 2016 Armin Fügenschuh

Martin Josef Geiger
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An Optimal Expansion Strategy for the
German Railway Network Until 2030

Andreas Bärmann

Abstract This article summarizes the findings of my Ph.D. thesis finished in 2015,

whose topic are algorithmic approaches for the solution of network design problems.

I focus on the results of a joint project with Deutsche Bahn AG on developing an

optimal expansion strategy for the German railway network until 2030 to meet future

demands. I have modelled this task as a multi-period network design problem and

have derived an efficient decomposition approach to solve it. In a case study on real-

world data on the German railway network, I demonstrate both the efficiency of by

method as well as the high quality of the solutions it computes.

1 Motivation

Rail freight traffic in Germany has shown a significant increase over the recent years:

it has risen from 291 Mt of transported goods in 2001 to 375 Mt in 2011, a total

increase by 29% in 10 years or an average increase of 2.6% per year during this time.

These high growth rates are explainable by an overall surge in freight traffic which is

due to Germany’s continuing economic strength as well as its increasing importance

as a freight transit country. From 2011 on, however, there has largely been a sideways

trend in the transportation of rail freight. An important reason for this is that many

corridors in the German railway network are already operated near or beyond their

capacity limits as investment into new capacities has long dragged behind.

This situation as well as the start of the planning process for the new Bun-

desverkehrswegeplan 2030, the German Federal Transport Infrastructure Plan for

the year 2030, have been the motivation for a joint project of the research group Eco-

nomics, Discrete Optimization and Mathematics at Friedrich-Alexander-Universität

Erlangen-Nürnberg and the traffic planning department DB Analytics of Deutsche

Bahn AG. This project has been a part of the KOSMOS research network funded

by the German federal ministry of education and research (BMBF) under the pro-

gramme “Mathematik für Innovationen in Industrie und Dienstleistungen”

A. Bärmann (✉)

FAU Erlangen-Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany

e-mail: Andreas.Baermann@math.uni-erlangen.de

© Springer International Publishing AG 2018
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4 A. Bärmann

(Mathematics for innovations in industry and services) and ran from 2010 to 2013.

Its aim was to find out how mathematical optimization can support strategic plan-

ning in the expansion of the German rail freight network, which is one of the central

questions answered in my doctoral thesis. In its first part, I have developed models

and algorithms for an optimal expansion of the rail freight network. The overarch-

ing goal was here to be able to transport as much of the forecasted growth in freight

traffic until 2030 by rail. This is an important consideration as Deutsche Bahn AG

has to reject many transportation orders already now in order to avoid overly long

delays on the most-frequented corridors of the network.

2 Modelling the Network Expansion

In my doctoral thesis [1], I have modelled the expansion of the German railway net-

work a as multi-period multi-commodity network design problem, which I state here

in a somewhat simplified form. To this end, let us consider the set T , which contains

the time steps in the planning horizon, a directed graph G = (V ,A), which describes

the network, where V are the stations and A the tracks between them, a set of orders

R ⊆ V × V , where for each r ∈ R and t ∈ T there is a demand of drt trains to be trans-

ported from the origin station Or ∈ V to the destination station Dr ∈ V , as well as

a set of available infrastructure upgrades Ba for each track a ∈ A. Furthermore, we

need the following parameters: the transport costs f rta for each origin-destination pair

r ∈ R in time step t ∈ T on track a ∈ A, the available capacity ca on each track a ∈ A
and the new capacity Cb that can be created by upgrades b ∈ Ba on track a ∈ A. If we

denote by B = ∪a∈ABa the set of all available infrastructure upgrades, the problem

can be described by a mixed-integer program (MIP) with the following structure:

min
∑

t∈T

∑

r∈R

∑

a∈A
f rta y

rt
a

s.t.
∑

a∈𝛿+v

yrta −
∑

a∈𝛿−v

yrta =
⎧
⎪
⎨
⎪⎩

1, v = Or

−1, v = Dr

0, otherwise

(∀t ∈ T)(∀r ∈ R)(∀v ∈ V)

∑

r∈R
drtyrta ≤ ca +

∑

b∈Ba

Cbutb (∀t ∈ T)(∀a ∈ A)

u ∈ U

u ∈ {0, 1}|T|⋅|B|

y ∈ [0, 1]|T|⋅|R|⋅|A|.

In this model, variable u stands for the upgrades which are realized up to a certain

year, and y represents the routing of the trains in the network. The objective function

then minimizes the transportation costs (and thus maximizes the profits), while the

routing of the trains has to fulfil flow conservation, and the available capacity must

be respected on all the tracks. The constraint u ∈ U models further requirements for
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a feasible expansion, such as keeping to a certain budget in each year of planning

and compatibilities among the available infrastructure measures. This problem is

a typical network design problem, except for the fact that it additionally asks for

a schedule for the expansion of the network: which upgrades are to be realized in

which time intervals?

3 Solution of the Problem via Decomposition

In the literature, there are severable well-known methods to solve network design

problems of different kinds in an efficient manner, such as Langrangean relaxation,

Benders decomposition or Dantzig-Wolfe decomposition, where the latter leads to

a path-based formulation. For the problem considered here, all these methods have

certain drawbacks, which is due to the size of the underlying graph—1600 nodes

(stations), 5200 directed arcs (tracks) and 3600 origin-destination pairs, which has

to be taken times 20 to reflect the planning horizon. The subproblems in the above

solution approaches (single- or multi-commodity flow problems) thus have to be

solved on very large graphs and typically have to be solved very often. This was

the motivation to develop a new decomposition method that delivers high-quality

solutions already after few subproblem evaluations. It is based on the idea of [2] to

solve multi-period network design problems by first determining a suitable target

network via an ordinary single-period network design problem and then finding a

favourable year-by-year plan to install the new capacities. The latter is done in [2] by

using single-period network design problems to do an iterative backwards elimina-

tion of capacities to get from the target network to the initial network, in each period

removing capacities worth at most the given budget for each time step. The disad-

vantage of this backwards elimination in terms of solution quality is that it takes a

very local view onto the planning horizon—it always passes from one year to the

next. Therefore, I have developed a method named multiple-knapsack decomposi-
tion in my dissertation which replaces this second step by a scheduling subproblem

based on estimations of the benefit of having each upgrade in place in a certain year

of planning. It is of the form:

max
∑

t∈T

∑

b∈B
𝜇

t
bu

t
b

s.t. u ∈ U
u ∈ {0, 1}|T|⋅|B|,

where the parameter 𝜇 is an estimation of the cost reduction that is made possible

by the infrastructure upgrades (shorter transport paths or less rejected orders). It is

calculated from the utilization of the new capacities that have been determined as

candidate upgrades in the first step, for which we solve a series of single-period

multi-commodity flow problems. These utilization values are then used to esti-

mate the contribution of each upgrade to the total reduction of transportation costs.
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The above scheduling problem takes the form of a multiple-knapsack problem with

further constraints if there is a budget restriction for the upgrades as is the case here,

thus the naming of the method.

This approach has led to very good results in the computational study conducted

together with DB Analytics: the deviation from the optimal solution did not exceed

2% for any of the considered instances (subnetworks of the German railway net-

work), exhibiting much shorter solution times than an MIP solver. For the complete

Germany-wide instance that took 24 h to solve without decomposition on a com-

pute server with 500 GB of memory, multiple-knapsack decomposition only took

8 hours on a workstation with 64 GB of memory and much weaker processors. By

suitable parallelization, the solution time could be reduced to about 20 minutes, as

the subproblems estimating the benefits of the upgrades in each year of planning can

be solved independently of each other. The derivation from the optimal solution was

only 0.78%, which makes the developed method very suitable as a quick heuristic

for a planner who would like to evaluate several different demand scenarios within

short time. As I could show in addition, the presented decomposition heuristic can

be extended to an exact solution approach by a suitable embedding into a Benders

scheme if needed.

4 A Case Study for the German Railway Network

Together with my doctoral supervisor, Alexander Martin, and our contact person at

Deutsche Bahn AG (DB), Hanno Schülldorf, I have conducted an extensive case

study for the necessary infrastructure upgrades in the German railway network.

Besides the data on the railway network, it was based on the company-internal

demand forecasts in rail freight traffic until 2030, which are depicted in Fig. 1.

Figure 1a shows the expected cumulative growth in freight and long-distance passen-

ger traffic on the tracks of the German railway network between 2010 and 2030—a

thicker green marking indicates a higher growth on a certain track. In Fig. 1b we

then see on which tracks DB expects bottlenecks by 2030 as a result of this growth

if there is no expansion of capacities in the German railway network. Partly, the

marked line segments are at their capacity limit already today, as indicated in the

introduction. Altogether, the DB-forecast for the growth in rail freight traffic expects

an increase in the number of operated trains per day of 50% until 2030 as compared

to 2010, i.e. about 2% per year on average. In our study, we have considered 4 dif-

ferent types of infrastructure measures to increase the capacities of existing links

in the network (construction of new lines was not part of the study): laying new

tracks, speed-improving measures (such as the creation of overtaking facilities), the

electrification of diesel lines and block size reduction (reduction of the necessary

safety distance on a track by an improved train control). In the order as mentioned

above, these measures are decreasing with respect to the new capacity they create

on a given link, the financial investment necessary as well as the time of implemen-

tation. This requires a weighing of cost and benefit which also takes into account
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(a) Predicted cumulative growth of freight and
long-distance passenger traffic on the main
corridors between 2010 and 2030

(b) Expected bottlenecks in the railway net-
work in 2030 without the creation of new line
capacities
Source DB Netz AG (2013)

Fig. 1 Visualisation of the DB-forecast for the growth in railway traffic until the year 2030. Source
[4]

how fast the desired effect can be achieved. The models and algorithms we have

developed have allowed us to provide Deutsche Bahn AG with a planning software

that now enables network planners to evaluate different options for an expansion of

the railway network, depending on the assumed demand scenario and the planned

budget. For the scenario shown in Fig. 1a and an annual budget of 700 million Euros

per year, for example, we obtain the expansion plan depicted in Fig. 2a in four con-

struction phases. Based on this solution, it is not only possible to analyse the chosen

upgrades, but also to evaluate the underlying traffic flows in the railway network,

which allows to check the plan for plausibility. For example, the plan shown in Fig. 2a

does not yet take into account the classification of lines through central Germany as

highly mountainous, which therefore exhibit much higher costs for the same type of

upgrade. When Deutsche Bahn AG now prepares the input data to reflect this, it is

to be expected that the proposed solution tendentially leads around the mountainous

passages—as the official expansion strategy in the Bundesverkehrswegeplan 2030

does it. It is shown in comparison in Fig. 2b. According to the opinion of planners at

Deutsche Bahn AG, the described approach is in any event a very good starting point

for an optimization-supported network planning. More details on our decomposition

approach and the case study for the German railway network can be found in [3].
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(a) Our expansion plan in four upgrade
phases until 2015, 2020, 2025 and 2030 re-
spectively (darker colour = later year)

(b) The offical expansion strategy by DB
Netz AG – upgrades are marked in red.
Source DB Netz AG (2013)

Fig. 2 Comparison of the upgrades chosen in our study and the official plan put forward by

Deutsche Bahn AG for the Bundesverkehrswegeplan 2030
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On- and Offline Scheduling
of Bidirectional Traffic

Elisabeth Lübbecke

Abstract This work summarizes insights related to bidirectional traffic on a stretch

containing bottleneck segments. On a bottleneck segment, concurrent traveling of

vehicles in opposite direction is restricted. The considerations are motivated by the

ship traffic at the Kiel Canal which connects the North and Baltic Seas and is operated

bidirectionally. Since ships register their travel requests only on short notice, we

investigate the Canal’s ship traffic additionally in the online setting.

1 Introduction

We consider bidirectional traffic where bottleneck segments restrict concurrent trav-

eling of vehicles in opposite direction. Single tracks in railway planning are an exam-

ple for such bottlenecks. This work summarizes results of [8] that considers the

example of ship traffic at the Kiel Canal.

Situated in the north of Germany, the Kiel Canal connects the North and Baltic

Seas. With more passages than the Panama and Suez Canals together, it is the world’s

busiest artificial waterway. Compared to the way around Denmark, the canal saves

an average of 250 nautical miles (460 km). The Kiel Canal, as the more ecological

and safer route, became the basis for the trade between the countries of the baltic

area with the rest of the world [7].

Since offshore vessels are not primarily designed for inland navigation, the pass-

ing of two ships with large dimensions is not possible at arbitrary positions. To facili-

tate bidirectional operation of the Kiel Canal, wider areas within the canal called sid-

ings are needed that allow for passing and waiting, see Fig. 1. This yields a sequence

of bottleneck segments and decisions must be made about who is waiting for whom,

where, and for how long. Responsible for these decisions is the Waterways and Ship-

ping Board (WSV/WSA) with a team of nautically experienced expert navigators.
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They try to keep the necessary waiting times in sidings on average over all ships as

small as possible.

In expectation of a tremendous continuing growth of traffic demand an enlarge-

ment of the canal was planned. There are a bunch of possible construction options

such as extending or creating sidings or to allow more flexible passing of ships by

deepening and/or widening crucial parts of the canal. In order to assess the cost and

benefit of these options their combined effects under predicted ship traffic needed to

be reliably estimated. To that end, we developed an optimization tool for the “Pla-

nungsgruppe für den Ausbau des Nordostseekanals” of the WSV that emulates the

current ship traffic control. This tool was used to evaluate the various construction

options with the aim of selecting a most adequate combination.

In addition to the developed ship traffic control tool, insights being relevant

beyond the concrete scope of the Kiel Canal are provided. These investigations con-

centrate on two characteristic properties of this ship traffic control. First, its bidirec-
tional component is investigated in further detail. Second, we account for the fact

that decisions must be adapted online since ships register their requests only shortly

before their arrival.

2 Bidirectional Scheduling

For the theoretical investigations, we discuss the problem’s natural relation to classi-

cal machine scheduling and analyze similarities and differences. This analysis con-

centrates on the following characteristic property being common for all kinds of

bidirectional traffic on bottleneck segments: vehicles moving in the same direction

can enter a tight lane sequentially with relatively little headway while vehicles in

opposite direction must wait until the whole lane is empty again, cf. Fig. 1. With

a compact scheduling model that accurately accounts for this specialty, a detailed

analysis of the problem’s off- and online complexity is accomplished. It facilitates

the development of algorithms with provable performance bounds on the one hand

and the identification of hardness inducing properties on the other hand.

Having flow shop scheduling in mind, we generalize rectangle jobs, that are pass-

ing through a sequence of machines in the given order, to parallelograms to be

arranged on a sequence of segments in the given or opposite order, cf. Fig. 2. By

that, a job is represented by two values on the time-axis: the time spent for entering

· · ·
· · ·

· · ·
· · · 1 2 3

4

Fig. 1 Bidirectional ship traffic at the Kiel Canal. Ship 4 must wait in a siding until ships 1, 2 and 3
have left the bottleneck segment
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Fig. 2 Example of the

compact bidirectional

scheduling model with

parallelograms representing

movement of vehicles from

left to right and right to left

i= 1 i= 2

time
j

j

entrance

transit

the segment (the time between the first entrance of the prow and the moment the

stern has accessed the segment) and the additional time needed to traverse the seg-

ment after the entering is finished. While the former prevents the segment from being

used by any other job (running in either direction), the latter only blocks the seg-

ment from being used by jobs running in opposite direction. An intersection-free

arrangement of parallelograms with appropriate orientation then ensures a feasible

(collision-free) movement of vehicles where those with equal travel-direction can

use a segment concurrently. Therefore, packing parallelograms relaxes the restric-

tion that a resource can only be used by one job at a time since it is extended by a

second dimension corresponding to positions.

With rectangles being special parallelograms, hardness results from scheduling

carry over to the bidirectional case. From the application point of view the time for

transit is dominating the time for entrance. Hence, we are especially interested in

difficulties that additionally arise from delays induced by orientation-switches of the

parallelograms instead of varying entrance times. To that end, we fix these entrance

times in our considerations. By this we get insights according to complexity in depen-

dence of the number of considered segments. Furthermore, the bidirectional traffic

at the Kiel Canal is distinguished by the specialty that exceptions for the passing of

ships with smaller dimensions exist. Thus, we consider parallelograms with opposite

orientation that are compatible and hence, are allowed to overlap. In our investiga-

tions, we complement 𝖭𝖯-hardness for general compatibilities with a classification

of compatibilities that admit efficient exact algorithms. In the case of entrance times

that are not fixed, the techniques of [1] can be extended to prove the existence of

a polynomial time approximation scheme (PTAS) for bidirectional scheduling on a

single segment. For further details on the complexity results we refer to [2].

In the online setting, we are interested in the increase of the costs due to the

circumstance that vehicles register their transit requests only on short notice. In an

online instance of bidirectional scheduling, jobs are not known in advance but appear

by their release date. Once, an online algorithm has started a job on a segment it

is not possible to revert the decision since it corresponds to the movement of the

corresponding vehicle. In our considerations, we apply the common technique of

competitive analysis where the results of an online algorithm over all instances are

compared to the optimum an offline algorithm can achieve. This comparison is quan-

tified by the competitive ratio and finding the best possible one yields a meaningful
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measurement of the loss caused by the online restriction. For bidirectional schedul-

ing in general, we can bound the best possible competitive ratio from below by 2
and from above by 4, compare [5, 6]. For special cases, we can provide polynomial

running time and decrease the gap between lower and upper bounds on the best pos-

sible competitive ratio. However, as in many online optimization problems we are

not able to close this gap.

3 Competitive-Ratio Approximation Schemes

The concept of competitive-ratio approximation schemes is an alternative approach

to deal with such open gaps in online scheduling [4]. Such schemes compute online

algorithms with a competitive ratio arbitrarily close to the best possible competitive

ratio. To that end, a new way of designing online algorithms is presented for the

example of parallel machine scheduling with preemptive and non-preemptive jobs

to minimize the weighted sum of completion times. The approach can furthermore

be extended to bidirectional scheduling for a single segment.

In addition to structuring and simplifying input instances as in [1], an abstract

description of online scheduling algorithms is used to reduce the infinite-size set

of all online algorithms to a relevant set of finite cardinality. In addition, the com-

petitive ratio of these algorithms can be approximated with 1 + 𝜀 precision. This

combination is the key for eventually allowing an enumeration scheme that finds an

online algorithm with a competitive ratio arbitrarily close to the optimal one and that

approximates the corresponding value up to a 1 + 𝜀 factor. This implies a respective

estimate for the optimal competitive ratio.

The approach differs strongly from those where (matching) upper and lower

bounds on the competitive ratio of a particular and of all online algorithms were

derived manually. Instead, the search for the best possible competitive ratio for the

considered problems can be tackled by executing a finite algorithm.

4 The Ship Traffic Control Problem

For the original problem of ship traffic control at the Kiel Canal [9] more complex

feasibility constraints for instance in the sidings must be respected. To that end, we

combine the scheduling perspective with a dynamic routing approach and therefore

integrate algorithmic ideas from two important related applications, train scheduling

on a single-track network [11] and collision-free routing of automated guided vehi-

cles [3]. The idea is roughly, to embed a sequential (local) routing method which

considers only one ship at a time, in a simultaneous (global) scheduling method to

optimize the complete fleet. In addition, we embed the algorithm into a rolling hori-

zon approach. It is implemented such that after new request-information is incorpo-

rated, all parts of the solution that are not fix by that point in time is reconsidered

again.
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The sketched algorithmic combination yields a fast heuristic with an average

running time of less than 2 min for historic instances covering a time horizon of

24 h each. The achieved objective function values significantly improve upon man-

ual plans. Results of smaller instances are compared with instance-dependent lower

bounds. The calculated solutions have been presented to the expert planners by ani-

mated ship-movements and as interactive distance-time diagram, see Fig. 3. The lat-

ter is based on the diagram that is used by the planners on site who approved the

presented solutions. Most importantly, the practical context is modeled in such a

high level of detail that the resulting tool perfectly reflects the effects of enlarge-

ment options at the Kiel Canal. This enabled the officials to evaluate the different

options under ship traffic predicted for the year 2025, and to base their decisions on

the simulation results.

Even though it was not intended by the study, the heuristic complies with impor-

tant requirements for computer aided traffic control. In fact, the planning in rolling

horizons is able to deal with the present online character. It perfectly integrates with

a further heuristic [10] that schedules the locking process at each boundary of the

Kiel Canal since entering, passing, and exiting the canal are interdependent. The

overall system may support the expert planners during several potentially difficult

years of construction work. Moreover, it was considered to use the tool for deciding

Fig. 3 A distance-time diagram presenting a solution of a complex ship traffic control instance

that was calculated by the developed heuristic
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about the schedule of the construction work itself: Different orders of construction

and the selection of different excavating machines (several of which significantly

hinder regular traffic) directly influence the traffic flow under scarce resources.

5 Summary

To summarize, we implemented a solution of high practical value that is able to

tackle bidirectional traffic (1) as offline heuristic solving many instances of reason-

able size fast and sufficiently detailed for meaningful study-results and (2) as online

tool which is applicable as suggestion tool for the daily planning. In addition, we

provide a compact model that admits theoretical insights on the nature of bidirec-

tional traffic. It emphasizes the challenges occurring at bottleneck segments where

bidirectional operation is necessary since they are origins of large delays. The inves-

tigations are accomplished in the offline and the online case. Finally, we present a

new approximation concept for competitive analysis in online scheduling.
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Integrated Segmentation of Supply
and Demand with Service Differentiation

Benedikt Schulte

Abstract The presented research addresses the integrated segmentation of supply

and demand with service differentiation by means of service-level menus. To this

end, it establishes a joint perspective on the market side—that is, prices and ser-

vice levels—and the operations side—that is, the inventory management policy and

the corresponding parameters. This joint perspective comprises analyzing when the

introduction of a service-level menu increases profits over those of a single undif-

ferentiated offering and how to design optimal service-level menus. Surprisingly, in

many cases service differentiation does not increase profits significantly. One way to

interpret this finding is that differentiating customers based on service levels alone is

a weak differentiation lever only, that is, the price differences between offerings with

differing service levels need to be small in order to prevent customers from switching

to offerings with lower prices and service levels. Therefore, successful price differ-

entiation requires service differentiations being supported by presence of additional

conditions or measures (e.g., pricing restrictions or further differentiation levers).

Indeed, it is possible to show that service differentiation can significantly increase

profits if the company experiences pricing restrictions.

1 Introduction

This article presents the author’s Ph.D. thesis [3], which has been awarded the dis-

sertation price of the German Operations Research Society (GOR) during the OR

conference 2016 in Hamburg. This thesis addresses the integrated segmentation of

supply and demand with service differentiation by means of service-level menus.

The following sections provide an introduction to the topic of service differentiation

(Sect. 2) and an overview of some of the thesis’ main findings (Sect. 3).
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2 Motivation and Introduction to Service Differentiation

Companies increasingly rely on third parties for raw materials, intermediate prod-

ucts, finished products, and spare parts. While this approach allows them to stream-

line internal processes and usually to reduce costs, it also requires that they control

the risk that suppliers will not be able to deliver requested items on time and in

full. Therefore, companies monitor their suppliers’ delivery performance, measur-

ing them in terms of the service levels that suppliers commonly guarantee for their

customers through contractually stipulated service-level agreements. For instance,

[7] report that 70% of the retailers in the consumer goods industry monitor their

suppliers’ service levels.

All customers prefer high levels of service, but some customers value high levels

of service more than others and will trade product characteristics like price for higher

service levels. For instance, reliable product availability is important for customers,

who incur high shortage costs if an order is not fulfilled promptly, so paying a higher

price is reasonable. However, other customers have lower shortage costs and attribute

less value to product availability and more to price. Additionally, a single customer’s

requirements in terms of service levels may vary between different orders—higher

when the customer places an emergency order and lower for standard orders that are

less time-sensitive.

An example of variations in the required service levels concerns the provisioning

of spare aircraft parts. Because airlines require spare parts to be available worldwide

within few hours, the provisioning of these parts is usually handled by third-party

spare-parts providers. Here, a particular challenge is that the importance of product

availability varies not only between different customers but also between order types.

In particular, the service levels required for emergency orders (which are usually

termed “aircraft on ground”) are higher than those for standard replenishments or

scheduled maintenance.

Samii et al. [2] present an example for the varying importance of product avail-

ability from another domain. They discuss the case of influenza vaccines, where

higher levels of vaccine availability are required for critical population segments

(e.g., healthcare professionals, elders, and, children) while lower levels are accept-

able for the general public.

As a consequence of the varying importance of product availability, the customers

of companies that offer a single guaranteed service level frequently push for higher

levels of service even at higher prices, while other customers demand lower prices

without caring for availability. Clearly, standard service-level guarantees with a sin-

gle service level for all customers cannot content all customers. Service-level menus

overcome the shortcomings of single service-level guarantees: the company posts

several combinations of prices and service levels and allows customers to choose

from the options according to their needs.

The introduction of service-level menus changes how companies interact with

their customers by allowing customers to choose among several offerings to match

their needs. However, introducing several service-level guarantees also requires that
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the offering company change how it operates, as the following example illustrates:

A technology company recognized the necessity of offering several service levels

for a range of their products. However, its production and distribution network could

not provide more than one level of service. As a result, the company offered differ-

ent service levels and charged different prices, but all customers received the best

possible service. Providing this high level of service to all customers led to higher-

than-necessary costs for the company, and the policy carried the risk of upsetting

customers who paid higher prices while receiving the same level of service as those

who did not.

As this example shows, the use of service-level menus requires adapting the

supply chain in order to provide differing levels of service. This can be achieved

via inventory rationing, especially through critical-level policies that protect cer-

tain parts of the inventory for orders (resp. customers) that require a higher level of

product availability. Critical-level policies function in an intuitive and easily imple-

mentable way. One can think of a two-bin inventory-management rule in which each

item of stock on hand is kept in one of two physically or virtually separated locations

(e.g., bins). All demands are filled from the first bin until it is exhausted, at which

time high-priority orders are served from the second bin, while low-priority orders

are rejected or backordered. Here, the critical level corresponds to the contents of the

second bin. This analogy can be extended to more than two customer classes (bins).

Because the company chooses which service levels and which prices to offer and

customers self-select from the various offerings of the service-level menu, the com-

pany’s profits and the customers’ level of satisfaction should both increase. How-

ever, a decision-maker who is considering introducing such a service-differentiation

strategy must first answer several questions: First, the decision-maker should deter-

mine whether such a service-differentiation strategy is likely to significantly increase

profits. Second, if this is the case, the decision-maker must determine the number

of service levels to offer and the corresponding prices and service levels. Third, the

decision-maker must determine the parameters of the corresponding critical-level

policy.

Although inventory-rationing strategies in general and critical-level policies in

particular have been well-studied (cf. [1] for research in a multi-period setting and [2]

for research in a single-period setting), the existing research on service differentiation

considers only the third of the three questions for decision-makers. The next section

explains how to address the other two.

3 Summary of Findings

Because developing an integrated perspective on the supply and demand sides of ser-

vice differentiation involves the study of various complex and interrelated problems,

the presented research proceeds in three steps. The first step focusses on the opera-

tions side, studying how to manage multiple service levels and how additional cus-

tomer classes (or offerings) affect the required inventory. The second step addresses
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the relationship between the market side and the operations side by studying the joint

optimization of price and inventory (without service differentiation). The third step

concerns when the introduction of a service-level menu increases profits over that of

a single undifferentiated offering and how to design optimal service-level menus.

To this end, one analytical setting is maintained throughout the discussion: A

profit-maximizing, monopolistic firm supplies a single product from a single ware-

house over a finite period of time to a set of heterogeneous customers. Prior to the

selling period the firm purchases a number of units of the product. During the sell-

ing period, individual customer demands follow a Poisson process, as does the total

of all customer demands because sums of Poisson processes are Poisson processes.

Whether a given customer demand is fulfilled depends on the current pricing pol-

icy and the current inventory. Any remaining units of stock at the end of the selling

period are either salvaged or held for future sale such that the company incurs either

a salvage value or holding costs.

The first step (cf. [6]) addresses the question of inventory management. Assum-

ing that a number of customers (or customer classes) and the corresponding demand

rates and service-level guarantees are exogenously given, we develop an approach by

which to determine the minimum required starting inventory and the corresponding

critical levels and explore how the number of customer classes affects the required

inventory. In order to determine the minimum required starting inventory, closed-

form expressions for 𝛼 and 𝛽 service levels for an arbitrary number of customer

classes and given system parameters are derived. As a byproduct, the derivation of

the closed-form expressions characterizes the service levels in terms of when the

critical levels are hit. Based on the service-level expressions and additional struc-

tural insights, we provide an algorithm with which to derive numerically the para-

meters of a critical-level policy (i.e., the minimum required starting inventory and the

associated critical levels) using demand rates and service-level guarantees as input

parameters. Schulte and Pibernik [6] also includes an extensive numerical study in

which the system parameters, including the number of customer classes, vary.

The second step (cf. [4]) addresses the integration of pricing and inventory man-

agement without service differentiation, that is, the integrated optimization of price

and inventory in a single-period make-to-stock or procure-to-stock setting with Pois-

son demand. In particular, I develop an analytical solution approach that covers

a broad class of demand functions, including linear and iso-elastic demand, and

explains how to use piece-wise linear approximations to handle the complex and/or

discontinuous price-demand relationships that may occur in real-life situations.

Building on the aforementioned results, the third step (cf. [5]) addresses the ques-

tion concerning how to design optimal service-level menus while considering the

underlying inventory-management policy. Because such service-level menus allow

the firm to price-differentiate based on its customers’ service-level preferences, we

term this service-level-based price differentiation “SLBPD”. The contribution of our

research is threefold:

∙ First, we provide an analytical formulation for the integrated optimization problem

of designing a service-level menu and determining the corresponding parameters
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of the underlying inventory-rationing policy, a problem that has not, to the best of

our knowledge, been studied before.

∙ Second, our research reveals analytical and conceptional insights that are relevant

beyond the scope of our research. In particular, we develop an equivalent problem

formulation that links SLBPD and dynamic pricing, allowing us to use the rich

body of research on dynamic pricing in order to gain a better understanding of

SLBPD and helping to put service differentiation in perspective and to interpret

our results.

∙ Third, building on these insights, we study when SLBPD is profitable and how

best to design a service-level menu. In particular, our analytical and numerical

insights show that, in many cases, service differentiation does not increase profits

significantly.

One way to interpret this finding is that differentiating customers based on service

levels alone is a weak differentiation lever only, that is, the price differences between

offerings with differing service levels need to be small in order to prevent customers

from switching to offerings with lower prices and service levels. Therefore, success-

ful price differentiation requires service differentiation’s being supported by pres-

ence of additional conditions or measures (e.g., pricing restrictions or further dif-

ferentiation levers). Indeed, our research also shows that service differentiation can

significantly increase profits if the company experiences pricing restrictions.

These results have immediate relevance for companies that consider to use

SLBPD. In particular, decision makers from such companies learn that the poten-

tial profitability of SLBPD depends on the relationship between their current price

and the optimal monopolistic price, the price-setting newsvendor price. If their cur-

rent price is greater (or not significantly smaller) than the price-setting newsvendor

price, then they should not pursue service-differentiation further. However, if (e.g.,

due to regulation, competition, customer expectations, or other influences) the cur-

rent price is significantly lower than the optimal monopolistic price, then service

differentiation has the potential to increase profits significantly.
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Improved Compact Models
for the Resource-Constrained Project
Scheduling Problem

Alexander Tesch

Abstract In this article, we study compact Mixed-Integer Programming (MIP)

models for the Resource-Constrained Project Scheduling Problem (RCPSP). Com-

pared to the classical time-indexed formulation, the size of compact models is

strongly polynomial in the number of jobs. In addition to two compact models from

the literature, we propose a new compact model. We can show that all three compact

models are equivalent by successive linear transformations. For their LP-relaxations,

however, we state a full inclusion hierarchy where our new model dominates the

previous models in terms of polyhedral strength. Moreover, we reveal a polyhedral

relationship to the common time-indexed model. Furthermore, a general class of

valid cutting planes for the compact models is introduced and finally all models are

evaluated by computational experiments.

1 Introduction

In the Resource-Constrained Project Scheduling Problem (RCPSP) we are given

a set of n non-preemptive jobs j ∈ J with processing times pj > 0 and a set of

resources k ∈ R with capacity Rk ≥ 0where each job j ∈ J has a demand of rjk ≥ 0
units of resource k ∈ R. Furthermore, there are precedence relations P ⊂ J ×J
between the jobs where (i, j) ∈ P indicates that job i must end before job j starts. In

the RCPSP we want to compute starting times for all jobs that satisfy the precedence

constraints and such that at any point in time the resource consumptions of all active

jobs does not exceed the capacities. The objective is to minimize the makespan which

equals the total project duration.

The most common MIP formulation for the RCPSP is the time-indexed model

of Pritsker et al. [10]. In this model, every job is assigned to a starting time within

a discrete scheduling horizon. Many variants and extensions of the time-indexed

model have been studied during the last decades, see for example [4, 5, 9]. But

since the model size grows quadratically with the scheduling horizon, time-indexed
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models are still computationally intractable for large time horizons. This motivates

the study of compact MIP models for the RCPSP whose size is strongly polynomial

in the number of jobs. Currently, mainly two types of compact models are known.

Artigues et al. [1] introduce a flow-based compact model where a resource flow

determines the precedences between the jobs. Koné et al. [8] develop two event-
based compact models that assign all jobs to a fixed position in the starting order of

the jobs.

In this article, we introduce a new event-based compact model and we study the

polyhedral relationship between our model, the two models of Koné et al. [8] and

the time-indexed model of Pritsker et al. [10].

2 MIP Models

First, we briefly introduce the main modeling concepts of the time-indexed model

of Pritsker et al. [10] and the two compact models of Koné et al. [8].

Time-Indexed Model (DDT) [5, 10]. The time-indexed case considers a dis-

crete time horizon T = {0,… ,T}, discrete processing times pj ∈ 𝖹𝖹
>0 and deci-

sion variables xjt ∈ {0, 1} that are one, if job j ∈ J starts at time t ∈ T . Resource

constraints are applied at every time point t ∈ T , therefore the model size grows

quadratically with T .

Event-Based Compact Models [8]. In the compact models of Koné et al., we are

given a set of events V where an event denotes a time point where one or multiple

jobs start. Every event v ∈ V is therefore correlated to a variable tv ≥ 0 that describes

the start time of all jobs that start at event v. All events appear sequentially, that is

tv ≤ tv+1 holds for all v ∈ V . Since n events are sufficient, the makespan is modeled

by the variable tn+1 ≥ 0.

(i) On-/Off Event-Based Model (OOE). This model uses activity variables ujv ∈
{0, 1} that are one, if job j ∈ J is executed during the event interval [tv, tv+1)
with v ∈ V .

(ii) Start-/End Event-Based Model (SEE). The model considers variables yjv ∈
{0, 1} and yjw ∈ {0, 1} that are one, if job j ∈ J starts at event v ∈ V or ends
at event w ∈ V ′ = {v + 1 ∣ v ∈ V } respectively.

In [12], stronger inequalities for OOE and SEE are introduced.

2.1 A New Compact Model

We now introduce a new event-based model, the Disaggregated Position Model
(DP), which considers decision variables zjvw ∈ {0, 1} that are one, if job j ∈ J
starts at event v ∈ V and ends at event w ∈ V ′

. The model states
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min tn+1 (1)
∑

(v,w)∈A
zjvw = 1 ∀j ∈ J (2)

pj ⋅
∑

v≤v′<w′≤w
zjv′w′ ≤ tw − tv ∀j ∈ J , (v,w) ∈ A (3)

∑

j∈J

∑

v≤v′<w
rjk ⋅ zjvw ≤ Rk ∀v′ ∈ V , k ∈ R (4)

∑

(v,w)∈A ∶w≥v′+1
zivw +

∑

(v,w)∈A ∶v≤v′
zjvw ≤ 1 ∀(i, j) ∈ P , v′ ∈ V (5)

tv ≥ 0 ∀v ∈ V ∪ {n + 1}
zjvw ∈ {0, 1} ∀j ∈ J , (v,w) ∈ A

where the objective (1) is to minimize the makespan. By inequalities (2) every job

starts and ends at events (v,w) ∈ A = {(v,w) ∈ V × V ′ ∣ v < w}. Inequalities (3)

determine the time lag tw − tv ≥ 0 between two events (v,w) ∈ A that is the maxi-

mum duration pj of a job j ∈ J that is scheduled between events v and w. Inequal-

ities (4) ensure that the resource consumptions of all active jobs at event v′ ∈ V
do not exceed the capacities. For each precedence relation (i, j) ∈ P inequalities (5)

forbid that job j has a start event earlier than the end event of job i. In contrast to OOE

and SEE, the DP model involves no big-M parameters or linearized expressions.

2.2 Linear Transformations

Between the compact models there hold the following linear transformations

ujv =
∑

v′≤v
yjv′ −

∑

v′≤v
yjv′ ∀j ∈ J , v ∈ V (6)

yjv =
∑

v<w
zjvw ∀j ∈ J , v ∈ V (7)

yjw =
∑

v<w
zjvw ∀j ∈ J ,w ∈ V ′

(8)

ujv =
∑

v′≤v<w′

zjv′w′ ∀j ∈ J , v ∈ V (9)

where (6) links OOE with SEE, (7)–(8) links SEE with DP, and (9) links OOE with

DP by applying both transformations consecutively.

Denote by 𝛷1 and 𝛷2 the linear transformations (9) and (6) respectively. Further-

more, given a MIP model M, let PM
be the associated polyhedron of its LP-relaxation

and let PM
I be the integer hull of PM

, see [11].
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Theorem 1 For the linear transformations 𝛷1 and 𝛷2 it holds

𝛷1(PDP
I ) = 𝛷2(PSEE

I ) = POOE
I and 𝛷1(PDP) ⊂ 𝛷2(PSEE) ⊂ POOE

.

Theorem 2 Assume an instance of the DP model and expand it by settingV = T =
{0,… ,T}. Then take the restriction zjvw = 0 for all (v,w) ∈ A with w − v ≠ pj and
project it to the z-variables zjvw with w − v = pj. The resulting model DP′ satisfies
PDP′ = PDDT.

Theorem 1 states the equivalence between integer solutions of the models OOE,

SEE and DP. According to their LP-relaxations, however, our new DP model dom-

inates the compact models OOE and SEE of Koné et al. [8]. It further reveals that

SEE is stronger than OOE.

Moreover, Theorem 2 states a relationship between the compact models and the

time-indexed model DDT. In other words, DDT is obtained from DP by subsequent

expansion, restriction and projection of the corresponding polyhedron PDP
. Com-

plete proofs of Theorems 1 and 2 can be found in [12].

3 Primal-Dual Cutting Planes

Let𝜇jv ≥ 0 be the duration of job j ∈ J in the event interval [tv, tv+1] for an event v ∈
V . We couple the 𝜇jv variables into the compact models by adding the inequalities

∑

v∈V
𝜇jv ≥ pj ∀j ∈ J (10)

𝜇jv ≤ pj ⋅ ujv ∀j ∈ J , v ∈ V (11)

which indicate that every job has its processing time distributed over the event inter-

vals v ∈ V (10) but only at events where the job is active (11). Since the variables ujv
in inequality (11) belong only to OOE, the transformations (6) and (9) yield equiv-

alent inequalities for SEE and DP.

A job subset F ⊆ J is called feasible, if all jobs in F can be scheduled in parallel.

Let F ⊆ 2J denote the set of all feasible job subsets.

Theorem 3 Given coefficients 𝛿j ≥ 0 for all jobs j ∈ J where
∑

j∈F 𝛿j ≤ 1 holds for
all feasible subsets F ∈ F then the following inequalities are valid

∑

j∈J
𝛿j𝜇jv ≤ tv+1 − tv ∀v ∈ V . (12)

Inequalities (12) yield strong valid cutting planes for the proposed MIP extension.

They further generalize many valid inequalities that were originally proposed for an

LP model of Carlier and Néron [3], for example: energetic reasoning cuts, (lifted)
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cover cuts, clique cuts and redundant function cuts, see also [6]. As shown in [12],

the cutting planes (12) originate from a primal-dual relation between the two linear

programming models of Brucker and Knust [2] and Carlier and Néron [3]. Cutting

planes of the form (12) can be computed by solving a linear program with generally

exponentially many inequalities (for every F ∈ F ). Therefore, we generate only a

constant number of such cuts in a preprocessing step.

4 Computational Results

Our models were tested on 480 instances of the PSPLIB [7] where each instance

considers 30 jobs, 4 resources and various precedence graphs. Computations are

performed on a 3.5 GHz Intel Xeon CPU, 16 GB RAM using CPLEX version 12.6.

We implemented the time-indexed model DDT and the compact models OOE, SEE

and DP. More specifically, we use a transformed but equivalent version of SEE [12]

with a sparser constraint matrix what can be exploited by modern MIP solvers. All

compact models include the extensions (10)–(11) for which we generated n = 30
primal-dual cuts (12) according to randomized objective coefficients. The time limit

of each instance is 300 s. Our experimental results are illustrated in Table 1.

The columns opt and ub = opt show the number of instances where the optimal

solution was found, provably and non-provably respectively. Moreover, the columns

#vars and #cons represent the average number of variables and constraints in the

models. Columns 𝛥lb and 𝛥ub show the total difference of the computed lower- and

upper bounds compared to the weakest model.

Among the compact models, the revised SEE model reveals the best performance

mainly due to its sparse constraint matrix. The OOE model performs well in the

primal but weak in the dual because it has a few number of binary variables but a

weak LP-relaxation. Even though it constitutes the theoretically strongest compact

model, DP shows weaker results than all other models. The main reasons are the huge

number of binary variables and highly fractional LP-relaxations that consume a lot

of computation time. More sophisticated preprocessing techniques might overcome

this complexity in the future. In comparison to DDT, the compact models are slightly

inferior on most instances. Interestingly, on a subset of generally hard instances the

revised SEE model strictly outperforms DDT in the primal and dual because the

Table 1 Comparison of the MIP models

Model Opt ub = opt #vars #cons 𝛥lb 𝛥ub

DDT 422 428 4980 9368 491 −377

OOE 265 392 900 9240 186 −600

SEE 295 407 1830 8123 415 −592

DP 219 324 13950 5370 0 0
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extension cuts (10)–(12) yield drastically stronger lower bounds compared to DDT

and to the original models of Koné et al. [8]. Even a small number of randomized

cuts yields reasonably strong dual bounds [12].

Since the time horizon of any problem instance can be scaled arbitrarily, the com-

pact models will always dominate DDT at a certain scaling factor.
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A Precious Mess: On the Scattered Storage
Assignment Problem

Felix Weidinger

Abstract Induced by the rise of online retailing new storage strategies have evolved,

designed to meet the demands of e-commerce warehousing. Although many of these

new approaches have established over the last few years, literature on basic planning

problems in these environments can be found only rarely. This paper points out the

special needs of e-commerce warehousing and details the scattered storage strategy

(also known as mixed-shelves storage) where unit loads are unbundled and single

items are stored at multiple positions within the warehouse. This way, an item of an

ordered product is always close by and the unproductive walking time of pickers is

reduced. Based on the paper of Weidinger and Boysen (Scattered storage: how to

distribute stock keeping units all around a mixed-shelves warehouse. Working Paper

Friedrich-Schiller-University Jena, 2015) [8], the scattered storage assignment prob-

lem is presented and the processes in a scattered storage warehouse are described.

1 Introduction

E-commerce has gained a lot of importance in the recent years. However, consult-

ing today’s literature on warehouse management one has to observe that the revo-

lution of e-commerce is rarely considered. Instead—referring to storage assignment

strategies—only the two classical approaches dedicated and shared storage can be

found in many cases (see, e.g., [1]). This dichotomy, though, seems to be incomplete

nowadays, as the rise of e-commerce has led to an emergence of new storage con-

cepts supporting the needs of e-commerce warehousing much better than classical

approaches.

The most important challenges to be tackled managing the logistic processes of

an online retailer can be summarized under the following four points [9].

F. Weidinger (✉)

Lehrstuhl für Operations Management, Friedrich-Schiller-Universität Jena,

Carl-Zeiß-Straße 3, 07743 Jena, Germany

e-mail: felix.weidinger@uni-jena.de

URL: http://www.om.uni-jena.de/

© Springer International Publishing AG 2018

A. Fink et al. (eds.), Operations Research Proceedings 2016,

Operations Research Proceedings, DOI 10.1007/978-3-319-55702-1_5

31



32 F. Weidinger

∙ Small orders: Typically, consumers order only small quantities of products. Accord-

ing to the personal information of an Amazon warehouse manager, the vast number

of orders contains only one or two items.

∙ Large assortment: Pursuing the long tail strategy (see, e.g., [2, 5]), most online

retailers have an assortment of goods much larger than classical retailers. The

revenue of selling niche products often represents a significant part of the total

revenue.

∙ Scalability: The amount of orders to be processed is highly volatile, since it varies

on different levels. Some seasons are more high-selling than others and the same

can be observed for differing days of the week.

∙ Tight delivery schedules: An important aspect of customer service is a fast deliv-

ery. This way, one of the most significant disadvantages of online shopping in com-

parison with retail shops, the lack of immediateness, is partly compensated. Most

online retailers guarantee next day delivery and the percentage of shops offer-

ing same day delivery is growing. Amazons program Prime Now even provides

a delivery within a 1-h timeframe after submitting the order. In consequence, all

processes triggered by a customer order are highly time-critical.

One representative of the new generation of storage strategies tackling these chal-

lenges is the scattered storage strategy. Like most of its companions, scattered stor-

age can rarely be found in today’s literature although it is implemented in a vast

number of warehouses worldwide, including basically all European Amazon ware-

houses. This paper, at first, details the basic idea of scattered storage as well as impor-

tant processes in a scattered storage warehouse (Sect. 2.1). Afterwards, the scattered

storage assignment problem by Weidinger and Boysen [8] is described (Sect. 2.2)

and their most important findings on scattered storage warehouses are pointed out

(Sect. 2.3). Finally, the paper is summarized (Sect. 3).

2 The Scattered Storage Strategy

The basic idea of the scattered storage strategy is to unbundle unit loads in the receiv-

ing area and store single items of one stock keeping unit (SKU) at differing positions

within the warehouse, furnished with head-high shelves (low-level picking [4]). To

use space more efficiently, items of different SKUs are assigned to the same stor-

age bays of so-called mixed-shelves. Having multiple storage positions per SKU

tends to always have an item of an ordered SKU close by, irrespective of the position

within the warehouse. Based on this concept, highly performant and scalable picking

processes especially suited for the needs of online retailers can be implemented. One

possible implementation of the picking process in such a scattered storage warehouse

is detailed in the following. The example is based on the description of processes in

European Amazon warehouses by Weidinger and Boysen [8].
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2.1 The Picking Process in a Scattered Storage Warehouse

To use the height of a building although having implemented a low-level picking

strategy, Amazon warehouses are often constructed as multi-mezzanine systems.

Each level is furnished with head-height shelves arranged in a rectangular layout.

However, a picker, typically, remains on a single floor of the system during the pick-

ing process and changes stories only in exceptional cases. As the mean order volume

is small, batching is implemented to utilize full picker capacity. Avoiding an addi-

tional sorting step subsequent to the picking process, each picker is equipped with

a small maneuverable cart providing one standardized bin for each order currently

picked.

Not having a structured and, consequently, learnable allocation of SKUs, pickers

are highly reliant on an information system. Therefore, each picker carries a handheld

scanner providing information about the next storage position to be visited as well

as the name and quantity of the SKU to be picked. Guided by the device, the picker

heads towards the storage position and, once arrived, scans the storage bay as well as

the article to be picked before he/she adds it to the corresponding bin. The scanning

process ensures that the right article is picked and, additionally, tags the storage

position as available for restocking in the underlying warehouse management system.

Once an order is completely picked, the worker can hand off the bin containing

all demanded items to a conveyor system, which transports it to the packing and

shipping area of the warehouse. Entrances to this conveyor system are available at

multiple positions spread all over the warehouse. At each station of this so-called dis-
tributed depot system the picker can obtain new empty bins to refresh the capacity of

the picking cart, while new picking instructions are made available via the handheld

scanner. In consequence, the picking tours are not bound to a central point of the

warehouse anymore. Instead, the pickers roam the warehouse continuously, finaliz-

ing old and receiving new picking orders as well as empty bins at the distributed

depot system. When processing heterogeneous orders of small volume, this strategy

leads to a highly performant picking process.

Leaving behind the concept of a central depot, however, classical storage assign-

ment strategies will fail, as they are grounded on a centralized layout. Weidinger and

Boysen [8] identify this deficit in research and present a storage assignment strategy

especially suited for scattered storage warehouses. Their approach is detailed in the

next section.

2.2 The Scattered Storage Assignment Problem

The intention of the storage assignment problem is to support the picking process

best. Therefore, classical approaches tend to assign SKUs with a high turnover rate

near to the depot and SKUs demanded less frequently to more remote storage posi-

tions [1]. This way, SKUs to be picked more often can be found close to the start

and end point of each tour, resulting in shorter picking tours on average. Planning
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the assignment in a scattered storage warehouse, however, the initial position of the

picker is not available, as it could be each of the numerous stations of the distributed

depot system. Therefore, Weidinger and Boysen [8] suggest maximizing the scatter

of items. This way, the average length to reach the nearest item of a given SKU is

shortened, irrespective of the actual position of the picker.

To quantify the scatter of an assignment, they introduce so-called measuring
points, which could be interpreted as possible start points of a tour. However, these

measuring points are not necessarily located at depot stations, but rather at strategi-

cally chosen locations. The objective of the presented scattered storage assignment

problem is to find a feasible assignment 𝛤 such that the maximum distances to reach

the nearest item of each SKU i ∈ I starting from an arbitrary measuring point 𝜏 ∈ D
are minimized. An assignment is feasible if none of the storage positions s ∈ S is

assigned more than once and all ni items of each SKU i ∈ I are allocated to compat-

ible storage positions, given by the subsets Si ⊆ S. Restrictions on storage positions

(∃i ∈ I ∶ Si ≠ S) may be caused by product size or weight, for example.

To avoid shortages, not all storage positions have been emptied when planning

a new assignment. Therefore, the distance to reach an item of SKU i starting from

measuring point 𝜏 is bounded by the distances to the already assigned items. The

bounds are given by problem parameters 𝛿
𝜏i, while the shortest distances to newly

assigned items are assumed to be returned by the function 𝔡
𝜏i(𝛤 ) depending on the

storage assignment 𝛤 . Based on this notation, the objective value of an assignment

𝛤 is calculated as given in formula 1. Note that Weidinger and Boysen [8] use a

weighted sum of maximum distances. A higher weight wi of SKU i might represent

that it is more time-critical or more fast-moving than other SKUs and, therefore, has

to be considered with a higher priority.

F(𝛤 ) =
∑

i∈I
wi ⋅max

𝜏∈D
{min{𝔡

𝜏i(𝛤 ); 𝛿
𝜏i}} (1)

Example: An instance of the storage assignment problem is depicted in Fig. 1.

The warehouse has ten storage positions (see Fig. 1a). Four of them are open to be

reassigned to two items of SKU 1 and one item of SKU 2 and 3, respectively. SKU

Fig. 1 Sketch of the example



A Precious Mess: On the Scattered Storage Assignment Problem 35

2 is weighted by 2, while the remaining SKUs have a weighting factor of 1. As

distances are measured by the number of squares to be crossed to reach the given

storage position starting from the considered measuring point, the 𝛿-values can be

derived from the sketch of the warehouse. Note that the shelves are accessible only

via non-cross aisles such that 𝛿41 is 4 rather than 2. The feasible assignment 𝛤1 (see

Fig. 1b) improves the maximum distances given by the 𝛿-values significantly. The

objective value of this assignment amounts to F(𝛤1) = 13.

Weidinger and Boysen [8] formulate the optimization problem outlined above as

a mixed integer model and prove NP-hardness in the strong sense. Additionally, they

present suited heuristics to solve instances of real-world size in an adequate quality.

Based on this, an extensive simulation study is realized. Its most interesting findings

are summarized in the next section.

2.3 Effects of an Optimized Storage Assignment

Storage assignments are not optimized in most scattered storage warehouses. Instead,

items are allocated to storage positions in a randomized manner. Weidinger and

Boysen [8] show that picking tours are shortened by up to 20% on average and up to

50% in maximum when the storage assignment is planned more carefully using their

optimization approach. Note that the picking tours are determined employing a mod-

ified nearest neighbor heuristic introduced by Daniels et al. [3]. While picker rout-

ing in a rectangular warehouse with single storage positions per SKU is a solvable

case of the traveling salesman problem [6], picker routing in a rectangular scattered

storage warehouse becomes NP-hard due to multiple available storage positions per

SKU [7]. For this reason, a heuristic approach is used in the simulation study.

Furthermore, the replenishment level is identified as an important impact factor

in the simulation study. Weidinger and Boysen [8] define it as the percentage of

storage positions still occupied when replenishment takes place. Therefore, having a

constant pick rate, a lower replenishment level leads to longer time intervals between

two replenishment iterations. When using the randomizing assignment strategy, the

picking process is supported best when replenishment is performed in short intervals.

This way, the average quantity of storage positions per SKU is higher, resulting in

shorter picking tours. Naturally, this effect is observable for optimized assignments

as well. However, a second (antagonistic) effect is relevant for the optimizing strat-

egy. As the storage assignment is manipulated by the picking process permanently,

imbalances regarding the scatter may occur. These imbalances can better be fixed

when the replenishment level is lower. This way, more open storage positions are

available when planning the assignment and, consequently, a higher degree of scat-

ter can be obtained, resulting in shorter picking tours on average, too. When using

the optimizing approach, the replenishment level has to be selected such that both

effects are properly traded off against each other, consequently.
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Considering the higher effort for replenishment when using the optimizing strat-

egy, Weidinger and Boysen [8] additionally study effects on the total effort including

picking and replenishment. Even then the optimizing approach excels in scenarios

where using scattered storage is expedient.

3 Conclusion

This paper treats the challenges in e-commerce warehousing, having led to a whole

new generation of warehousing strategies. As a representative of these new

approaches, the scattered storage strategy is detailed. With the help of the scattered

storage assignment problem introduced by Weidinger and Boysen [8] the need for

novel approaches for solving classical planning problems (e.g., storage assignment)

in those new environments is demonstrated. The basic idea of the storage assignment

strategy is outlined and the most important findings are summarized.
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Integrated Location-Inventory Optimization
in Spare Parts Networks

Patrick Zech

Abstract This research work is concerned with integrated location-inventory

optimization in spare parts networks. A semi-Markov decision process (SMDP)

is developed, formulated as linear program (LP) and finally, embedded into a set-

covering problem framework. The resulting model is a mixed integer linear program

(MILP) which integrates (1) strategic facility choice, (2) tactical base-stock level set-

ting and (3) operational sourcing decisions. Due to the integration of these decision

stages, physical and virtual inventory pooling opportunities can be evaluated at the

same time. Experimental results emphasize the value of the integrated model com-

pared to the sequential ‘location first, inventory and sourcing second’ approach. The

cost savings are particularly high in networks with low fixed facility location cost,

high shipment cost and high demand rates as virtual inventory sharing opportunities

increase in these cases.

1 Introduction

After-sales service becomes increasingly important in today’s marketplace as com-

petition is strong and companies are looking for ways to distinguish themselves from

their competitors. At the heart of after-sales service is providing the customer with

spare parts in case of breakdowns that happen during regular operation. This work

focuses on expensive and critical spare parts which are characterized by low demand

rates and fast delivery requirements. The inventory holding cost of such parts are typ-

ically high which sets incentives to keep inventories low. Traditionally, low inventory

levels have been achieved by consolidating multiple stocking points into one physical

location and thereby, reducing the amount of system-wide safety stock [3]. However,

the downside of this approach is that delivery times and outbound shipment cost

typically increase since the centralized inventory is stored relatively far away from

the markets. Instead of pooling inventory physically, there is also the possibility of
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sharing inventory virtually among warehouses [5]. With this approach, the system-

wide inventory level can be reduced as well while the distance between warehouses

and markets tends to be shorter.

In this research work, we consider a spare parts manufacturer that outsources

supply chain management to a third-party logistics service provider (3PL) and that

needs to decide at which of the (already existing) warehouse locations to stock spare

parts. This decision problem has the notion of the classical strategic facility loca-
tion decision but, in fact, it is rather a facility choice or an assignment problem. For

solving this decision problem, we propose a mixed integer linear program (MILP)

that simultaneously evaluates physical and virtual sharing opportunities. Current

research mostly focuses on physical pooling opportunities with the notable exception

of Mak [4] who considers virtual inventory sharing in a location-inventory frame-

work. To the best of our knowledge, there is no study yet that integrates both pooling

variants in one model. The proposed MILP contains the following decision stages.

1. Strategic supply network design, i.e. at which warehouses to store spare parts.

2. Tactical inventory level optimization, i.e. which base-stock level to choose at each

warehouse.

3. Operational sourcing, i.e. from which warehouse to satisfy spare part orders.

To evaluate virtual inventory sharing opportunities, it is necessary to include the

inventory and sourcing decisions into the framework. The idea is that sourcing ware-

houses may vary dynamically depending e.g. on the current inventory level at each

of the warehouses. Thus, demand can be allocated to multiple warehouses which

then exhibit virtual inventory sharing. The MILP consists of a semi-Markov deci-

sion process (SMDP) that is formulated as linear program (LP) and embedded into a

set-covering framework. The model is briefly presented in this article and our find-

ings from an experimental study are provided. For further details on the model or

the solution algorithm deployed, the reader is referred to [8].

2 Model Formulation

We consider a three-tiered supply chain consisting of one supplier, multiple ware-

houses r ∈ R and markets m ∈ M. Each warehouse r replenishes items from an

external supplier with infinite supply according to an (S − 1, S) review policy, i.e.

the delivery of a part to a market immediately triggers a replenishment order at the

respective sourcing warehouse r. Furthermore, the replenishment lead-time of ware-

house r is exponentially distributed with mean 1∕𝜇r, where 𝜇r constitutes the replen-

ishment rate of warehouse r per time unit. Assuming an exponential lead-time distri-

bution appears rather restrictive at first glance—however, Alfredsson and Verrijdt [1]

have shown that the overall system performance is rather insensitive with regard to

the chosen lead-time distribution which makes our assumption robust. Each market

m faces a Poisson demand process with an expected number of demand arrivals 𝜆m
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per time unit. Furthermore, every market m can only be served by a subset of ware-

houses Rm because of service time constraints related to the geographical distance

between warehouses and markets.

Cost of tr,m are incurred for shipping one item from warehouse r to market m.

If no item is available at a warehouse within a market’s service region, the part is

express-shipped from an external supplier at cost of lm. The unit replenishment cost

of warehouse r are vr and the unit inventory holding cost at warehouse r are hr per

time unit. Moreover, fixed cost of fr are incurred if warehouse r is used to store spares.

For solving the outlined three-stage decision problem, we propose a MILP which

integrates an SMDP with a classical set-covering model. The latter is concerned with

the strategic network design decision and selects a subset out of a set of candidate

warehouses. Inventory and sourcing decisions are modeled with an SMDP which is a

reformulated version of the one in Seidscher and Minner [6]. The SMDP essentially

models an inventory system that contains the candidate warehouses r ∈ R as stocking

points. By minimizing replenishment cost, inventory holding cost, shipment cost and

express-shipment cost, the SMDP specifies in each state of the system from which

warehouse to source an incoming part order. Thus, it determines the optimal sourcing

policy for a given set of stocking points and base-stock levels.

The states i ∈ I of the SMDP represent the allocation of inventory to the stocking

points. We distinguish between auxiliary states i ∈ IA and decision states i ∈ ID.

The former is used to determine whether the next event will happen at a warehouse

(arrival of an outstanding replenishment order) or at a market (arrival of a new spare

part order). In those states, the system is not allowed to take a sourcing decision,

i.e. to specify from which warehouse to source the demand of a market. In contrast,

decision states i ∈ ID are concerned with taking these sourcing decisions q ∈ Rci for

a particular market ci ∈ M.

Let us introduce the following sets and parameters. First, the sets VA(r, u) and

VD(r, u) contain those states i ∈ IA and i ∈ ID that have an inventory level larger than

u at warehouse r ∈ R, respectively. Second, O(r) comprises those decision states

i ∈ ID where warehouse r ∈ R is out of stock. Furthermore, let Umax
r denote the

(preprocessed) maximum possible base-stock level at warehouse r. Umax
r is not to

be confused with a maximum storage capacity and is determined by optimizing an

M|M|S|S queue [8]. Moreover, the following decision variables are introduced.

yr Binary decision variable that indicates whether warehouse r ∈ R is used for

inventory placement.

Sr,u Binary decision variable that indicates whether the base-stock level u at ware-

house r ∈ R is active.

xi,q Decision variable that denotes the long-run fraction of decision epochs where

the system is in decision state i ∈ ID and decision q ∈ Rci is taken.

xi,0 Decision variable that denotes the long-run fraction of decision epochs where

the system is in auxiliary state i ∈ IA.

zi,0,r,u Decision variable that replaces the product Sr,u ⋅ xi,0, ∀i ∈ IA,∀r ∈ R, u =
0, 1,… ,Umax

r .
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min
∑

r∈R
fr ⋅ yr + C(SMDP) (1)

s.t.
∑

r∈Rm

yr ≥ 1 ∀m ∈ M (2)

Sr,u+1 ≤ Sr,u ∀r ∈ R, u = 0,… ,Umax
r − 1 (3)

Sr,0 = 1 ∀r ∈ R (4)

Umax
r∑

u=1
Sr,u ≤ Umax

r ⋅ yr ∀r ∈ R (5)

∑

i∈VA(r,u)
xi,0 +

∑

i∈VD(r,u)

∑

q∈Rci

xi,q ≤ Sr,u+1 ∀r ∈ R,∀u = 0,… ,Umax
r − 1 (6)

∑

i∈O(r)

∑

q∈Rci |q=r

xi,q ≤ yr ∀r ∈ R (7)

zi,0,r,u ≤ Sr,u ∀i ∈ IA,∀r ∈ R,∀u = 1, 2,… ,Umax
r (8)

zi,0,r,u ≤ xi,0 ∀i ∈ IA,∀r ∈ R,∀u = 1, 2,… ,Umax
r (9)

zi,0,r,u ≥ xi,0 −
(

1 − Sr,u
)

∀i ∈ IA,∀r ∈ R,∀u = 1, 2,… ,Umax
r (10)

yr ∈ {0, 1} ∀r ∈ R (11)

Sr,u ∈ {0, 1} ∀r ∈ R,∀u = 0, 1, 2,… ,Umax
r (12)

xi,0 ≥ 0 ∀i ∈ IA (13)

xi,q ≥ 0 ∀i ∈ ID,∀q ∈ Rci (14)

zi,0,r,u ≥ 0 ∀i ∈ IA,∀r ∈ R,∀u = 1, 2,… ,Umax
r (15)

+SMDP constraints (16)

The objective function is given by (1) which consists of two cost terms. The first

part refers to the costs associated with the strategic facility choice decision. The

second term denotes the total SMDP costs which is the sum of inventory holding

cost in auxiliary states as well as shipment, express-shipment and replenishment

cost in decision states associated with sourcing decisions.

Constraint (2) ensures that at least one warehouse location that can serve marketm
within the required service time window is used to stock spares. Constraint (3) repre-

sents the incremental definition of the Sr,u variables and ensures that base-stock level

u + 1 can only be active if the predecessor base-stock level u is also active. More-

over, constraint (4) requires that base-stock level u = 0 is active at each warehouse

r ∈ R. Furthermore, constraint (5) connects the inventory and location decision, i.e.

only at the selected warehouses inventory can be placed.
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Constraints (6) and (7) connect the set-covering problem framework with the

SMDP model. Constraint (6) applies the following logic: Those states that would

involve inventory levels higher than the base-stock levels need to be forbidden, i.e.

the relative fraction of being in that state (taking any decision) have to be equal to

zero. Additionally, constraint (7) ensures that demand can only be assigned to out-of-

stock warehouses that are also open (incurring unfavorable express-shipment cost).

When integrating the SMDP with the set-covering framework, the model (at first)

becomes non-linear as binary (Sr,u) and continuous decision variables (xi,0) are mul-

tiplied with each other. We resolve the non-linearity by introducing a new set of

continuous decision variables zi,0,r,u that replace the product term. Furthermore, we

add constraints (8)–(10) to the model. This approach is consistent with the literature,

see e.g. [2]. Moreover, constraints (11)–(15) define the variable domains.

For the sake of clarity, the SMDP constraints as well as the SMDP objective

function are not formulated explicitly in this article. The interested reader is referred

to [8] for a full exposition of the MILP, in particular the SMDP. Nevertheless, in

order to give a notion of the SMDP model, we provide the general LP formulation

that can be used to solve SMDPs [7]. 𝜏i is the average time of being in state i ∈ I and

pi,j,q denotes the transition probability from state i ∈ I into state j ∈ I under decision

q ∈ Q(i). Ci,q denotes the cost in state i ∈ I associated with decision q ∈ Q(i).

min
∑

i∈I

∑

q∈Q(i)
Ci,q ⋅

xi,q
𝜏i

(17)

s.t.
∑

q∈Q(j)

xj,q
𝜏j

−
∑

i∈I

∑

q∈Q(i)
pi,j,q ⋅

xi,q
𝜏i

= 0 ∀j ∈ I (18)

∑

i∈I

∑

q∈Q(i)
xi,q = 1 (19)

xi,q ≥ 0 ∀i ∈ I,∀q ∈ Q(i) (20)

The objective function (17) minimizes the sum of the expected long-run average

cost per time unit. Constraint (18) refers to a set of balance equations which ensure

that for any state j ∈ I the long-run average number of transitions from state j per

time unit are equal to the long-run average number of transitions into state j per

time unit. Moreover, the convexity constraint (19) forces the sum of all xi,q variables

(over all states and decisions) to be equal to 1. Furthermore, (20) requires xi,q to be

non-negative.

3 Findings and Conclusion

The integrated model is compared to the sequential ‘location first, inventory and

sourcing second’ approach which essentially maximizes physical pooling opportu-

nities. In a network with 3 warehouses and 6 markets (3× 6), three model input
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Fig. 1 Cost comparison between integrated and sequential approach in a 3× 6 network

parameters are varied and the cost differences between integrated and sequential

approach are measured. The experiments reveal that the cost savings (𝛥COST ) are par-

ticularly high in networks with low fixed facility location cost ( fr), high shipment cost

(tf ) and high demand rates (𝜆m) as virtual inventory sharing opportunities increase

in these cases, see Fig. 1. Note that tf is a linear scaling factor for the shipment

cost tr,m.

Our results clearly show that there is a huge cost saving potential in evaluating

both physical and virtual inventory sharing opportunities simultaneously rather than

focusing on only one of the extremes.
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Towards Mathematical Programming
Methods for Predicting User Mobility
in Mobile Networks

Alberto Ceselli and Marco Premoli

Abstract Motivated by optimal orchestration of virtual machines in mobile cloud

computing environments to support mobile users, we face the problem of retrieving

user trajectories in urban areas, when only aggregate information on user connections

and trajectory length distribution is given. We model such a problem as that of find-

ing a suitable set of paths-over-time on a time-dependent graph, proposing extended

mathematical programming formulations and column generation algorithms. We

experiment on both real-world and synthetic datasets. Our approach proves to be

accurate enough to faithfully estimate mobility on the synthetic datasets, and effi-

cient enough to tackle real world instances.

1 Problem Statement and Modeling

Motivated by optimal orchestration of virtual machines in mobile cloud computing

environments to support mobile users [1], we face the problem of retrieving user

trajectories in urban areas. We partition the region covered by a mobile network into

cells, one for each Access Point (AP), and we suppose to be given: (a) the adjacency

matrix between cells, and (b) the demand in each cell at each point in time, that is the

number of users connected to the corresponding AP. We also assume that an aggre-

gated information about user mobility is given, namely the probability distribution of

trajectory lengths. Our aim is to find an estimate on the trajectory, and more in gen-

eral on the path of each user, in terms of sequence of cells traversed by the user during

the considered time horizon. Since demand is usually easy to forecast, e.g. by time

series analysis, our methods can be seen in the long term as means of predicting the

corresponding user mobility. Our modeling approach (Sect. 1) is the following: first,

we perform a time discretization and a trajectory length categorization. Then, we
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introduce extended mathematical programming formulations, inspired by flows over

time models, having a polynomial number of constraints, but an exponential num-

ber of variables, and two hierarchical objectives. We devise column generation

algorithms (Sect. 2): pricing problems are resource constrained minimum cost path

problems, for which we provide ad-hoc dynamic programming procedures. We

experiment on both synthetic datasets, obtained through generative models from the

literature, and real world datasets from a major mobile carrier in Paris for which

ground truth is not available (Sect. 3). Our approach proves to be accurate enough to

faithfully estimate mobility on the synthetic datasets, and efficient enough to tackle

real world instances. Our model is the following.

Data Let T = {1,… , |T|} be a set of time slices and N be a set of APs, each lying at

coordinates (xi, yi) in a plane that models our urban area. For each t ∈ T and i ∈ N,

let dti ∈ ℤ∗
be the number of users connected to AP i during time slice t. We denote as

𝛺 the set of feasible paths-over-time (paths in the remainder), each being a sequence

of APs whose cells are adjacent, and which are assumed to be visited by users in

consecutive time slices. Notation-wise, for each p ∈ 𝛺, we indicate with p(t) the AP

visited at time t in path p, and we suppose p(t) to be set to a dummy value “–” if path

p starts after, or ends before t. Let l(p) be the total length of each path p ∈ 𝛺, that

is the sum of euclidean distances between consecutive APs in the path. The starting

and ending APs of each path (the first and last values of p(t) which are different from

“–”) identify a trajectory; the same trajectory can be identified by many feasible

paths. Let K = {1,… , |K|} be a set of classes, obtained by partitioning 𝛺 according

to the length of its paths. For each k ∈ K, let lk (resp. lk−1) be the upper (resp. lower)

bound on the length of each path in class k, with l0 = 0; let also nk ∈ ℤ∗
be the

number of users whose path is in class k. From an application point of view, we

assume (xi, yi) and dti to be given, e.g. by a telecommunication operator, 𝛺 to be

easily definable, e.g. by Voronoi tessellations and street maps, and lk and nk to be

estimated by previous knowledge on users travel distance distributions like [2].

VariablesOur aim is to assess how many users are expected to follow a path over our

time horizon, that we indicate as xp for each p ∈ 𝛺. We also consider the possibility

that users enter or quit the system, or that simply data dti is approximate, allowing a

positive (resp. negative) correction �̄�

t
i (resp. 𝜀

t
i) for each i ∈ N, t ∈ T .

Constraints A feasible solution respects the following constraints:

dti − dt−1i =
∑

j∈N

∑

p∈𝛺
|p(t−1)=j
∧p(t)=i

xp −
∑

j∈N

∑

p∈𝛺
|p(t)=j

∧p(t−1)=i

xp + �̄�

t
i − 𝜀

t
i

∀i∈N,
∀t∈T , t>1 (1)

∑

p∈𝛺
|l(p)<lk

xp ≥
∑

k′≤k
nk′ ∀k ∈ K (2)

xp ≥ 0, �̄�ti ≥ 0, 𝜀

t
i ≥ 0 (3)
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Constraints (1) resemble flow conservation, imposing the expected variation at time

t in the number of users connected to AP i ∈ N at time t to be consistent with the

number of users arriving in i and those leaving i, potentially with corrections given

by �̄�

t
i and 𝜀

t
i. We experimented on variants of (1), including a pure flow conservation

formulation, without improvements. Constraints (2) imply that the number of users

following a path in class k is at least the estimated one: cumulative values are used.

Objective We adopt a hierarchical bi-objective approach. Our primary objective is

to find a setting of the variables explaining our data with minimum absolute value

correction, that is we optimize the following linear program (LP):

min 𝜀 =
∑

t∈T

∑

i∈N
(�̄�ti + 𝜀

t
i) s.t. (1), (2), (3)

Once an optimal 𝜀 value is found, as a secondary objective we try to match the

path lengths distribution as close as possible; that is, we minimize the maximum

difference between the number of users migrating on paths of each class k according

to our solution, and the estimated one:

min 𝜂 (4)

s.t.

∑

p∈𝛺
|l(p)∈[lk−1,lk)

xp − nk ≤ 𝜂, ∀k ∈ K (5)

∑

i∈N

∑

t∈T
�̄�

t
i + 𝜀

t
i ≤ 𝜀 (6)

(1), (2), (3)

2 Algorithms

Both problems are LPs. However, as the cardinality of 𝛺 grows combinatorially,

it is computationally infeasible to solve them directly. Instead we perform column

generation on the set of variables xp.

For the primary objective problem, let 𝜆
t
i and 𝜇k be the dual variables associated

to constraints (1) and (2), resp. The reduced cost of a variable xp is

c̄p = −
∑

t∈T |p(t)≠′′−′′

(𝜆tp(t−1) − 𝜆

t
p(t)) −

∑

k∈K |lk>l(p)
𝜇k.

For each k ∈ K, the search for the most negative reduced cost variable encoding

a path in class k can be mapped into the problem of finding a minimum cost path in

a time-expanded directed graph G = {N’, A}, that has one node (i, t) for each pair

of AP i ∈ N and time slice t ∈ T , together with two additional dummy nodes acting

as origin and destination; i.e. N′ = (N × T) ∪ {(o, t−1), (d, tT+1)}. The set A includes

one arc (i, t − 1; j, t) connecting nodes (i, t − 1) and ( j, t) if and only if the cells of
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APs i and j are adjacent. The dummy origin (resp. destination) has an outgoing (resp.

incoming) arc to (resp. from) every other node. Each arc (i, t − 1; j, t) has costwt−1,t
i,j =

𝜆

t
j − 𝜆

t
i and length lt−1,ti,j = ‖(xi, yi) − (xj, yj)‖, except those incident to either the origin

(o, 0) or the destination (d,T + 1), whose cost and length are set to 0. Indeed, the

graph nodes are organized in layers, one for each time slice; paths in G can only be

composed by nodes of different layers, and by arcs connecting one layer with the

subsequent one. Modeling of waiting decisions is included, as represented by arcs

(i, t − 1; i, t).
Not all paths are considered feasible for each class k, but only those starting from

(o, 0) and ending in (d,T + 1) whose sum of arc lengths falls into the range [lk−1, lk).
In principle, performing column generation means to solve a resource constrained
minimum cost path problem for each k ∈ K. However, we propose an ad hoc dynamic

programming algorithm, that optimize over all classes simultaneously, working as

follows. We consider labels of the form (C,L, (i, t)), encoding partial paths starting

from (o, 0), ending in (i, t), whose sum of arc prizes and lengths are C and L resp. We

initialize the algorithm, creating a single starting label (−
∑

k∈K 𝜇k, 0, (i, t)) for each

i ∈ N, t ∈ T; then, we proceed layer by layer and node by node, that is, for each t ∈ T
and for each i ∈ N, we iteratively select each label (C,L, (i, t)) and extend it to all the

nodes ( j, t + 1) having (i, t; j, t + 1) ∈ A, creating a new label (C′
,L′, ( j, t + 1)) for

each of them that has L′ = L + lt,t+1i,j and

C′ = C + wt,t′
i,j +

∑

k∈K |L<lk∧L′≥lk

𝜇k.

The creation of labels having L′ ≥ l|K| is skipped, as encoding infeasible paths. After

treating each label we check dominance rules: if any label (C′′
,L′′, ( j, t + 1)) has

already been created, having C′′ ≤ C′
and L′′ ≤ L′, at least one inequality being

strict, then (C′
,L′, ( j, t + 1)) is fathomed; similarly, if C′′ ≥ C′

and L′′ ≥ L′, at least

one inequality being strict, then (C′′
,L′′, ( j, t + 1)) is fathomed. We stop when all

pairs (i, t) have been considered. All labels whose cost C is negative encode paths

of negative reduced cost. We remark that, given the laminar structure of constraints

(2), this aggregated dynamic programming algorithm is able to produce in a single

run the labels of all non dominated paths for each class k; a formal proof is omitted.

This allows us on one side to improve efficiency, since only one resource constrained

minimum cost path problem needs to be solved at each column generation iteration,

and on the other side to obtain an effective multiple pricing strategy, that consists in

enlarging the set ̄
𝛺 at each column generation iteration with the minimum reduced

cost path for each class k ∈ K, if any of negative reduced cost exists.

The same algorithm is used for the secondary objective problem (1)–(6). For-

mally, since the structure of constraints (5) is not laminar anymore, the dominance

rules need to be slightly relaxed to take into account of the contribution of the new

dual variables. In our implementation, instead, we found it computationally useful

to keep the original rules and resort to heuristic pricing. As discussed in Sect. 3 the

routine obtained in this way proved to be able to produce high quality solutions with

limited effort.
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3 Dataset Generation and Experiments

Unfortunately, no ground truth is available on our real-world dataset. Therefore, in

order to test both the computational viability and the prediction accuracy of our meth-

ods, we proceed as follows. First, we draw APs coordinates at random, and we gen-

erate instances as collections of user paths-over-time on this set of APs; we refer to

such a collection as the original paths. Then the number of users dti connected to

each AP i ∈ N at time t ∈ T , and the details lk and nk of path length classes k ∈ K,

are computed and used as sole input of our methods. Therefore the full collection

of original paths is kept only for cross-checking (as post-processing) the quality of

predicted paths, that are those produced as output solutions of our methods.

We propose two generative models of original paths. The first is a simple ad-hoc
model: given the number of users U as input, for each of them we create a path

whose length is drawn from a power law distribution, and whose starting time is

chosen uniformly at random. We assume that one hop is made in each time slice, in

a graph having one node for each AP, and one edge between each pair of APs whose

Voronoi cells are adjacent. The second is a Point of Interest (POI) generative model,

reproducing the behavior of users during rush hours [2]: we randomly define a set

S ⊆ N of residential points and a set D ⊆ N of destination POIs. We randomly draw

the starting (resp. final) position of each user from bivariate normal distributions

centered in a user residential point of S (resp. POI of D). Attractiveness of APs and

transition probabilities are built following [2]. One path is finally generated for each

user, choosing a residential point uniformly at random, a destination AP at random

according to the transition probabilities, computing the shortest path in the adjacency

graph described previously, assuming one hop for each time slice.

Our algorithms are implemented in C++ using CPLEX 12.6 as LP solver; the

tests are performed on a PC with i7 4.0 GHz CPU and 32 GB RAM. For experi-

ments we use a synthetic set of 300 APs with coordinates randomly drawn from a

single bivariate normal distribution, and considering 15 time slices. These values

match well those of real applications [1]. Given this fixed set of APs, we create 5

instances with U = 40000 for each generative model. Given the lengths of all paths

in each instance, we compute 100 path length classes, with lk values given by the

percentiles of lengths distribution. We first assess the computational viability of our

methods. Table 1 reports, for each stage of our algorithm (column blocks) and for

each generative model (table rows), the avg. number of column generation iterations,

Table 1 Computational efficiency

Gnr.

model

1st stage 2nd stage Total t.

CG iter Master

t.

Pricer t. n. paths CG iter Master

t.

Pricer t. n. paths

Ad-hoc 81.0 0.66 1.27 59.08 32.8 8.61 2.35 68.12 516.4

POI 121.4 1.96 1.75 57.89 19.8 26.94 2.82 60.45 1019.4
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Table 2 Prediction accuracy

𝛿 1st stage 2nd stage

3% 5% 10% 20% 40% 3% 5% 10% 20% 40%
Ad-hoc 17.81% 24.99% 34.81% 41.19% 56.33% 24.91% 35.03% 57.54% 79.30% 97.55%

POI 4.67% 8.29% 21.77% 50.63% 78.64% 5.60% 9.91% 26.16% 61.11% 94.20%

the avg. execution time of each master LP optimization (in sec.), the avg. execution

time of each dynamic programming pricing algorithm (in sec.), the avg. number of

paths added at each column generation iteration; the total execution time (in sec.) is

also reported. Values are averaged over the 5 instances of each generative model. Our

methods show to be computationally stable, the most critical point being the master

LP optimization during second stage optimization. Affordable computing times are

also observed on a real-world dataset concerning about 600 APs in Paris [1].

Then we assess the accuracy of our methods in rebuilding mobility patterns from

demand and path length distributions. Here we focus only in rebuilding user tra-

jectories in terms of origin and destination, being the target of both the original

application and related works in the literature [2]. We assume each prediction to

be correct if both origin and destination APs of predicted paths fall within distance

𝛿 from origin and destination APs of original ones. We designed a maximum likeli-

hood procedure, that is based on flow computations, and outputs the best matching

between predicted and original paths. Let N (i, j) (resp. ̃N (i, j)) be the number of

users whose origin is i and destination is j in the original paths (resp. predicted paths

according to such a maximum likelihood matching). As accuracy measure we con-

sider
∑

i∈N,j∈N min(N (i, j), ̃N (i, j))∕U. Table 2 reports, for each stage of our algo-

rithm (column blocks) and for each generative model (table rows), the average accu-

racy obtained when different 𝛿 correction levels are allowed; 𝛿 values are reported

as percentage of the radius of the instance region. As expected, exploiting second

stage optimization substantially improves accuracy. Values of 𝛿 as low as 10% are

enough to make predictions on ad-hoc models reach 57.5% accuracy, and values of

𝛿 of 20% yield average prediction accuracy of almost 80%. POI models are harder

to predict. Still 60% accuracy can be achieved when 𝛿 = 20%.
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Statistics Instead of Stopover—Range
Predictions for Electric Vehicles

Christian Kluge, Stefan Schuster and Diana Sellner

Abstract Electric vehicles (EVs) can play a central role in today’s efforts to reduce

CO2 emission and slow down the climate change. Two of the most important reasons

against purchase or use of an EV are its short range and long charging times. In the

project “E-WALD—Elektromobilität Bayerischer Wald”, we develop mathematical

models to predict the range of EVs by estimating the electrical power consumption

(EPC) along possible routes. Based on the EPC forecasts the range is calculated and

visualized by a range polygon on a navigation map. The models are based on data

that are constantly collected by cars within a commercial car fleet. The dataset is

modelled with three methods: a linear model, an additive model and a fully non-

parametric model. To fit the linear model, ordinary least squares (OLS) regression

as well as linear median regression are applied. The other models are fitted by mod-

ern machine learning algorithms: the additive model is fitted by boosting algorithm

and the fully nonparametric model is fitted by support vector regression (SVR). The

models are compared by mean absolute error (MAE). Our research findings show

that data preparation is more influential than the chosen model.

1 Introduction

The use of EVs can play a central role in today’s efforts to reduce CO2 emission and

slow down the climate change [10]. Despite research funding and public support,

consumers react cautiously to current offers of the EV market. Surveys show that
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two of the most important reasons against the purchase or use of an EV are its short

range and long charging times [13].

While the problem of long charging times is of technical nature, the problem of

short range has also a psychological dimension known as range stress, the fear of

running out of energy on an open road. Especially for new users in electric mobil-

ity this mental pressure is intensified by a highly unreliable range prediction offered

by car itself. The built-in range prognosis of cars is often based on the EPC of the

immediate past. Therefore, in mountainous regions, where elevation changes are fre-

quent and high, the range prognosis varies drastically with the elevation profile of

the passed route. To better support drivers, the project “E-WALD—Elektromobilität

Bayerischer Wald” equips EVs with tablet computers that visualize the remaining

range by a polygon drawn on navigation map.

One way to estimate the range of an EV is to predict the EPC along routes that may

be travelled. In this study, we describe the development and comparison of different

models to choose the best model for estimating the EPC. The considered models are

a simple multivariate linear regression fitted by OLS, a linear median regression also

known as least absolute deviation (LAD) regression fitted by quantile regression, an

additive model fitted by a boosting algorithm and a fully nonparametric model fitted

by a SVR. Our approach is driven by the goal to estimate EPC in a way that is as

independent from car model specific properties as possible. This will allow to apply

the modelling process to a wide variety of vehicles from different car manufacturers.

The structure of this paper is as follows: In Sect. 2 we describe how the data was

obtained and prepared. Section 3 presents the process of model development. The

model evaluation is given in Sect. 4, and Sect. 5 concludes this work with a short

discussion.

2 Data Description and Preparation

Data were collected from Nissan LEAF vehicles that are part of a commercial car

fleet operated by the E-WALD GmbH. To store the data, tablet computers which

constantly record the car trips have been installed in these EVs.

The data, such as battery power, ambient temperature, speed, heater consumption,

as well as GPS coordinates (latitude and longitude), were collected with an interval

of 1 s during the trips from September 2014 to January 2015 for 7 Nissan LEAF

vehicles. To improve the quality of the data base, erroneous data and outliers have

been removed. The features of the data are as follows: length of trips is between 3

and 75 km, duration of trips is between 5 min and 1 h, temperature is between −4
and 25

◦C. After filtering, about 385 trips can be used for further analysis.

Our approach is to estimate the EPC independent from specific car models. We

therefore concentrate on external factors such as elevation difference and temper-

ature, and investigate their influence on the EPC. To distinguish the influence of

ascending versus descending slope on the EPC, we introduce the notion of positive

elevation difference (PED) which is defined by the sum of meters a car travelled
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through ascending slope and negative elevation difference (NED) which is corre-

spondingly defined by descending slope. In this study, a trip is divided into parts of

by exactly 3 km travelled distance. In order to estimate EPC in GID (a Nissan LEAF

internal unit which amounts to 80 Wh) per 1 km and slope, the entries on EPC, PED

and NED have to be divided by the respective distance travelled (distance-based

dataset).

3 Model Development

In literature, there are a lot of different methods for fitting linear models. The

most prominent method is OLS regression. Besides, least absolute deviation (LAD)

regression is also often used. While OLS is based on estimating the mean of a dis-

tribution, LAD is based on estimating the median. The additive model is fitted by a

boosting algorithm. The first boosting algorithm in machine learning was designed

for binary classification [3, 4]. According to Friedman [5], boosting can be inter-

preted as a gradient descent algorithm in a function space. Bühlmann and Yu [2]

introduced component-wise functional gradient descent boosting for additive mod-

els. An overview is given by [1]. The variant of boosting algorithm that was used

is based on estimating the median. The fully nonparametric model is fitted by SVR.

SVR is a generalization of support vector machine (SVM), which was originally

designed for binary classification [11, 12, 14]. These methods belong to the wide

class of methods which are based on penalized risk minimization and, therefore, are

most suitable for fitting nonparametric models as they balance the trade-off between

complexity and goodness of fit, c.f. [7, Chap. 5].

Model Assumptions. At first, the dataset of the recorded tracks is used for a

descriptive analysis to reveal interdependencies and relevant variables that are use-

ful predictors for the EPC. Possible variables are shown in Table 1. Therefore we

selected PED and NED as important variables and assumed a linear influence on the

EPC. So the following basic functional structure was chosen:

EPC

km
= 𝛽0 + 𝛽1 ⋅ PED + 𝛽2 ⋅ NED + 𝛽3 ⋅ Temp

2 + 𝛽4 ⋅ Temp (1)

where 𝛽0,… , 𝛽4 denote the parameters to be estimated.

Table 1 Correlation analysis on continuous data of Nissan LEAF, most relevant data are bold

Variable PED/km NED/km Temperature Mean velocity

r (EPC∕km) 0.4084 −0.4413 −0.0446 0.0470
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TheModels. The dependent variable is EPC and independent variables are PED,

NED, and temperature. Three models with different degrees of generality have been

investigated. The simplest model is the linear model

y = 𝛽0 + 𝛽1 ⋅ xpos + 𝛽2 ⋅ xneg + 𝛽3 ⋅ x2temp + 𝛽4 ⋅ xtemp + 𝜀 (2)

where y denotes the EPC, xpos the PED, xneg the NED, xtemp the temperature, 𝜀 the

error term and 𝛽i the parameter vector. A convenient generalization of a linear model

is the additive model [6].

y = 𝛽0 + fpos(xpos) + fneg(xneg) + ftemp(xtemp) + 𝜀 . (3)

The difference to the linear model is that the additive model also captures nonlinear

effects ( fpos, fneg and ftemp are continuous functions). The study was done using the

statistical software R where we applied the function gamboost with smooth P-spline

base-learners PED, NED, and temperature [1, 8, 9]. Finally, we also considered the

fully nonparametric model

y = f (xpos, xneg, xtemp) + 𝜀 . (4)

As the additive model, the fully nonparametric model captures nonlinear effects.

In contrast to the additive model, it also captures all kinds of interactions between

independent variables so that the fully nonparametric model, in fact, is more general

than the additive model. This was done using the R package e1071.

4 Results

As a measure for quality, the MAE has been chosen. Where n denotes the number

of data points, yi denotes the EPC (in GID) of data point number i and ŷi contains

corresponding estimate from the model, the MAE is given by

MAE = 1
n

n∑

i=1
|yi − ŷi| . (5)

In case of more advanced nonlinear methods like Boosting and SVR, simply calcu-

lating MAE on the whole dataset is not appropriate; In order to avoid the problem

of overfitting and to obtain honest values, the MAE was calculated using 10-fold

cross-validation [7, Chap. 7]. Table 2 shows the results of the different models. All

estimators which are calculated nearly have the same quality. The MAE of the LAD

regression has the lowest value. Results were also compared with the global mean.

It is simply the mean of the whole dataset. In doing so, the estimate ŷi is always

equal to the mean so that ŷ1 = ŷ2 = ⋯ = ŷn =
1
n
∑n

i=1 yi = ȳ . The global mean acts
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Table 2 Results of MAE for each model

Model MAE Improvement to global

mean (%)

Improvement to OLS

(%)

Global mean 1.098 0 −47.12

OLS 0.746 32.03 0

LAD 0.742 32.45 0.62

Boosting 0.744 32.25 0.33

SVR 0.743 32.37 0.51

as a benchmark because this is the result which could be obtained without collecting

any data in the car. The 3rd and 4th column show the percentaged improvement to

global mean and OLS respectively. Because all applied models have nearly the same

performance, it is entirely sufficient to take the much simpler linear methods (OLS

and LAD regression) for predicting the EPC.

5 Discussion

The perhaps most interesting aspect of the results is that the performance of mod-

els hardly makes a difference which estimator is chosen. During analysis it was also

investigated how another data preparation will change the results. According to one

possible way to prepare the data is to divide the trips into parts of 1 GID (of consumed

energy) and to extrapolate the travelled distance to 1 km distance (energy-based

data). So energy-based dataset and distance-based dataset (Sect. 2) in this study can

be compared. As you see in Table 3 the estimated regression coefficients, the influ-

ence of independent variables are larger for the distance-based approach than for the

energy-based approach. The MAE of the OLS with energy-based dataset was 0.886,

very much higher than the MAE of OLS of the distance-based dataset (0.746, see

Table 2). So the quality of estimators heavily depends on the way how the dataset is

prepared but not which model is chosen. This is remarkable that the vast majority of

research in data analysis is concerned with the choice of model and not with the topic

of data preparation. In our case, the distance-based dataset is much smaller than the

energy-based dataset (n = 1476 vs. n = 4656) but yields much better results. This

Table 3 Estimated regression coefficients (rounded)

Model 𝛽0 𝛽pos 𝛽neg 𝛽temp2 𝛽temp

OLS (energy-based data) 2.61 0.028 0.028 0.00014 −0.026

OLS (distance-based data) 2.64 0.067 0.041 0.00084 −0.061

LAD (distance-based data) 2.55 0.068 0.042 0.00064 −0.055
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demonstrates, it is more important to have the right dataset, not the biggest dataset.

In order to further improve quality of forecasts, it is interesting to investigate the his-

tory of forecasts separately for each trip. The current estimates are static. Therefore,

it seems to be promising to improve estimations by adding dynamic and adaptive

components.
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Improving the Forecasting Accuracy
of 2-Step Segmentation Models

Friederike Paetz

Abstract The estimation of consumer preferences with choice-based conjoint

(CBC) models is well-established. In this context, the use of Hierarchical Bayesian

(HB) models, which estimate consumers’ individual preferences is nowadays state-

of-the-art. However, the knowledge of consumer preferences on a less disaggregated

level, like segment-level, is key for demand predictions of non-customized prod-

ucts. Clustering individual HB data to achieve segment-level preferences is known

as inappropriate, since 2-step segmentation approaches generally underlie 1-step

approaches, e.g., Latent Class models. But, may the inclusion of different concomi-

tant variables into the clustering process of individual CBC data relax that dis-

advantage? To answer this question, we used an empirical data set and compared

the forecasting accuracy of 1- and 2-step approaches. While demographic variables

showed small effects, psychographic variables turned out to heavily improve fore-

casting accuracy. In particular, 2-step approaches, that consider psychographic vari-

ables within the clustering process, showed a forecasting accuracy comparable to the

one of 1-step approaches.

1 Motivation

The accommodation of consumer preferences is key for companies’ survival. Hence,

the estimation of consumer preferences and the derivation of consumer-oriented

strategies constitutes a core research field for managers. During the last decades,

the use of choice-based conjoint (CBC) methods has emerged as a valuable tool to

assess consumer preferences by estimating part-worth utilities. Beside the assess-

ment of consumer preferences, the consideration of preference heterogeneity is a

must for successful decisions on optimal business planning. Within the context
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of CBC analysis, heterogeneity could be accounted for by different types of its

representation, i.e., a discrete or a continuous representation. The assumption of a

discrete distribution of consumer preferences results in segmentation models, which

imply the estimation of segment-specific part-worth utilities. A continuous distri-

bution of preferences results in Hierarchical Bayesian (HB) models and allows the

derivation of individual parameters. The latter is nowadays state-of-the-art, since

individual estimates constitute the most flexible form of heterogeneity’s representa-

tion. Especially as an input for market simulations or for the derivation of optimal

pricing strategies individual parameters are most relevant today.

Obviously, an individual customization of products as well as the determina-

tion and skimming of individual’s willingness-to-pay may maximize company’s rev-

enues. However, with regard to the resulting cost, such a 1-to-1 marketing strategy

seems not advisable at all. Rather, companies offer—if at all—a small number of pro-

duct variations to accommodate preference heterogeneity. Hence, beside the need for

individual estimates, the knowledge of a less disaggregated level of preference het-

erogeneity seems to be important. Segment-solutions, which allow for the derivation

of segment-specific optimal product variations, may serve as a reasonable compro-

mise between an individual and an aggregated level.

If individual parameter estimates are already observed, the trespass to

segment-specific estimates by clustering methods, is straight forward. This 2-step

segmentation approach, also known as post-hoc segmentation or tandem approach
is heavily used in practice ([5], p. 32). However, it is well-known to underlie 1-step

segmentation approaches, since the procedures in both steps of the 2-step segmenta-

tion approach optimize different criteria ([3], p. 374). Especially, forecasting accu-

racy of 2-step approaches may stay behind those of 1-step segmentation approaches.

This behavior proves problematic, since correct demand predictions are most rele-

vant for the derivation of product planning decisions etc. Hence, it is important to

search for opportunities to improve the forecasting accuracy of 2-step approaches.

This contribution aims to develop a method to improve the forecasting accuracy

of 2-step segmentation approaches by incorporating concomitant variables, e.g.,

demographic or psychographic variables, into the clustering process of individual

parameter estimates.

Within the next section, we provide a review of the theoretical construct of

the Latent Class Multinomial Logit model as a surrogate for 1-step segmentation

approaches. Furthermore, we introduce a HB model for the estimation of individual

parameters, which are subsequently clustered into segments (2-step segmentation

approach). In the third section, we use empirical data to compare the forecasting

accuracy of both segmentation approaches and assess the appropriateness of incor-

porating different concomitant variables into the clustering process of a 2-step seg-

mentation approach. Finally, we conclude our results by explicitly pointing out the

appropriateness of different concomitant variables for improvements w.r.t. forecast-

ing accuracy in 2-step segmentation approaches.
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2 Latent Class and HB Models

In the context of CBC analysis, we assume a respondent to behave utility maximizing

within a multi-alternative choice occasion. The utility of respondent j for a certain

alternative m is contained in a latent unobservable variable Ujm, which satisfies

Ujm = xm ⋅ 𝛽j + 𝜀jm.

Here, xm describes the design vector of alternative m and 𝛽j is the individual part-

worth utility vector of respondent j. The random error term 𝜀jm includes all the

effects, that are not contained in the deterministic part, but affect respondent’s utility.

If we assume the error term to be iid Gumbel distributed, the MNL model results and

the probability of respondent j to choose alternative m could be given in closed form

solution

Pjm =
exp(𝜇 ⋅ xm ⋅ 𝛽j)
R∑

r=1
exp(𝜇 ⋅ xr ⋅ 𝛽j)

, 𝜇 > 0, (1)

where R describes the number of alternatives within a certain choice occasion and

𝜇 is a scale parameter.

The most popular 1-step segmentation approach, i.e., the Latent Class Multino-

mial Logit (LC-MNL) model, considers formula (1) and assumes the part-worth

utility vector 𝛽j to equal the segment-specific part-worth vector 𝛽s, if respondent j is

a member of segment s. To determine the segment-specific parameter estimates 𝛽s as

well as the relative segment masses, Maximum Likelihood estimation is performed

(cp. [1]).

If we account for individual part-worth parameters in formula (1) and assume

𝛽j to be Multivariate Gaussian distributed with mean 𝜎 and covariance matrix 𝛴,

which in turn is assumed to be inverse Wishart distributed, the Hierarchical Bayesian

Multinomial Logit (HB-MNL) model results. The estimation of a HB-MNL model

constitutes in the estimation of 𝜎 and 𝛴 as well as in the estimation of the conditional

posteriori distribution of the individual parameters 𝛽j. While the estimation of the

mean and covariance matrix could be performed by Gibbs Sampling, the estimation

of the conditional posteriori distribution of 𝛽j is performed by a Metropolis-Hastings

algorithm (cp. [4]).

Within the 2-step segmentation approaches, these individual part-worth utility

estimates are subsequently clustered into segments with cluster analytic approaches

to achieve segment-specific estimates. Within this clustering step, we are going to

incorporate different concomitant variables.
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3 Comparison of 1- and 2-Step Segmentation Approaches
Based on Empirical Data

To compare the forecasting accuracy of 1- and 2-step segmentation approaches, we

used an empirical data set in the product category of beer. In particular, we chal-

lenged 179 respondents with 15 choice occasions, which contained three beer alter-

natives (described by four attributes with two or three levels respectively) and a

no-choice-option. In addition, the respondents conducted a (Big5-) personality test

(see [2] for further information on the Big5 theory) and answered several socio-

demographic issues, e.g., concerning gender, age (requested by four age classes) and

size of household (requested by four classes, e.g., single-person household etc.).

For the 1-step segmentation approach, the data of 12 choice decisions by respon-

dents served as input for the estimation of LC-MNL models with varying number

of segments. We selected the 6-segment solution, since it provided the best trade-off

between model fit and unique interpretability of segments. To measure forecasting

accuracy, we calculated the first choice hit rate (%1CH) from the data of the remain-

ing three (holdout) choice sets and achieved a hit rate of 63.69%.

For the 2-step segmentation approaches, we estimated the HB-MNL model (once

more based on the data of 12 choice decisions by respondents) firstly. Subsequently,

we clustered the individual estimates without (CBC/HB-clusters) and with (CBC/
HB+concomitant variable-clusters) the consideration of concomitant variables. We

selected the cluster-solution, that yielded the best/minimal value of Akaike’s Infor-

mation Criterion, respectively. Table 1 depicts the resulting number of clusters as

well as the first choice hit rates of the CBC/HB cluster model and the CBC/HB+ clus-

ter models. While the 6-cluster-solutions of the 2-step-CBC/HB and the -CBC/HB+

personality cluster model underlie the 6-segment-solution of the 1-step-LC-MNL

model w.r.t. forecasting accuracy, all other 2-step-CBC/HB+ cluster models yield

higher first choice hit rates. On first glance, this result contradicts general findings

from literature, that 1-step segmentation approaches outperform 2-step approaches.

However, the present behavior could be explained by the finer segmentation of the

CBC/HB+ cluster models, which leads to a better accommodation of preference het-

erogeneity and in turn to a better forecasting accuracy. While the 7-cluster solution

of the CBC/HB+gender cluster model exhibits a first choice hit rate of 63.87%, the

10-cluster-solution of the CBC/HB+age class model even shows a %1CH-value of

70.39%.

Table 1 Statistics for the CBC/HB and the CBC/HB+ cluster models

CBC/HB CBC/HB+ cluster models

Conc.

variables

– Personality Gender Size of

household

Age class

# of clusters 6 6 7 9 10

%1CH 61.64% 63.31% 63.87% 69.27% 70.39%
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Table 2 Forecasting accuracy of 6-cluster-CBC/HB and -CBC/HB+ cluster models

CBC/HB CBC/HB+ cluster models

Conc.

variables

– Personality Gender Size of

household

Age class

%1CH 61.64% 63.31% 62.94% 62.38% 61.86%

As nice as this high forecasting accuracy may be, the selected cluster-solutions

partly lack unique interpretability of clusters and therefore constitute inappropri-

ate for the derivation of managerial implications concerning product planning. This

behavior of 2-step segmentation models is well-known (e.g., compare [3]) and comes

not unexpected for our present data. The consideration of up to 10 clusters goes over-

board for the considered product beer, which was described by four attributes only

and therefore does not provide such as much space for heterogeneity.

Hence, in order to reduce the number of clusters and to provide a sound basis

for the comparison of 2-step segmentation approaches with the LC-MNL model,

we fixed the number of clusters to six, which equals the number of segments in

the LC-MNL segment-solution. Table 2 depicts the associated first choice hit rates

for the CBC/HB+ cluster models w.r.t. the 6-segment solutions. As expected, all

2-step-CBC/HB+ cluster models underlie the 1-step-LC-MNL model (%1CH =
63.69%) w.r.t. forecasting accuracy. However, while the pure clustering of individ-

ual part-worth utilities yields a first choice hit rate of 61.64%, which is 2.05% points

below the hit rate of the LC-MNL model, forecasting accuracy increases, if con-

comitant variables are incorporated within the clustering process. While the con-

sideration of socio-demographic variables leads to small improvements (0.22 (for

age class) to 1.30% points (for gender)) in comparison to the pure clustering of

individual part-worth estimates, personality as a concomitant variable yields the

largest effect on forecasting accuracy. Furthermore, the first choice hit rate of the

CBC/HB+personality model (%1CH = 63.31%) is on par with the hit rate of the

LC-MNL model.

To gain further insight, we additionally used the individual background variables

as segmentation bases and clustered the individual part-worth estimates once more.

This constitutes another 2-step segmentation approach, but obviously does not con-

sider consumer preferences as segmentation base. Table 3 yields the resulting first

choice hit rates as well as the number of considered segments.

Table 3 Forecasting accuracy of segment models based on concomitant variables

Segmentation

base

Personality Gender Size of household Age class

# of clusters 8 2 4 4

%1CH 48.04% 47.49% 49.35% 47.49%
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While the number of socio-demographic segments arises from the mode of ques-

tioning, e.g., age was requested by four age classes, the number of psychographic

segments is not fixed apriori. Therefore, we conducted a cluster analysis and selected

the cluster-solution with a minimal Akaikes Information Criterion.

Forecasting accuracy of all segmentation models is far behind the predictive

validity of the LC-MNL model (%1CH = 63.69%) and the CBC/HB cluster model

(%1CH = 61.64%). Hence, preferences seem to be most appropriate as segmentation

base w.r.t. the maximization of forecasting accuracy.

4 Conclusions

This study aimed to investigate, whether the incorporation of concomitant variables

into the clustering process of 2-step segmentation approaches improves its forecast-

ing accuracy. Therefore, we estimated individual part-worth parameters with a HB-

MNL model and clustered those estimates without and with the consideration of

several concomitant variables. Furthermore, we estimated a LC-MNL model as a

surrogate for 1-step segmentation approaches. Under consideration of one empirical

data set, we found, that the inclusion of concomitant variables within the cluster-

ing process of 2-step segmentation approaches pays off w.r.t. forecasting accuracy.

While the incorporation of socio-demographic variables like gender, age and size

of household leads to better forecasting accuracy than the pure clustering of part-

worth utility estimates, the consideration of personality as a concomitant variable

leads to a forecasting accuracy, which is on par with the one of the LC-MNL model.

Hence, the incorporation of concomitant variables into the clustering process of a

2-step segmentation approach pays off w.r.t. forecasting accuracy, but, obviously, the

degree of forecasting accuracy’s improvement depends on the concomitant variable

considered.
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Field Service Technician Management 4.0

Michael Vössing and Johannes Kunze von Bischhoffshausen

Abstract Models for workforce planning and scheduling have been studied in oper-

ations research for decades. Driven by the Industrial Internet of Things new data

sources have become available that have not yet been used to improve field service

management. This paper proposes a research agenda towards leveraging this poten-

tial in the context of industrial maintenance. By combining predictive analytics (e.g.

forecasting demand) with prescriptive analytics (e.g. determining optimal mainte-

nance schedules) companies can decrease uncertainties in their maintenance plan-

ning, increase the availability of machines, decrease overall maintenance costs, and

ultimately develop new business models.

1 Introduction

Many manufacturers of industrial machinery offer their customers supplementary

repair and maintenance services which are provided by dedicated field service techni-

cians. Providing these services economically requires efficiently managing a diverse

workforce of highly specialized technicians. The widespread adoption of sensors

and smart devices in the manufacturing industry—known as the Industrial Inter-

net of Things or Industry 4.0—provides new opportunities to optimize established

processes. By connecting machines and technicians in collaborative networks and

leveraging the collected data, companies can manage uncertainties better and make

more transparent decision [6].

Models for workforce planning and scheduling have been studied in operations

research for decades. However current research has not yet incorporated the oppor-

tunities made possible by the Internet of Things. By combining previously unavail-

able data sources (e.g. collected by sensors in industrial machines) with emerging
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technologies (e.g. analytic or data mining) innovative data-driven services can be

developed and incorporated in traditional field service management solutions.

This paper is structured as follows. In Sect. 2 a short overview of asset man-

agement (see Sect. 2.1) and workforce management (see Sect. 2.2) fundamentals is

given. In Sect. 3 an agenda for future research is proposed.

2 Fundamentals

The following section outlines the two main concepts field service technician man-

agement is build upon: (a) asset management and (b) workforce management.

2.1 Asset Management

Today many companies outsource the support of their infrastructure to external ser-

vice providers. In the context of industrial asset management this is accompanied

with a demand shift from the purchase of isolated maintenance and repair services

to the purchase of long-term repair and maintenance contracts. For many companies

outsourcing maintenance services is an attractive proposition as it allows them to (a)

concentrate resources and investments on core competences, (b) focus on activities

of strategic importance, and (c) minimize the economical risk associated with uncer-

tain failure rates of machines and therefore uncertain demand for repair services over

the lifetime of a specific machine. As a result, outsourcing maintenance, repair and

overhaul has become a valid alternative to self-provisioning for many companies [2].

Manufacturers of industrial machinery have recognized that providing these ser-

vices for their own customers can increase their revenue [4]. As a result com-

panies that have traditionally focused primarily on building and selling the best

machines, today offer supplementary services to complement their products. This

trend—known as servitization—is defined by [1] as “innovation of an organizations

capabilities and processes to better create mutual value through a shift from sell-

ing product to selling [product-service-systems]”. Products (e.g. machines) are com-

bined with auxiliary services (e.g. repair and maintenance activities) into integrated

solutions. These systems are generally more distinctive, longer-lived, and easier to

defend from competitors [1]. Finke and Hertz [4] have collected fundamental advan-

tages for manufactures to offer these integrated solutions: (a) mean of differentiation

to confront competition—especially given the fact that margins in product sales are

constantly facing strong competition, (b) key interface to the customer for direct

feedback, (c) continuous revenues and increased profitability through maintenance,

repair and overhaul and (d) basis for data sharing and collection necessary for innov-

ative business models [4]. These advantages illustrates the growing pressure to offer

field services for machinery and equipment [5].

Offering maintenance, repair and overhaul services to a large number of

customers requires developing effective field services networks. Managing these



Field Service Technician Management 4.0 65

networks and resources is a complex challenge due to (a) the constantly growing vari-

ety of products and parts that need to be managed simultaneously, (b) the requirement

to respond quickly to uncertain demand, (c) the geographical discrepancy of demand

and supply, and (d) the requirement to maintain a workforce that can support a highly

heterogeneous (e.g. different technologies or systems) installed base [5]. To provi-

sion enough field service technicians to supports these networks—many machine

manufactures have started looking for ways to optimize their field service networks.

In the context of industrial maintenance terminology often differs significantly

between domains. Pintelon and Puyvelde [8] proposes a reasonable categorization:

Asset maintenance is defined by three interconnected building blocks: (a) mainte-

nance actions, (b) maintenance policies and (c) maintenance concepts. Maintenance
actions are the basic interventions and tasks carried out by a technician, which can

either be corrective (e.g. restoring a failed asset to an operational state) or preven-

tive/precautionary (e.g. reducing the likelihood of failure of an asset). Maintenance
policies on the other hand are defined as the mechanisms (e.g. sets of rules) that

trigger the maintenance actions. Well known maintenance policies include (a) run-

to-failure maintenance (also called breakdown maintenance), (b) time or usage based

maintenance, (c) condition based maintenance, (d) opportunity based maintenance,

and (e) design-out maintenance (e.g. redesign of parts that require high levels of

maintenance). Maintenance concepts are high level combinations of maintenance

actions and maintenance policies with suitable decision frameworks (e.g. objectives

and strategies). Common concepts include (a) life-cycle costing, (b) total productive

maintenance, and (c) reliability centered maintenance [8].

Research in the field of asset management is currently mainly focused on (a) pre-

dicting the failure of machines, (b) determining the correct maintenance concept,

(c) optimizing the parameters of maintenance policies, or (d) offering support for

outsourcing decisions [8].

2.2 Workforce Management

Efficient workforce management is one of the success factors of field service man-

agement. It requires companies to balance operational planning (e.g. scheduling

or resource capacity planning, demand/supply matching) with strategical decision-

making (e.g. skill demand forecasting, strategic planning or talent optimization) [7].

Operational Planning. Operational planning is the “feasible, efficient and effec-

tive planning of maintenance jobs” to coordinate technicians. It generally requires

(a) evaluating incoming jobs (e.g. for missing information), (b) sequencing and

scheduling and (c) allocating resources [8]. The last two steps have been stud-

ied in operations research for decades and have largely been influenced by supply

chain management [7]. Today, operational planning is largely focused on technician

scheduling. The main challenge is simultaneously managing (a) obligations from

maintenance contracts as well as (b) temporal-uncertain demand for repair and main-

tenance services [3]. Efficient technician scheduling needs to take into account dif-
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ferent types of jobs (e.g. repair, maintenance, installation), different technician skills,

time windows (e.g. where jobs have to be started), different locations, as well as prior-

itization of jobs. The high complexity of scheduling problems makes finding optimal

solutions (within reasonable time) difficult or even impossible. Solutions generally

rely on (a) mathematical programming, (b) heuristics, and (c) empirical procedures.

But even though a variety of approaches are available, due to the temporal-uncertain

nature of repair and maintenance demand most companies still rely on operators to

manually make these complex operational decisions [8].

Strategical Decision-making. As many companies adopt a service-centered

mindset, talent is becoming a main competitive differentiator and needs to be man-

aged accordingly. Today companies are not only competing for product superiority,

but also for the human talent required to service their products. As field service

technicians are usually specialized in varying technical disciplines (e.g. mechanics,

electronics, automation) and given the fact that the overall complexity of industrial

maintenance is rapidly evolving, skill management is essential for strategic techni-

cian workforce management [8]. This shift requires planners and managers to not

only focus on operational challenges but also on the human aspect and the com-

plex relationships present in a modern workplace. Strategic workforce management

focuses on fostering collaboration, cross-training employees, providing attractive

career environments, learning response curves, burnout, accelerations/slowdowns,

sensitivity towards fairness in workload, and absenteeism [7]. This requires not only

classical time, attendance and absence management, but also advanced worker track-

ing, demand and supply forecasting, scheduling and optimization and employee par-

ticipation [7].

3 Towards Field Service Technician Management 4.0

As outlined in the previous section managing field service technician requires deci-

sion supports systems for (a) operational planning and (b) strategic decision-

making [5].

In the Industrial Internet of Things a variety of data is captured from assets that

need to be repaired, maintained, overhauled or installed. At the same time improved

data mining algorithms have made previously underutilized data sources—which

often contain large amounts of unstructured data—utilizable. Leveraging these data

source for predictive maintenance (e.g. forecast maintenance demand of assets) has

been one of the main use-cases. Unfortunately in closely related fields these advance-

ments have largely been ignored. Little research has been conducted on how these

data sources can be leveraged for field service management. Figure 1 provides an

overview of how predictive and prescriptive analytics are interconnected with oper-

ational planning and strategic decision making.

Analytic models can support field service management in multiple areas: Predict-

ing when a machine is likely going to fail and estimating in which cases preventive

maintenance is feasible, transforms unplanned repair services which are difficult to
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Fig. 1 A research agenda towards field service management 4.0 leveraging advanced analytic and

the Industrial Internet of Things

manage into more manageable planned maintenance services. Predicting the dura-

tion of a specific service assignment reduces the amount of rescheduling in daily

operations. Estimating service costs and the economical impact of unfulfilled service

for customers enables companies to offer economical feasible full-service contracts.

Traditional optimization models can leverage these predictions to optimize short-

and long term technician schedules. On a strategic level forecasting which technician

qualifications will be required in the following years can simplify capacity manage-

ment by cross-training or hiring technicians ahead of time.

We have identified several aspects that will improve field service technician

management in the future. Extending traditional operation research models (e.g.

determining optimal jobs sequences and technician schedules) with advanced data

mining techniques will fundamentally change traditional maintenance policies, ser-

vice business models, and the underlying service network. In the long run industrial

companies will increase the availability of their customers assets, decrease mainte-

nance costs, and offer new business models (e.g. full-service contracts).
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Optimal Placement of Weather Radars
Network as a Multi-objectives Problem

Redouane Boudjemaa

Abstract This work proposes an approach to the optimal placement of a weather

radar network based on solutions to a multi-objective optimization problem. Given

a finite number of weather radars, a network is produced by taking into account the

maximization of network coverage area and the minimization of network general

cost. Several constraints on the solutions are considered such as terrain blockage,

radar beam elevation and distance from power grid and roads. By transforming the

search space into a gridded system, a reduction in the number of possible combi-

nations of radar networks is achieved making the problem manageable in size. The

multiobjective optimization problem is solved by four different evolutionary algo-

rithms and the obtained results are analysed using different performance metrics.

The proposed approach can serve as an analysis tool for a decision support system

by providing meteorologists a set of Pareto-optimal solutions to assist in the selection

of future prime sites for the installation of weather radars.

1 Introduction

Weather Radar Networks (WRN) have been initially used by meteorologists in study-

ing severe weather phenomenons and the issuing of important and essential weather

bulletins and information to all major agencies such as civil and military aviation,

oil and gas companies, and civil defence. WRN have been commonly used in both

the prevision and research of weather systems. The Next Generation Weather Radar

(NEXRAD) system [9] for example has been efficiently used in the prediction, study

and research of severe weather systems such as supercells, mesocyclones, tornado

vortices, and various types of precipitation.

A difficult task in constructing these networks is determining adequate sitting sites

of radars in order to meet certain conditions. A clear propagation of the radar beam

for an altitude below one kilometre without being obstructed by terrain features is
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of extreme importance as the core of heavier precipitation lies within a hight above

ground of 1000 m as pointed out by [10].

A mathematical model of the problem was achieved by [5] by establishing a well

defined optimization problem. A recent work in determining the placement of WRs

is investigated by [4]. Through the utilization of a genetic algorithm (GA) a maxi-

mization of the coverage area within a set of physical boundary condition is achieved.

2 Multiobjective Evolutionary Algorithms

Multiobjective Evolutionary Algorithms (MOEAs) are methods which approximate

the Pareto Front (PF) by mimicking processes found in biological evolution. Hence,

their aim is to find solutions that converge as close as possible to the true opti-

mal solutions obtained so far during optimization. In the following paragraph, we

mention some details about the MOEAs selected for the resolution of our below-

mentioned problem. MOPSO algorithm [1] starts by generating a swarm with N
random particles along with a set of leaders representing the nondominated parti-

cles. Position and velocity of each particle in the swarm is initialized and the fit-

ness of each particle is evaluated. NSGA-II [2] computes a crowding distance for

each individual by measuring the distance to its neighbouring individuals along each

objective function dimension. The obtained crowding distance is then used to mod-

ify the fitness of each individual. The algorithm SPEA2 [12] uses an external archive

A containing the nondominated solutions found so far. A strength value is assigned

to both individuals in the archive and in the population. The MOGWO is an algo-

rithm proposed by [6] in which the social and hunting technique of grey wolves are

mimicked.

2.1 Performance Metrics

As a Pareto noncompliant metric, the Nondominated Vector Generation (ONVG)

[8] measures the number of elements in a nondominated solutions set obtained by

MOEA generation. Hence, a solution set with a largeONVG is preferred. The spacing

(S) [7] is Pareto noncompliant metric which measures the minimum value of the sum

of distances between consecutive solutions in a nondominated set. Zitzler and Thiele

[11] proposed the performance metric dominated hypervolume (HV) as the union of

hypercubes constructed using a reference point R, which can be taken as the vector

of worst objective function values and a solution i of PFknown as the diagonal corners

of the hypercube.
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3 Problem Formulation

The latitudinal and longitudinal co-ordinates of the radars (𝜙1, 𝜆1), (𝜙2, 𝜆2),… are

considered as design variables which are to be optimized. The following two objec-

tives are considered.

Terrain Coverage In our work, a modified explicit enumeration method is used

similar to the one used in [4]. The selected geographical region is discretized into

a grid with a resolution of approximatively 0.09◦ (1 km) M latitudinal and N longi-

tudinal spacing stored in a matrix 𝐀M×N . We incorporate a new factor to our model

using global digital elevation data at a resolution of 30 arc seconds (≈1 km) provided

by the United States Geological Survey. The radar propagated beam is checked for

terrain blockage at each grid point that either represent a potential radar site or is

included inside the theoretical coverage layer of a radar [3] through the 4/3 law:

h =
√

r2 + R2
e + 2rRe sin 𝜃e − Re (1)

where h is the height of beam in km, r is the range of beam in km, 𝜃e is the elevation

angle, and Re is the effective earth’s radius in km (4/3 the earth’s radius). Using a

binary encoding, all grid points are set initially to zero. The radar site along with the

points which hight are below the radar beam and their slant range from the radar site

is less than the maximum beam range are all set to one. The coverage area of a radar

is the sum of all values of the grid points,

Cr =
M∑
i=1

N∑
j=1

ai,j (2)

The minimization problem is then formulated with respect to (2) as

f1 = 1 −

R∑
r=1

Cr

T
(3)

where R is the number of radars in the network and T =
M∑
i=1

N∑
j=1

1, is the total area of

the studied region.

Network cost The economic and maintenance cost of installing a WR in R dif-

ferent sites is given by:

f2 =
R∑
i=1

Cixi (4)

where Ci = q1ECi + q2MCi and q1,2 ∈ [0, 1], q1 + q2 = 1 are weighting parameters.

The parameter ECi is the minimum economic cost of installing a WR in site i which
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depends on the infrastructure and power availability. MCi is the minimum mainte-

nance cost parameter related to the distance of a site i to the nearest road accessible

to truck traffic. Both ECi and MCi are obtained as the minimum haversine distance

between the radar site and the nearest power line for the economic cost and road for

the maintenance cost.

Ξk
i = min

𝜒k
j ∈𝛺k

{2Re

arcsin
(√

sin2(𝛥𝜙) + cos(𝜙i) cos(𝜙j) sin2(𝛥𝜆)
)
}, k = a, b

(5)

where 𝛥𝜙 = 𝜙i−𝜙j

2
, 𝛥𝜆 = 𝜆i−𝜆j

2
, (𝜙i, 𝜆i) are the latitude and longitude coordinates of

the radar site, and (𝜙j, 𝜆j) are the latitude and longitude coordinates of a location

𝜒k
j ∈ 𝛺k

. The formula in (5) was used for both the economical cost, with k = a and

𝛺a
being the power grid and for the maintenance cost with k = b and𝛺b

representing

the road network.

4 Numerical Results and Discussion

The selected geographical region is the north of Algeria bounded by parallels 34◦ N

and 36◦ N and meridians 3◦ E and 6◦ E with a total surface area of 6.076 × 104km2
.

The area is a mix of flat and complex surfaces supporting a diverse testing of the

presented strategy. The analysis was conducted with a 1.1◦ radar beam elevation

angle and the tower height of the radar is set to 15 m in order to reduce the effect

of ground clutter. A theoretical coverage range of the radars is set to 45 km. For all

the results presented in this section, the number of radars was limited to 5. Figure 1

Fig. 1 Pareto front of

MOPSO, NSGA − II,
MOGWO, and SPEA2
obtained after 500 iterations

for a population of 100

individuals
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(a) Comparison of Hyper-
volume metric results

(b) Comparison of Execution time

(c) Comparison of ONVG
 metric results

(d) Comparison of Spacing
 metric results

Fig. 2 Comparison of the results obtained in 10 different runs by the four algorithms with a pop-

ulation of 100 individuals and after 500 generations

was produced by running each MOEA algorithm ten times with a population of 100

individuals and a maximum of 500 generations. From the figure we can see that the

solution quality with respect to Pareto optimality obtained by MOGWO was quite

low. MOPSO, NSGA-II, and SPEA2 produced a PF with similar patterns but differ-

ent values. For this test, the NSGA-II algorithm had a better convergence. Starting

with a comparison of the hypervolume metric, it becomes clear that the NSGA-II PF

score comes first, followed by SPEA2, MOPSO, and finally MOGWO as shown in

Fig. 2a. A similar order is also obtained with respect to ONVG and spacing metrics

as indicated in Fig. 2c, d. As for computational time, the boxplot in Fig. 2b clearly

indicates that MOGWO outperformed all algorithms while NSGA-II scored last.
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5 Conclusion

The multioptimization method developed in this study can provide an efficient strat-

egy for the radars optimal placement problem, resulting in network configurations

at a relatively short time and with sufficient accuracy. For our study region, the pro-

posed strategy gave results that were relatively insensitive to the number of individ-

uals in the population of MOEA involved in the selection of a single best network.

The radar coverage and cost objective functions selected for this study appear to be

suitable for guiding network selection in support for a better weather observation.

This tool could reduce valuable time and cost through the reduction of suitable sites

that are evaluated on field by experts.
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Building Decision Making Models Through
Conceptual Constraints: Multi-scale Process
Model Implementations

Canan Dombayci and Antonio Espuña

Abstract The integration of decision-making procedures typically assigned to dif-

ferent hierarchical levels in a production system (strategic, tactical, and operational)

requires the use of complex multi-scale mathematical models and high

computational efforts, in addition to the need of an extensive management of data

and knowledge within the production system. The aim of this study is to propose a

comprehensive solution for this integration problem through the use of Conceptual

Constraints. The presented methodology is based on a model in a domain ontology

and the use of generalized concepts to develop tailor-made decision making models,

created according to the introduced data. Different decision making formulations are

reviewed and, accordingly, comprehensive Conceptual Constraints for the different

concepts (like material balances) can be determined. This work shows how these

Conceptual Constraints can be used when the quality of information is changed,

enabling multi-scale implementations.

1 Introduction

The Committee on Challenges for the Chemical Sciences in the 21st Century [1] indi-

cates that the development of new and powerful computational methods, applicable

from the atomic level to the chemical process and enterprise levels, is a key factor

to enable multi-scale optimization. This would broaden the scope of one of the main

objectives attained by the Process Systems Engineering (PSE) approach, focused on

the systematization of the decision making through modeling and optimization, to

a new generalized paradigm. In this line, Harjunkoski et al. [4] address the usage

of standards to systematically build models and to be able to create a master model

to configure new problems without modifying the algorithmic core, or Hooker [5]
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uses metaconstraints through the use of a pre-built library, in order to assist model

builders in a constraint-programming framework. However, although the practical

implementations based on these approaches introduce significant improvements dur-

ing model building, these constraints are not connected conceptually to problems to

be solved in the system and the complete model building for the integration problem

is not investigated.

Therefore, this work investigates systematic model building procedures to address

optimization problems from a multi-scale perspective and to automatically generate

the problem instances according to the problem to be solved.

2 Analysis of Conceptual Constraints

The traditional modeling approach is based on the following steps: (i) analysis of

the process, (ii) conceptual model of the process, (iii) mathematical representation

of the problem, and (iv) iterative model improvements [8]. Usually, the model of the

process is based on mathematical expressions related to fundamental laws such as

balances, sequencing and allocation constraints. Then, other constraints according

to the details of the problem are added; for instance: in short-term scheduling mod-

els, time constraints can be used to describe shifts or maintenance requirements [9].

Afterward, the constraints are detailed according to the model granularity (e.g.: the

used time representation), the given data and other presented details of the require-

ments. Since these formulations are constructed specifically for a problem, they

remain static with the given data structure and model construction, and can not be

reused at different levels even within the same organization.

In order to overcome these limitations, it is proposed to aggregate the abstract

information related to a common concept, to be used at different hierarchical lev-

els to create a Conceptual Constraint (CC) Domain. Then, this CC Domain may

be used to create upper level relations and may be connected with different sets

of data available in the production system in the PSE Domain. Figure 1 shows the

connections between two domains with the CurrentlyAvailableMaterial
1

example.

Material Balance 
Conceptual 
Constraint

Identification

Currently 
Available 
Material 

Process 
Input

Process 
Output

process 
Input1

process 
Input2

process 
Output1

domain

concept

instance

isPartOf

hasInstance

isConnected

Conceptual Constraint 
Domain

Process Systems 
Engineering Domain

s,tS

Fig. 1 Proposed modeling approach

1
Concept names are written using CamelCase representation.
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The CurrentlyAvailableMaterial concept is part of the MaterialBalance CC and it

has different instance connections which link the CC Domain to the PSE Domain.

An illustrative example of the MaterialBalance CC and these connections are given

in Sect. 3 showing these connections.

Based on this idea, the proposed modeling approach exploits the CC to formu-

late the problem at a higher (more generic) level, which is dynamically connected to

the data in the PSE Domain. CCs actually represent the main principles of the tech-

nological system (like, for example, the material balances—Fig. 2). Then, to create

the problem instance to be solved, the elements used to represent this main princi-

ple (following the same example, the CurrentlyAvailableMaterial are connected to

ProcessInput and ProcessOutput concepts, which are part of the Identification con-

cept in the PSE Domain. These concepts are gathered as Identification concept since

ProcessInput is defined as an identification of materials, energy, or other resources

required for a recipe.

There are two main aspects to be emphasized in this new way to approach the

model construction. The first one is related to the way how some knowledge is man-

aged to identify where the inputs of the system are loaded into the ontological model

[3]. The required systematic approach will typically imply the standardization of

the information; in this work, the ISA proposals (ISA88 and ISA95 Standards) have

been applied, so the models include the recipe, the procedural model, and the phys-

ical model. The resulting ontological model is represented by the PSE Domain in

Fig. 1 (interested reader is referred to [2] for a detailed explanation). The second

one is the constraint management associated to the connection of the two domains.

The CC Domain elements construct the problem formulation considering the PSE

Domain, and the suggested methodology simply implements the following steps: (i)

ontological representation of the problem in the PSE Domain, (ii) selection from the

CCs, (iii) model creation from the CCs and introduced data, and (iv) solution of the

model.

Furthermore, the claim is that CCs are not only applicable to a certain hierarchical

level (like strategic versus tactical level). The same concept appears at different lev-

els with different information and assumptions. Therefore, this approach uses some

generic concept connections in order to identify equivalences in different hierarchi-

cal levels. For instance, in the case of a material balance, depending on the available

information, it can be constructed around a unit or a site and the process inputs and

outputs will change, accordingly (Sect. 3).

3 Application: Material Balance Conceptual Constraint

Because of the space limitations, only the construction of one CC is detailed in this

paper. The physical model is limited to units and sites. In order to explain CCs, three

material balance equations are taken from the literature [6, 7]. The first constraint

is given in Fig. 2, which belongs to a short-term scheduling formulation [6] and the
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Fig. 2 Material balance from short-term scheduling formulations [6]

(a) For raw materials [7] (b) For products [7]

Fig. 3 Material balances from planning formulation

other two equations, depicted in Fig. 3a, b, represent the material balance developed

and used in a planning formulation [7].

In the figures, each element of the constraints is examined semantically and

described in the attached text-boxes according to the corresponding nomenclature.
2

In the planning formulation [7], the material balance constraints for raw materials

and products are created, separately. The first observation for the material balances

in Fig. 3 is that this separation can be overcome using the recipe concept which is

also known as state-task network representation [6]. When the planning [7] and the

scheduling formulations [6] are compared, the variable related to the production uses

different physical elements: sites and units, respectively. In order to integrate differ-

ent levels, differentiation of the physical and procedural models are required, which

is partially given in ISA88 Batch Control Standard and applicable to other operation

modes.

Combining the three examined equations gives the general view of the elements

in the material balance CC. This general view contains the intermediate part of the

constraint construction. Figure 4 summarizes the final generic mathematical equa-

tion instances and their connection to the elements in the material balance CC. The

2
Check the original sources for a detailed description of the nomenclature used in these equations.
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Fig. 4 Material Balance CC and resulted mathematical expression

Table 1 Nomenclature for the material balance CC:

Sets Member concepts Subsets Explanation

s Process, Site Process Segment

Input, Process, Site Process

Segment Output

Ki,j Mapping between physical and

procedural model

j Unit Procedure, Site Procedure SO& SI Recipe connection

i Unit, Site si Process, Site Process Segment

Input

t Time period so Process, Site Process Segment

Output

Parameters Explanation Variables Explanation

𝜌j,s The proportion of input Ss,t Currently available material

𝜌j,s The proportion of output Bi,j,t Undertaken material for

production

pj Processing time of the

procedural model elements

hierarchical conceptual relations of the constraint are given in Table 1. Relations in

this paper are restricted to the Unit and Site levels in the hierarchy. While Fig. 2 has

instances from the Unit to be used as set, equations in Fig. 3 have the Site concept

instances. So, when a problem is required to be solved at Unit level, the same Con-

ceptual Concept, depicted in Fig. 4, is applied at the Unit level. Also the Site concept

instances are called when a problem at the Site level is required to be solved.

An additional example would be the CurrentlyAvailableMaterial concept, which

is connected with an Identification concept to get the ProcessInput and the Proces-

sOutput for the identified level Fig. 1. In the case of the planning model, the Identifi-

cation concept, which describes materials required for recipes, includes the

SiteProcessSegmentInput (raw materials) and SiteProcessSegmentOutput (products)

concepts. Then, the CurrentlyAvailableMaterial may become a function of

CurrentlyAvailableMaterial(Identification,PhysicalModel,Time)
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where the Identification refers to set of materials depending on the level. The Phys-

icalModel element includes the set of Unit or Site and the Time element adds the

information related to the discretization (if the formulation is a discrete time).

4 Conclusions

This paper presents a methodology for building mathematical models from existing

data using Conceptual Constraints (CCs). The aim of the study is to be able to com-

prehensively formulate and solve decision making problems from different points of

view in a production system using a multi-scale generic approach. As a motivating

example, the material balance has been selected to illustrate the use of a common CC

at different decision-making levels. When some specific data-set related to the prob-

lem is selected, it is connected with the CC and the model structure is automatically

generated from them. The proposed methodology is applicable to any system where

a set of rules regulating the relations (connections) between the different sub-systems

exists, provided that the information inside these systems is modeled accordingly. In

the case of multi-level hierarchical systems, these relations are clear, previously iden-

tified and even standardized, so the application of the proposed methodology and the

identification of the conceptual equivalences becomes evident; in the case of other

systems, such as interwoven systems, systems of systems, etc., the relations may

be more difficult to standardize for a generic case, although common concepts will

also exist and might be exploited accordingly. As a result, and obviously accepting

that there will be always constraints which are not practical or feasible to generalize,

this methodology provides a basis for the systematic creation of models and, even

more important, to ensure the coherence of the results obtained by different models

operating at different hierarchical levels in a multi-scale system.
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Methods of Tropical Optimization in Rating
Alternatives Based on Pairwise Comparisons

Nikolai Krivulin

Abstract We apply methods of tropical optimization to handle problems of rating
alternatives on the basis of the log-Chebyshev approximation of pairwise comparison
matrices. We derive a direct solution in a closed form, and investigate the obtained
solution when it is not unique. Provided the approximation problem yields a set of
score vectors, rather than a unique (up to a constant factor) one, we find those vectors
in the set, which least andmost differentiate between the alternatives with the highest
and lowest scores, and thus can be representative of the entire solution.

1 Introduction

Tropical (idempotent) mathematics, which deals with the theory and applications of
semirings with idempotent addition [4, 6], finds use in operations research, computer
science and other fields. Optimization problems that are formulated and solved in the
framework of tropical mathematics constitute an important research domain, which
offers new solutions to old and novel problems in various applied areas, including
project scheduling [7, 10], location analysis [9] and decision making [8, 11]. The
problems are usually defined to minimize or maximize functions on vectors over
idempotent semifields (semirings with multiplicative inverses).

In this paper, we apply methods of tropical optimization to handle problems of
rating alternatives on the basis of the log-Chebyshev approximation of pairwise
comparison matrices. We derive a direct solution in a closed form, and investigate
the solution when it is not unique. Provided the approximation problem yields a set
of score vectors, rather than a unique (up to a constant factor) one, we find those
vectors in the set, which least and most differentiate between the alternatives with
the highest and lowest scores, and thus can be representative of the entire solution.
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2 Rating Alternatives via Pairwise Comparisons

The method of rating alternatives from pairwise comparisons finds use in decision
making when a direct evaluation of the ratings is unacceptable or infeasible (see, e.g.,
[12] for further details). The outcome of the comparisons is described by a square
symmetrically reciprocal matrix A = (ai j ), where ai j shows the relative preference
of alternative i over j , and satisfies the condition ai j = 1/a ji > 0 for all i, j .

To provide consistency of the data given by pairwise comparison matrices, the
entries of the matrices must be transitive to provide the equality ai j = aikak j for all
i, j, k. A pairwise comparison matrix with only transitive entries is called consistent.

For each consistent matrix A = (ai j ), there is a positive vector x = (xi ) whose
elements completely determine the entries ofA by the relation ai j = xi/x j . Provided
that a matrix A is consistent, its corresponding vector x is considered to represent
directly, up to a positive factor, the individual scores of alternatives in question.

The pairwise comparison matrices encountered in practice are generally incon-
sistent, which leads to a problem of approximating these matrices by consistent
matrices. To solve the problem, the approximation with the principal eigenvector
[12, 13], least squares approximation [2, 13] and other techniques [1, 3, 5] are used.

Another approach involves the approximation of a reciprocal matrixA = (ai j ) by
a consistent matrix X = (xi j ) in the log-Chebyshev sense, where the approximation
error is measured with the Chebyshev metric on the logarithmic scale. Since both
matricesA andX have positive entries, and the logarithm ismonotone increasing, the
error can be written as maxi, j |logai j − log xi j | = logmaxi, j max{ai j/xi j , xi j/ai j }.

Considering that the minimization of the logarithm is equivalent to minimizing its
argument, and that the matrixX can be defined through a positive vector x = (xi ) by
the equality xi j = xi/x j for all i, j , the error function to minimize is replaced by
maxi, j max{ai j/xi j , xi j/ai j } = maxi, j max{ai j x j/xi , a ji xi/x j }. The application of
the condition ai j = 1/a ji yields maxi, j max{ai j x j/xi , a ji xi/x j } = maxi, j ai j x j/xi ,
which finally reduces the approximation problem to finding positive vectors x to

minimize max
i, j

ai j x j/xi . (1)

Assume that the approximation results in a set S of score vectors x, rather than
a unique (up to a constant factor) one. Then, further analysis is needed to reduce to
a very few representative solutions, such as some “worst” and “best” solutions.

As the purpose of calculating the scores is to differentiate alternatives, one can
concentrate on two vectors x = (xi ) from S , which least and most differentiate
between the alternatives with the highest and lowest scores by minimizing and max-
imizing the contrast ratio maxi xi/mini xi = maxi xi · maxi x

−1
i . Then, the problem

of calculating the least (the most) differentiating solution is to find vectors x ∈ S
that

minimize (maximize) max
i

xi · max
i

x−1
i . (2)



Methods of Tropical Optimization in Rating Alternatives … 87

Below, we reformulate problems (1) and (2) in terms of tropical mathematics, and
then apply recent results in tropical optimization to offer complete, direct solutions.

3 Preliminary Definitions, Notation and Results

We start with a brief overview of the basic definitions and notation of tropical algebra.
For further details on tropical mathematics, see, e.g., recent publications [4, 6].

Consider the set of nonnegative reals R+, which is equipped with two operations,
addition⊕ defined asmaximum, andmultiplication⊗ defined as usual, and has 0 and
1 as their neutral elements. Addition is idempotent, since x ⊕ x = max(x, x) = x
for all x ∈ R+. Multiplication is distributive over addition and invertible to give each
x �= 0 an inverse x−1 such that x ⊗ x−1 = xx−1 = 1. The system (R+,⊕,⊗, 0, 1) is
called the idempotent semifield or the max-algebra and denoted Rmax. In the sequel,
the sign ⊗ is omitted for brevity. The power notation has the standard meaning.

The set of matrices over R+ with m rows and n columns is denoted by R
m×n
+ .

A matrix with all zero entries is the zero matrix. The matrices without zero rows
are called row-regular. Matrix operations employ the conventional entry-wise for-
mulae, where the scalar operations ⊕ and ⊗ play the role of the usual addition and
multiplication.

Themultiplicative conjugate transpose of a nonzeromatrixA = (ai j ) is thematrix
A− = (a−

i j ) with the entries a
−
i j = a−1

j i if a ji �= 0, and a−
i j = 0 otherwise.

Consider the square matrices in the set R
n×n
+ . A matrix with 1 along the diagonal

and 0 elsewhere is the identitymatrix denoted I. The power notation specifies iterated
products as A0 = I and Ap = Ap−1A for any matrix A and integer p > 0.

The tropical spectral radius of a matrix A = (ai j ) ∈ R
n×n
+ is the scalar given by

λ =
⊕

1≤k≤n

⊕

1≤i1,...,ik≤n

(ai1i2ai2i3 · · · aik i1)1/k . (3)

The asterate operator (the Kleene star) maps the matrix A onto the matrix

A∗ = I ⊕ A ⊕ · · · ⊕ An−1. (4)

The columnvectorswith n elements form the setRn+. The vectorswith all elements
equal to 0 and to 1 are denoted by 0 and 1. A vector is regular if it has no zero elements.
For any nonzero column vector x = (xi ), its conjugate transpose is the row vector
x− = (x−

i ), where x−
i = x−1

i if xi �= 0, and x−
i = 0 otherwise.

We conclude the overview with examples of tropical optimization problems. Sup-
pose that, given a matrix A = (ai j ) ∈ R

n×n
+ , we need to find vectors x ∈ R

n+ that

minimize x−Ax. (5)



88 N. Krivulin

The next complete, direct solution to the problem is obtained in [7].

Lemma 1 Let A be a matrix with spectral radius λ > 0. Then, the minimum value
in (5) is equal to λ, and all regular solutions are given by x = (λ−1A)∗u, u �= 0.

Given a matrix A ∈ R
m×n
+ and vectors p ∈ R

m+, q ∈ R
n+, we now find x ∈ R

n+ that

minimize q−x(Ax)−p. (6)

A solution given by [9] uses a sparsification technique to provide the next result.

Lemma 2 LetA = (ai j ) be a row-regularmatrix,p = (pi ) be nonzero andq = (q j )

be regular vectors, and Δ = (Aq)−p. Let Â = (̂ai j ) denote the matrix with entries
âi j = ai j if ai j ≥ Δ−1 piq

−1
j , and âi j = 0 otherwise. Let A be the set of matrices

obtained from Â by fixing one nonzero entry in each row and setting the others to 0.
Then, the minimum value in problem (6) is equal to Δ = (Aq)−p, and all regular

solutions are given by the conditions x = (I ⊕ −1A−
1 pq

−)u, u �= 0, A1 ∈ A .

Finally, we consider a maximization version of problem (6) to find vectors x that

maximize q−x(Ax)−p. (7)

A complete solution to the problem is obtained in [10]. Below, we describe this
solution in a more compact vector form using the representation lemma in [9].

Lemma 3 Let A = (a j ) be a matrix with regular columns a j = (ai j ), and p = (pi )
and q = (q j ) be regular vectors. LetAsk denote the matrix obtained fromA by fixing
the entry ask for some indices s and k, and replacing the other entries by 0.

Then, the maximum value in (7) is equal toΔ = q−A−p, and all regular solutions
are given by x = (I ⊕ A−

skA)u, u �= 0, k = argmax j q
−1
j a−

j p, s = argmaxi a
−1
ik pi .

4 Application to Rating Alternatives

We are now in a position to represent optimization problems (1) and (2) stated above
in the tropical mathematics setting, and then to solve them in an explicit form.

Consider problem (1) of evaluating the score vector based on the log-Chebyshev
approximation of a pairwise comparison matrixA. In terms of the max-algebra Rmax

the problem takes the form (5). Application of Lemma 1 yields the following result.

Theorem 1 Let A be a pairwise comparison matrix with spectral radius λ, and
denoteAλ = λ−1A andB = A∗

λ. Then, all score vectors are given by x = Bu, u �= 0.

Example 1 Suppose the result of comparing n = 4 alternatives is given by thematrix
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A =

⎛

⎜⎜⎝

1 1/3 1/2 1/3
3 1 4 1
2 1/4 1 2
3 1 1/2 1

⎞

⎟⎟⎠ . (8)

To apply Theorem 1, we use (3) to find λ = (a23a34a42)1/3 = 2, and calculate

Aλ =
(

1/2 1/6 1/4 1/6
3/2 1/2 2 1/2
1 1/8 1/2 1
3/2 1/2 1/4 1/2

)
. Then, we follow (4) to compute A∗

λ =
(

1 1/6 1/3 1/3
3 1 2 2
3/2 1/2 1 1
3/2 1/2 1 1

)
.

As the last three columns of the matrixA∗
λ are collinear, we take one of them, say,

the second. Combining with the first column multiplied by 1/3 leads to the solution

x = Bu, B =

⎛

⎜⎜⎝

1/3 1/6
1 1
1/2 1/2
1/2 1/2

⎞

⎟⎟⎠ , u = (u1, u2)
T , u1, u2 �= 0. (9)

Note that all the solutions assign the highest score to the second alternative and
the lowest to the first. Moreover, the solutions which least and most differentiate
between these alternatives, are the first and the second columns in the matrix B.

In the general case, the least and most differentiating solutions from a set of vec-
tors, given in the form x = Bu, are determined by solving problems (2). The prob-
lems are to minimize and maximize the contrast ratio for the elements of the vector
x, which, in terms of tropical mathematics, takes the form 1T xx−1 = 1TBu(Bu)−1.

To find a vector x = Bu with the least differentiation between scores, we solve
the problem

minimize 1TBu(Bu)−1.

Assuming the matrix B is obtained as in Theorem 1, we have the next result.

Theorem 2 Let B̂ be a sparsified matrix derived from B by setting to 0 all entries
below Δ−1 = ((B(1TB)−)−1)−1, and B be the set of matrices obtained from B̂
by fixing one nonzero entry in each row and setting the others to 0. Then, the least
differentiating score vectors are given by x = B(I ⊕ Δ−1B−

1 11
TB)v, v �= 0,B1 ∈ B.

Proof We reduce the problem under study to (6) by the substitutions q− = 1TB,
A = B, p = 1 and x = u. Since the matrix B has only nonzero entries, the regularity
conditions of Lemma 2 are satisfied. Application of this lemma involves evaluating
the minimum value Δ = (B(1TB)−)−1, calculating the sparsified matrix b̂ f B, and
forming the matrix setB. The solution is given by u = (I ⊕ Δ−1B−

1 11
TB)v, where

v �= 0 and B1 ∈ B. Turning back to the vector x = Bu yields the desired result. �

Example 2 Consider the solution obtained in the form (9) in Example 1 for the
matrix (8). To apply the result of Theorem2,we successively calculate 1TB = (

1 1
)
,

B(1TB)− =
(

1/3
1
1/2
1/2

)
, Δ = (B(1TB)−)−1 = 3, and B̂ =

(
1/3 0
1 1
1/2 1/2
1/2 1/2

)
.
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We now examine the matrices obtained from B̂ by leaving one nonzero entry in

each row. For instance, consider the matrix B1 =
(

1/3 0
1 0
1/2 0
1/2 0

)
, which leaves the first

column in B̂ unchanged, and has all zero entries in the second. We have B−
1 1 = (

3
0

)
,

B−
1 11

TB = (
3 3
0 0

)
, I ⊕ Δ−1B−

1 11
TB = (

1 1
0 1

)
, andB(I ⊕ Δ−1B−

1 11
TB) =

(
1/3 1/3
1 1
1/2 1/2
1/2 1/2

)
.

As both columns in the last matrix coincide, we take one to write the least dif-
ferentiating solution in the form x = (

1/3 1 1/2 1/2
)T

v, v �= 0. Calculations with
the other matrices obtained from B̂ yield the same result, and are thus omitted.

To obtain the most differentiating score vectors we need to solve the problem

maximize 1TBu(Bu)−1.

Similarly as before, we reduce this problem to (7), conclude that the conditions
of Lemma 3 are fulfilled, and finally apply this lemma to obtain the next solution.

Theorem 3 Let B = (b j ) be a matrix with columns b j = (bi j ), and Bsk denote the
matrix obtained from B by fixing the entry bsk and replacing the others by 0.

Then, the most differentiating score vectors are given by x = B(I ⊕ B−
skB)v, v �=

0, k = argmax j 1Tb jb−
j 1, s = argmaxi b

−1
ik .

Example 3 We start with the solution at (9), and compute 1Tb1 = 1, 1Tb2 = 1,
b−
1 1 = 3, andb−

2 1 = 6. Since1Tb1b−
1 1 = 3 and1Tb2b−

2 1 = 6,we take k = 2, s = 1.

We have B12 =
(

0 1/6
0 0
0 0
0 0

)
, I ⊕ B−

12B = (
1 0
2 1

)
, and B(I ⊕ B−

12B) =
(

1/3 1/6
2 1
1 1/2
1 1/2

)
.

Since the columns in the last matrix are collinear, we take one of them, say, the
second, to write the most differentiating vector as x = (

1/6 1 1/2 1/2
)T

v, v �= 0.
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New Constraints and Features
for the University Course
Timetabling Problem

M. Aschinger, S. Applebee, A. Bucur, H. Edmonds,
P. Hungerländer and K. Maier

Abstract The university course timetabling problem deals with the task of

scheduling lectures of a set of university courses into a given number of rooms

and time periods, taking into account various hard and soft constraints. The goal of

the International Timetabling Competitions ITC2002 and ITC2007 was to establish

models for comparison that cover the most frequently found use cases. Our model,

motivated by a project with University College London (UCL), builds on the stan-

dard model from track 3 of ITC2007. Compared to the standard model from the lit-

erature, we cover several new constraints and extra features. For example, we expand

the ITC2007 framework to generate a timetable for several weeks of the term instead

of only one and introduce the corresponding timetable regularity metric, which mea-

sures the consistency of time and room assignments for a course throughout the

term. We suggest an Integer Linear Programming approach for solving this expanded

timetabling problem and introduce a corresponding new benchmark library. Finally

we conduct computational experiments and discuss the results obtained with respect

to solution quality and practical suitability for UCL.

1 Introduction

The 2nd annual Timetabling Competition (ITC-2007) established a standardized

framework for the timetabling problem in terms of problem formulation and test

instances [5]. With knowledge of this, University College London (UCL) and Satalia

(NPComplete Ltd.) funded the research presented in this paper to investigate the
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value of optimization-based timetabling and to provide implementable results. The

UCL timetabling problem was modelled as closely to true complexity as possible,

using actual data from 2015 and new features and constraints not previously consid-

ered in the literature.

Reviewing the relevant literature we notice that while over the years local search

techniques have dominated the field of timetabling research [3], recently new

approaches based on SAT [1], Constraint Programming [6], Mathematical Program-

ming [2] and Metaheuristics [4] have successfully entered the field. Our approach

is based on the Mathematical Programming methodology, as we suggest an Integer

Linear Programming (ILP) algorithm to solve the optimization problem at hand.

This paper is structured as follows. In Sect. 2, we describe the curriculum-based

timetabling problem as it was proposed in the ITC-2007 competition and extend it

to include some of the extra constraints and features required by UCL. In Sect. 3,

we introduce our ILP approach and the way it encodes the different constraints. In

Sect. 4 we introduce several relevant metrics and we present and discuss the results

of our computational experiments. Section 5 concludes the paper.

2 Problem Formulation: UCL Extended Framework

The challenge of the curriculum-based course timetabling problem (CB-CTT) is to

schedule lectures belonging to a set of courses C = {c1, c2,… , cv} to k periods P =
{p1, p2,… , pk} and m rooms R = {r1, r2,… , rm}, accounting at the same time for

certain hard and soft constraints. In the CB-CTT the timetable is generated based

upon a set of s university curricula I = {i1, i2,… , is}, to which the courses belong.

Next let us introduce assignment vectors q whose entries are set to 1, if a course-

period-room combination is contained in timetable. Otherwise the entries are set

to 0. Now a feasible solution of the problem is a binary vector q that satisfies all

hard constraints. Finally the task of the CB-CTT is to find a vector q∗ such that

f (q∗) ⩽ f (q) for all q ∈ q̃, where f (⋅) is an evaluation function summing up all viola-

tions of the soft constraints and q̃ denotes the set of all feasible assignment vectors.

The exact problem formulation of the ITC-2007 framework and further details can

be found in [5].

The UCL timetabling problem presents a wide range of challenges, since its fea-

tures and additional constraints substantially exceed the ones from the ITC-2007

framework. Many of those features and additional constraints are omitted in this

short paper due to space limitations and will be provided in a forthcoming paper. We

include though the extensions that are most interesting from an academic viewpoint:

1. Our courses consist of activities with different durations, which relaxes the indis-

tinguishability assumption of lectures from the literature. Therefore we define the

set of all activities A = {a1, a2,… , an} with corresponding durations of activities

da, a ∈ A.

2. The UCL framework aims to generate feasible timetables for a setW of 10 consec-

utive weeks in a manner that guarantees the highest possible timetable regularity.



New Constraints and Features for the University Course Timetabling Problem 97

This means that whenever possible, activities should be scheduled in the same

period and room over the different weeks.

3. Some activities within the same curriculum can be scheduled in parallel, e.g. if

students need to attend only one of the practical lessons offered.

4. The activities have a specific predefined type, which must match the room type

of the assigned room.

3 Integer Linear Programming Models

The Integer Linear Programming (ILP) solver presented in this paper is based on the

approach suggested by [2]. The problem is split into two stages. In the first stage, each

activity is assigned to an appropriate set of consecutive time periods. The assignment

of activities to rooms is done in the second stage. Due to space limitation, we state

the mathematical formulation only for the second stage and for the first stage we

solely mention the most important newly developed constraints.

While our solver is optimized for the UCL framework, we have also tested it on

the original ITC-2007 benchmark set. Preliminary results are very encouraging and

hence we plan to provide a detailed analysis showing the competitiveness of our

solver on the standard benchmarking sets from the literature in a forthcoming paper.

First Stage: In the first stage each activity has to be scheduled in a consecutive set

of time periods. The function D(p) gives the day of period p. Now if activity a is

scheduled at period p, then the binary variable xap is set to 1. Otherwise we have

xap = 0. To ensure that an activity is assigned to consecutive time periods, we also

need binary variables sap, which are set to 1, if activity a starts at period p. Otherwise

we have sap = 0. Note that variable sap is only introduced, if there are at least da − 1
consecutive time periods available after period p on the same day:

xap −
p∑

t=p−da+1
sat exists

sat = 0, a ∈ A, p ∈ P, (1)

∑

sap exists

sap = 1, a ∈ A. (2)

Equalities (1) ensure that each activity is assigned to a set of consecutive time periods

that all belong to the same day. Equalities (2) guarantee that each activity has exactly

one start time period.

One of our main goals for the UCL Timetabling Problem is to minimize the total

number of rooms required. While this goal is clearly part of the objective function

of the Second Stage, we also need to consider it during the First Stage. We propose

the following constraints in order to restrict the total number of activities scheduled

per time period:
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∑

a∈A
xap ≤ M, p ∈ P, (3)

where M is an integer variable that is multiplied by a penalty term pM in the objective

function of the First Stage. Without inequalities (3) arbitrarily many activities could

be assigned to the same time period during the First Stage, which could leave us with

no possibility to minimize the number of rooms required in the Second Stage.

Second Stage: After solving the First Stage, in the Second Stage we determine fea-

sible rooms for the activities, where we aim to minimize the following objectives:

(a) The number of students, which have no seat during an activity.

(b) The number of empty seats in a room during an activity.

(c) The total number of rooms.

In order to build an ILP model for the Second Stage, we introduce binary variables

ur, yar and zarp with the following interpretations:

∙ ur = 1, if at least one activity is scheduled in room r. Otherwise ur = 0.

∙ yar = 1, if activity a is scheduled in room r. Otherwise yar = 0.

∙ zarp = 1, if activity a is scheduled in room r at period p. Otherwise zarp = 0.

Note that the variables yar and zarp are only introduced, if it is feasible to schedule

activity a in room r at period p, i.e. if the activity type matches with the room type,

if the activity is assigned to period p in the First Stage and if the room is available at

period p. Accordingly we define P(a), P(r) and P(a, r) as the sets of available time

periods for activity a, for room r and for their combination respectively. Analogously

we specify A(r) and A(p, r) as the sets of feasible activities for room r at period p
and R(a, p) as the set of feasible rooms for activity a at period p.

For each feasible activity-room combination we introduce a penalty parameter par
that gives the absolute value of the difference between the available seats in room r
and the number of students registered for activity a. We also introduce the penalty

parameter pr giving the costs for using room r. Now we can state our ILP model:

min
∑

a∈A, r∈R(a,p)
paryar +

∑

r∈R
prur (4a)

s.t.

∑

r∈R(a)
zarp = 1, a ∈ A, p ∈ P(a), (4b)

dayar −
∑

p∈P(a,r)
zarp = 0, r ∈ R, a ∈ A(r), (4c)

∑

a∈A(p,r)
zarp − ur ≤ 0, r ∈ R, p ∈ P(r), (4d)

ur ∈ {0, 1}, yar ∈ {0, 1}, zarp ∈ {0, 1}, r ∈ R, a ∈ A(r), p ∈ P(a, r). (4e)

Equalities (4b) guarantee that exactly one room is assigned to an activity at each time

period. Equalities (4c) ensure that the same room is assigned to all time periods of
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an activity. Constraints (4d) guarantee that at most one activity is assigned to room

r at each time period and also ensure ur = 1, if at least one activity is scheduled in r.

4 Metrics and Results

In order to evaluate the quality of a timetable and its usefulness in practice, it is

necessary to introduce a wide range of metrics. In this paper we present a short

selection of metrics that were deemed most important by UCL.

Space utilization: The UK’s most important metric for determining how well uni-

versities use their facilities is space utilization su, which is defined as the sum of

room frequency and average room occupancy. For computing the room frequency rf
we divide the number of time periods occupied by the number of time periods that

are available in rooms, in which at least one activity is scheduled.

Next let us define the room occupancy oa,r of an activity a that is scheduled in

room r: oa,r = min
(
1, sa∕cr

)
, r ∈ R, a ∈ T(r), where sa denotes the number of stu-

dents registered for activity a, cr gives the capacity of room r and the set T(r) contains

all activities scheduled in room r. Now the average room occupancy r̄o is simply the

mean of all room occupancies of the considered timetable.

Note that the objective function of the Second Stage of our ILP approach is tai-

lored to minimize both space utilization and the number of students without seats.

Timetable regularity: Timetable regularity measures the consistency of time and

room assignments of a timetable throughout the term, assuming that each week of

the term has slightly different activities. We count the different start times s(a,w) and

room assignments r(a,w) of an activity a in week w ∈ W via the following function:

g(w1,w2, a) =
⎧
⎪
⎨
⎪⎩

2, if s(a,w1) ≠ s(a,w2) and r(a,w1) ≠ r(a,w2),
1, if either s(a,w1) ≠ s(a,w2) or r(a,w1) ≠ r(a,w2),
0, otherwise,

with w1,w2 ∈ W, i ∈ I and a ∈ A(i,w1,w2) is an activity that has to be scheduled

both in w1 and w2 in curriculum i. There are b different combinations of activ-

ities, pairs of weeks and curricula and the total number of students is given by

ht =
∑

i∈I hi, where hi, i ∈ I, is the number of students registered in curriculum i.
Now the timetable regularity TR can be defined as:

TR = 1 −
⎛
⎜
⎜
⎜⎝

∑

i∈I

⎛
⎜
⎜
⎜⎝

∑

w1,w2∈W
w1≠w2

(
∑

a∈A(i,w1,w2)
g(w1,w2, a)

)⎞
⎟
⎟
⎟⎠

⋅ hi

⎞
⎟
⎟
⎟⎠

∕
(
2 ⋅ b ⋅ ht

)
.
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We try to maximize TR by first including activities that have to be scheduled in most

weeks of the term in a base week that is solved with the two stage approach described

in the previous section. Afterwards we solve an ILP for each particular week, where

we maximize similarity to the base week by adding respective soft constraints.

Computational experiments: Finally we present the results obtained by using our

ILP approach on a selection of the original set of UCL curricula, available at http://

tinyurl.com/timetabling-lib. All experiments were performed on a Linux 64-bit

machine equipped with 4 × Intel(R) Xeon(R) CPU e5-2630 v3@2.40 GHz and 16

GB RAM. We use Gurobi 6.5.1 as our ILP-solver.

Our benchmark set consists of around 250 activities per week with an average

length of ≈3.5 time periods. Each week consists of 5 days with 18 time periods (a

30 min) per day. In each week we use around 20 of the available 279 rooms.

We obtained timetables for the whole term within 190 s computing time. The

corresponding metrics are:

(a) rf = 0.49, (b) r̄o = 0.78, (c) su = 1.27, (d) TR = 0.8723.

The very high timetable regularity of 87.23% is very important for the 35615 UCL

students. With our timetables determined they do not have to adapt to frequent

weekly timetable changes. Furthermore the high average occupancy metric shows

that on average, used rooms are more than
3
4

full, which ensures an efficient facility

usage. Finally the room frequency metric indicates that rooms, which are used at

least once, are occupied almost 50% of the total available time periods.

5 Conclusion

In this paper we presented a solution to the curriculum-based timetabling problem

of a real-world institution, the University College London, whose requirements and

specifications considerably exceed those of the ITC-2007 problem formulation. Due

to space restrictions, we selected only the most significant new problem features and

the most interesting metrics for this paper. An extended version of this publication

will include the solution to the complete problem with 1000 activities per week and

279 rooms, as well as the full set of modeling features, requirements and metrics.
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Creating Worst-Case Instances for Lower
Bounds of the 2D Strip Packing Problem

Torsten Buchwald and Guntram Scheithauer

Abstract We present a new approach to create instances with high absolute

worst-case performance ratio of common lower bounds for the two-dimensional rec-

tangular Strip Packing Problem. The idea of this new approach is to optimize the

width and the height of all items regarding the absolute worst case performance ratio

of the lower bound. Therefore, we model the pattern related to the lower bound as a

solution of an ILP problem and merge this model with the Padberg-type model of the

two-dimensional Strip Packing Problem. The merged model maximizes the absolute

worst-case performance ratio of the lower bound. We introduce this new model for

the horizontal bar relaxation and the horizontal contiguous bar relaxation.

1 Introduction

In this paper, we consider the two-dimensional Strip Packing Problem (SPP) with

rectangular items. Let a set I ∶= {1,… , n} of non-rotatable rectangles Ri (items) of

width wi ≤ 1 and height hi ≤ 1 be given. The items have to be packed into a strip of

width 1 and minimal height OPT such that the items do not overlap each other.

A lot of lower bounds are known for this problem, but for most of them the exact

absolute worst-case performance ratio, which is the supremum over all instances of

the fraction of the optimal value and the lower bound, is unknown. To reduce the gap

between a proven upper bound of the absolute worst-case performance ratio and the

performance ratio of an instance having maximal ratio known so far, it is necessary

to decrease the theoretical upper bound or to find instances with greater performance

ratio.
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In the following, we introduce a new approach to compute such worst-case

instances. For several lower bounds, we show how to model this issue as an opti-

mization problem which maximizes the performance ratio within a subset of SPP

instances. In this way, we obtain the absolute worst-case performance ratio of these

lower bounds for the considered subsets.

2 Modeling Lower Bounds for the SPP

In this paper, we consider two lower bounds: (binary) horizontal bar relaxation and

contiguous (binary) horizontal bar relaxation [1]. We show how the optimization

problems addressed above can be modeled. Since we aim to maximize the absolute

worst-case performance ratio which is a fraction, we linearize this objective function

by fixing the optimal value and minimizing the height of the lower bound. For our

models we assume that all items can be packed using a strip height of at most 1,

i.e., OPT ≤ 1 holds. To ensure that this condition is fulfilled, our model contains

a Padberg-type model [2]. The second part of our model describes the considered

lower bound. Hence, we aim to minimize the height of the lower bound solution

depending on the widths and heights of the items.

2.1 Modeling an Optimal Pattern

The main issue of our approach is the managing of the optimal value of the SPP

instance which results by minimization and which should be maximized in compar-

ison to the lower bound at the same time. On the one hand, by definition of the SPP,

we search for a feasible pattern with minimal value but we also try to get an instance

with lower bound as small as possible. So, in order to get a large absolute worst-case

performance ratio the optimal value should be maximized with respect to the con-

sidered instance set. To resolve this issue, we fix the optimal value and iterate over

all possible patterns to provide the optimal solution, that means, the height of the

considered feasible pattern has to be 1 and all other patterns are either infeasible or

have height at least 1. Obviously, any particular pattern can be characterized by the

relative positions of each pair of items (left, right, above, below). Regarding sym-

metry and permutation aspects, we have only 4 different patterns with n = 3 items

(Fig. 1).

The pattern which should be the optimal pattern is called current pattern. For

the current pattern we have to guarantee that this pattern is feasible and has height

of at least 1. To model the feasibility of a current pattern, we consider maximal

subsets of items which are placed next to each other in this pattern. These subsets

are called horizontal slices of the considered pattern. Obviously, the current pattern

is only feasible if the total width of each horizontal slice of this pattern does not

exceed the width of the strip. Analogously to the horizontal slices, we denote the
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1 2 3

Pattern 1

1

2

3

Pattern 2

1

2 3

Pattern 3

1

2

3

Pattern 4

Fig. 1 Possible patterns of 3 items

maximal subsets of items which are placed above each other in the considered pattern

as vertical slices. To ensure that the current pattern has height of at least 1, we have

to enforce that the total height of at least one vertical slice of this pattern is at least 1.

To model these conditions, we introduce two binary variables xA and yA for each

possible subsetA ∈ Pn of items wherePn denotes the set of all subsets of {1,… , n}
with at least two elements. (Note that singletons are not meaningful in our approach.)

These variables belong to the horizontal and vertical slices which coincide with the

corresponding subsets of items. Since xA and yA indicate whether the total width or

the total height of item set A exceeds the respective boundary of the strip, we apply

the following inequalities with a small 𝜀 > 0:

(1 − xA) ∗ W +
∑

i∈A
wi ≥ W + 𝜀 for all A ∈ Pn, (1)

(1 − yA) ∗ 1 +
∑

i∈A
hi ≥ 1 for all A ∈ Pn. (2)

In the first inequality, if xA = 1, then the total width of the items of A has to exceed

the strip width, otherwise the horizontal slice can be feasible or not. Analogously, if

yA = 1, the second inequality ensures that the total height of the items of A is at least

1. Let CP denote the current pattern. Furthermore, let HS(P) and VS(P) denote the

set of horizontal and vertical slices of a pattern P, respectively. Then we model the

feasibility of CP by demanding the following inequalities:

∑

i∈A
wi ≤ W for all A ∈ HS(CP) ∩Pn. (3)

Note that these inequalities imply

xA = 0 for all A ∈ HS(CP) ∩Pn.

Moreover we ensure that the height of the current pattern is at least 1 by using the

following inequality:
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∑

A∈VS(CP)∩Pn

yA ≥ 1. (4)

Note that this inequality leads to an infeasible model for that pattern, where all items

are packed next to each other (pattern 1 in Fig. 1). But this is not relevant, since the

optimal value of the lower bound is equal to 1 in this case. Summarizing the usage of

all inequalities (1)–(4) within the model ensures that the current pattern is feasible

and has height of at least 1. However, We still have to guarantee that no other pattern

has a height less than 1.

2.2 Other Patterns

To ensure that no other feasible pattern gives a better solution than the current pattern

CP, we need to add appropriate inequalities for each other pattern. Let OP be any

other pattern. Then, to guarantee that pattern OP is not a better feasible pattern than

CP, we have to enforce that either OP is infeasible or that it requires a strip height

of at least 1. This is modeled by the following inequality:

∑

A∈HS(OP)∩Pn

xA +
∑

B∈VS(OP)∩Pn

yB ≥ 1. (5)

Adding this inequality for each other pattern we ensure that the current pattern

becomes an optimal pattern. Since the height of CP is enforced to be at least 1, now

we can minimize the value of the considered relaxation in order to find an instance

with a maximal absolute worst case performance ratio.

Since the whole problem is too complex, we consider particular subsets of

instances defined as follows: The maximum number of original rectangular items

of size wi × hi in the instance is restricted by a given number N. Clearly, the vari-

ables wi and hi, i ∈ I = {1,… ,N}, have to fulfill the constraints

𝜀 ≤ wi ≤ 1, i ∈ I, (6)

0 ≤ hi ≤ 1, i ∈ I. (7)

Let (xi, yi), i ∈ I, denote the allocation point (lower left corner) of item i, and let

uij and vij, i, j ∈ I, i ≠ j, be binary variables (according to [2]) to characterize the

mutual position of items i and j in the pattern, then the feasibility of the instance is

enforced by

0 ≤ xi ≤ 1 − wi, i ∈ I, (8)

0 ≤ yi ≤ 1 − hi, i ∈ I, (9)

xi + wi ≤ xj + 1 − uij, i, j ∈ I, i ≠ j, (10)

yi + hi ≤ yj + 1 − vij, i, j ∈ I, i ≠ j, (11)

uij + uji + vij + vji = 1, i, j ∈ I, i ≠ j. (12)
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According to the horizontal (contiguous) bar relaxation, any item is partitioned into

s item parts of size wi × hik, k ∈ K = {1,… , s}, by horizontal cuts. Naturally, we

have the constraints

0 ≤ hik, i ∈ I, k ∈ K, (13)

s∑

k=1
hik = hi, i ∈ I. (14)

To model the feasibility of the solution related to the bound, let (xik, yik), i ∈ I, k ∈ K,

denote the allocation point of item part (i, k). Moreover, let uikjl and vikjl, i, j ∈ I,
k, l ∈ K, i ≠ j, be binary variables to characterize the mutual position of item parts

(i, k) and ( j, l) in the pattern of the bar relaxation. To guarantee that the item parts can

be packed into the strip, using an minimal height H, we add the following constraint:

yik + hik ≤ yi,k+1, i ∈ I, k = 1,… , s − 1, (15)

yis + his ≤ H, i ∈ I, (16)

0 ≤ xik ≤ 1 − wi, i ∈ I, k ∈ K, (17)

xik + wi ≤ xjl + 1 − uikjl, i, j ∈ I, k, l ∈ K, i ≠ j, (18)

yik + hik ≤ yjl + 1 − vikjl, i, j ∈ I, k, l ∈ K, (i, k) ≠ (j, l), (19)

uikjl + ujlik + vikjl + vjlik = 1, i, j ∈ I, k, l ∈ K, i ≠ j. (20)

Summarizing, the whole model to compute an instance with maximal worst-case

performance ratio is as follows:

H → min

subject to constraints

1. (6)–(7) for the size parameters of the items,

2. (8)–(12) for the feasibility of the instance computed,

3. (13)–(20) for the partition of items and feasible packability of all item parts,

4. (1)–(5) for the optimality of the (current) pattern and optimal height 1.

To extend the model to the horizontal contiguous bar relaxation, we just need to

replace constraints (15) by

yik + hik = yi,k+1, i ∈ I, k = 1,… , s − 1, (15 ∗)

which ensure that the solution of the relaxation fulfills the contiguous property.
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Fig. 2 Instance with

maximal worst-case

performance ratio for N = 4
and s = 2

Optimal pattern Relaxed pattern

3 Preliminary Results

Up to now, we have only solved the model with a given small number N of items

which are partitioned each into s = 2 item parts. For the horizontal bar relaxation

we observed, that the patterns of the solutions have the same structure, which is

displayed in Fig. 2 for the case N = 4.

The height of the solution of the bar relaxation is always equal to N∕(2N − 2)
which asymptotically proves that the absolute worst case performance ratio of the

horizontal bar relaxation is at least 2.

We also applied the model for the contiguous horizontal bar relaxation for only

small N and s. But up to now all solutions obtained provide lower bound 1, and

therefore, ratio 1. For larger n, we will get absolute worst-case performance ratios

larger than 1, due to [1]

4 Conclusions and Outlook

In this paper, we proposed a new approach to obtain worst-case instances for the

two-dimensional Strip Packing Problem when the number of items and item parts

is limited. We implemented this approach for two lower bounds and presented first

promising results for the horizontal bar relaxation. We are optimistic that we will

obtain similar results for the contiguous horizontal bar relaxation.

It will be part of our future work to apply this approach to other lower bounds.

Moreover, we will try to improve the model by further examining the structure of

the problem and optimizing the performance of our approach with respect to this

structure.
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Low-Rank/Sparse-Inverse Decomposition
via Woodbury

Victor K. Fuentes and Jon Lee

Abstract Based on the Woodbury matrix identity, we present a heuristic and a test-

problem generation method for decomposing an invertible input matrix into a low-

rank component and a component having a sparse inverse.

1 Introduction

Our starting point is the well-known low-rank/sparse decomposition problem

min
{
𝜏‖A‖0 + (1 − 𝜏)rank(B) ∶ A + B = ̄C

}
, (D0)

where ̄C is an m × n input matrix, 0 < 𝜏 < 1, ‖ ⋅ ‖0 counts the number of non-zeros,

and A and B are matrix variables (see [2]). The problem D0 is a central problem in

the area of statistical model selection, where the sparse matrix can correspond to a

Gaussian graphical model, and the low-rank matrix can capture the effect of latent,

unobserved random variables.

1.1 Convex Approximation

The problem D0 is ordinarily approached by using the (element-wise) 1-norm as an

approximation of ‖ ⋅ ‖0 and using the nuclear norm (sum of the singular values) as

an approximation of rank. So we are led to the approximation
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min
{
𝜏‖A‖1 + (1 − 𝜏)‖B‖∗) ∶ A + B = ̄C

}
, (D1)

where ‖A‖1 ∶=
∑

i,j |aij| and ‖B‖∗ denotes the sum of the singular values of B. This

approach has some very nice features. First of all, because we have genuine norms

now in the objective function, this approximation D1 is a convex optimization prob-

lem, and so we can focus our attention on seeking a local optimum of D1 which will

then be a global optimum of D1. Still, the objective function of D1 is not differen-

tiable everywhere, and so we are not really out of the woods. However, the approxi-

mation D1 can be re-cast (see [2, Appendix A]) as a semidefinite-optimization prob-

lem

min 𝜏𝐞′S𝐞 + (1 − 𝜏)1
2
(
tr(W1) + tr(W2)

)

A + B = ̄C, −S ≤ A ≤ S,
(
W1 B
B′ W2

)
⪰ 0,

which is efficiently solvable in principle (see [7]). We note that semidefinite-

optimization algorithms are not at this point very scalable. Nonetheless, there are

first-order methods for this problem that do scale well and allow us to quickly get

good approximate solutions for large instances (see [1]).

Also, it is interesting to note that to solve D0 globally (with additional natural

constraints bounding the feasible region), a genuine relaxation of D0 closely related

to D1 should be employed (see [5]).

1.2 Generating Test Problems via the Recovery Theory

Another extremely nice feature of the convex approximation D1 is a “recovery the-

ory”. Loosely speaking it says the following: If we start with a sparse matrix ̄A that

does not have low rank, and a low-rank matrix ̄B that is not sparse, then there is a

non-empty interval I ∶= [𝜏𝓁 , 𝜏u] ⊂ [0, 1] so that for all 𝜏 ∈ I , the solution of the

approximation D1 is uniquely A = ̄A and B = ̄B.

The recovery theory suggests a practical paradigm for generating test problems

for algorithms for D1.

Procedure 1
1. Generate a random sparse matrix ̄A that with high probability will not have low

rank. For example, for some natural number𝓁 ≪ min{m, n}, randomly choose𝓁 ⋅
min{m, n} entries of ̄A to be non-zero, and give those entries values independently

chosen from some continuous distribution.

2. Generate a random low-rank matrix ̄B that with high probability will not be

sparse. For example, for some natural number k ≪ min{m, n}, make an m × k
matrix ̄U and a k × n matrix ̄V , with entries chosen independently from some

continuous distribution, and let ̄B ∶= ̄U ̄V .

3. Let ̄C ∶= ̄A + ̄B.
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4. Perform a search on [0, 1] to find a value 𝜏
∗

so that the solution of D1 with 𝜏 = 𝜏

∗

is A = ̄A and B = ̄B.

5. Output: ̄C, 𝜏
∗
.

The recovery theory tells us that there will be a value of 𝜏
∗

for which the solution

of D1 with 𝜏 = 𝜏

∗
is A = ̄A and B = ̄B. What is not completely clear is that there is

a disciplined manner of searching for such a 𝜏

∗
(step 4). Let A

𝜏

,B
𝜏

be a solution of

D1, with the notation emphasizing the dependence on 𝜏. We define the univariate

function

f (𝜏) ∶= ‖ ̄A − A
𝜏

‖F = ‖ ̄B − B
𝜏

‖F = 1
2
(
‖ ̄A − A

𝜏

‖F + ‖ ̄B − B
𝜏

‖F
)
.

Clearly, for 𝜏 = 0, the solution of D1 will be B = 0, A = ̄C and f (0) = ‖ ̄B‖F. Like-

wise, for 𝜏 = 1, the solution of D1 will be A = 0, B = ̄C and f (1) = ‖ ̄A‖F. For

𝜏

∗ ∈ I , f is minimized with f (𝜏∗) = 0, And we can hope that f is quasiconvex and

we may quickly find a minimizer via a bisection search.

2 Low-Rank/Sparse-Inverse Decomposition

Now, we turn our attention to a closely related problem—which is our main focus.

We assume now that ̄G is an order-n square input matrix, 0 < 𝜏 < 1, and our goal is

to solve the low-rank/sparse-inverse decomposition problem:

min
{
𝜏‖E−1‖0 + (1 − 𝜏)rank(F) ∶ E + F = ̄G

}
. (H0)

Note that, generally, it may be that ̄G is not invertible, but in the approach that we

present here, we will assume that ̄G is invertible.

The problem H0 can capture an interesting problem in statistics. In that setting,

̄G can be a sample covariance matrix. Then E can be the true covariance matrix

that we wish to recover. In some settings, the inverse of E (known as the preci-
sion matrix) can be of unknown sparse structure—a zero entry in the inverse of E
identifies when a pair of variables are conditionally (on the other n − 2 variables)

independent. We do note that for this application, because the sample covariance

matrix and the true covariance matrix are positive semidefinite, there are alternative

approaches, based on convex approximations, that are very attractive (see [6] and the

references therein). So our approach can best be seen as having its main strength for

applications in which ̄G is not positive semidefinite.
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2.1 An Algorithmic Approach via the Woodbury Identity

The algorithmic approach that we take is as follows.

Procedure 2
1. Let ̄C ∶= ̄G−1

.

2. Apply any approximation method for D0, yielding some A (and B). For example,

we can solve D1.

3. Output E ∶= A−1
and F ∶= ̄G − E.

Our methodology is justified by the Woodbury matrix identity (see [4]). In step 2,

we find a decomposition A + B = ̄G−1
, with A sparse and B low rank. Now, suppose

that rank(B) = k. Then it can be written as B = UV , where U is n × k and V is k × n.

By the Woodbury identity, we have

̄G = ̄C−1 = (A + B)−1 = (A + UV)−1 = A−1 − A−1U(I + VA−1U)−1VA−1
.

Because A is sparse, we have that E−1
is sparse. Finally, we have F = −A−1U(I +

VA−1U)−1VA−1
which has rank no more than k.

2.2 Generating Test Problems Without a Recovery Theory

We could try to work with the approximation

min
{
𝜏‖E−1‖1 + (1 − 𝜏)‖F‖∗) ∶ E + F = ̄G

}
(H1)

of H0, but H1 is not a convex optimization problem, and there is no direct recovery

theory for it. But we can exploit the correspondence (via the Woodbury identity)

with D1 to generate test problems for the non-convex problem H1. In analogy with

Procedure 1 of Sect. 1.2, we employ the following methodology, which incorporates

our heuristic Procedure 2.

Procedure 3
1. Generate a random sparse square invertible matrix ̄A. This may have to be done

with a few trials to ensure that ̄A is invertible. Let ̄E ∶= ̄A−1
.

2. Generate a random low-rank square matrix ̄B ∶= ̄U ̄V that with high probability

is not sparse, as described in step 2 of Procedure 1.

3. Let ̄F ∶= − ̄A−1
̄U(I + ̄V ̄A−1

̄U)−1 ̄V ̄A−1
, and let ̄G ∶= ̄E + ̄F.

4. Let ̄C ∶= ̄G−1
. Search on [0, 1] to find a 𝜏

∗
seeking to minimize f (𝜏) ∶= ‖ ̄A −

A
𝜏

‖F = ‖ ̄B − B
𝜏

‖F.

5. Output: ̄G, 𝜏
∗
.

Because of the way we have engineered ̄F in Procedure 3, we take advantage of

the ordinary recovery theory for D1.
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3 Computational Experiments

We carried out some preliminary computational experiments for Procedure 3, using

n = 75. We did six experiments, one each with the rank of ̄B at k = 3, 6, 9, 12, 15, 18.

For each value of k, we chose ̄A−1
to have (k + 1)n non-zeros. So, as k increases, the

rank of ̄B is increasing and the number of non-zeros in ̄A−1
is increasing. Therefore,

we can expect that as k increases, the “window of recovery” (i.e., the set of 𝜏 so that

f (𝜏) = 0) gets smaller and perhaps vanishes; and once it vanishes, we can expect that

the minimum value of f (𝜏) is increasing with k. We can see that this is all borne out in

k = 3 k = 6

k = 9 k = 12

k = 15 k = 18

Fig. 1 f (𝜏) versus 𝜏 (n = 75)
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Singular values: input F ; output G−A−1
τ Entries: sorted input E−1 vs. output Aτ

Fig. 2 n = 75, k = 15

Fig. 1. Next, we focus on the k = 15 case, where the minimum of f (𝜏) is substantially

above 0. Even in such as case, we can see in Fig. 2 that there is substantial recovery,

attesting to the efficacy of our heuristic Procedure 2.

4 Conclusions

We presented a heuristic and a means of generating test problems for the low-

rank/sparse-inverse decomposition problem on invertible input. Our method can also

be used for generating a starting point for local optimization of H1.

We are presently working on a new approach to H0 based on a convex relaxation

of H1. This new approach is much more computationally intensive than the method

that we presented here, which we leverage for validating our new approach. Our new

approach does not require that the input matrix be invertible. In fact, it can equally

apply to even-more-general low-rank/sparse-pseudoinverse decomposition problems

(see [3]).
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On-Line Algorithms for Controlling
Palletizers

Frank Gurski, Jochen Rethmann and Egon Wanke

Abstract We consider the FIFO STACK-UP problem which arises in delivery in-

dustry, where bins have to be stacked-up from conveyor belts onto pallets. Given are

k sequences q1,… , qk of labeled bins and a positive integer p. The goal is to stack-up

the bins by iteratively removing the first bin of one of the k sequences and put it onto

a pallet located at one of p stack-up places. Each of these pallets has to contain bins

of only one label, bins of different labels have to be placed on different pallets. After

all bins of one label have been removed from the given sequences, the corresponding

stack-up place becomes available for a pallet of bins of another label. In this paper

we consider on-line algorithms for instances where we only know the next c bins of

every sequence instead of the complete sequences. We implemented our algorithms

and could show that for realistic, but randomly generated instances our best approach

leads only 12% more stack-up places than an optimal off-line solution. On the other

hand we could show worst-case examples which show an arbitrary large competitive

factor when comparing our on-line solutions with optimal off-line solutions.

1 Introduction

We consider the combinatorial problem of stacking up bins from conveyor belts onto

pallets. This problem originally appears in stack-up systems or palletizing systems
that play an important role in delivery industry and warehouses. Stack-up systems

are often the back end of order-picking systems. A detailed description of the applied

background of such systems is given in [1, 2].
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The bins that have to be stacked-up onto pallets reach the stack-up system on

a conveyor belt. At the stack-up system the bins are picked-up by robotic arms or

stacker cranes and moved onto pallets. The pallets are located at stack-up places. This

picking process can be performed in different ways depending on the architecture of

the palletizing system. Full pallets are carried away by automated guided vehicles

or by another conveyor system, while new empty pallets are placed at free stack-up

places.

We consider so-called multi-line palletizing systems, where there are several

buffer conveyors from which the bins are picked-up. The robotic arms or stacker

cranes and the stack-up places are located at the end of these conveyors. We assume

that the assignment of the bins to the conveyors and the order of bins within each

conveyor is given. If further each arm can only pick-up the first bin of one of the

buffer conveyors, then the system is called a FIFO palletizing system. Such systems

can be modeled by several simple queues. Figure 1 shows a sketch of a simplified

stack-up system with 2 buffer conveyors and 3 stack-up places.

In the following we describe a stack-up processing using a simple example.

For some technical definitions see [3–5]. Given two sequences q1 = (b1,… , b4) =
[a, b, a, b] and q2 = (b5,… , b10) = [c, d, c, d, a, b]. Each bin bi is labeled with a pal-
let symbol 𝑝𝑙𝑡(bi). Every row of Fig. 2 represents a configuration (Q,Q′), where the

first entry Q is the initial list of sequences of bins and the second entry Q′ = (qi1, q
i
2)

Fig. 1 A FIFO stack-up

system

Fig. 2 A processing of two

given sequences with 2

stack-up places

i qi1 qi2 front(Qi) open(Q,Qi) remove
0 [a,b,a,b] [c,d,c,d,a,b] {a,c} /0 b5
1 [a,b,a,b] [c,d,c,d,a,b] {a,d} {c} b6
2 [a,b,a,b] [c,d,c,d,a,b] {a,c} {c,d} b7
3 [a,b,a,b] [c,d,c,d,a,b] {a,d} {d} b8
4 [a,b,a,b] [c,d,c,d,a,b] {a} /0 b1
5 [a,b,a,b] [c,d,c,d,a,b] {a,b} {a} b9
6 [a,b,a,b] [c,d,c,d,a,b] {b} {a} b2
6 [a,b,a,b] [c,d,c,d,a,b] {a,b} {a,b} b10
7 [a,b,a,b] [c,d,c,d,a,b] {a} {a,b} b3
8 [a,b,a,b] [c,d,c,d,a,b] {b} {b} b4
9 [a,b,a,b] [c,d,c,d,a,b] /0 /0 −
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is the list of sequences that remain to be processed. Already removed bins are shown

in greyed out. The transition from one row to the next row, i.e. the removal of the

first bin from one subsequence q′ ∈ Q′
is called transformation step. A pallet t is

called open in configuration (Q,Q′), if a bin of pallet t is contained in some q′i ∈ Q′

and if another bin of pallet t is contained in some qj − q′j for qj ∈ Q, q′j ∈ Q′
. The set

of open pallets in configuration (Q,Q′) is denoted by 𝑜𝑝𝑒𝑛(Q,Q′). For some config-

uration (Q,Q′) we define 𝑓𝑟𝑜𝑛𝑡(Q′) to be the pallets of the first bins of the queues of

Q′
. A configuration (Q,Q′) is called a decision configuration, if the first bin of each

sequence q′ ∈ Q′
is destined for a non-open pallet, i.e. 𝑓𝑟𝑜𝑛𝑡(Q′) ∩ 𝑜𝑝𝑒𝑛(Q,Q′) = ∅.

For some list of sequencesQwe define by 𝑝𝑙𝑡𝑠(Q) the set of all pallets in all sequences

of Q.

A sequence of transformation steps that transforms the list Q of k sequences into

k empty subsequences is called a processing of Q. The order in which the bins are re-

moved from the sequences within a processing of Q is called a bin solution of Q and

the order in which the pallets are opened during the processing ofQ is denoted as pal-
let solution. In Fig. 2 we obtain bin solution B = (b5, b6, b7, b8, b1, b9, b2, b10, b3, b4),
i.e. a permutation of the bins, and the pallet solution T = (c, d, a, b).

The FIFO STACK-UP problem is to decide for a given list Q of k sequences and a

positive integer p whether there is a processing of Q, such that in each configuration

during the processing of Q at most p pallets are open. The FIFO STACK-UP problem

is NP-complete even if the number of bins per pallet is bounded, but can be solved

in polynomial time if the number k of sequences or the number p of stack-up places

is fixed [6]. A dynamic programming solution for the problem is shown in [3]. Pa-

rameterized algorithms and a linear programming approach for computing a pallet

solution for the problem is given in [5]. A breadth first search solution combined

with some cutting technique for the problem was presented in [4]. An experimental

study of algorithms for controlling palletizers was given in [7].

2 On-Line Solutions for the FIFO Stack-Up Problem

Within an off-line processing the complete sequences are known in advance, whereas

in an on-line processing only a lookahead of the next c bins of each of the subse-

quences are known in each configuration. Additionally each algorithm knows the

number of bins for each pallet, in order to recognize the end of the pallets. This

is no restriction, since in practice this number is known from the costumer orders

and the distribution of the costumer orders onto bins. On-line algorithms make their

decisions based on partial informations of the input.

We use the following variables: k denotes the number of sequences, p stands for

the number of stack-up places, m represents the number of pallets, and n denotes the

number of bins. Let Q be a list of k sequences and t ∈ 𝑝𝑙𝑡𝑠(Q) be some pallet. We

define by #bins(t,Q) the number of bins for t in all k sequences of Q. Let (Q,Q′) be

some decision configuration during the processing of Q by some on-line algorithm,

t ∈ 𝑝𝑙𝑡𝑠(Q) be some pallet, and c ∈ ℕ. We define #c front(t,Q′) the number of bins
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which are destinated for t on the first c positions in all sequences of Q′
. The special

case where c = 1 is denoted by #front(t,Q′).
In order to open the next pallet t ∈ 𝑓𝑟𝑜𝑛𝑡(Q′) we define the following rules.

∙ Round Robin (RR): Choose t such that for the i-th decision configuration the first

bin of sequence q((i−1) mod k)+1 is destinated for pallet t.
∙ Random Robin (RD): Choose t such that the first bin of a randomly chosen se-

quence qi is destinated for pallet t.
∙ Least Recently (LR): Choose t such that min{i | 1 ≤ i ≤ 𝓁, t ∈ 𝑓𝑟𝑜𝑛𝑡(Qi)} is as

small as possible, where (Q,Q1),… , (Q,Q𝓁) are the decision configurations up to

configuration (Q,Q′).
∙ Biggest Front (BF): Choose t such that #front(t,Q′) is as high as possible.

∙ Most Frequently (MF): Choose t such that #c front(t,Q′) is as high as possible.

∙ Most Executed (ME): Choose t such that
#c front(t,Q′)
#bins(t,Q)

is as high as possible.

∙ Least Leftover (LL): Choose t such that #bins(t,Q) − #c front(t,Q′) is as small as

possible.

∙ Early Closure (EC): Now we are interested in bins which are the last of their pallet
in configuration (Q,Q′), i.e. bins for which there is no further bin of the same pallet

symbol in all sequences ofQ′
. Every such bin is destinated for an open pallet, since

we only consider lists of sequences that together contain at least two bins for each

pallet. Last bins of their pallet can be determined by the known number of bins

for each pallet. For every sequence qi we compute a score by summing c − j + 1
for every position j = 1,… , c on which there is a last bin of its pallet in qi. After

that we choose t from a sequence qi with largest score. If in none of the sequences

there is a last bin of its pallet among the first c positions we choose t by Least

Recently (LR).

3 Theoretical Analysis

In order to evaluate on-line algorithms from a theoretical point of view, we study

their worst-case performance. This is done by a competitive analysis [8, 9], i.e. we

compare the performance of our on-line algorithms with optimal off-line solutions.

An on-line algorithm is d-competitive if it computes a processing of some list Q with

at most p ⋅ d stack-up places, if Q can be processed with at most p stack-up places.

In our first example we consider the case c = 1. To convert the example for c > 1
we increase the first bin of each pallet to its c-fold. Further we consider the list Q1 =
(q1, q2, q3, q4) of the following k = 4 sequences, which also can be generalized.

q1 = [a, e, i,m,…], q2 = [b, f , j, n,…], q3 = [c, g, k, o,…]
q4 = [d, d, h, h,𝓁,𝓁, p, p,… , a, b, c, e, f , g, i, j, k,m, n, o,…]

Then Topt = (d, h,𝓁, p,… , a, b, c, e, f , g, i, j, k,m, n, o,…) is an optimal pallet solu-

tion for Q1 using p = 1 stack-up place and Round Robin (RR) leads to pallet solu-
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tion TRR = (a, b, c, d, e, f , g, h, i, j, k,𝓁,m, n, o, p,…) using p = m ⋅ k−1
k

+ 1 stack-up

places, if m mod k = 0. Algorithm Least Recently (LR) leads to the same pallet so-

lution TLR = TRR.

Next we consider the list Q2 = (q′1, q
′′
1 , q

′
2, q

′′
2 , q

′
3, q

′′
3 , q4) of the following k = 7

sequences, which also can be generalized.

q′1 = [a, e, i,m,…], q′′1 = [a, e, i,m,…]
q′2 = [b, f , j, n,…], q′′2 = [b, f , j, n,…]
q′3 = [c, g, k, o,…], q′′3 = [c, g, k, o,…]
q4 = [d, d, h, h,𝓁,𝓁, p, p,… , a, b, c, e, f , g, i, j, k,m, n, o,…]

An optimal pallet solution for Q2 is Topt given above using p = 1 stack-up place.

Biggest Front (BF) applied onQ2 leads to pallet solution TBF = TRR. Most Frequently

(MF) works for c = 1 in the same way as BF. For c > 1 we increase the first bin of

each pallet to its c-fold. Most Executed (ME) and Least Leftover (LL) are at least as

bad as MF, since we can produce instances leaving Topt unchanged, where all pallets

have the same number of bins by replacing the last bin of each pallet by as many bins

as necessary.

Finally we consider the list Q3 = (q′′′1 , q′′′2 , q′′′3 ) of the following k = 3 sequences

and c = 5, which also can be generalized.

q′′′1 = [a, b, c, d, e, f ,…], q′′′2 = [b, c, d, e, f ,…], q′′′3 = [c, d, e, f , a,…]

An optimal pallet solution for the sequences in Q3 is Topt = (a, b, c, d, e, f ,…) us-

ing p = 2 stack-up places. Early Closure (EC) starts to remove the first bin of q′′′1
by LR and then it removes bins from q′′′3 which leads to pallet solution TEC =
(a, c, d, e, f ,…) using p = c stack-up places.

Thus all of our strategies are not d-competitive for some constant d. Please note

that the distribution of the bins of a pallet onto the sequences, which is a remarkable

parameter in Sect. 4, can be enlarged by adding a bin of a new pallet at the end of an

arbitrary number of sequences.

4 Experimental Study

Next we evaluate implementations of our on-line algorithms.

Creating Instances Since there are no benchmark data sets for the FIFO STACK-UP

problem we generated random instances by an algorithm, which allows to give the

following parameters: pmax the maximum number of stack-up places, m the number

of pallets, k the number of sequences, rmin and rmax the minimum and maximum

number of bins per pallet, and d the maximum number of sequences on which the

bins of each pallet can be distributed. A detailed description of our algorithm for

generating instances is given in [10].
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Table 1 Performance (in percent) of our eight on-line algorithms for randomly generated instances

of the FIFO Stack-Up problem. We achieved good results using the lookaheads of c = 30 for LL,

c = 10 for MF, c = 20 for ME, and c = 30 for EC

Instance Algorithm

n pmax m k rmin rmax d LL BF MF RD ME RR LR EC

1500 14 100 8 10 20 4 138 49 49 47 46 24 28 14

1500 14 100 8 10 20 6 84 54 54 60 33 20 21 9

1500 14 100 8 10 20 8 80 25 25 34 29 20 12 7

7500 18 300 10 15 35 4 257 107 107 73 38 42 38 21

7500 18 300 10 15 35 7 238 35 35 46 30 31 25 12

7500 18 300 10 15 35 10 146 27 27 57 28 27 22 10

17500 22 500 12 20 50 6 295 188 188 66 29 36 28 14

17500 22 500 12 20 50 9 122 22 22 48 27 30 21 10

17500 22 500 12 20 50 12 110 23 23 40 26 27 19 10

Average 163 59 59 52 32 29 24 12

Implementation and Evaluation We have implemented our on-line algorithms. In

Table 1 we list some of our chosen parameters. For each assignment we randomly

generated 100 instances, which are solved by our breadth first search solution from

[4] to obtain an optimal number of stack-up places popt and by our eight on-line al-

gorithms A ∈ {RR,LR,BF,…} to obtain a number of stack-up places pA. In Table 1

the average performances
pA−popt
popt

are listed in percent.

Our evaluations show that Early Closure (EC) leads the best results using on aver-

age only 12% more stack-up places than an optimal off-line solution. We observe that

for small distributions d the error of our on-line solutions is large. A reason for this

is that for small values d the quotient
k
d

is huge and thus the probability for opening

a wrong pallet in a decision configuration becomes large.
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Solving an On-Line Capacitated Vehicle
Routing Problem with Structured Time
Windows

Philipp Hungerländer, Kerstin Maier, Jörg Pöcher, Andrea Rendl and
Christian Truden

Abstract The capacitated Vehicle Routing Problem with structured Time Windows

(cVRPsTW) is concerned with finding optimal tours for vehicles with given capac-

ity constraints to deliver goods to customers within assigned time windows that can

hold several customers and have a special structure (in our case equidistant and non-

overlapping). In this work, we consider an on-line variant of the cVRPsTW that

arises in the online shopping service of an international supermarket chain: cus-

tomers choose a delivery time window for their order online, and the fleet’s tours are

updated accordingly in real time. This leads to two challenges. First, the new cus-

tomers need to be inserted at a suitable place in one of the existing tours. Second, the

new customers have to be inserted in real time due to very high request rates. This is

why we apply a computationally cheap, two-step approach consisting of an insertion

step and an improvement step. In this context, we present a Mixed-Integer Linear

Program (MILP) and a heuristic that employs the MILP. In an experimental evalu-

ation, we demonstrate the efficiency of our approaches on a variety of benchmark

sets.

1 Introduction

The online market has been a growing sector for decades, and customers are increas-

ingly interested in doing their weekly grocery shopping through the internet. This is

why all main supermarket chains now provide online delivery services, where cus-

tomers can select goods on the internet that are then delivered to their homes within

a time window that the customer selects.

Online ordering poses new challenges to the grocery suppliers, since the cus-

tomers select the delivery time window, and not the supplier. This makes organising

the delivery fleet more difficult and leads suppliers to build their delivery schedule

in an on-line fashion, where the tours/schedules of the delivery vans are updated

as new customer orders come in. Moreover, all these steps have to be performed as
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quickly as possible (within milliseconds) to provide a prompt online service to the

customers.

In this paper, we tackle this problem in the context of a large international super-

market chain. The process of updating the vans’ schedules is performed in recurring

two steps, for each order a customer places online.

Insertion step The customer receives a selection of available time windows from

which he can choose one for delivery. The larger the selection, the more satisfied

the customer is with the service. The customer selects one of the available time

windows and is accordingly inserted into the current delivery schedule.

Improvement step After the customer has successfully selected a time window,

the system improves the current schedule by applying an improvement step. This

step is essential to find as many feasible time windows as possible for the follow-

ing customers and of course also to schedule as many customers as possible in

total.

Within both above steps lies an optimization problem. The first one is concerned with

inserting a customer optimally into an existing schedule, computing all time windows

at which a given customer can be feasibly inserted. The second optimization problem

is concerned with optimizing the existing, incomplete schedule, where the objective

is to minimize the fleet’s travel time without moving customers from their assigned

time window. We denote this problem as the capacitated Vehicle Routing Problem

with structured Time Windows (cVRPsTW).

For a recent, very good survey of the cVRPTW we refer to [1]. Toth and Vigo

[5] give an overview over several types of the VRP including an extensive overview

of different heuristics, integer programming approaches and case studies. Yang et

al. [6] propose a closely related method to our simple insertion heuristic. Campbell

and Savelsbergh [2] define the Home Delivery Problem (HDP), which is based on

a similar application as our use case. However, they do not exploit the special time

window structure and consider a different objective function. Finally, Ioannou et al.

[3] define a similar real world problem, but for the traditional VRPTW.

In this short paper, we present a Mixed-Integer Linear Program (MILP) and a

heuristic approach that deal both with the insertion and the improvement steps arising

within our on-line variant of the cVRPsTW. Furthermore, we present preliminary

experimental results on some benchmark instances.

This paper is organized as follows. In Sect. 2, we give a problem description, in

Sect. 3 we outline approaches for inserting new customers into an existing schedule

and present approaches for optimizing an incomplete schedule. In Sect. 4 we present

computational results and conclude the paper.

2 Problem Description

The capacitated Vehicle Routing Problem with structured Time Windows

(cVRPsTW) arises when delivering goods to customers who choose the delivery

time window. The main difference to classical variants of the VRP are that the cus-
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tomer chooses the time window for delivery, and that the time windows have a special

structure (in our case equidistant and non-overlapping) that can be computationally

exploited. We are given:

1. customers ai, i ∈ C, with assigned weights w and service times s,
2. a set of time windows W, |W| = t,
3. travel times for each pair of customers and

4. a finite set of tours S ∶= {A,B,C,…}, |S|=m, with assigned capacitiesCi, i∈ S.

The aim of the cVRPsTW is to find a feasible schedule with minimal travel time.

3 Inserting New Customers and Optimizing Tours

In our application, the customer places an order online, and the system proposes time

windows during which the order can be delivered to the customer, who then selects

a time window. In this section we outline our approach for finding this set of time

windows, for which we use a simple insertion method, that takes a customer ã, a tour

A and a time window 𝜔, and tries to insert ã into A at time window 𝜔. Therefore,

to calculate the set of available time windows for a new customer ã, we apply the

heuristic for each time window 𝜔 ∈ W to each tour A in the schedule. Once the

customer has selected a time window, we apply the simple insertion method again

and choose from all feasible insertion points of the selected time window the one

that leads to the smallest increase in travel time.

Facilitating calculations via earliest/latest arrival times. To facilitate the cal-

culation of the feasible insertion points, we define the notion of an earliest and latest

arrival time for each customer on a tour. It corresponds to the earliest, respectively

the latest time, at which the van may arrive at a customer within time window 𝜔,

respecting the time windows of all other customers on the tour. When inserting cus-

tomer ã between customers ai and ai+1 we calculate the earliest and latest arrival

time for ã. These values are solely depended on the earliest, respectively the latest

arrival time of the previous customer ai and the following customer ai+1, and time

window 𝜔.

Using the earliest and latest arrival time, a simple condition suffices to check if

there is enough time between customer ai and ai+1 to insert ã such that all customer

orders can still be delivered within their assigned time windows. The condition is the

following: customer ã can be inserted into a given tour between customer ai and ai+1
in 𝜔, if and only if the earliest arrival time of ã is less or equal than the latest arrival

time of ã. This condition allows to precompute the vast majority of the calculations

that are needed to decide if the insertion results in a feasible tour.

Extending the heuristic with aMILP. The heuristic does not change the order of

existing customers on the tour when inserting a new customer, therefore the insertion

is not very advanced. In order to perform more sophisticated insertion operations,

we utilize a MILP once the heuristic cannot find more feasible insertions.
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We solve the Traveling Salesman Problems with structured Time Windows

(TSPsTW) that is concerned with minimizing the travel times of a single tour A

of the cVRPsTW. Hence in our setup, all tours in schedule S, except A, are fixed,

and we solve the TSPsTW as feasibility problem (without objective function). In

addition to the notation from Sect. 2, we use the following parameters and variables:

∙ a1 is the start depot, an is the final depot and {a2,… , an−1} is the set of customers

assigned to tour A.

∙ [ni], i ∈ [t], are the customers assigned to time window i.
∙ tij, i ∈ [nk], j ∈ [n𝓁], k,𝓁 ∈ [t], i ≠ j, k ≤ 𝓁 ≤ k + 1, is travel time from customer

ai to customer aj plus service time at customer ai.
∙ bi, i ∈ [t], and ei, i ∈ [t], are the start and end time of time window i respectively.

∙ zi ∈ ℝ+
, i ∈ [t], gives the wait time during time window i.

∙ xij ∈ {0, 1}, i ∈ [nk], j ∈ [n𝓁], k,𝓁 ∈ [t], i ≠ j, k ≤ 𝓁 ≤ k + 1, with the interpreta-

tion:

xij =

{
1, if customer j is visited right after customer i,
0, otherwise.

The following constraints have to be satisfied after inserting a new customer into a

given tour within a given time window:

∑

j∈[n𝓁 ],𝓁∈[t]
j≠i, k≤𝓁≤k+1

xij = 1, i ∈ [nk], k ∈ [t], i ≠ n, (1)

∑

i∈[nk], k∈[t]
i≠j, k≤𝓁≤k+1

xij = 1, j ∈ [n𝓁], 𝓁 ∈ [t], j ≠ 1, (2)

∑

i,j∈S,
i≠j

xij ≥ |S| − 1, ∀S ⊂ [nk] ⧵ {s, f }, k ∈ [t], |S| ≥ 2, (3)

∑

i∈[nk], j∈[n𝓁 ]
k≤𝓁≤k+1, k<h, i≠j

tijxij +
∑

i<h
zi ≥ bh, h ∈ [t] ⧵ {1}, (4)

∑

i∈[nk], j∈[n𝓁 ]
k≤𝓁≤k+1, k,𝓁≤h, i≠j

tijxij +
∑

i≤h
zi ≤ eh, h ∈ [t], (5)

xij ∈ {0, 1}, i ∈ [nk], j ∈ [n𝓁], k, l ∈ [t], i ≠ j, k ≤ 𝓁 ≤ k + 1, (6)

zi ≥ 0, i ∈ [t]. (7)

Equalities (1) and (2) ensure that all vertices except the final depot an have exactly

one outgoing edge and all vertices except the start depot a1 have exactly one ingo-

ing edge. Inequalities (3) are the subtour elimination constraints that we do not add

directly to our MILP but handle through separation. Finally inequalities (4) and (5)
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guarantee that the arrival time of all customers is not before the start and not after

the end of their assigned time window.

The most similar MILP formulation to our model is presented in [4], where, how-

ever, each time window contains only one customer. This is a critical difference to

our version of the TSPTW, where several customers fit into a single time window,

which we exploit in our approaches.

Optimizing tours. The improvement step follows the insertion step, and is applied

on the tour A into which the new customer has been inserted. We add the following

objective function to the MILP above in order to minimize the travel time and hence

increase the chances to insert further customers into A at a later point:

min
∑

i∈[nk], j∈[n𝓁 ], k,𝓁∈[t]
k≤𝓁≤k+1, i≠j

tijxij . (8)

4 Computational Experiments and Conclusion

In this section we present computational results. All experiments were performed on

a Windows 7 64-bit machine equipped with an Intel Core i5-5300U (2×2300MHz)

and 12 GB RAM in single processor mode. We use Gurobi 6.5.1 as an IP-solver.

Benchmark instances. Our benchmark instances consist of customers where the

coordinates on a square-grid are sampled from a two-dimensional uniform distribu-

tion and the travel times are calculated as the Euclidean distance between customers

rounded to integers. Customer weights are sampled from a truncated normal distribu-

tion with mean of 7 and standard deviation of 2. Each customer is randomly assigned

to one of the equidistant time windows. In our experiments we use instances, denoted

e.g. as C100t7c150w5, consisting of 100/200/300 customers and 7 tours that have a

capacity of 150/300/450 and 5/10/15 time windows each. Due to the size of the time

windows and length of the service times of the customers there cannot be more than

6 customers within a time window per tour. The benchmark instances are designed

to reflect real-world problems that arise in online shopping and can be downloaded

from http://tinyurl.com/vrpstw.

Benchmark process. We iteratively insert new customers into the schedule, sim-

ulating customers placing orders online, where the preferred time window of the cus-

tomer corresponds to the time window stated in the benchmark instance. Addition-

ally we track how many time windows are available to each customer. We evaluate

how many customers we are able to schedule as well as the runtime. Furthermore, we

determine how many additional feasible time windows can be found when applying

the MILP. For the improvement step we measure the improvement of the schedule

compared to the schedule directly after each insertion step.

Our results summarized in Table 1 show that all our approaches use very little time

(as required) and provide satisfactory results with respect to solution quality: we are

able to determine insertion points for most time windows via our simple insertion

heuristic and the MILP yields further improvements in both steps.

http://tinyurl.com/vrpstw
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Table 1 We state average values over five benchmark instances each. On the one hand we compare

insertion via our simple insertion heuristic and via our MILP feasibility problem. On the other hand

we present the average improvement of the objective function per iteration obtained by our MILP

optimization problem

Approach Per step C100t7c150w5 C200t7c300w10 C300t7c450w15

Heuristic-insertion Av. no. of

windows

4.884 9.858 14.835

Av. time 0.17 ms 0.23 ms 0.23 ms

MILP-insertion Av. no. of add.

windows

0.016 0.023 0.046

Av. time 8.23 ms 23.64 ms 49.98 ms

MILP-optimization Av. impr. over

insert. step

0.158% 0.096% 0.061%

Av. time 7.49 ms 13.56 ms 21.51 ms

Conclusion. In this paper we presented the capacitated Vehicle Routing Problem

with structured Time Windows (cVRPsTW) that arises in the context of delivering

goods, where customers choose the delivery time window, and the delivery schedule

is updated as new customers arrive. We introduced a two-step approach where we

employ a heuristic and a Mixed-Integer Linear Program (MILP) in the respective

insertion and improvement step. Our computational evaluation demonstrates that our

approaches comply with the strict time limits and can produce good results within

milliseconds, rendering them applicable to a real-world setting. For future research

it would be interesting to extend our approach to further, more advanced heuristics

and a MILP that improves the delivery schedule for a specific time window over all

tours.
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Abstract We consider a spectrum aggregation based spectrum allocation problem

(SAP) for coexisting wireless systems: find the maximum number of secondary users

whose bandwidth requirements can be satisfied by aggregating (parts of) given spec-

trum holes. In the classical form, this optimization problem turns out to share a

common structure with the one-dimensional skiving stock problem (SSP), where

as many (large) items as possible have to be constructed simultaneously by com-

bining (smaller) items of a given supply. However, in practice, the spectrum aggre-

gation is usually restricted by hardware limitations, such as filter technologies, and

the capability of controlling interference. These additional constraints separate the

considered problem from an ordinary SSP, and represent a new challenge in the field

of discrete optimization. This article provides a general introduction to the relations

between the SSP and the SAP. Moreover, we will discuss, how practically mean-

ingful extensions of the classical SAP can be tackled from a mathematical point of

view. As a main contribution, we exploit some important problem-specific properties

to derive tailored solution techniques.
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Fig. 1 A possible frequency band with spectrum holes of bandwidths li = 𝜈i − 𝜇i (i = 1, 2, 3)

1 Introduction

Due to the significantly increased importance of wireless connectivity in the last

years, the natural radio spectrum has become a very important and scarce resource.

Normally, it is regulated by governmental entities and fixed parts of it are assigned

to licensed holders for a long time, see [3]. However, for large parts of the (licensed)

spectrum, the utilization is quite low leading to many wasted vacant frequency inter-

vals [2], see Fig. 1 for a schematic.

Typically, the spectrum holes are too small to meet the bandwidth requirements

of secondary users (SUs). However, Software Defined Radio (SDR) provides a flex-

ible and programmable transceiver structure that allows to combine vacant intervals

in order to obtain sufficiently large transmission channels [4]. In this regard, the SAP

asks for the maximal number of SUs that can be assigned to the given spectrum holes

such that the bandwidth requirement of each SU is satisfied.
1

Note that the spectrum

aggregation itself is usually restricted by hardware limitations, such as filter tech-

nologies, and the capability of controlling interference, separating the considered

problem from an ordinary SSP [7, 10].

In the next section, we aim at providing a short introduction to the SAP and its

relation to the SSP, respectively. Thereafter, we focus on the incorporation of practi-

cally meaningful constraints in order to obtain application-oriented extensions of the

standard problem described in [6]. As a main contribution, we show how problem-

specific properties can be used within a solution strategy. Note that, due to the space

limitation, this paper only deals with one selected topic of the submitted presenta-

tion. The proofs of the results and further contributions can be found online [5].

2 Preliminaries

Consider a frequency band where some portions are already covered by licensed

users, see Fig. 1. The unoccupied spectrum holes shall be used by SUs each of which

having a required bandwidth of R ∈ ℕ (typically in kHz or MHz). Thereby, the SUs

may aggregate (parts of) the given spectrum holes in order to obtain sufficiently

large transmission channels. Assuming each spectrum hole to be accessible by at

most one SU (which might be appropriate to suppress interference in some particular

1
Similar questions do also arise when saving data on hard drive disks or when managing inventory

in storehouses.



On the Solution of Generalized Spectrum Allocation Problems 135

applications), the above stated problem refers one-to-one to an ordinary SSP and off-

the-shelf models [7] are directly applicable. But, due to hardware limitations such as

filter technologies in the radio frequency (RF) chains, only spectrum holes that are

in a certain neighborhood to each other, specified by a maximal aggregation range
(MAR) 𝛿 ∈ N, can be combined. In that case, modifications of the known approaches

can be used, leading to allocations making use of up to about 90% of the total vacant

bandwidth, see [6].

In this article, the problem of several SUs per spectrum hole, hereinafter referred

to as the generalized spectrum allocation problem (GSAP), is considered. To this

end, we may rephrase the definition of an instance as follows.

Definition 1 A tuple E = (n, 𝜇, 𝜈,R, 𝛿) with n ∈ N spectrum holes, 𝜇, 𝜈 ∈ Zn
+ rep-

resenting the initial and terminating frequencies, R, 𝛿 ∈ N denoting required band-

width and the MAR, respectively, is called instance (of the GSAP) if and only if

𝜇1 < 𝜈1 < … < 𝜇n < 𝜈n holds.

Let I ∶= {1,… , n}. Then a spectrum hole [𝜇i, 𝜈i] (i ∈ I) can be shared between

several SUs as long as they operate in pairwise distinct subsets of [𝜇i, 𝜈i].

Definition 2 A triple (a, p, q) ∈ Bn ×Zn
+ ×Zn

+ is called (allocation) pattern, if

e⊤(q − p) = R (with e = (1,… , 1)⊤ ∈ Zn
+) holds, and if the following conditions are

satisfied:

(a) 𝜇 ≤ p, p + a ≤ q, and qi ≤ ai𝜈i + (1 − ai)𝜇i for all i ∈ I,
(b) q − p ≤ 𝛿 where q ∶= max{qi | qi > pi} and p ∶= min{pi | qi > pi}.

Here [pi, qi) describes the specific subset of [𝜇i, 𝜈i] that is occupied by the pattern

(a, p, q). Due to (a) we obtain [pi, qi) = [𝜇i, 𝜇i) = ∅ if and only if ai = 0. Otherwise

(for ai = 1), these conditions ensure 𝜇i ≤ pi < qi ≤ 𝜈i. Moreover, e⊤(q − p) = R sat-

isfies the bandwidth condition, whereas condition (b) specifies the 𝛿-closeness. Obvi-

ously, the latter depends on two further optimization problems, and is, hence, rather

inappropriate for a good description of the pattern set.

3 A Solution Strategy Based on Connected Patterns

As we have seen, the formulation of a pattern-based ILP for the GSAP is rather dif-

ficult due to the fact that the pattern set itself does likely not possess a practical (at

best linear) description that could efficiently be used in a column generation algo-

rithm. Instead, we focus on some theoretical observations in order to find a solution

technique that exploits the problem-specific properties.

Definition 3 Let (a, p, q) be a pattern. A point 𝜎 ∈
⋃n

i=1[𝜇i, 𝜈i) is called interruption
point of (a, p, q) if p < 𝜎 < q and [𝜎, 𝜎 + 1) ∩ [pi, qi) = ∅ for all i ∈ I hold. A pattern

(a, p, q) that does not contain any interruption point is called connected.

Based on this, [5, Fig. 3] motivates an important principle of our theoretical study.
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Lemma 1 Let (a, p, q) be a pattern. Then there exists a unique connected pattern
(ã, p̃, q̃) with p = p̃.

According to this lemma, we can conclude:

Theorem 1 There exists a solution of the GSAP that only consists of connected pat-
terns.

Thus, considering connected patterns is sufficient to solve the GSAP. As a next

step, note that for each connected pattern (a, p, q) with p ∉ {𝜇1,… , 𝜇n} we can shift

the whole pattern one unit to the left (by respecting the given spectrum holes) obtain-

ing a new feasible pattern (a′, p′, q′) with p′ = p − 1, see [5, Fig. 6].

Definition 4 The pattern (a′, p′, q′) is called left-shift of (a, p, q).

After a finite number of left-shifts, we obtain a pattern (a′, p′, q′) with p′ = 𝜇i for

some i ∈ I, leading to the observation:

Theorem 2 There exists a solution of the GSAP, containing only connected pat-
terns, where each pattern either starts at some point of

{
𝜇1,… , 𝜇n

}
or at the end-

point q̄ of the previous pattern.

Hence, a solution of this problem can be obtained by a successive assignment of

connected patterns to the given spectrum holes while respecting the 𝛿-closeness. To

ease the notation, let U(x, y) =
∑n

i=1
|
|[x, y] ∩ [𝜇i, 𝜈i)|| with |[a, b)| = max{b − a, 0}

denote the total vacant bandwidth between the points x ∈ N and y ∈ N. Then, the

following algorithm leads to a solution of the GSAP:

Algorithm 1 Solving the GSAP

Input: Instance E = (n, 𝜇, 𝜈,R, 𝛿).
1: Set k ∶= 1, j ∶= 1, xj ∶= 𝜇1, 𝜇n+1 ∶= 𝜈n and z ∶= 0.

2: while k ≤ n and U(xj, 𝜈n) ≥ R do
3: if U(xj, xj + 𝛿) ≥ R then
4: Compute p ∈ {k,… , n} and yj ∈ (𝜇p, 𝜈p] with U(xj, yj) = R. Save (xj, yj).
5: Set j ∶= j + 1, z ∶= z + 1, xj ∶= yj−1, k ∶= p (or xj ∶= 𝜇p+1, k ∶= p + 1 if yj−1 = 𝜈p).

6: else
7: Set k ∶= k + 1, xj ∶= 𝜇k.

8: end if
9: end while
Output: optimal value z, saved pairs (xj, yj) for j = 1,… , z.

4 The Role of Interference and Heterogeneous Bandwidths

Algorithm 1 provides a solution where (possibly) two patterns (two SUs) are placed

directly next to each other in some given spectrum hole. Due to the fact that a signal

in some subset [pi, qi) of [𝜇i, 𝜈i] is not ideal in practice, it needs a certain additional
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range [pi − 𝜀, p) and [qi, qi + 𝜀) (for some small 𝜀 ∈ N) outside of [pi, qi) to decay

completely, see [5, Fig. 7]. Hence, if two patterns are positioned directly one after

the other, their signals will interfere in a small neighborhood of their joint border-

line. Fortunately, this problem can be tackled by leaving a certain spectral distance

(for instance an interval of width 𝜀) between two neighboring patterns, if and only if

they operate in the same spectrum hole. Such unoccupied frequency ranges are called

guard bands, see [5, Fig. 8] for a schematic and [1] or [9] for a more detailed expla-

nation. Note that this interference does also occur between SUs and licensed holders.

Here, the size of the spectrum holes can be changed to [𝜇i, 𝜈i] with 𝜇i ∶= 𝜇i + 𝜀 and

𝜈i ∶= 𝜈i − 𝜀 prior to the optimization.

Theorem 3 There exists a solution of the GSAP, containing only connected pat-
terns, with guard bands, where each pattern either starts at some point of

{
𝜇i | i ∈ I

}

or with a distance of 𝜀 to the endpoint of the previous pattern.

Consequently, Algorithm 1 can also be applied after some minor modifications:

Algorithm 2 Solving the GSAP with guard bands

Input: Instance E = (n, 𝜇, 𝜈,R, 𝛿), guard band width 𝜀 ∈ N.

1: Set k ∶= 1, j ∶= 1, xj ∶= 𝜇1, and z ∶= 0.

2: Compute 𝜇i, 𝜈i for all i ∈ I, and define 𝜇n+1 ∶= 𝜈n.

3: while k ≤ n and U(xj, 𝜈n) ≥ R do
4: if U(xj, xj + 𝛿) ≥ R then
5: Compute p ∈ {k,… , n} and yj ∈ (𝜇p, 𝜈p] with U(xj, yj) = R.

6: Save (xj, yj) and set j ∶= j + 1, z ∶= z + 1.

7: if 𝜈p − yj−1 ≤ 𝜀 then
8: Set k ∶= p + 1, xj = 𝜇k.

9: else
10: Set xj = yj−1 + 𝜀 and k:=p.

11: end if
12: else
13: Set k ∶= k + 1, xj ∶= 𝜇k.

14: end if
15: end while
Output: optimal value z, saved pairs (xj, yj) for j = 1,… , z.

So far we assumed all SUs to possess the same required bandwidth R. Due to stan-

dardization in wireless communications this situation is not completely implausible

in practice. Nevertheless, this assumption may represent a too strong restriction when

focusing on an application-oriented framework. For a given number N ∈ N of SUs,

we may assume that R1 ≤ R2 … ≤ RN holds for their specific required bandwidths.

Then the following result can be obtained:

Theorem 4 Let z represent the optimal value of the GSAP with specific bandwidths.
Then there exists a solution where the requirements R1,… ,Rz are satisfied.

However, note that finding the concrete positionings of the chosen secondary users

is much more difficult than in the previous cases.
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5 Conclusions and Outlook

In this article, we considered the SAP as a generalized version of the SSP. As a main

contribution, we have seen how different practically meaningful constraints can be

tackled in the spectrum allocation framework. Although it is much harder to find

an appropriate modeling approach (for instance a pattern-based ILP), the problems

become somehow more managable, i.e., the problem-specific properties can easily

be exploited to find a possible solution by means of the presented algorithms.

One main challenge for our future work consists in the consideration of time-

dependent spectrum holes and other objective functions [8], such as maximizing the

energy efficiency of the obtained allocation. This goal represents a main research area

of the Collaborative Research Center Highly Adaptive Energy-efficient Computing

(HAEC),
2

therefore being, in general, of high relevance in our current and future

research.
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Two-Stage Cutting Stock Problem
with Due Dates

Zeynep Sezer and İbrahim Muter

Abstract In this study, we consider a scheduling extension for the two-stage cutting

stock problem with the integration of order due dates. The two-stage cutting stock

problem arises when technical restrictions inhibit demanded items to be cut from

stock rolls directly, and hence require the cutting process to be done in two subse-

quent stages. The mathematical model proposed for the due date extension aims to

determine a cutting plan which not only minimizes the number of stock rolls used but

also reduces tardiness and earliness costs incurred. Preliminary results have shown

that the modeling approach used is capable of overcoming difficulties caused by the

dependencies between stages.

1 Introduction

The one-dimensional multi-stage cutting stock (MSCS) problem arises when

demanded items of different widths are required to be cut from stock rolls in mul-

tiple stages due to technical restrictions. In these problems, rolls produced at each

stage are used as an input for the subsequent stage. The MSCS problems studied in

the literature are generally inspired by real problems encountered in the paper and

the film industries. In this paper, we focus on the two-stage version of this problem

which will be referred to as the MSCS problem from hereafter.

The compact model for the MSCS problem was first introduced in [7], which

consisted of two types of cutting patterns, one for each stage of the cutting process.

The difficulty in solving this model stems from the unknown widths of rolls pro-

duced in the intermediate stage, referred to as the intermediate rolls, which corre-

spond to a set of linking constraints. Hence, the application of traditional column
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generation falls short since the generation of a new pattern consisting of currently

missing intermediate rolls introduces linking constraints whose corresponding dual

variables are unknown. To solve the linear programming (LP) relaxation of the

MSCS problem, [7] developed a heuristic column-and-row generating algorithm

which generates one intermediate roll at each iteration. Later, [3] characterized the

LP model as a column-dependent-rows problem, which is a generic class of problems

identified by a set of linking constraints that are dependent on a set of variables. In

their study, they proposed a generic simultaneous column-and-row generation algo-

rithm which correctly prices out columns in the absence of some linking constraints

using a novel row-generating pricing subproblem.

The cutting stock problems are generally concerned with the optimization of cut-

ting processes so that the trim loss incurred during these operations are minimized.

However, in practice, customers place orders with specific due dates, and on such

circumstance, the costs incurred due to a poor scheduling decision, such as costs

associated with late orders or lost sales, may surpass the costs of raw material wasted

during a cutting process. Therefore, we aim to develop an integrated mathematical

model which allows for making coordinated decisions on both cutting and schedul-

ing. In the literature, various scheduling objectives are considered for the single-stage

cutting stock problem which are handled both subsequent to the generation of pat-

terns ([2, 5, 6]) and simultaneously with integrated models ([1, 4]). No scheduling

extension to the MSCS problem has yet been investigated. We consider an extended

MSCS problem, in which order due dates and associated costs are incorporated to the

compact formulation. These costs include both tardiness and earliness costs, the lat-

ter being vital for minimizing the work-in-process inventories of intermediate rolls.

2 Problem Statement

The due date extended MSCS problem can be described as follows: Within a produc-

tion planning horizon indexed by q ∈ Q, a set of customer orders, each of which con-

sists of one type of finished roll, j ∈ J, are to be satisfied by their due dates through a

two-stage cutting process. In the first stage, identical stock rolls are cut into interme-

diate rolls, indexed by i ∈ I, through first stage cutting patterns, indexed by k ∈ K.

The widths of intermediate rolls are not known in advance but need to lie within an

interval, [smin, smax]. In the second stage, the intermediate rolls produced in the first

stage are cut into finished rolls to satisfy the demand on finished rolls through second

stage cutting patterns, indexed by n ∈ N. The demand on an order not satisfied by

its corresponding due date is considered tardy and is penalized in the objective func-

tion. It is assumed that the stock rolls and the intermediate rolls are cut on separate

consecutive machines, forming a flow-shop scheduling environment. Thus, there is

a precedence relationship between the two stages in such a way that the intermediate

rolls to be cut in the second stage within a production period must be made available

until the end of that period through first-stage cutting patterns.
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The main difficulty in solving integrated cutting and scheduling problems is

caused by the conflicting nature of their objectives, rendering a multi-objective

optimization problem. Furthermore, the time dependent scheduling components are

inconsistent with those of the cutting problem which are usually defined in terms of

the number of pieces or patterns cut. Unlike the scheduling problems, the comple-

tion time of an order is dependent on the type and the number of the patterns cut

in the production periods. To overcome these difficulties, [4] introduced an alterna-

tive modeling approach for the due date extension of the single-stage cutting stock

problem. In their approach, they discretized the planning horizon into irregular pro-

duction periods using order due dates, q ∈ Q. The time intervals are expressed in

terms of the machine capacity, which is the number of stock rolls a cutting machine

can process within that period. Their model identifies tardiness as the number of

stock rolls cut over the machine capacity to complete an order, which is penalized in

the objective function.

On the other hand, as later argued by [1], the tardiness costs returned by the formu-

lation in [4] are not always exact since the demand on each finished roll is required to

be satisfied through the cutting patterns cut until the end of the associated production

period. Consequently, a tardy order in a production period causes orders in subse-

quent periods to be delayed which results in tardiness costs to be overcalculated.

They suggested an alternative formulation by combining it with a lot-sizing prob-

lem, which allowed demand to be satisfied through rolls produced in any production

period. In their model, negative inventory levels indicate items being backlogged

and are used to identify orders that are late. The exact tardiness values are obtained

through a refinement procedure by partitioning the production periods.

3 Mathematical Model

In the extended MSCS problem, the cutting process of stock rolls and the interme-

diate rolls are completed on two separate machines consecutively whose capacities

at each period q, 𝛥
1
q and 𝛥

2
q, are defined in terms of the number of stock rolls and

the number of intermediate rolls that can be cut during that period, respectively. We

define the number of stock rolls cut at each period q with yqk, k ∈ K and the number

of intermediate rolls cut at each period q with xqn, n ∈ N. When 𝛥

1
q ≈ 𝛥

2
q, i.e. the

processing time of a stock roll and an intermediate roll are similar, the machine in

the second stage becomes the bottleneck of the complete process: since a first stage

cutting pattern typically contains several intermediate rolls, the number of rolls that

need to be processed by the second machine is higher. In such cases, intermediate

rolls required in the second stage are produced earlier than necessary and stocked

to be used at a later period which results in work-in-process inventory. In order

to alleviate this problem, we define variable sfq,i ∈ ℝ+ for the inventory level of

intermediate roll i ∈ I at the end of period q ∈ Q, which is penalized in the objec-

tive function to ensure that these rolls are cut through first-stage cutting patterns
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in the respective periods when demanded by the second stage. These variables are

not allowed to take negative values to conform to the precedence relation between

the first and the second-stage cutting operations. Even though there is no actual due

date on the intermediate rolls, the precedence relation between stages constitutes a

self-imposed due date, which causes earlier production of intermediate rolls to be

penalized. The inventory level for finished roll j ∈ J at the end of period q ∈ Q is

denoted by ssq,j ∈ ℝ. The positive and negative values of ssq,j correspond to items

of finished roll j being stored and backlogged, respectively, at the end of period q.

The demand on finished roll j at period q is denoted by parameter dqj with dqj = dj, if

q = j, and dqj = 0, otherwise. If finished roll j is late, meaning that sq,j < 0 in some

time period q ≥ j, binary variable tqj takes a value of one, which inflicts a tardi-

ness cost in the objective function. Therefore, the due date extension of the MSCS

problem has three objectives, namely the minimization of the number of stock rolls

(trim loss), the tardiness cost and the inventory cost of the intermediate rolls (earli-

ness cost). In the mathematical model given below, we use a prominent method of

multi-objective optimization, named weighted-sum method, to reach a single objec-

tive problem in which the objectives are multiplied with 𝛼, 𝛽, and 𝛾 .

Minimize 𝛼

∑

q∈Q

∑

k∈K
yqk + 𝛽

∑

j∈J

∑

q>j
𝛥

2
qtqj + 𝛾

∑

i∈I

∑

q∈Q
sfq,i, (1)

subject to

∑

k∈K
yqk ≤ 𝛥

1
q, q ∈ Q, (2)

∑

n∈N
xqn ≤ 𝛥

2
q, q ∈ Q, (3)

ssq−1,j +
∑

n∈N
Bjnxqn = ssq,j + dqj, j ∈ J, q ∈ Q, (4)

sfq−1,i +
∑

k∈K
Cikyqk = sfq,i +

∑

n∈N
Dinxqn, i ∈ I, q ∈ Q, (5)

djtqj − ssq−1,j ≥ 0, j ∈ J, q > j, (6)

yqk, xqn, sfqi ≥ 0, integer, n ∈ N, k ∈ K, q ∈ Q, (7)

tqj ∈ {0, 1}, j ∈ J, q ∈ Q, (8)

ssqj urs, integer, j ∈ J, q ∈ Q, (9)

where Cik shows the number of intermediate roll i ∈ I existing in the first-stage cut-

ting pattern k ∈ K, and Bjn denotes the number of finished roll j ∈ J existing in the

second-stage cutting pattern n ∈ N. Moreover,Din = −1, only if the second-stage

cutting pattern n ∈ N is cut from intermediate roll i. Constraints (2) and (3) restrict

the number of the first- and the second-stage cutting patterns cut in a period with the

available capacity of the machine in the first and the second stages, respectively. The

equilibrium constraints (4) guarantee that for each finished roll j ∈ J, the demand

and the items carried to the next period are satisfied with the second-stage cutting

patterns produced in that period plus the available inventory remaining from the

previous period. Similarly, constraints (5) which link the two stages ensure that the
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number of intermediate roll i produced at period q and carried from the previous

period is equal to the number of second-stage cutting patterns cut from i plus the

work-in-process inventory of this roll carried to the next period. Constraint set (6)

links binary variable tqj with ssq−1,j in such a way that the negative values of the latter

impose the former to one.

4 Computational Experiments

In this section, we perform tests to evaluate the results obtained from our proposed

model. The number of variables and constraints in (1)–(9) are dependent on the

number of intermediate rolls and the number of periods. The structure of this prob-

lem is amenable to simultaneous column-and-row generation which is out of the

scope of this paper. Hence, we employ a random instance generator that allows pre-

enumeration of all cutting patterns, which also reveals the complete set of interme-

diate rolls. To that end, we choose |J| = 5 whose widths and demands are randomly

generated from U(300, 800) and U(10, 110), respectively. Stock roll width and the

limits on the intermediate rolls are W = 5000, smax = 1700 and smin = 1400, respec-

tively. Second stage machine capacity for each period 𝛥

2
q is determined randomly

between the minimum and the maximum number of intermediate rolls required to

complete an order, U(

⌊∑
j 𝛼jdj∕smax

⌋
,

⌈∑
j 𝛼jdj∕smin

⌉
). First stage machine capac-

ities at each period, 𝛥

1
q, are scaled according to 𝛥

2
q, in particular 𝛥

1
q = 𝛥

2
q and

3𝛥1
q = 𝛥

2
q. The parameters in the objective function are selected as 𝛼 = 1, 𝛽 = 1 and

𝛾 = {0, 0.005}. While the weights on the trim loss and the tardiness objectives are

equal, the tardiness costs at each period, which is multiplied by the second stage

machine capacities, are emphasized more in the objective function. This parameter

selection is a result of our assumption that the lexicographic order of importance

of the objectives is tardiness, trim loss and intermediate roll inventory. The experi-

ments are conducted on a computer with a 1.60 GHz Intel Core i5-4200U Processor

and 4 GB of RAM. The algorithms are implemented on C++ using the MIP solver

of CPLEX 12.5 and Concert 2.5.

The numerical results for ten randomly generated instances are reported in Table 1,

stating respectively, the objective function value {the number of stock rolls used,

total tardiness, total inventory of intermediate rolls}. These results show that when

the capacities of the two machines are similar, the stock rolls are cut in advance of the

periods for which the produced intermediate rolls are needed. This can be observed

by the higher work-in-process inventory levels in columns 1 and 3 compared to

columns 2 and 4, respectively. In addition, decreasing the capacity of the first stage

machine causes fewer number of stock rolls to be cut at each period which results

in increased tardiness of orders and reduced work-in-process inventory. Penalizing

the early production of intermediate rolls in the objective function, even with a very

small coefficient of 𝛾 = 0.005, has a considerable effect on the work-in-inventory

levels which is best observed from the results in columns 1 and 3.
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Table 1 Experimental results

𝛾 = 0 𝛾 = 0.005
𝛥

1
q = 𝛥

2
q 3𝛥1

q = 𝛥

2
q 𝛥

1
q = 𝛥

2
q 3𝛥1

q = 𝛥

2
q

1 124{46, 78, 153} 145{46, 99, 9} 124, 02{46, 78, 4} 145{46, 99, 0}

2 28{28, 0, 54} 65{28, 37, 0} 28, 015{28, 0, 3} 65{28, 37, 0}

3 111{38, 73, 178} 111{38, 73, 5} 111{38, 73, 0} 111{38, 73, 0}

4 104{46, 58, 65} 142{46, 96, 2} 104{46, 58, 0} 142{46, 96, 0}

5 142{43, 99, 87} 166{43, 123, 1} 142, 015{43, 99, 3} 166{43, 123, 0}

6 109{39, 70, 155} 109{39, 70, 0} 109{39, 70, 0} 109{39, 70, 0}

7 78{35, 43, 177} 78{35, 43, 4} 78{35, 43, 0} 78{35, 43, 0}

8 110{35, 75, 123} 174{36, 138, 31} 110, 335{35, 75, 67} 174{36, 138, 0}

9 122{27, 95, 130} 133{27, 106, 1} 122, 005{27, 95, 1} 133{27, 106, 0}

10 127{35, 92, 70} 143{35, 108, 2} 127, 015{35, 92, 3} 143{35, 108, 0}

5 Conclusion and Future Work

In this paper, we present a modeling approach to integrate order due dates in the

MSCS problem. Our mathematical model incorporates three objectives into a single

objective function, and is capable of reducing the work-in-process inventory con-

siderably, while at each period, selecting the cutting patterns for the two stages

that minimize the tardiness and the trim loss in this order. As a future research,

we intend to develop a simultaneous column-and-row generation algorithm to solve

larger instances of this problem. Considering the difficulty of this problem, we also

strive to develop a heuristic approach to obtain good feasible solutions.
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A Two-Stage Heuristic Procedure for Solving
the Long-Term Unit Commitment Problem
with Pumped Storages and Its Application
to the German Electricity Market

Alexander Franz and Jürgen Zimmermann

Abstract In electricity systems unit commitment problems (UCP) target at a proper

scheduling and coordinating of thermal plants, renewable energies, and storages. The

need for fast solution methods has been growing in line with recent changes in the

electricity system’s environment and complexity, in particular with the increasing

share of volatile renewable feed-ins. In order to meet this need even for large-scale

systems a decomposition methodology for the UCP is suggested within this paper.

Our two-stage decomposition first performs an isolated dispatching of thermal plants

using a greedy algorithm, rule-based algorithms and local search based steps, fol-

lowed by a re-optimization stage in order to incorporate energy storages into the final

solution. The comparison of the iterative two-stage heuristic with commonly used

approaches based on mixed integer linear programming shows outstanding results in

terms of solution time and solution quality. Besides typically used test instances, the

heuristic is applied to comprehensive case studies of the German electricity market,

where (near-) optimal solutions can be derived for a yearly planning horizon with

hourly time steps with computational effort of a few minutes using a standard PC.

1 Introduction and Problem Specification

Optimization models for electricity systems principally address a wide range of

decision-making processes that, e.g., affect the fields of commodity trading and

hedging, operation scheduling and maintenance control as well as portfolio and grid

optimization. For generating companies, market or transmission operators and for

the political world one of the most important and best known optimization problems

is the so-called unit commitment problem (UCP) (e.g., [8]). Considering all types

of electricity producing units, the aim of the UCP is to derive a feasible production

schedule over an prescribed planning horizon (e.g., from real-time observations to

long-term analysis) generally with minimal total operating costs. Within the opti-
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mization, several techno-economic plant specific restrictions and system-wide con-

straints (e.g., a steady equilibrium between electricity provision and consumption)

have to be considered in order to obtain a feasible schedule.

Ongoing changes in the regulatory environment (e.g., the transition from regu-

lated to liberalized markets), in production technology, and in optimization tech-

niques have been and still are key issues for the UCP for researchers and market

participants all over the world. The latest changes refer in particular to the increas-

ing share of prioritized renewable feed-in, which lead to major challenges in terms

of (residual) demand coverage due to a significantly higher volatility and stochas-

ticity. Consequently, the need for flexible, but cost-efficient power plant operations

arises moving to the concept of load-following (instead of static base-load opera-

tions). The request for flexibility is usually supported by energy storage activities

ensuring a smoothing of the volatile residual demand (demand minus intermittent

renewable feed-in of e.g., wind and solar). The dispatching and scheduling of both,

thermal plants and (mainly hydro-) storages, result in the UCP with hydro-thermal
coordination (UCP-HT) [8].

The UCP and the UCP-HT are typically formulated as mixed-integer linear pro-

grams (MILP) [4], [8] where continuous decision variables determine the production

level and binary decision variables the plant’s status (on/off). Since the number of

binary decision variables as well as the number of constraints in the model depend

on the length of the planning horizon, only instances with a short-term planning

horizon (i.e., 1 day or 1 week) can be solved to optimality within reasonable time.

For the long-term instances focused in this article (e.g., 1 year), heuristics are nec-

essary, in particular if a huge amount of different renewable-driven scenarios have

to be calculated in reasonable time. According to the survey in [5], heuristics for the

family of UC problems are divided into conventional techniques and metaheuris-

tic algorithms. Conventional techniques include simple priority list-based methods,

Dynamic Programming and decomposition techniques like Lagrangian Relaxation

(e.g., [8]). Metaheuristics are often based on local search, genetic algorithms or sim-

ulated annealing (e.g., [3, 6]).

In what follows, we apply and evaluate a decomposition approach that splits the

UCP-HT in an optimization of only thermal plant capacities on the first stage and

a scheduling and coordinating of storages on the second stage. On both stages the

residual demand is covered. Within the decomposition, a sequential use of an en-

hanced priority rule-based method, a repair procedure (ensuring solution feasibility),

local search based improvement steps, and a demand-shifting process is used. These

steps allow the tackling of well-known test instances with a large number of gener-

ating units, a long-term planning horizon, and hourly time-steps in a short amount

of computation time. In order to evaluate the suitability for large-scale practical ap-

plications we also introduce a comprehensive case study of the German electricity

market obtaining very convincing results by applying the proposed heuristic.
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2 Model and Heuristic Solution Approach

Basically, the UCP-HT consists in finding an optimal production schedule for each

thermal plant i ∈ I and an optimal allocation of each (hydro) storage j ∈ J to fulfill in

particular a given customer demand at minimized production costs. The production

schedule for each plant comprises decision variables for the binary on/off status and

the continuous generation level of plant i for each point in time t ∈ T . The overall

production costs due to the production schedule form the objective function:

minimize TC =
∑

t∈T

∑

i∈I

(
FCit + SCit

)
+
∑

t∈T

∑

j∈J
HCjt +

∑

t∈T
cnonNt (1)

The total system operating costs TC covers relevant production-related components,

consisting of thermal production costs FCit, thermal start-up costs SCit, (hydro) stor-

age operating costs HCjt as well as non-served energy costs cnonNt. Thermal produc-

tion costs are mainly dominated by fuel consumption and emission certificates and

can typically be considered as the major cost component. Storage operating costs

can often be neglected since no (direct) fuel costs occur for pumping or generating.

Costs incurred by non-served energy penalize a (negative) deviation from the given

energy demand in the amount of Nt and help to decrease computation time.

In addition to the (residual) demand coverage restriction, system-security con-

straints and production or supply-side constraints ensure the feasibility of an obtained

solution. Whereas system-security constraints create the frame for a stable and se-

cure operation (e.g., by compensating load imbalances utilizing reserve power), the

production or supply side restrictions ensure a proper utilization within economic

and technical specifications individually for each unit of each power source. In case

of a thermal power plant, it should be guaranteed that, once a thermal generator is

started (decommitted), it has to be online (offline) for at least its minimum up-time

(minimum down-time). For (hydro) storages, energy balance and energy flow con-

servation equations are to be considered to calculate the amount of energy retained in

each storage at each time t. Furthermore, logical constraints are necessary to deter-

mine the binary status of a shutdown or start-up of a thermal plant and to differentiate

between e.g., a cold or a hot start-up of a plant.

All sketched constraints can be formulated as linear constraints which make the

presented model to a MILP with a linearized production function. A detail review

of a basic model (without energy storages) can be found in [1, 4] or [8]. For small-

and mid-sized instances the resulting MILP model can be given to a solver (e.g.,

CPLEX) in order to obtain a solution schedule. In case of large-scale case studies

and time-sensitive (e.g., scenario-based) analysis the two-stage heuristic procedure
is recommended to use, because the UCP-HT is an NP-hard optimization problem.

The idea of the heuristic decomposition is the observation that the demand cov-

erage constraint can already be satisfied by an isolated scheduling of only thermal

plants (if sufficient thermal capacity is assumed). Therefore, a feasible solution of

the UCP-HT can be found, although the possibility of demand-shifting through the
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Fig. 1 Principal concept of the considered two-stage heuristic approach for the UCP-HT

set of hydro storages is neglected initially. Afterwards, within the second stage, hy-

dro storages are stepwise embedded achieving a better objective function value. The

resulting basic concept is illustrated in Fig. 1.

The Thermal Plant Optimization stage preselects certain plants to fulfill the

volatile residual demand and spinning reserve requirements without using any stor-

ages. Moreover, several techno-economic parameters like power output specifi-

cations, minimum up-times (MUT) and minimum down-times (MDT) or time-

dependent start-up costs are observed. In particular, the following three steps are

determined: (i) create start solution by applying a greedy algorithm, (ii) deduce fea-

sible solution via rule-based repair steps, and finally (iii) improve solution by local

search. The Thermal Plant Optimization is followed by a re-optimization stage that

iteratively replaces thermal plant operations by hydro storage activities in order to

obtain lower total operating costs TC. Within theHydro-Thermal Coordination stage

a demand-shifting operation comprises not only a generation of electricity by stor-

ages (in high demand hours), but also a set of retaining phases to balance energy

withdrawals (in low demand hours). The following local search improvement step

enhances the solution by reducing redundant thermal plant operations and an exces-

sive reserve provision by replacing plants by a set of other thermal plant activities.

Finally the solution schedule consists of an hourly dispatch of all thermal plants

and all hydro storages that fulfills all constraints described above. A detailed expla-

nation of the proposed two-stage heuristic procedure can be found in [2].

3 Numerical Results

Within our performance analysis, we compared the results of the two-stage heuristic

procedure to the results obtained by CPLEX using an MILP formulation (similar

to [4], enhanced by storages). Here, we present only an extract of our numerical

study consisting of 100 problem instances classified in two test sets. Test set T1 was

first introduced by [3] and is commonly used for analyzing UCP models (e.g., in [4]

or [6]). All instances consist of ten basic thermal units which are exactly replicated

in order to get a 20, 30,… , 100 plant system. Thereby, the basic 24 h demand is

adjusted relatively to the total capacity of the replicated system. For testing long-

term planning horizons the 24 h planning horizon is copied to get instances of 1, 4,
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Table 1 Computational results for T1- and T2-instances (avg. gap (max. gap) [%], avg. tcpu
[s])

Time

horizon

#plants MILP (T1) Heuristic (T1) MILP (T2) Heuristic (T2)

Gap tcpu
Gap tcpu

Gap tcpu
Gap tcpu

1 week 10 − 100 0.2 (0.8) 11 0.8 (0.9) 0.1 0.3 (0.6) 31 0.9 (1.0) 0.1

4 weeks 10 − 100 0.5 (0.9) 177 0.8 (0.9) 0.5 0.6 (1.0) 198 0.6 (0.8) 0.3

12 weeks 10 − 100 0.7 (0.9) 558 0.9 (1.0) 4.2 0.5 (0.9) 3,406 0.7 (0.9) 2.4

20 weeks 10 − 100 0.6 (0.9) 1,103 0.9 (1.0) 11.0 7.4

(68.9)

3,586 0.8 (1.0) 5.8

1 year 10 − 100 6.3

(48.4)

14,245 0.9 (1.0) 72.1 62.8

(99.8)

14,167 0.9 (1.0) 58.9

Performed on an Intel Core i7-2760QM CPU with 2.7 GHz and 8 GB of RAM; GAMS 24.0 and

CPLEX 12.4 used for MILP solutions (duality gap: 1%, time-limit: 5 h)

12, and 20 weeks as well as 1 year. In T2, the recurrent demand pattern is replaced by

the actual residual demand in Germany in 2012 (adjusted to the thermal capacity).

Furthermore, in each instance of T1 and T2 hydro storages are added according to

the total thermal capacity (about 7%, which is the current situation in Germany).

The average results of the 10–100 plant system are presented for each time horizon

in Table 1, where worst-case gap-values are given in brackets. Columns 3–6 refer to

T1 and columns 7–10 to T2. It can be observed that the presented two-stage heuristic

delivers the best solution quality for long-term instances, whereas the solution time

stands out and is always substantially lower compared to the MILP. Using a multi-

start scheme with 100 iterations further gap-improvements of 0.1% are achievable.

Consequently, our two-stage heuristic approach can be classified as a fast method

for the UCP-HT which solves problems to near-optimality for all tested instances

(according to the worst-case values no solution exceeds the 1% gap).

4 Case Study: German Electricity Market

The numerical results obtained in Sect. 3 make the proposed heuristic procedure

highly suitable for the application of real-world energy systems, which we tested for

the electricity system in Germany. Our case study comprises 216 instances that are

spread across different scaling levels ranging from 25 to 500% of the German elec-

tricity market in order to extensively assess the capability of the proposed heuristic.

Hence, the total thermal capacity
∑

Pmax

i [GW], the yearly demand
∑

Dt [TWh], and

the renewable feed-in
∑

windt and
∑

pvt [TWh] are adjusted according to the scaling

level based on the market structure in Germany in 2015 (cf. Table 2). For each in-

stance the thermal plant portfolio with individually modelled large-scale units is fit-

ted by applying a scaling method, so the portfolio composition is always comparable

to the unscaled electricity system of Germany. The portfolio of hydro storages com-

prises only wholesale market participating storages (for the basic portfolio 6.5 GW)
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Table 2 Computational results for the case study

#instances Scaling Time

horizon

(year)

#plants
∑

i Pmax

i
∑

t Dt
∑

t windt
∑

t pvt tcpu

27 25 1 80 22.8 138.1 22.0 9.6 23.5

27 50 1 148 45.6 276.2 44.0 19.2 52.7

27 75 1 221 68.4 414.3 66.0 28.8 28.8

27 100 1 289 91.3 552.4 88.0 38.4 150.6
27 200 1 595 182.5 1104.8 176.0 76.8 369.0

27 300 1 870 273.8 1657.2 264.0 115.2 805.8

27 500 1 1467 458.4 2762.1 440.0 192.0 1711.5

and is scaled accordingly. For the creation of realistic hourly profiles of the demand

and the renewable feed-in the methodology in [7] is applied. Utilizing the stochas-

tic Ornstein-Uhlenbeck process presented by Wagner for residual demand modeling

three scenarios, respectively for demand, wind, and solar are generated with calibra-

tion data from 2010 to 2015 (cf. ENTSO-E and German TSOs). Consequently, 27

possible instance combinations are introduced for each scaling.

The obtained results in Table 2 are averaged over all instances for each scaling

level. As expected, low scaled instances are solved quite fast, but even for the entire

German electricity system (scaling: 100%) near-optimal solutions can be derived in

about 2.5 min of computation time. Moreover, a feasible hourly production schedule

for an electricity system with a scaling of 500% (with almost 1,500 plants and in

terms of the demand nearly comparable to the system of the EU-28) is received in

less than half an hour. Therefore, it can be concluded that the two-stage heuristic

procedure provides not only outstanding results for theoretical test instances, but is

also excellent suited for comprehensive practical purposes.

5 Conclusion

With regard to the need of fast scheduling procedures for the operational planning of

thermal power plants, renewables, and storages, an introduction to our two-stage

heuristic for the UCP-HT was proposed within this paper. According to our nu-

merical study, the decomposition method significantly outperforms MILP-based ap-

proaches for mid- and long-term planning horizons. Comparable outstanding per-

formances can be observed for real-world case studies where the UCP-HT for the

German electricity market is solved within minutes for 1 year. Future work may en-

hance the heuristic in terms of plant availabilities and demand side management.
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Flexibility Options for Lignite-Fired Power
Plants: A Real Options Approach

Barbara Glensk and Reinhard Madlener

Abstract Germany’s energy system transformation process “Energiewende”

implies, on the one hand, the promotion of renewable energy sources and, on the

other hand, difficulties in the profitable operation of many modern conventional

power plants due to increasing shares of renewable electricity and decreasing elec-

tricity wholesale prices. Nevertheless, the prioritized conventional power generation

technologies are still needed in times of low wind and solar power generation in order

to maintain the security of electricity supply. Regarding these aspects and the spe-

cific situation in the federal state of North Rhine-Westphalia, the problem of further

operation of lignite-fired power plants is of particular importance. In the study under-

taken we tackled the following research questions: Should lignite-fired power plants

be operated without any changes until the end of their lifetime? Can already existing

lignite-fired power plants be operated more flexibly? If so, which flexibility options

should be taken into consideration? What is the optimal investment time for these

flexibility options? Are investments in other power generation technologies more

suitable for ensuring system stability than investing in the retrofitting of existing

lignite-fired power plants is? To answer these questions, we propose an optimization

model that is based on real options analysis (ROA) and, more precisely, on the option

of choosing. In the proposed model, the economic as well as technical aspects of the

power plant operation are taken into consideration for the profitability calculations.

Moreover, the results show the importance of the subsidies for lignite-fired power

plants and their further operation.

B. Glensk (✉) ⋅ R. Madlener

School of Business and Economics, Institute for Future Energy Consumer Needs

and Behavior (FCN), E.ON Energy Research Center, RWTH Aachen University,

Mathieustrasse 10, 52074 Aachen, Germany

e-mail: BGlensk@eonerc.rwth-aachen.de

R. Madlener

e-mail: RMadlener@eonerc.rwth-aachen.de

© Springer International Publishing AG 2018

A. Fink et al. (eds.), Operations Research Proceedings 2016,

Operations Research Proceedings, DOI 10.1007/978-3-319-55702-1_22

157



158 B. Glensk and R. Madlener

1 Introduction

The main challenge of Germany’s energy system transformation process is to develop

a future electricity market that meets three main goals: to ensure security of supply,

to limit the costs, and to enable innovation and sustainability, when a large share

of the power is derived from intermittent renewable energy sources. To address this

challenge, the existing electricity market is to be converted into an “electricity mar-

ket 2.0”, where fossil-fueled fired power plants will take on a new role as partners of

renewables (back-up capacities to cover the variability of net demand). The required

back-up (i.e. in the role of reserve) capacities of conventional power plants in the

“electricity market 2.0” are to be remunerated via the market mechanisms without

strong interventions in the existing market design [2]. From this perspective, the

flexible and efficient operation of the country’s conventional power plants becomes

more important.

Regarding the federal state of North Rhine-Westphalia, Germany’s “Energieland”

and “Industrieland” No. 1, where lignite- and hard-coal-fired power plants are the

dominant power and heat generation technologies, their flexibility is key for the reli-

able operation of the whole power system and the security of supply for existing

industries and households. The flexible operation of lignite-fired power plants in

NRW, which according to [2] should represent back-up capacities in the “electricity

market 2.0”, is constrained by the technical restrictions of this technology, defined

by ramping capability, minimum load, as well as must-run requirements [5].

The investigations of which flexibility option should be applied—if any at all—as

well as when the flexibility option should be exercised, can be undertaken using real

options analysis (ROA). The traditional now-or-never discounted cash flow analysis

is no longer an adequate approach for this type of decision process, as it does not take

managerial flexibility appropriately into account. Real options valuation is based on

option pricing methods used in finance, developed by Black, Scholes and Merton (see

e.g. [1] or [12]), and extended by Dixit and Pindyck [4] and others to real assets. In

the meantime, ROA has been applied to many different industries (see e.g. [13] or

[16]). For the energy sector in particular, a comprehensive review of the literature is

provided by Fernandez et al. [6].

In our study, we consider the situation of an already existing lignite-fired power

plant, and some possible investor decisions to be undertaken: (1) to continue the

operation of the existing power plant; (2) to abandon this activity; or (3) to invest

in flexibility options (retrofitting measures). In order to solve this decision-making

problem, we propose the application of the option of choosing, which is a combina-

tion of multiple other options.
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2 Model Specification

The proposed model, which is based on the real options approach, is not a simple

set of equations but rather a procedure which supports the decision-making process.

This procedure consists of several steps. First, the operation strategy for each hour

of the power plant operation is defined, on which the cash flows and project val-

ues of the power generation can be estimated. This step is conducted based on the

methodology proposed by Glensk and Madlener [7]. By the definition of the oper-

ation strategy, the spark spread (i.e. the difference between the electricity price and

the fuel price regarding the load-level-dependent net efficiency factor) is used as the

profitability indicator and source of uncertainty, and estimated via the arithmetic

Brownian motion process.
1

Using this approach, the expected project value (E(PV))
for an existing power plant with and without a retrofit measure (i.e. some technical

element which can improve the flexible operation of the power plant) can be calcu-

lated and used in a further ROA.

In the next step, the binomial lattice for the option of choosing between continu-

ation, abandonment, and expansion can be applied. The binomial lattice method is

one of several real options solution approaches (such as partial differential equations

with a closed-form model or simulations, etc.). The major advantage of this method

is, on the one hand, its ease of use and better tractability; on the other hand, it allows

a flexible use of different types of real option problems. Especially the discussed

option of choosing is an American-style option (i.e. it can be exercised at any time)

compared to which the closed-form model (which allows only one exercise date) is

inadequate. Applying the binomial lattice approach we specify:

(1) The lattice of the present value (PVt) of the underlying asset, i.e. how the

underlying asset, in our case the project’s present value obtained from the first step,

changes over time. Based on the assumed normal distribution of the underlying asset,

the “up” and “down” movement parameters are defined as follows:

up = e(𝜎
√
𝛥t)

and down = e(−𝜎
√
𝛥t)

(1)

where 𝜎 is the associated volatility, and 𝛥t is the incremental time.

(2) The option valuation lattice using backward induction. Beginning at the last

year (t = T) on the lattice of the underlying asset, the maximum value of the contin-

uation value, abandonment value, and expansion value, respectively, can be chosen.

The continuation value (CVt), abandonment value (AVt), and expansion value (EVt)

are determined as follows:

CVt =

{
PVt for t = T
PVt =

prob⋅PVt+1,up+(1−prob)⋅PVt+1,down

erf ⋅𝛥t
for t = T − 1,T − 2,… , 0 (2)

AVt = 0.05 ⋅ InvCosts (3)

1
For more information, see [7].
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EVt = Expansion factor ⋅ PVt − Expansion costs (4)

where PVt+1,up and PVt+1,down are the project’s present values after “up” and “down”

movement in the subsequent time period t + 1, respectively, rf is an risk-free rate,

and prob denotes the risk-neutral probability, given as:

prob = K − down
up − down

(5)

with K as risk-adjusted growth factor of the underlying asset.
2

3 Case Study

In our case study, we applied the proposed approach to the lignite-fired power plant

Goldenberg in North Rhine-Westphalia,
3

which is owned by RWE and was commis-

sioned in 1993 with a net installed capacity of 171 MW. Its net thermal efficiency is

ca. 40% and it is used for baseload power generation for private households as well

as industry (paper and chemicals industry) [15].

All techno-economic parameters of the considered power plant that are necessary

for calculating the power plant’s value can be found in [9].

To make existing lignite-fired power plants more flexible, different flexibility

options are possible. These flexibility options can be subdivided into different groups,

such as spatial flexibility options (regarding the electricity distribution network),

storage, or timed flexibility options (for the supply and the demand side) [3]. Nev-

ertheless, the most frequently used flexibility option for the supply side is the retro-

fitting option of an existing power plant. In our case study, we consider the retrofit

measure for the firing system of the lignite-fired power plant. This technical compo-

nent enables the reduction of the minimum load of the power plant and the increase of

its present value (about 12% for minimum load of 50% and about 25% for the min-

imum load of 40%). Unfortunately, reinvestment in the firing system is connected

with some costs. In our case, these amount to about 30% of the total new investment

costs [9, 14].

The results regarding the retrofit measure which decreases the minimum load

level from 60 to 50% are presented in Table 1. Notice that according to our results

the lignite-fired power plant should be operated without any extension until the end

of its lifetime. In Table 1 the positive development of the present value of the power

2
The use of this factor is adequate for non-traded underlying assets (cf. [10]).

3
It is one of the lignite-fired power plants considered in the project “Verbundprojekt Transforma-

tionsprozesse für nachhaltige und wettbewerbsfähige Wirtschafts- und Industriestrukturen in NRW

im Kontext der Energiewende”—Virtuelles Institut “Transformation—Energiewende NRW” (for

more information see [9]).
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Table 1 Binomial lattice when the minimum load-level is 50% and the support subsidies are

included (UA—value of underlying asset [in e], OV—option value [in e] and D—decision)

plant (i.e. UA—values of the underlaying asset) can be observed (the same results

are obtained by decreasing the minimum load level from 60 to 40%). Nevertheless, it

should be noted that the made calculations take the subsidies for lignite power plants

into account [11]. Without subsidies, the present value of the operated power plant

are negative, even when the same retrofit measure is considered.
4

In such a situation

the further operation of the power plant is no longer economical and thus reasonable,

and ought to be stopped.

4 Conclusions

The increased use of renewable energy technologies for electric power generation

and the existing support schemes for renewables have a significant impact on the

merit order of power plant dispatch as well as the electricity price. The owners of con-

ventional power plants such as lignite-fired ones, which were designed as baseload

technologies, face severe changes to their operating strategies (i.e. decreasing num-

ber of operation hours as well as increasing number of breaks). Moreover, following

the concept of the “electricity market 2.0”, the conventional power generation tech-

4
For more results, see [9].
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nologies will be compelled to optimize their operations and make them more flexible.

The procedure proposed in this paper, and which is based on the real options method-

ology, constitutes a useful tool for the decision-making process. First, the procedure

allows the determining of the simplified operation strategy for the power plants, and

shows the expected future role of conventional power generation as back-up capac-

ities (because of interrupted operation, electricity delivered on demand, and more

shut-downs and start-ups). Second, using the real options approach, market uncer-

tainties (such as the stochastic development of electricity, fuel or CO2 prices) can

be easily incorporated into the model structure and can positively impact the results.

Third, changes in the values of some of the model parameters, such as the subsidy

level, show direct implications of policies and policy changes for market participants

and their optimal decision-making.

Further investigations and analysis of different power plants (considered in the

underlying project), as well as different flexibility measures, are planned in order

to check the robustness of the model results. Furthermore, a sensitivity analysis,

especially with regard to subsidies policy, will be undertaken.
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Needmining: Evaluating a Whitelist-Based
Assignment Method to Quantify Customer
Needs from Micro Blog Data

Niklas Kuehl and Marc Goutier

Abstract In the paper at hand we evaluate how a basic whitelist-approach with

keywords performs on automatically assigning micro blog data (tweets) to customer

need categories in the field of e-mobility. We are able to identify certain characteris-

tics that determine the classification success like unambiguousness and uniqueness

of the whitelist words.

1 Introduction

The identification of customer needs in early design stages of new services and prod-

ucts is an important task, which is addressed among different disciplines. A new

approach called Needmining evaluates the feasibility of automatically identifying

customer needs from micro blog data [2]. As a first case study, we used a Twitter

data set of 2400 German tweets from 2015 in the field of e-mobility. In a previous

paper, we showed the feasibility to classify tweets on whether or not they contain

customer needs [4]. After successfully identifying these “need tweets”, it is impor-

tant to identify the needs themselves. In this paper, we aim to quantify previously

known needs from a literature review in the Twitter data set (see Fig. 1) and evalu-

ate the performance of the automatable approach. For a previous categorization of

e-mobility needs, we use four major need categories as presented in [3].
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Fig. 1 General needmining approach and relation to this work

Table 1 Amount of words per whitelist

Need Whitelist

1 Original 2 Manually

stemmed

3 Synonyms 4 Thesaurus 5 Similarity

Cost 37 16 160 153 1580

Car 35 29 536 618 2557

Charging 21 7 79 88 592

Social 22 21 219 353 1812

Total 115 73 994 1212 6541

2 Method

The proposed method is independent of a specific domain, but is shown exemplary

in the domain of e-mobility. We assign every instance (=single tweet) in our dataset

to need categories, which are represented by whitelists containing need expressions

in the form of single words.

In [3], we analyzed the current state of research in the field of e-mobility. As an

outcome, we were able to identify four major need categories, namely cost-related,

car-related, charging-related and social and individual needs. We create a list for

every major category and fill these lists with the need expressions from the exam-

ined publications ➀. Since the terminology of the publications is—opposed to our

dataset—largely English, we have to translate the need keywords into their corre-

sponding German term(s). The amount of words per whitelist is depicted in Table 1.

Since a particular need can be expressed in different words, we also implement

the option to enrich the lists with thesauri of the (need) words by leveraging the

“Wortschatz-Portal” [5]. It allows to call three different functions: Synonyms returns

thesauri for a given input word ➂. Thesaurus additionally returns thesauri for the

lemmatized input word ➃. Similarity returns every other word which is related to

the input word in some kind (like antonyms, hyperonyms, cohyponyms and other)

➄.

To assign instances of our dataset we look at every instance separately and com-

pare the letter sequence of the words in the whitelists with the letter sequences of

the instance. If one word of one category also occurs in the instance, we assign the

instance to this category. Multiple assignments of one instance to several major need

categories are allowed. Moreover, we assign instances to the other category, when
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Fig. 2 Exemplary assignment of two instances and two major need categories

the content does not match with any of the words in our categories (see Fig. 2). The

quantification of one need is the amount of instances which are assigned to the cor-

responding category.

Additionally, we implement the possibility to stem the expressions of the need

categories as well as the content of the instances by using the German Stemmer [1].

Since a stemmer also unifies words, e.g. substitutes every umlaut with the corre-

sponding vowel, it is only useful to stem both the content and the words in the need

category whitelists—or none. We perform the quantification for every whitelist we

generated (original whitelists, enriched with the function Synonyms, Thesaurus or

Similarity) and the corresponding form with stemmed words. In addition to the eight

resulting possibilities, we also stem the original category lists manually to compare

the results of manual and automated stemming. The use of these new lists and a ver-

sion which is stemmed manually as well as by the German Stemmer add two other

possibilities to our results.

3 Results

To evaluate our approach to assign instances form the previous chapter, we require a

benchmark. We select the labeled sample from [3], in which we manually assigned

every instance to one or more major need category or to the other category. Although

our approach is not supervised, we are able to use assessment schemes from super-

vised statistical learning classification. When we compare the assignment of our

model based on the whitelists and the manual allocation, a single instance can be

in four conditions when we regard their assignment to one major category. In case

an instance is assigned by the model to the same category like in the manual allo-

cation, the assignment is “correct” and it is either a true positive or a true negative

(depending on the instance belonging to the regarded major category). In case the

method assigns an instance to a different category to which the instance does not

belong, the state is called a false positive. By contrast, a false negative occurs when
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Individual 
and Social

Cost-related Car-related Charging-related

Total amount of Tweets (per Need Category) True PositivesFalse Positives

Fig. 3 Comparison of the manual and the automatic assignment. Computer assignement used orig-

inal whitelists. Lists and instances are stemmed

an instance is assigned to a category only by the manual allocation and not by the

automated method as well. We conduct the evaluation for every instance and every

major need category. Regarding every major need category individually, we get the

total number of true positives, true negatives, false positives and false negatives.

These total numbers allow us to calculate the performance indicators precision and

recall. These indicators help us to analyze the performance of the assignment in total.

Figure 3 depicts the number of tweets which are assigned to the major need cate-

gories in case we use the original whitelists and perform stemming. Table 2 displays

the performance of every version of quantifications we implemented and executed.

Regarding the original need categories without any enrichments ➀, the precision

is fundamentally better than a random guess. Even the lowest precision in the cate-

gory car achieves 43% (stemmed)
1

and 45% (unstemmed). The major categories cost
and charging show good precision performances above 80%. This is reasoned in the

special manner of these categories: They contain unique words in their whitelists,

namley “Preis” (price) in the cost-related category and “Ladestation” (charging sta-

tion) and “Reichweite” (driving range) in the charging category. These words which

are not only very frequent in their corresponding instance, but are also unambigu-

ous and therefore usually only appear in the same context as in the correspond-

ing literature. Consequently, there are also less false assignments of tweets which

contain these words, but do not fit in either one of these two categories. When we

observe the other two categories car as well as social and individual, they do not

feature such unique words which could lead to comparable precision values. Refer-

ring the social and individual category, this insight could be surprising, because

“Umwelt” (environment) has the same attributes to be seen as a unique and com-

mon word. However, the expression “environmental” is not used very often in social
and individual tweets and for that reason, it does not increase the precision signif-

icantly. Our performance is different regarding the recall indicator. Its results are

poor, only the charging-related category achieves a value above 50% (stemmed).

1
In general, the repercussions of automatic stemming are nominal and are not discussed further.
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Table 2 Results of assignment for every tested combination

need category whitelist: 1 original 2 manually stemmed 3 Synonyms 4 Thesaurus 5 Similarity

stemmed: no yes no yes no yes no yes no yes

cost recall 37% 42% 48% 47% 52% 62% 48% 58% 92% 93%
precision 85% 83% 83% 85% 53% 39% 47% 38% 19% 18%

car recall 15% 16% 13% 16% 67% 85% 84% 89% 100% 100%
precision 45% 43% 50% 50% 17% 19% 18% 18% 18% 18%

charging recall 36% 52% 71% 71% 42% 65% 40% 58% 72% 91%
precision 94% 98% 95% 95% 85% 71% 93% 86% 63% 52%

social recall 38% 38% 45% 45% 48% 66% 72% 86% 100% 100%
precision 73% 50% 72% 50% 31% 15% 13% 13% 10% 9%

other recall 93% 93% 89% 87% 26% 9% 9% 4% 0% 0%
precision 20% 23% 26% 26% 17% 17% 14% 13% 0% 0%

Nevertheless, cost and charging also show a higher recall, especially compared to

car, which is again originated in the unique words which cover a great amount of

relevant instances. Additionally, also the character of the need categories play a role.

Every major need category contains needs, but they do not contain their character-

istic attributes. Cost-related or charging-related needs are predominantly expressed

with the tangible need, e.g. “the price is too high”, whereas especially car-related
needs are expressed with their characteristics attributes “I want a red car” instead

of “I want a car in a specific color”. This phenomenon leads to the issue that these

instance are not recognized by our method.

In summary, the recall is too low to project the automatically identified quantities

of tweets as an estimation for the full dataset. To project the real quantities, we would

also need a comparable precision in every category. Since the precision deviates

drastically from category to category, a projection would only reinforce the different

levels of precisions from the allocation. Nevertheless, it is interesting to note that the

total amount of instances of a specific major need in the dataset has no influence on

recall and precision. We can show this best when focusing on cost- and car-related
need. Although the amount of both categories is about 60 respectively 61 instances,

the cost-related category achieves results in recall and precision which are equal to

the best-performing categories in our study, whereas the indicators of the car-related
needs have the lowest numbers in almost every condition.

The manual stemmed lists ➁ contain generously stemmed words by a human.

Since human stemming violates our principle of an automated and scalable imple-

mentation, this part only acts as a reference at which level our approach is able to

perform with an almost perfect stemming procedure. Overall, the results are better

compared to the original list, for both recall and precision.

The last three deviations from the original whitelists are iterations with enriched

major need categories ➂ ➃ ➄. As expected, the recall increases, compared to the

original condition, when we add thesauri with the Synonyms function ➂. Especially

the recall for car raises dramatically. This observation is reasoned in the fact that this

major need category covers a large ontological area, e.g. the word “motor” has plenty
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of thesauri. This leads to the circumstance that the car-related needs encompass over

500 needs after the enrichment (c.f. Table 1), which obviously benefits the recall. On

the contrary, the precision decreases drastically. Most of the added thesauri are too

unspecific which causes many false assignments. Only the charging-related category

remains on an acceptable level because it is narrowly specified in our study and there-

fore, there are less existing thesauri. Stemming enforces the described phenomenons

on recall and precision. Consequently, it is not recommended. Implications for our

quantification are the enrichment with thesauri based on the Synonyms function ➂
increases the recall which is preferable, but, the loss of precision is so drastically, that

even with the higher recall a projection of the total numbers in the original dataset

is impossible.

The enrichment with the Thesaurus function ➃ in our method or the addition of

any kind of words which are related in some way with our needs (Similarity function

➄) intensifies the findings of the previous paragraph. Major needs are not able to

catch up by adding thesauri, neither absolute nor relative to the other categories.

4 Conclusion

We evaluated a basic whitelist approach to assign micro blog instances containing

customer needs to one of four major need categories. Major limitations are the speci-

ficity of the data set and the manual effort still necessary to gain information on the

need categories in the first place. Nonetheless, the results are already promosing for

practitioners in some categories. From a theoretical perspective it is interesting to

note that automatic stemming did not increase performance significantly. Important

characteristics for classification are unambiguousness and uniqueness of the words

in the whitelists. As a next step, it is of importance to automate the filling of the

whitelists (e.g. by leveraging knowledge databases like Wikipedia) and improving

the classifiction results further.
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Optimising the Natural Gas Supply Portfolio
of a Gas-Fired Power Producer

Nadine Kumbartzky

Abstract The expansion of gas-fired power plants has led to increasing interactions

between the natural gas and electricity market. In order to effectively manage risk

of volatile energy prices, operators of gas-fired power plants need to take natural

gas procurement and power plant resource planning simultaneously into account.

An industrial company is considered that owns a gas-fired combined heat and power

(CHP) plant. To ensure a stable heat and power supply, the amount of gas needed to

operate the CHP plant must be available at any time. Natural gas can be procured by

signing supply contracts or by engaging in the natural gas spot market. A two-stage

stochastic MILP model is proposed that optimises the gas supply portfolio and the

CHP plant operation according to revenue potential in the electricity spot market.

Uncertainty of gas and electricity spot prices is addressed by means of stochastic

processes. Price risk is explicitly taken into account by the Conditional Value-at-

Risk (CVaR). A convex combination of expected total costs and CVaR allows for

representing different risk preferences of the decision maker. The efficient perfor-

mance of the presented approach is illustrated in a case study using the example of

German energy markets. The results reveal the significant influence of different risk

preferences on the optimal gas supply portfolio composition.

1 Introduction

The availability of energy is a necessary prerequisite in the daily business of many

industrial companies. For the production of commodities, a certain amount of power

and process heat is needed. CHP plants simultaneously generate heat and power in

a coupled process resulting in a high efficiency. In 2014, CHP plants accounted for

70.4% of industrial electricity generation and even 88.1% of industrial net heat gener-

ation in Germany, respectively [2]. The heat demand of the considered company can

only be fulfilled by the CHP plant. By contrast, the power demand is either satisfied
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by the CHP plant or by purchasing power from the electricity spot market. Anyhow,

the gas needed to operate the CHP plant must be available at all times.

Natural gas can be procured by signing bilateral contracts or by purchasing gas

from the spot market. Additionally, some companies have access to a gas storage

facility. In order to procure gas at the lowest possible cost, the industrial company has

to efficiently manage its gas supply portfolio. Optimising natural gas procurement

has already been discussed in literature, e.g. in [1, 4]. However, gas procurement for

gas-fired power plants must not neglect power plant resource planning. The reason

is that decisions on gas procurement depend on the operating schedule of the CHP

plant which in turn depends on the development of the electricity spot market. To

the best of our knowledge, the problem of optimising the gas supply portfolio of an

industrial company operating a gas-fired power plant has not been addressed so far.

In this paper, a stochastic MILP model is proposed that simultaneously optimises gas

procurement, CHP plant operation as well as trading in the electricity spot market.

2 Natural Gas Supply Options

The industrial company has basically two options to procure the natural gas needed

to operate the CHP plant: either by signing bilateral contracts or by purchasing gas

directly from the spot market. In the following, two types of bilateral contracts are

considered: baseload and open contracts. Baseload contracts are characterised by a

fixed contracted capacity that is consumed at a constant level throughout the contract

period. Hereafter, baseload contracts are modelled as take-or-pay contracts with a

take-or-pay level of 100%. Hence, the company is either required to procure the con-

tractually determined cumulative capacity of gas or must pay for it even if the entire

quantity of gas cannot be consumed [4]. On the contrary, the amount of gas pur-

chased by open contracts can vary over time according to the specific needs of the

industrial company. Due to this granted flexibility, purchase prices of open contracts

are typically higher than those of baseload contracts. If the contract period is less

than a year, then purchase prices of baseload and open contracts are typically fixed

for the whole contract period. This provides the advantage that purchase costs can be

identified in advance. However, the company cannot profit from decreasing market

prices. Furthermore, purchase prices of bilateral contracts commonly contain a risk

margin to compensate the supplier for bearing price risk.

Additionally, the industrial company can buy gas from the spot market or sell

excess gas to the spot market. This creates flexibility and offers the possibility to

benefit from decreasing market prices. However, gas spot prices are volatile and

uncertain. Thus, the company possibly has to cope with increasing market prices

when relying on the spot market. Moreover, the industrial company has the option

to rent gas storage capacity which allows for decoupling gas procurement and gas

consumption regarding time. In times of low market prices, excess gas can be injected
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into the storage facility and withdrawn when prices rise again. Apart from a fixed

storage fee (depending on the injection and extraction rates as well as on the working

gas volume) variable costs need to be paid for the actual amount of gas in storage.

3 Two-Stage Stochastic Optimisation Model

A two-stage stochastic MILP model is used for the simultaneous optimisation of

natural gas procurement and power plant resource planning. A time horizon of T time

periods t ∈ T = {1,… ,T} is considered. Uncertain gas and electricity spot market

prices are represented by a finite number of scenarios s ∈ S . Let J be the set of

baseload contracts and K be the set of open contracts. The objective is to minimise

total costs C total
s that consist of gas procurement costs of bilateral contracts, costs

of trading in the gas and electricity spot market, storage costs as well as generation

costs of the CHP plant (including start-up and shut-down costs).

An overview of the decision-making process is given in Fig. 1. At the beginning

of the planning horizon, the company needs to decide if gas storage capacity is rented

and which bilateral contracts to be signed. If a baseload contract is concluded, also

the contracted capacity has to be settled. In response to the realisation of uncertain

gas and electricity spot prices, the actual quantities procured by bilateral contracts

as well as gas spot market purchases and sales are determined. If gas storage capac-

ity is rented, then injection and withdrawal quantities are scheduled. Furthermore,

decisions on the hourly power and heat generation, on the operating schedule of the

CHP plant as well as on trading activities in the electricity spot market also belong

to the second stage.

Fig. 1 Decision-making process of gas supply and CHP plant operation
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In the following, we exemplarily present some parts of the MILP model. The

minimisation of total costs C total
s is subject to the following constraints:

PDt = pts + z buyts − z sellts ∀ t ∈ T ,∀ s ∈ S (1)

HDt = qts ∀ t ∈ T ,∀ s ∈ S (2)

xgen
ts =

∑

j∈J
xbase
jts +

∑

k∈K
xopen
kts + xbuy

ts − x sell
ts + x ext

ts − x inj
ts ∀ t ∈ T ,∀ s ∈ S . (3)

Constraints (1) ensure that the power demand can either be satisfied by own genera-

tion or by participating in the electricity spot market, whereas constraints (2) model

that the heat demand can only be fulfilled by the CHP plant. In (3), the amount of

gas xgen
ts needed to operate the CHP plant equals the quantity consumed by baseload

and open contracts plus spot market purchases and extraction quantities minus spot

market sales minus the amount of gas injected into the storage facility. The opera-

tion of the CHP plant is modelled as presented in [5] assuming that generation costs

can be represented by a convex function of heat and power generation. Furthermore,

additional constraints are introduced that model e.g. start-ups and shut-downs of the

CHP plant, gas procurement by bilateral contracts and gas storage activities.

As a measure of price risk, the CVaR is utilised. The CVaR at confidence level

𝛼 is defined as the expected costs given that the costs are greater or equal to the

Value-at-Risk 𝜁 at confidence level 𝛼 [6]. The authors also present a mathematical

formulation for minimising the CVaR which is used below. In order to represent

different risk preferences of the decision maker, a convex combination of expected

total costs and CVaR is minimised, i.e.

min (1 − 𝛽)
∑

s∈S
𝜋s C total

s + 𝛽

(
𝜁 + 1

1 − 𝛼

∑

s∈S
𝜋s hs

)
(4)

s.t. (1) − (3) & additional constraints

C total
s − 𝜁 − hs ≤ 0 ∀ s ∈ S (5)

hs ≥ 0 ∀ s ∈ S , (6)

with auxiliary variables hs, 𝜋s denoting the probability of scenario s, and 𝛽 ∈ [0, 1]
being a weighting factor. The convex combination allows for representing different

risk preferences of the decision maker. A value of 𝛽 close to 0 indicates that the

decision maker is willing to accept a higher level of risk in order to achieve lower

expected total costs. If the decision maker is considered to be rather risk averse, then

𝛽 might be chosen closer to 1 to focus on price risk minimisation while tolerating

possibly higher expected total costs.
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4 Case Study and Computational Results

In this case study, the efficient performance of the proposed MILP model is illus-

trated using the example of German energy markets. The time horizon is set to

28 days. It is assumed that the industrial company has the option to sign a base-

load contract with variable costs of 20.5 euro/MWh and an open contract with fixed

costs of 100 euro and variable costs of 22.5 euro/MWh. The gas storage facility has

a working gas volume of 500 m
3

and an injection/extraction rate of 50 m
3∕h. Infor-

mation on storage costs were obtained from the storage fee calculator of RWE AG

(see http://www.RWE.com). The operating region of the CHP plant is specified as

presented in [7] with a maximum heat and power output of 55 MWth and 60 MWel,

respectively. Uncertain gas spot prices are described by a mean-reverting model,

whereas a seasonal ARIMA model is used to capture short-term dynamics of elec-

tricity spot prices. The stochastic processes were fitted to historical data obtained

from EEX and EPEX SPOT and used to generate price scenarios. Since the number

of scenarios to be used in the optimisation model is limited, scenario reduction tech-

niques are applied. We make use of the forward selection algorithm as proposed in

[3].

To study the influence of different risk preferences on the optimal gas supply port-

folio allocation, the proposed MILP model is exemplarily solved for the weighting

factor 𝛽 taking the values 0, 0.5 and 1. Figure 2 shows the average percentage shares

of different gas procurement options of the total gas quantity procured over 100 sce-

narios for different values of 𝛽. First of all, gas storage capacity is not rented in any

of the three cases. Apart from that, the optimal gas supply portfolio significantly dif-

fers for the different values of 𝛽. For example, if 𝛽 = 0, then the baseload contract is

not signed and almost three-quarters of the gas quantity is purchased from the spot

market. By contrast, for 𝛽 = 1 the share of the baseload contract accounts for 63%
of the total gas quantity, whereas spot purchases only reach 25%.

The influence of different risk preferences is also reflected in the expected total

costs and CVaR of the three alternatives. Corresponding results of the MILP model

27%

73%

42%

25%

33%

63%

12%
25%

baseload contract open contract gas spot purchases

β = 0 β = 0.5 β = 1

Fig. 2 Average percentage shares of the different gas procurement options of the total gas quantity

procured over 100 scenarios for different values of the weighting factor 𝛽

http://www.RWE.com
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Table 1 Results of the MILP model for different values of the weighting factor 𝛽

Expected value (in mio. euro) CVaR (in mio. euro)

𝛽 = 0 3.425 3.643

𝛽 = 0.5 3.431 3.621

𝛽 = 1 3.596 3.620

Fig. 3 Cum. distribution

functions of the scenario

costs for different values of

the weighting factor 𝛽
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are shown in Table 1. As one would expect, the lowest expected total costs are

achieved for 𝛽 = 0, whereas the lowest CVaR is given in the case of 𝛽 = 1. However,

it is worth pointing out that for 𝛽 = 1 the CVaR only scarcely noticeable decreases,

whereas expected total costs considerably increase by 4.8% compared to 𝛽 = 0.5. An

insight into the scenario costs is provided in Fig. 3 which displays the cumulative dis-

tribution functions for different values of 𝛽. It shows that even though the standard

deviation is significantly lower for 𝛽 = 1, only in very few cases total scenario costs

are lower compared to the case of 𝛽 = 0 and 𝛽 = 0.5, respectively.

5 Conclusion

Operators of gas-fired power plants have to take gas procurement and power plant

resource planning simultaneously into account. A two-stage MILP model was

proposed to optimise the natural gas supply portfolio and CHP plant operation

according to revenue potential in the electricity spot market. Price uncertainty was

handled by means of stochastic processes. A convex combination of expected total

costs and CVaR allows for representing different risk preferences of the decision

maker. Results of a case study revealed the significant influence of the risk pref-

erence on the optimal gas supply portfolio as well as on expected total costs and

CVaR.
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Benders Decomposition on Large-Scale Unit
Commitment Problems for Medium-Term
Power Systems Simulation

Andrea Taverna

Abstract The Unit Commitment Problem (UCP) aims at finding the optimal com-

mitment for a set of thermal power plants in a Power System (PS) according to some

criterion. Our work stems from a collaboration with RSE S.p.A., a major industrial

research centre for PSs in Italy. In this context the UCP is formulated as a large-scale

MILP spanning countries over a year with hourly resolution to simulate the ideal

behaviour of the system in different scenarios. Our goal is to refine existing heuristic

solutions to increase simulation reliability. In our previous studies we devised a Col-

umn Generation algorithm (CG) which, however, shows numerical instability due

to degeneracy in the master problem. Here we evaluate the application of Benders

Decomposition (BD), which yields better conditioned subproblems. We also employ

Magnanti-Wong cuts and a “two-phases scheme”, which first quickly computes valid

cuts by applying BD to the continuous relaxation of the problem and then restores

integrality. Experimental results on weekly instances for the Italian system show the

objective function to be flat. Even if such a feature worsens convergence, the algo-

rithm is able to reach almost optimal solutions in few iterations.

1 Model

We used the model described in [2]. In the following, for brevity, we report only the

most important elements used in the Benders Decomposition. In each zone thermal

plants are divided in groups, characterised by the same marginal cost, and, inside

each group, subgroups, characterised by the same technical minima, maxima and

fixed cost term.

Sets
Let T be the set of time periods, Z the set of zones, A ⊂ Z × Z the set of links between

zones and Gz the set of thermal power plant groups for z ∈ Z. For each g ∈ Gz a set

of subgroups Mzg is defined.
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Parameters

For t ∈ T , z ∈ Z, g ∈ Gz and m ∈ Mzg let ctzg be the marginal production cost at time

t ∈ T (e/MWh), etzgm the fixed term of the cost function at time t ∈ T (e/h), pzgm and

Pzgm the minimum and maximum power produced by plants in subgroup m ∈ Mzg
(MW), and Ton

tzgm and Toff
tzgm be the periods in which the plant has to maintain state if

turned on and off respectively at time t ∈ T .

For t ∈ T and z ∈ Z let dzt be the zonal hourly demand. For t ∈ T and (i, j) ∈ A
let bij be the maximum capacity of the link. Finally, for t ∈ T let VOLLt be the Value

Of Lost Load (VOLL) (e/MWh), i.e. the cost of not satisfying one unit of demand

at time t, such that VOLLt ≫ maxz∈Z,g∈Gz
{ctzg}.

Variables

For each period t ∈ T , zone z ∈ Z and group g ∈ Gz let xtzg be the production level

(MWh), ytzgm the number of active plants of subgroup m ∈ Mzg, uptzgm and dntzgm be

the number of plants of family m ∈ Mzg switched on and off at time t respectively.

For each link (i, j) ∈ A let wtij be the energy flowing through link (i, j) ∈ A time

t ∈ T (MWh).

Finally, for each period t ∈ T , zone z ∈ Z let ENPtz be the Energy Not Provided

in zone z, i.e. the unsatisfied amount of demand (MWh), EIEtz the Energy In Excess,

i.e. the excess production, and xhzt the amount of power provided, through production,

or absorbed, through pumping, by the hydroelectric power plants in zone z.
Here follows the UCP model.

min 𝜙 =
∑

t∈T ,z∈Z,
g∈Gz

ctzgxtzg +
∑

t∈T ,z∈Z,
g∈Gz,m∈Mzg

etzgmytzgm +
∑

t∈T ,z∈Z
ENPtzVOLLt (1a)

s.t.:

∑

m∈Mzg

pzgm ⋅ ytzgm ≤ xtzg ≤
∑

m∈Mzg

Pzgm ⋅ ytzgm ∀t ∈ T , z ∈ Z, g ∈ Gz (1b)

uptzgm ≥ ytzgm − y(t−1)zgm ∀t ∈ T , z ∈ Z, g ∈ Gz,m ∈ Mzg (1c)

dntzgm ≥ y(t−1)zgm − ytzgm ∀t ∈ T , z ∈ Z, g ∈ Gz,m ∈ Mzg (1d)

ytzgm ≥

∑

𝜏∈T∶t∈Ton
𝜏

up
𝜏zgm t ∈ T , z ∈ Z, g ∈ Gz,m ∈ Mzg (1e)

ytzgm ≤ |Mzgm| −
∑

𝜏∈T∶t∈Toff
𝜏

dn
𝜏zgm t ∈ T , z ∈ Z, g ∈ Gz,m ∈ Mzg (1f)

xhtz +
∑

g∈Gz

xtzg +
∑

(i,z)∈A
wtiz + ENPtz ≥

dtz
∑

(z,j)∈A
wtzj +

∑

z∈Y
EIEtz

∀t ∈ T , z ∈ Z (1g)
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ytzgm, uptzgm, dntzgm ∈ [0, |Mzgm|] ∩ Z+
0 ∀t ∈ T , z ∈ Z, g ∈ Gz,m ∈ Mzg (1h)

xhtz ∈ Htz ∀t ∈ T , z ∈ Z (1i)

wtij ∈ [0,Bij] ∀t ∈ T , (i, j) ∈ A (1j)

ENPtz ≥ 0,EIEtz ≥ 0 ∀t ∈ T , z ∈ Z (1k)

The objective (1a) is to minimise the production costs of thermal power plants and

the costs of energy not provided. Constraints (1b) force the production of thermal

plants to respect its technical limits when active. Constraints (1c)–(1f) are minimum

up/down constraints as specified in [4]. Constraints (1g) force balance of network

flows. Hydroelectric production (xhtz)t∈T ,z∈Z in each period and zone is assumed to

have negligible marginal production costs and to follow a linear network flow model

corresponding to polytopes Htz
.

The UCP model Eq. (1) is a large-scale mixed-integer linear problem.

2 Benders Decomposition

We apply Benders Decomposition [1] to model (1) by dualising constraints (1b)

which couple thermal production levels and the state of the plants, yielding a lin-

ear continuous dispatching model

min 𝜙(�̃�) =
∑

t∈T ,z∈Z,
g∈Gz

ctzgxtzg +
∑

t∈T ,z∈Z,
g∈Gz,m∈Mzg

etzgmỹtzgm +
∑

t∈T ,z∈Z
ENPtzVOLLt (2a)

∑

m∈Mzg

pzgm ⋅ ỹtzgm ≤ xtzg ≤
∑

m∈Mzg

Pzgm ⋅ ỹtzgm ∀t ∈ T , z ∈ Z, g ∈ Gz (2b)

(1g), (1i), (1k) (2c)

which depends on a feasible commitment �̃� for thermal plants, and a pure integer

master problem

min 𝜓 (3a)

(1c) − (1f ), (1h) (3b)

𝜓 ≥

∑

t∈T ,z∈Z,
g∈Gz,m∈Mzg

(etzgm + 𝜇tzgbpzgm − 𝜆tzgbPzgm)ytzgm + 𝜂b ∀b ∈ B (3c)

which computes new commitments for thermal units. Equation (3c) is Benders opti-

mality cuts with 𝜇tzgb and 𝜆tzgb being the dual variables associated to the lower and

upper bounds in Eq. (1b) respectively and 𝜂b is the constant term derived from the

objective value of model (2).
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To further improve the efficacy of the method, we employed Magnanti-Wong cuts

(MW) (see [6] for a recent study). Given a dual feasible solution of Eq. (2) the MW

method solves a linear problem to find a new dual solution which (i) is feasible for

Eq. (2), (ii) lies on its optimal facet and (iii) is closer to an interior point of model

Eq. (3). MW cuts are guaranteed to be Pareto-optimal, in the sense that they yield the

tightest bound among the Benders optimality cuts for the current master solution.

In practice constraint (ii) can be numerically unstable and lead to numerical

unboundness [6]. In our scheme, when this issue is encountered, the algorithm just

adds the original Benders cuts.

3 Experiments and Conclusions

We conducted a series of experiments on ten “weekly” instances of 168 h obtained

from a scenario hypothesis from RSE S.p.A. for Italy in 2011. For details on the

instances we refer to [2]. The experiments were implemented with AMPL 20081120

and CPLEX 12.6 on a Linux laptop with 4 GB RAM and 2.7 GHz quad-core proces-

sor. For comparison the instances require around 10 min to be solved by the CPLEX

MIP solver on the same system.

The method initialises the BD algorithm with a heuristic solution obtained from

a variant of the algorithm presented in [2] (see [3] for more details). Then the BD

procedure performs a two-phase algorithm [5] starting with k iterations of the first

phase, where integrality constraints on the master problem are relaxed, and c iter-

ations on the second phase, where the integrality constraints are re-introduced. We

evaluated the algorithm with and without applying the MW cuts at each iteration.

The procedure is then described by a triple of parameters (k, c,m) where m ∈ {N,Y}
and m = Y ⟺ MW cuts are computed. We considered 6 possible combinations of

parameters values, yielding 60 different tests.

In Table 1 we report the initial gap obtained from the heuristic and its compu-

tation time for the ten instances. In Table 2 we report for each configuration, across

instances, the following indicators: average total computing time, average number of

failed MW cut computations (due to numerical unboundness), number of instances

for which the upper bound improved, average gap, in percentage, between the best

primal and dual bounds for each instance, which estimates the distance of the algo-

Table 1 Initial heuristic: gap and computation time

Instance Week-

5

Week-

10

Week-

15

Week-

20

Week-

24

Week-

30

Week-

35

Week-

40

Week-

45

Week-

50

Gap % 1.28 1.42 1.56 2.23 1.03 0.93 0.83 1.27 1.54 1.3

Time (s) 11 11 11 10 11 11 11 11 11 12
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Table 2 Results for different configurations across instances

1st phase 2nd

phase

MW cuts Avg.

Time (s)

Avg.

MW

failures

# UB

improve-

ments

Avg. BD

Gap %

Avg. UB

improve-

ment %

Avg. LB

improve-

ment %

20 8 N 959 – 1 27.4 −23.3 −2.1

20 8 Y 1460 4.5 1 30.5 −26.2 −2.2

20 16 N 1994 – 2 12.8 −9.5 −1.7

20 16 Y 2787 9.2 4 11.6 −8.4 −1.6

40 8 N 2344 – 3 12.1 −9.6 −1.0

40 8 Y 3264 18 5 4.7 −2.2 −1.0

1000

10000

0 10 20 30 40 50

Iteration
0 10 20 30 40 50

Iteration

O
bj

ec
tiv

e 
[M

€]

Integrality no yes Integrality no yes

(a) Slave (upper bound)

134

136

138

O
bj

ec
tiv

e 
[M

€]

(b) Master (lower bound)

Fig. 1 Bounds for the BD algorithm on week-10 with configuration (k, c,m) = (40, 8,Y). Dashed
lines represent the initial upper and lower bound respectively

rithm from termination, and average improvement over the upper bound and the

lower bound, in percentage term, compared to the initial values from the heuristic.

For illustration purposes, in Fig. 1 we report the series of primal and dual bounds

during the BD algorithm on the week-10 instance with configuration (k, c,m) =
(40, 8,Y).

Figure 1 suggests the algorithm encounters a “plateau” after the first iterations,

where the dual bound “stalls”, i.e. remains almost constant. Once the plateau is over-

come, both bounds start improving again. This agrees with our previous experience

with CG [3], where we encountered numerical issues due to degeneracy in the master

problem.

Results in Table 2 show the most effective configurations for the BD algorithm

are those employing more iterations for the first phase. The result can be explained

considering that for this type of UCP model the integrality gap can be quite small,

especially for instances with longer horizons. Hence optimality cuts for the con-

tinuous relaxation can be quite effective for the original problem. The presence of

degenerate solutions and flatness in the objective function imply the dual informa-

tion obtained from decoupling commitments of power plants and their dispatching,

either through Benders Decomposition or Column Generation, can be inadequate to

efficiently determine solutions with increasing accuracy. On the other hand, Table 2

shows MW cuts, by exploiting geometric characteristics of the problem’s polytope,
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can be quite effective, especially once the initial plateau is overcome, to improve

the algorithm’s convergence, despite the fact that the separating problem can fail in

20–50% of the iterations.

We investigated the use of Benders Decomposition to solve large-scale medium-

term UCPs. Previous studies with Column Generation showed degeneracy and

objective flatness could cause numerical instability in state-of-the-art LP solvers on

larger instances. In this work we verified the same issues can cause stalling and slow

convergence using Benders Decomposition, as cuts delineate nearly flat regions of

the objective function. On the other hand, by exploiting information embedded in the

continuous relaxation of the model and geometric properties of Magnanti-Wong cuts,

significant improvements in effectiveness of the algorithms can be readily obtained.
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Deployment and Relocation of Semi-mobile
Facilities in a Thermal Power Plant Supply
Chain

Tobias Zimmer, Patrick Breun and Frank Schultmann

Abstract Co-firing of biomass in coal-fired power plants is considered one of the

most economic ways of carbon dioxide abatement. We investigate the deployment

and relocation of several semi-mobile processing facilities in order to supply a large

coal-fired power plant with high-quality renewable energy carriers. Semi-mobile

facilities are characterized by a containerized design and can be relocated in case

of changes in supply and demand. The energy carriers which are produced by differ-

ent types of semi-mobile technologies are bulky goods with high density and prop-

erties comparable to those of coal and fuel oil. Thus, intermodal transportation is

required to achieve transportation costs which are competitive with the delivered

cost of fossil fuels at the plant’s gate. The optimization of the investigated supply

chain therefore requires simultaneous planning of semi-mobile facility deployment

and intermodal transportation. To this end, we present a mixed-integer linear prob-

lem which optimizes the number of semi-mobile facilities, their respective relocation

over time and the intermodal transportation of produced energy carriers to the power

plant. In the presented case, train transportation is characterized by a low geographi-

cal coverage of the railway network and restrictions representing minimum shipping

volumes per railway line. The model minimizes the objective function of total supply

chain costs including electricity generation, transportation, the operation and reloca-

tion of the semi-mobile plants and the necessary forestry operations associated with

the deployed facilities. The model is implemented in GAMS and solved using the

CPLEX solver. We discuss a numerical example based on data from the forestry and

energy sector in Chile.

1 Introduction

Co-firing of biomass with coal has been identified as a cost-efficient way to reduce

the carbon dioxide emissions of electricity production. However, coal-fired

power plants frequently reject biomass as a substitute fuel due to its insufficient
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combustion properties and high costs of transport and logistics. Pre-treatment

processes such as pelletization and torrefaction produce densified bioenergy carriers

which can be transported efficiently and can be easily grinded and mixed with coal.

Optimization problems for co-firing and pre-treatment supply chains have been pre-

sented in [4] and in [3]. While the investigated supply chains enable long-distance

transportation to a power plant, high costs are still associated with the collection of

feedstock which is highly dispersed along the territory. It has therefore been sug-

gested to deploy mobile facilities to carry out pre-treatment processes directly at the

harvesting site [1]. Optimization problems for supply chains with mobile facilities

were studied in [2, 5]. Both articles investigate mobile facilities from a strategic

perspective and present a supply chain model based on a facility location problem.

In this paper, we aim to explore the deployment of mobile facilities from a tactical

perspective. To this end, we introduce a problem which includes the scheduling of

facility relocations between harvesting sites.

2 The Semi-mobile Facility Relocation Problem

The deployment and relocation problem is modelled as a mixed integer linear pro-

gram (MILP). Let L be a set of locations and T be the number of periods in the plan-

ning horizon. The feedstock supply at location i ∈ L in period t ∈ T is represented

by Sit. Bioenergy carriers are produced from biomass feedstock at a constant produc-

tion rate R. The maximum operating days of a facility per year are given by D. The

time 𝜏 is required to relocate a semi-mobile facility from one location to another. In

comparison to a mobile plant directly mounted on a single truck, we define a semi-

mobile plant as a larger facility which requires approximately five trucks for relo-

cation. Changing the location takes approximately two weeks, therefore a facility

should be operating at a location for several weeks or months. It is assumed that the

time required for a relocation is determined mainly by the disassembly and assembly

of the facility while the distance-dependent relocation time is negligible. The operat-

ing cost of a facility and the relocation cost are given by COP
and CRE

, the feedstock

cost is denoted by CFS
. Bioenergy carriers produced by semi-mobile facilities are

transported to transshipment terminals by truck. A subset G ⊂ L of all locations are

connected to the railway network and can serve as transshipment terminals. Trans-

portation distances between harvesting sites and transshipment terminals are denoted

by Dig. The energy carriers are subsequently transported by train to coal-fired power

plants represented by the set H ⊂ L. Co-firing at each power plant h is limited to a

maximum amount Fh of bioenergy carriers. Transportation distances on the railway

network are given by D′
gh. Due to economies of scale, train transportation is only

available if the minimum shipping volume 𝜒gh of a railway line is fulfilled. Specific

costs of truck and train transportation are denoted by CTG
and CTH

. M represents a

sufficiently large number used to model binary conditions. The objective function (1)

corresponds to the savings which can be achieved by replacing coal with biomass.
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The price of coal is given by P and includes the market price of coal plus a carbon

dioxide tax. The decision variables are given below:

𝛼it starting time of operations at location i ∈ L in period t ∈ T (in days)

𝜔it end time of operations at location i ∈ L in period t ∈ T (in days)

k integer variable representing the number of semi-mobile facilities

zijt binary variable indicating a relocation from i ∈ L to j ∈ L in period t
yiniit binary variable indicating if i ∈ L is the initial position of a facility in t
yendit binary variable indicating if i ∈ L is the end position of a facility in t
yavit binary variable indicating if a facility is available at i ∈ L in t
ait amount of bioenergy carriers produced at location i in period t (in tons)

xigt amount of products transported from facilities to terminals (in tons)

x′ght amount of products transported from terminals to power plants (in tons)

𝛾ght binary variable indicating transportation from terminal g to power plant h

Based on these definitions, the model can be specified as follows:

max
∑

g∈G

∑

h∈H

∑

t∈T
P x′ght −

∑

i∈L

∑

t∈T
CFSait −

∑

i∈L

∑

g∈G

∑

t∈T
CTGDigxigt (1)

−
∑

g∈G

∑

h∈H

∑

t∈T
CTHD′

ghx
′
ght − COPk D −

∑

i∈L

∑

j∈L

∑

t∈T
CREzijt

subject to:

ajt ≤ R(𝜔jt − 𝛼jt − 𝜏

∑

i∈L
zijt) ∀j ∈ L,∀t ∈ T (2)

ait ≤ Sit ∀i ∈ L,∀t ∈ T (3)
∑

i∈L
(𝜔it − 𝛼it) = kD ∀t ∈ T (4)

𝛼it ≤ 𝜔it ≤ D ∀i ∈ L,∀t ∈ T (5)

𝛼jt − 𝜔it −M(1 − zijt) ≤ 0 ∀i, j ∈ L,∀t ∈ T (6)

𝜔it − 𝛼it ≤ Myavit ∀i ∈ L,∀t ∈ T (7)
∑

j∈L
zijt + yendit = yavit ∀i ∈ L,∀t ∈ T (8)

yinijt +
∑

i∈L
zijt = yavjt ∀j ∈ L,∀t ∈ T (9)

𝛼it −M(1 − yiniit ) ≤ 0 ∀i ∈ L,∀t ∈ T (10)

D yendit ≤ 𝜔it ∀i ∈ L,∀t ∈ T (11)

∑

i∈L
yiniit =

∑

i∈L
yendit = k ∀t ∈ T (12)
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yiniit = yendi,t−1 ∀i ∈ L, t = 2, ...,T (13)

∑

g∈G
xigt ≤ ait ∀i ∈ L,∀t ∈ T (14)

∑

i∈L
xigt =

∑

h∈H
x′ght ∀g ∈ G,∀t ∈ T (15)

∑

g∈G
xght ≤ Fh ∀h ∈ H,∀t ∈ T (16)

x′ght −M𝛾ght ≤ 0 ∀g ∈ G,∀h ∈ H,∀t ∈ T (17)

𝛾ght𝜒gh ≤ x′ght ∀g ∈ G,∀h ∈ H,∀t ∈ T (18)

Constraint (2) ensures that the production of bioenergy carriers does not exceed

the time a semi-mobile facility is available at the respective location. The production

also cannot exceed the feedstock supply (3). The total operation time at all locations

is limited by the number and the capacity of the deployed facilities (4). The end time

of each operation is limited by the length of a period and must be greater than the

starting time (5). A facility can only be relocated if the end time of the departed

location corresponds to the starting time of the receiving location (6). Operations

can only take place if a facility is available at a location during the respective period

(7). If a facility is available at location i in period t, it has either been started there

or has been relocated from another location (8). Likewise, if a facility is available

at location i in period t, it can either stay there until the end of the period or move

to another location (9). Any initial position corresponds to a starting time of zero

(10) while any end position corresponds to an end time of D (11). The number of

initial positions and end positions must be equal to the number of facilities (12). If

a location is the end position of a facility in period t, it is also the initial position of

a facility in period t + 1 (13). The amount of products transported to transshipment

terminals is limited by the production (14) and equals the quantity transported to

the power plants (15). Each plant has a maximum amount of biomass that can be

co-fired with coal (16). Constraints (17) and (18) guarantee that transshipment is

only possible if the minimum shipping volume is fulfilled.

3 Reduction of the Number of Input Locations

The presented problem involves several integer variables to model the relocation

of the semi-mobile facilities. Solving instances with high spatial granularity and a

high number of locations included in L can therefore lead to long computation times.

However, the structure of the railway network and the locations of the power plants
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allow to construct a heuristic which reduces the set of locations L to a smaller set V
consisting of promising locations:

∙ V = ∅. For all t ∈ T compute Vt:

– Compute gi = argmin(Dig) and hi = argmax(D′
gi,h

) for all i ∈ L.

– Compute ̃CTit = CTGDi,gi + CTHD′
gi,hi

for all i ∈ L.

– Compute ̃Cit = ̃CTit +
COP(

Sit
R
+𝜏)+CRE

Sit
for all i ∈ L.

– Set Ut = L. While

∑

i∈Vt

Sit ≤
∑

h∈H
Fh add the element i ∈ Ut with the minimum

̃Cit to Vt and remove it from Ut.

– Add all elements i ∈ Ut with ̃CTit ≤ max
i∈Vt

(̃CTit) to Vt.

∙ V = V1 ∪ V2 ∪ · · · ∪ VT .

4 Computational Results

The model is applied to a case study in the south of Chile. The included regions

consist of 195 municipalities which are accepted as the locations L of the model.

The planning period is 4 years. The feedstock supply corresponds to approximately

600,000 tons of forest residues. The supply at each location changes annually accord-

ing to the respective forest management plan. Bioenergy carriers are delivered to a

single power plant located in the city of Concepción. The production rate and the

relocation time of a semi-mobile facility are set to 100 t/day and 14 days. Truck and

train transportation costs are set to 0.2 EUR/t-km and 0.05 EUR/t-km. The model

was implemented in GAMS and solved using IBM ILOG CPLEX on an Intel Core

i5-5200U CPU with 2.2 GHz and 12 GB RAM. Computational results for the pre-

sented model and the proposed heuristic are given in Table 1. The optimum schedule

of facility relocations and transports in a single period is illustrated by Fig. 1.

Table 1 Computational results

Instance Full set of locations Reduced set of locations

T F Facilities 𝜁
(a)

Objective
(b)

Time (s) |V| Gap
(c)

(%)

Time (s)

1 60 kton 2 8 337 64 64 0.43 8

2 60 kton 2 16 661 1,171 70 1.75 400

3 60 kton 2 24 975 11,982 72 0.04 750

4 60 kton 2 32 1,331 31,075 80 2.23 2,012

3 80 kton 3 45 1,271 7,807 64 0.73 701

3 100 kton 3 48 1,488 17,609 67 0.36 827

(a) 𝜁 : number of relocations, (b) in 1000 EUR, (c) to optimum solution with set L
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Thermal power plant 

Set of locations 

Reduced set of locations 

Railway network 

Shift of semi-mobile facility 

Truck transport to terminal 

Fig. 1 Facility relocations on the reduced set of locations for T = 1

5 Conclusion

We presented a model for the deployment and relocation of semi-mobile facilities

in a power plant supply chain. The model determines the optimum schedule of the

facilities while taking into account the structure of the transportation network. Solv-

ing instances with a high number of locations can lead to long computation times. It

was shown that by using a heuristic to reduce the number of locations, the problem

can be solved within a reasonable computation time. The results of a case study in

southern Chile indicate that semi-mobile facilities enable an efficient utilization of

fluctuating biomass potentials.
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Applying a Novel Investment Evaluation
Method with Focus on Risk—A Wind Energy
Case Study

Jan-Hendrik Piel, Felix J. Humpert and Michael H. Breitner

Abstract Renewable energy investments are typically evaluated using traditional

discounted cash flow (DCF) methods, such as the net present value (NPV) or the

internal rate of return (IRR). These methods utilize the discount rate as an aggregate

proxy for risk and the time value of money, which leads to an inadequate model-

ing of risk. An alternative to these methods represents the decoupled net present

value (DNPV). Instead of accounting for risk in the discount rate, the DNPV utilizes

so-called synthetic insurance premiums. These allow for the individual and dis-

aggregate pricing of risk and can enhance the quality of investment decisions by

facilitating a more detailed and comprehensive representation of the underlying risk

structure. To reliably estimate and forecast synthetic insurance premiums requires

the availability of appropriate data and expertise in interpreting this data. Thus, the

practicality of the results calculated based on the DNPV depends on the quality of

the inputs and the expertise of the analyst. After reviewing the main theory of the

DNPV, we apply the method to a wind energy investment case to demonstrate its

applicability and prospects. To illustrate the calculation of the synthetic insurance

premiums, selected risk factors are modeled with probability distributions via Monte

Carlo simulation (MCS). Our results show that the DNPV’s seamless integration of

risk assessment with investment evaluation is a promising combination and warrants

further research.
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1 Introduction

In theory [1] and practice [2–5], DCF methods, such as the NPV and the IRR,

are often used for evaluating investments in infrastructure and renewable energy

projects. Despite their popularity, their weaknesses and limitations are widely recog-

nized in the scientific literature [1, 3, 6]. Most critical, but difficult is the selection

of an appropriate discount rate in DCF analysis [2]. Often used are risk-adjusted dis-

count rates (RADRs). By adding risk-free rate and risk premium, RADRs aggregate

the time value of money and risk in a single metric [2, 6].

However, the bundling of time preference and risk in the discount rate obscures

the appropriate modeling of investment risks. For instance, in the case of negative

cash flows, selecting a higher RADR to account for an increase in risk, produces a

more favorable NPV. Using RADRs is therefore a rather inconsistent way to account

for risk [2, 7]. Consequently, the use of DCF methods based on RADRs distorts

investment evaluations and can result in misguided investment decisions [8]. Even

supplementing these methods with more sophisticated approaches, such as using

probability distributions in combination with MCS and real option valuation [7] can-

not overcome the problem of discount rate selection. This is for instance discussed

by [9] with respect to the use of MCS in investment evaluations.

A solution to the shortcomings described above is the DNPV, which was first

introduced by [2, 7]. It solves the issues surrounding discount rate selection by

decoupling risk from the time value of money [2]. Further, it allows to deal with sys-

tematic and unsystematic risks individually [7]. Both is achieved through so-called

synthetic insurance premiums (SIPs). Investors, as equity providers, are the last to

be paid from investments’ returns and absorb the losses when risks materialize.

Consequently, the DNPV treats investors as insurance providers for any risk not allo-

cated to third parties through risk management measures [8]. This being the case,

SIPs are priced risks that have to be treated as costs to an investment. They render

an investment’s cash flows riskless and thereby legitimize discounting at the risk-

free rate [2]. In addition, SIPs can help assess and communicate the degree to which

an investment is expected to reward investors for taking on risk [2]. As a result, the

DNPV can support a more thorough analysis of the risk profile of investments and

can provide a broader and more consistent foundation for investment decisions.

Wind energy projects are technically complex, highly leveraged, illiquid and cap-

ital intensive investments. Comprehensively analyzing the risks of such investments

and their impact on profitability is of particular importance, as these characteris-

tics potentially heighten the exposure to unsystematic risks for a given investor. By

applying the DNPV to a solar energy project, [8] were the first to demonstrate the

DNPV’s feasibility in the context of renewable energy investments. An application

of the method to a wind energy case is still missing from the literature. We aim to

address this gap by providing methodological support tailored to the needs of wind

energy investors. We implement the DNPV and its related concepts in MATLAB

and utilize probability distributions generated via MCS for modeling risk. In order

to demonstrate the DNPV’s prospects and functionality, we illustrate its application

with a stylized wind energy investment case.
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2 Wind Energy Investment Case

The design of our investment case is based on recent data from the German wind

energy market [10] as well as a risk breakdown structure template for renewable

energy projects by [11]. Within the case the perspective of a consortium of investors

in negotiations with a project developer over a 70% stake in a fully developed and

operational wind energy project is adopted. The investors want to negotiate a rea-

sonable price for the investment such that they can expect to be compensated with a

return for taking on the risks of the project. To support their negotiations, the DNPV

in combination with the NPV is applied. The remaining operating life of the project

is 19.5 years, whereas an additional decommissioning of six months is expected.

Table 1 presents the expected revenues and operating expenditures (OPEX).

The project is organized as a special purpose vehicle with a debt ratio of 85%.

The debt is provided in the form of an annuity loan of e15,903 T with an inter-

est rate of 2.5%. Its repayment starts at the beginning of the third year of opera-

tion. OPEX increase with an inflation rate of 1%. In previous auctions, the project

has been awarded a feed-in tariff of e85/MWh. The wind park consists of four tur-

bines with an installed capacity of 2.5 MW each. The expected full load hours before

losses amount to 2,933.55 h. The total park losses of 11.49% are a function of vari-

ous influencing factors, such as wake losses and turbine availability. Consequently,

Table 1 Free cash flows to equity analysis of the investment case in thousand Euro (eT)

Parameter Year 1 Year 2 Year 3 ... Year 20 Distribution
a

Maintenance and

repair

259.89 263.58 266.21 ... 157.25 T(251.51, 90%,

120%)

Land lease 124.28 125.52 126.77 ... 74.84 N(124.28,

10%)

Direct marketing 53.16 53.70 54.24 ... 32.03 U(40.19,

66.13)

Other OPEX 194.06 195.98 197.96 ... 116.94 N(194.06,

10%)

Total OPEX 631.39 638.78 645.18 ... 381.06
Decommissioning 0.00 0.00 0.00 ... 778.85 U(311.40,

1,246.30)

Revenues before

losses

2,493.52 2,491.30 2,491.60 ... 1,245.45 N(2,493.52,

10%)

Losses monetarily 286.20 286.18 286.26 ... 143.05 N(286.20,

15%)

Total revenues 2,207.32 2,205.12 2,205.34 ... 1,102.40
Corporate tax 122.08 73.46 30.96 ... 211.26

Debt service 0.00 1,162.60 1,954.10 ... 0.00

FCFE 1,453.85 330.28 −424.90 ... −268.77
a
Normal N(𝜇, 𝜎 in %); triangular T(mode, min in %, max in %); uniform U(min, max)
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the expected annual electricity production equals to 25,964.85 MWh. This results

in annual revenues of e2,207.32 T. The wind park is depreciated linearly over a

period of 16 years and profits are subject to a corporate tax rate of 30%. The project’s

expected periodical free cash flows to equity (FCFE) are shown in Table 1. Individ-

ual risks in the case study are modeled using probability distributions in combination

with MCS and 50,000 iterations as outlined in Table 1. The distribution types and

shapes were selected based on recommendations by [11].

3 DNPV Analysis

Equation 1 outlines the concept for calculating the DNPV [2, 7] with V represent-

ing revenues, I expenditures and R SIPs. In line with [2], we understand SIPs as

the fair insurance premiums, which compensate for expected losses resulting from

unfavorable deviations of revenues and expenditures with respect to their expected

values. In the numerator, for each period t, the respective SIPs reduce the expected

revenues and increase the expected expenditures. To account for the time value of

money, the resulting risk-adjusted cash flows are discounted at the risk-free rate rf .
This is legitimate given that the SIPs render the associated cash flows riskless [7].

DNPV =
∑

t

∑

i,j

(Ṽt,i − R̃t,i) − (Ĩt,j + R̃t,j)
(1 + rf )t

(1)

For the computation of SIPs, [2] distinguish between heuristic methods, stochas-

tic processes, and the use of time-invariant probability distributions. Henceforth, we

focus on the latter. When calculating SIPs based on probability distributions, differ-

entiation between SIPs for expenditures and revenues is required. Equation 2 is to be

used in the case of revenue risks [2, 7] where Ṽt,i represents the expected revenues,

Lt,i the expected revenue shortfall relative to Ṽt,i and Pr
[
Ṽt,i > Vt,i

]
the probability of

revenues falling below their expected value. To calculate SIPs for expenditure risks,

Eq. 3 is to be used analogously [2, 7], with Ĩt,j representing the expected expenditures,

Lt,j the expected excess expenditures relative to Ĩt,j and Pr
[
It,j > Ĩt,j

]
the probability

of incurring excess expenditures.

R̃t,i = (Ṽt,i − Ṽ−
t,i) ⋅ Pr

[
Ṽt,i > Vt,i

]
= Lt,i ⋅ Pr

[
Ṽt,i > Vt,i

]
(2)

R̃t,j = (Ĩ+t,j − Ĩt,j) ⋅ Pr
[
It,j > Ĩt,j

]
= Lt,j ⋅ Pr

[
It,j > Ĩt,j

]
(3)

To illustrate the calculation of SIPs, Fig. 1 shows the complete and truncated

distributions for maintenance and repair (MR) and revenues before losses (RBL),

including the characteristic inputs for the calculation of the corresponding SIPs.

Table 2 displays a breakdown of the total cost of risk represented by the SIPs for

the parameters subject to risk. It gives an idea of how the DNPV integrates with risk
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Fig. 1 SIP calculation for MR and RBL in year one. Applying Eq. 3 to the MR distributions results

in an SIP of e6.50 T = (e273.92 T – e259.89 T) ⋅ 46.31%, whereas applying Eq. 2 to the RBL

distribution gives an SIP of e99.52 T = (e2,493.52 T – e2,294.21 T) ⋅ 49.93%

Table 2 Decoupled FCFE and cost of risk described by SIPs in eT

Parameter Year 1 Year 2 Year 3 ... Year 20 PV

Maintenance and

repair

6.49 6.56 6.62 ... 3.91 126.07

Land lease 4.97 5.02 5.07 ... 2.99 96.38

Direct marketing 3.32 3.36 3.39 ... 2.00 64.50

Other OPEX 7.74 7.82 7.90 ... 4.67 150.26

Total OPEX 22.52 22.76 22.98 ... 13.57 437.21
Decommissioning 0.00 0.00 0.00 ... 129.97 106.82
Revenues before

losses

99.52 99.34 99.27 ... 49.71 1,762.30

Losses monetarily 16.18 16.18 16.16 ... 8.09 286.83

Total revenues 115.70 115.52 115.43 ... 57.80 2,049.13
Total SIPs 138.22 138.28 138.41 ... 201.34 2,593.16
FCFE 1,453.85 330.28 −424.90 ... −268.77 1,727.40

(= NPV)
Decoupled FCFE 1,315.63 192.00 −563.31 ... −470.11 3,363.50

(= DNPV)

management by being able to quantify risks individually. For instance, total revenue

risk results from adding the SIPs for RBL and the losses associated with the annual

energy production, both expressed in monetary terms. RBL are the theoretical energy

production if no park losses were to occur. The risk associated with RBL pertains to

resource risk as well as the risk of inaccuracies in the wind data and modeling of the

wind resource. Table 2 shows that revenue risk is the dominating risk category for

the investment representing 79% of the total SIPs’ present value (PV). OPEX risk

is the second most important risk, but only a fraction of revenue risk with 16.9% of

the total SIPs’ PV. Although decommissioning risk outstrips OPEX risk in the final

period, it is almost insignificant with 4.1%.

Deducting the SIPs from the FCFE yields the decoupled FCFE. Discounting these

at the risk-free rate of 1% returns a DNPV of e3,363.50 T. To get the NPV of



198 J.-H. Piel et al.

e1,727.40 T, the FCFE are discounted at 8%, which is the required return assumed

for the investors. Although the FCFE are more favorable than the decoupled FCFE,

the DNPV exceeds the NPV, as the decoupled FCFE already price in risk. Due to

this, the effect of discounting the FCFE in the NPV approach is significantly higher

than the effect of discounting the decoupled FCFE in the DNPV approach.

The investors in the case study are well advised to proceed with the investment

as long as they pay less than 70% of the NPV for the stake under negotiation. In this

case, they are expected to earn a premium under the NPV and the DNPV paradigm.

Thus, risk and the time value of money are expected to be covered according to both

valuation approaches. However, based on the DNPV, investing even at a price higher

than 70% of the NPV can be considered reasonable, whereas 70% of the DNPV can

be considered the upper bound for a fair price. Exceeding this value means no longer

being fairly compensated for the time value of money and potential losses associated

with the investment. This case study demonstrates how the DNPV provides a new

perspective on investment decisions by framing and modeling individual risks as

costs to an investment. This facilitates a more thorough analysis of the risk structure

of investments as well as their risk-return profile. Thus, the DNPV can broaden the

foundation for investment decisions and thereby enhance their quality.

4 Limitations and Outlook

Decisions about wind energy investments require an adequate understanding of their

risk-return profile. We applied the DNPV to the presented wind energy project to

demonstrate its applicability. SIPs allow for a decoupling of the time value of money

and risk and facilitate the pricing of risk. Further research has to explore how to

assure the accuracy of SIPs, as project valuations require forecasting SIPs years into

the future. In this respect, wind energy projects are ideal, since they are built in series,

which facilitates data collection. Assets not sharing these characteristics appear to

be less suitable for applying the DNPV. Espinoza [7] proposed the use of stochastic

processes to calculate SIPs. Yet, the modeling of risks that are expected to behave

dynamically still requires further research. In this regard the DNPV may profit from

the experience with stochastic processes in the context of commodity price models

used to evaluate long-term investments in the mining sector.
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Impact of Non-truthful Bidding on Transport
Coalition Profits

Jonathan Jacob and Tobias Buer

Abstract A coalition of freight carriers is considered which has to decide how to

allocate a pool of transport requests among its members. The literature is aware of a

number of solution approaches which usually assume truthful behavior of the freight

carriers. However, the used negotiation protocols are mostly not proven to enforce

truthful behavior. This paper gives some insights into the impact of non-truthful

behavior via computational experiments. We solve the collaborative problem via a

genetic algorithm (GA) which is operated by an auctioneer. The GA’s individuals

are allocations of requests to carriers. To calculate the fitness of an individual, the

carriers bid on the allocations. Bidding below a carrier’s true valuation could ceteris

paribus increase its profits. However, understated valuations can influence the search

process negatively, in particular when a favoured allocation is dismissed wrongly. It

is shown via computational experiments that for six tested instances, bidding non-

truthfully is individually, but not collectively, rational and results in a kind of pris-

oner’s dilemma.

1 Introduction

A way multiple freight carriers can establish a coalition is through collaborative

transportation planning. Members of horizontal coalitions (i.e. carriers) try to

increase their profits by exchanging some of their transport requests [5]. Through

the exchange, they expect to find better tour plans that increase service quality and

provide a higher utilization of resources. Empirical results show that horizontal col-

laborations are seen as beneficial, however, opportunistic behavior is perceived as a

threat [5]. One of the main questions members of transport coalitions face is how to

allocate requests in a way that is profitable to the coalition.

J. Jacob (✉) ⋅ T. Buer

Computational Logistics Junior Research Group, University of Bremen,

Bibliothekstr. 1, 28359 Bremen, Germany

e-mail: jjacob@uni-bremen.de

T. Buer

e-mail: tobias.buer@uni-bremen.de

© Springer International Publishing AG 2018

A. Fink et al. (eds.), Operations Research Proceedings 2016,

Operations Research Proceedings, DOI 10.1007/978-3-319-55702-1_28

203



204 J. Jacob and T. Buer

Verdonck et al. [10] categorize request sharing techniques into either joint route

planning or auction-based approaches. For joint route planning, a centralized deci-

sion maker is assumed who optimizes the decisions from the coalition’s point of

view. Auction-based approaches on the other hand consider that in most coali-

tions the carriers are autonomous, have therefore private information, and are self-

interested. In an auction the requests are tendered, the carriers submit bids on the

requests, and the auctioneer decides which bids win the auction. Individual carri-

ers are responsible for their routing and valuation decisions [3, 4, 6, 11, 12] which

appears to be a welcomed feature by many coalitions.

However, all of these recent studies assume truthful bidding. One reason may be

that manipulations are non-trivial. The involved subproblems like the bid generation

problem [4] or the winner determination problem [3] are hard to solve even without

considering cheating. The Generalized Vickrey Auction, as an incentive compatible

mechanism, is impracticable to apply for transport coalitions because of its high

computational effort [3], its vulnerability to collusion by subsets of bidders, and its

vulnerability to false-name bids [1].

In what follows, the transportation request assignment problem is introduced in

Sect. 2 and a collaborative planning approach based on a genetic algorithm is pre-

sented in Sect. 3. In Sect. 4, the computational results on the impact of non-truthful

bidding in a coalition of carriers are presented.

2 The Transportation Request Assignment Problem

Freight carriers collaborate by forming a coalition. A coalition is a set A of n self-

interested and independent agents, here denoted as carriers. The coalition considers

a set R of freight requests for servicing. The following pairwise disjoint subsets of R
are relevant: Each carrier a ∈ A holds an initial set of requests Ia ⊂ R. These are pri-

vate and not for exchange. For any request in Ia, carrier a ∈ A is obliged to personally

fulfill it or pay a penalty when it is not fulfilled. Furthermore, a broker (or one or more

shippers) offers the coalition a set P ⊂ R of requests. The coalition can either accept

all requests in the pool P or reject all of them. If P is accepted, the requests have to

be serviced or penalty costs incur. Altogether, R is defined as R ∶=
⋃

a∈A Ia ∪ P.

The coalition’s goal is to maximize the profit by jointly servicing R, taking into

account that Ia are private information (a ∈ A) and must not be revealed to other

members of the coalition. The profit 𝜋a of carrier a ∈ A is defined in (1). It depends

on a’s allocated requests Ra (with Ia ⊆ Ra ⊆ R) and the winning bid price ba ∈ ℤ:

𝜋a(Ra, ba) = p(Ra) +
∑

i∈A bi
n

− c(Ra) − ba. (1)

Profit 𝜋a is after sharing the coalition’s profit. The income of carrier a consists of

p(Ra), the sum of the paid prices for servicing requests in Ra (the price per request is

given) and a’s share in the coalition’s profit. The coalition’s profit is calculated from
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the sum of the winning bid prices. It is assumed to be distributed among the carriers

in equal shares, i.e.

∑
i∈A bi
n

. The expenses of carrier a consist of its winning bid price

ba (negative prices are possible) and the costs c(Ra) of its tour plan for servicing Ra.

Basically, these are made up of the fixed costs per tour, the tour length costs and in

particular of the penalty costs when some requests in Ra are failed to be serviced. We

assume all requests r ∈ R are pickup-and-delivery requests with time windows [9].

In addition, for each request r ∈ R, a price pr and a penalty cost for non-fulfillment qr
are given. Therefore, in order to calculate c(Ra), a carrier has to solve the well-known

and NP-hard pickup-and-delivery problem with time windows (PDPTW) to service

the requests in Ra for minimum cost. The extension to the traditional PDPTW is that

requests bear penalty costs if they are not fulfilled.

In order to agree on an allocation of the pooled requests to the carriers, the coali-

tion has to solve the transportation request assignment problem (TRAP), given by

formulas (2)–(6). The TRAP is basically a bi-level optimization problem based on

the set partitioning problem. The task is to find a partition of the set of pooled requests

P that consists of n subsets. Each subset Pa is assigned to exactly one carrier.

max
∑

a∈A
𝜋a(Pa ∪ Ia, ba) (2)

s.t.

⋃

a∈A
Pa = P (3)

Pi ∩ Pj = ∅ ∀i, j ∈ A, i ≠ j (4)

∑

a∈A
ba ≥ 0 (5)

ba ∈ ℤ ∀a ∈ A (6)

The total profit (2) of the coalition should be maximized. All requests in the poolP
have to be assigned to exactly one carrier, see (3) and (4). Furthermore, the sum of

the carriers’ bids has to be positive (5), otherwise it would be better for the coalition

to reject P. In order to decide about the bid price ba (6) on an allocation a carrier

a ∈ A has to calculate its marginal profits which requires solving the PDPTW.

3 A Genetic Algorithm with Bidding on Encoded
Allocations

To solve the TRAP, Jacob and Buer [8] introduced a genetic algorithm (GA). Fol-

lowing [10], it is classified as an auction-based approach. It can be used by the medi-

ator of the negotiation and enables collaboration of carriers while protecting pri-

vate information to a large extent. The GA searches an allocation 𝛼, i.e., an assign-

ment of all requests in P to carriers in A. To calculate the fitness of the individuals

(i.e., the allocations) the carriers only revealed their ranking of the allocations; cost
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information remained private which is an important feature. However, the surplus

profit generated by the coalition was also unknown and could not be distributed

between the members of the coalition.

In order to overcome this deficit, we now propose the carriers should evaluate

an allocation via a—possibly negative—monetary value, i.e., they should bid on

an allocation. One distinctive feature is that only bids on complete allocations are

allowed; in contrast to bidding on subsets of the auctioned request which includes

as special cases bids on single requests or bids on request bundles that are tours.

Although a carrier has to reveal its price for an allocation, the revealed cost structure

is much less detailed than, e.g., prices of sets of requests. In addition, the sum of the

bid prices for an allocation is a nice indicator for the coalition’s surplus profit. The

main features of the GA are as follows.

Encoding of an individual. An individual of the GA represents an allocation 𝛼 of

requests to carriers. It is a sequence of carriers a ∈ A of length |P|. Each position of

the sequence represents a request in P. For example, the individual 𝛼 = (3, 1, 3, 2)
represents an allocation of four requests where carrier a1 gets request 2, a2 gets

request 4, and carrier a3 receives 1 and 3.

Fitness value. Different from [8], the fitness of an individual is calculated as the

sum of the bid prices. A bid ba(𝛼) of carrier a ∈ A may be positive or negative (see

below).

Crossover and mutation. A standard 2-point-crossover is applied with a proba-

bility of 90%. Next, mutation is applied with a 30% probability. If an individual is

mutated, the carrier at each position is replaced by a random one with a probability

of 10%.

Truthful bidding on an allocation. In order to calculate the fitness of an individual,

each carrier bids on an allocation. To start with and in line with the vast majority

of the literature [3, 4, 6, 11, 12], we assume truthful bidding. Given an allocation

𝛼, each carrier a ∈ A calculates its bid price ba(𝛼). To this end, each a ∈ A solves a

PDPTW taking into account its initial requests Ia and its additional requests Pa for

each individual in each generation. Therefore, our mechanism is computationally

challenging. We use an adaptive large neighborhood search [9] to generate a set of

feasible tours; then we select a proper subset of tours via solving a set covering

problem. From this solution we calculate the bid price ba that equals the marginal
profit resulting from servicing Pa in addition to Ia (taking penalty costs into account).

Another benefit is that in this way the marginal profit of the coalition is revealed.

Note, a bid on the same allocation in a later iteration may only be increased.

Incentives for non-truthful bidding on an allocation. Our GA-based auction pro-

tocol is not proven to enforce truthful bidding. On the winning allocation, a carrier

a ∈ A increases its profit by decreasing its bid price ba(𝛼). However, the lower the

sum of the bids on an allocation are, the lower are its chances to get chosen.

The question is: how strong can a non-truthful carrier understate its preferences?

Non-truthful bidding is implemented via calculating the bid price according to (7).

The bid price is based on the concept of marginal profits. The income of all serviced

requests is p(Pa ∪ Ia). The expenses of the serviced requests c(Pa ∪ Ia) are modified

by the strategy 𝛿a, where 𝛿a = 0 indicates truthful bidding and 𝛿a > 0 indicates non-
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truthful bidding. Without collaboration, the profit for servicing the initial requests

Ia is denoted by 𝜋a. A negative bid price indicates the amount of money required to

compensate the carrier for its losses due to collaborating.

ba(𝛼) = p(Pa ∪ Ia) − (1 + 𝛿a) ⋅ c(Pa ∪ Ia) − 𝜋a (7)

This non-truthful bidding scheme is implemented by a carrier consistently for all

bids on all allocations throughout the complete negotiation process. The share of the

coalition’s profit is not considered. As the computational results in the next section

show, this leads essentially to a prisoner’s dilemma.

4 Results on Non-truthful Bidding and Discussion

For our tests, we created six Euclidean TRAP instances T2-1 to T2-6, each with two

carriers (n = 2), twenty initial requests per carrier (|Ia| = 20, a ∈ A), and a pool of

forty requests (|P| = 40). For each request r ∈ R a price pr was randomly chosen

between 50 and 150, and a penalty cost qr was randomly chosen between 200 and

300. Every time the GA presents an allocation 𝛼 to a carrier, the carrier bids ba(𝛼)
according to Eq. (7).

The parameter 𝛿a determines the bidding strategy of carrier a ∈ A. Truthful bid-

ding is implied by 𝛿a = 0. The greater 𝛿a, is the stronger a exaggerates its true costs

and the lower are its bid prices. Table 1 shows the payoff matrix for a = 1, 2 and

𝛿a = 0.0, 0.35, 0.7. The average marginal payoffs (𝛥1, 𝛥2) for carrier 1 and carrier 2

over the instances T2-1 to T2-6 are given. Marginal payoff 𝛥a is the profit of carrier

a ∈ A in the case of collaboration minus the profit without collaboration.

Assume now that each carrier knows those payoff matrices from observation and

sees them as a means of predicting future payoffs. Then, the different values of 𝛿a
can be interpreted as each carrier a’s strategy in a game. Assuming rational behavior,

carrier 1 will choose 𝛿1 = 0.35 and carrier 2 will choose 𝛿2 = 0.35 since this is the

only Nash equilibrium [2]. But, if the carriers chose 𝛿1 = 0 and 𝛿2 = 0, they would

both be better off. So apparently, collective rationality is not given. This holds also

for the three carrier case, see working paper [7].

Table 1 Payoff matrix of averaged marginal profits (𝛥1, 𝛥2)

Carrier 2
𝛿2 = 0.00 𝛿2 = 0.35 𝛿2 = 0.70

𝛿1 = 0.00 (1222, 1222) (677, 1701) (292, 1545)
Carrier 1 𝛿1 = 0.35 (1730, 765) (917, 1016) (435, 757)

𝛿1 = 0.70 (1606, 329) (396, 219) (357, 292)
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A possible instrument to induce truthful bidding is to introduce a deposit that each

carrier has to pay in order to become a part of the coalition. If P gets successfully

allocated, each carrier gets its deposit back. If, however, no feasible solution of the

TRAP can be found, the deposits get returned unevenly: The higher a carrier’s aver-

age bids are, the higher will be the amount it receives. How to choose the amount

of the deposit and the exact mechanism to return the deposits in case no feasible

solution is found may be the object of future research.
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Equilibrium Selection in Coordination
Games: An Experimental Study of the Role
of Higher Order Beliefs in Strategic Decisions

Thomas Neumann and Bodo Vogt

Abstract The equilibrium selection in games with multiple equilibria, such as

coordination games, depends on one player’s beliefs about the other player’s behav-

ior; as such, the outcome of the game depends on the players’ expectations of one

another’s behavior. This study assessed the extent to which players’ higher order

beliefs influence the strategic choices they make during 2 × 2 coordination games.

Using a quadratic scoring rule, the players’ higher order beliefs about the choices

their opponent would make were directly elicited in a laboratory experiment. The

players’ higher order beliefs were analyzed to ascertain the extent to which play-

ers’ depth of thinking influenced their strategic decisions. In addition, this study

focused on the question of whether the players update their beliefs to build higher

order beliefs. The findings of the study revealed that the average participant oper-

ated on four steps of strategic depth. Higher order beliefs follow different patterns.

In most cases, these contrast Bayesian updating.

1 Introduction

Consider the following symmetric 2 × 2 normal form coordination game, presented

in Table 1. The game has two pure strategy Nash equilibria: a payoff dominant

(A, A) and a risk dominant (B, B), which follows the two selection criteria introduced

by Harsanyi and Selten [1]. This game also has one mixed strategy Nash equilibrium,

where each player chooses A with a probability of 0.65.

The existing literature on equilibrium selection in coordination games is, broadly

speaking, two folded. While many researchers, such as Harsanyi and Selten [1], argue

for selecting the payoff dominant equilibrium, other authors attribute the greater

weight to selecting the risk dominant equilibrium [2]. A high-level assessment of
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Table 1 Game design

A B

A (200, 200) (0, 120)

B (120, 0) (150, 150)

these and other studies reveals that there is no common consensus on how equilib-

rium selection operates in coordination games [3].

While previous studies have examined how various factors, such as payoff struc-

ture, information structure, or risk attitude, influence players’ decisions in coordina-

tion games [4–6], very few studies have focused on the impact that beliefs have on the

strategies players adopt [7–9] and even fewer have examined the influence of higher

order beliefs [10]. Recent studies have shown that players’ stated first order beliefs

can predict their decisions in a coordination game [3, 8, 11]. This study aimed to

test the idea [11] that players’ beliefs concerning other player’s actions represent the

key to understanding strategy selection in coordination games.

Since players simultaneously select a strategy in the game, they do not have access

to objective information about the other player’s behavior. Hence, they have to build

expectations (or beliefs) regarding how they anticipate their opponent will act. To

coordinate on an equilibrium, the players not only have to think about the strategy

the other player will choose, but they also have to build expectations as to what the

other player thinks, which action they will choose, etc.

Existing literature describes two main methods through which players beliefs can

be elicited: direct or indirect elicitation. Trautmann and Kuilen [12] analyzed differ-

ent belief elicitation methods and found that incentivized methods are better predic-

tors of players’ behavior. One of these incentivized methods is the quadratic scor-

ing rule. This approach was employed in the current study to directly elicit players’

higher order beliefs.

2 Depth of Reasoning, Higher Order Beliefs
and Belief Updating

To study the depth of strategic thinking, we asked the players for the relevance of

thinking about the strategy selection on a certain level, i.e., it is relevant for me, that

it is relevant for you, that it is relevant for me, that..., to think about which strategy

you chose. Using this design gave us an opportunity to reward the depth of thinking

and accurateness of the matched players’ relevance prediction without paying too

much attention to the extent to which the strategy prediction was correct. While

this would, undoubtedly, be of interest, it would open an additional strategic field

of enquiry that would be difficult to isolate in the experimental analysis, especially

given the structure of the payoff function.
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Following considerations of former studies, we asked for a finite number of steps.

Various studies have demonstrated that players use a limited number of steps of think-

ing [13]. Different studies corroborate that human beings tend to operate at only one

or two levels of strategic depth [14]. Within the current study, we asked for eight

steps, which should guarantee that all relevant steps were included. Our questions

followed the scheme: “It is relevant for me, that it is relevant for you, that it is rele-
vant for me, that..., to think about which strategy you chose.”

In addition to the yes/no answer, the players were required to indicate by a number

p ranging from 0–100, with 0 being not at all confident and 100 being fully confident,

to denote the extent to which they were positive their prediction was correct. Standard

game theory assumes indefinitely reasoning with a level of confidence at p = 100. To

answer these questions, the players were rewarded according to a quadratic scoring

rule that was adopted from a previous study [15]. This function is designed in such a

manner that it is optimal for risk-neutral players to report their true beliefs [12]. The

following functions were used in this experiment:

∙ if the matched players’ relevance prediction is correct, the payoff is:

1
7
⋅
∑{

4 ⋅
[
1 −

(
1 −

p
100

)2
]}

[in Euro], and

∙ if the matched players’ relevance prediction is not correct, the payoff is:

1
7
⋅
∑{

4 ⋅
[
1 −

( p
100

)2
− 0, 3

]}
[in Euro].

With respect to players’ loss aversion and the overweighting of losses [16], we

designed the payoff function such that if the matched players’ relevance predictions

were not correct, the negative payoffs were much smaller than the positive payoffs

that were rewarded for correct guesses. Furthermore, we used an average function

to ensure all steps of thinking were relevant for the payoffs. Given this, reporting

p = 35 on each step guaranteed a riskless payoff of 2.31 Euro.

In terms of depth of thinking, we were interested in how players modified their

beliefs as the game progressed. Bayesian updating is potentially the most common

theoretical concept related to this idea. The Bayesian rule of belief updating follows

the intuition that the deeper one thinks, the lower the degree of confidence that one

attaches to a certain event. In other words, as a decision maker progresses through

consecutive steps of thinking, the degree of uncertainty will increase. The levels

of certainty in the first two steps determine the maximum level of certainty in the

following step. In our experiment, we considered any probability that was equal or

smaller to the theoretical Bayesian probability to be the result of Bayesian updating.
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3 Research Hypotheses and Experimental Procedure

Various studies have demonstrated that human beings typically tend to operate on

only one or two levels of strategic depth in terms of the depth of reasoning [13, 14].

The current research sought to assess whether the players’ depth of thinking influ-

enced the strategic decisions they made in the game. To conclude and operationalize

this question, we formulated our first hypothesis:

H1: The players’ depth of thinking influences their strategy selections in the game.

Our experiment focused on depth of thinking. We were interested in the numbers

of steps the players thought through and how their beliefs updated as the game pro-

gressed. The concept of Bayesian updating was used as a reference model. Many

studies have pointed out that players do not behave as so-called “perfect Bayesians”.

Moreover, they are often not even close [17]. With respect to this finding, we formu-

lated our second hypothesis:

H2: The players update their beliefs according to the Bayes rule to form higher
order beliefs.

To test our hypotheses, we ran an experiment in the MaXLab, the experimental

laboratory of the University of Magdeburg. The participants consisted of students

from various faculties of the university. We ran our experiment over six sessions

with groups of six subjects each. A program that was implemented in z-Tree was

employed for the computerized parts of the research [18].

The participants were not permitted to communicate with each other at any point

during the experiment. They also did not receive any information about their payoffs

or the behavior of their partners. In total, it was possible for the participants to earn

a maximum of 12 Euro. The experiment provided a riskless payoff of 7.02 Euro.

Before commencing the experiment, the participants were required to answer a

series of questions that were designed to verify that they understood the meaning of

the different steps of thinking. We also presented a computer screen to the partici-

pants on which they could try different probabilities to develop a better understanding

of the payoff function employed within the study. After all the participants had given

the correct answers to the questions, it was assumed that they fully understood the

game, and the experiment commenced.

We ran our experiment over two rounds. In each round, two players were randomly

matched to play the coordination game explained in Sect. 1. We used a matching

mechanism that guaranteed that the participants did not interact with each other in

previous rounds and that the matched participants were not matched with the same

other participant in a previous round.

The decision for one of the two possible actions was equal to step zero in terms of

the depth of thinking requested. As pointed out in Sect. 2, we asked for the relevance

of thinking on eight steps. For that purpose, we used a questionnaire with a table

on it. On each of the eight steps of strategic depth, the participants were required to

disclose whether they perceived this step to be relevant by marking it with a cross to

denote yes or no. The players were also required to indicate their level of confidence

in their prediction as explained in Sect. 2.
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4 Results

Table 2 presents the strategy selections observed in the coordination game across the

two rounds of the experiment. The distribution of these strategy selections across

both rounds shows no significant difference.

Within the experiment, the average participant operated on four steps of strate-

gic depth in both rounds. The subjects were divided into two groups according to

the strategy selections of the participants. Table 3 presents the medians of the depth

of thinking of the participants in each of the two groups. In the first round, the 24

players who selected the risky strategy (A) operated on five steps of strategic depth,

whereas the other 12 players who selected strategy (B) operated on only three steps.

Interestingly, this approach was not replicated in the second round and players in

both groups operated on four steps.

Thus, we concluded that, in the second round, the depth of thinking did not influ-

ence the players’ strategy selection (Wilcoxon-Test, 5%-level) and H1 was rejected

for round two. In the first round, the medians of the depth differed.

To assess Bayesian belief updating, we normalized the elicited beliefs by using

the complementary probability. In our experiment, only four players in each round

behaved as so-called Bayesians. One of these four followed the rational solution and

reported the maximum probability p = 100 as level of confidence for all eight steps.

The majority of the participants formed beliefs according to various patterns (one-

sided Binomial-Test, 5%-Level), which were, in most cases, in contrast to the concept

of Bayesian belief updating. As such, H2 was rejected.

Table 2 Distribution of the strategy selections

Strategy selection—no. of players

Round 1 Round 2

Strategy A (payoff dominant) 24 22

Strategy B (risk dominant) 12 14

Table 3 Strategy selection and median of the depth of thinking

Strategy selection—depth of reasoning (median)

Round 1 Round 2

Strategy A (payoff dominant) 5 4

Strategy B (risk dominant) 3 4
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5 Conclusion

The starting point of this study was the idea that players’ beliefs determine the strate-

gies they employ in symmetric 2 × 2 coordination games. The research specifically

focused on the question of whether the participants’ updated their beliefs to build

higher order beliefs. In addition, we analyzed if there was any influence of the depth

of thinking on the strategic decision in the coordination game. On average, subjects

reported four steps as relevant, which is equal to the depth of thinking. While we

found different depth of thinking in accordance with the strategy selected in the first

round, we did not find these differences in the second round. To study the belief

updating mechanism performed by the participants, we used the Bayesian updating

as the reference model. Our results revealed that only 4 of 36 subjects behaved like

a Bayesian player.
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Designing Inspector Rosters with Optimal
Strategies

Stephan Schwartz, Thomas Schlechte and Elmar Swarat

Abstract We consider the problem of enforcing a toll on a transportation network

with limited inspection resources. We formulate a game theoretic model to optimize

the allocation of the inspectors, taking the reaction of the network users into account.

The model includes several important aspects for practical operation of the control

strategy, such as duty types for the inspectors. In contrast to a formulation in Borndör-

fer et al. (Networks, 65, 312–328, [1]) using flows to describe the users’ strategies

we choose a path formulation and identify dominated user strategies to significantly

reduce the problem size. Computational results suggest that our approach is better

suited for practical instances.

1 Introduction

In the past years, a lot of work has been done in the application of game theoretic

models to real-world security problems. These applications range from airport secu-

rity [4] over protection of wildlife reserves [4] to toll (or fare) control in transporta-

tion networks [1, 3]. In [4], the authors give an overview on projects with security

games where mostly no network structures are considered. Models for fare evasion

in public transport are studied in [3], but the work is focussed more on theoretical

results than on practical issues. For practical operation it is important to include the

notion of duties for inspection units and the concept of control areas as subparts of

the network where controls can be conducted. Both of these extensions are taken into

account in [1] where a game theoretic formulation for the enforcement of a toll on a

transportation network is studied.
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In this paper we reformulate the toll enforcement problem of [1]. By identifying

dominated user strategies, we significantly reduce the size of the presented MIP and

LP formulations to compute the control strategy in a Stackelberg and Nash equilib-

rium, respectively. Computational results for real-world instances show that the new

approach outperforms the existing formulation.

2 The Toll Enforcement Game

We consider a user network G0 = (V0,E0) with nodes V0 and directed arcs E0 with

costs ce ≥ 0. For a given time interval, typically one day or one week, we con-

sider an equidistant time discretization T = {0,… ,T − 1}. A time-expanded graph

G = (V ,E) is constructed by adding a copy of G0 for every time window t ∈ T . In

addition, we are given k commodities (si, ti, di) ∈ V × V × ℕ describing the number

of users di travelling from si to ti. We make the simplifying assumption that every

network user starts and ends his trip within the same time window. Every user going

from si to ti is supposed to pay a toll (or fare) of 𝜏i. In contrast to the driving costs

ce on arc e, the users can decide not to pay the toll and risk a fine f ≫ 𝜏i if caught

evading. In order to enforce the toll, a number of 𝜅 inspection units can be allocated

throughout the network. However, the possible distributions of the inspectors are

subject to a number of spatial, temporal and legal constraints which will be specified

later. In the following, we describe a game between the network users and the inspec-

tors concerning the users’ payment of the toll. While there is one player for every

origin-destination pair (si, ti), the inspectors are aggregated as one player choosing a

joint control strategy.

Users’ strategies: The set 𝛴i of pure strategies of player i can be divided into

toll paying strategies 𝛴

pay
i and toll evading strategies 𝛴

ev
i . If we consider the user

network as the toll evading network where no toll is paid, we have

ev
𝛴

i
= {P | P is an si-ti-path in G}.

If player i decides to pay the toll 𝜏i she will take a shortest si-ti-path with respect

to the travel costs c. Considering the payoff functions we can assume that there is a

single toll paying strategy for player i and we write 𝛴

pay
i = {𝜎pay

i }.

With the mixed strategy xi = (xi0, x
i
1,… , xiki ) we say that player i commits to 𝜎

pay
i

with probability xi0 and to Pi
j ∈ 𝛴

ev
i with probability xij. The joint strategy of the users

is denoted by x = (x1,… , xk).
We would like to point out that [1] uses an equivalent formulation which describes

the toll paying strategy of player i as an si-ti-path in an adopted user network. Con-

sequently, every mixed strategy of player i can be seen as an si-ti-flow of unit value

in this network.
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Inspector’s strategies: The spatio-temporal allocation of the inspectors is done

by assigning duties to control areas. A duty can start at the beginning of every time

window t ∈ T and is scheduled for a fixed number L of consecutive time win-

dows. The control takes place on given control areas A = {a1,… , am} with a pre-

defined adjacency of control areas A′
⊆ A 2

. For every part l = 1,… ,L of the duty

the inspector can switch from ai to aj iff (ai, aj) ∈ A′
.

We define the set D of control duties to be

D ∶=
{(

t, (a1, a2,… , aL)
)
∈ T ×A L |

| (a
i
, ai+1) ∈ A′}

.

The set of the inspector’s pure strategies can then be described as {C ⊆ D | |C| ≤
𝜅}.

In the following, we construct a duty graph D = (W, A) to obtain a more elegant

representation of the inspector’s strategy set 𝛴insp. For every time window t, every

duty part l and every control area si we have a control node (t, l, ai) ∈ W. If l < L we

introduce an arc
(
(t, l, ai), (t, l + 1, aj)

)
iff (ai, aj) ∈ A′

. Now we add additional nodes

ts and tt for every time window t and insert arcs
(
ts, (t, 1, ai)

)
and

(
(t,L, ai), tt

)
for

every ai ∈ A . Finally, we introduce a super source ds and a super sink dt and arcs

(ds, ts) and (dt, td) for all t ∈ T .

We can observe that there is a one-to-one correspondence between control duties

and ds-dt-paths in D. The set of strategies for the inspection player can thus be for-

mulated as

𝛴insp ∶= {p | p is a ds-dt-flow of value ≤ 𝜅 in D}.

For a given strategy p ∈ 𝛴insp, the control intensities q = (qe) on arcs E of the

user network G can be obtained by a given linear transformation, i.e. q = Tp. The

induced control intensity qe can be interpreted as the expected number of controls

on arc e ∈ E. We follow the notation of [1] and define the set Q of induced control

intensities q on G to be

Q ∶= {Tp | p ∈ 𝛴insp}.

Payoffs: While the inspection player wants to maximize his total income, the users

aim to minimize their total costs consisting of travel costs and toll costs or expected

fine. The travel costs of player i choosing strategy 𝜎 ∈ 𝛴i are denoted by c𝜎i . If 𝜎 =
𝜎

pay
i then c𝜎i is the length of a shortest si-ti-path with respect to c. For 𝜎 = P ∈ 𝛴

ev
i

we have c𝜎i =
∑

e∈P ce.
If player i chooses strategy 𝜎

pay
i , the player’s and inspector’s payoffs are indepen-

dent of the chosen control strategy p ∈ 𝛴insp. Then, the total costs of player i are

−𝜋i(p, 𝜎
pay
i ) ∶= c𝜎

pay
i

i + 𝜏i,

while the inspector’s profit from player i in this case is 𝜋
i
insp(p, 𝜎

pay
i ) ∶= 𝜏i.
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Let us now assume, that player i chooses the evading strategy P ∈ 𝛴

ev
i while the

inspector plays p ∈ 𝛴insp. With the induced control intensities q = Tp on G we have

−𝜋i(p,P) ∶= cPi +
∑

e∈P fqe where the first term accounts for travel costs while the

second term is the expected fine. Accordingly, the inspector’s gain from player i
is 𝜋

i
insp(p,P) ∶=

∑
e∈P fqe. Note that we use a simplified formula for the expected

fine where we assume that evaders can be fined several times. However, our results

show that the probability of being controlled more than once is very small for a

reasonable number of controllers. With the above formula we also assume that the

payoff for player i does not depend on the actions of the other users as we take no

congestion effects into account. Given the control strategy p and the joint users’

strategy x = (x1,… , xk), we have

𝜋i(p, xi) = xi0 𝜋i(p, 𝜎
pay
i ) +

ki∑

j=1
xij 𝜋i(p,P

i
j)

and 𝜋insp(p, x) =
k∑

i=1

(

xi0 𝜋
i
insp(p, 𝜎

pay
i ) +

ki∑

j=1
xij 𝜋

i
insp(p,P

i
j)

)

.

We denote by BRi(p) the set of best responses of player i to the control strategy p,

i.e. BRi(p) ∶= arg maxxi𝜋i(p, xi).

3 Computing Equilibria

Stackelberg Equilibrium: In most security games and fare evasion models the clas-

sical concept of Stackelberg equilibria is applied. A Stackelberg game is a bilevel

game where the players are divided into leaders and followers. First, each leader (in

our case the inspection player) commits to a strategy, then the followers choose a

strategy after observing the leaders’ strategy. Let p be a control strategy and x be a

joint strategy of the users, then

(p, x) is a strong Stackelberg equilibrium ∶ ⟺ (p, x) ∈ arg max

(p̃,x̃) ∶ x̃i∈BRi(p̃)
𝜋insp(p̃, x̃).

Note that the notion of strong Stackelberg equilibria implies that the followers break

ties in favor of the leader. As a consequence, we only need to consider pure strategies

of the followers [2]. While the existence of a strong Stackelberg equilibrium is always

guaranteed, the respective optimization problem is NP-hard in general [2].

In the following we present a mixed integer program (MIP) to compute a leader

strategy of a Stackelberg equilibrium for the toll enforcement game.
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max
q,y,𝜇

∑

i
di
(

yi −
∑

𝜎∈𝛴i

𝜇

𝜎

i c
𝜎

i

)

(1a)

s.t. 0 ≤ c𝜎
pay
i

i + 𝜏i − yi ≤ M
(

1 − 𝜇

𝜎

pay
i

i

)

∀i (1b)

0 ≤ cPi +
∑

e∈P
fqe − yi ≤ M

(
1 − 𝜇

P
i
)

∀P ∈ 𝛴

ev
i ∀i (1c)

∑

𝜎∈𝛴i

𝜇

𝜎

i = 1 ∀i (1d)

𝜇

𝜎

i ∈ {0, 1} ∀𝜎 ∈ 𝛴i ∀i (1e)

q ∈ Q (1f)

The objective (1a) is to maximize the inspector’s income. This can be done by

considering the total costs yi of an optimal strategy of player i subtracted by her travel

costs. The costs yi are bounded from above by the costs of the toll paying strategy

(1b) and the costs of any evasion strategy (1c). The binary variable 𝜇

𝜎

i indicates if

𝜎 ∈ 𝛴i is a best response to the control q. Constraints (1b) and (1c) also guarantee

that 𝜇
𝜎

i = 0 if 𝜎 is not a best response for player i. Equation (1d) and the second

term in the objective function make sure that each follower breaks ties in favor of the

leader. Finally, in (1f) we force q to be induced by a control flow p ∈ 𝛴insp.

Nash Equilibrium: We also study the Nash equilibria of the toll enforcement

game which can be derived for the present case as follows:

(p, x) is a Nash equilibrium ∶ ⟺ p ∈ arg max
p̃∈𝛴insp

𝜋insp(p̃, x) and xi ∈ BRi(p).

The existence of a Nash equilibrium in the toll enforcement game is guaranteed and

an optimal strategy for the inspection player can be computed by linear programming

due to the following important result from [1]: Let x be a joint mixed strategy for the

users, then

p ∈ arg max
p̃∈𝛴insp

𝜋insp(p̃, xi) ⟺ p ∈ arg max
p̃∈𝛴insp

k∑

i=1
−𝜋i(p̃, xi).

Therefore, the inspection player aims to maximize the costs of the users in a Nash

equilibrium and his optimal strategy can be computed with the following linear pro-

gram (LP):

max
q,r

∑

i
di ri (2a)

s.t. ri ≤ c𝜎
pay
i

i + 𝜏i ∀i (2b)

ri ≤

∑

e∈P
ce + fqe ∀P ∈ 𝛴

ev
i ∀i (2c)

q ∈ Q (2d)
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Due to (2a) the inspection player aims to maximize the total costs of the users.

The costs for player i described by ri are bounded from above by the costs of the toll

paying strategy (2b) and also by the costs of her evading strategies (2c). Again, we

force q to be induced by a control flow p ∈ 𝛴insp (2d).

Dominated strategies: The number 𝛴
ev
i of toll evading strategies for player i is

potentially huge compared to the size of the network. It is well known that the number

of paths in a graph can be exponential in the number of edges. To avoid a potentially

great number of constraints (1c) and (2c) the authors of [1] use a flow formulation

to describe the users’ strategies.

In practice however, user networks are normally sparse and there are not a huge

number of possible user paths, especially if we exclude dominated strategies. In those

networks, the travel costs represent the largest share of the user’s total costs while toll

costs or expected fines are secondary. As a result, the travel costs of most si-ti-paths

exceed the toll paying costs of c𝜎
pay
i

i + 𝜏i. A great number of strategies Pi
j ∈ 𝛴

ev
i are

thus dominated by the honest strategy 𝜎

pay
i .

We use a preprocessing algorithm to compute the honest costs for every player

i and apply a modified version of Yen’s k-shortest path algorithm [5] to find the

si-ti-paths in G with length ≤ c𝜎
pay
i

i + 𝜏i and thereby build the set 𝛴
ev
i .

4 Computational Results

We applied the presented approaches to three real-world instances of the German

motorway network. The instances were provided by the federal office for goods

transport who is responsible for the truck toll enforcement on German motorways.

The commodities are based on historical data and we schedule the duties for an

exemplary week with 4 h time windows and duties with two parts. The optimiza-

Table 1 Computation of the inspector’s strategy in a Nash equilibrium for three real-world

instances with |T | = 168 and L = 2. We compare the flow formulation of (2) taken from [1] to the

presented path formulation with non-dominated strategies. Computation time includes preprocess-

ing, building and solving time, RAM shows the maximum memory usage during the computation

Instance |V0| |E0| k # rows in

reduced LP

# columns in

reduced LP

Computation

time in s

RAM

I1_flow 112 220 118,917 929,445 510,453 482 4.6 GB

I1_paths 67,299 75,194 29 0.4 GB

I2_flow 196 394 220,204 2,997,920 1,569,627 17,095 23.0 GB

I2_paths 157,870 167,317 214 3.7 GB

3_flow 319 672 365,603 7,593,778 3,718,269 – killed

I3_paths 270,799 235,759 338 7.7 GB
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tion was run on a Linux PC (3.6 GHz, 8 cores, 32 GB RAM) and we used CPLEX

as an LP and MIP solver.

We also computed Stackelberg equilibria for the above instances using the path

formulation in the MIP (1). The computation time and RAM usage were similar to the

respective Nash equilibria. Noting that the computation of a Stackelberg equilibrium

is at least as hard as computing a Nash equilibrium, we expect the results from Table 1

to carry over.
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AMixed-Integer Nonlinear Program
for the Design of Gearboxes

Lena C. Altherr, Bastian Dörig, Thorsten Ederer, Peter F. Pelz,
Marc E. Pfetsch and Jan Wolf

Abstract Gearboxes are mechanical transmission systems that provide speed and

torque conversions from a rotating power source. Being a central element of the

drive train, they are relevant for the efficiency and durability of motor vehicles. In this

work, we present a new approach for gearbox design: Modeling the design problem

as a mixed-integer nonlinear program (MINLP) allows us to create gearbox designs

from scratch for arbitrary requirements and—given enough time—to compute prov-

ably globally optimal designs for a given objective. We show how different degrees

of freedom influence the runtime and present an exemplary solution.

1 Introduction

A gearbox transfers power from the input shaft (driven by the motor) to the output

shaft (connected to the differential) by engaging gear wheels, cf. [1]. By changing the

size and interconnection of these components, the total transmission ratios, and thus
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the resulting torque and angular velocity of the output shaft can be set. However, each

design comes with its own issues: higher weight, worse efficiency, or an impractical

shape. Therefore, automobile manufacturers are confronted with a complex design

problem.

2 Technical Application

We deal with the optimal design of so-called dual-clutch transmissions. These mod-

ern transmissions allow to change gears without interruption of traction. This is real-

ized by using two input shafts which can separately be rotated and clutched to the

motor. While even numbered gears are assigned to one input shaft, odd numbered

gears are assigned to the other input shaft. To save space, the two input shafts are

designed as a long full shaft fitted inside a shorter hollow shaft.

In terms of wear and noise it is advantageous to always engage the gear wheels.

To be able to do so without blockage, the wheels are pivot-mounted on the shafts,

i.e., they can rotate independently from another, and sliding sleeves are used to fix

a wheel to its respective shaft. One sliding sleeve placed between two wheels can

synchronize either of them, but not both simultaneously. Due to the complexity of

such synchronization systems, minimizing the number of sliding sleeves has high

priority. To save a synchronizer, selected gear wheels can also be fixed on the shaft.

3 Gearbox Design via MINLP

While individual aspects of the configuration of transmissions have been studied

with the aid of mathematical optimization methods (for an overview see e.g. [2]),

a holistic approach could lead to even better solutions. In a first step towards this

goal, we present a mixed-integer nonlinear program (MINLP) for finding an optimal

gearbox design.

In our model capital letters denote sets or parameters, small letters denote contin-

uous decision variables or indices, and greek letters denote binary decision variables.

Table 1 gives an overview of all decision variables. Three index sets are used: The

set of gears G = {−1, 1, 2,…}, including one reverse gear −1, the set of planes in

axial direction P = {1, 2,…}, and the set of the two drive shafts D = {1, 2}. A com-

ponent’s position is characterized by a plane and a shaft index.

minimize h +W1 ⋅
∑

p∈P

∑

d∈D
𝜎p,d +W2 ⋅

∑

p∈P
𝜁p (1)

subject to

Kmin

g ≤ ig ⋅
∑

d∈D
jd ⋅

∑

p∈P
𝜉g,p,d ≤ Kmax

g ∀g ∈ G (2)



A Mixed-Integer Nonlinear Program for the Design of Gearboxes 229

Table 1 Decision variables of the mixed-integer nonlinear program

Var. Description Domain

ig Pre-transmission of gear g [Imin
, Imax]

jd Post-transmission from drive shaft d to the output shaft [Jmin
, Jmax]

rg Gear wheel radius on the input shaft belonging to gear g [Rmin
,Rmax]

sg Gear wheel radius on the drive shaft belonging to gear g [Smin
, Smax]

tp Gear wheel radius on the input shaft in plane p [Rmin
,Rmax]

up,d Gear wheel radius on drive shaft d in plane p [Smin
, Smax]

vd Maximum gear wheel radius on drive shaft d [Smin
, Smax]

yd Gear wheel radius on drive shaft d of the final drive [Ymin
,Ymax]

z Gear wheel radius on the output shaft of the final drive [Zmin
,Zmax]

𝜉g,p,d Indicator whether gear g is realized on drive shaft d in plane p {0, 1}
𝛾p,d Indicator whether any gear is realized on drive shaft d in plane p {0, 1}
𝛿g,p Indicator whether gear g is realized on any drive shaft in plane p {0, 1}
𝜁p Indicator whether any gear is realized on any drive shaft in plane p {0, 1}
𝜎p,d Indicator whether a sleeve is located on drive shaft d in plane p {0, 1}
𝜙p Indicator whether the input shaft is a full shaft in plane p {0, 1}
ad Distance between input shaft and drive shaft d [Amin

,Amax]
bd Distance between drive shaft d and output shaft [Bmin

,Bmax]
c Distance between the drive shafts [Cmin

,Cmax]
h Pseudo-height of the gearbox [Hmin

,Hmax]

rg ⋅ ig = sg ⋅ sign(g) ∀g ∈ G (3)

yd ⋅ jd = z ∀d ∈ D (4)

𝛿g,p =
∑

d∈D
𝜉g,p,d ∀g ∈ G, p ∈ P (5)

1 =
∑

p∈P
𝛿g,p ∀g ∈ G (6)

𝛾p,d =
∑

g∈G
𝜉g,p,d , 𝜁p ≥ 𝛾p,d ∀p ∈ P, d ∈ D (7)

𝜁p ≤
∑

d∈D
𝛾p,d ∀p ∈ P (8)

𝛾p,d + 𝜎p,d ≤ 1 , 𝛾p,d ≤
∑

p′∈P
|p′−p|=1

𝜎p′,d , 𝜉−1,p,d ≤ 𝛾p,3−d ∀p ∈ P, d ∈ D (9)

𝜙p ≥ 𝜙p+1 ∀p ∈ P, p < |P| (10)

𝛿g,p ≤

{
𝜙p if g is odd

1 − 𝜙p if g is even
∀p ∈ P, g ∈ G, g > 0

(11)
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𝛿−1,p ≤ 1 − 𝜙p ∀p ∈ P (12)

rg =
∑

p∈P
tp ⋅ 𝛿g,p , sg =

∑

p∈P

∑

d∈D
up,d ⋅ 𝜉g,p,d ∀g ∈ G (13)

tp ≥ Rfull ⋅ 𝜙p + Rhollow ⋅ (1 − 𝜙p) + Rmax ⋅ 𝜁p ∀p ∈ P (14)

tp ≤ Rfull ⋅ 𝜙p + Rhollow ⋅ (1 − 𝜙p) + Rmax ⋅ 𝜁p ∀p ∈ P (15)

up,d ≥ Smin ⋅ (1 − 𝜎p,d − 𝛾p,d) + Ssync ⋅ 𝜎p,d + Smin ⋅ 𝛾p,d ∀p ∈ P, d ∈ D (16)

up,d ≤ Smin ⋅ (1 − 𝜎p,d − 𝛾p,d) + Ssync ⋅ 𝜎p,d + Smax ⋅ 𝛾p,d ∀p ∈ P, d ∈ D (17)

vd ≥ up,d ∀p ∈ P, d ∈ D (18)

ad ≥ tp + up,d +
1
2
⋅ Q ⋅ (1 − 𝛾p,d) + Q ⋅ 𝜉−1,p,d ∀p ∈ P, d ∈ D (19)

ad ≤ tp + up,d + Amax ⋅ (1 − 𝛾p,d) ∀p ∈ P, d ∈ D (20)

ad ≥ Rhollow + yd +
1
2
⋅ Q , bd = yd + z ∀d ∈ D (21)

c ≥
∑

d∈D
up,d +

1
2
⋅ Q ⋅

(∑

d∈D
𝛾p,d − 2𝛿−1,p

)
∀p ∈ P (22)

c ≤
∑

d∈D
up,d + Cmax ⋅ (1 − 𝛿−1,p) ∀p ∈ P (23)

h ≥ c +
∑

d∈D
vd , h ≥ 2 ⋅ z (24)

The objective function, cf. Eq. (1), finds an optimal trade-off between three crite-

ria: (i) the height of the transmission, (ii) the number of sliding sleeves, and (iii) the

number of gear wheels. Since the exact height of the gearbox is difficult to express,

we approximate it with the pseudo-height h, see Eq. (24). We use weighing parame-

ters W1 ≫ 1 and W2 ≪ 1, i.e., we tolerate a larger gearbox in order to save sliding

sleeves, but not to save gear wheels on the input shaft.

The overall transmission ratio for each gear g is an empirical value and given by

Eq. (2). In hope of a more compact design, small deviations of 5% from the empirical

reference values are granted, leading to an interval [Kmin

g , Kmax

g ]. The transmission

ratio is set by changing the wheel radii. To avoid huge wheels and a large axial

expansion, two countershafts are introduced. The overall transmission is given as

product of the pre-transmission (between input shaft and one countershaft), and the

post-transmission (between the countershaft and the output shaft). The sum over

the binary indicators 𝜉g,p,d identifies the matching post-transmission jd for the pre-

transmission ig. Equations (3) and (4) describe the dependence of the pre- and post-

transmission ratios from the gear wheel radii. To model the negative pre-transmission

ratio i−1 of the reverse gear we use a sign function. For the reverse gear, an interme-

diate wheel on one of the drive shafts engages with a gear wheel on the input shaft

and the reverse gear wheel on the other drive shaft. Fortunately, we do not need to

include the intermediate wheel’s radius s
int

, since i−1 = (s−1∕sint
) ⋅ (s

int
∕r−1).
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Equations (5)–(8) specify relations between gear assignment indicators. 𝜉g,p,d is

active (equal to one) iff gear g is realized at the position given by plane p and drive

shaft d. Variables 𝛾p,d, 𝛿g,p and 𝜁p indicate if any 𝜉g,p,d is active over the respective set.

Equation (6) ensures that each gear g is realized exactly once. Equation (9) make sure

that (i) at most one component may be placed on a position (left), (ii) that each gear

can be synchronized by a neighboring sleeve (middle), and (iii) that if the reverse

gear wheel is placed at a certain position, another gear wheel is placed on the other

drive shaft in the same plane (right). The input shaft is divided into a full shaft and

a hollow shaft. 𝜙p indicates at which plane p the transition from full to hollow takes

place. Equation (10) ensures that there is exactly one transition. Odd numbered gears

are placed on full shaft planes, and even numbered gears are placed on hollow shaft

planes, cf. Eq. (11). The reverse gear is placed on the hollow shaft, cf. Eq. (12).

Equation (13) identifies the gear radii from the point of view of the gears (rg, sg) with

the radii from the point of view of the gearbox positions (tp, up,d). Equations (14) and

(15) set the radius to the input shaft radius, if no gear wheel is realized on plane p.

Equations (16) and (17) determine the drive shaft radii up,d: If a synchronizer

is realized, i.e., 𝜎p,d = 1, the radius equals the sleeve radius Ssync
, if not, the radius

equals the radius Smin
of the drive shaft. The maximum radius vd of wheels on drive

shaft d in Eq. (18) is needed to compute the pseudo-height h.

Equations (19)–(20) determine the distance ad between input shaft and drive shaft

d. If a gear wheel is realized on drive shaft d in plane p, ad is given by the sum of

engaging gear radii, tp on the input shaft, and up,d on the drive shaft. If multiple gears

are realized in different planes p, all have to agree on the same distance ad. If no gear

is realized, the distance between the two shafts has to be at least half of the tooth

height Q. For the reverse gear, an extra space of at least the tooth height is needed.

Equation (21) (left) makes sure that the distance ad is large enough to separate the

gear wheel on the final drive with radius yd from the hollow input shaft. The distance

bd between drive shaft d and output shaft depends on the radii of the final drive, yd
and z, cf. Equation (21) (right). Between the two shafts, no gear wheels are allowed

to engage except for the reverse gear wheel. The pseudo-height h is given by the

maximum of (i) the drive shaft distance c plus the respective maximum radii on

both shafts and (ii) the diameter of the gear wheel on the output shaft.

4 Results and Conclusion

We implemented the MINLP in the mathematical modeling framework JuMP [3].

For solving our instances, we chose the solvers Couenne [4] (version 0.5.6) and

SCIP [5] (version 3.2.1). Both solvers guarantee global optimality for convex and

nonconvex MINLPs. We varied our problem size by changing the number of gears

and the number of possible axial planes. Table 2 shows the corresponding

computing times. While the runtime increases with problem size, the runtimes are

still very manageable. SCIP clearly outperforms Couenne for each instance.
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Table 2 Runtimes on an Intel Core i5 with 2.4 GHz. Fewer planes than listed lead to infeasibility

No. of gears

(incl. 1 reverse gear)

No. of available planes Runtime in s

Couenne SCIP

4+ 1 5 13 5

6 21 9

5+ 1 6 28 5

7 73 11

6+ 1 6 35 21

7 168 37

7+ 1 7 436 117

8 803 116

Fig. 1 Gearbox topology for 5+ 1 gears (left) and 6+ 1 gears (right). The upper diagrams depict

the projection of the gearboxes in axial direction. The lower diagrams show a cut of the wheel

engagements. A maximum of 7 planes (excluding the final drive) can be used

Figure 1 depicts exemplary solutions for the case of 5+ 1 gears and 6+ 1 gears

and a maximum of 7 available axial planes (for further solutions with different num-

bers of gears and planes see [6]). Note that the gearboxes with 5+ 1 gears have a

larger vertical expansion, i.e., height h, than the gearboxes with 6+ 1 gears. This

is intended due to the chosen weighing of the objective criteria: 5+ 1 gears can be

realized using only 3 sliding sleeves which is preferred to using a fourth sleeve that

would have allowed for a more efficient packing in vertical direction.
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Both MINLP solvers (Couenne and SCIP) find optimal topology proposals in

the range of seconds to minutes. Having made a first step towards a gearbox design

framework in this paper, we plan to integrate gear teeth design and shaft bending

into our model in future work.
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Line Planning on Path Networks
with Application to the Istanbul Metrobüs

Ralf Borndörfer, Oytun Arslan, Ziena Elijazyfer, Hakan Güler,
Malte Renken, Güvenç Şahin and Thomas Schlechte

Abstract Bus rapid transit systems in developing and newly industrialized

countries often consist of a trunk with a path topology. On this trunk, several overlap-

ping lines are operated which provide direct connections. The demand varies heavily

over the day, with morning and afternoon peaks typically in reverse directions. We

propose an integer programming model for this problem, derive a structural property

of line plans in the static (or single period) “unimodal demand” case, and consider

approaches to the solution of the multi-period version that rely on clustering the

demand into peak and off-peak service periods. An application to the Metrobüs

system of Istanbul is discussed.
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1 Introduction

The establishment of a public transportation system involves decision making on

network design, line planning, timetabling, and fare planning. Due to the (contra-

dictory) objectives of minimizing the costs and maximizing the level of service, each

task is already challenging on its own, such that the planning process is typically con-

ducted in succession [1]. Its integrated treatment has been taken up only recently [2],

and it is still quite unclear how a “globally optimal system” should look like or how

it could be identified. The investigation of basic, but practically relevant, classes of

networks is one way to advance in this direction. We consider an interesting type of

transportation system with the simplest possible network structure: a path topology
is often found in bus rapid transit (BRT) systems in developing or newly industri-

alized countries, such as Trolébus in Quito [5], or our subject of investigation, the

Metrobüs in Istanbul, see Fig. 1. Even though such systems may, at first sight, look

small in terms of numbers of stations or links, they typically service the bulk of the

demand, exerting a trunk function.

In BRT systems such as Metrobüs, the demand is typically highly asymmet-

ric w.r.t. its distribution on the line and notably fluctuating w.r.t. time: There is a

morning peak towards the center, an evening peak towards the outskirts, and signifi-

cantly less demand during other times, see Fig. 2. Traditional line planning addresses

this demand fluctuation by constructing a base service, which is augmented in peak

hours, or vice versa. But is this prevalent procedure conclusive? This is the question

that we study in this article. In fact, as far as we know, multiperiod line planning
(much less time continuous) has not been considered in the optimization literature

so far.

We study the line planning problem on path networks over a planning horizon of

an entire day. In a path network, the passenger travel paths are uniquely determined.

Fig. 1 The Metrobüs in Istanbul with its 44 stations (visualization by PTV Visum [4])
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(a) Demands in direction from east to west. (b) Demands in direction from west to east.

Fig. 2 Traffic demand in the Istanbul Metrobüs system over 24 h, summed over all OD pairs

This gives rise to a fixed passenger load (or volume) on every individual link of the

path network. These loads have to be covered by lines that must offer appropriate

capacities and frequencies. We concentrate on the two dominating features of the

demand characteristics of the problem: (i) asymmetricity of the demand towards

the center of the network creates a unimodal (increasing to a maximum and then
decreasing) demand distribution along the path, (ii) the level of difference in the

total number of passengers between peak and off-peak hours requires partitioning the
day into multiple sections. We show that unimodal demand leads to a unimodal line

plan in the single period case. This gives an indication that line plans that augment

a base service in peak hours might work well, i.e., that augmentations in space and

time are reasonable. A computational comparison of two solution approaches for the

multiperiod case on Metrobüs data corroborates this claim.

2 The Static Demand Case

We study the following demand coverage model to assign frequencies to a given set

of lines, that are modeled as paths on a traffic network, which in our setting itself

has path topology, in the static demand or single period case. Consider a traffic net-
work N = (V = [n],A = A→ ∪ A←) as a path with forward arcs A→ = {(i, i + 1) ∶
i ∈ [n − 1]} and backward arcs A← = {(i + 1, i) ∶ i ∈ [n − 1]}. Let c ∶ A → ℝ+

be

a cost and d ∶ A → ℝ+
0 the demand, i.e., the number of passengers traveling across

each arc. Let the set of lines L consist of all non-trivial (directed) paths on N with

endpoints in some set T = {t1,… , tm} ⊆ V of terminal stations, t1 < ⋯ < tm, and

denote the beginning and end of line l ∈ L by 𝛼(l) and 𝜔(l). It is reasonable to require

the beginning and end of N to be in T , i.e., t1 = 1 and tm = n. A function p ∶ L → ℕ0
is called a line plan, and p(l) is the frequency of line l. We say that a line plan is bal-
anced if the flow balance conditions

∑
l∈L∶𝛼(l)=v p(l) =

∑
l∈L∶𝜔(l)=v p(l) hold for every

vertex v. The (capacity) supply provided by p is s ∶ A → ℝ+
0 , a ↦

∑
l∈L,a∈l p(l)𝜅,

where 𝜅 is some positive constant specifying the number of passengers that can

be transported per vehicle. p is feasible (for the demand d) if it is balanced and
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if s(a) ≥ d(a) for every a ∈ A. A feasible line plan p is optimal if it minimizes the

overall cost C ∶=
∑

l∈L∶p(l)>0 cf (l) +
∑

l∈L co
l p(l), where cf ∶ L → ℝ+

0 denotes a fixed

setup cost for each line, and co ∶ L → ℝ+
0 , l ↦

∑
a∈l,a∈A c(a) the operational cost per

vehicle.

The demand coverage model can be formulated as an integer program as follows.

Let xl ∈ {0, 1} be a binary variable that takes value one if line l ∈ L is selected, and

vl an integer variable that defines how many vehicles are operating line l.

min
∑

l∈L
cf

l xl +
∑

l∈L
co

l vl (DCM
MIP

)

∑

l∈La

𝜅vl ≥ da ∀ a ∈ A, (1)

Mxl − vl ≥ 0 ∀ l ∈ L, (2)
∑

l∈L
vl ≤ V (3)

xl ∈ {0, 1} ∀ l ∈ L, (4)

vl ∈ ℕ ∀ l ∈ L. (5)

Inequalities (1) of program (DCM
MIP

) make sure that the demand da on each segment

a ∈ A is covered by the capacity of the set La of lines that contain a. The v-variables

are coupled with the x-variables via inequalities (2) in order to assure that only cho-

sen lines are assigned a positive number of up to M vehicles each. Constraint (3)

limits the overall number of vehicles. The objective of program (DCM
MIP

) models

both the minimization of fixed and operational costs.

3 Unimodality

By examination of the passenger data for the Istanbul Metrobüs system it becomes

apparent that, for any given time, the distribution of the passenger demand volume

per station is approximately unimodal: More centrally located stations experience

higher traffic. Under these conditions, and if the fixed costs cf
are negligible, an

optimal line plan is unimodal as well, i.e., for any two lines, one is contained in the

other. This greatly reduces the complexity of the problem and allows to solve it in

linear time.

Denote by ā the reverse of arc a ∈ A, and by d↔(a) ∶= max{d(a), d(ā))} the max-

imum demand on a ∈ A in both directions. A line plan p is unimodal if p(l)p(l′) = 0
for any two forward lines l and l′ that do not satisfy [𝛼(l), 𝜔(l)] ⊇ [𝛼(l′), 𝜔(l′)] or

[𝛼(l′), 𝜔(l′)] ⊇ [𝛼(l), 𝜔(l)], and similar for backward lines.
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Theorem 1 If the maximum demand is unimodal and the fixed costs are zero, then
there is an optimal unimodal line plan.

Proof It is easy to see that every balanced line plan p satisfies s(a) = s(ā) for all

a ∈ A. Therefore, p is feasible if and only if s(a) ≥ d↔(a) for all a ∈ A→
, i.e., we can

restrict our attention to A→
.

Call two forward arcs equivalent if they are not separated by a terminal. Then any

two equivalent arcs a ∼ a′
are always assigned the same capacity supply by every

line plan, because they are covered by the same set of lines. For any forward arc

a ∈ A→
, let

s∗(a) ∶= max
a′∼a

d↔(a′) and k∗(a) ∶= ⌈s∗(a)∕𝜅⌉.

Then any feasible line plan must provide a capacity supply of at least s∗(a) on a ∈
A→

, and use at least k∗(a) vehicles. The unimodality of d↔
implies unimodality of

s∗ and, in turn, of k∗.

It is easy to construct a unimodal line plan p on A→
with supply s = s∗, using

exactly k∗(a) vehicles on any arc. Namely, let l1,n be the line from t1 = 1 to node

tm = n, set

p∗(l1,n) ∶= min{k∗(1, 2), k∗(n − 1, n)},

subtract p∗(l1,n) from k∗(a) for all a ∈ A→
, and remove all arcs such that k∗(a) = 0;

then iterate until all arcs have been removed. Proceed in the same way for A←
.

The resulting line plan is unimodal, feasible, and also optimal, because its cost

C =
∑

l∈L
p(l)

∑

a∈l
a∈A→

c(a) =
∑

a∈A→

s(a)
𝜅

=
∑

a∈A→

s∗(a)
𝜅

=
∑

a∈A→

k∗(a)

is minimal by minimality of k∗. □

4 The Multiperiod Case

The case at hand, the Istanbul Metrobüs system, is characterized by a highly fluc-

tuating and asymmetrical demand caused primarily by commuters. In the morning

hours a high volume of passengers needs to be transported from the periphery to

the center, while the flow is reversed in the evening hours. In between the demand

falls sharply. Figure 2 gives a more detailed impression of the passenger demands

in both directions. In the figure, the x-axis accounts for time and the y-axis for the

corresponding demand. The peak-times stand out, and there is a relatively constant

demand in between. At any point in time, the spatial demand distribution is very

close to being unimodal.



240 R. Borndörfer et al.

Fig. 3 Identifying peak and off-peak times by clustering hourly line plans

We identify the peak and the off-peak time intervals as follows. Running the

demand covering model (DCM
MIP

) for every hour from 6 to 23 o’clock produces

18 line plans, represented by their p-vectors. We check these vectors for similarities

using the classical k-means clustering algorithm [3]. Figure 3 shows the results for

k = 2: The algorithm clusters the time windows from 7 to 9 and 17 to 20 together,

which correspond to the peaks. All other time windows form a common off-peak

section.

Two line planning strategies that exploit this temporal subdivision suggest them-

selves: On the one hand it might be advisable to run separate schedules during peak

and off-peak times to cope with the different demands. On the other hand, the peak

demands exceed the base demands. It might therefore be possible to run a continued

base line plan throughout the entire day, augmented by additional resources dur-

ing peak times. Such an augmentation can be seen as an analogon over time of a

unimodal line plan, which can be seen as a capacity augmentation in space. Our the-

oretical findings on unimodal line plans suggest that resorting to unimodal line plans

is feasible for almost unimodal demands. In combination with a similar result over

time, this would make a good case for this traditional planning procedure.

We consider the following two computational scenarios in a setting without fixed

costs and operational costs based on driven distance:

(1) a discontinued base schedule with independent peak time line plans and

(2) a continued base schedule with peak time line plans on top.

Computations were performed on a Intel i7-4790 3.60 GHz CPU using CPLEX 12.6

as a MIP solver (Table 1).

The computations corroborate our expectations that service augmentation in

space and time produces results whose quality is on a par with unrestricted plan-

ning w.r.t. operational costs.

Table 1 Comparing different line planning approaches for the Istanbul Metrobüs on weekdays

Scenario MIP solution Unimodular solution

Value (km) Computation

time (s)

Value (km) Computation

time (s)

(1) 12 041 1.9 12 056 0.9

(2) 12 144 1.8 12 164 0.8
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Particle-Image Velocimetry
and the Assignment Problem

Franz-Friedrich Butz, Armin Fügenschuh, Jens Nikolas Wood
and Michael Breuer

Abstract The Particle-Image Velocimetry (PIV) is a standard optical contactless

measurement technique to determine the velocity field of a fluid flow for example

around an obstacle such as an airplane wing. Tiny density neutral and light-reflecting

particles are added to the otherwise invisible fluid flow. Then two consecutive images

(A and B) of a thin laser illuminated light sheet are taken by a CCD camera with a

time-lag of a few milliseconds. From these two images one tries to estimate the local

shift of the particles, for which it is common to use a cross-correlation function.

Based on the displacement of the tracers and the time-lag, the local velocities can be

determined. This method requires a high level of experience by its user, fine tuning of

several parameters, and multiple pre- and post-processing steps of the data in order to

obtain meaningful results. We present a new approach that is based on the matching

problem in bipartite graphs. Ideally, each particle in image A is assigned to exactly

one particle in image B, and in an optimal assignment, the sum of shift distances of

all particles in A to particles in B is minimal. However, the real-world situation is far

from being ideal, because of inhomogeneous particle sizes and shapes, inadequate

illumination of the images, or particle losses due to a divergence out of the two-

dimensional light sheet area into the surrounding three-dimensional space, to name

just a few sources of imperfection. Our new method is implemented in MATLAB

with a graphical user interface. We evaluate and compare it with the cross-correlation

method using real measured data. We demonstrate that our new method requires

less interaction with the user, no further post-processing steps, and produces less

erroneous results. This article is based on the master thesis [5], written by the first

coauthor, and supervised by all other coauthors.
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1 Short Introduction into PIV

Many fields of modern science and engineering include applications that require

information about fluid flow phenomena. The examples range from medical inves-

tigations such as the blood flow inside the human body to the optimization of the

aerodynamic behavior of wind turbine blades.

In many cases these flow fields are determined experimentally. The majority of

real-life flow phenomena involve highly complex characteristics. Due to this, the

measurement equipment must be able to predict the flow within the field of interest.

In modern science contactless flow measurements have become a standard. These

techniques offer the advantage of non-invasive data aquisition since the flow is not

disturbed by any intrusive probe. A common and very widely used application is

particle-image velocimetry (PIV), where the flow field is illuminated by a strong

laser. An optical lense is used to transfer the laser beam into a light sheet, which

makes it possible to measure a two-dimensional flow field. For this purpose, the flow

is seeded with small particles (water flow) or droplets (air flow) also called tracers.

During this study silver-coated hollow glass spheres (S-HGS, see Fig. 1a) of small

diameter (around 20µm) are used in a water flow [1, 6, 7]. The tracers are assumed

to be density-neural and therefore follow the flow with minimum interference.

Fig. 1 a S-HGS particles, manufactured by Dantec Dynamics. Image taken with a scanning elec-

tron microscope of the Institute of Materials Technology, Helmut-Schmidt-University. b PIV image

of a wing cross-section. Total area approx. 20× 20 cm. Laser beam is coming from the left. For a

better visibility, contrast and brightness were adjusted



Particle-Image Velocimetry and the Assignment Problem 245

2 Set-Up of PIV Experiments

In the present investigation the fluid-particle flow in a water tunnel is photographed

using a high-resolution CCD digital camera [2]. The camera’s optic is focused on a

thin layer of the flow that is enlightened by a short laser pulse light beam. The silver

of the coated hollow glass spheres within that layer reflects the light to a high degree,

whereas other particles in front of and behind that layer remain in the shadow and

out of the focus, see Fig. 1b. In this way, two images are taken consecutively within

a short time lag 𝛥t. The images in this study typically show 50,000–200,000 PIV

tracers. One has to deal with all kinds of technical hurdles of a typical imperfect

measurement, such as outliers, pixel errors, or shaded regions, which can be seen in

Fig. 1b.

3 Classical Cross-Correlation Method

Having two digital PIV images (called A and B) at hand, one tries to determine the

direction of the flow at each coordinate (x, y) of the image. To this end, the image

is split up into rectangular segments or tiles (for example, 32× 32 or 64× 64 pixels

each). In the classical method, the brightness value (an integer between 0 and 4095)

defines the particle density for each pixel of the image. An image thus can be con-

sidered as a two-dimensional density function A(x, y) ∈ {0,… , 4095} for each (x, y)
of the image (having a typical resolution of 2048× 2048). The average movement

direction for each tile is then determined by computing the average movement based

on this density.

A mathematical algorithm for this task is the cross-correlation function (also

known as sliding inner-product). It is a measure for the similarity of two time series

or functions (here: A and B), and it is (in our case) a two-dimensional function in

(𝜉, 𝜂), which is the lag (or shift vector) of the function values in A to those of B. In

our discrete setting, the cross-correlation is defined as

𝛷A⋆B(𝜉, 𝜂) ∶=
M∑

i=0

N∑

j=0
A(i, j) ⋅ B(i + 𝜉, j + 𝜂),

where M,N is the size of the tile. For the input shown in Fig. 2 (A and B), the corre-

sponding cross-correlation function 𝛷A⋆B is shown on the right of this figure. Note

that 𝛷 has a maximum, which corresponds to the linear shift of the density of A to

match the density of B in the best way. The corresponding vector (𝜉∗, 𝜂∗) which is the

argument of this maximum is taken as the local movement vector for this particular

tile. Since 𝛷 is a discrete function having no analytical properties, this maximum is

computed by testing each potential value of (𝜉, 𝜂) within a certain range. The result

of this method is shown in Fig. 3a. In this test case, the flow around an airfoil with an

incoming velocity of 2.8 m/s is considered flowing from the top to the bottom of the
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Fig. 2 Image pair A, B, and the corresponding cross-correlation function

Fig. 3 Flow around a wing cross-section with an incoming velocity of 2.86 m/s. From left to right:
a cross-correlation method, b most common vector method, c assignment method with counting

objective function, d assignment method with similarity objective function

water tunnel. One can clearly see a large recirculation area at the leeward side of the

airfoil. However, there are also outliers visible, where the cross-correlation method

assumed velocities of around 25 m/s in an opposite direction to the surrounding flow

field, which is technically impossible and therefore meaningless.

4 New Analytical Methods

We describe three new methods to compute a two-dimensional flow vector field

based on the experimental data, i.e., two PIV-images taken within a short time lag.

All three methods require as a first step to detect the individual particles in each tile

of the two images, and store them in two lists 𝛼 = (a1,… , am) and 𝛽 = (b1,… , bn)
[4]. (Note that 𝛼 and 𝛽 also depend on the tile, but for notational simplicity we neglect

the index of the tile.) We emphasize that the number of particles in these two lists

are not necessarily equal.
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4.1 Most Common Vector

The idea of the first method is to identify a vector 𝛥
∗

that (ideally) maps the list of

points 𝛼 onto list of points 𝛽, that is, in set notation: 𝛽 = 𝛼 + 𝛥
∗
. Because of potential

outliers, measurement errors, and misidentification of particles in both images, this

equality holds only in an approximative sense. In order to identify 𝛥
∗
, we consider all

vectors 𝛥i,j ∶= bj − ai. This gives a matrix of transition vectors D = (𝛥i,j)i,j, in which

we count the number of occurrences of each vector 𝛥i,j. The most common vector

(i.e., the vector that occurs most often in D) is the transition vector 𝛥
∗
.
1

The result

of this method is shown in Fig. 3b. In comparison to the classical cross-correlation

method, the number and the strength of outliers is significantly reduced. Both meth-

ods still have in common that only one transition vector is computed per tile.

4.2 Assignment Method

The assignment problem (also known as transportation problem with 0/1 supply and

demand, or weighted matching problem in complete bipartite graphs [3]) can be

formulated as the following integer programming problem. We introduce integer

decision variables xi,j ∈ {0, 1}, if particle ai in list 𝛼 is assigned to (moved to) particle

bj in list 𝛽. Assuming w.l.o.g. that the number of particles in 𝛽 is greater or equal

than the number of particles in 𝛼, each particle in 𝛼 is assigned to exactly one particle

in 𝛽, and each particle in 𝛽 is assigned to at most one particle in 𝛼:

∀ i ∈ 𝛼 ∶
∑

j∈𝛽
xi,j = 1,

∀ j ∈ 𝛽 ∶
∑

i∈𝛼
xi,j ≤ 1.

The objective is to maximize a preference measure that takes into account how well

particle i would fit to particle j when being assigned:

max
∑

i∈𝛼

∑

j∈𝛽
ci,j xi,j.

We developed two different methods how to come up with practically meaningful

values for ci,j.

1
This statement was formalized and rigorously proven by Fabian Gnegel at Helmut-Schmidt-

University Hamburg.
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4.2.1 Objective Function I: Counting

The first method is similar to the “most common vector” method. For each pair of

particles (ai, bj) with distance vector 𝛥i,j (as above), we set ci,j to the number of 𝛥i,j
in the submatrix (𝛥k,l)k,l with k ∈ 𝛼∖{i} and l ∈ 𝛽∖{j}. With the so-defined ci,j, we

solve a maximum-weight assignment problem. The improved results are depicted in

Fig. 3c.

4.2.2 Objective Function II: Similarity

In the second method, we compute for each pair of particles (ai, bj) the cosine of

the angle between 𝛥i,j and 𝛥k,l for all k ∈ 𝛼∖{i} and l ∈ 𝛽∖{j}. Each cosine is a real

number between −1 and 1, where 1 means that 𝛥i,j and 𝛥k,l are pointing into the

same direction, 0 means they are perpendicular, and −1 means they are pointing in

the opposite direction. Summing up all these cosine values then yields ci,j. With the

so-defined ci,j, we again solve a maximum-weight assignment problem. Figure 3d

shows the corresponding result.

5 Conclusions

The outcomes of the assignment methods shown in Fig. 3c and d are advantageous

compared to the previous results. Due to the assignment it is possible to have an

individual transition information for each detected particle (not just one per tile).

Qualitatively, our new methods have a higher “resolution” compared to the classical

cross-correlation method. The next step of the research aims at a suitable measure

that is able to describe the quantitative superiority of one method over the other.
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Analysis of Operating Modes of Complex
Compressor Stations

Benjamin Hiller, René Saitenmacher and Tom Walther

Abstract We consider the modeling of operation modes for complex compressor

stations (i.e., ones with several in- or outlets) in gas networks. In particular, we pro-

pose a refined model that allows to precompute tighter relaxations for each operation

mode. These relaxations may be used to strengthen the compressor station submodels

in gas network optimization problems. We provide a procedure to obtain the refined

model from the input data for the original model.

1 Introduction

Gas transmission networks are a crucial part of the European energy supply

infrastructure. The gas flow is driven by pressure potentials. To maintain the nec-

essary pressure levels and control the routing of the gas in the network, compressor

stations are used. In the German network compressor stations usually interconnect

two or more pipeline systems. They often have a complex internal structure, allowing

them to realize different routing patterns between the boundary nodes, which may

serve as inlet or outlet depending on the requirements of the surrounding network [2].

An example of such a complex compressor station is shown in Fig. 1.

In this paper, we consider the compressor station modeling introduced in [2]. This

model combines a network containing compressors and valves and a set of switching

states for these elements to describe all feasible operation modes of a compressor
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(a) (b) (c) (d)

Fig. 1 Two operation modes of a large compressor station (a, b) and their reduced representations

(c, d) obtained with the methods of Sect. 3

station. The constraints describing the technical capability of a compressor may be

nonlinear and nonconvex, leading to hard-to-solve MINLP models for a compressor

station. To improve the model, a natural idea is to precompute, for each operation

mode, bounds on the minimum and maximum flow and pressure that can be handled

and to include this information in the model. This should help the solution process

to detect unsuitable operation modes early. However, the modeling of an operation

mode from [2] does not specify whether a compressor is actively compressing or

bypassed. Thus, no nontrivial flow bounds may be obtained for an operation mode.

Contribution We develop techniques for analyzing the original representation of

operation modes to obtain a more detailed representation prescribing for each com-

pressor whether it is compressing or in bypass. This allows to compute tight bounds

(or even convex hulls) for the pressure/flow combinations that can be handled by each

operation mode. The crucial ingredient is a method to obtain a reduced representation

of an operation mode to cope with redundancies due to the original representation.

Examples of such reduced representations are also shown in Fig. 1.

Related work We briefly mention some related papers and refer to [5] for a com-

prehensive overview. Most work on optimization of compressor stations has focused

on simple compressor stations compressing from a single inlet to a single outlet.

The fact that a compressor station usually features several (often distinct) compres-

sor units has been dealt with by using an aggregated model, like a range for the power

required by the compression process [3], box constraints for flows and pressures [1],

or a polyhedral model [6]. Papers using a detailed model for the operation of a single

compressor unit usually assume that a compressor station consists of several paral-

lel identical units [7], the only discrete decision being the number of units switched

on. A recent exception is the work of [4], considering configurations consisting of

serial stages of units used in parallel. Complex multi-way compressor stations with

multiple operating modes are only considered in [2] and related work.

The remaining paper ist structured as follows. Section 2 recalls the model intro-

duced in [2]. In Sect. 3, we propose a method that reduces the description of a single

operation mode to a kind of “normal form”. This is used in order to detect redundancy

and generate a set of redundancy-free operation modes that, as a set, are equivalent

to the original operation modes. Finally, we report on some computational results in

Sect. 4.



Analysis of Operating Modes of Complex Compressor Stations 253

2 Model for Complex Compressor Stations

Our model for compressor stations closely follows that proposed in [2]. We represent

a compressor station as a directed graph (V ,Ava ∪ Acg ∪ Asc), where the arc set con-

sists of the set of valves Ava, the set of compressors Acg, and the set of shortcuts Asc.

Moreover, we partition the set of nodes into boundary nodes V± and inner nodes V0.

For each node u ∈ V we introduce a variable for the pressure pu with non-negative

lower and upper bounds pu and pu. For each arc a ∈ A there is a variable for the mass

flow qa with lower and upper bounds qa and qa. Positive mass flow values indicate

flow in the direction of the arc, whereas negative values represent flow in the oppo-

site direction. The precise values of the bounds depend on the type and state of an

element. We define the excess of mass flow at nodes by

bu ∶=
∑

a∈𝛿−(u)
qa −

∑

a∈𝛿+(u)
qa for all u ∈ V . (1)

where 𝛿

−(u) and 𝛿

+(u) denote the sets of ingoing and outgoing arcs for node u. At

inner nodes, the mass flow is conserved, i.e., we have bu = 0 for u ∈ V0.

Valves can be open or closed and are used to control the route of gas through the

compressor station. A binary variable sa distinguishes between these states (sa = 1:

open, sa = 0: closed). A closed valve is like a missing connection, i.e., there is no

flow and the pressures are decoupled. An open valve admits arbitrary flow and the

pressures at its nodes are identical.

Compressors may operate in one of the states closed (no gas flow), active (com-

pressing), and bypass (gas flow without compression). Binary variables sa, saca , s
bp
a

distinguish between the states active, bypass and closed where sa = 1, saca = 1 cor-

responds to active, sa = 1, sbpa = 1 corresponds to bypass and sa = 0 corresponds to

closed. A closed compressor again corresponds to a missing connection and one in

bypass to an open valve. We model the capabilities of an active compressor a ∈ Acg
by an abstract set Pa ⊆ R3

≥0 of feasible inlet pressure, outlet pressure, and mass flow.

Thus our methods apply to a large range of compressor models. The constraints

describing Pa, the capability set of a compressor, may be nonlinear and nonconvex,

leading to hard-to-solve MINLPs for the entire compressor station.

Shortcuts are convenient modeling elements that allow arbitrary gas flow between

two nodes without pressure drop.

An operation mode specifies the switching state of each active element (valves,

compressors) and thus the route of the gas flow through the compressor station.

Operation modes are modeled in [2, Section 6.1.8] by a triple (Aactive,M , d), where

Aactive = Ava ∪ Acg is the set of active elements. The set M ⊆ {0, 1}Aactive describes

each operation mode m ∈ M by stating whether an active element a is open (ma =
1) or closed (ma = 0). In the case of an open compressor it is not yet specified

whether this compressor is in bypass or is active. Finally, the function d ∶ Aactive ×
M → {−1, 0, 1} describes whether the flow direction for an active arc a = (u, v) is
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restricted or not (−1: flow in opposite direction of arc, 0: direction unspecified, −1:

flow in arc direction).

As mentioned in the introduction, the fact that this representation does not specify

whether an open compressor is active or running in bypass precludes us from obtain-

ing tight bounds for flows and pressures obtainable by an operation mode. We thus

propose a more detailed representation where each operation mode is fully specified
by prescribing for each compressor whether it is active or in bypass. To obtain this

representation from the original one we enumerate all active/bypass combinations

for each operation mode. Since this leads to many and redundant operation modes,

we apply the methods from Sect. 3 to obtain an equivalent smaller set of fully speci-

fied operation modes. These are described by a tuple (Aactive,M
va
,M cg

, d′), where

M va
⊆ {0, 1}Ava prescribes the state of each valve and M cg

⊆ {0, 1}A
2
cg prescribes

the state of each compressor. For each of these operation modes, we can now com-

pute tight pressure and inflow bounds by solving the optimization problem given

by (4)–(8) together with respective objective functions. Then, with pu(m), pu(m) and

bu(m), bu(m) denoting the pressure and mass flow excess bounds for node u in oper-

ation mode m, the following inequalities are valid:

∑

m∈M
pu(m) sm ≤ pu≤

∑

m∈M
pu(m) sm for all u ∈ V , (2)

∑

m∈M
bu(m) sm ≤ bu≤

∑

m∈M
bu(m) sm for all u ∈ V . (3)

We call the model using the original operation modes the compact model, the one

using fully specified operation modes the extended model and the extended model

together with (2)–(3) the bounded extended model.

3 Topology Simplification for a Single Operation Mode

Our goal is to simplify the topology of a single operation mode of a compressor

station to obtain a small “canonical” representation suitable for comparing operation

modes via graph isomorphism detection (see Fig. 1).

We consider the network Nm = (V ,Am
, q, q, p, p) corresponding to a fully speci-

fied operation mode m derived from the station network as follows. First, all closed

elements are removed. Second, every shortcut, open valve and compressor in bypass

is replaced by two opposing shortcuts with lower flow bound equal to zero. This is

an equivalent transformation since the constraints for open valves or bypassed com-

pressors are equivalent to those of shortcuts. Hence, the arc set Am
consists only

of shortcuts and active compressors. Thus the model for a single operation mode

becomes

0 ≤ pu ≤ pu ≤ pu for all u ∈ V , (4)
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bu = 0 for all u ∈ V0, (5)

qa = 0, qa = ∞ for all a ∈ Asc, (6)

pu = pv for all (u, v) ∈ Asc, (7)

(pu, pv, qa) ∈ Pa ⊆ R3
≥0 for all (u, v) ∈ Acg. (8)

However, the network may be highly redundant, as a shortcut usually indicates that

the incident nodes are identical. Thus we can reduce the size of the network by con-

tracting a shortcut as follows. We identify the incident nodes of the shortcut and

update the pressure bounds of the remaining node to be the intersection of the pres-

sure intervals for the original nodes. If there are any other arcs between the two

nodes, we do keep them as self-loops. But we need to be careful when applying this

contraction since shortcuts sometimes do carry important information on the topol-

ogy of feasible flows. We now devise a criterion for safely removing shortcuts. For

this, we consider the shortcut subgraph of Nm
, Gsc

, its set of entries Vsc
+ , its set of

exits Vsc
− and for all entries w ∈ Vsc

+ the set ⃖⃗RN(w) ⊆ Vsc
− of exits reachable using only

shortcuts:

Gsc ∶= (V ,Asc) (9)

Vsc
+ ∶= V± ∪ {w ∈ V | ∃u ∈ V ∶ (u,w) ∈ Acg} (10)

Vsc
− ∶= V± ∪ {w ∈ V | ∃u ∈ V ∶ (w, u) ∈ Acg} (11)

⃖⃗RNm(w) ∶= {u ∈ Vsc
− ∶ ∃ w − u − path in Gsc} for allw ∈ Vsc

+ (12)

Proposition 1 Consider a shortcut ã = (u, v)with u ∈ V ⧵ {Vsc
+ } and the network N

′

arising from N when contracting ã to v. If

⃖⃗RN(w) = ⃖⃗RN′ (w) for all w ∈ Vsc
+ (13)

then for every admissible flow-pressure combination (p′, q′) for N′ there exists an
admissible flow-pressure combination (p, q) for N such that

q′a = qa for all a ∈ Acg, (14)

b′w = bw for all w ∈ V±, (15)

p′w = pw for all w ∈ V±, (16)

and vice-versa.

4 Computational Results

To investigate the effect of our method, we consider the compressor station network

with three boundary nodes and four compressors shown in Fig. 1. We model the

operating range Pa = {(pu, pv, qa)} ⊆ R3
≥0 of each compressor a = (u, v) ∈ Acg by a
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Table 1 Computational results on sample compressor station network. The first number is for

feasible, the second number for infeasible instances

Compact model Extended model Bounded

extended model

Number of binary variables after presolve 29.6/33.5 34.1/33.2 27.6/33.2

Number of solving nodes 9.2/16.3 10.4 / 24.4 11.1/20.5

Presolving detected infeasibility –/80.4% –/80.1% –/84.2%

simplified polyhedral model since we are only interested in the combinatorics of the

compressor station model. In the original data there are 53 operation modes; these

are used in the compact model. Enumerating all combinations of active and bypass
for compressors leads to 655 fully specified operation modes. Removing infeasible

operation modes and eliminating redundant modes using graph isomorphism detec-

tion after applying topology simplifications presented in Sect. 3 leaves 109 operation

modes. These are used in our extended and bounded extended models.

We generated a large set of 58463 instances with varying flow amounts from one

boundary node to one or both of the others at multiple different pressure levels, and

checked whether each instance is feasible. We have used SCIP to solve our problems

and the results showed that ca. 55% of the instances were feasible. To compare the

performance of our extended models to the original compact one we consider the

mean number of binary variables that have not been fixed by SCIP presolving and

the mean number of branch-and-bound nodes required for solving. The solving times

were negligible in all cases due to the absence of nonlinear constraints (see Table 1).

The results show that our preprocessing methods only have limited impact on the

solver performance. We conjecture this to be due to the fact that we are considering

the compressor station in isolation where combinatorics are simple enough for SCIP

to perform well without further support. The next step is thus to apply our methods

to optimizing large-scale gas networks.
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Maximum Covering Formulation
for Open Locating Dominating Sets

Blair Sweigart and Rex Kincaid

Abstract As a result of specific constructs and features, many graphs do not admit

OLD-sets. We extend the traditional OLD-set definition by relaxing the dominating

property. Instead of requiring all nodes to be covered by an OLD-set, we seek what

we call a maximum covering OLD-set. Every graph has a maximum covering OLD-

set. Furthermore, maximum covering OLD-sets allow an exploration of the tradeoff

between the number of sensors placed and the number of nodes covered.

1 Introduction

Open-locating-dominating sets (OLD-sets) are a fault tolerant version of identifying

codes, where we are able to detect and locate an event by examining the specific sub-

set of nodes with “sensors” that indicate an event occurrence within their coverage

range, but where the node at which the event occurred does not report. OLD-sets

were first introduced in [9], with the motivation of intrusion detection sensor net-

works in buildings under the assumption that the intruder would render inoperable

any sensor at the intrusion site. If the other sensors were able to detect intrusions at

nearby points, then the OLD-set dictates where the sensors should be placed such

that one can always determine the location of the intrusion, based on the specific sen-

sors that indicate an event in their neighborhood. An OLD-set, as studied thusfar in

the literature, must meet two criteria: (1) a dominating constraint where every node

in the graph has at least one neighbor in the OLD-set and (2) a locating constraint

where no two nodes in the graph have the same set of neighbors in the OLD-set [9].

We retain the common assumption of a detection radius of one, which provides that

the neighborhood consists of adjacent nodes.
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Formally: in a graph G, with node set V(G), edge set E(G), and open neigh-

borhoods N(v) = {w ∶ vw ∈ E(G)},∀v ∈ V(G), a set D ⊆ V(G) is an open locating

dominating set if:

∀v ∈ V , N(v) ∩D ≠ 0 (1)

∀v1, v2 ∈ V ∶ v1 ≠ v2, N(v1) ∩D ≠ N(v2) ∩D (2)

OLD-sets are similar to identifying codes [6], but act on the open, rather than

closed neighborhoods. A further connection between OLD-sets and identifying

codes is found in “strongly identifying codes” [5]. These codes can identify an event

location regardless if the source node correctly self reports an event or faults; they

work simultaneously on the open and closed neighborhood constructs. Work on iden-

tifying codes and strongly identifying codes includes applications and codes in dif-

ferent structures, but has largely focused on optimality bounds on codes. Most work

on OLD-sets has examined minimum density sets on infinite grids [7] and minimum

cardinality sets on finite graphs of certain structures [10]. A. Lobstein maintains a

bibliography of papers on identifying codes and locating-dominating sets, with 349

entries as of September 2016 [8].

2 Maximum Covering Formulation

Most applications of OLD-sets require methods to quickly identify the set on a given

graph. Finding an identifying code of minimum cardinality was shown to be NP-Hard

[2]. Integer Programs (IP) have shown promise in identifying OLD-sets of minimum

cardinality on arbitrary graphs [11]. The previous formulation in [11] used an adja-

cency matrix A, to satisfy the dominating constraint, then used a preconstructed

node-pair matrix B, to satisfy the locating constraint. There are two primary limita-

tions of this construct: the large number of graphs that permit no feasible OLD-set

and the preconstructed nature of the B matrix.

While all graphs have [closed] locating-dominating sets [2], many graphs do not

have OLD-sets [11]. This is due to specific graph constructs and the requirements of

OLD-sets. Having two or more nodes in a graph that share the same open neighbor-

hood is a sufficient condition for that graph to have no feasible OLD-sets.

Lemma 1 In a feasible OLD-set, for every pair of nodes v1, v2 ∈ V(G), v1 ≠ v2,∃
some v3 ∈ V(G) ∶ v3 ∈ D , v3 ∈ N(v1), v3 ∉ N(v2).

Proof Since D is feasible,we know N(v) ∩D ≠ 0, ∀ v ∈ V(G). Suppose ∄ v3 ∈
D ∶ v3 ∈ N(v1), v3 ∉ N(v2). Then, N(v1) ∩D = N(v2) ∩D . But this contradicts the

locating constraint, (2), in the definition of an OLD-set. □

Theorem 1 If a graph has two ormore nodes with the same neighborhoods (N(v1) =
N(v2), v1 ≠ v2), it has no feasible OLD-sets.
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Proof Assume there is a feasible OLD-set, D ∈ G and ∃ v1, v2 ∈ V(G) ∶ N(v1) =
N(v2), v1 ≠ v2. Since D is feasible, Lemma 1 provides: ∃ v3 ∈ D ∶ v3 ∈ N(v1), v3 ∉
N(v2). But then N(v1) ≠ N(v2) which contradicts the initial assumption. □

The reason for the infeasibility is clear if one examines a hub-and-spoke pattern,

as often arise in scale-free graphs [1]. Consider a hub, node 𝜋, of degree p ≥ 3,

with r leaves, 2 ≤ r < p. Since these leaves have equivalent open neighborhoods,

N(v) = {𝜋}, by Theorem 1 there are no feasible OLD-sets.

If we relax the dominating condition of the OLD-set, we can define a modified

OLD-set on any graph. That is, if we construct the OLD-set so that any node that is

“covered” satisfies both the dominating and locating constraints, but any node not

covered bears no effect on the selection of the OLD-set, we will be able to construct a

“maximum covering” OLD-set. This is similar to the problem that frequently arises

in network location theory literature of a similar name [3]. Under this construct, we

seek to identify a minimum number of facilities that will maximize the demand that

can be met (subject to some tradeoff function). We may also be limited in the number

of facilities we can establish to meet demand and seek to identify the maximum

demand (or number of nodes) that may be covered by a fixed number of facilities.

This is known as the “fixed-p” maximum set covering problem [4].

A maximum covering OLD-set is a fundamental change in the OLD concept:

we no longer require that every node be dominated.
1

In addition to the OLD-set

D , we introduce the “covered” set C . To identify a maximum covering OLD-set,

the integer program must dynamically consider constraints only when a given node

is covered. The preconstructed nature of the B matrix does not permit this sort of

dynamic inclusion, but the new 𝜴 construct, explained below, does. For flexibility,

we have included weighting parameters, 𝛾 and 𝜁 in the objective function to facilitate

future tradeoff explorations. The improved formulation is:

min 𝛾

∑

j∈V
cjxj − 𝜁

∑

i∈V
biyi (3)

s.t.
∑

j∈V
Ai,jxj ≥ yi ∀ i ∈ V (4)

∑

k∈V
(Ai,k − Aj,k)2xk ≥ 𝛺i,jyiyj ∀ i, j ∈ V (5)

∑

j∈V
xj ≤ P optional (6)

To implement the dynamic functionality we introduce a new variable yi where:

yi =

{
1 if node i ∈ C

0 otherwise

1
This actually slightly changes the definition of “dominated” since not all nodes need to have a

neighbor in the OLD-set. The general idea holds, since the nodes that are “covered” are subject to

the criteria, so we retain the terminology for consistency.
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We again use the A matrix to satisfy the dominating constraint, Eq. 4. When yi = 0,

the right hand side (RHS) of the constraint is zero and removes any constraint on the

selection of facilities xj stemming from that node i.
In the locating constraint, Eq. 5, we introduce a n × n binary matrix 𝜴:

𝛺i,j =

{
1 if 0 < SPD(i, j) ≤ 2
0 otherwise

where SPD(i, j) is the shortest path distance between nodes i and j. If the SPD

between the nodes is 1 or 2, the nodes are adjacent or share a neighbor, and 𝛺i,j = 1.

The locating constraint must be enforced under the following conditions:

1. Nodes i and j share at least one neighbor (𝛺i,j = 1)

2. Node i ∈ C (yi = 1)
3. Node j ∈ C (yj = 1)

If these three are met, then by Lemma 1, at least one facility location must distinguish

the intersections of the neighborhoods with D : The RHS will equal 1 and force the

left hand side (LHS) to take on a value ≥ 1. If any of the three are NOT met, then

RHS → 0 and will impose no constraint on facility placement. We note that this

constraint is now non-linear, but still binary.

The objective, max |C |, may be set to max
∑

i yi ≡ min(−
∑

i yi). The minimiza-

tion formulation may be directly combined with the min |D| objective to intro-

duce a bi-objective optimization. To allow greater flexibility, we have introduced

two weighting parameters 𝛾 and 𝜁 to control the tradeoff between the cardinality

objectives, as well as cost cj and coverage value bi parameters. We could also add an

optional constraint, Eq. 6, to govern the maximum number of facilities to be placed

as is traditionally found in network location theory literature [3].

3 Results

We offer three cases below that explore maximum-covering OLD-sets on various

graphs, including examination of the tradeoff between min |D| and max |C |, and a

graph with no feasible OLD-set under the traditional construct.

Figure 1 shows the contrast between the traditional and maximum set covering

formulations on a graph commonly used in OLD-set exploration [7, 9]. The fixed-p

covering set, with p= 2, demonstrates the set C . The traditional formulation requires

|D| = 3 to cover the graph. By limiting the number of facilities to 2, not all 5 nodes

can be covered. The program identifies a maximum of |C | = 3 nodes that can be

covered by the OLD-set with |D| = 2. We can verify the correctness of the maximum

covering OLD-set by examining N(vi) ∩D .

∙ N(v1) ∩D = v3.

∙ N(v2) ∩D = v1, v3.
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Fig. 1 The graph on the left depicts an OLD-set of the traditional formulation, while the graph on

the right shows the an OLD-set with a fixed-p of 2

∙ N(v3) ∩D = v1.

∙ N(v4) ∩D = v3, which would be the same as v1, so v4 ∉ C .

∙ N(v5) ∩D = v1, which would be the same as v3, so v5 ∉ C .

Figure 2 shows the tradeoff between min |D| and max |C |. Specifically, all nodes

of this graph can be covered with |D| = 8, but various costs or weights may dictate

a smaller number of nodes covered. We’ve shown here a fixed-p result with p = 6,

|C | = 11. There are several alternate optimal solutions. If we wished to impose that

only nodes in C should be in D , we could add a trivial constraint such as yi ≥ xi.
As previously discussed, scale free graphs by their nature rarely have feasible

OLD-sets. Figure 3 shows a maximum covering OLD-set on a 100 node, randomly

Fig. 2 Maximum Covering OLD-set on a 15 node graph with fixed p = 6

Fig. 3 Maximum Covering

OLD-set on a 100 node,

scale-free random graph.

The area circled in red is a

hub and spoke pattern
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generated, scale-free graph. The OLD-set was identified using the formulation in

Eqs. 3–5 with AMPL and a Gurobi 6.5 solver. Weights for Eq. 3 were set to maximize

inclusion in C : 𝜁 = 10, all others were set to 1. Note that near the top center of the

graph is a hub and spoke pattern, circled in red. By Theorem 1 there is no way to

define D to provide a unique intersection of each of the leaves’ neighborhoods with

D under the traditional OLD construct. The maximal covering OLD-set selects one

of these four nodes for inclusion in C and excludes the others.

4 Further Research

Continued work will focus on two primary directions. The first is the exploration of

computational efficiency. Specifically, we’ll examine the the formulation presented

here (with a linear objective function and a quadratic binary constraint) against for-

mulations with various linearizations of the dominating constraint. We look to build

upon the large body of work beginning with Fred Glover in the 1970s and continu-

ing to present, though much of this research focuses on quadratic objective functions

that are unconstrained or have linear constraints as in the quadratic assignment prob-

lem. The second focus will remain applications for OLD-sets. Areas that have shown

promise include disease carrier identification, dark actor identification in adversary

networks, and source financier identification in political networks.
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Optimal Allocation of Operating Hours
in Surgical Departments

Lisa Koppka, Matthias Schacht, Lara Wiesche, Khairun Bapumia
and Brigitte Werners

Abstract A large part of revenue in hospitals is generated in surgical departments.

In order to use available resources efficiently, we propose an innovative tactical opti-

mization model to optimally allocate operating hours for operating rooms. An exten-

sive simulation study is applied to evaluate the tactical plan with respect to main

stakeholders. Results indicate strongly positive effects on staff and patients.

1 Introduction

Surgical interventions ensure for a large part of revenue in every hospital [3]. Consid-

ering scarce resources, thorough planning is highly important, especially for operat-

ing rooms (ORs). That applies particularly in heart centers, since almost every patient

needs surgical intervention. Most approaches in OR planning deal with scheduling

strategies and assume given capacities [2, 5]. Other approaches aim at allocating the

same total capacities differently to influence main performance criteria [6]. It is pos-

sible to use provided resources differently without further expenditure, resulting in

the same total capacity but different resource allocation. In close cooperation with a

hospital for thoracic and cardiovascular surgery, we aim at determining optimal allo-

cation of operation hours among ORs on a tactical level. Total operating time over all

ORs is defined by available resources such as staff, equipment and legal regulations.

We propose an innovative optimization model to optimally allocate operating hours.

This tactical solution is evaluated using an extensive simulation study. Optimal allo-

cation of total operating time with regard to different ORs and patients’ requirements

is able to positively affect staff and patients.
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2 Optimal Allocation of Operating Hours

In this chapter, we propose an optimization model for optimal allocation of operat-

ing hours. In hospitals, patients have different medical requirements and the ORs are

differently equipped. Therefore, not every patient type can be treated in every OR.

Furthermore, patient types are differentiated into patient groups according to their

expected surgery duration. Depending on the specific hospital, the share of patients

of each group varies considerably resulting in a hospital-specific case mix which

is almost constant in the medium term. Since the demand for types of ORs varies

dependent on the case mix, operating hours of the ORs need to match it. The follow-

ing linear stochastic optimization model decides on daily operating hours for every

OR on a tactical level which are valid for every day in the planning horizon.

On an operational level, the throughput of patients is an important performance

criterion. For our medium term consideration, we take the number of patients to

treat per day as given, to focus on the impact of operating hours. Another important

criterion for hospital performance is employee satisfaction which needs to be high

to guarantee best possible patient care. Hence, the objective is to minimize over-

time as an indicator for staff satisfaction. Similar to common approaches to consider

uncertainty in constraints, our model computes worst-case overtime. Taking the 95th

percentile, the tactical model guarantees for a high probability of minimum over-

time. Our tactical linear stochastic optimization model decides mainly on operating

hours cj in minutes for each specific OR j ∈ J . Besides, patients are assigned to

ORs depending on their medical group l ∈ L with the variable xjl. Since we decide

on a tactical level, all patients admitted must be assigned to an OR. Variation and

uncertainty in the number of patients and type are represented through scenarios and

reflect the hospital’s case mix. Every scenario is weighted depending on the occur-

rence in the hospital’s case mix with the parameter ws
. The objective is to minimize

the expected sum of overtime minutes (os+j ) over all ORs j ∈ J and scenarios s ∈ S
(see (1)).

min
∑

s∈S

∑

j∈J
ws ⋅ os+j (1)

The model considers that the overall OR time C per day remains constant and that in

each scenario each patient is assigned to an OR (see (2–3)). cj decides on the capacity

of OR j ∈ J in minutes, while bsl is the number of patients of group l ∈ L to be

scheduled in scenario s ∈ S . xsjl decides on the number of patients of group l ∈ L

to be treated in room j ∈ J in scenario s ∈ S .

∑

j∈J
cj = C (2)

∑

j∈J
xsjl = bsl ∀l ∈ L , s ∈ S (3)
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Only one optimal allocation of operating hours for all scenarios is allowed and

over- and undertime (osj
+

or osj
−

, respectively) are calculated through a worst-case

assumption—every group’s surgery duration is expected to be as long as the 95th

percentile a0.95l derived from historical data (see (4)).

∑

l∈L
xsjl ⋅ a

0.95
l + osj

− − osj
+ = cj ∀j ∈ J , s ∈ S (4)

Moreover, it ensures that the assignments meet the requirements for every patient

type (see (5) and Fig. 1). A is the set of patient groups with special requirements,

and Eq. (5) prevents them from being assigned to an unsuitable OR.

∑

l∈La

∑

j∈J ∖Ja

xsjl = 0 ∀s ∈ S , a ∈ A (5)

Finally, domain constraints ensure that cj ∈ ℕ0, xsjl ∈ ℕ0 and osj
+
, osj

−
≥ 0. cj is lim-

ited to an interval C defining minimal and maximal operating hours for the ORs.

Since the operating hours are determined based on the considered scenarios, it is

of high importance that these match the hospital’s case mix. For computational rea-

sons, it is not possible to include all information of daily patient occurrence provided

by a hospital into the optimization model, instead, we use scenario reduction as in

Heitsch and Römisch [4]. The Euclidean distance weighted inversely proportional

with the average number of patients per week per group acts as a measure for the dis-

tance between two scenarios. The weighting parameter ws
is the share of scenarios

best represented by scenario s ∈ S . Implementation for heart centers is exemplarily

shown in the next section.

3 Case Study

Data Analysis

This case study is based on data collected in a large hospital for thoracic and cardio-

vascular surgery in Germany. We include detailed data of more than 40,000 surg-

eries performed between 2009 and 2015. The patient collective consists of children

patients, hybrid patients, who need combined cardiological and cardiothoracic inter-

ventions, and the remaining patients with no special requirements for the equipment

of their OR (regular patients). These three patient types are additionally subdivided

into nine patient groups according to their expected surgery duration (without emer-

gencies). Figure 1 shows feasible assignments from patient groups to eight available

ORs. There are three different types of ORs matching the patient types. Rooms one

to six have no special equipment, room seven is a hybrid OR and room eight fits chil-

dren’s requirements. The total available OR time per day,C = 5,340min, is allocated

among the ORs and each room starts at 7:45 a.m. For every patient group (including
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Fig. 1 Feasible assignments of patient groups to ORs

emergency patients), distribution functions for the surgery duration and the number

of patients per week are calculated, which fit realistic data (see Table 1).

Strategies for Resource Allocation

The optimization model introduced in Sect. 2 computes optimal operating hours for

the ORs. Using scenario reduction, 1,705 scenarios are reduced to ten best represent-

ing all remaining and thus representing the hospital’s case mix. With this drastically

reduced number of scenarios, information from 1,705 scenarios is aggregated in the

weights and shapes of the remaining ten scenarios.

Figure 2 shows different alternatives for operating hours. Alternative OPT is the

result of the optimization model, we compare it with the current real-world situation

(Alternative R) and with uniform operating hours (Alternative U).

Evaluation

These three different alternatives are tested in a simulation study using our evalua-

tion tool which simulates the workflow in the ORs (see Fig. 3). For each alternative,

the corresponding operating hours are fixed for the whole investigation period. We

measure the quality of the optimal results threefold with regard to three main stake-

holders. Apart from the staff, we consider patients and management. On patient side,

we study postponement of patients (actual treatment day ≠ planned treatment day).

For management requirements we consider the OR utilization and on employee and

especially physician side, we focus on the amount of overtime. Operational OR plan-

ning is often divided into two steps repeated daily or weekly. The first step plans the

admission of patients for the upcoming week. Afterwards, the exact order of the

surgeries is determined every day. Our evaluation tool is a framework that connects

these planning steps by using the output of one step as the input for the following

one. Each planning step is supported by hospital manager’s rules. For example, chil-

dren patients are preferably treated in the morning and patients whose appointments

have been postponed from the day before are considered with higher priority in the

next step to avoid further postponement. These daily schedules are included in our

simulation model. The number of patients per week as well as the surgery duration

for the patients is generated through probability distributions fitting realistic data and

are considered according to Table 1. Moreover, the interarrival times of emergencies

in minutes are exponentially distributed (𝜆 = 420) to generate 24 emergencies per

week on average. We evaluate 52 weeks, that is 52 runs of weekly admission planning
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Regular Hybrid Child

Fig. 2 Alternatives for allocation of operating hours

Fig. 3 Operational evaluation framework (Alternatives as in Fig. 2)

and 260 runs of daily allocation planning. During the year, we have approximately

5,400 patients undergoing surgery.

Results

Modified operating hours influence three main characteristics corresponding to the

three main stakeholders in hospitals. Referring to staff interests, overtime should be

avoided. Evaluation shows significant improvement in the daily amount of overtime

over the whole period investigated. The 95th percentile of daily overtime—which is

the sum of overtime minutes across all ORs—is 716.3 min for R, 785.8 min for U and

only 557.6 min for OPT. As shown in the boxplots (Fig. 4), best results are achieved

in OPT, while U performs considerably worse. R shows similar results to OPT, but

each value, especially the median, is higher. Not only the staff, but also the patients

benefit from an optimal resource allocation. OPT performs considerably better than

U and R. In OPT we have the highest share of patients being treated on the assigned

day (94%). Compared to R (91% treated on the assigned day) the share of patients

being postponed decreased by three percentage points (∼150 patients/year) using

alternative OPT. With 11% of postponed patients U performs worst. Although in

general the stakeholder’s interests are conflicting, our optimal solution supports the

management’s interests as well. As seen in Fig. 5, improving the working condition

for the staff and patients’ interests does not negatively affect the OR utilization or

the number of patients being treated.
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Fig. 4 Boxplots showing

the daily amount of overtime

in minutes

Fig. 5 Boxplots showing

the daily utilization of the

ORs

4 Conclusion

Using the innovative optimization model, staff overtime and patients rescheduling

is considerably reduced. Reallocation of operating hours in ORs can promote main

stakeholder’s interests in a hospital. Variation of operating hours impacts shift plan-

ning and scheduling. Following the current development to flexible shift models in

order to reconcile family and career, new operating hour schedules can be integrated

to avoid unplanned overtime [1]. Further research on the optimal allocation of operat-

ing hours to investigate the interaction between over- and underestimation of surgery

duration could additionally improve the performance of OR utilization.
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A Periodic Traveling Politician Problem
with Time-Dependent Rewards

Deniz Aksen and Masoud Shahmanzari

Abstract The Periodic Traveling Politician Problem (PTPP) deals with determining

daily routes for a party leader who holds meetings in various cities during a campaign

period of 𝜏 days. On a graph with static edge costs and time-dependent vertex profits,

PTPP seeks a closed or open tour for each day. The objective is the maximization of

the net benefit defined as the sum of rewards collected from meetings in the visited

cities minus the traveling costs normalized into a compatible unit. The reward of a

meeting in a city are linearly depreciated according to the meeting date and recency

of the preceding meeting in the same city. We propose a MILP formulation in which

we capture many real-world aspects of the PTPP.

1 Introduction

In this paper we study the periodic traveling politician problem (PTPP) which is

the generalization of the prize collecting traveling salesman problem (PCTSP). This

problem can be considered as a Selective Multi-Period Dynamic Prize-Collecting

TSP that asks for a closed or open tour maximizing the net benefit. In comparison

to the classical TSP and PCTSP, PTPP contains extra elements of complexity. PTPP

can be described as follows. Consider a set of cities I ∶= {0, 1,… , n} including a

fictitious city (indexed as 0), a set of cities I′ = {1,… , n} including a campaign

centre (capital city indexed as 1) and a set of daysT = {1,… , 𝜏} before the elections.

On each day t ∈ T, any city i ∈ I′ can be visited either to hold a meeting there or

without a meeting. A prize of BRi (Base Reward) is specified for a meeting in each

city i ∈ I′ where the amount of BRi depends on the population of city i ∈ I′ and the

ratio of votes of the politician’s party (PP) in the previous election. We assume that

BRi ≥ 0 for all i ∈ I′. In addition, the actual reward earned by holding a meeting

in city i ∈ I′ on day t depends on two other factors: (i) The number of remaining
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days until the end of campaign, i.e. until the election day, denoted by (𝜅 − t). (ii)

The number of days passed since the previous meeting in the same city, denoted by

s where 1 ≤ s ≤ t − 1. The traveling cost between each pair of cities is known and

given by cij, i, j ∈ I where cij denotes the cost of driving (or flying where applicable)

from city i to city j. The traveling time between each pair of cities is also known and

given by dij, i, j ∈ I. The maximum tour duration to be observed while planning the

tour of each day is denoted by 𝜙. This time limit imposes an implicit threshold on

the number of cities that can be visited in any given day. There is an explicit limit 𝛼

on the number of daily meetings. The problem consists of selecting a subset of cities

and visiting them with a tour starting and ending at city i ∈ I′. Each city i ∈ I′ is

associated with a meeting time which is denoted by 𝜎i, i ∈ I′. A distinctive feature

of the PTPP is that there are three possible types of daily tours.

Type-1: Single-city tour. The politician wakes up in city i on day t, holds a meet-

ing and sleeps in the same city i. We assume that the politician goes from city i to a

fictitious city denoted by 0 and returns from 0 back to i. The travel costs and times

between city 0 and any city i ∈ I′ are zero in both directions.

Type-2: Multi-city closed tour. The politician wakes up in city i on day t, leaves

i and visits at least one more city scheduled for that day. At the end of the day, he

returns to the same city i to sleep that night.

Type-3: Multi-city open tour. The politician wakes up in city i on day t, leaves

i and goes to another city j. In between i and j he may visit one or more cities, or he

may directly travel from i to j. However, he does not return to i. Instead, he stays in

j overnight, and wakes up there in the morning of day (t + 1).
Each city can accommodate at most one meeting a day. There can be an upper

bound (such as three or four) on the total number of meetings held in each city dur-

ing the campaign period. Moreover, the mechanism of the reward function will most

likely prevent multiple visits to the same city in consecutive days. The durations of

meetings range from 2 to 3 hours depending on the population of the host city. The

cost of traveling by bus is 1.50 TL/km (Turkish Lira per Kilometer). For those cities

with an airport and a bus travel time of more than 270 min from one another, we care-

fully check which travel option (airplane or party bus) is more time efficient. While

doing this, we reckon with the commuting times between city centers and respective

airports as well as with the check-in delays. The travel cost and time matrices are

finalized after this investigation of the road travel times and flight times in Google

Maps and TurkishAirlines.com. Finally, the politician cannot be away from the cap-

ital city Ankara (the campaign base) for more than 𝜅 consecutive days.

The existing literature of the PCTSP was surveyed in Feillet et al. [4]. Addition-

ally, different methods are proposed in the literature to solve TSP and its variants in

Brub et al. [2] and Cook [3]. Multi period TSP variants have been also studied in the

literature. These problems usually deal with finding daily tours for a traveling sales-

man who provides a wide range of items to customers in different cities. Another

significant variant of the TSP is the traveling purchaser problem with budget con-

straints [5].
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2 Mathematical Modelling

In this section a mathematical formulation of the PTPP is proposed based on a MILP

formulation for the TSP. The following additional index set are introduced besides

the sets introduced earlier in Sect. 1: T′ = T∖{1}∶ the set of all days of the campaign

period excluding the first day. The following decision variables are introduced:

Xijt: Binary variable indicating if arc (i, j) is traversed in day t (i, j ∈ I, t ∈ T).

Lit: Binary variable indicating if city i is not entered, but only left in day t.
Eit: Binary variable indicating if city i is not left, but only entered in day t.
Sit: Binary variable indicating if the politician sleeps in city i by the end of day t.
Zit: Binary variable indicating if the politician holds a meeting in city i in day t.
FMit ∶ Binary variable indicating if the first meeting in city i is held in day t.
Rits: Binary variable indicating if city i accommodates two consecutive meetings in

day t and day (t − s) with no other meeting in between.

Uit: A continuous nonnegative variable used in the Modified Miller-Tucker-Zemlin

Subtour Elimination Constraints determining the order of visit for city i in day t.
Given the index sets and the decision variables, PTPP can be formulated as follows:

max .NET_BENEFIT =
∑

i∈I

∑

t∈T
BRi ×

𝜏 − t + 1
𝜏

× FMit +

∑

i∈I

∑

t∈T

∑

1≤s<t
BRi ×

𝜏 − t + 1
𝜏

× s
k𝜏

× Rits −
∑

i∈I

∑

j∈I

∑

t∈T
cijtXijt (1)

∑

j∈I
Xijt −

∑

j∈I
Xjit = Lit − Eit, i ∈ I, t ∈ T (2)

Lit + Eit ≤ 1, i ∈ I, t ∈ T (3)

∑

j∈I
Xijt ≤ 1, i ∈ I, t ∈ T (4)

∑

j∈I
Xjit ≤ 1, i ∈ I, t ∈ T (5)

Si(t−1) ≤ Sit +
∑

j∈I

Ljt + Ejt

2
, i ∈ I, t ∈ T ′

(6)

∑

j∈I

Ljt + Ejt

2
+ Si(t−1) ≥ Sit, i ∈ I, t ∈ T ′

(7)

Si(t−1) ≤ Lit + Sit, i ∈ I′, t ∈ T ′
(8)
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S0t = 0, t ∈ T (9)

Xi0t = X0it, i ∈ I′, t ∈ T (10)

Eit ≤ Sit, i ∈ I′, t ∈ T (11)

Sit ≤
∑

j∈I
Xij(t+1), i ∈ I′, t ∈ T , t ≤ 𝜏 − 1 (12)

t+𝜅∑

k=t
S1k ≥ 1, t ∈ T , t ≤ 𝜏 − 𝜅 (13)

Zit ≤
∑

j∈I
Xijt + Eit, i ∈ I′, t ∈ T (14)

Zit ≤
∑

j∈I
Xjit + Lit, i ∈ I′, t ∈ T (15)

∑

j∈I′
Zjt ≤ 𝛼, t ∈ T (16)

(n + 1)Sj(t−1) + (n + 1)(1 − Xijt) + Ujt ≥ Uit + 1, i, j ∈ I, t ∈ T ′
(17)

Uit ≤
∑

j∈I

∑

k∈I
Xjkt + 1, i ∈ I, t ∈ T (18)

Uit ≥ Si(t−1), i ∈ I, t ∈ T ′
(19)

Uit ≤ Sit +
∑

j∈I
Xijt, i ∈ I, t ∈ T (20)

FMi1 = Zi1, i ∈ I′ (21)

FMit ≤ Zit, i ∈ I′, t ∈ T ′
(22)

FMit ≤ 1 − Ziu, i ∈ I′, t ∈ T ′
, 1 ≤ u ≤ t − 1 (23)

Rits ≤ Zit, i ∈ I′, t ∈ T ′
, 1 ≤ s ≤ t − 1 (24)

Rits ≤ Zi(t−s), i ∈ I′, t ∈ T ′
, 1 ≤ s ≤ t − 1 (25)
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t−1∑

k=t−s+1
Zik ≤ (s − 1)(1 − Rits), i ∈ I′, 3 ≤ t ≤ 𝜏, 2 ≤ s ≤ t − 1 (26)

Rits = 0, i ∈ I, t ∈ T , t ≤ s ≤ 𝜏 (27)

Rits ≤ 1 − FMit, i ∈ I′, t ∈ T ′
, 1 ≤ s ≤ t − 1 (28)

Rius ≤ 1 − FMit, i ∈ I′, t ∈ T ′
, t + 1 ≤ u ≤ 𝜏, 1 ≤ u − s ≤ t − 1 (29)

∑

i∈I′
Zit𝜎i +

∑

i∈I

∑

j∈I
Xijtdij ≤ 𝜙, t ∈ T ′

(30)

Xijt,Lit,Eit, Sit,Zit,FMit,Rits ∈ {0, 1}, Uit ≥ 0 (31)

The objective function (1) seeks to maximize the difference between collected

rewards and the incurred routing costs. Constraints (2) and (3) are coupling con-

straints between L, E and X. Constraints (4) and (5) are incoming and outgoing

degree constraints. Note that these degree constraints are imposed as inequality due

to the selective nature of PTPP. The politician does not have to visit or to hold a meet-

ing in every city. Constraints (6)–(8) force the politician to sleep in the waking city

for every day if there is a closed tour on that day. Constraints (9) and (10) prevent the

politician from sleeping in fictitious city and force him to exit if he enters there. Con-

straints (11) force the politician to sleep in the last city of a Type-3 Tour. Constraints

(12) ensure that he leaves the sleeping city next day. Constraints (13) enforce visits to

the capital city every 𝜅 days. Constraints (14)–(16) are coupling constraints between

Z and X. Constraints (17)–(20) are Modified MTZ subtour elimination constraints.

Constraints (21)–(29) are coupling constraints between FM, Z and R. Constraints

(30) guarantee that the daily maximum tour duration is not violated. Constraints

(31) ensure binary integrality and nonnegativity, respectively.

3 Preliminary Computational Results

Four factors are considered in the calculation of the reward collected from a meeting

in each city: (i) Population, (ii) Ratio of votes received by the PP in the previous

election, (iii) Number of the remaining days until the election, and (iv) Number of

days passed since the last meeting. Two factors, namely population and ratio of the

PP votes in the previous election, directly affect the BRi while the two other factors

make the BRi time dependent. BRi is calculated as follows.

BRi = Criticality_Factor(i) × (Base_Reward(i) +
Population(i)

Min.Population
× Population_

Multiplier)
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Table 1 Comparison of different solutions of the same instance with 39 cities and 15 days

Model MILP solution LP solution Best possible Relative gap

(%)

CPU time (s)

Full MILP 21,146.5 – 27,713.5 23 86,435

LR – 65,585.7 – – 38

PLR1 26,125.3 – 29,143.9 10 3,791

SFLR 25,345.3 – 29,596.6 14 43,216

PLR2 57,431.7 – 58,744.2 2 35,537

Depending on the vote ratio of PP in the previous election, electoral zones can be

divided into different criticality categories. Note that our aim is to come up with

a base reward function that produces rewards not only according to city population,

but also according to the criticality (importance) of that city. We considered 39 cities

of Turkey with the highest BRi values and a campaign period of 𝜏 = 15 days.

The best feasible solution (the lower bound on the true optimal solution) of this prob-

lem is reported as 21,146.5. We used the commercial solver Gurobi 6.5.0 inside the

mathematical modeling suite GAMS 24.6.2 on a Dell T3500 workstation with Intel

Xeon W3960 processor. The CPU time limit was applied as 24 hours. Considering

the 23% relative gap, we examined whether we can find a tighter upper bound. To

this end, we investigated four types of relaxations: (i) Linear Relaxation of binary

decision variables (LR), (ii) Partial Linear Relaxation of the binary routing variables

X (PLR1), (iii) Semi-Full LP Relaxation with SL, FM and Z forced to be binary and

all other originally binary variables relaxed between 0 and 1 (SFLR), and (iv) Partial

Linear Relaxation of the binary variables S (PLR2). The comprehensive nonrelaxed

model (denoted as FULL MILP) has 22,782 binary variables after the reductions

performed by Gurobi at the root node before the iterations commence. By relaxing

the binary variables X, this number reduced to 2,885 for the Partial Linear Relaxation

(PLR1) version. Table 1 presents the test results obtained from the five models. The

final upper bound for PLR1 is 29,143.9 which is worse than the final upper bound of

the MILP model, namely 27,713.5. The lower bound of SFLR at the end of 12 h is as

high as 57,431.7 and the upper bound is 58,744.2. These are extremely loose bounds.

Therefore, the FULL MILP upper bound (the best feasible solution) is probably the

tightest bound we could obtain so far. In this solution, the number of meetings held

is 43, and the number of cities visited is 39. The values of the total collected rewards

and total travel costs are 33,824 and 15,663 respectively.

4 Concluding Remarks

In this paper we introduced a MILP formulation for the Periodic Traveling Politician

Problem with time-dependent rewards. It can be viewed as a multi-period version of

the prize-collecting traveling salesman problem with dynamic profits, arbitrary depot
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nodes, and three types of time restricted tours. The objective function seeks to max-

imize the collected rewards minus the traveling costs by visiting a subset of cities at

each day subject to maximum tour duration. Many real-life aspects are incorporated

into the formulation of the problem. To examine the performance of the proposed

MILP model, several relaxation schemes have been tested. PTPP is a new problem

in the literature. Our study will stimulate other researchers to work on this rigorous

problem which could open new gates in election logistics.
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An Emission-Minimizing Vehicle Routing
Problem with Heterogeneous Vehicles
and Pathway Selection

Martin Behnke, Thomas Kirschstein and Christian Bierwirth

1 Introduction

In addition to cost and time, greenhouse gas (GHG) emissions have become a

further command variable for planning processes in the transportation industry.

A large number of scientific literature is devoted to the development of planning

approaches taking into account the emissions of transport processes. In order to min-

imize a transport process’ emissions, many factors affecting emissions have been

studied. Besides the total distance covered by a transport process, the modal split,

payload, traveling speed as well as vehicle type and specifications are identified as

most influential planning parameters.

In this paper, we present an emission-oriented vehicle routing problem with het-

erogeneous vehicles and pathway selection (EVRP-VC-PS). The model seeks to find

a set of tours such that the total emission quantity of all vehicles employed is mini-

mized and all customers are served while the vehicles’ load restrictions are met. We

use an emission model taking into account vehicle-specific and road-specific char-

acteristics as well as payload as parameters, see [3].

In an experimental study, we sketch a network structure typically found in city

logistics where a set of customers in an urban area is to be served from a sub-

urban depot via urban or highway pathways. We examine the effects of different

M. Behnke ⋅ T. Kirschstein (✉) ⋅ C. Bierwirth

School of Economics and Business, Martin-Luther-University,

Gr. Steinstraße 73, 06108 Halle, Germany

e-mail: thomas.kirschstein@wiwi.uni-halle.de

M. Behnke

e-mail: martin.behnke@wiwi.uni-halle.de

C. Bierwirth

e-mail: christian.bierwirth@wiwi.uni-halle.de

© Springer International Publishing AG 2018

A. Fink et al. (eds.), Operations Research Proceedings 2016,

Operations Research Proceedings, DOI 10.1007/978-3-319-55702-1_38

285



286 M. Behnke et al.

objective functions (namely emission, time, and distance minimization) and path-

ways w.r.t. total emissions, total travel time, and total travel distance. Furthermore,

we study the effects of different network layouts by varying the highway radius.

2 An Emission-Oriented Vehicle Routing Problem with
Heterogeneous Vehicles and Pathway Selection

In contrast to the classical VRP, we consider the possibility to choose between differ-

ent pathways connecting two nodes, so we obtain a graph in which parallel arcs are

possible, see e.g. [1]. We model these pathways as a set Aij ∶= 𝛿
+i ∩ 𝛿

−j
of directed

arcs from i to j, where 𝛿
+i

refers to the outgoing arcs and 𝛿
−i

to the ingoing arcs of i.
For each arc we assume constant distance, acceleration and speed.

The estimation of GHG emissions during a vehicle tour is calculated with the

mesoscopic emission model presented in [3]. The factors influencing GHG emis-

sions are driving speed, acceleration frequency, load, distance, and technical vehicle

specifications. The resulting emission function can be simplified into a linear func-

tion with a load-dependent and a load-independent emission factor depending on arc

characteristics (such as distance, speed, etc.) and vehicle specifications.

For our research, we consider four different vehicle types with payload capacities

of 2.5, 5.5, 14 and 25 tons and different vehicle parameters compiled from [2] and [4]

(details can be found on http://prodlog.wiwi.uni-halle.de/forschung/research_data/).

Using the emission model designed by Kirschstein and Meisel [3] and the notation

of Table 1, we obtain the following MILP for the EVRP-VC-PS

Table 1 Variables and parameters of the linear program

Variables

xak Number of vehicles k ∈ K using arc a lak Load of vehicle k ∈ K on arc

a ∈ A
Parameters

C Set of customers: C ∶= {1,… , n} V Set of all vertices:

V ∶= {0,… , n}
𝛿
+i

Set of outgoing arcs of i ∈ V 𝛿
−i

Set of ingoing arcs of i ∈ V
Aij Set of arcs from i to j: Aij ∶= 𝛿

+i ∩ 𝛿
−j A Set of all arcs: A ∶=

⋃
i,j∈V Aij

K Set of vehicle types: K ∶= {1,… ,m} da Distance of arc a ∈ A
qi Demand of customer i ∈ C vk Available vehicle number of

type k ∈ K
capmax

Maximum load capacity of all vehicles cfix

ak Load-independent emission

coefficient

mtare

k Tare weight of vehicle type k cload

ak Load-dependent emission

coefficient

http://prodlog.wiwi.uni-halle.de/forschung/research_data/
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min →
∑

a∈A
da

∑

k∈K
cfix

ak ⋅ xak + cload

ak ⋅
(
mtare

k ⋅ xak + lak
)

(1)

s.t.

∑

a∈𝛿−j

∑

k∈K
xak = 1, ∀j ∈ C (2)

∑

a∈𝛿+i

∑

k∈K
xak = 1, ∀i ∈ C (3)

∑

a∈𝛿−j
xak =

∑

a∈𝛿+j
xak, ∀j ∈ C, k ∈ K (4)

∑

a∈𝛿+0
xak = vk, ∀k ∈ K (5)

∑

a∈𝛿+j

∑

k∈K
lak =

∑

a∈𝛿−j

∑

k∈K
lak − qj, ∀j ∈ C (6)

lak ≤ capk ⋅ xak, ∀a ∈ A, k ∈ K (7)
∑

a∈𝛿+0

∑

k∈K
lak =

∑

i∈C
qi (8)

∑

a∈𝛿−0

∑

k∈K
lak = 0 (9)

xak ∈ ℕ0, lak ∈ ℝ+ a ∈ A, k ∈ K (10)

The objective is to minimize the total amount of emissions produced by all vehicle

types. In the experiments, we also test the model with distance and time minimization

objective, i.e.

∑

a∈A
da

∑

k∈K
xak and

∑

a∈A
𝜏a

∑

k∈K
xak

where 𝜏a is the travel time of arc a ∈ A.

Restrictions (2) and (3) ensure to visit and leave each customer exactly once, (4)

guarantee that the vehicle type does not change during the tour. For every vehicle

type k, (5) ensure that exactly vk vehicles leave the depot. Vehicles not required for

deliveries immediately return to the depot on arc (0, 0). With restriction (6) we ensure

that the load leaving a customer equals the load reaching it reduced by its demand.

The compliance of the maximum vehicle capacity is secured by (7). The following

two restrictions constitute valid cuts. The sum of all customer demands has to be

transported (8) and no load reaches the depot (9), (10) are the domain declarations.



288 M. Behnke et al.

3 Construction of Instances

3.1 Creation of Data Sets

To test the proposed model, we split Solomon’s R1 instance into consecutive chunks

of 15 customers obtaining six different instances. Each instance is interpreted as an

urban area. Next to urban roads, we introduce a highway circle around the center of

the customer nodes, i.e. the average of the customer coordinates C =
(
xC, yC

)
. The

circle’s radius r is varied between {0.5, 0.7, 1.0, 1.2} of the distance from the center

C to the farthest customer location. In any constellation, the depot is placed on the

most northern point of the highway (xC, yC + r).
We calculate two types of arcs for each pair of nodes i, j ∈ V , so every Aij

consists of exactly two elements. Type t = U represents a shortest-distance path

a ∶= (i, j,U) ∈ Aij through the city using urban roads calculated as the Euclidean

distance between the coordinates of customers i and j, i.e. dijU ∶= d2 (i, j). For urban

roads, low average speed and high frequency of acceleration processes is assumed.

Path type t = H denotes the highway path a ∶= (i, j,H) ∈ Aij. Here, the vehicle

drives the shortest way from i to the highway (point P1), then drives on the high-

way to the point P2 closest to node j. Afterwards, the vehicle travels the remaining

way through the urban city area. That is dijH = d2 (i,P1) + dcirc (P1,P2) + d2 (P2, j)
with dcirc (i, j) = 𝜋 ⋅ r ⋅ 𝛼(P1,P2)

180◦
of the circular arc and the enclosed angle 𝛼 (P1,P2)

defined by C, P1, and P2. For the segment traveled on the highway dcirc (P1,P2), a

higher average speed and less frequent acceleration processes are assumed. Finally,

we divide the demands of the Solomon instances by 4 in order to fit to the supposed

vehicle capacities. In total, we obtain 6 ⋅ 4 = 24 test settings.

3.2 Preprocessing

To reduce the complexity of the test instances, we check for any pair i, j ∈ V if one

of the arcs (i, j,U) and (i, j,H) is dominating the other. The dominated arc is then

deleted from the instance. Obviously, in case of distance and time minimization for

any pair of nodes i, j ∈ V only one arc is efficient.

If emission minimization is considered, the decision is more complex. An arc can

only be deleted if and only if emissions are less or equal on one arc for all vehicles

and all possible loads. In Table 2 it is shown that for 0.65–10.29% of all pairs, both

arcs are kept after preprocessing.
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Table 2 Average values under emission optimization dependent on the highway radius

Radius Emissions Emission Runtime Share of highway arcs Kept double

arcs (%)

w/o

highway

w/ highway in s in E (%) in solution

(%)

0.5 43.13 39.85 19.85 40.38 34.02 10.29

0.7 46.85 42.17 34.12 35.04 40.57 7.03

1.0 55.14 51.88 77.29 7.70 17.64 1.43

1.2 61.31 60.75 140.82 1.42 6.68 0.65

4 Results of Computational Study

The constructed instances are solved with ILOG CPLEX 12.6.3.0 on a 64-bit Win-

dows 10 Pro system (Intel Core i7-2600, 8 GB memory).

4.1 Effect of Pathway Selection

Table 2 displays the average characteristics of the optimal solutions for the instance

sets categorized by highway radii. As expected, total emissions increase with increas-

ing radius and, thus, increasing distance to the depot. Likewise, runtimes increase,

too, despite the fact that less arcs remain after preprocessing. Hence, it looks like

instances with a higher distance scale are easier to solve. Furthermore, the smaller

the highway radius the less arcs are deleted by preprocessing. Although, the share

of highway arcs used in the optimal solutions reaches a maximum of about 40%

for r = 0.7. Overall, emissions can be reduced by about 1–10% when considering

highway pathways. Again, relative savings are maximal at a radius of r = 0.7.

4.2 Effect of Objective

Here, we compare the solutions under emission, travel distance, and travel time opti-

mization. For studying the joint performance under the different objectives, Fig. 1

shows the average total emissions, total traveled distances, and total travel times rel-

ative to the minimum of each measure. Figure 1 reveals that emission minimization

produces the most unbalanced pattern with about 25 and 13% increase in travel dis-

tance and travel time, respectively. In contrast, the most leveled performance pattern

is obtained by time minimization showing an increase of about 12% for distance and

emissions as well. Distance optimization shows the highest surcharge in emissions

and an equal increase in travel time as for emission optimization.
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Fig. 1 Relative amount of

performance indicators

under different objective

functions

total emissions

total timetotal distance

0.9 1 1.1 1.2 1.3

emission optimization
distance optimization
time optimization

Table 3 Average characteristics of optimal solutions under different objective functions

Emission optimization Distance optimization Time optimization

Employed vehicles 4.74 3.38 3.44

# highway arcs 4.88 0 4.89

# urban arcs 14.86 18.38 13.55

Runtime (s) 62.26 7.79 7.04

Table 3 shows the average number of vehicles as well as the number of high-

way and urban arcs used in the optimal solutions. Additionally, the average runtimes

are reported. It appears that emission minimization is more difficult to solve as the

average runtime is almost 10 times higher than compared with distance and time

optimization. Most probably the increased solving effort is caused by the fact that

load weight contributes to the objective. Emission minimization also employs more

vehicles and, as a consequence, uses more arcs in total. The share of used highway

arcs is highest for time optimization, as expected.

To summarize this paper highlights that considering alternative routes in vehicle

routing problem particularly for urban areas may allow decision makers to reduce

GHG emissions. The proposed emission-orienting vehicle routing model was tested

on artificial data sets of small scale with only two pathways. Nevertheless, relevant

savings in GHG emissions could be generated by considering both pathway options.

In practice, however, many more alternative pathways may exist such that (a) the

emission reduction potential is much larger and (b) more sophisticated solution meth-

ods are required in order to solve large instances.
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Window Fill Rate in a Two-Echelon
Exchangeable-Item Repair-System

Michael Dreyfuss and Yahel Giat

Abstract The fill rate service measure describes the proportion of customers who

commence service immediately upon arrival. Since, however, customers will usually

tolerate a certain wait time, managers should consider the window fill rate in lieu of

the fill rate. That is, the performance measure of interest is the probability that a

customer is served within the tolerable wait time. In this paper, we develop approxi-

mation formulas for the window fill rate in a two-echelon, exchangeable-item repair

system in which the upper echelon is a central depot and the lower echelon com-

prises multiple locations. We demonstrate the use of the formulas through a numer-

ical example and measure the approximation error of the window fill rate formulas

using simulation.

1 Introduction

Exchangeable-item repair systems are systems to which customers bring a failed item

and exchange it for a serviceable item. We consider a two-echelon system similar to

[10] that comprises multiple locations in the lower echelon and a central depot in

the upper echelon. The repair facilities in the lower echelon are capable of repairing

only certain failures. If a failure cannot be repaired on-site, the item is shipped to

the central depot for repair. To improve the system’s performance, spares may be

allocated to each of the locations.

In this paper, the system’s performance is an extension of the fill rate measure.

The fill rate assumes that customers penalize the firm if they wait. In most cases,

however, customers will tolerate a certain period of wait and therefore the firm does

not incur reputation costs if the customer waits less than the tolerable wait. In [7],

the fill rate measure is extended to incorporate this customer patience in a single-

echelon setting, and termed as the window fill rate, that is, the probability that the
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customer is served within the tolerable wait. The goal of this paper is to extend these

results and develop approximating formulas for the window fill rate in a two-echelon

system.

Our paper contributes to the research of multi-echelon exchangeable-item repair

systems originated by Sherbrook’s METRIC model [15] that develops an approxi-

mate evaluation of the number of backorders in a multi-echelon system and describes

a greedy algorithm to solve the spares allocation problem. This body of research is

presented in books such as [14, 16] and recently reviewed in [2]. Except for the fact

that we limit the system to a two-echelon structure, we assume the standard METRIC

assumptions, which include ample repair servers, that components fail according to

a Poisson process with a constant arrival rate and a continuous (S − 1, S) review

policy.

Many METRIC-based papers focus on the number of back-orders performance

measure (e.g., [1, 6, 9]) or the fill rate performance measure (e.g., [4, 13]). The

disadvantage of the fill rate is that it does not take into account research such as [8]

that report that customers will tolerate a certain period of wait, (see also [11] who

use the term “reasonable duration”). We incorporate this, by considering the window
fill rate, i.e., the probability of a random customer to be served within a certain time

window. Berg and Posner [3] develop a mathematical expression for the window

fill rate for a single location and [7] characterize its functional form and develop

an algorithm to find the near optimal spares allocation in a multiple location single

echelon mode. We extend these papers to a two-echelon system.

2 The Model

The system comprises two echelons with L locations in the lower echelon and one

central depot in the upper echelon. We number the depot as location l = 0 and the

lower-echelon locations as l = 1, ..,L. Customers arrive to each of the L + 1 locations

at rate 𝜆l ≥ 0, l = 0, ...,L. Each location has ample identical repair servers with i.i.d.

repair times. The local repair facilities are able to repair only certain failures whereas

more complex failures are sent for repair in the central depot. In each location, the

cumulative repair time distribution is given by Gl(⋅). Customers receive the available

items according to a first-come first-serve policy. To reduce customer waiting time,

the system keeps a number of spares, so that if there is a spare item available in stock

it is given immediately to the client in exchange for the arriving failed one. After

receiving an item, the customer leaves the system. Let pl denote the probability that

an item can be repaired on-site and is not forwarded to the depot. Lateral shipments

are not allowed and therefore the probability of being forwarded to the depot from

location l > 0 is 1 − pl. The central depot itself is able to repair all types of failures

and therefore p0 = 1. The back and forth shipment times from any lower-echelon

location l to the central depot are i.i.d. with a probability density function dl(t).
The replenishment time is the time between a customer’s arrival to a location

until the customer’s item or its replacement joins the location’s stock. In the lower
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echelon, replenishment could happen in one of two ways. With probability pl, repair

is done on-site and therefore the probability for replenishment within time t is Gl(t).
Alternatively, with probability 1 − pl, an order is opened and forwarded with the

failed item to the central depot and returns with a serviceable item. In this case, for

replenishment to happen within time t, the waiting time at the depot plus shipment

time must be less than t. Therefore, in the lower echelon

Pr[replenish ≤ t] =
= Pr[repair here]Pr[repair ≤ t] + Pr[repair at depot]Pr[shipment + wait at depot ≤ t]

= plGl(t) + (1 − pl)
t

∫

x=0

Pr[shipment = x]Pr[wait at depot ≤ t − x]dx

= plGl(t) + (1 − pl)
t

∫

x=0

dl(x)F0(s0, t − x)dx.

In the above, F0(s0, t) is the window fill rate of the depot, that is, the probability

that a customer or order arriving to the depot is served within t units of time when

there are s0 spares in the depot. In contrast to the lower echelon locations, in the

depot, replenishment happens only due to repair on-site. Therefore, the cumulative

distribution of the replenishment time, Rl(s0, t), is given by:

Rl(s0, t) =
⎧
⎪
⎨
⎪
⎩

plGl(t) + (1−pl)
t
∫

x=0
dl(x)F0(s0, t−x)dx, if l = 1, ...,L

G0(t), if l = 0.
(1)

The total arrival rate at the central depot, ̂
𝜆0, is the sum of the customers arriving

to it and the orders that are forwarded to it from the lower echelon. Thus, ̂𝜆0 = 𝜆0 +∑L
l=1(1 − pl)𝜆l. For the other locations, l = 1, ...,L, the total arrival rate is equal to

the customer arrival rate ̂
𝜆l = 𝜆l.

Since arrivals to the depot are independent, if the depot has no spares then the

replenishment times are also independent (recall, the depot has ample servers and

each server repair time is i.i.d.). In contrast, when there are spares in the depot the

replenishment times described above are dependent (see [10]). In the ensuing analy-

sis, we follow the standard METRIC model [15] approach and neglect this depen-

dency. In Sect. 3 we measure the error due to neglecting the dependency by compar-

ing the window fill rates derived by the approximation formulas with the window fill

rates computed through simulation.

Proposition 1 If location l is allotted s spares then the window fill rate for tolerable
time t, Fl(s, t) is given by

Fl(s, t) = P[ ̂Yl(t) ≤ s − 1] + Rl(s0, t)P[ ̂Yl(t) = s]. (2)
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where ̂Yl = Y1,l − Y2,l and where Y1,l and Y2,l are Poisson random variables with
parameters ̂

𝜆l ∫
∞

u=t(1 − Rl(s0, u))du and ̂
𝜆l ∫

t
u=0 Rl(s0, u)du, respectively.

Proof Follows immediately from Proposition 9 of [3], where we replace the repair

time with the replenishment time and the arrival rate with the total arrival rate. □

Plugging (1) into (2), Fl(s, t) is given by

Fl(s, t)=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

P[ ̂Yl(t) ≤ s − 1]

+
(
plGl(t) + (1 − pl)

t

∫

x=0
dl(x)F0(s0, t − x)dx

)
P[ ̂Yl(t) = s] if l = 1,… ,L

P[ ̂Yl(t) ≤ s − 1]
+ G0(t)P[ ̂Yl(t) = s] if l = 0.

(3)

Proposition 2 a. Fl(s, t) is increasing with s.
b. Fl(s, t) either concave or convex-concave with s.

Proof Follows from the proof of Proposition 1 of [7]. The difference here is that

we have the replenishment time, Rl(s0, t), instead of the repair time, Gl(t). However,

since the proof does not make any assumptions on the functional form of the repair

distribution function, it is permissable to replace Rl(s0, t) with Gl(t). □

Let s = (s0, ..., sL) denote the spares allocation in the system (depot and lower-

echelon locations). The system’s window fill rate, F(s, t), is the weighted average

of window fill rates in each node as follows,

F(s, t) =
L∑

l=0

𝜆l

𝜆

Fl(sl, t). (4)

where 𝜆 =
∑L

l=0 𝜆l is the sum of customer arrivals to the system.

3 Numerical Example

We demonstrate the uses of the window fill rate formulas (3)–(4) using parametric

values loosely based on a small-scale realistic problem. Consider a depot serving

four locations (L = 4) in which all customers tolerate a wait of t = 9. For simplicity,

we assume that all the lower-echelon locations are identical in their arrival rate and

probability for on-site repair. Specifically, 𝜆l = 0.06, pl = 0.5 for all l = 1,… , 4. We

assume, however, that customers do not arrive directly to the depot, that is, arrivals

to the depot are only by repairs forwarded from the lower-echelon locations. Thus,

𝜆0 = 0 and p0=1. Repair time in all the locations (including the depot) is normally

distributed with mean 45 and standard deviation 10. Travel time from each location

to the depot is constant, dl = 5.



Window Fill Rate in a Two-Echelon Exchangeable-Item Repair-System 297

For this example, we assume that there are S = 12 spares available for operations.

In Table 1 we report the window fill rate for different spares allocations. We con-

sider s0 values of 0, 4, 8, 12. When there are twelve spares in the depot, there is only

one possible lower-echelon allocation. For eight, four and zero spares in the depot

there are five, fifteen and thirty-three different lower-echelon allocations, respec-

tively (recall, the lower-echelon locations are identical). For each s0 that we consider,

we report at most four allocations; the allocation with the highest and lowest window

fill rates.

To test the accuracy of the window fill rate formulas, we compare the formula-

derived window fill rate with the window fill rate values that are derived through

simulation. For each simulation, one thousand independent replications were sim-

ulated each for time durations equivalent to 10,368 demand events. The average of

the one thousand observed window fill rates is reported. In all our simulations, the

half width of the 95% confidence interval is less than 0.00081.

Recall, we neglect the replenishment dependency. As discussed in Sect. 2, when

there are no spares in the depot the window fill rate formulae are accurate. Indeed,

by Table 1, when s0 = 0 the absolute error is less than 0.1%, which is within the

confidence interval. In contrast, when there are spares in the depot, the dependency

of the replenishes increases and the formulas are less accurate (see upper rows of

Table 1). Furthermore, the number of replenishes decreases with pl. Indeed, the error

is most appreciable when pl = 0, i.e., when all the items are repaired at the depot (see

the right column of Table 1). Of the fifty-four allocations that we examine, when

pl = 0.5 the absolute error never exceeds one percent. When pl = 0 the errors of

Table 1 The formula-based and simulation-based window fill rate for different spares allocation

pl = 0.5 Error
a

(%) pl = 0 Error
a

(%)

Allocation Window fill rate Window fill rate

s0 (s1, , s4) Formulas

(%)

Simulation

(%)

Formulas

(%)

Simulation

(%)

12 (0, 0, 0, 0) 21.50 21.06 0.4 67.15 71.54 4.4

8 (4, 0, 0, 0) 38.36 38.21 0.1 36.75 42.36 5.6

8 (3, 1, 0, 0) 45.50 45.42 0.1 48.55 51.27 2.7

8 (2, 1, 1, 0) 50.39 50.41 0.0 58.84 58.57 0.3

8 (1, 1, 1, 1) 51.81 51.92 0.1 64.43 62.62 1.8

4 (8, 0, 0, 0) 28.16 29.11 1.0 25.24 25.90 0.7

4 (7, 1, 0, 0) 34.54 35.45 0.9 31.04 32.20 1.2

4 (3, 2, 2, 1) 59.75 59.59 0.2 55.05 55.61 0.6

4 (2, 2, 2, 2) 62.30 61.96 0.3 57.33 57.74 0.4

0 (12, 0, 0, 0) 25.00 25.01 0.0 25.00 25.02 0.0

0 (11, 1, 0, 0) 27.48 27.50 0.0 27.13 27.17 0.0

0 (3, 3, 3, 3) 59.34 59.40 0.1 55.41 55.47 0.1

0 (4, 4, 4, 0) 59.80 59.86 0.1 57.46 57.50 0.0

a
The absolute difference between the formula-derived and the simulation-derived window fill rates
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only nine allocations exceed one percent and the maximal absolute error is 5.6%. The

advantage of using formulas over the more accurate simulation is in the computation

time. Whereas the time to execute each simulation is approximately thirty minutes,

the time to compute the formulas-derived window fill rate is instantaneous.

4 Conclusions

In this paper, we derive approximating formulas for the window fill rate in a two-

echelon exchangeable-item repair-system. We compare the formula-derived window

fill rate values with the window fill rate that is computed through simulation. For the

specific example that we use we find that the maximal absolute error is 5.6%. This

example demonstrates that in many situations, the cost in terms of loss of accuracy

may be negligible compared to the gains in computing time. For example, if man-

agers are seeking to maximize the window fill rate then many evaluations are needed

and using the formulas is preferable to simulation the window fill rate.
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Redistricting in Mexico

Miguel Ángel Gutiérrez-Andrade, Eric Alfredo Rincón-García,
Sergio Gerardo de-los-Cobos-Silva, Antonin Ponsich,
Roman Anselmo Mora-Gutiérrez and Pedro Lara-Velázquez

Abstract Redistricting is the redrawing of the boundaries of legislative districts for

electoral purposes in such a way that Federal or state requirements are fulfilled. In

2015 the National Electoral Institute of Mexico carried out the redistricting process

of 15 states using a nonlinear programming model where population equality and

compactness were considered as conflicting objective functions, whereas other cri-

teria, such as contiguity, were included as constraints. In order to find high quality

redistricting plans in acceptable amounts of time, two automated redistricting algo-

rithms were designed: a Simulated Annealing based algorithm, and an Artificial Bee

Colony inspired algorithm. Computational results prove that the population based

technique is more robust than its counterpart for this kind of problems.

1 Introduction

The zone design problem arises from the need of aggregating small geographical

units (GUs) into regions, in such a way that one (or more) objective function(s) is

(are) optimized and some constraints are satisfied. The design of electoral zones

or electoral redistricting is a well known case, due to its influence in the results of
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electoral processes and its computational complexity, which has been shown to be

NP-Hard [1]. In this framework, the GUs are grouped into a predetermined number

of zones or districts, and democracy must be guaranteed through the satisfaction of

restrictions that are imposed by law. In particular, some generally proposed criteria

are population equality, to ensure the “one man one vote” principle; compactness, to

avoid any unfair manipulation of the border or shape of electoral zones for political

purposes, and contiguity, to prevent from designing fragmented districts [2, 5, 6].

In Mexico, in 2015, the National Electoral Institute (INE) started the design of

new redistricting plans for 15 federal entities using two automated redistricting algo-

rithms: a Simulated Annealing (SA) based algorithm and an Artificial Bee Colony

(ABC) inspired algorithm. The primary purpose of this paper is to describe the main

characteristics of these algorithms. To address this issue, we provide a description of

the problem in Sect. 2. A brief overview of the inner working mode of the SA, and

ABC algorithms are presented in Sects. 3 and 4 respectively. Some computational

results are detailed in Sect. 5. Finally, some conclusions and perspectives for future

work are drawn in Sect. 6.

2 Problem Description

In Mexico, there are two different types of districts used to elect federal and local rep-

resentatives. In 2015, a process to produce new local redistricting plans for 15 federal

entities started, and two heuristic based algorithms were used. These algorithms seek

for a redistricting plan that represents the best balance between population equality

and compactness.

In order to promote population equality of a district Zs, the following measure

was used:

C1(Zs) =
⎛
⎜
⎜
⎜
⎝

1 −
(PZs

PM

)

0.15

⎞
⎟
⎟
⎟
⎠

2

(1)

where PZs is the population of district Zs, and PM is the state average population.

Each district Zs is defined through a set of binary variables xis such that xis = 1 if

the ith GU belongs to district Zs and xis = 0 otherwise. Finally, 0.15 is the maximum

percentage of deviation allowed, 15%.

To promote compactness, a metric that can be easily computed, and requires low

computation time was used. This measure compares the perimeter of a district Zs
with that of a square having the same area.

C2(Zs) =
⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

PCZs
√

ACZs

∗ 0.25
⎞
⎟
⎟
⎟
⎠

− 1
⎞
⎟
⎟
⎟
⎠

(2)
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where PCZs and ACZs are the perimeter and the area of the considered district Zs,
respectively. Thus, districts with a good compactness will have a compactness value

close to 0.

In order to handle the multi-objective nature of the problem, a weight aggregation

function strategy was used:

Minimize f (P) = Σn
i=1𝜆1C1(Zi) + 𝜆2C2(Zi) (3)

where P is a redistricting plan, P = {Z1,Z2,… ,Zn}, with a predefined number of

districts, n. The weighting factors were established after a discussion between polit-

ical parties and INE’s authorities. Both sectors agreed that the main objective in this

process is to preserve the principle “one man one vote”, even above the shape of the

districts. Thus, population equality was considered twice as important as compact-

ness, and the weighting factors were set to 𝜆1 = 1 and 𝜆2 = 0.5. Finally, the con-

struction of redistricting plans is subjected to constraints that guarantee that (R1)

each district is connected, (R2) a predefined number of districts, n, is constructed,

and (R3) each GU is assigned to exactly one district.

Since the design of electoral zones is an NP-Hard problem, the automated heuris-

tic algorithms are an appropriate strategy to design electoral redistricting plans. In

the following sections, we give a brief description of the SA and ABC algorithms

used in the redistricting process in Mexico.

3 Simulated Annealing Adaptation

Simulated Annealing is a metaheuristic introduced by Kirkpatrick in [4]. We imple-

mented a classical version of SA, with a geometric decreasing cooling schedule.

The initial solution is created using the following strategy. All GUs are labelled

as available. The algorithm then selects randomly n GUs, assigns them to different

districts and labels them as not available. Finally, each district is iteratively extended

by adding an available GU having a frontier with the district in its current shape.

Each GU incorporated to a district is labelled as not available in order to avoid the

construction of overlapping districts. The latter step is performed until all the GUs

are labelled as not available. This way, the initial solution satisfies constraints R1–

R3. Note that SA and ABC use the same procedure to create initial solutions.

For the construction of a neighbour solution SA uses the following strategy. A

random district, Zi, is chosen and a GU in this district is moved to a neighbour district,

Zj. If this move produces a disconnection in district Zi, the following repair process

is applied. The number of connected components in Zi is counted, and the connected

component that has the bigger number of GUs is defined as district Zi; subsequently,

the remaining components are assigned to Zj.
The new solution is evaluated and accepted or rejected according to the Metropo-

lis criterion. This process is repeated until the temperature reaches a predefined lower

bound.
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4 Artificial Bee Colony Adaptation

Artificial Bee Colony (ABC) is a bio-inspired metaheuristic, originally proposed

by Karaboga [3]. However, the ABC heuristic was originally designed for continu-

ous optimization problems. In order to handle discrete decision variables, we imple-

mented some modifications to the ABC algorithm based on a recombination strategy.

First, M food sources are generated using the strategy described in Sect. 3. The

number of onlooker and employed bees is set equal to the number of food sources,

and exactly one employed bee is assigned to each food source. Then, each employed

bee, i, modifies its food source, Pi, applying the strategy used by SA described in

Sect. 3. If the new solution, Vi, has a nectar amount better than or equal to that of Pi,

Vi replaces Pi and becomes a new food source exploited by the hive. In other case,

Vi is rejected and Pi is preserved.

As soon as the employed bees process has been completed, each onlooker bee

chooses two solutions. The first solution, P1, is randomly selected depending on a

probability associated with the objective function cost. The second solution, P2, is

randomly selected from the food sources exploited by the hive. A new food source,

V1, is produced through a recombination technique described straightforward.

A GU k is randomly selected. Thus, there is a district Zi ∈ P1 and a district Zj ∈ P2
such that k ∈ Zi ∩ Zj. Let us now consider the following sets: H1 = {l ∶ xli = 0, xlj =
1} and H2 = {l ∶ xli = 1, xlj = 0}. Then a GU in H1 is inserted into Zi, and a GU in

H2 is extracted from Zi, and inserted into any randomly chosen district contiguous

to Zi.
If these moves produce a disconnection in district Zi, the following repair process

is applied. The algorithm defines the connected component of Zi that includes GU k
(i.e., the GU used within the above-described recombination strategy) as district Zi;
subsequently, the remaining components are assigned to other adjacent districts. In

this way, properties R1–R3 are preserved.

The new solution, V1, is accepted or rejected using the greedy selection process

applied by employed bees.

5 Experimental Results and Discussion

The two algorithms described in the previous section were already applied in the

local redistricting process of 15 states. The remaining 17 states will be redistricted

during 2016. 100 runs of both algorithms were executed in each state, and the bests

solutions were proposed as the new redistricting plans.

In Table 1 we present for each algorithm the best cost found, mean cost, standard

deviation, average running time per run in minutes, and the average evaluations of the

objective function (EOF) for each state. In addition, we performed a Wilcoxon test to

prove if solutions produced by both algorithms are significantly different. We tested

the null hypothesis that the medians of the costs of both algorithms are identical. If

the null hypothesis was accepted a value 0 was assigned to both algorithms, which



Redistricting in Mexico 305

Table 1 Costs for both algorithms

State Algorithm Best cost Mean

cost

Std. dev. Avg time EOF WT

Aguascalientes ABC 5.4186 5.7425 0.0918 5.7727 7,451,003.33 0

SA 5.3302 5.7246 0.2193 3.1244 8,640,835.83 0

Baja California ABC 3.8336 4.0459 0.0874 18.2508 7,709,056.29 1

SA 3.8883 4.3452 0.1773 8.8736 7,376,802.67 −1

Chihuahua ABC 8.553304 8.7280 0.07320 17.1777 5,773,122.75 −1

SA 8.462909 8.8679 0.2047 7.6237 7,491,716.25 1

Coahuila ABC 7.2210 7.2868 0.0261 8.9151 7,905,368.31 1

SA 7.5175 7.9816 0.2013 5.2421 10,885,648.74 −1

Durango ABC 6.8811 6.9527 0.0309 8.1486 7,598,931.17 1

SA 7.0959 7.4913 0.2015 5.2493 9,913,248.13 −1

Hidalgo ABC 11.5753 11.5753 0.00 2.5871 3,718,736.35 1

SA 11.5753 11.7334 0.1462 1.3799 4,154,362.50 −1

Nayarit ABC 9.7177 9.8053 0.0370 5.9575 7,520,319.49 1

SA 9.7200 9.9513 0.1290 4.4475 9,615,257.22 −1

Oaxaca ABC 12.8909 13.5953 0.2748 6.2958 7,630,291.47 −1

SA 12.4440 13.5566 0.6023 3.2547 8,952,958.51 1

Puebla ABC 13.1271 13.6825 0.1923 9.5846 7,747,284.92 1

SA 13.1411 14.0174 0.3741 5.2023 11,125,132.00 −1

Quintana Roo ABC 5.3823 5.5770 0.0724 8.4673 7,632,413.53 −1

SA 5.2671 5.5276 0.1249 4.9709 9,044,919.33 1

Sinaloa ABC 10.1996 10.4231 0.1057 25.7972 7,650,348.36 1

SA 10.3392 11.1804 0.4071 12.4396 5,868,655.20 −1

Tamaulipas ABC 7.4608 7.5200 0.0301 16.5675 7,577,753.14 1

SA 7.8316 8.0775 0.1148 10.0377 7,721,859.47 −1

Tlaxcala ABC 9.8962 9.8962 0.00 2.2129 7,408,774.25 0

SA 9.8962 9.9059 0.0314 1.7790 8,946,774.25 0

Veracruz ABC 21.8584 62.4072 70.8789 10.3452 7,583,854.67 0

SA 20.2893 49.3686 24.7216 4.7909 7,968,780.56 0

Zacatecas ABC 9.1067 9.1089 0.0021 7.6998 7,457,025.83 1

SA 9.1469 9.2427 0.0288 4.5083 6,452,574.58 −1

represents that both strategies exhibit the same behaviour. If the null hypothesis was

rejected a value of −1, or 1, was assigned to the algorithm with the lower or higher

median respectively. These results are presented in column 8 of Table 1.

Results in Table 1 highlight that for most of the states the ABC algorithm has

lower standard deviation than the SA version. On the other hand, the average runtime

per run used by the ABC algorithm was always higher than the time used by SA.

However, INE considered that this difference can be omitted since the redistricting

plans produced will be used for 3 years. Finally, using the Wilcoxon test we can

conclude that ABC outperforms the SA version, since ABC was able to generate, on

average, lower cost solutions in 9 of the 15 states, while SA only excelled in 3 states.
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6 Conclusions

In this paper, we presented a Simulated Annealing based algorithm, and an Artificial

Bee Colony based algorithm used by INE, to realize the local electoral redistricting

process of 15 states in 2015. Both heuristic algorithms solve the optimization prob-

lem corresponding to the redistricting process, promoting the design of compact

districts with the same amount of inhabitants. In order to compare the performance

of the proposed algorithms we applied a Wilcoxon test and concluded that both tech-

niques had a similar performance in 3 states. However, ABC was able to outperform

SA in 9 of the remaining states. Thus, we can say that on average ABC will have a

better performance than SA in redistricting problems with similar criteria to those

described in this paper. On the other hand, SA always was faster than ABC.

In 2017 the federal redistricting process will begin, and INE wishes to propose

an algorithm that improves the results obtained so far. Therefore, further research

include the creation of an optimization algorithm that improves the performance of

ABC and SA.
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Min-Max Fair Emergency System
with Randomly Occupied Centers

Jaroslav Janáček and Marek Kvet

Abstract This paper deals with the min-max fair emergency service system design

under uncertain ability of service providing. Studied generalized system disutility

follows the idea that the individual user’s disutility comes from more than one located

center. We present here an advanced approximate algorithm for the min-max optimal

emergency service system design, which is based on a radial formulation and valid

exposing structures. Presented method enables its simple implementation within

common optimization environment instead of special software development.

1 Introduction

This paper deals with emergency service system design, which belongs to the dis-

crete network location problems [6]. The min-max fair public service system design

problem proved to be easily solvable [1] by an iterative bisection method, when users’

perceived disutility is proportional to the distance between a user and the nearest

service center. The success of the above approach was based on the so-called radial

formulation of the p-median problem [2] and the p-dispersion problem [7]. When

limited ability of a service center providing users by service is considered, such situ-

ation may occur that a current demand of a user cannot be satisfied from the nearest

service center due to the center is occupied by a demand, which has risen recently.

The latter demand is then serviced from the second nearest center, etc. Thus user’s

disutility depends on distances from r nearest centers and it can be described as a

weighted sum of the distances. Contrary to the average user’s disutility objective,

the first attempts at min-max fair emergency system design by minimizing an upper

bound of all perceived generalized disutility values have failed [5]. The turn to bet-

ter was achieved by introducing and applying so-called lexicographically minimal
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exposing structures [4]. Even if the lexicographically minimal exposing structure in

combination with the generalized radial formulation of the design problem yielded

very good solution in acceptable computational time, the solution was not strictly

optimal. Within this paper, we enhance the searching process for lexicographically

minimal exposing structure by an extension to obtain the optimal exposing structure,

which assures the optimal design of the min-max fair emergency system.

2 Radial Formulation for the Generalized Disutility
and Exposing Structure

To formulate a mathematical model of the min-max optimal emergency service sys-

tem design problem, we denote the set of users’ locations by J and the set of possible

service center locations by I. The strategic decisions in the problem concern deploy-

ment of p centers in the set I of possible locations. The contribution to disutility of

a user located at j ∈ J provided by a center located at i ∈ I is denoted by dij. The

generalized disutility for any user is modeled by a sum of weighted disutility contri-

butions from the r nearest centers. The weights qk for k = 1,… , r are positive real

values which meet the inequalities q1 ≥ q2 ≥ · · · ≥ qr. We assume that the disutility

contribution value ranges only over non-negative integers from [0,m]. The values

divide the range into m zones. Let us define v = m − 1 for brevity of further expres-

sions. To describe the system of radii formed by the values [3], a system of zero-one

constants is defined so that the constant asij is equal to 1 if the disutility contribution

dij for a user j from the possible center location i is less than or equal to s, other-

wise asij is equal to 0. The location variables yi ∈ {0, 1} for i ∈ I model the decision

of service center location at i by the value of 1. In addition, we introduce auxiliary

zero-one variables xjsk for j ∈ J, s ∈ [0… v], k ∈ [1… r] to model the disutility con-

tribution value of the k-th nearest service center to the user j. The variable xjsk takes

the value of 1 if the k-th smallest disutility contribution for the customer j ∈ J is

greater than s and it takes the value of 0 otherwise. The associated model follows.

Minimize h (1)

Subject to ∶
∑

i∈I
yi ≤ p (2)

r∑

k=1
xjsk +

∑

i∈I
asijyi ≥ r for j ∈ J, s = 0,… , v (3)

r∑

k=1
qk

v∑

s=0
xjsk ≤ h for j ∈ J (4)
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xjsk ∈ {0, 1} for j ∈ J, s = 0,… , v, k = 1,… , r; yi ∈ {0, 1} for i ∈ I; h ≥ 0
(5)

The constraint (2) limits the number of located centers by p. The constraints (3)

ensure that the sum of variables xjsk over k ∈ [1… r] expresses the number of the

service centers outside the radius s from the user location j, which remains to the

number r. The link-up constraints (4) ensure that each perceived disutility is less than

or equal to the upper bound h. It was found that branch and bound method performs

very slowly due to link-up constraints (4). The turn to better was achieved by apply-

ing the exposing structures. An exposing structure can be described by the triple

[u, S,G], which satisfies the following rules. The first component u is a positive inte-

ger less than or equal to r. The second component S is an u-tuple [S(1),… , S(u)], of

non-negative increasing integers satisfying 0 ≤ S(1) < S(2) < · · · < S(u) ≤ m. The

third component is an u-tuple [G(1),… ,G(u)] of positive increasing integers satis-

fying 1 ≤ G(1) < G(2) < · · · < G(u) ≤ r. If G(u) = r, then the structure is denoted

as complete structure. The set of constraints (6) can be formulated for the structure

[u, S,G].
∑

i∈I
aS(w)ij yi ≥ G(w) for j ∈ J, w = 1,… , u (6)

If a feasible solution y of the constraints (2), (5) and (6) exists for a complete

[u, S,G], then each user location jmust lie at least in the radius S(1) fromG(1) located

service centers and in the radius S(2) from G(2) − G(1) additional service centers

and so on up to the radius S(u) from the G(u) − G(u − 1) service centers. The worst

situated user perceives at most the generalized disutility given by (7).

H[u,S,G] = S(1)
G(1)∑

k=1
qk +

u∑

w=2
S(w)

G(w)∑

k=G(w−1)+1
qk (7)

An exposing structure is called valid if there is at least one feasible solution of

the problem (2), (5) and (6). Then, the problem of min-max fair emergency system

design is reduced to the problem of finding the valid exposing structure with minimal

value. This surrogate problem was solved in [4] so that the lexicographically minimal

valid structure was constructed by successive expanding an initial incomplete valid

structure.

3 Searching Algorithm for the Optimal Exposing Structure

The searching algorithm presented below proceeds non-decreasing r-tuples of inte-

gers instead of exposing structures, which can be uniquely mapped on the set of

exposing structures according to the rule (8).
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mk = S(1) for k = 1,… ,G(1)
mk = S(w) for w = 2,… , u, k = G(w − 1) + 1,… ,G(w) (8)

According to above-defined properties of the exposing structure, we will define

valid k-tuple, incomplete r-tuple etc. The valueH[u,S,G] defined by (7) for an complete

exposing structure [u, S,G]will be redefined as the valueHm of the associated r-tuple

m according to (9).

Hm =
r∑

k=1
qkmk (9)

The searching algorithm is based on so-called improving step, which starts with

input valid r-tuple m and seeks for valid lexicographically minimal r-tuple m,

which is lexicographically greater than the r-tuple m and fulfills Hm < Hm. The

search within improving step is performed by successive building up a valid k-tuple

m1,… ,mk with the minimal possible mk in order to the value of the resulting r-tuple

is less than the value of the r-tuple m. It can be easily proved that the choice of mk for

k = 1,… , r is limited by the inequalities (10) and (11) depending on k. The choice

of mk for k = 1 is subjected to (10).

m1 ≤ m1 <

( r∑

t=1
qtmt

)
∕

r∑

t=1
qt

m1 < max

{( r∑

t=1
qtmt − mu−1

r∑

t=u
qt

)
∕

u−1∑

t=1
qt ∶ u = 2,… , r

} (10)

The choice of mk for k = 2,… , r is limited by (11).

mk−1 ≤ mk <

(
r∑

t=1
qtmt −

k−1∑

t=1
qtmt

)
∕

r∑

t=k
qt

mk < max

{(
r∑

t=1
qtmt −

k−1∑

t=1
qtmt − mu−1

r∑

t=u
qt

)
∕

u−1∑

t=k
qt ∶ u = k + 1,… , r

} (11)

The algorithm of the improving step performs according to the following steps.

∙ Step 0. Initialize k = 1, minM1 = m1.

∙ Step 1. Determine maxMk according to the associated upper limits of mk in (10)

and (11). Determine the lowest value of mk from the range minMk,… ,maxMk in

order to the corresponding k-tuple m1,… ,mk is valid. If mk has been found, go to

Step 2. Otherwise go to Step 3.

∙ Step 2. If k = r, terminate. The r-tuple m1,… ,mr corresponds with the valid

complete exposing structure, which has lower value than Hm. Otherwise update

k = k + 1, minMk = mk−1 and go to Step 1.

∙ Step 3. If k = 1, terminate. No improving r-tuple has been found. Otherwise

update k = k − 1, minMk = mk+1 and go to Step 1.
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The complete searching process for the optimal exposing structure starts with an

r-tuple, which corresponds to the lexicographically minimal valid exposing struc-

ture obtained according to [4]. This input r-tuple is used to initialize so-called cur-

rent r-tuple m. The complete searching process consists of a cycle, in which the

above-described improving step is repeatedly applied on the current r-tuple m. If an

improved r-tuple m is obtained, then the current r-tuple is updated by the improved

r-tuple and the improving step is repeated. Otherwise, the algorithm terminates.

4 Numerical Experiments

The goal of this computational study is to explore the effectiveness of suggested

algorithm as concerns the highest perceived disutility and the computational time

as well. The proposed method was tested on the pool of benchmarks obtained from

the road network of self-governing region of Košice. Several instances with a dif-

ferent number of located centers p were solved. The set of communities represents

both the set J of users’ locations and the set I of possible center locations. The

experiments were performed for r = 3 and weight coefficients q1 = 1, q2 = 0.2, and

q3 = 0.1, which were preliminarily recommended by experts. To solve the problems

described in previous sections, the optimization software FICO Xpress 7.9 (64-bit,

release 2015) was used and the experiments were run on a PC equipped with the

Intel Core i7 5500U processor with the parameters: 2.4 GHz and 16 GB RAM. The

obtained results are reported in Table 1. Each row corresponds to one solved instance

described by the value of p, which limits the number of centers to be located. The left

section denoted by “BASIC STRUCTURE” is reserved for the basic approach, which

finds lexicographically minimal exposing structure. The right part “ADVANCED

STRUCTURE” contains the results of the suggested approach, which is able to find

Table 1 Results of numerical experiments for the self-governing region of Košice with |I| = 460
possible service center locations

p Basic structure Advanced structure

Time (s) Structure S H Time (s) Structure S H
230 5 [4, 10, 14] 7.4 6 [4, 10, 14] 7.4

154 7 [5, 12, 16] 9.0 10 [5, 12, 16] 9.0

115 10 [7, 12, 16] 11.0 13 [7, 12, 16] 11.0

92 8 [7, 18, 25] 13.1 29 [8, 14, 19] 12.7

46 17 [12, 21, 27] 18.9 40 [12, 21, 27] 18.9

31 23 [15, 26, 43] 24.5 193 [15, 28, 35] 24.1

23 20 [18, 30, 43] 28.3 92 [18, 30, 43] 28.3

16 17 [21, 43, 55] 35.1 300 [22, 37, 51] 34.5

12 16 [25, 55, 64] 42.4 401 [26, 44, 60] 40.8

10 21 [28, 55, 70] 46.0 472 [29, 48, 65] 45.1

8 19 [32, 59, 79] 51.7 426 [32, 60, 72] 51.2
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the optimal exposing structure with better value. For both approaches, three differ-

ent results are reported: computational time in seconds, component S of the exposing

structure and the value of H, which corresponds to the maximal disutility perceived

by the worst situated users.

5 Conclusions

The main contribution of this paper consists in enhancing of the previously advanced

approximate algorithm for the min-max location problem with generalized disutil-

ity, which is based on the radial formulation and exposing constraints. Whereas the

approximate algorithm finds lexicographically minimal exposing structure, the sug-

gested enhancement is able to find the optimal exposing structure with better value.

Suggested approach was verified by series of numerical experiments performed with

real data obtained from the road network of Slovakia. The results confirmed the effi-

ciency of the associated algorithm. Thus, we considerably improved the useful tool

for solving middle-sized min-max fair emergency system design problem.
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Solving a Rich Intra-facility Steel Slab
Routing Problem

Biljana Roljic, Fabien Tricoire and Karl F. Doerner

Abstract We optimize the routing of steel slabs between locations in a steel

production facility during a one hour-long operational period. Steel slabs are het-

erogeneous items that appear at locations at different release times. Certain slabs

need to be delivered to another location before their specified due time. They are

transported by fleets that include standard vehicles as well as truck-and-trailer type

vehicles. The vehicles visit several locations multiple times. The input is such that

not all slabs can be delivered in time, therefore two objective functions are provided

that are organized in a lexicographic fashion: First, we maximize the throughput.

Second, we aim to minimize travel times. An exact solution can only be obtained

for small problem settings. In order to solve larger instances, we developed a heuris-

tic. The results show that the solutions obtained by the heuristic reveal significant

improvements to the real world solutions provided by our industrial partner.

1 Introduction

Increasing quality expectations, complex handling processes, and high throughput

volumes lay particular stress on steel industries. The first product that occurs within

the supply chain of steel production facilities is a steel slab. Steel slabs are hetero-

geneous items with specific handling instructions. According to those instructions,

the cast slabs are cut, machined, stored at open air fields to cool off, stored in warm-

holding boxes to remain at a certain temperature, or brought straight to the rolling

mill. All those production stages are carried out at different locations inside the fac-

tory. Eventually, all steel slabs end up at the rolling mill where they are transformed

into coils. In our problem setting, the production and the rolling schedules as well

as the required handling stages for each steel slab are predetermined. Furthermore, a
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fleet of standard vehicles and a fleet of truck-and-trailer type vehicles are given. The

latter consists of trucks that serve as towing vehicles and cannot hold items. Each

truck can pull a single trailer and a trailer cannot move without a truck. The number

of available trailers always exceeds the number of available trucks. The scope of our

optimization problem is the routing of steel slabs along their production stages in

such a way that, primarily, the throughput expectations are met while, secondarily,

the travel time dependent logistics costs are kept low.

Meisel and Kopfer [2] have already contributed to similar problem settings,

namely the Active-Passive Vehicle Routing Problem (APVRP), where a truck pulls

a trailer and a trailer is used for holding cargo. Our work additionally takes into

account that both the standard vehicle and the trailer can fulfill multiple transporta-

tion requests simultaneously, hence transport several slabs at once up to a maximum

total weight and total number. Tilk et al. [5] presented a branch-and-price-and-cut

algorithm for the exact solution of the APVRP. According to the categorization by

Drexl [1], our work investigates the so-called movement synchronization en route;

that is, the active and passive means of transport have to traverse the same arc at

the same time, and joining and separating vehicles is possible at any location that

they visit during their routes. Among the Pickup and Delivery literature, our rout-

ing problem can be assigned to the problem class of Vehicle Routing Problems with

Pickups and Deliveries (VRPPD) with paired pickup and delivery points as a part of

the less-than-truck-load problems, as categorized by Parragh et al. [3].

In the real world setting, incompatibilities between vehicles and steel slabs apply.

The real world results of our industrial partner on the standard vehicle routing and

truck-and-trailer routing are treated separately. For better comparison of our solu-

tions to those of our industrial partner, we will conform to this separation and handle

the routing of the two fleets individually.

2 Problem Description

A transportation request r ∈ R is defined for each steel slab that needs to be moved

from one node to another during the considered period. The request includes a pickup

location 𝛼
r

and a delivery location 𝛽
r
, a release time sr formulated as a lower bound

on the pickup time, and a due time dr formulated as an upper bound on the deliv-

ery time. We define a fleet K. The fleet size is predetermined. Standard vehicles are

specified in S ⊆ K, whereas trucks (active means of transport) and trailers (passive

means of transport) are denoted by A ⊆ K and P ⊆ K respectively. Furthermore, the

vehicles in S ⊆ K and P ⊆ K have a capacity in terms of weight Qk
as well as num-

ber of items that can be simultaneously transported Uk
. Decoupling a trailer from a

truck is very quick, but loading and unloading items takes time 𝜎
rk

. We are consid-

ering an undirected graph G = (V ,A) where V is the set of nodes and A is the set of

arcs. The nodes represent real world locations that are visited by vehicles performing

pickups and/or deliveries of one or multiple steel slabs at once. Since transportation

requests may define the same pickup and/or delivery location, we allow vehicles
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to visit nodes multiple times. Each arc (i, j) ∈ A is associated with a travel time tkij
that differs between vehicles. The objective function is organized in a lexicographic

fashion. First, maximize the throughput, then, minimize the total travel time of the

fleet.

We keep track of each vehicle’s legs, which are denoted with index l, resulting

in the vehicle flow variables xklij . Similarly, we keep track of each item leg, denoted

using index h, since other intermediate locations can be visited between an item’s

pickup and delivery location. Thus, we introduce the request flow variables wrh
ij . The

flow variables xklij and wrh
ij need to be synchronized, which is done using the flow

variables yklrhij .

The complete mathematical model grows quickly in size and exact solutions can

only be obtained for small instances of up to 10 locations and 20 requests. The

amount of vehicle and item legs may be parametrized to decrease the computational

complexity. Reducing the number of legs, allows us to receive exact results for bigger

instances, though, due to the sacrifice in legs, we are restricted to explore a reduced

solution space. Therefore, a heuristic solution approach is required for solving real

world instances in a reasonable amount of computational time.

3 Solution Approach

To solve our routing problem for standard vehicles and trailers, we develop an inser-

tion heuristic that constructs a route based on pickup-visits and delivery-visits of

requests, rather than pickup nodes and delivery nodes. Every transportation request

holds a pair of visits that should be inserted during the procedure of the heuristic. A

pickup visit of request r ∈ R is denoted by v+r , while a delivery visit is denoted by v−r .

Both types of visits hold information on the corresponding node, time window, and

weight of the requested steel slab. For every request r ∈ R we evaluate the insertion

of their pickup-visit v+r and delivery-visit v−r at every possible pickup position p and

every possible delivery position d into all routes t ∈ T . The evaluation of the inser-

tion is done by a cheapest insertion rule that compares the resulting total travel times

of the routes when feasibly inserting a request. A candidate list C is introduced that

is structured so that for every request r ∈ R, it holds information on which routes

t ∈ T can be selected for a feasible insertion. For each of those routes it remembers

at which positions p and d the insertion of the pickup-visit v+r and delivery-visit v−r
of the considered request would be the cheapest. In every iteration, the candidate

list is searched for the cheapest insertion among all requests it contains. The solu-

tion is constructed by inserting the chosen request rbest into the corresponding route

tbest. After this step, the insertion costs of the remaining requests are updated by

re-evaluating the insertion of their pickup-visit v+r and delivery-visit v−r in the mod-

ified route. This procedure is terminated once all requests are inserted or once all

remaining requests in candidate list C cannot be feasibly inserted in any route.
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INSERTION HEURISTIC (IH): STANDARD VEHICLE AND TRAILER ROUTING (solution s)
1: for each request r ∈ R do
2: determine for every feasible route t ∈ T the best pickup position p for inserting pickup-

visit v+r and the best delivery position d for inserting delivery-visit v−r according to a cheapest

insertion rule (post insertion smallest total travel time ct of route t), and save it to the candidate

list C (candidate list C is structured by requests r ∈ R);

3: end for
4: while candidate list C contains feasible insertion options do
5: ct,best ← M;

6: for each request r ∈ C do
7: determine route tb with the smallest total travel time ct,b post insertion of request r;
8: if ct,b < ct,best then
9: rbest ← r;

10: tbest ← tb;

11: ct,best ← ct,b;

12: end if
13: end for
14: insert pickup-visit v+r and delivery-visit v−r of request rbest at positions p and d into tbest;
15: update solution s by route tbest;
16: erase request rbest from candidate list C;

17: for every request r ∈ C holding tbest as an insertion option, re-evaluate the best positions

p and d for inserting the visit-pair v+r and v−r , and update it to candidate list C;

18: end while
19: return solution s

3.1 Large Neighbourhood Search

Large Neighbourhood Search (LNS) is a meta-heuristic that was introduced for

VRPTW by Shaw [4]. In LNS, an initial solution is gradually improved by alter-

nately destroying and repairing the solution. We apply LNS for improving our initial

solution constructed by the previously described insertion heuristic IH.

We copy solution s to solution snew. In order to select item requests to destroy

from solution snew, we use a roulette wheel with the number of item legs as weights.

The pickup-visits and delivery-visits of the selected item requests are removed from

solution snew. Then, a repair operator, specifically the insertion heuristic IH, reinserts

the unfulfilled item requests into solution snew. Solution snew is accepted only if the

throughput of snew is bigger than the throughput of s. If the throughput of snew is equal

to the throughput of s, then the solution with the shorter travel time is favoured.

3.2 Truck Routing

In this section, we assign trucks to route trailers. Note that we always have less trucks

than trailers available. Thus, it is valid to expect that not all trailer legs can be fea-

sibly routed in the truck solution strucks. First, the trailer routing is solved by the

insertion heuristic IH and improved by LNS. The solution is represented in solution
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strailers. In order to solve the truck routing, we transform the trailer routes t included

in solution strailers into multiple truck transportation requests 𝜔 ∈ Ω. Specifically,

every trailer leg represents a transportation request defining pickup and delivery

nodes as well as a corresponding time window for performing the transportation

of the trailer as soon as it is loaded. The truck capacity Uk
is set to 1, since a truck

can only pull one trailer. Then, we can apply the insertion heuristic IH for the truck

routing. Note that transportation requests, representing trailer legs, comprise inter-

related and overlapping slab requests. For example, a slab might be picked up at

the beginning of a certain trailer leg, but delivered at the end of a chronologically

much later leg in a trailer’s route. This slab would span multiple item legs. In order

to fulfil the transportation of such an item, all trailer legs it uses need to be included

in the truck solution strucks. Because of this, we need to verify the interdependen-

cies of the transportation requests. This is done by examining which items are being

transported on the considered transportation request 𝜔. Based on this information,

we can retrace the preliminary and/or postliminary dependencies to neighbouring

transportation requests. If such dependencies exist, we impose that all interrelated 𝜔

must be feasibly included in solution strucks. If a feasible insertion of the combined

𝜔 cannot be obtained, then we continue to another transportation request and again

repeat the verification process on the dependencies. In case that multiple transporta-

tion requests compete for a truck during the same time span, then the transportation

request that involves a larger number of fulfilled item requests will be favoured.

4 Results

Table 1 shows the computational results of the steel slab routing performed by stan-

dard vehicles. An initial solution is generated by the insertion heuristic IH and further

improved by LNS. For LNS, we define a destruction rate of 30% and a stopping cri-

terion that terminates the LNS when after 20 iterations no improved solution can

be found. The real world results show the maximum throughput that our industrial

partner met in the past. The gap expresses the decrease or increase of travel time

t as a percentage when comparing the results of the real world case RW, solution

approach IH, and solution approach LNS with one another. We can see that IH pro-

duces solutions that are significantly better than the real world solutions in six cases

out of eight, and worse in the two remaining cases. However, LNS performs better

than both IH and the real world solutions in all cases.

5 Summary and Outlook

We presented a solution approach for solving rich intra-facility steel slab routing

problems, including many specifics from real world cases. Our results are compet-

itive to those provided by our industrial partner, and in a large number of cases
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significantly better. Specifically, the results of the LNS always meet the through-

put of the real world case while decreasing the travel time. We plan to extend our

solution approach to optimize larger instances that include up to 1000 requests as

well as an extended objective function considering fleet minimization. Further, we

want to consider partial deliveries by multiple vehicles such that the transportation

of an item can be carried out by different vehicles.
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Splitting Procedure of Genetic Algorithm
for Column Generation to Solve a Vehicle
Routing Problem

Martin Scheffler, Christina Hermann and Mathias Kasper

Abstract This paper considers an extended Vehicle Routing Problem with Simul-

taneous Pickup and Delivery and Time Windows (VRPSPDTW). For this problem

we describe a simple but effective extension of a genetic algorithm (GA) based on

chromosome permutation and a splitting procedure. For large instances it is obvious

to use the original GA as benchmark. These approaches are applied on test instances

for the considered problem and on Solomon instances.

1 Introduction

Demographic change and the associated increase in the average age of the population

results in a growing importance of home healthcare logistics. Therefore, the efficient

design of routes under a variety of additional constraints is necessary.

We consider a Vehicle Routing Problem with Simultaneous Pickup and Deliv-

ery and Time Windows (VRPSPDTW) extended by two kinds of demands assigned

to specific nodes, introduced by [8]. The first demand concerns delivery from spe-

cific node one, e.g. a drugstore s to customers (patients) i and the second concerns

pickup from customers to specific node two, e.g. a lab l. Examples are the deliv-

ery of bandaging material from depot 0 to the customers, meds from the drugstore
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to the customers and the collection of medical waste from customers to the depot

respectively blood samples from the customers to the lab.

On the one hand, there is an abundance of studies about tuning common heuristics

and using them for similar problems without a detailed view on the utilization of the

generated information. For a recent review on common heuristics, see [1] or [6].

On the other hand, there are many studies about column generation concerning the

Vehicle Routing Problem (VRP), e.g. [2, 5].

The underlying concept of this approach is extending a stand-alone heuristic

(searching for a set of routes) by column generation. Therefore, this paper describes

an extension of a genetic algorithm (GA) based on chromosome permutation and a

splitting procedure introduced by [10]. The main idea of the hybrid algorithm (HA)

is using the splitting procedure to create a complete memory of all generated valid

trips as feasible columns. This enables us to solve the set partitioning problem (SPP).

Instead of using the SPP only as post optimization, the SPP is solved several times

during runtime. Due to the resulting interactions, both parts (GA, SPP) can influence

each other (positively). For practical application, there is a need of fast generated

(solution time <10 min) and feasible solutions. Hence, in a first step we have used

simple genetic operators and a relatively small number of iterations.

To the best of our knowledge, there are no similar algorithms. Therefore, in Sect. 2

we describe the rudimentary GA with a detailed view on the splitting procedure for

the considered problem. Section 3 presents the extended use of the splitting proce-

dure and the resulting HA. Section 4 reports the results of our computational exper-

iments. These approaches are tested on instances for the considered problem and by

adjusted input data on Solomon instances [11].

2 Genetic Algorithm

The GA is based on encoding a solution as chromosome by a permutation (sequence)

of all customers and on a splitting procedure to extract the optimal solution of this

sequence [10]. The population size is set to 30 individuals. The fitness of an individ-

ual is the total cost of the resulting VRP solution. As genetic operator a One-Point-

Crossover is only used. We select the first parent randomly from the better half of the

sorted population. The second parent is selected from the worse half. The crossover

produces two children which are evaluated by the splitting procedure. After each iter-

ation the population is sorted in ascending order by the fitness value. Taking account

of a practicable computation time (<10 min), the maximum number of iterations is

set to 60.000 and after every 3.000 iterations a variation is carried out by replac-

ing the worse half of the population with random chromosomes. Clearly, this is the

simplest version of a GA, but for a better comparison, considering the special char-

acteristics of the HA (see Sect. 3), and the use of the GA as benchmark for the HA

(see Sect. 4), it is sufficient. The initial solution is created by the Savings-heuristic,

see [3]. The Savings-list is created as shown in [8]. An initial population is built by

random permutations of routes (initial solution).
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Fig. 1 Auxiliary graph H

Table 1 Possible routes for arc (2, 4)
0 s 5 3 l 1 4 0
0 s 5 3 1 l 4 0
0 s 5 3 1 4 l 0
0 5 s 3 l 1 4 0
0 5 s 3 1 l 4 0
0 5 s 3 1 4 l 0

Table 2 Example assumptions

i 0 1 2 3 4 5 s l
dsi 0 1 1 2 4 0 0 0

pli 0 0 3 1 0 2 0 0

Since the HA is based on an extension of the splitting procedure, it is important

to review the directed auxiliary graph H. Figure 1 shows the complete graph for an

example with five costumers. Each arc represents a feasible route for serving the

included costumers in the order given by the chromosome.

Therefore, a real auxiliary graph is not complete. For example arc (2, 4) represents

such a route for customers 5, 3, 1, 4. Node V is appropriate for a uniform interpre-

tation of an arc: including all nodes, excluding first node, including last node. For

the considered problem an arc of the graph additionally represents the route with

minimum costs. Depending on the demand of each customer i concerning s (dsi ) or

l (pli), there is more than one possible route for each arc. Table 1 shows all possible

routes of arc (2, 4) considering the assumptions shown in Table 2.

The optimal solution for the given sequence of customers is determined by solv-

ing a restricted shortest path problem given by H applying dynamic programming

considering the number of vehicles. Each arc is weighted equal to the tour cost.

3 Hybrid Algorithm

The HA creates a complete memory of all feasible routes generated in each iteration.

That means all feasible routes of graph H are saved regardless of offspring admissi-
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bility and iteration productivity. Saving clones of routes is prohibited. Therefore we

are able to solve the SPP periodically.

Note that, there is a trade-off between finding a better solution with the GA

and creating new unique columns for the SPP. For this reason the GA is designed

straightforward. For additional genetic operators the impact on both heuristics has

to be tested. Furthermore it is conceivable to design special operators to create only

unique routes. The variation rather than frequency is also a useful instrument to cre-

ate unique routes.

The special aspect of the HA is that any improvement of the GA is also an

improvement of that. However, the memory management and solving the SPP need

extra time. Therefore, it is appropriate to set a time limit for the HA. Obviously, the

computing time of the GA is used. This leads to the question of frequency of solving

the SPP. Hence, we tested several common settings for the frequency with 60.000

iterations. Note that, the frequency is synchronised with the variation. Thus, it was

a test for both issues.

The integration of the SPP-solution into population and its variation are done

parallel. Out of the SPP-solution 10 chromosomes and 10 random chromosomes

are created. For a first evaluation the GA was applied with identical settings. Each

heuristic was tested three times on each instance (50 customers).

The results of the HA are better than those of the GA (costs of best solution,

average costs of solution). The GA results are nearly identical for each setting. An

important fact is that the GA creates less feasible solutions than the HA. The selected

setting of the test is a variation (and solving the SPP) every 3.000 iterations.

4 Computational Results

For the computational approaches own test instances are generated. The instances

are created by generating spatial data, time data and demand data separated from

each other and combining them afterwards. 3 sets of spatial data with random (R),

clustered (C) and random clustered (RC) distribution are generated. Time windows

are generated randomly considering an eight-hour day (d, s, l). There is a narrow

set (n, 30–90 min) and a wide set (w, 30–210 min) of time windows. Each kind of

demand is also generated randomly. A set is generated under the assumption that

50% (m) of the customers need between 1 and 5 goods of each demand (each other

customer 0 goods). Similarly, a set is generated with 80% (h). Combining spatial,

time and demand data results in 12 instances. These are created for 50 (only Sect. 3)

and 100 customers. The data are available on request. Each heuristic is tested three

times on each instance.

Each algorithm is implemented in C# and is run on an Intel(R) Xeon(R) CPU

E5-2630 v2 @ 2.60GHz server with 12 cores and 384 GB RAM. The SPP is solved

with Gurobi 6.0. Note that, the implementation is based on single core use only and

for Gurobi a limit was set to 6 cores. The used memory does not exceed 1 GB (HA).
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The evaluation is carried out using two different methods. First, the GA is used

as benchmark for the HA. Second, for the Solomon instances [11] both heuristics

are compared with the optimal upper bound (SUB) summarized by [7] and with the

results of the memetic algorithm (NDB10) of [9], one of the best state of the art

metaheuristic, shown by [4]. Table 3 shows the results of the considered problem.

Bold entries mark the best value in each category.

The HA outperforms the GA regarding costs of best identified solution and aver-

age costs of all solutions. In case of small solution space the HA is more capable to

create feasible solutions. The standard deviation of the GA is slightly better than the

obtained value of the HA, but it is easier to create constant bad than good solutions.

Both heuristics are tested on the Solomon-instances with adjusted input data (dsi =
pli = p0i = 0). Table 4 shows the results of the Solomon instances. The performance of

the HA is better than that of the GA on the Solomon instances, too. The GA performs

better for instances with large solution spaces (C201-C208). It can be assumed that

this effect can be reduced with additional genetic operators. The memetic algorithm

outperforms the HA on each Solomon instance. For easy comparison, it is advisable

to use the cumulated costs of the best solution of all instances CCB. Because the GA

does not create feasible solutions for each instance, it is disregarded. TheCCBNDB10 is

57.187 with an average computing time of 16, 9 min per instance. The HA produces

a CCBHA of 63.205 in an average computing time (8, 2 min) less than the half of

NDB10. This corresponds to a deviation of 9, 5% between HA and NDB10. By

disregarding C201-C208 the deviation falls to 5, 4%. Given a much lower computing

time and the use of a very simple genetic operator, this is assessed as well.

5 Conclusions and Further Research

In this paper we present a new hybrid algorithm. We extend a common GA by column

generation. Columns are generated by the splitting procedure, both in the GA and

HA. The extension is using this columns across iterations by saving them and solving

the SPP. The results show that the HA outperforms the GA under identical settings.

For instances with large solution space it was ascertained that additional and more

effective genetic operators are necessary for the HA. Nevertheless, it was shown that

the basic concept operates well. So there is a huge potential of the HA.

For further research we have to check a state of the art GA as a basis for the HA.

Furthermore, changing the SPP to a set covering problem (SCP) in addition with

a repair procedure to remove duplicate customers from the SCP solution has to be

tested. Perhaps, an improvement of the SCP solution can be achieved. Moreover, the

utilization of the dual variables (in combination with solving the relaxed SPP/SCP)

for this kind of GA has to be investigated. Finally, the authors will continue the

research. The comparison of the results of small instances to the optimal solution of

a MIP-formulation is essential.
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Request-Allocation in Dynamic Collaborative
Transportation Planning Problems

Kristian Schopka and Herbert Kopfer

Abstract Several publications on collaborative transportation planning problems

(CTPPs) focus on schemes that ensure a fair assignment of collaborative profits.

However, it is seldom taken into account that an even allocation of transportation

resources (e.g. transportation requests) is also responsible for the viability and sta-

bility of horizontal carrier coalitions; particularly if dynamic CTPPs are considered.

In this paper, the winner determination problem (WDP) of an auction-based request

exchange is restricted by lower and upper bounds that respect an equality between

transferred and received requests for carriers. In a computational study, the restricted

WDP is applied to the dynamic collaborative traveling salesman problem.

1 Introduction

In dynamic transportation planning problems (TPPs), small and medium sized carri-

ers (SMCs) are confronted with customers demanding for quick fulfillment of (trans-

portation) requests. It means, new requests (referred to as incoming requests) appear

during a planning period and have to be dispatched in the same period [2]. To over-

come the uncertainty associated with incoming requests, rivaling SMCs ally in hori-

zontal coalitions for auction-based request exchanges (ABREs). Thereby, requests

are reallocated based on bids (maximal willingness to pay for request transfer).

ABREs are able to reduce the transportation costs up to 15% [4]. To ensure an even

assignment of collaborative profits, game theoretical schemes like the Shapley value

[5] are integrated in ABREs. However, those schemes do not respect shifts in the

request-portfolios of the individual SMCs that occur by repeatedly executed ABREs;

e.g. within a rolling horizon planning (cf. [6]). Over time, an uneven allocation of
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requests causes power-shifts among formerly commensurate and equal SMCs and

may decrease the stability within horizontal coalitions.

In this paper, the winner determination problem (WDP) of an ABRE is restricted

by lower and upper bounds that limit the number of reallocated requests. It means

that all agents (e.g. traveling salesmen) transfer and receive a proportional number

of incoming requests through an ABRE over a planning period. The effect of the

restricted WDP is analyzed in a computational study on the dynamic collaborative

traveling salesman problem (DCTSP). A mathematical formulation of the DCTSP

is given in Sect. 2. Section 3 introduces a two-stage solution framework (TSF) for

the DCTSP. While the restricted WDP and the agents’ specific TPPs are solved by

a mathematical solver, the calculation of bids is executed by a cheapest insertion

algorithm. The findings of the computational study are presented in Sect. 4.

2 Problem Description

Let us consider a horizontal coalition among a set of rivaling agents P = {1, 2,… ,

|P|}. At the start of a planning period T , each agent is in charge of a set of requests

Ns
p. The aim of agent p ∈ P is to find the round trip that dispatches each request

i ∈ Ns
p once, starts and ends at the own depot Op, and minimizes the transporta-

tion costs. Over time, each agent p ∈ P receives a set of incoming requests Nc
p. All

incoming requests have to be dispatched during T . To reduce transportation costs, the

agents use an ABRE for the reallocation of incoming requests. It means, an incom-

ing request i ∈ Nc
p can either be served by the round trip of agent p or transferred to

another agent p∗ ∈ P ⧵ {p} within the coalition. The DCTSP can be split in agents’

specific TPPs (Eqs. (1)–(7)) and a request reallocation problem (Eqs. (8)–(9)).

max z(p) =
∑

i∈Np

∑

j∈Np

(ej − cij) ⋅ x
p
ij, (1)

s.t.
∑

i∈Np

xpij = 1, ∀j ∈ Ns
p ∪ Op, (2)

∑

i∈Np

xpij ≤ 1, ∀j ∈ Nc
, (3)

∑

j∈Np

xpij =
∑

j∈Np

xpji = vpi , ∀i ∈ Np, (4)

∑

i,j∈S
xpij ≤

∑

j∈S⧵{k}
vpj , ∀S ⊂ Np ⧵ {0}, k ∈ S, (5)

xpij ∈ {0, 1} ∀i, j ∈ Np × Np, (6)

vpi ∈ {0, 1} ∀i ∈ Np. (7)
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The TPP relates to the traveling salesman problem with profits (cf. [1]) that iden-

tifies the most profitable round trip on the graph Gp = (Np,Ap) for each agent p ∈ P.

WhileAp is the edge set,Np ∶= Op ∪ Np ∪ Nc
builds the node set; letNc ∶=

∑
p∈P Nc

p
be the set union of incoming requests of all agents p ∈ P. The usage of an edge

(i, j) ∈ Ap requires transportation costs cij. The binary decision variable xpij is equal

to one if the edge (i, j) ∈ Ap is included in the round trip of agent p, and it is zero,

otherwise. Separately, the binary decision variable vpi = 1 shows that a request i is

dispatched by agent p. Since each request j generates a freight rate ej when it is dis-

patched, the Objective (1) maximizes the profits z(p) (i.e. freight rates minus trans-

portation costs). Constraints (2) and (3) ensure that each node is dispatched at most

once. Constraints (4) observe the flow and sets vpi . Constraints (5) exclude sub-cycles

(cf. [1]). Constraints (6)–(7) define the domains of the decision variables.

The request reallocation problem observes the exchange of incoming requests.

Objective (8) identifies the combination of agents’ specific round trips that maximize

the overall collaborative profits z(P), by respecting that each incoming request has

to be dispatched by one agent of the coalition (Constraints (9)).

max z(P) =
∑

p∈P
z(p), (8)

s.t.
∑

p∈P

∑

i∈Np

xpij = 1, ∀j ∈ Nc
. (9)

Due to the dynamic scenario of incoming requests, not all planning relevant data

are known at the beginning of the planning period. To consider this issue, we supple-

ment the previously presented mathematical models by a time factor. That is why the

following features of dynamic planning have to be respected by computing the math-

ematical models: (i) an incoming request cannot be reallocated/dispatched before it

is known; (ii) each request is deleted from the request pools after it is dispatched;

(iii) the start positions of the round trips have to be updated.

3 Solution Methodology

To solve the DCTSP, we developed a TSF that organizes the ABRE by a combi-

natorial auction (CA). The CA can be split in agents’ specific bid generations and a

common WDP. To retain the independent decision power for all agents, the planning

of the round trips and the bid generation are executed by separate planning steps that

each agent gets through in an isolated planning. Against this situation, the WDP is

solved by a mediator. Furthermore, our TSF suggests that the mediator assigns the

collaborative profits by the Shapley value [5] among the agents.

In the first stage of TSF, for each agent p ∈ P a round trip of all requests in

Ns
p is generated. Therefore, the TPP is computed by a mathematical solver. To

deal with incoming requests a periodic re-optimization (cf. [2]) is performed in the
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second stage of TSF; i.e. the ABRE is repeated at given times (referred to as plan-

ning updates). Let t identify an individual planning update. Each planning update

includes the following steps: (i) the planning relevant data (e.g. request pools, etc.)

are updated; (ii) each agent computes the own bid generation; (iii) the mediator

reallocates incoming requests by winner determination; (iv) the agents update their

round trips by resolving the TPP; (v) the mediator calculates Shapley values.

Our TSF suggests that each agent calculates a bid for any available request-cluster

(composition of incoming requests) in his bid generation (step (ii)). For the bid

generation, the earnings regarding the incoming requests of any request-cluster are

reduced by the increased transportation costs that each agent approximates by the

cheapest insertion algorithm of [3]. It means that the round trips of all agents are

extended by the incoming requests of a request-cluster (i.e. starting with the request

with lowest costs). For the bid generation, the difference of costs between the original

and the extended round trips are supposed as bids for all request-clusters.

The WDP (step (iii)) is formulated as a set partitioning problem (SPP; Eq. (10)–

(14)). LetB store all request-clusters, while b ∈ B identifies a specific request-cluster.

The constant dbi = 1 shows that incoming request i belongs to request-cluster b; oth-

erwise dbi = 0 applies. The bids gpb result from the bid generations. To ensure an

equality between transferred and received requests, we introduce a lower bound lbp
and an upper bound ubp for each agent p ∈ P. The bounds limit the number of incom-

ing requests that each agent is able to receive through the ABRE. The binary deci-

sion variable ypb is equal to one if agent p wins request-cluster b and zero, otherwise.

Objective (10) maximizes the sum of winning bids w by respecting that each incom-

ing request i is reallocated once (Constraints (11)). While Constraints (12) observe

that each agent wins only one request-cluster, Constraints (13) ensure that the sum of

reallocated incoming requests lies between lbp and ubp for all agents p. Constraints

(14) define the domains of the decision variables.

max w =
∑

p∈P

∑

b∈B
gpb ⋅ ypb, (10)

s.t.
∑

p∈P

∑

b∈B
ypb ⋅ dbi = 1, ∀i ∈ Nc, (11)

∑

b∈B
ypb = 1, ∀p ∈ P, (12)

lbp ≤
∑

i∈Nc

∑

b∈B
ypb ⋅ dbi ≤ ubp, ∀p ∈ P, (13)

ypb ∈ {0, 1}, ∀p ∈ P, b ∈ B. (14)

To improve the performance of our approach, we introduce a dynamic adjust-

ment (DA) of the lower and upper bounds for the individual planning updates (Eqs.

(15)–(16)). Thereby, the bounds are recalculated for all planning updates according

to the number of received incoming requests of the previously executed planning

update. It means that an agent that receives numerous incoming requests through the

ABRE of a planning updated will be restricted by strict bounds for the forthcoming
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planning update. On the other hand, an agent that receives less incoming requests will

be favored by increasing his lower and upper bound. Therefore, for each agent the

number of received incoming requests of an actual planning update is determined.

Let utp denote the number of received requests of agent p and planning update t. Sep-

arately, mbtp stores the requests that agent p offered for exchange of planning update

t. The lower bounds lbt+1p of all agents p ∈ P for the forthcoming planning update

t + 1 are calculated by Eq. (15). Thereby, the actual lower bound lbtp of each agent p
is reduced by the difference of utp and mbtp. Simultaneously, the upper bounds ubt+1p
for all agents p are updated by Eq. (16).

lbt+1p = lbtp − (utp − mbtp), ∀p ∈ P, t ∈ T (15)

ubt+1p = ubtp − (utp − mbtp), ∀p ∈ P, t ∈ T (16)

4 Computational Study

The restricted WDP is analyzed on new DCTSP-instances regarding collaborative

profits and an even allocation of requests. We consider 40 instances with different

parameter settings that are organized in 4 test sets. For a detailed description of the

instances, we refer to our homepage.
1

All instances provide that all agents receive

and offer the same number of incoming requests per planning update. To simulate the

dynamic execution of the round trips, we suppose that each agent is able to dispatch

mbtp requests in the time between two planning updates. Our TSF with the described

solution methodology was implemented in a C++-application on a Windows 7 PC

(3.4 GHz, 16 GB RAM). The mathematical solver CPLEX 12.5.1 was used to solve

the agents’ specific TPPs respectively the SPPs. To reduce the computational effort,

the computing time was limited to 600 s per optimization.

Table 1 presents the aggregated results per test set. The test sets are repeated with

different values of the bounds (lbp, ubp), respectively with and without DA. The

amount of the collaborative profits z(P) and the number of achieved best solutions

best are specified, while an even allocation of incoming requests is analyzed by the

minimal (rmin) and the maximal (rmax) number of dispatched requests by an agent

during the whole planning period. The range (|rmax − rmin|) results from the differ-

ence of both values. Since the solution space is not restricted, values of lbp = 0 and

ubp = ∞ averagely achieve superior collaborative profits for all test sets. However,

an uneven allocation of incoming requests cannot be excluded; i.e. maximal ranges.

Even values of the bounds (lbp = ubp = mbtp) exclude shifts in the request-pools of

the agents. Thereby, a decrease of the collaborative profits between 2.6 and 9.4%

has to be accepted. A balance between the collaborative profits and an even alloca-

tion of requests can be achieved by using different values for lbp and ubp. Thereby,

the application of DA increases the solution quality regarding both the amount of

1
http://www.logistik.uni-bremen.de/english/instances/.

http://www.logistik.uni-bremen.de/english/instances/
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collaborative profits and mean ranges. Particularly, the parameter setting lbp= mt
p − 1

and ubp = mt
p + 1 with DA achieves an excellent balancing between both aims; i.e.

decrease of collaborative profits between 0.4 and 5.5% against an unrestricted WDP

and ranges between 2.0 and 4.4 requests.

The results of our computational study verify that lower and upper bounds for the

WDP can enforce an even allocation of incoming request. Thereby, our approach is

appropriate for dynamic ABREs, while the solution quality can be increased by the

application of DA. The improved stability for horizontal coalitions may absorb the

slightly lower collaborative profits against an unrestricted WDP. In this paper a first

study on the restricted WDP in case of DCTSPs has been performed. To transfer our

results to the daily transport business of SMCs, further computational experiments

on more realistic scenarios have to be performed.
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Comparing Two Optimization Approaches
for Ship Weather Routing

Laura Walther, Srikanth Shetty, Anisa Rizvanolli and Carlos Jahn

Abstract Weather routing in maritime shipping is related to a shipping company’s

objective to achieving maximum efficiency, economy and cost competitiveness by

optimizing each voyage of a ship. A voyage can be optimized regarding cost, time,

safety or a combination of these factors, while considering forecasted meteorologi-

cal and oceanographic information as well as constraints given by geographic condi-

tions, ship characteristics, emission regulations, safety requirements or time restric-

tions. A wide variety of mathematical models of the ship weather routing problem as

well as different approaches to solve it can be found in the literature and are applied

by numerous software systems. This paper presents two approaches to solve the ship

weather routing problem, a graph algorithm and an evolutionary approach. Both

approaches aim to minimize fuel costs, allowing for route and speed optimization.

They are compared based on numerical examples with real-world data.

1 Ship Weather Routing Problem

Voyage planning and optimization represents a widespread measure to improve cost

and energy efficiency of maritime shipping. Ship weather routing generally aims to

find an optimal route and speed profile for a ship’s voyage based on the analysis

of metocean weather forecasts. Meteorological institutes commonly use the mathe-

matically concise data format GRIB (General Regularly-distributed Information in

Binary form) to store weather data numerically predicted for each node of a grid.

The ship weather routing problem is mathematically modeled in various ways [16].
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Formulations not only range from one to multiple objective optimization problems,

but also from constrained graph problems to nonlinear optimization problems. In

order to solve the optimization problem, different approaches are applied by several

commercial systems which now support voyage optimization on vessels, as well as

by numerous academic software developments. These vary from calculus of varia-

tions [2], dynamic programming [1, 6, 12] or graph algorithms [4, 7, 14] to evo-

lutionary approaches [5, 9, 13]. Superiority of an approach producing satisfactory

results with adequate computational effort significantly depends on the degree to

which the specific requirements regarding optimization objectives, variables, con-

straints and implementation are met [16]. For the ship weather routing problem

described below, two popular approaches, a graph algorithm and an evolutionary

method, are presented, compared and discussed.

Objective Function The objective is either minimum fuel costs, minimum voyage

time, or maximum safety, or these objectives are combined giving rise to a multi-

objective problem. As cost and energy efficiency are key aspects in maritime ship-

ping, in this study the objective is minimum fuel costs CFuel.

Variables To allow route and speed optimization, the ship’s heading 𝛼G and speed

over ground vG are introduced as control variables. A certain speed requires vari-

able engine power considering different environmental impacts. Speed and weather

conditions are assumed to be constant between two waypoints of the ship’s route.

Constraints Constraints on the variables are given by the ship itself, by time, safety

and geographic restrictions. For simplicity reasons, safety constraints such as critical

wave heights or periods are neglected. Geographic constraints primarily refer to land,

but can also include traffic separation schemes, icebergs or mines. As a deep sea

voyage is assessed, these constraints are not further elaborated. Time restrictions

are most likely related to the estimated time of arrival (ETA). A certain arrival time

tArrival is assumed to be obligatory. Referring to constraints due to ship characteristics,

the ship’s design and propulsion system influence its behavior, speed profile and fuel

consumption when facing environmental impacts such as waves or wind. Considered

constraints include a maximum speed through water due to a maximum power of the

ship’s engine and a minimum speed to maintain course control.

2 Optimization Approaches

The ship weather routing problem as described above is a single-objective determin-

istic and constrained optimization problem. It is approached below using a graph

algorithm and a genetic algorithm. Both approaches aim to minimize fuel costs,

while varying the ship’s heading and speed to allow route and speed optimization.

GraphAlgorithm The described ship weather routing problem is discretized in time

and space. An according graph is used, which is connected, directed and acyclic [15].

A common deterministic method for solving a discrete single-objective optimization
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problem related to finding the optimal path in a graph is Dijkstra’s algorithm [3],

which is applied in ship weather routing [11, 14]. To reduce computational effort

the A* algorithm is applied in this study [15]. An optimal path in this case is the

path of minimum fuel costs, thus the arc weights are the fuel costs between the two

respective nodes. It is aimed to minimize the total estimated costs F(k), which is the

sum of the exact fuel costs G(k) according to Sect. 3 from the start to any node k and

the heuristic estimated fuel costs H(k) from k to the destination, which are derived

equivalently to G(k) but neglecting the predicted weather conditions. The selection

criterion is expressed in Eq. (1) with B denoting a set of nodes not considered on the

route from start to k [15].

F(k) = G(k) + H(k) ≤ min{G(i) + H(i) | i ∈ B} (1)

Genetic Algorithm Evolutionary methods, mainly genetic algorithms (GA), are

becoming increasingly popular as it is more often aimed at decision support by solv-

ing a multi-objective optimization problem [5, 13]. The objective is to find the route

rj of minimum fuel costs CFuel(rj) from the set of all feasible routes R. A route’s fuel

costs are the sum of the costs between two neighboring waypoints i and i + 1 with

rj = {xj1, x
j
2,… , xjn, y

j
1, y

j
2,… , yjn, v

j
1, v

j
2,… , vjn} being a vector of decision variables

describing the waypoints (xji, y
j
i) and the speed profile (vji). To apply the GA in this

case, it is made use of the GA from the optimization toolbox of Matlab R2016a,

which is integrated in the C++ framework. An initial population rinitial is given for

each voyage (see Sect. 4). Using the GA default selection, reproduction, crossover

and mutation mechanisms further generations are created until a local optimal solu-

tion is provided [8].

3 Ship Hydrodynamics and Calculation of Fuel Costs

The optimization aims to minimize fuels costs. These can be derived based on time-

and location-dependent meteorological and oceanographic impacts, especially ocean

currents, wind and waves, as well as the ship’s characteristics, mainly resistance and

propulsion system. As the current is neglected in this study, the ship’s speed vS and

heading 𝛼S through water are equal to those over ground. The same applies to true

wind speed uT and direction 𝛼T and those relative to the ground.

Ship Resistance The total resistance of a ship Rtotal is composed of its resistance

in calm water RCalm and an added resistance influenced by the ship’s roughness and

appendages as well as environmental impacts [10]. Here, the added resistances due

to wind RWind and waves RWave are considered, as in Eq. (2). Wind speed uT and

direction 𝛼T as well as wave period TW , direction 𝜇0 and height HS are given in

weather forecasts, while ship speed vS and heading 𝛼S are variables.

Rtotal = RCalm(vS) + RWind(uT , 𝛼T , vS, 𝛼S) + RWave(TS, 𝜇0,HS, vS, 𝛼S) (2)
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Calm Water Resistance The calm water resistance RT of a ship can be derived

amongst others from model tests or empirical formulae. It can be expressed as a

polynomial function of the ship’s speed through water vS, as in Eq. (3).

RCalm(vS) = a4v4S − a3v3S + a2v2S − a1vS + a0 (3)

Added Resistance due to Wind Due to the effect of the true wind speed uT at an

angle 𝛼T , the ship’s speed vS and heading 𝛼S, the ship experiences an apparent wind

speed uA. To estimate the wind resistance RWind the simplified approach in Eq. (4) is

used that depends on the apparent wind along the ship’s center line uA,S = vS + uT ⋅
cos (𝛼T − 𝛼S), the ship’s frontal projected area above sea level AF, the density of air

𝜌Air and a coefficient cA, which is 0.8–1.0 for cargo ships [10]. Accordingly, head

wind causes an additional resistance, while tailwind reduces the ship’s resistance.

RWind(uT , 𝛼T , vS, 𝛼S) =

{
0.5 ⋅ 𝜌Air ⋅ cA ⋅ AF ⋅ u2A,S , uA,S ≥ 0

− 0.5 ⋅ 𝜌Air ⋅ cA ⋅ AF ⋅ u2A,S , uA,S < 0
(4)

Added Resistance due to Waves The added resistance RWave can be derived from

hydrodynamic calculations. It depends on wave period Tw, encounter angle between

ship and wave 𝜇e, wave height HS and ship speed vS. The encounter angle 𝜇e is

the angle between main wave direction 𝜇0 and ship’s heading 𝛼S. Here, the added

resistance RWave,H standardized with the square of the wave height HS is given in a

matrix used to interpolate the added resistance due to waves RWave(TS, 𝜇0,HS, vS, 𝛼S).

Engine Power and Fuel ConsumptionAccounting for the ship’s propulsion system,

the ship’s resistance results in a required engine power, the fuel consumption and

finally the costs of the route. Total resistance Rtotal, ship speed vS and propulsion

efficiency 𝜂D compose the delivered shaft power with a corresponding specific fuel

consumption be,Fuel. Combined with voyage time t and price per ton of heavy fuel

oil PFuel it leads to the fuel costs CFuel as per Eq. (5), which are the time- and space-

dependent arc weights of the graph. Losses in shaft or bearings are neglected.

CFuel =
Rtotal ⋅ vS

𝜂D
⋅ be,Fuel ⋅ t ⋅ PFuel (5)

4 Comparison of Results, Discussion and Conclusions

The two approaches are compared based on transatlantic voyages of a bulk carrier

transporting coal from Venezuela to Europe using weather forecasts from 2013-12-

16. The ship has a length between perpendiculars of 220 m, a breadth of 32.24 m,

a draught of 14.5 m, a displacement of 90,617 t and an engine power available for

propulsion of 17,240 kW. The weather data covers the Atlantic ocean with a latitu-

dinal and longitudinal resolution of 0.25
◦
, a temporal resolution of 3 h and a fore-



Comparing Two Optimization Approaches for Ship Weather Routing 341

Fig. 1 Transatlantic voyage of bulk carrier from Venezuela to the English Channel within 12 days.

Left side shows result from graph algorithm and right from genetic algorithm including boundaries

cast range of 7.5 days. The described objective, constraints, variables, implementa-

tion in C++ and system settings are considered to allow direct comparison of both

approaches regarding computation time and quality of results. To allow on-board

voyage optimization an ordinary personal computer is used.

Comparison A scenario with a minimum speed of 5 kn, a maximum speed of 15 kn

and a voyage duration of 12 days is solved using the A* algorithm. For the duration

outside the forecast range, the shortest distance is assumed. The result shown in Fig. 1

is achieved in less than one hour. This scenario is used as baseline for comparison.

The time consuming part of the computation is the calculation of fuel costs, hence

the arc weights, due to the consideration of 130 neighbors described by latitude, lon-

gitude and time. Assuming a variable arrival time and a constant speed which elim-

inates the time discretization, the computation time is less than one minute. Halving

the geographic resolution returns a result in 7% of the baseline computation time,

while halving the geographic resolution and simultaneously doubling the temporal

resolution requires approximately 50% of the baseline computation time. Distance

and fuel costs differ by less than 5% compared to the baseline. As to the genetic algo-

rithm, an initial population is given by the Great Circle Route (GCR) and an average

speed of 13 kn. An upper (UB) and lower boundary (LB) are displayed in Fig. 1.

ETA, minimum and maximum speed are the same as above. A population size of

20 and 30 variables describing route and speed profile results in the route shown in

Fig. 1, but takes 37% more time than the baseline, thus more than one hour. Distance

and fuel costs are almost equal to the baseline. Decreasing the number of variables

to 18 reduces time by 30% compared to the baseline without impairing distance and

costs. When setting the LB to the initial population the result is not acceptable as

it does not resemble the minimum found with the A* algorithm or with the GCR

as the initial population. The results are not improved when using LB, 18 variables

and a population size of 50. Only increasing the population size to 100 results in a

good output in this case, but this also leads to a seven times higher computation time.
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Further tests regarding mutation rate, crossover mechanisms or other options would

be interesting, but are not addressed in this study.

Discussion and Conclusions The graph algorithm is mainly influenced by the dis-

cretization in space and time. As expected, the results of the genetic algorithm

strongly depend on initial population, population size and number of variables. A

suitable initial population with a small number of variables provides sound results

in adequate computation time, even at a rather small population size. However, when

it comes to initial populations not close to the optimum, population size needs to be

increased significantly implying a major rise in computation time. First, the optimum

cannot always be predicted to set the initial population accordingly, but a variation of

the initial population may contribute to decision support. Second, bearing in mind

that updated weather forecasts can be provided e.g. every 6 h, computation time

needs to be as short as possible. Consequently, due to more reliable results that do

not depend as strongly on the input data, the graph algorithms is considered to be

advantageous for the described problem and application.
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Optimal Dynamic Assignment of Internal
Vehicle Fleet at a Maritime Rail Terminal
with Uncertain Processing Times

Ying Xie and Dong-Ping Song

Abstract This study aims to improve the efficiency of container loading process at
a seaport by optimizing the dynamic assignment of internal vehicle fleet in the
process of moving containers from storage yards at maritime terminals to the train
at the rail terminal. We formulate the problem into a stochastic dynamic pro-
gramming model taking into account uncertain processing times. Numerical
experiments based on a case study are performed to illustrate the effectiveness and
the sensitivity of the model.

1 Introduction

The growing traffic volume puts a huge pressure on container port as an interface
between seaborne transport and hinterland transport. Rail transport is regarded as an
effective way to tackle the above challenges due to its high capability and low
emission. Therefore, improving the efficiency of rail terminal operations at seaports
is essential to ensure the sustainability of global container transport chains. This
study aims to improve the efficiency of container loading process at a seaport by
optimizing the dynamic assignment of internal vehicle fleet in the process of
moving containers from storage yards at maritime terminals to the train at the rail
terminal.

A number of survey papers have reviewed operations management at container
ports and terminals, e.g. Stahlbock and Voss [6]; Carlo et al. [4]. However, the
operations management issues directly associated with rail terminals at seaports
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have been understudied. A few papers focused on the container loading problem,
which aims to assign containers to the wagon slots of the train by minimizing the
unproductive operations at the rail terminal and/or in the storage areas [1, 2].
Caballini et al. [3] developed a mixed integer linear mathematical programming
model to optimize the timings of the trains and the use of the handling resources
devoted to rail port operations. The authors further extended the deterministic
model to deal with unexpected situations or uncertainty by adopting an
event-triggered receding-horizon planning approach. Their model does not consider
the regular uncertainty in the container processing times.

There is a high level of uncertainty/variability in the process of moving con-
tainers from storage yards to the rail terminal. A need has emerged for tools that
have the capability of appropriately determining the dynamic internal vehicle
assignment in order to load containers onto the train within the time window. In this
paper, we focus on the container loading process at a seaport from storage yards to
trains. We will formulate the problem into a stochastic dynamic programming
model, with the aim to minimize the total logistics costs associated with moving
containers from storage yards to the train plus the penalty cost of underutilizing the
train capacity.

2 Model and Solution

The process of transporting containers from storage yards to the train includes the
following main activities (see Fig. 1): Internal Moving Vehicle (IMV) receives a
message to collect a container; the container is landed on the IMV; IMV transports
the container to the rail terminal (either to the Rail Terminal (RT) buffer area before
the working time window, which is called pre-staging, or to the Rail Mounted
Gantry crane (RMG) directly during working time window); the pre-staged con-
tainers are moved from the RT buffers to the RMG; RMG loads the container to a
wagon slot on the train.

Consider the loading process of a single train under periodic-review scheme with
a working time window (0, T). The decision variables include: q: the number of
containers to be pre-staged from storage yards to the rail terminal (RT) buffer before
the working time window; uV(t): the planned flow rate (i.e., the number of assigned

Fig. 1 The process of transporting containers from yards to train

344 Y. Xie and D.-P. Song



IMV) to move containers from yards to the RMG over the working time window;
and uB(t): the planned flow rate (i.e., the assigned number of IMV) to move con-
tainers from RT buffer to the RMG over the working time window. We assume that
one IMV carries one container. Other parameters are introduced and shown in
Tables 1 and 2. The objective is to minimize the total cost incurred during
pre-staging containers, transporting containers from yards to RMG, transporting
containers from RM buffer to RMG, RMG crane handling containers, container
storage at buffers, and penalty for underutilizing the train capacity.

2.1 Model

The discrete-time dynamics of the transportation system can be described by

xB tð Þ= xB t− 1ð Þ− ξB tð Þ, for t=1, 2, . . . , T; ð1Þ

xT tð Þ= xT t− 1ð Þ+ ξV tð Þ+ ξB tð Þ, for t=1, 2, . . . ,T . ð2Þ

xB 0ð Þ= q; xT 0ð Þ=0; 0≤ q≤QB; ð3Þ

Table 1 Notation of static parameters

T: The planning horizon, assuming the working time window is (0, T)

QB: The capacity of the RT buffer space
QC: The maximum handling capacity of the RMG within one period
QT: The capacity of the train
cP: The unit cost of pre-staging containers (including transport and storage)
cV: The unit cost of vehicle deployed to transport a container from yard to RMG
cB: The unit cost of vehicle deployed to transport a container from RT buffer to RMG
cC: The unit cost of the RMG loading a container to train
cS: The storage cost at RT buffer per container per period
cU: The unit penalty cost of underutilizing the train capacity

Table 2 Notation of dynamic parameters and variables

UV(t): The maximum number of assigned IMV from yard to RMG in period t

UB(t): The maximum number of assigned IMV from RT buffer to RMG in period t

ξV(t): The random flow rate from yard to RMG in period t

ξB(t): The random flow rate from RT buffer to the RMG in period t

xB(t): The number of containers in the RT buffer at the end of time period t

xT(t): The number of containers on the train at the end of time period t
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0≤ ξV tð Þ≤ uV tð Þ; 0≤ ξB tð Þ≤ uB tð Þ; ð4Þ

0≤ uV tð Þ≤UV tð Þ; 0≤ uB tð Þ≤min xB t− 1ð Þ,UB tð Þ� �
; ð5Þ

uV tð Þ+ uB tð Þ≤min QT − xT t− 1ð Þ,QC� �
; ð6Þ

The initial number of containers in the RT buffer is q, and the initial number of
containers on the train is 0. It should be noted that due to the uncertainty in
container processing time, the actual number of containers that reach the RMG in
one period, represented by ξ(t), is often lower than the planned flow rate u(t). Thus
we have constraints in (4). The planned flow rate u(t) is also constrained by the
maximum number of IMVs available, by the capacity of the train and by the
capacity of the RMG, as shown in (5, 6).

The objective function is given by:

J0 q, 0, 0ð Þ=E½q ⋅ cP + ∑T
t=0 c

SxBðtÞ+ ∑T
t=1 ðcVuV tð Þ+ cBuB tð Þ+ cC B tð Þ+ VðtÞ� �Þ

+ cU ⋅ ðQT − ξT Tð ÞÞ�
ð7Þ

On the right-hand-side of the above equation, the first term is the pre-staging
cost; the second term is the storage costs at RT buffer; the third term represents the
container movement costs from yard to RMG, from RT buffer to RMG, from RMG
to train; the fourth term represents the penalty cost for underutilizing the train
capacity. Following the stochastic dynamic programming theory [5], the backwards
optimality equation is given by (for t = 0, 1, …, T):

Jt xB tð Þ, xT tð Þ� �
=minfq ⋅ cP ⋅ I t=0f g+ cSxBðtÞ+ cVuV ðt+1Þ

+ cBuBðt+1ÞcU ⋅ QT − xT tð Þ� �
⋅ I t=Tf g

+E½cCðξBðt+1Þ+ ξV ðt+1ÞÞ+ Jt+1 xB t+1ð Þ, xT t+1ð Þ� ��g
ð8Þ

where JT +1 xB T +1ð Þ, xT T +1ð Þð Þ=0, and I{condition} is an indicator function. It
takes 1 if the condition in {} is true, 0 otherwise.

2.2 Solution

The stochastic dynamic programming problem in (1)–(8) can be solved using the
backwards value iteration algorithm (c.f. [5]).

Step 1: Let JT +1 xB, xTð Þ=0 for any (xB, xT). Let t = T.
Step 2: Use (8) to calculate the optimal value function Jt xB tð Þ, xT tð Þð Þ subject to

(1)–(6), and the optimal control uVt xB tð Þ, xT tð Þð Þ and uBt xB tð Þ, xT tð Þð Þ.
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Step 3: Let t = t − 1. If t ≥ 0, go to Step 2.
Step 4: Identify the optimal q*. Return the optimal cost J0(q

*, 0); the optimal
decision variables q*, uVt xB tð Þ, xT tð Þð Þ, uBt xB tð Þ, xT tð Þð Þ.

3 Numerical Examples

In this section, we first provide an empirical case to demonstrate the container
loading process at a seaport rail terminal and calibrate the input data. Secondly, we
perform a range of experiments to illustrate the application of the proposed models.

Figure 2 shows the empirical data of container loading rates at a real rail ter-
minal within a day (from a real case study in the UK). In total six trains are handled
within a day, and each time period is 30 min. The number of containers handled per
period ranges from 0 to 15. The working time window for each train ranges from 4
periods (i.e. 2 h) to 8 periods (i.e. 4 h). We calibrate the input data of the reference
scenario as follows: the time period is 30 min; QT = 40; QB =30; QC =15;
UV tð Þ=15; UB tð Þ=15. We assume xB tð Þ≡ uB tð Þ and ξxV tð Þ= uV tð Þ ⋅ z, where
z follows a uniform distribution. Here we want to focus on the uncertainty in the
process from yards to rail terminal by assuming deterministic operations from RT
buffer to RMG. Moreover, let cP =4; cV =5; cB =2; cC =1; cS =1; cU =100. It
should be noted that the above cost coefficients are hypothetical and only the
relative values of these cost elements are meaningful.

Now we apply the model to optimize the pre-staging decision and the dynamic
IMV assignment. As the length of working time window is an important factor, we
experiment with three levels of working window, i.e. T = 4, 6, 8, which correspond
to 2, 3, and 4 h working windows respectively. The results are given in Table 3.

From Table 3, it can be seen that: (i) in the deterministic situation, we have
q* = 0, which means zero pre-staging is optimal. This is intuitively true due to the
facts: (a) pre-staging plus moving containers from RT buffer to RMG costs more
than directly moving containers from yard to RMG; (b) the working time window is

Fig. 2 Empirical data of container loading rate at a rail terminal within a day
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sufficiently large to move containers directly from yards to RMG to fully load the
train; (ii) J0(q

*, 0) is increasing in the degree of uncertainty; and q* is increasing in
the degree of uncertainty; (iii) by comparing the results with that of zero pre-staging
cases (not included in this paper due to page limit), the cost saving of the best
pre-staging decision from zero pre-staging is increasing as the degree of uncertainty
increases. This indicates the importance of determine appropriate pre-staging.
(iv) At the same degree of uncertainty, J0(q

*, 0) is decreasing as the time window
increases; and q* is decreasing as the time window increases. When the time
window is adequately large, zero pre-staging tends to be optimal.

4 Conclusions

This study considers the optimal assignment of IMV fleet and container pre-staging
at a seaport rail terminal in the presence of uncertainty. The mathematical model
developed using stochastic dynamic programming can plan the container flow at
aggregate level, without the need to address the detailed discrete events, therefore
can avoid the NP hard combinational optimization problem. Another innovation of
the developed model is the ability of yielding optimal plans under dynamic mode
and accommodating stochastic factors. However, when the dimension of state and
decision variables increases, the computation complexity of the model also
increases significantly. Numerical examples based on a real case are provided to
illustrate the effectiveness of the model. Further research includes combining both
discharge and load trains into a single optimization model.
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The Capacitated Vehicle Routing Problem
with Three-Dimensional Loading Constraints
and Split Delivery—A Case Study

Junmin Yi and Andreas Bortfeldt

Abstract The capacitated vehicle routing problem with three-dimensional

loading constraints (3L-CVRP) combines vehicle routing and three-dimensional

loading with additional packing constraints concerning, for example, the stability of

packed goods. We consider a logistics company that repeatedly has to pick up goods

at different sites. Often, the load of one site exceeds the volume capacity of a vehi-

cle. Therefore, we focus on the 3L-CVRP with split delivery and propose a hybrid

algorithm for this problem. It consists of a tabu search procedure for routing and

some packing heuristics with different tasks. One packing heuristic generates pack-

ing plans for shuttle tours involving special sites with large-volume sets of goods.

Another heuristic cares for packing plans for tours with numerous sites. The hybrid

algorithm is tested with a set of instances which differs from often used 3L-CVRP

test instances and comes from real industrial data, with up to 46 sites and 1549 boxes

to be transported. The algorithm yields good results within short computing times

of less than 1 min.

1 Introduction

The capacitated vehicle routing problem with three-dimensional (3D) loading con-

straints (3L-CVRP) generalizes the vehicle routing problem and the container load-

ing problem which are traditionally separately handled combinatorial optimization

problems. Real-world settings can be modelled in greater detail by packing con-

straints which ensure the integrity of sensitive items, stability of packing arrange-

ments and efficient unloading of delivered boxes.

Since the 3L-CVRP was introduced in [1], many effective algorithms proposed

in literature are mostly hybrid metaheuristics. A nested tabu search algorithm is
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developed by [1] and an ant colony algorithm is designed in [2]. Further effective

hybrid algorithms are proposed in [3–6]. The literature on VRP with 3D loading

constraints is surveyed in [7, 8].

In the 3L-CVRP, it is required that each customer is visited just once. However,

in practice it is possible that a customer has a demand that does not fit into a single

vehicle for reasons of weight or volume. In this case, the demand has to be split and

be delivered by two or more vehicles. In the research dedicated to the classical VRP

a large body of literature deals with VRP with split delivery (see [9]). But to our

best knowledge, only the papers [10, 11] considered the possibility of splitting the

customers’ demands in a routing-packing problem context. However, these papers

did not handle the situation where customer demands are larger than vehicle capacity.

To fill this gap, our study addresses the 3L-CVRP with split delivery (3L-SDCVRP)

in a milk-run operation of a Shanghai automotive logistics company.

The rest of the paper is organized as follows: the 3L-SDCVRP is formulated and

related real-world instances are described in Sect. 2. Our solving approach to the

3L-SDCVRP is outlined in Sect. 3. Results are provided and discussed in Sect. 4.

Conclusions are drawn in Sect. 5.

2 Problem Formulation and Shanghai Dataset

Our problem comes from the milk-run operations in and around Shanghai area that

are carried out by a Shanghai automotive logistics company, which serves many car

makers in metropolitan Shanghai and whole China. It can be formulated similarly to

the 3L-CVRP (see [1, 10]).

Let be given a complete network with n nodes, one depot and symmetric dis-

tances. There is a fleet of homogeneous vehicles that are rear loaded and have

identical 3D rectangular loading spaces. Each node has a pickup demand given by

a set of 3D rectangular items. Our task is to determine a set of routes, starting and

ending at the depot, and a packing plan for each route. The packing plan should stow

all boxes, which are to be picked up at the nodes of the related route, in a feasi-

ble way (no overlapping items, each item must lie completely in the loading space,

orthogonal packing). The pickup demands of all nodes have to be satisfied and the

routes should be chosen so that the total travel distance is minimized and, as second

objective criterion, the number of routes (or used vehicles) is as small as possible.

Moreover, some packing constraints have to be observed: (C1) Loading sequence
constraints. Loading the items of a node must be possible by pure movements of

these items in length direction of the vehicle. (C2) Orientation constraints. The

spatial orientation of all items is fixed with regard to height while horizontal 90◦ rota-

tions are permitted. (C3) Support constraints. A certain percentage a of the base area

of all items must be supported by other items. We chose a = 75% in the experiments.

(C4) Fragility constraints. Here, if a box type has three dimensions less or equal

100 cm and there is only one item of this type, the item may be classified as fragile.

Fragile items can only bear other fragile items. A weight constraint is ignored here

since all packed goods are of low density.
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Table 1 Summary of the Shanghai dataset

Instance Nodes (n) Box types Items (m) Vehicle type Minimum

no. of

vehicles

(vLB)

No. of big

nodes

Sha01 5 26 261 M 2 0

Sha02 8 50 167 S 6 2

Sha03 10 17 73 S 3 0

Sha04 12 33 204 B 3 1

Sha05 12 59 228 M 4 1

Sha06 15 56 228 M 4 1

Sha07 16 79 439 B 7 2

Sha08 18 51 303 M 6 1

Sha09 27 98 734 C 8 1

Sha10 31 134 590 B 9 1

Sha11 46 185 1549 C 16 4

The eleven problem instances are generated from the automotive logistics com-

pany, thus they are called here Shanghai dataset. Most instances include some nodes,

called big nodes, whose demand exceeds the volume capacity of a vehicle so that (at

least) for these nodes two or more routes are indispensable. Our instances have num-

bers of nodes (n) ranging from 5 to 46 and the numbers of items to be loaded (m)

range from 73 to 1549, details are summarized in Table 1.

Although there are four vehicle types, only one type is chosen per instance. The

lower bound vLB for the number of vehicles (routes) is calculated as rounded quotient

of the total items volume and the vehicles volume capacity.

Compared to the 3L-CVRP benchmark instances by [1, 4], our dataset has some

important application-oriented attributes. The numbers of box types are quite large.

The cargo of a node is often composed by large groups of items of same dimensions.

The distance matrix is gained from the real-time road travel distances by Baidu e-

map.

From the occurrence of big nodes in the Shanghai problems we can conclude that

these problems are instances of 3L-SDCVRP. We assume in this paper that splits are

only allowed when necessary, i.e. when the boxes of a node cannot be packed in one

loading space. Note that we use the term 3L-CVRP with split delivery (instead of

split pickup) since from a structural perspective there is no difference between these

problem variants.

One could raise the question whether a big node cannot be replaced by two or

more artificial nodes that have the same coordinates as the big node and the same

total demand. In this case and if only inevitable splits are allowed, one could try to

reduce the 3L-SDCVRP to the 3L-CVRP.
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However, this procedure would require a split of the demand of each big node

within the problem formulation. These anticipated splits would often be worse (in

terms of solution quality) than splits generated by means of a packing algorithm.

Hence, the 3L-SDCVRP seems to be an independent problem even if only inevitable

splits are permitted.

3 Solving Approach for 3L-CVRP with Split Pickup

Our approach consists of two main steps and is based on two earlier published papers.

In the first step, routes with only one or two nodes and related packing plans are con-

structed. This step is intended mainly for those nodes whose load almost reaches or

exceeds the volume capacity of one vehicle. In the second step, the residual problem

is solved by constructing routes with multiple nodes and related packing plans. The

steps are described below with some details.

First main step: Packing plans for each node are generated by a genetic algorithm

(GA) for the container loading problem that is proposed in [12]. Each packing plan

consists of vertical layers that follow each other in length direction. The crossover

operator generates an offspring by combining high quality layers from both parents

and adding some newly constructed layers.

For each node the GA constructs at least one packing plan (one filled loading

space) and two or more if necessary. Then pairs of packing plans of two nearby

nodes will be merged to save some loading space. Finally, all packing plans are

accepted that satisfy one of the following criteria: (i) the filling rate of the load-

ing space reaches a given limit (e.g. 60%); (ii) the packing plan belongs to a series

of at least two packing plans of the same node and does not have the worst filling

rate of that series. An accepted packing plan is completed by a route (with one or

two nodes) and the packed items and, if necessary, their nodes are removed from the

problem instance.

Second main step: The remaining 3L-CVRP instance is solved by means of the

hybrid algorithm developed in [3]. A tabu search algorithm serves for routing and

performs swap as well as shift moves that include either one or two routes of a given

solution. A tree search algorithm is responsible for packing checks. A packing plan

for a route is built box by box in a backtracking manner and at each stage a small

number of possible placements is examined. Much computational effort is saved by

means of special coupling mechanisms between routing and packing, e.g., a cache

which includes already tested routes.

However, the original tree search algorithm is only able to cope with small num-

bers of items and has been modified. Now, vertical layers, which fill the length or

width of the loading space, can be integrated in packing plans yielded by the tree

search algorithm; these layers are also produced by the above GA in step 1. In the

end the best solutions of both steps are assembled.
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4 Results and Discussion

Our hybrid algorithm has been implemented in C++ and tested on the above

introduced dataset on a PC with an Intel processor (3.30 GHz). Detailed results are

shown in Table 2; z stands for the total travel distance.

The reached mean filling rate per instance is given by the quotient (in %) of the

total item volume and the total volume of the used loading spaces and is mainly

responsible for the number of routes v. The mean filling rates are satisfactory with

respect to the required constraints. Similar filling rates were achieved in, e.g. [1, 2].

Note that primarily the loading sequence constraint (C1) makes it difficult to reach

larger filling rates in the 3L-(SD)CVRP (see [10], p. 1147). In our total 200 nodes

of 11 instances, there are 14 big nodes in 9 instances. The number of nodes with

split pickup exceeds the number of big nodes (see Table 1) only for three instances

and by at most two nodes. This meets the practical requirement of “less splits, less

management cost on sorting and counting”.

To what extent nodes that are not “big” are also split, depends on the quality of

the used packing algorithm. Thus, the small number of four additional splits in our

results also indicates a good solution quality. By the way, the occurrence of additional

splits shows again that the 3L-SDCVRP cannot be reduced to the 3L-CVRP even if

only necessary splits are allowed.

All in all, we have reached good quality results and our solutions were provided

in short running times of less than 1 min while in [10] (p. 1146) running times of

nearly 3 h are reported.

Table 2 Summary of results

Instance z v vLB Mean filling

rate (%)

Number of

nodes split

Running

time (s)

Sha01 582.2 3 2 55.1 0 2

Sha02 2907.0 10 6 52.9 3 13

Sha03 369.2 4 3 53.6 1 42

Sha04 372.0 4 3 61.2 1 13

Sha05 1493.9 6 4 57.6 1 10

Sha06 620.0 7 4 55.7 1 19

Sha07 1701.4 11 7 60.9 2 28

Sha08 387.7 9 6 57.3 1 11

Sha09 1063.8 15 8 48.0 1 17

Sha10 1946.2 15 9 57.6 1 53

Sha11 581.8 29 16 53.0 6 33
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5 Conclusions

We have considered the Shanghai dataset, a set of instances of the CVRP with

three-dimensional loading constraints and split delivery that comes from the Shang-

hai automotive industry. We solved the problem under the assumption that only

inevitable splits are allowed and showed that the 3L-SDCVRP under this assump-

tion cannot be reduced to the 3L-CVRP and represents an independent problem. Our

proposed hybrid algorithm effectively solves the Shanghai dataset in short running

times.
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AModel to Locate and Supply Bio-refineries
in Large-Scale Multi-biomass Supply Chains

Nasim Zandi Atashbar, Nacima Labadie and Christian Prins

Abstract Biofuels derived from biomass can play a crucial role as one of the main

sources of renewable energies. As logistics may represent up to 50% of biomass cost,

it is necessary to design efficient biomass supply chains to provide bio-refineries

with adequate quantities of biomass at reasonable prices and appropriate times. The

task is challenging since, contrary to industrial logistics, the raw materials (oilseed

and lignocellulosic crops) are produced slowly, seasonally, and with a limited yield,

over vast territories. The paper proposes a Mixed Integer Linear Program (MILP) to

optimize a multi-period and multi-biomass supply chain for several bio-refineries,

at the tactical decision level. The locations of refineries can be fixed by the user

or determined by the model. The aim is to minimize the total cost of the supply

chain, including biomass production, pretreatments, storage, handling, bio-refineries

setup and transportation, while satisfying given refinery demands in each period.

The resulting MILP, already validated on medium-size instances, will be applied

to a large-scale real case covering two regions of France (Champagne-Ardenne and

Picardie) with 273 territorial units and 8 biomass types.

1 Introduction

Growing consciousness about destructive effects of climate change caused by green-

house gas emissions, in addition to a huge rise in global demand for energy, have inci-

tated many researchers to look for better alternatives to fossil fuels. Biofuel derived

from biomass, as a renewable and clean energy source, is one of the few potential

replacements of fossil fuels and can play a crucial role in the transition from tradi-

tional sources of energy.
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Biomass flow from field to fuel is called biomass supply chain and includes var-

ious activities such as cultivation, harvesting, handling, storage, transportation, and

biofuel conversion. Although biomass itself is cheap relative to other sources of

energy, its cost at refinery gates can be important, due to high logistics costs. That

is why it is critical to improve the efficiency of its supply chain in order to make the

production of biofuel affordable. Therefore, more and more researchers have been

involved in modeling and optimizing biomass supply chains.

Designing the whole logistic system for a biomass supply chain has been always

a tough challenge for researchers in this domain. Many studies focused on a single

part or a few steps of the logistic system, e.g., a multi-biomass optimization model

focusing on bioenergy conversion is proposed in [1]. A vast majority of papers con-

sider a single type of biomass, see for instance the integrated optimization model

presented in [2] to produce ethanol from switchgrass. Reference [3] considers sev-

eral biomass types, like in our study, but for one pre-located biorefinery. A recent

survey of optimization models for biomass supply chains can be found in [4–6].

To the best of our knowledge, this paper tackles for the first time a multi-period

time horizon with different biomass types, centralized storages and several refiner-

ies which are already located or not. It describes a MILP to minimize a total cost,

including biomass production, storage, handling, refineries setup and transport.

The paper is organized as follows: Sect. 2 presents the proposed model. The effec-

tiveness of the model is illustrated with a numerical example in Sect. 3. Finally, con-

cluding remarks are given in Sect. 4.

2 Data Description, Assumptions and Model

This research studies a comprehensive multi-period and multi-biomass supply chain

with several node types. Biomass can be harvested in production zones, and then

either stored in farm storages or transferred directly to centralized storages. Bio-

mass can be also shipped from farm storages to centralized storages. Finally, it is

transported to the refineries. The supply chain can be described by a graph G with

a node-set N, composed of biomass production zones (subset BP), farm storages

(FS), centralized storages (CS) and biorefinery input stocks (RL), and an arc-set A.

Each arc (i, j) ∈ A denotes a pre-computed shortest path from node i to node j, with

length dij and a required vehicle type Eij. A list of additional parameters and decision

variables is given in Table 1.

A MILP model is proposed to minimize the total cost of this supply chain while

satisfying given refinery demands in each period. The decision variables are biomass

flows (from production zones to farm storages or centralized storages, from farm

storages to centralized storages, and from farm storages and centralized storages to

biorefineries), inventory levels of production zones, farm storages and centralized

storages, and binary variables to locate biorefineries. The formulation (objective

function and constraints) of the proposed model is described in the sequel.
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Table 1 Notation

Variables Unit Description

Sti Tonne Stock of biomass at node i at end of time

period t (Sti ≥ 0)

Ft
ij Tonne Flow of biomass sent from node i to node j

during time period t (Ft
ij ≥ 0)

Yr
z – 1, if one biorefinery of type r is created in

zone z; 0 otherwise (Yr
z ∈ {0, 1})

Parameters Unit Description

bi Period First period when node i may be used

ei Period Last period when node i may be used

𝜅i Tonne Capacity of node i
𝜌i – Representative of the node i in case of shared

storage capacity

Sbi Tonne Initial inventory of node i in period b
Sei Tonne Minimum final inventory level of node i
CS
i e/(period× tonne) Storage cost of node i

CI
i e/(period× tonne) Input cost of node i (handling cost)

CO
i e/(period× tonne) Output cost of node i (production cost for BP

nodes, handling for others)

𝜏i Tonne/period Maximum throughput of node i
𝛿i – Degradation coefficient per period for node i,

e.g., 0.999 for a 0.1% loss

CV
v e/(km× tonne) Transportation cost for vehicle v

CR
r e Setup cost of biorefinery type r

Nr e Number of refineries of type r
Lz – Forbidden if no refinery can be built in zone

z, Allowed, if one may be created, or a valid
refinery type if one refinery of this type is

already installed

Objective function: The objective of this model is to minimize the total cost

of biomass supply chain (TC), including biomass production, storage, biorefineries

set-up, handling and transportation costs. TC includes the following terms.

CB =
∑

i∈BP

∑

t∈[bi,ei]

∑

(i,j)∈A
CO
i × Ft

ij (1)

CS =
∑

i∈N∖BP

∑

t∈[bi,ei]
CS
i × Sti (2)

CR =
∑

z∈Z

∑

r∈R
CR
r × Yr

z (3)
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CH =
∑

i∈N∖BP

∑

t∈[bi,ei]

∑

(i,j)∈A
CO
i × Ft

ij +
∑

i∈N

∑

t∈[bi,ei]

∑

(j,i)∈A
CI
i × Ft

ji (4)

CT =
∑

(i,j)∈A

∑

t∈[bi,ei]
dij × CV

Eij
× Ft

ij (5)

The mathematical model is:

MinTC = CB + CS + CR + CH + CT (6)

∀i ∈ N ∣𝜅i < ∞ & 𝜌i = 0, ∀t ∈ [bi, ei] ∶ Sti ≤ 𝜅i (7)

∀i ∈ N ∣𝜅i < ∞ & 𝜌i = i, ∀t ∈ [bi, ei] ∶
∑

j∈N∣𝜌j=i
Stj ≤ 𝜅i (8)

∀i ∈ N∖RL & Sei > 0 ∶ Seii ≥ Sei (9)

∀i ∈ N∖RL ∶ Sbi × 𝛿i +
∑

(j,i)∈A
Fbi
ji −

∑

(i,j)∈A
Fbi
ij = Sbii (10)

∀i ∈ N∖RL, ∀t ∈ [bi + 1, ei] ∶ St−1i × 𝛿i +
∑

(j,i)∈A
Ft
ji −

∑

(i,j)∈A
Ft
ij = Sti (11)

∀i ∈ N∖RL & 𝜏i < ∞, ∀t ∈ [bi, ei] ∶
∑

(i,j)∈A
Ft
ij ≤ 𝜏i (12)

∀z ∈ Z ∣Lz ≠ Forbidden ∶
∑

r
Yr
z ≤ 1 (13)

∀r ∈ R ∶
∑

z∈Z∣Lz≠Forbidden
Yr
z = Nr (14)

∀z ∈ Z ∣Lz ∈ R ∶ Yr
z = 1 (15)

∀i ∈ RL ∶ Sbi × 𝛿i × YNRi
NZi

+
∑

(j,i)∈A
Fbi
ji − (Dbi

NPi,NRi
∕ΔNPi

) × YNRi
NZi

= Sbii (16)

∀i ∈ RL, t ∈ [bi + 1, ei] ∶ St−1i × 𝛿i +
∑

(j,i)∈A
Ft
ji − (Dt

NPi,NRi
∕ΔNPi

) × YNRi
NZi

= Sti

(17)

∀i ∈ RL & Sei > 0 ∶ Seii ≥ Sei × YNRi
NZi

(18)

Equation (1) refers to the total production cost of biomass (cost of the outgoing flows

from BP nodes). Equation (2) represents the total storage cost, not counted for BP
nodes. Equation (3) is the total setup cost of refineries. Equation (4) represents the

total handling cost. It includes the costs for loading products from any node except

BP nodes, and the costs for unloading products at any node. Equation (5) shows the

amount transported on each arc in each period multiplied by the distance and the cost

per (tonne × km) of the vehicle specified for the arc. Ei,j denotes the vehicle to be

used on arc (i, j). Considering all the cost elements, the following objective function

TC is obtained (which has to be minimized).
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General constraints: Storage capacity constraints (7) and (8) apply to all nodes

except the ones with an unlimited capacity, like BP nodes. A group of nodes i sharing

the same storage capacity has a common representative 𝜌i and we have to sum the

stocks over all these nodes. Final inventory constraints (9) in the last period must be

respected when they are specified, otherwise the constraints are redundant with Sti ≥
0. Constraints (10) and (11) guarantee the inventory balance for all nodes, except

the RL nodes discussed in the next section. Constraints (10) are the particular case

for the first period, with the initial inventory and constraints (11) correspond to the

other periods. The maximum throughput constraints (12), when specified, are used

to limit the total flow leaving an edge.

Constraints on refinery location: Constraints (13) ensure that at most one refin-

ery can be built in each zone where creations are allowed. Constraints (14) guarantee

that the number of refineries created for each type must be equal to the maximum

number allowed. Constraints (15) force the set-up variable to 1 for an existing refin-

ery (it is then eliminated by the pre-solver).

Constraints on RL nodes: The demand satisfaction constraints (16) and (17)

are similar to the inventory balance equations (10) and (11) but the output flow is

replaced by a demand in dry tonnes. Recall that NPi and NRi denote the product and

the refinery type represented by node i. The need in dry tonnes in period t is Dt
NPi,NRi

and it must be divided by the percentage of dry matter ΔNPi
to get the amount to

be taken from the stock. Final inventory constraints (18) in the last period must be

respected.

3 Numerical Example

The model is already tested on around 8000-km
2

area around the city of Compiègne

(60 km North of Paris), with 29 zones (administrative districts containing several

communes each and 1768 farms in total), 3 rape products (bulk seeds, straw bales

and chaff bales), and a 1-year horizon divided into 52 weeks. Rape production in

each zone was estimated using results of the 2010 Agricultural Census. The stor-

age capacities and storage costs for silos (for seeds) and platforms (for bales) was

obtained by sending a questionnaire to centralized storage operators. The costs of

handling equipment and transport vehicles was found in professional databases. One

refinery is assumed to be already located in Compiègne while a second may be cre-

ated in any district with no common border with Compiègne.

The resulting instance was solved using Xpress-IVE 7.8 from FICO, on a 2.70

GHz Intel Core i7 portable PC with 32 GB of RAM and Windows 7 Professional.

The model has 105,922 variables and 15,377 constraints. The pre-solver reduces

it to 99,643 variables and 7,614 constraints. The relaxed LP is solved in 4.0 s to

give a lower bound of 51.161 × 106. Then Xpress finds an optimal solution costing

52,057,533 e in 36.2 s. The cost of biomass represent 51.8%, capital and operating

costs of refineries 38.4%, transport 5.1%, handling 2.6%, and storage 2.0%. By halv-
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ing the demands, an optimal solution costing 35,355,177 e in 23.05 s is found. In

addition, the model is tested when two refineries are assumed to be already located,

one in Compiègne and the other one in Vic-sur-Aisne.The model has 99,590 vari-

ables and 7384 constraints. An optimal solution costing 52,515,225 e in 1.3 s is

reached. Also, the possibility of creating and locating two other refineries in any dis-

trict, has been tested. The model produced 99,645 variables and 7615 constraints.

Xpress finds an optimal solution costing 52,057,225 e in 53.3 s. As demonstrated,

by decreasing the number of binary variables related to locating biorefineries, the

running time has been decreased significantly. If instead of predefined location of

biorefineries, the model locates them, total cost will decrease. Also, when demands

of biorefineries decrease, the total cost will decrease as well.

The running time is quite acceptable for a tactical model with binary setup vari-

ables. Moreover, the relaxed LP gives a very good lower bound. A project part-

ner is preparing a large-scale instance covering two regions of France (Champagne-

Ardenne and Picardie), with 273 districts and 8 biomass types.

4 Conclusion

In this paper, a mixed integer linear program is developed to optimize a multi-period

and multi-biomass supply chain with several biorefineries. The objective is to min-

imize the costs of biomass production, storage, biorefineries set-up, handling and

transport. The proposed mathematical formulation is general and flexible enough for

adding new facilities and biomass products. It determines the amount of biomass pro-

duced, shipped and stored to satisfy demands of biorefineries during each period and

the number, size and locations of biorefineries. Future research will focus on design-

ing different solution approaches such as decomposition techniques, relaxation meth-

ods and meta-heuristics. Also, multi-modal transportation and multi-objective opti-

mization are challenging issues toward which the research can be directed.
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Transportation Planning with Different
Forwarding Limitations

Mario Ziebuhr and Herbert Kopfer

Abstract In recent publications, it is assumed that there are transportation requests

which have to be fulfilled by certain resources (e.g., own vehicle fleet or external

carriers) due to contractual obligations. These requests are known as compulsory

requests. The contribution of this publication is to identify the increase in trans-

portation costs caused by a combination of compulsory requests with different con-

tractual obligations. To evaluate the impact of compulsory requests, an existing col-

umn generation-based heuristic with two solution strategies for handling compulsory

requests is applied and the generated results are analyzed.

1 Introduction

Today, forwarders are confronted with high demand fluctuations. That is why they

have to reduce their costs and improve their flexibility by considering different

fulfillment modes simultaneously. Beside their own transportation resources (self-

fulfillment) forwarders use external carriers (subcontracting) and horizontal coop-

eration (collaborative planning) as fulfillment modes. One option of subcontracting

is making use of a spot market where common carriers are employed for transporta-

tion requests in exchange of freight charges. A second option is the possibility of

using long-term contractual agreements with subcontractors, where forwarders hire

transportation capacities of long-term carriers to an agreed limit and take over the

planning for the hired capacities. These subcontractors can be paid on a tour basis

(TB) or on a daily basis (DB). Simultaneously solving the combined problem of vehi-

cle routing for the private fleet and the optimal employment of common carriers and
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subcontractors is known as integrated operational transportation planning (IOTP).

Another fulfillment mode is given by collaborative transportation planning (CTP),

where independent forwarders try to improve their planning situation by reallocating

some of their requests or capacities within a horizontal coalition. The combination

of an IOTP and CTP problem is denoted as collaborative operational transportation

planning (COTP). In COTP, a request can be fulfilled either by self-fulfillment, sub-

contracting or collaborative planning.

In recent publications, it is assumed that some transportation requests cannot be

fulfilled by certain fulfillment modes due to contractual obligations. These requests

are denoted as compulsory [2, 4, 7, 8] or reserved requests [1]. In the following,

the term compulsory requests is used. Respective publications consider extended

pickup and delivery problems (PDPs); e.g., a pickup and delivery selection problem

[1, 2, 4], an IOTP problem [7], and a COTP problem [8]. To solve these vehicle

routing problems heuristic approaches are used; e.g., a memetic algorithm [4], a

tabu-embedded simulated annealing algorithm [2], an adaptive large neighborhood

search [1], and a column generation-based heuristic [7, 8].

This paper considers a COTP problem with forwarding limitations (COTPP-FL),

which was introduced by [8]. In [8], compulsory requests with different contrac-

tual obligations are already considered. The contribution of this paper is to iden-

tify the increase in transportation costs by considering different kinds of compul-

sory requests simultaneously. To the best of our knowledge, there is no comparable

approach in literature. To analyze the impact of compulsory requests, an existing

column generation-based heuristic (CGB-heuristic) with two strategies for handling

compulsory requests is used. In Sect. 2, a problem description is presented, while

Sect. 3 describes the heuristic and Sect. 4 presents the computational studies.

2 Problem Description

This paper considers an IOTP problem, where a forwarder c hast to determine a

transportation plan where nc less than truckload requests have to be transported

from their pickup Pc = {1, ..., nc} to their delivery location Dc = {nc + 1, ..., 2nc}.

Thereby, the set of edges is defined by Ac = Vc × Vc, while the set of nodes is given

by Vc = Pc ∪ Dc ∪ {oc} where {oc} represents the depot. The distance dij is given for

each edge (i, j) ∈ Ac. In IOTP, four fulfillment modes are applicable: private vehi-

cles (K1
c ), rented vehicles based on mode TB (K2

c ), rented vehicles based on mode

DB (K3
c ) and common carriers. A common carrier charges a fee 𝛾i for fulfilling the

request at node i. Corresponding to objective function (1), the task is to determine

a transportation plan which minimizes the sum of the fixed costs 𝛼k, variable costs

𝛽k, and fees 𝛾i by fulfilling routing, time, and loading constraints. Thereby, a trans-

portation plan is defined by three binary decision variables: xijk, yDBk , and yCCi . The

variable xijk is equal to one if a vehicle k travels from node i to j, yDBk is equal to one
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if a rented vehicle k ∈ K3
c on mode DB is used, and yCCi is equal to one if a common

carrier is employed for the fulfillment.

min IPc =
∑

k∈K1∪K2

∑

(i,j)∈Ac

𝛽kdijxijk +
∑

k∈K3
c

akyDBk +
∑

i∈Pc

𝛾iyCCi (1)

In terms of the COTP problem, this paper looks at the IOTP problem from a col-

laborative perspective, where forwarders align their individual transportation plans

by exchanging requests with each other. Depending on the transportation plans of

the coalition members, each forwarder c offers a request portfolio P−
c for exchange

and receives a new portfolio P+
c after the request exchange process is completed.

The offered request portfolio P−
c is defined by Pc∖P0

c , where P0
c represents the set of

non-transferable requests. As soon as the request exchange process is completed, a

forwarder c is responsible for producing the assigned request portfolio P′
c with P′

c =

P0
c ∪ P+

c and fulfillment costs defined by IP′
c. The goal of the COTP problem is to

minimize the individual costs of each member of the coalition (Eq. (2)) by ensuring

that each exchanged request is fulfilled by exactly one coalition member (Eq. (3))

and that all offered requests are assigned to the coalition members (Eq. (4)).

minCTPc =
m∑

c=1
IP′

c (2)

P′
c ∩ P′

h = ∅ , ∀c, h = 1, ...,m, c ≠ h, (3)

∪m
c=1P

−
c = ∪m

c=1P
+
c . (4)

The described COTP problem does not consider compulsory requests. Therefore,

it is necessary to extend the COTP problem. In the proposed COTPP-FL, four differ-

ent types of compulsory requests are considered which differ in terms of the applica-

ble external resources for fulfilling these requests. The following request types are

considered: S requests (fulfillment by any fulfillment mode), P1 requests (fulfillment

by self-fulfillment), P2 requests (fulfillment by self-fulfillment and long-term car-

rier), P3 requests (fulfillment by self-fulfillment and collaboration), and P4 requests

(fulfillment by self-fulfillment, long-term carrier, and collaboration). It means for

example, a P3 request requires the application of a vehicle of the private fleet of any

member within the horizontal coalition, while the application of subcontracting is

strictly prohibited. All P1-P4 requests are compulsory requests and have a common

feature of being not able to use common carriers. In terms of the mathematical for-

mulation of the COTPP-FL, the set of pickup nodes Pc has to be separated into five

disjoint sets: S pickup nodes Sc, P1 pickup nodes P1
c , P2 pickup nodes P2

c , P3 pickup

nodes P3
c , and P4 pickup nodes P4

c . Based on these disjoint sets, the COTP problem

has to be extended by constraints which ensure that just the applicable resources are

used for compulsory requests. A COTPP-FL is presented by [8].
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3 Solution Approach

As solution approach, the CGB-heuristic which was introduced by [6], is applied and

modified. In the CGB-heuristic, it is proposed to reformulate the transportation prob-

lem into two problems: the master problem (selection of vehicle routes) and the sub-

problem (generation of vehicle routes). Thereby, the subproblem is solved by each

coalition member separately while the master problem is solved by a neutral soft-

ware agent. By solving the master problem dual values are generated and forwarded

to the subproblem for identifying new vehicle routes which reduce the operational

costs. The process is repeated for a certain number of iterations. The subproblem

is solved by an adaptive large neighborhood search (ALNS) and the master prob-

lem is solved by a commercial solver. An ALNS, which was introduced by [3], is

a local search heuristic which uses a simulated annealing and different removal and

insertion heuristics. The CGB-heuristic is executed two times. First, the approach is

applied to the complete request portfolio P which means that each coalition member

is able to bid on all requests of the coalition. Secondly, each coalition member uses

this approach for the winning bids of the first application of the CGB-heuristic.

To consider compulsory requests two strategies are proposed, which are explained

in detail by [7]. One strategy for handling compulsory requests is the strict genera-

tion procedure where the compulsiveness of requests is strictly observed by the sub-

problem. Thereby, only valid vehicle routes are accepted by the simulated annealing

during the ALNS. This means that a request is fulfilled by a fulfillment mode cor-

responding to the request type. To generate as many valid vehicle routes as possi-

ble, three modifications are recommended for the ALNS. First, the common carrier

option is penalized by using penalty costs for compulsory requests. Second, the ful-

fillment of P1 and P2 requests by different coalition members as well as the fulfill-

ment of P1 and P3 requests by long-term carriers are prohibited by skipping these

invalid insertions for the insertion heuristics. Third, the request portfolio of the inser-

tion heuristics is split into two: one for compulsory requests and one for standard

requests. Due to this procedure compulsory requests are preferred for reinsertion.

A second strategy is the strict composition procedure where forwarding limitations

are ignored by the ALNS and considered by the solution of the master problem. It

means that many of the submitted routes may contain compulsory requests which

are served by an improper fulfillment mode. To ensure that feasible vehicle routes

are selected for the considered COTPP-FL, the master problem is extended by new

constraints which observe the applied fulfillment modes for compulsory requests.

Therefore, the vehicles are numbered in an ascending order and for each compul-

sory request a certain range is determined and ensured. To ensure feasible solutions

by high ratios of compulsory requests, it is proposed that the ALNS accepts only

feasible vehicle routes in the first round of the column generation.
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4 Computational Experiments

In this paper, the instances of [8] are used which are derived based on 24 COTP

instances where 2–5 IOTP instances with the same location structure (R1, C1, and

RC1) are combined to one COTP instance. In general, the instances are derived from

the well known instances of [5]. The size of the available fleet size is set to the

number of vehicles used in the best-known PDP solutions. The total vehicle fleet of

each coalition member is composed of: 40% private vehicles, 30% vehicles on mode

TB, and 30% vehicles on mode DB. In this paper, the instances of [8] with 15%
compulsory requests and 85% standard requests are considered. Regarding these 15%
compulsory requests, eleven different combinations are analyzed: (P1, P2), (P1, P3),

(P1, P4), (P2, P3), (P2, P4), (P3, P4), (P1, P2, P3), (P1, P2, P4), (P1, P3, P4), (P2, P3,

P4), and (P1, P2, P3, P4). In the existing instances, the type of compulsory request

is not defined. That it is why, first, the number of compulsory requests in an instance

is divided by the number of request types in a combination. Then, each request type

receives the same number of requests in an ascending order based on the existing

request order. In case that an equal distribution is not available, the last request type

within a combination receives the remaining compulsory requests. 15 samples are

generated for each instance and combination. The same parameter setting is used

as suggested by [8]. As evaluation criterion, the percentaged cost increase between

the COTPP-FL solution computed by our best heuristic and the best-known COTP

solution is used. The experiments are executed on a Windows 7 PC with Intel Core

i7-2600 processor (3.4 GHz and 16 GB of memory) and the solver CPLEX (version

12.51) is applied.

In a first study, the strict generation procedure is compared with the strict com-

position procedure for all combinations and instances with three coalition members.

Thereby, it is worth mentioning that in [8] it is identified that the strict generation

procedure is preferable for P1 and P3 requests, while the strict composition proce-

dure is preferable for P2 and P4 requests. Corresponding to this observation, it is

assumed that the strict generation procedure is preferable when most of the com-

pulsory requests are P1 and P3 requests, while the strict composition procedure is

preferable in combinations with P2 and P4 requests. In our study, this assumption

can often be verified by identifying that every time when P3 requests are considered

the strict generation procedure leads to better results.

In a second study, the increase in transportation costs is analyzed by considering

different combinations of compulsory requests. Thereby, the COTPP-FL is solved by

the CGB-heuristic combined with the best strategy for each combination. The per-

centaged increase in costs per compulsory request as well as the best COTP solution

are presented in Table 1. To evaluate the results of Table 1 it is necessary to know

the findings of [8] where it is observed that on average P1 requests lead to the high-

est, P3 to the second highest, P2 to the third highest, and P4 requests to the forth

highest additional costs. Corresponding to this finding, the following order in terms

of additional costs is expected for combinations with two request types: (P1, P3),

(P1, P2), (P2, P3), (P1, P4), (P3, P4), and (P2, P4) and for combinations with three
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request types: (P1, P2, P3), (P1, P3, P4), (P1, P2, P4), and (P2, P3, P4) (descending

order). This assumption is verified in the second study. Further on, it is also obvious

that the highest additional costs over all combinations can always be observed for the

combination (P1, P3), while the lowest ones can always be observed for the combi-

nation (P2, P4). The remaining combinations differ a little bit more regarding their

additional costs depending on the location structure and the number of freight for-

warders. It is also observed that there is no significant cost reduction by considering

different kinds of compulsory requests simultaneously. Since the identified figures

are just slightly lower (on average about 7%) than the aggregated figures of [8], it is

assumed that the procedure for distributing different compulsory requests within the

instance generation is responsible for this observation.
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Alternative Fitness Functions in the
Development of Models for Prediction
of Patient Recruitment in Multicentre
Clinical Trials

Gilyana Borlikova, Michael Phillips, Louis Smith, Miguel Nicolau
and Michael O’Neill

Abstract For a drug to be approved for human use, its safety and efficacy need

to be evidenced through clinical trials. At present, patient recruitment is a major

bottleneck in conducting clinical trials. Pharma and contract research organisations

(CRO) are actively looking into optimisation of different aspects of patient recruit-

ment. One of the avenues to approach this business problem is to improve the quality

of selection of investigators/sites at the start of a trial. This study builds upon previ-

ous work that used Grammatical Evolution (GE) to evolve classification models to

predict the future patient enrolment performance of investigators/sites considered for

a trial. Selection of investigators/sites, depending on the business context, could ben-

efit from the use of either especially conservative or more liberal predictive models.

To address this business need, decision-tree type classifiers were evolved utilising

different fitness functions to drive GE. The functions compared were classical accu-

racy, balanced accuracy and F-measure with different values of parameter beta. The

issue of models’ generalisability was addressed by introduction of a validation pro-

cedure. The predictive power of the resultant GE-evolved models on the test set was

compared with performance of a range of machine learning algorithms widely used

for classification. The results of the study demonstrate that flexibility of GE induced

classification models can be used to address business needs in the area of patient

recruitment in clinical trials.
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1 Introduction

For any drug to be approved for human use, its safety and efficacy need to be evi-

denced through clinical trials. Patient recruitment is the most time and resource con-

suming part of the majority of clinical trials. One of the avenues to approach this

business problem is to improve the quality of selection of investigators/clinical sites

(sites) at the start of a trial. This study builds upon previous work [2] that used

Grammatical Evolution (GE) [4, 10], a grammar-based Genetic Programming sys-

tem [9] to evolve classification models to predict the future patient enrolment per-

formance of sites considered for a trial. Development of predictive models needs to

take into account the business context in which the models will be deployed. Mis-

classification costs will inevitably differ depending on a particular business situation

(i.e. abundance or scarcity of the eligible sites, site setup costs, penalties for the

missed timelines, etc.). Therefore, different business contexts might benefit from the

use of either especially conservative or more liberal predictive models. This study

evolved decision-tree type classifiers using different fitness functions to drive GE.

The results demonstrate that utilisation of different fitness functions can be used to

address challenges of uneven misclassification costs in unbalanced data situation and

guide evolution of customised patient recruitment classification models by GE.

2 Problem Definition and Background

Notwithstanding some recent developments and new approaches [13] to patient

recruitment it remains an area of active business interest. Developing tools for more

robust site selection at the beginning of a trial can help avoid delays and reduce the

need for “rescue” sites in the course of the trial. Predictive business analytic tech-

niques can be used to improve this process, such as development of site classification

models based on the historic data. However, model construction for this problem

requires care as in most real-life patient recruitment situations historic data is unbal-

anced (the proportion of successful vs. poorly performing sites is uneven) and, very

often, the costs of misclassification error for different classes are different. One type

of error (False Negative, FN, in terms of Confusion Matrix) will result in inclusion

of a potentially weak site in the study, while another (False Positive, FP) will lead

to exclusion of a potentially promising site from the study. [3, 6, 12] advocate the

use of ROC and AUC for model evaluation and selection and the use of expected

cost/benefit to frame classifier evaluation especially in the context of probabilistic

machine learning (ML) classifiers. In the GP field Zhang and colleagues [1] devel-

oped different fitness functions to improve classification in the case of unbalanced

data. Cost-sensitive learning is an active area of research following [5]. In this study

we follow up on our previous work that adopted decision-tree type GE classifiers

with discreet class output to address prediction in patient recruitment. We investi-

gated the use of different fitness functions to drive GE: classical accuracy, balanced

accuracy and F-measure with different values of parameter beta [7, 11, 14].
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3 Experiments, Results and Analysis

The dataset used was described previously in [2] and constructed based on the his-

torical data provided by ICON plc. on 21 Diabetes Mellitus Type II Phase III clini-

cal trials. The prepared dataset consisted of 1233 records and 42 predictor variables

(35 numerical and 7 categorical) describing different aspects of investigator/site. All

sites were divided into two classes based on their patient recruitment performance.

GE was used to evolve decision-tree type discreet classifiers. The GE grammar (sim-

ilar to the previous work) used the function and terminal set detailed in Table 1. The

evolutionary parameters were set as follows: population size 1000 individuals, 50

generations, ramped-half-and-half initialisation, tournament selection, tournament

size 5, generational replacement, elite size 1, sub-tree crossover (90% probability),

sub-tree mutation (1 event per individual), maximum derivation tree depth was 9, 30

independent runs.

The data was split into train and test subsets (balanced, 70/30%) and model train-

ing and tuning was performed using the train subset. Performance of the best of

run models was then tested on the test subset to ascertain how well they generalise

to unseen data. Models were evolved on 5 different splits of data (data cuts 1–5).

Selected models were evaluated on 5 different test subsets in order to further assess

models’ generalisation (“Monte-Carlo cross-validation”, [8]). The resultant general-

isation metrics have some inbuilt optimistic bias, but are still better than assessment

on a single test subset. The following functions were investigated [7, 14]:

Accuracy = (TP + TN)
(TP + TN + FP + FN)

; (1)

Balanced Accuracy = 𝜔 × TP
TP + FN

+ (1 − 𝜔) × TN
TN + FP

; where 𝜔 = 0.5 (2)

F
𝛽
measure = (1 + 𝛽

2) × TP
((1 + 𝛽

2) ∗ TP + 𝛽
2 × FN + FP)

; where 𝛽 = 0.5, 1, 2
(3)

Performance of the GE models was compared to a number of well-established

ML algorithms. The R CARET package [8] was used to train, tune and test the ML

models. Accuracy was used as a metric in the ML cross-validation procedure and all

Table 1 Function and terminal sets of GE classifier

Function set Terminal set
+, −, *, /, and, or, not 35 numerical predictive variables: x0, ..., x34

equals, not_equals 3 categorical predictive variables: x35, x36, x37

less, greater, less_e, greater_e 4 Boolean predictive variables: x38, ..., x42

20 random constants in −1.0, ..., 1.0 with 0.1 step



378 G. Borlikova et al.

Table 2 Benchmark machine learning (ML) model settings

Model R CARET

method

Parameter setting

Support Vector Machines, Radial Basis Function

Kernel (svm)

svm sigma = 0.0149, cost = 0.5

Classification and Regression Tree (cart) rpart complexity parmeter = 0.0249

Multivariate Adaptive Regression Splines (mars) gcvEarth product degree = 1

Random Forest (rf) rf #randomly selected predictors = 7

Nearest Shrunken Centroids (nsc) pam shrinkage threshold = 4.1236

Fig. 1 Best fitness achieved

by GE models driven by

different fitness functions

during training on data cut 1

over 50 generations

0.5

0.6

0.7

0.8

0 10 20 30 40 50

generation

fit
ne

ss

functions
acb

acc

f0.5

f1

f2

Best fitness per generation 
different fitness functions

ML models used default class probability threshold of 0.5. ML models’ settings are

presented in Table 2.

The best (Fig. 1) and average population fitness gradually increased over 50 GE

generations in all experiments confirming the ability of all used fitness functions to

successfully drive evolutionary process.

As the next step, best of run individuals were assessed on the previously unseen

test subset. To facilitate between-function comparison of performance of all models,

models were assessed in terms of True Positive Rate (TPR) and False Positive Rate

(FPR) coordinates (TPR = TP/Condition Positive, FPR = FP/Condition Negative).

Dot-plots of 30 individual runs with each fitness function (Fig. 2) show that different

functions evolve models that reside in the different parts of the TPR-FPR space. Best

model evolved on data cut 1 by accuracy achieved 0.57/0.27, by balanced accuracy

−0.77/0.45, by F0.5 − 0.61∕0.30, by F1 − 0.84∕0.52, by F2 − 0.99∕0.79 TPR/FPR
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Fig. 2 Performance of the best of run models evolved using different fitness functions on test

subset of data cut 1 (30 runs per fitness function); ML models with 0.5 class threshold probability

respectively. For comparison, the best in terms of TPR ML model in this experiment

MARS demonstrated 0.62/0.27 TPR/FPR. The results clearly demonstrate that GE

evolves models that are comparable or even better than ML evolved models, depend-

ing on the context (Fig. 2).

When assessed for generalisation across 5 different test subsets all models demon-

strated steady performance (Fig. 3). For each of the fitness functions the top classi-

fiers evolved on the five training data-cuts were evaluated on the five test subsets and

the resultant averaged performance was used to visualise the “gross” generalisability

of classifiers from each function. Last pane of Fig. 3 illustrates the results. The figure

shows that, unsurprisingly, the increase in TPR comes at the price of increased FPR.

In the extreme case classifiers evolved using F2-measure achieve 0.99 TPR, but at

the cost of 0.8% FPR.

Results of this study clearly demonstrate that the use of different fitness functions

to drive GE successfully evolves models positioned in different parts of the TPR/FPR

space. It is important to note that while the use of the investigated functions does not

produce “principally better” models on this challenging dataset; it allows to develop

models that target different parts of TPR/FPR space, akin to the custom choice of

classification threshold in case of ML algorithms that return class probabilities. This

variety of models can be exploited in the real-world business situation to select mod-

els that are suited to particular business circumstances.
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Fig. 3 Generalisation between different test subsets of the top classifiers evolved on 5 training sub-

sets (c1–c5) using different fitness functions. Last panel—Gross averaged performance of classifiers

evolved using different fitness functions (mean sem, black error-bars—sem on tpr, red—-sem on

fpr, *mars—evaluation of MARS ML model on data-cut 1)

4 Conclusions

This paper approached the business problem of improving patient recruitment for

clinical trials by developing models to predict future performance of clinical sites.

The GE-based classifiers were evolved using accuracy, balanced accuracy and F-

measure as fitness functions with the aim to produce GE classifiers with different

true positive rate/false positive rate qualities. The results demonstrate that utilisation

of different fitness functions can be used to address challenges of uneven misclassi-

fication costs in unbalanced data situation and guide evolution of customised patient

recruitment classification models by GE. However, a more detailed business assess-

ment of misclassification costs in each case is needed to allow for the full quantisation

of the models’ performance in the business sense.
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Long-Term Consequences of Depot Decisions
for the Inventory Routing Problem

Sandra Huber and Martin Josef Geiger

Abstract The article describes our work on an extension of the Inventory Routing

Problem (IRP). While the basic formulation of the IRP combines delivery volume

with vehicle routing decisions, and thus includes tactical and operative aspects, we

here consider the strategic placement of the depot, also. In some first experiments,

the effect of such a strategic decision on the inventory levels and routing costs in

the supply chain is studied. Besides, potential improvements, i.e., savings in trans-

portation costs are investigated. Our findings indicate that efficiency improvements

are indeed achievable by extending the problem formulation towards the strategic

planning level.

1 Introduction and Problem Statement

Facility location problems, vehicle routing problems and inventory management are

key problem areas in supply chain management [11]. The bi-objective IRP incorpo-

rates decisions on a tactical as well as on an operational planning level, such as the

combination of inventory management with a Capacitated Vehicle Routing Prob-

lem (CVRP). For a detailed IRP literature review we refer to the work of [3, 4].

Furthermore, it seems promising to include a strategic planning level in the IRP to

analyze the tradeoff between the two proposed objectives. Without the integration of

the depot decision, previous studies show that the two objectives are clearly in con-

flict to each other: the simultaneously minimization of the total sum of all inventory

levels at each customer at the end of each period and the total sum of all distances

traveled by the vehicles in each period. While small delivery quantities lead to low

inventory levels over time, large delivery quantities allow a minimization of the rout-

ing costs [5, 8]. The surveys of [6, 7, 9] investigate the combined location routing
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and inventory problem. Choosing depots from several potential locations and deter-

mining routes to meet customers’ demands is the aim of these works [9].

We propose a single-item IRP with repeated deliveries in a distribution network

with one depot and a geographically dispersed set of n customers over a finite plan-

ning horizon. Inventory costs and capacities are considered at the customers, but not

at the depot. Also, the number of vehicles is unconstrained and capacitated vehicles

are used [5]. A deterministic IRP is assumed where the consumption for each cus-

tomer and each period is known beforehand. When the current inventory is insuf-

ficient to satisfy the forthcoming demands dit of a customer i at each period t, an

action (delivery) of the supplier is needed. For satisfying the demand at the cus-

tomers, we consider the strategy that the inventory currently held at the customers

is either able to fully cover the customers demands at period t or the inventory is

zero. Following this idea, our replenishment strategy is to avoid stockout situations

by shipping enough goods in advance or just in time. With respect to the data, the

customers demand can vary from period to period, resulting in changing delivery

quantities over the time horizon T (dynamic IRP [8]).

This IRP model description must deal with the following decisions: (1) the depot

location must be selected for the whole planning horizon, (2) delivery quantities

qit for each customer i, i = 1,… , n and each period t ∈ T must be determined, and

(3) the VRP must be solved for each period t, t = 1,… ,T including the delivery

quantities qit into tours for the involved vehicles with the already selected depot.

Two objectives are considered for the IRP: The total sum of inventory levels f1 =∑T
t=1

∑n
i=1 L

t
i is minimized, where Lti is the inventory level for customer i for period t.

This objective function f2 =
∑T

t=1 VRPt(qit,… , qnT ) expresses the minimization of

the total sum of the routing costs [5]. An overview of models with different objectives

is described in [2].

2 Solution Method

Our solution method separates the problem into two decision levels: (1) the deter-

mination of delivery volumes and (2) the subsequent computation of the routing for

each period which takes into account the previous calculated delivery quantities.

In terms of the delivery strategy, alternatives are encoded by a n-dimensional vector

𝜋 = (𝜋1,… , 𝜋n) of integers. Each element 𝜋i corresponds to a customer i and reflects

for how many periods the demand of customer i, i = 1,… , n is covered (delivery

period). A delivery takes place when the demand cannot be satisfied with the inven-

tory level at the customer.

We define an initial solution by identical periods for all customers, starting with 1

and increasing them by steps of 1 until the alternative cannot be added to the archive

of non-dominated solutions. This is e.g. due to the fact that capacity constraints of

the vehicles and at the customers must be met. For example, when the delivery period

is defined as 𝜋i = 4, then the exact demand of customer i is satisfied for the next four
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consecutive periods. When the ‘delivery period’ is set to four for every customer, it

is called ‘identical delivery periods’.

Based on this delivery strategy, the supplier ensures that the customer does not

run out of products. Also, a growing demand over the time horizon results in higher

delivery quantities. This is a rather direct idea of representing delivery policies.

Alternatively, a ‘constant-delivery-quantity-approach’ could be applied, which leads

to changing delivery periods. A more general solution is provided in [1], where cus-

tomers are synchronized.

To improve the initial solutions, a run of the local search is performed on the

n-dimensional vector 𝜋 which represents the delivery periods. Particularly, an algo-

rithm is used to change every value within 𝜋 by ±1. Values < 1 are avoided since we

assume 1 as the smallest measurement of a period and a customer cannot be deliv-

ered twice a day. Throughout the search, an unbounded archive is kept which deletes

solutions by dominance comparisons. Previous results indicate that the memory of

a typical computer is sufficient to store these solutions [8].

3 Computational Experiments

Experiments are carried out to investigate the performance of the integration of

depot decisions. In particular, two research questions are raised: (1) To which extent

does the choice of the depot influence the long-term consequences of the subsequent

vehicle routing and the inventory management? (2) Can we, even in rather straight-

forward experiments, find improved depot locations and if so, what is the magnitude

of the improvement?

The instances are proposed by [10] and usually the depot is positioned in the

‘center’ of the network so-called ‘original depot’. Here, the x-coordinate is 30 and

the y-coordinate is 40. To get an idea of the graph, the x-coordinates range from a

minimal value of 5 to a maximum value of 63 and the y-coordinates lie in the range

from 6 to 69.

From a strategic planning level viewpoint, it might be beneficial to relocate the

depot at some future time. Thus, we compare the ‘original depot’ with other depot

locations. We assume that the possible depot location is at the customer’s site. For

example, when an instance has 50 customers, 50 different depot locations can be ana-

lyzed. Since previous studies achieved similar results for different instances [8], we

here restrict the presentation on GS-b-01 with 30 periods and 50 customers. Demand

data of the customers increase over time. With respect to every period, the demand

values can vary by ±25% around the average demand. In order to verify a similar

behaviour of the algorithm, further test runs for different data sets must be performed.

Note that all experiments are executed on a single core of an Intel Core i7-6600U

CPU 2.60 GHz with 8 GB RAM. Also, the maximal number of evaluations is set to

300,000. Note that it takes 177 min to compute the approximation of the Pareto front

for the ‘original depot’ (GS-b-01). In each evaluation, 30 vehicle routing problems

have to be solved, so the computation time is considerably higher in comparison to
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what we commonly find in the literature. However, an earlier termination is possible

when the local search has already investigated all alternatives in the archive. It is

also possible that some alternatives in the archive are not yet explored by the local

search.

Obviously, the depot decision has long-term influences on the objectives. Exem-

plarily the comparison of the approximations between the ‘original depot’ and ‘depot

with identification number (ID) 39’ are presented in Fig. 1. Note that the number

39 corresponds to identification number of the customer in the data set which has

the x-coordinate 59 and y-coordinate 15. The whole approximation of the Pareto

front for the ‘original depot’ lies below the other approximation, i.e. the approxi-

mation is considerable better. This presentation gives an idea how much influence a

long-term decision, such as a ‘bad’ choice of the depot location, has on the inven-

tory management and the vehicle routing. The approximations are compared after

235,000 number of evaluations, and e.g. not 300,000 evaluations as illustrated in

Fig. 2 respectively Fig. 3, since all alternatives in the archive for ‘depot with identi-

fication number 39’ are already investigated by the local search.

The results presented in Fig. 2 for the ‘original depot’ and ‘depot with identi-

fication number 12’ (x-coordinate 31 and y-coordinate 32) are not as clear as the

aforementioned findings. The gap between these approximations is much smaller

compared to the approximations in Fig. 1. The advantage of choosing ‘depot with

ID 12’ over the ‘original depot’ depends on the preferred part of the Pareto front. In
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Fig. 3 magnified results are illustrated for the approximations at the extreme end of

the Pareto front. Here, it is highlighted that the solution quality is mainly better when

‘depot with ID 12’ is selected. In order to identify the magnitude of the improvement,

we compute the difference between the routing distances for any given inventory

level. Over the entire approximation of the Pareto front, the best improvement for

the ‘depot selection with ID 12’ is 3.31%. This reduction can be meaningful since

such decisions are made for a long-term planning horizon.

4 Conclusion

We have conducted experiments to study the two proposed research questions. Our

main contributions are twofold. The maximal influence on the inventory levels and

the routing distances of a ‘bad’ depot decision is rather significant. We could show

with straight-forward experiments for benchmark data sets with a given depot that

savings in transportation costs (around 3%) can be achieved with a revised depot

selection. Based on these findings, it seems promising to include depot decisions

in the IRP for long-term planning decisions. However, counterexamples exist for

GS-b-01, where the ‘original depot’ achieves better results. For future research this

must be further analyzed for more test instances with different demand patterns.
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The Generalized Steiner Cable-Trench
Problem with Application to Error
Correction in Vascular Image Analysis

Eric Landquist, Francis J. Vasko, Gregory Kresge, Adam Tal,
Yifeng Jiang and Xenophon Papademetris

Abstract The Cable-Trench Problem (CTP) is the problem of minimizing the cost to

connect buildings on a campus to a central server so that each building is connected

directly to the server via a dedicated underground cable. The CTP is modeled by

a weighted graph in which the vertices represent buildings and the edges represent

the possible routes for digging trenches and laying cables between two buildings.

In this paper, we define the Generalized Steiner CTP (GSCTP), which considers

the situation in which a subset of the buildings is connected to the server and also

the possibility that trench costs vary because of vegetation or physical obstacles,

for example. The GSCTP has several natural applications, but we will focus on its

nontrivial and novel application to the problem of digitally connecting microCT scan

data of a vascular network with fully automated error correction. The CTP and its

variants are NP-hard. However, we show that modifications to Prim’s algorithm find

nearly optimal solutions to the GSCTP efficiently.
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1 Introduction

The Cable-Trench Problem (CTP) was first described in [6] and establishes a con-

tinuum between the Minimum Spanning Tree and Shortest Path Tree Problems. The

name “Cable-Trench” comes from the problem of minimizing the cost to connect

buildings on a campus to a central server so that each building is connected directly to

the server via a dedicated underground cable. The problem is modeled as a weighted

graph in which the buildings are represented by vertices and the edges represent

the possible routes for digging trenches and laying cables between two buildings.

Weights on the edges generally represent distance. The Generalized CTP (GCTP)

considers the possibility that the cost of digging a trench varies because of veg-

etation, soil composition, or physical obstacles, for example [7]. The Generalized

Steiner CTP (GSCTP) further supposes that some subset of the buildings is con-

nected to the server, though cables may be routed through any building.

In Sect. 2, we describe the application of the GSCTP to the problem of digitally

reconstructing a blood vessel network from microCT scan image data and eliminat-

ing errors in the data. We describe heuristics that we used to quickly compute nearly

optimal solutions to the GSCTP in Sect. 3 and tabulate results of our experiments in

Sect. 4. The paper closes with some conclusions and areas of future work in Sect. 5.

Here, we give a graph-theoretic description of the GSCTP.

Let G = (V ,E) be a connected graph with vertex set V = {v1,… , vn}, root vertex

v1, edge set E, and sij ≥ 0 and tij ≥ 0 the “cable” and “trench” weights of the edge

(vi, vj) ∈ E, respectively. Let F ⊆ V be the set of terminal vertices, N ⊆ V the set

of nonterminal vertices, and let 𝛾 and 𝜏 denote the per-unit cable and trench costs,

respectively. We define the GSCTP as the problem of finding a tree T = (VT ,ET ),
such that {v1} ∪ F ⊆ VT ⊆ V and ET ⊆ E, which minimizes 𝛾wc(T) + 𝜏wt(T), where

wc(T) =
∑

vk∈F

∑

(vi,vj)∈P(v1,vk)
sij and wt(T) =

∑

(vi,vj)∈ET

tij (1)

are the total cable weight of T and total trench weight in T , respectively, and

P(v1, vk) ⊆ ET is the path in T from v1 to the terminal vertex vk. Vertices in VT ∩ N
are called Steiner vertices. The CTP is the special case in which N = ∅ and sij = tij
for all i and j. Further, if 𝛾 > 0 and 𝜏 = 0, then a solution to the CTP is any shortest

path spanning tree of G with root vertex v1. In contrast, if 𝜏 > 0 and 𝛾 = 0, then a

solution to the CTP is any minimum spanning tree of G. Note that if 𝜏 = 0, then an

optimal solution could contain cycles formed from “empty” trenches. We will not

consider such solutions because in practice, we want to utilize every trench.

We refer the reader to [7] for a description of further applications and extensions

of the CTP. To motivate our definition of the GSCTP, however, we will describe a

nontrivial application to vascular image analysis due to Jiang et al. [2].
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2 Application to Vascular Image Analysis

A massive set of discrete points, representing the locations of blood vessels, are first

detected from 3D medical images, such as CT and microCT. The vessel radii at these

points can also be estimated from the images. These points correspond to the ver-

tices,V , of a complete graphG = (V ,E), with edge weights determined by Euclidean

length, vessel segment volume, or some physiological factor. The goal is to digitally

represent the vessel network (vasculature) as a subtree T ⊆ G as accurately as pos-

sible in order to assist critical vasculature-related research, including angiogenesis

and cancer detection. This task currently constitutes a bottleneck in quantitative vas-

cular research [8]. Prior to the GCTP model of [2, 7], the best methods computed the

minimum spanning tree of G, but the results depended heavily on manual correction

[1, 3, 5]. Specifically, [2, 7] applied Murray’s Minimum Work Principle [4], which

states that any vascular network tends to minimize the total work due to blood flow

resistance and metabolic support for the blood volume. These two factors are propor-

tional to the cable cost and trench cost in the GCTP, respectively. Thus, the vessel

connection problem is formulated as a GCTP with cable weights sij = 𝓁(ek)∕r(ek)
and trench weights tij = 𝓁(ek)r(ek)2, where 𝓁(ek) is the length of the blood vessel

represented by the edge ek = (vi, vj) and r(ek) is the radius of the vessel at vj. In this

application, if 𝛾 = 1, then 35000 ≤ 𝜏 ≤ 175000 is an appropriate range. We refer the

reader to [2] for the technical details of their derivation and to [7] for results on the

GCTP treatment of this problem.

In real image analysis scenarios, however, the data invariably contains errors, i.e.,

false positive vessel points detected from images. One can determine the leaves of

the solution tree, typically those points within the region perfused by the vascular

tree. We can therefore model the vascular imaging problem as a GSCTP by letting

F be the set of known leaf vertices. The set of errors, then, is a subset of N. We

assume that the optimal solution to a GSCTP model of a vessel connection problem

will yield an image as close as possible to the actual vascular network.

Vasko et al. showed that the CTP is NP-hard [6], so the GSCTP is NP-hard. Thus,

it is computationally infeasible to determine optimal solutions of very large GSCTPs,

such as those arising from the application at hand. In order to efficiently find nearly

optimal solutions of the GSCTP, we modified Prim’s algorithm.

3 Modifications to Prim’s Algorithm

In [7], Vasko et al. extended Prim’s algorithm to find nearly optimal solutions of the

GCTP. In this section, we describe further modifications that allow one to find nearly

optimal solutions to the GSCTP. First, we describe a modification of Prim’s algo-

rithm, which we call the Generalized Steiner Modified Prim’s heuristic (GSMPrim).

This will include what we call a benefit function, which is designed to encourage

the selection of terminal vertices as well as Steiner vertices that are adjacent to or
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sufficiently close to multiple terminal vertices. We then describe two variants of

GSMPrim: one semi-greedy and deterministic and one partially stochastic.

In order to define the benefit function, we first let | ⋅ | ∶ E → ℝ
≥0 be some fixed

edge metric (e.g., cable or trench weight), and setB ∈ ℝ
≥0 ∪ {∞} so that |(v,w)| < B

implies that v,w ∈ V are near each other. The metric | ⋅ | and bound B will vary

depending on the application. Now, the benefit function, b ∶ V → ℕ0, is defined

b(v) =
{

2 + #{w ∈ F ∶ (v,w) ∈ E ⧵ ET and |(v,w)| < B} if v ∈ F
#{w ∈ F ∶ (v,w) ∈ E ⧵ ET and |(v,w)| < B} if v ∈ N. (2)

We also define a positive multiplier M and let W = (𝜏∕𝛾)Mmaxe∈E{|e|}.

Algorithm 1: Generalized Steiner Modified Prim’s Heuristic (GSMPrim)

Input : G = (V ,E), F, sij and tij, 𝛾 , 𝜏, B, and W
Output: A tree T = (VT ,ET ) ⊆ G, such that {v1} ∪ F ⊆ VT

1 VT ∶= {v1}, ET ∶= {}, cost ∶= d ∶= {∞,∞,… ,∞}, Pre ∶= {1, 1,… , 1};

2 for 2 ≤ i ≤ n do
3 cost[i] ∶= 𝛾s1i + 𝜏t1i
4 while {v1} ∪ F ⊈ VT do
5 m ∶= index

(
min

{
cost[i] −Wb(vi) ∶ vi ∈ V ⧵ VT

})
;

6 VT ∶= VT ∪ {vm} and ET ∶= ET ∪ {
(
vPre[m], vm

)
};

7 for vi ∈ V ⧵ VT such that (vm, vi) ∈ E do
8 if cost[i] > 𝛾(d[m] + smi) + 𝜏tmi then
9 d[i] ∶= d[m] + smi, cost[i] ∶= 𝛾(d[m] + smi) + 𝜏tmi, Pre[i] ∶= m;

10 Remove all leaves in N from VT so that all leaves of T = (VT ,ET ) are in F.

Since we add a new vertex and edge with each iteration of the while loop,

GSMPrim will terminate. Moreover, it requires O
(
|V|2

)
time and space.

The two variants of GSMPrim are multi-pass modifications that generate multiple

solution trees. The semi-greedy variant, SG-GSMPrim, selects the kth best edge and

vertex at Step 5 of GSMPrim for the first edge of the kth solution tree T . Thereafter,

it selects every edge and vertex in a greedy fashion. The partially stochastic variant,

PS-GSMPrim, selects an initial fraction of the vertices and edges at Step 5 in a

stochastic manner, and proceeds in a greedy fashion thereafter. Specifically, we let[
p1, p2,… , pr

]
be a probability distribution, with pi ≥ pi+1 for all 1 ≤ i < r. At Step

5, the ith best vertex and edge is selected with probability pi, for 1 ≤ i ≤ r. In this

way, PS-GSMPrim can generate any number of solution trees.

Note that in the application to vascular image analysis error correction, we assume

that nonterminal leaves are in fact errors in the imaging process. Thus, Step 10 of

GSMPrim and its variants automatically eliminates errors from the image data.
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4 Results

We tested GSMPrim and its variants on a pair of small graphs and on a 25001-vertex

data set generated from a microCT scan of the vasculature of a mouse leg. In each

case, we let 𝛾 = 1 and considered a collection of values of 𝜏. For the benefit function,

we used |e| = 𝓁(e) and B = (1∕10)maxe∈E{𝓁(e)}.

For Tables 1 and 2, we used five sets of terminal vertices on each graph and

averaged the results. In Table 1, we compared GSMPrim with M = 0 and M = 1 to

the optimal solutions, which were found using LINDO. The last column shows the

percentage improvement in GSMPrim when using the benefit function. In Tables 1

and 2, the optimal solutions are used as the benchmark to test our heuristic.

The graph for Table 2 is taken from the microCT scan data: the root and its closest

20 points. For Tables 2 and 3, we tested multipliers M from the set {10−5, 10−4, 10−3,
0.01, 0.1, 0.2,… , 1.5, 2, 2.5, 3}. The last three columns in Tables 2 and 3 give the per-

centage improvement of GSMPrim with the benefit function, SG-GSMPrim, and

PS-GSMPrim over GSMPrim with M = 0, respectively. For each example, we ran

20 iterations of SG-GSMPrim and 30 of PS-GSMPrim using the probability dis-

tribution [1∕3, 2∕9, 2∕9, 1∕9, 1∕9]. The first 15 iterations chose the first five vertices

stochastically and the next 15 did so with the first ten vertices.

Table 1 GSMPrim on a 9-vertex SCTP from Example 4 of [6]

𝜏 Opt. M = 0 % Dev. M = 1 % Dev. % Impr.

0.1 55.54 55.54 0 55.54 0 0

1 84 85.80 2.14 84 0 2.10

5 201.6 249.4 23.7 204.2 1.29 18.1

30 922.6 1134.4 22.5 929.2 0.72 18.1

Table 2 GSMPrim on a 21-vertex GSCTP

𝜏 M = 0, %
Dev./Opt.

Best M %
Impr./M = 0

SG % Impr. PS % Impr.

0.01 4.19 0.00001 0.0003 0 0

1 4.19 0 0 0.00009 0

5 4.19 0 0 0.006 0

10 4.19 0 0 0.006 0

100 4.06 0 0 0.006 0

10000 5.41 0.001 6.51 8.43 3.58

50000 16.2 0.001 4.39 3.18 6.33

100000 16.2 0.001 1.76 2.54 6.75

150000 15.2 0.001 3.53 2.34 6.80
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Table 3 GSMPrim on a 25001-vertex Vascular Data Set

𝜏 Best M % Impr./M = 0 SG % Impr. PS % Impr.

10000 0.01 4.59 1.31 0.63

50000 0.01 4.35 0.93 1.30

100000 0.01 2.15 0.90 1.42

150000 0.01 0 0.85 1.77

In Table 3, we focus on the vascular image analysis problem and data, so we only

tested those values of 𝜏 appropriate for this application. We chose 22500 vertices at

random to be the set F. In this case, we ran 30 iterations each of SG-GSMPrim and

PS-GSMPrim. The first 15 iterations of PS-GSMPrim chose the first 1500 vertices

stochastically and the last 15 iterations chose the first 2500 vertices stochastically.

GSMPrim with M = 0 is used as a benchmark heuristic.

We ran GSMPrim and its variants in MATLAB® on a PC running Windows 7

Professional with an Intel I7-3930K 3.2 GHz processor and 16 GB of RAM. Each

run on the 25001-vertex examples took an average of 34.0 s.

5 Conclusions and Future Work

In this paper, we defined the GSCTP and applied it to solve the problem of algo-

rithmic error correction in vascular image analysis. We developed three efficient

variants of a heuristic based on Prim’s algorithm that are capable of finding nearly

optimal solutions to GSCTPs. Generally, as 𝜏 increased, the accuracy of GSMPrim
declined, but its variants yielded significant improvements. In particular, using the

benefit function was the most effective approach for the largest graphs.

Since the CTP and its variants are a relatively new and unexplored area of study,

there are several avenues to consider for future work, both theoretically and exper-

imentally. For the GSCTP in particular, we would like to experiment with genetic

algorithms and use LP relaxation techniques to determine good lower bounds of

optimal solutions, to test the effectiveness of GSMPrim on larger graphs.
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Ensemble Techniques for Scheduling
in Heterogeneous Wireless Communications
Networks

David Lynch, Michael Fenton, Stepan Kucera, Holger Claussen
and Michael O’Neill

Abstract Operators deploy Small Cells in high traffic regions to boost the capacity

of their wireless networks. However, User Equipments (UEs) at Small Cell edges

experience severe interference from neighbouring high-powered Macro Cells. A fair

trade-off between cell-edge and cell-centre performance can be realised by intelli-

gently scheduling Small Cell attached UEs. Grammar-based Genetic Programming

is employed to learn models that map measurement reports to schedules on a mil-

lisecond timescale. The evolved schedulers are then aggregated into ensembles. The

proposed system significantly outperforms a state of the art benchmark algorithm

and is within 10% of the estimated optimum.

1 Introduction

Traditional single-tiered cellular networks are struggling to cope with exponentially

rising demand. Capacity can be increased by supplementing the existing Macro Cell

(MC) tier with Small Cells (SCs). These lower-powered base stations provide a local

capacity boost in traffic hotspots. The resulting two-tiered configuration is known as

a Heterogeneous Network or ‘HetNet’.

Operators such as AT&T Inc. are aggressively densifying with SCs because both

cell tiers can reuse the same scarce and expensive bandwidth. Unfortunately, severe

interference arises at SC edges in channel sharing HetNets. Cell-edge conditions can

be improved by forcing MCs to mute during so-called ‘Almost Blank Subframes’

(ABSFs) [2]. Note that ‘subframes’ are 1 ms intervals during which cells transmit

packets to their attached User Equipments (‘UEs’ refer to smartphones, tablets etc.).

It is typically suboptimal to schedule all users attached to a SC s (i.e. the set s)

in every subframe. Better fairness is achieved by intelligently scheduling different
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Fig. 1 Mapping measurement reports to schedules

subsets of s to receive packets in successive subframes. Fairness is vital because

all customers must experience an acceptable quality of service. This paper proposes

a framework for automatically constructing near optimal schedulers that execute on

the required millisecond timescale.

2 Problem Definition and Previous Work

Let Q t

u,f∶= log2
(
1 + SINR t

u,f

)
denote the channel quality experienced by UE u in

subframe f of frame  t
, where SINR t

u,f is the signal that u receives from its serving

cell in f divided by interference and noise. UEs report measurements of Q t

u,f to their

serving cell after every frame spanning 8 subframes
1

or 8 (ms). Shannon’s formula

gives the rate at which information flows through the wireless channel to UE u, in

subframe f of frame  t
:

R t

u,f =
B
N t

f

× log2
(
1 + SINR t

u,f

)
, (1)

where, R t

u,f is the downlink rate, B = 20MHz is the fixed bandwidth, and N t

f is the

number of UEs receiving data from u’s serving cell in f .
The leftmost panel of Fig. 1 displays typical values of Q t

u,f over frame  t
, for a

SC (s) with three attached UEs (let  t

s denote the set of UEs attached to s in frame

 t
). UEs and subframes are represented by columns and rows respectively. GBGP

1
Canonically | t| = 40, but WLOG schedules are computed for f = {1…8}, c.f. [3].
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is employed to learn a mapping from statistics over the set

{
Q t

u,f |u ∈  t

s , f ∈  t
}

,

to the schedule for s. The real-valued outputs of the model (central panel) are inter-

preted as a Boolean schedule (rightmost panel), which s will observe in frame  t+1
.

Each UE is forced to receive data in exactly two subframes by setting the largest

two cells in each column from the central panel to ‘True’ and the remaining cells to

‘False’ [3]. For instance, UE 4 will receive packets from s in subframes f = {1, 2}
but not in f = {3…8}.

The quality or “fitness” of the schedule in Fig. 1 is given by the sum-log-rates

(SLR) metric of fairness:

SLRs∶=
∑

u∈ t+1
s

loge

(
1
8

8∑
f=1

R t+1

u,f

)
. (2)

Equation 1 implies that R t

u,f ∝ Q t

u,f∕N
 t

f . Therefore, knowledge of the reported chan-

nel qualities and the schedule are sufficient to evaluate Eq. 2. For example, SLRs =
48.72 where s is the SC depicted in Fig. 1 (assuming for simplicity that Q t+1

u,f = Q t

u,f

and  t+1

s =  t

s ). A scheduler is optimal if it maximises SLRs.

A state of the art algorithm for scheduling in HetNets was proposed by López-

Pérez and Claussen [1]. Two queues are initialised for a given SC: non−ABSF
and ABSF. UEs are transferred between queues, subject to constraints, in order to

equalise the downlink rates of the two worst performers in each. When the algorithm

converges, the SC schedules u ∈ non−ABSF in non-ABSFs and u ∈ ABSF in ABSFs.

The scheduler from [1] serves as a benchmark for the method proposed in this paper.

Previous work by the authors [3] has demonstrated the suitability of Grammar-

based Genetic Programming (GBGP) [4] as a framework for automatically devising

SC schedulers. The following sections outline an ensemble approach that leverages

the stochastic properties of GBGP.

3 Experiments

A 3.61 km
2

area of downtown Dublin was simulated. Realistic channel quality

reports were computed by modelling the distribution of buildings, open spaces and

waterways. These training data were generated in a network containing 30 SCs and

21 MCs. The set

{
Q t

u,f |u ∈  t

s

}
for SC s represented a single training case. The

training set was instantiated with three hundred cases from ten different frames

in order to encourage good generalisation. Cell powers and MC muting patterns

were set according to the heuristics in [1]. The grammar from [3] was instrumented

to evolve functional expressions (schedulers) using GBGP. The same evolutionary

parameters were adopted from [3] except # gens∶= 200. Finally, the evolved models

from 1500 independent runs were arbitrarily grouped into 30 ensembles.



402 D. Lynch et al.

An individual model’s fitness on a training case s was given by,

RFs,model∶=
(SLRs,model − SLRs,baseline

SLRs,CMA − SLRs,baseline

)
× 100%, (3)

where, RFs,model expresses the model-generated schedule’s fitness relative to the per-

formance of Covariance Matrix Adaptation-Evolutionary Strategy (CMA) and a

greedy baseline. CMA can be used to compute highly optimised schedules offline

but it is far too slow for on the fly optimisation in real HetNets. The baseline greed-

ily schedules all u ∈  t

s in every subframe. Equation 3 evaluated to ≈ 100% if a

near optimal schedule was generated for case s and ≤ 0% if the greedy baseline was

not surpassed. A model’s overall fitness was given by the average of RFs,model over

all training cases. Mean end-of-run fitness was 69% for the 1500 individual models,

but performance (on training data) was boosted to 92% by allowing the models to

cooperate as ensembles.

3.1 Performance on Test Data

Schedules for frame  t+1
must be computed in frame  t

based on

{
Q t

u,f

}
. The

interval between  t
and  t+1

is sufficient to generate hypothesis schedules from an

ensemble of 50 models. In real time, Eq. 2 is evaluated for each hypothesis against{
Q t

u,f |u ∈  t

s

}
and the best schedule (w.r.t. SLRs) is used by s in  t+1

. The pro-

posed ensemble method exploits the stochastic nature of GBGP since evolved models

tend to be semantically unique and hence they admit non-overlapping errors. In the

following analysis, UEs are displaced slightly between  t
and  t+1

to simulate the

mobility of customers between frames. Thus, schedules are based on slightly out-

dated reports.

Table 1 compares the benchmark and evolutionary methods on unseen test data.

Equation 3 is averaged for all 30 SCs (test cases) in the HetNet over 100 unseen

frames. A one-way ANOVA reveals that there is a significant (p = 0.000) difference

between the methods across n = 100 frames (with F(3, 396) = 6411.5), and Tukey’s

post-hoc analysis confirms that the group means are mutually significantly differ-

ent at 𝛼 = 0.05. Schedules computed by CMA in  t
are 1.2% from the estimated

optimum in  t+1
due to UE mobility. The ensemble is within 8.1% of the estimated

Table 1 Average relative fitness of the methods over 100 test frames

Benchmark Best-of-Ensemble Ensemble CMA

RFavg (%) 20.2 ± 8.2 84.0 ± 2.6 91.9 ± 1.4 98.8 ± 2.4
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Fig. 2 Performance w.r.t. ensemble size (left) and cell load (right)

optimum which is impressive since it executes on the timescale of a frame. Highly fit

‘best-of-ensemble’ models are outperformed by the ensembles. Finally, the bench-

mark admits much lower fitness and it is less stable than the evolved models.

Figure 2a plots the average performance of the 30 ensembles on the test set against

ensemble size. Only three models working cooperatively are needed to surpass the

best individual model from 50 runs. The grey line describes thirty models that were

selected at random. Its relatively wide 95% confidence interval suggests that multiple

runs should be performed when building a scheduler using GBGP. Execution time

increases linearly with ensemble size. Figure 2b reveals that the ensemble and best-

of-ensemble models significantly outperform the benchmark for almost all cell loads

(i.e. |s|). The non-negligible optimality gap w.r.t. CMA illustrates an opportunity

for further gains in future work.

3.2 Semantics

Figure 3 visualises the semantics. Deep red in cell (u, f ) indicates that u is sched-

uled in f often, and deep blue implies that u is rarely scheduled in f . The benchmark

unschedules cell-centre UEs in protected subframes (i.e. ABSFs), therein liberating

bandwidth for cell-edge UEs. Conversely, cell-centre UEs receive most of the band-

width during less protected subframes (since cell-edge UEs are unscheduled). The

central heatmap illustrates how evolved models emulate the benchmark’s core strat-

egy. However, the search heuristic is stochastic so different models generate distinct

hypotheses. Thus, an ensemble can produce highly specialised schedules (rightmost

heatmap).



404 D. Lynch et al.

0

0.5

1

ABS         
    non−ABS

         
Subframes

Cell−centre           Cell−edge

        User Equipm
ent

0

0.5

1

ABS         
    non−ABS

         
Subframes

Cell−centre           Cell−edge

        User Equipm
ent

0

0.5

1

ABS         
    non−ABS

         
Subframes

Cell−centre           Cell−edge

        User Equipm
ent

Benchmark GBGP Model GBGP Ensemble

Fig. 3 Visualising the semantics

4 Conclusions and Future Work

Multiple models can be executed in the dead time between frame  t
and  t+1

, thus

yielding several hypothesis schedules for a SC, of which the best is implemented

during  t+1
. Independent runs of GBGP yield semantically unique solutions, so that

the hypotheses are well dispersed in the solution space. Thus, the ensemble mem-

bers tend to make non-overlapping errors. The proposed method approximates the

estimated optimum given by running CMA offline. Crucially, all models can be exe-

cuted on the timescale of a single frame. Future work could co-evolve the ensemble

members so that they cooperate more effectively.
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A Heuristic for Solving the Maximum
Dispersion Problem

Mahdi Moeini and Oliver Wendt

Abstract In this paper, we investigate solving the Maximum Dispersion Problem

(MaxDP). For a given set of weighted objects, the MaxDP consists in partitioning

this set into a predefined number of groups, such that the overall dispersion of ele-

ments, assigned to the same group, is maximized. Furthermore, each group has a

target weight and the total weight of each group must be within a specific interval

around the target weight. It has been proven that the MaxDP is NP-hard and, conse-

quently, difficult to solve by classical exact methods. In this work, we use variants

of Variable Neighborhood Search (VNS) for solving the MaxDP. In order to evalu-

ate the efficiency of VNS, we carried out some numerical experiments on randomly

generated instances. The results of the VNS is compared with the solutions provided

by the solver Gurobi. According to our results, the VNS gives high quality solutions

for small instances and, in solving large instances, it provides some decent solutions

for all instances; however, Gurobi fails to provide any solution for some of them.

1 Introduction

An important class of optimization problems concerns the partitioning of a set of

objects into disjoint groups with the objective of minimizing or maximizing a pre-

defined objective function [1, 3, 6, 8, 10, 11]. Sometimes, the objective is minimiz-

ing a function that defines the distance or dissimilarity between objects. However,

there are also applications, where we want to maximize the dissimilarity (see, e.g.,

[5, 6, 8], and references therein). In this context, we focus on the construction of

dispersed groups. An example for the construction of dispersed groups arises in con-

structing learning groups of students [5]. One of such combinatorial problems is the
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Maximum Dispersion Problem (MaxDP). In this problem, we mainly partition a

set of objects into a predefined number of groups such that the dispersion between

objects assigned to the same group is maximized. This problem has been introduced

by Fernández et al. [5]. The MaxDP is closely related to Maximum Diversity Prob-

lem that consists in selecting a maximally diverse subset of objects such that the

diversity is measured by the sum of distances between chosen objects [6, 8].

It has been proven that the MaxDP is NP-hard and, consequently, difficult to solve

by means of the classical exact methods [5]. Due to this fact, using a heuristic for

solving the MaxDP is a natural choice. Variable Neighborhood Search (VNS) is an

efficient heuristic that has been successfully used for solving numerous combinator-

ial optimization problems [2, 7]. Hence, the aim of this paper consists in evaluating

a variant of the VNS heuristic for solving the MaxDP. More precisely, by taking

into account the structure of the MaxDP, we design a VNS for solving the MaxDP.

In order to evaluate the efficiency of the VNS for solving the MaxDP, we generated

some random instances and solve them by means of the proposed VNS approach. The

results of the VNS are compared with the solutions provided by Gurobi, that solves

an Integer Programming formulation of the MaxDP. According to the preliminary

numerical results, the VNS gives high quality solutions for small instances and, in

solving large instances, it provides some solutions for all instances; however, Gurobi

fails to provide any solution for some of them. In solving medium sized instances,

Gurobi has a better performance.

The remainder of this paper is organized as follows. In Sect. 2, we describe the

MaxDP problem and its mathematical programming models. Section 3 is devoted to

the presentation of the proposed VNS heuristic. The results of our computational

experiments are presented in Sect. 4. Some conclusions are drawn in Sect. 5.

2 The Maximum Dispersion Problem

In this section, we describe the MaxDP and present the mathematical formulations

of the problem. Suppose that a set V = {1,… , n} of n objects is given and we want

to distribute them into m disjoint sets c ∈ C = {1,… ,m}. Each object i ∈ V has a

weight of ai ≥ 0 and we assume that their sum is A =
∑

i∈V ai. Furthermore, each

group c ∈ C has a target weight Mc ≥ 0 and the sum of weights of the objects in any

group needs to meet its target weight with respect to an permitted deviation 𝛼 ≥ 0,

i.e., the total weight of the group c must belong to [(1 − 𝛼)Mc, (1 + 𝛼)Mc], where

c ∈ C. We suppose that there is no object having a weight which allows it to make a

singleton group on its own. Finally, the distance between objects i and j is denoted

by dij.
In order to present the mathematical model of the MaxDP, we define, for each

i ∈ V , c ∈ C, the decision binary variable xic that is 1 if object i is assigned to group

c, otherwise xic = 0. Using these notations, we have the following nonlinear mathe-

matical programming model for the MaxDP (MaxDPNLP):



A Heuristic for Solving the Maximum Dispersion Problem 407

Max Mini,j∈V ,c∈C
dij

xicxjc
(1)

s.t.
∑

c∈C
xic = 1, ∀i ∈ V , (2)

∑

i∈V
aixic ≥ (1 − 𝛼)Mc, ∀c ∈ C, (3)

∑

i∈V
aixic ≤ (1 + 𝛼)Mc, ∀c ∈ C, (4)

xic ∈ {0, 1}, ∀i ∈ V , c ∈ C. (5)

In this model, the nonlinear objective function (1) maximizes the minimal distance

between any pair of objects that belong to a same group. Due to the constraints (2),

each object is assigned to only one group. The constraints (3) and (4) are the balanc-
ing constraints and force each group to respect the weight limits.

The MaxDP model also has linear programming formulations. One of them is

motivated by the covering formulations of the p−center facility location problem and

the discrete ordered median problem (see [5] and references therein). In this formula-

tion, we first need to sort the distances between all objects in a non-decreasing order.

Suppose that distances are denoted and ordered as 0 ≤ d1 < d2 < ⋯ < dR = D,

where we denote the number of distinct pairwise distances by R. Furthermore, we

define the additional binary decision variables wr
such that, for each r = 1,… ,R,

wr
is 1 if and only if the overall smallest pairwise distance is at most dr. Using

the additional variables wr
, the covering linear formulation of MaxDP is as follows

(MaxDPcov):

Max dR +
R−1∑

r=1
(dr − dr+1)wr

(6)

s.t. (2) − (4), (7)

xic + xjc ≤ 1 + wr
, ∀i, j ∈ V , i < j, c ∈ C, 1 ≤ r ≤ R ∶ dij = dr, (8)

wr−1 ≤ wr
, 2 ≤ r ≤ R, (9)

wr
, xic ∈ {0, 1}, ∀i ∈ V , c ∈ C, 1 ≤ r ≤ R. (10)

The objective function (6) and the additional constraints (8) and (9) guarantee that

the solution of the MaxDPcov provides a solution for the MaxDP. In particular, the w
variable builds a vector: w = (0, s…, 0, 1, R−s… , 1), with 0 ≤ s ≤ R. This formulation is

interesting, in one hand, due to its connections with some classical location problems

and, on the other hand, MaxDPcov can be solved by any standard Integer Program-

ming (IP) solver such as Gurobi, IBM Cplex, etc.
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3 Heuristic Solution Method

Since the MaxDP is known to be NP-hard [4], we present a heuristic for solving the

problem. One of the most successful heuristic methods is the Variable Neighborhood

Search (VNS). Its concept was first introduced by Mladenović et al. [9]. Further,

the VNS has been used for solving a large variety of (combinatorial) optimization

problems for which this approach often provide high quality solutions (see, e.g., [2,

7], and references therein).

The VNS starts with an initial (feasible) solution as the incumbent solution. At

each iteration, the algorithm generates diversification by making k random moves

in a specific neighborhood of the incumbent solution. This move is known as the

shaking step. The counter k can be started e.g., from 1 and is used to determine the

diversifying range of the shaking step. Afterwards, a local search mechanism is used

to improve the obtained solution. In this step, a set of designated neighborhoods

is used. After termination of the local search, the objective value of the obtained

solution is compared to the objective value of the incumbent solution. If the obtained

objective value is not better, the process starts again with an intensified shaking step.

Therefore the count k is raised by 1. The increment is done up to a predefined limit

kmax. If the obtained objective value is better, the obtained solution becomes the

incumbent solution and the process is restarted and the value of k is set down to 1.

This process is repeated until a predefined termination criterion is fulfilled. We adopt

this general framework for solving the MaxDP.

In particular, our VNS starts from a randomly generated solution that, in fact,

consists in assigning (randomly) objects to the groups. Since the solution may not

be feasible, due to violation of the balancing constraints, the objects are switched

between different groups until achieving the feasibility. Then, the VNS uses Vari-

able Neighborhood Descent (VND) as local search method. In a VND, the neigh-

borhoods are used and explored in a consecutive order, i.e., if the local search finds

no improvement in one neighborhood, then it switches to the next one. As soon as

an improvement is found in any neighborhood, the procedure proceeds with the first

one. In our design of VNS for the MaxDP, the VND may be applied on three dif-

ferent basic neighborhoods: Insertion, Swap, and 3-Chain. Under the condition of

preserving feasibility, these neighborhood structures are defined as follows:

∙ The neighborhood denoted by Insertion contains solutions obtained by moving

one single object from its current group to another group.

∙ A solution in the Swap neighborhood is generated by swapping a single pair of

objects belonging to different groups.

∙ A move in the 3-Chain neighborhood is determined by three objects belonging

to three different groups: Consider 3 objects u, v,w and their associated groups

gu, gv, and gw. The new solution is generated by moving objects in a circular way

from one group to another one [2].
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At each neighborhood, the result of the operation is accepted as a new (feasible)

solution, if it leads to an improvement of the objective function value. Finally, we

use the same procedure as [2], in order to admit the possibility of accepting solutions

that do not lead to an improvement of the objective value (see [2] for more details).

4 Numerical Experiments

In order to evaluate the efficiency of the proposed VNS approach for solving the

MaxDP, we carried out some numerical experiments on randomly generated

instances. In this section, we present the test setting, the results of the experiments,

and our observations. The results of the VNS is compared with the solutions provided

by Gurobi 6.04 in the 64 bit version. The standard IP solver Gurobi has been used

for solving the model MaxDPcov. The algorithms are coded in Python 2.7 and ran on

an Intel Celeron CPU G1620 using 4 GB RAM. In order to have a fair comparison,

all experiments were done under same conditions.

We generated 3 test instances for each size 100, 200, 300, 400, and 500, i.e., in

total 15 instances. On each instance, we set up 2 experiments for partitioning objects

in either 4 or 10 groups. Furthermore, we set a time limit of tmax = 1200 s on the

running time of each method (VNS as well as Gurobi). The parameter kmax (in the

shaking operation of VNS) is set to 3 for all instances.

According to our observations, the 3-Chain neighborhood structure is computa-

tionally expensive in comparison to the Insertion and to the Swap neighborhoods.

Hence, we excluded the 3-Chain neighborhood from our final set of experiments and

we considered, for the VND, the following 2 different neighborhood structures:

∙ VND-1: Using only the Swap neighborhood.

∙ VND-2: Using the Insertion neighborhood followed by the Swap neighborhood.

The results are presented in Table 1. In this table, for each test instance of size (n), the

optimum provided by Gurobi (Obj.) as well as the average optimal value (aveObj.),
and the average gap (Gap) for each VNS method is presented.

According to the results, the VNS gives high quality solutions for small sized

instances; in particular, when n = 100 and g = 4. The quality of the solution is

Table 1 The results for g = 4 and g = 10
n g = 4 g = 10

Gurobi VNS (VND-1) VNS (VND-2) Gurobi VNS (VND-1) VNS (VND-2)

Obj. aveObj. Gap aveObj. Gap Obj. aveObj. Gap aveObj. Gap

100 0.7956 0.7956 0.0000 0.7956 0.0000 2.0699 1.9563 0.1136 1.5309 0.5390

200 0.5532 0.4962 0.0570 0.4886 0.0646 1.3134 0.7306 0.5828 0.4201 0.8933

300 0.3724 0.2591 0.1133 0.2090 0.1634 1.0932 0.3620 0.7312 0.1412 0.9520

400 0.3303 0.1315 0.1988 0.1052 0.2251 0.8757 0.2253 0.6504 0.0656 0.8101

500 0.3072 0.0886 0.2186 0.0614 0.2458 – 0.1190 – 0.0694 –
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moderate for larger instances. However, an interesting point concerns the case of

n = 500 and g = 10 for which, VNS manages to provide a feasible solutions (with

a similar quality that it has for the other instances), but Gurobi fails to provide any

solution.

The comparison of the two variants of VNS shows that the VNS using VND-1

outperforms the VNS using VND-2. In 23 out of 30 cases, using VND-1 leads to

better results.

5 Conclusion

In this paper, we proposed a VNS approach for solving the Maximum Dispersion

Problem. Based on the obtained numerical results, we observe that the VNS method

leads to good results in small instances. In particular, VNS is able to provide integer

solutions for all of the investigated test instances; however, for one of the instances

with n = 500, the standard solver Gurobi fails to generate any solution within the

predefined time limit. Future research avenue is quite wide. For example, we may

investigate a more elaborate VNS e.g., by providing a more intelligent initialization

procedure or by studying various neighborhood structures in order to explore the

solution space in a more efficient way. The research in these directions is in progress

and the results will be reported in future.
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Optimization of Modular Production
Networks Considering Demand Uncertainties

Tristan Becker, Pascal Lutter, Stefan Lier and Brigitte Werners

Abstract In the process industry markets are facing new challenges: while product

life cycles are becoming shorter, the differentiation of products grows. This leads

to varying and uncertain product demands in time and location. As a reaction, the

research focus shifts to modular production, which allow for a more flexible produc-

tion network. Using small-scale plants, production locations can be located in direct

proximity to resources or customers. In response to short-term demand changes,

capacity modifications can be made by shifting modular units between locations or

numbering up. In order to benefit from the flexibility of modular production, the

structure of the network requests dynamic adaptions in every period. Subsequently,

once the customer demand realizes, an optimal match between disposed production

capacities and customer orders has to be determined. This decision situation imposes

new challenges on planning tools, since frequent adjustments of the network con-

figuration have to be computed based on uncertain demand. We develop stochas-

tic and robust mixed-integer programming formulations to hedge against demand

uncertainty. In a computational study the novel formulations are evaluated based on

adjusted real-world data sets in terms of runtime and solution quality.

1 Introduction

Innovative, transformable production concepts implemented in standardized trans-

portation iso-containers presently are in research focus in the process industry.

Current market changes demanding short construction times motivate the usage of

transformable plant designs. The changing dynamics imposed on the markets are
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characterized by shortened product life cycles, strong product differentiation and

volatile product demands [2, 6]. Conventional plant designs in large scale, providing

long time to markets and high investment risks are insufficient as reaction on volatile,

uncertain markets. Hence, initial demonstration plants in transformable design were

already developed, constructed and operated within several research projects like the

EU funded F-Factory project or the CoPIRIDE project [4].

There exists a vast amount of literature on facility location problems and supply

chain design. Besides general frameworks [5], there are also specific applications to

the chemical industry [1]. Still, there is little literature on modular production net-

work design, which represents an extended form of a facility location problem and

is specifically characterized by the possibility of modular capacity shifts between

locations. This work improves existing formulations [7] and provides an extension

by stochastic and robust approaches in order to cope with uncertainty in modular pro-

duction network configuration. A case study is conducted to demonstrate the value

of information regarding uncertainty in comparison to a deterministic approach.

The remainder of the paper is structured as follows. In Sect. 2 planning for modular

production networks is further illustrated. Models for optimization of modular pro-

duction networks and the approaches to uncertainty are outlined in Sect. 3. Finally,

solution and economic performance of uncertainty approaches in modular produc-

tion network design are evaluated in a computational study in Sect. 4 using real-world

data.

2 Production Network Design Using Modular Plants

Modular production units in small scale enable new degrees of freedom in produc-

tion network configuration. Using the mobility and scalability by numbering up or

down containers, new opportunities regarding supply chain and network structure

are offered. Production locations can be placed directly in customer‘s or resources‘

proximity, possibly reducing both the distance to the customer and resource. Modu-

lar plants can be shifted between production locations or easily adjusted in capacity

over time in case of demand shifts. Time to markets are drastically reduced compared

to conventional large scale plants, as standardized formats allow for rapid process

development.

The scope of modular network design therefore is on the medium-term, as opposed

to conventional facility location and supply chain design, which plan for a very long

time horizon because of the apparent link to expensive investment decisions. Fur-

thermore, modular network design represents a problem that is concerned with more

detail, as the flexibility of modular plants allows for reaction to changing demand

data in the short-term. A revision of the network design, such as closing a facility

because of new demand data, is mostly impossible with large-scale plants, which is

why supply chain design typically represents an erratic problem. In contrast, because

of the associated flexibility, modular plants are well suited for decentralized produc-

tion and changes during the planning period. Further advantages associated with
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decentralized modular production include quick demand response times, lean pro-

duction and low material stocks. This allows for a reduction of logistics and overall

cost of producing specialty chemicals in comparison to centralized production. In

order to benefit from transformable plants’ flexibility, it is crucial to identify the

most cost efficient production network. The next section describes the application of

stochastic and robust optimization methods to modular production network design.

3 Modular Production Network Optimization Under
Uncertainty

Using modular plants, as opposed to conventional large-scale plants, various location

and relocation decisions as well as production allocation decisions have to be planned

frequently, whenever new demand data becomes available. In each time period, the

following decisions have to be made:

1. Acquire modular plants/divest modular plants

2. Open/close production locations

3. Move modular plants

4. Customer/capacity assignment

The modular network configuration problem [7] can be modeled as a mixed-integer

linear program, which resembles an extended form of the facility location problem.

Modular capacity shifts between locations, which represent the central characteristic

of modular network design, are represented by constraints (1) and (2).

Decision variable 𝛾jt denotes the number of modules available at location j in

period t. The number of modules moved from location j to location j′ in period t is

given by mjj′t. Finally, the amount of modules ordered in period t is represented by at.
The first constraint (1) assures each location can only use the amount of modules that

have been moved there in the current or previous periods. Constraint (2) ensures that

modules which have been ordered are added to the modular hub which is denoted by

location j = 0. They can then be moved out for production to open locations. Figure 1

depicts capacity shifts between locations as a result of a changing demand pattern

over time.

𝛾jt = 𝛾jt−1 +
∑

j′∈J
(mj′jt − mjj′t) ∀j ∈ J, t ∈ T (1)

𝛾0t = 𝛾0t−1 +
∑

j′∈J
(mj′0t − m0j′t) + at−1 ∀t ∈ T (2)

Clearly, there is a differing scope of time associated with each decision. The acqui-

sition of new plants has to be decided in advance, since there is a lead time for

new modular plants and production locations have to be prepared for the operation

of modular plants. Further the removal, transportation and setup of modular plants

shifting locations takes some time. In contrast, the customer/capacity assignment can
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Fig. 1 Capacity shifts for modifying the network between two periods as a reaction to changed

demands (Triangle production location, circle demand point)

be revised in the short term. In order to utilize the benefits of modular production,

a cost-minimal network and production plan has to efficiently combine the interde-

pendencies between decisions. The objective minimizes two types of cost: network

and production cost. Network cost consist of fixed and variable location cost, mod-

ule acquisition, movement and variable module cost. Production cost include raw

material cost, transportation cost, production and shortage cost. The decisions can

be partitioned into two stages:

∙ Stage 1: Minimize network configuration cost and uncertain production cost based

on demand forecast

∙ Stage 2: Using the fixed network, satisfy demand with minimal production and

shortage cost

Whereas the network has to be determined in stage one, a recourse with regard to cus-

tomer/capacity matching is incorporated in stage two, once the demands have real-

ized. The demand is assumed to be uncertain within a predetermined interval, while

the interval is tighter bounded the closer the demand estimation is to realization.

Given C customers and J potential locations, the goal is to find a network plan that

minimizes total cost over the next periods based on uncertain demand data. To antic-

ipate for uncertainty, the deterministic mixed-integer program is extended using two

uncertainty approaches. The expected cost approach minimizes the expected value

of the uncertain cost by using a set of scenarios resembling the demand distribu-

tion as closely as possible. Further a min-max regret approach is applied, using the

same scenario set as possible realizations. The scenario set is obtained by sampling a

large number of scenarios from the demand distribution and subsequently applying

scenario reduction techniques [3].
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4 Case Study

The economic and technical solution performance of the proposed deterministic and

uncertainty models were evaluated on the basis of adjusted real-world data pro-

vided by an industrial partner. The computations were performed on instances of

type c4.xlarge launched in the Amazon Elastic Compute Cloud. All of the models

were implemented under utilization of the Gurobi Python Interface and subsequently

solved with the 64-bit version of Gurobi 6.5 with default settings and 3600 s time

limit. The real-world data set was used to generate a set of 36 test instances. To

obtain test instances, the number of locations and customers as well as the demand

level were systematically varied. The main difference between the approaches lies

in the utilization of different information with regard to uncertainty. While the two

uncertainty approaches explicitly incorporate a set of scenarios, the deterministic

approach only considers the mean over all scenarios for every uncertain parameter.

The network configuration solution of each of the approaches was used to evaluate

the economic solution quality in a simulation study, where the total cost consisting

of network and uncertain cost associated with the recourse in 10000 random demand

realizations was computed. Figure 2 shows the distribution functions of cost for the

case of 38 customers, 35 locations and a high demand level. The cost performance

is clearly improved by using either uncertainty approach, whereas the preference

for the expected cost or min-max regret solution depends on the risk attitude of the

decision maker. Table 1 depicts the solution and cost performance of the different

approaches.

Fig. 2 Cumulative distribution function for each uncertainty approach
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Table 1 Average solution and cost performance (cost standardized to 1 resp. column min.)

Model formulation Sol. time (s) Gap
a

(%) Mean Min Max Std. VaR95

Deterministic 291.47 0.01 1.0505 1 1.1393 1.4756 1.1045

Expected cost 385.98 0.01 1 1.0256 1.0208 1.0899 1.0114

Min-max regret 1981.86 0.94 1.0031 1.0403 1 1 1

a
Calculated as 100 * (Best bound − Best objective)/Best objective

5 Conclusion

Prior work on facility location problems provides a rich methodology for modeling

complex issues and finding solutions to the resulting models. However, modular pro-

duction network design has received little attention. In this study, the performance

of three mixed-integer formulations for modular production network design under

consideration of demand uncertainties has been investigated. An extensive compu-

tational study using an adjusted real-world data set has demonstrated the cost bene-

fits of uncertainty approaches for modular production network design. However, the

solution times, especially in case of the min-max regret approach, are not yet well

suited for quick revisions in network planning. Future research should therefore focus

on solution methodology for the modular production network planning problem.
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Revenue Management Meets Carsharing:
Optimizing the Daily Business

Justine Broihan, Max Möller, Kathrin Kühne, Marc Sonneberg
and Michael H. Breitner

Abstract Carsharing is a transportation alternative that enables flexible use of a

vehicle instead of owning it by paying trip-dependent fees. In recent years, this ser-

vice denotes a considerable increase of new providers, which face an exponentially

growing number of customers worldwide. As a consequence, rising vehicle utiliza-

tion leads providers to contemplate revenue management elements. When focusing

on station-based carsharing concepts, these are typically based on advance reserva-

tions. This makes them perfectly suitable for the application of demand-side man-

agement approaches. Demand-side management allows providers to optimize their

revenues by accepting or rejecting certain trips. We respectively develop an opti-

mization model for revenue management support. Based on an existing model of

the hotel business, special consideration is drawn to carsharing related features. For

instance, the implementation of a heterogeneously powered fleet allows providers

to choose a certain limit of emissions to fulfill local requirements. We implement

the mathematical model into the modeling environment GAMS using the solver

Couenne. Conducted benchmarks show sensitivities under the variation of differ-

ent input values, for example risk tolerances. In contrast to the often used first-come

first-serve-principle, the results indicate the usefulness of the developed model in

optimizing revenues of todays carsharing providers.
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1 Introduction

Mobility is one major need of today’s society. According to a survey by BMVI [2],

90% of the interviewed persons left a house at the reference day for various rea-

sons whereas most of the distances (58%) were traveled by car. In large cities with

highly developed public transportation systems, vehicle ownership is not always nec-

essary and profitable. Furthermore, environmental awareness is a steadily increasing

need [7] and raised the demand for carsharing in recent years [8]. However, carshar-

ing providers are usually focused on profitability. Years of research and empirical

knowledge point out that revenue management practices are an essential tool to suc-

cessfully manage a company [1]. Accordingly, this paper addresses the following

research questions:

RQ 1: How can revenue management practices be adapted to carsharing concepts?
RQ 2: How do the decision variables change, if local emission prerequisites vary?

2 Research Background and Optimization Model

Our literature review reveals that there is no published research on revenue man-

agement in combination with carsharing and a limited number of publications in

combination with car rental. Respective models cover capacity management, pric-

ing and reservation (Geraghty and Johnson [3]), assignment of vehicles to random

customer requests by accepting or rejecting trips (Guerriero and Olivito [4]) and

fleet distribution between rental stations, including capacity management at stations

and the aspect of demand uncertainty (Haensel et al. [5]). Yet none of these mod-

els fully matches our focus on the combination of operator’s risk aversion, customer

satisfaction and demand uncertainty, which are deemed equally important aspects

for the emergent business segment of carsharing. A more suitable model is intro-

duced by Lai and Ng [6], who address demand uncertainty, operator’s risk aversion,

and customer satisfaction in the hotel business. Similarities between hotel and car-

sharing sectors include the availability of rooms or vehicles, the parallels in booking

processes and the possibility of reservation purchase. We therefore transfer and adapt

their model to suit our carsharing application.

To do so, several assumptions are necessary. The developed model considers dif-

ferent time frames with an interval duration of 3 h. Thus, a total of eight time frames

per day result. Every started time frame must be paid entirely by the customer. A trip

duration limit of 24 h is set. The revenue can be set individually per time frame by

the provider. When the demand is low, the resulting revenue should be low as well,

whereas the revenue increases with rising demand. A customer is able to make a

reservation for a vehicle in advance. At the beginning and the end of the observation

period all vehicles must be available. To allow for overnight trips, such bookings are

divided into two bookings.
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Table 1 Parameters—initial solution

Parameter Value Parameter Value Parameter Value Parameter Value

C1,1 25 C1,2 13 C2,1 20 C2,2 10

COmax 2,184 g E1 3,302 g E2 0 g 𝜆 1

p1 1/3 p2 1/3 p3 1/3 wi,j 1

The optimization model considers six indices. The indices i = {1,… ,T − 1} and

j = {2,… ,T} indicate the starting and ending time frame of the renting period.

k = {2,… ,T − 1} represent any time in the observation period while s = {1,… , S}
is the amount of several demand scenarios. We specify three scenarios with a

low, middle and high demand level. The stations to be optimized are given by

z = {1,… ,Z} and the different vehicle types in terms of propulsion methods are

given by t = {1,… ,N}. Vehicle type 1 represents a diesel-engined vehicle system,

whereas vehicle type 2 is electrically powered. To limit the number of vehicles at any

station, Cz,t is the capacity at station z for each vehicle type t. A threshold concerning

ecological needs is represented by COmax, the maximum average admissible amount

of CO2-emissions over the whole fleet. The emission of the individual vehicle types,

based on the propulsion method, is given by the parameter Et. 𝜆 is a trade-off factor

between expected revenue and deviation that gives the risk aversion of the manage-

ment. The probability of a scenario is represented by ps. A booking with starting and

ending time i and j in scenario s delivers a revenue Rs
i,j. The corresponding demand

at station s is given by Us
i,j,z. wi,j is a parameter that weights the number of bookings

with starting and ending time i and j. If wi,j is low, more bookings with the corre-

sponding starting and ending times are satisfied. Finally, the decision variable xi,j,z,t
provides the total number of accepted bookings for vehicle type t at station z with

starting and ending time i and j. Due to the optimization of the operational planning

level of a carsharing organization, costs for stations and vehicles are not considered.

The values for the external parameters, which are obtained in corporation with a

carsharing organization are given in Table 1.

Max
∑S

s=1

(
ps
∑T−1

i=1
∑T

j=i+1
∑Z

z=1
∑N

t=1(j − i)Rs
i,jxi,j,z,t

)

−𝜆
∑S

s=1

(

ps
|
|
|
|
|

∑T−1
i=1

∑T
j=i+1

∑Z
z=1

∑N
t=1( j − i)Rs

i,jxi,j,z,t

−
∑S

s=1

(
ps
∑T−1

i=1
∑T

j=i+1
∑Z

z=1
∑N

t=1(j − i)Rs
i,jxi,j,z,t

)|
|
|
|
|

)

(1)

−
∑S

s=1

(
ps
∑T−1

i=1
∑T

j=i+1
∑Z

z=1
∑N

t=1 wi,j|Us
i,j,z − xi,j,z,t|

)
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s.t.
∑k−1

i=1
∑T

j=k+1 xi,j,z,t +
∑T

j=k+1 xk,j,z,t ≤ Cz,t ∀k, z, t (2)

∑T
j=2 x1,j,z,t ≤ Cz,t ∀z, t (3)

∑N
t=1 xi,j,z,t ≤ max{Us

i,j,z} ∀i, j, z, (4)

∑T−1
i=1

∑T
j=i+1

∑Z
z=1

∑N
t=1(j−i)Etxi,j,z,t

∑T−1
i=1

∑T
j=i+1

∑Z
z=1

∑N
t=1(j−i)xi,j,z,t

≤ COmax (5)

∑T−1
i=1

∑Z
z=1 xi,8,z,2 = 0 (6)

xi,j,z,t ≥ 0 ∀i, j, z, t (7)

1 ≤ i < j ≤ T ∀s ∈ Ω (8)

The objective function (1) consists of four terms to maximize the daily revenues of

the carsharing provider. The first term of this function maximizes the expected rev-

enue in dependence of the occurrence of a certain scenario s. The average absolute

deviation of the revenue is subtracted in the second term and is calculated by the

absolute value of the difference of actual and expected revenue. The absolute devi-

ation of the demand is subtracted in the third term and is calculated by the absolute

value of the difference of demand and number of accepted bookings. Constraint

(2) is the capacity restriction for the vehicle types and secures that the number of

rented vehicles does not exceed the fleet size. Constraint (3) ensures that the number

of accepted bookings does not transcend vehicles available at the beginning of the

observation period. According to constraint (4), the number of accepted bookings

must be smaller than the maximum demand of all scenarios. A maximum level of

the CO2-emissions is expressed in constraint (5) and secures that an average emis-

sion of all vehicles within the fleet is not higher than certain thresholds. To recharge

electric vehicles, Eq. (6) guarantees that the number of accepted bookings of vehi-

cle type 2 in time frame eight is equal to zero to ensure the recharging process of

the electric vehicles, to be available at the beginning of an operating day. Further-

more, the number of accepted bookings must not be negative (7) and (8) specifies

the validity range of starting and ending times frames.

3 Results, Sensitivities and Benchmarks

In this section, we present the results which are obtained by solving the mathematical

model from Sect. 2 using GAMS 24.7.1 and the solver COUENNE 0.5 with a preset

gap of 0%. Table 2 shows the number of accepted bookings for every combination of

starting time and end of rental for station 1 and 2 with respect to propulsion method.

In time frame 3, 18 diesel-engined vehicles are rented at station 1. 13 of these rentals

are returned at time frame 5 and the remaining five vehicles end at time frame 8.

The objective function value amounts to 6,831.74 e. Compared to the often used
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Table 2 Accepted bookings—initial solution

Starting

time

frame

Station 1 Station 2

Diesel Electric Diesel Electric

Ending time frame

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8

1 3 3 1 – – – – 11 2 – – – – – 6 4 2 – – – – 10 – – – – – –

2 3 – – – – – – – – – – – – – – – – – – – – – –

3 – 13 – – 5 – – – 11 – – 7 – – 7 – – – 10 –

4 – – – 6 – – 2 – – – – 4 – – – –

5 – – 1 – – – – – 2 – – –

6 – 13 – – – 7 – –

7 – – – –

first-come first-serve-principle, the presented model increases the objective function

value by more than 49% (2,271.64 e) per day. The explanation for this significant

difference lies is the improved resource utilization: profitable trips take precedence

over less profitable or short term reservations. The initial solution comprises overall

339 rented time frames. 224 are served by diesel-engined vehicles and 115 by electric

vehicles. 184 rented time frames are operated at station 1 whereas the remaining 155

are operated at station 2.

In order to derive the model sensitivities we reduce the parameter for the maxi-

mum CO2 emission across the whole fleet to 1,000 g per time frame. This equals a

reduction by approx. 55%. As a consequence, a decrease in the number of rented time

frames for diesel-engined vehicles is observed. The results are presented in Table 3.

A decrease in rented time frames of vehicle type 1 by 175 to 49 with regard to both

stations is obtained. The objective function value decreases to 3,032.29 e which is,

compared to the initial solution, a reduction of approx. 44% (3,799.45 e). Compared

to the first-come first-serve-principle a 69% (1,241.98 e) improvement in the CO2
low case can be achieved using the presented revenue management model.
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Table 3 Accepted bookings—sensitivities and benchmarks

CO2 low Station 1 Station 2

Diesel Electric Diesel Electric

Starting

time

frame

Ending time frame

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8

1 – – – – – – – 11 2 – – – – – – – – – – – – 10 – – – – – –

2 – – – – – – – – – – – – – – – – – – – – – – – –

3 9 – – – – – – – 11 – 9 8 – – – – – – 10 –

4 – – – – – – 2 – – – – – – – – –

5 – – – – – – – – – – – –

6 5 1 – – 4 2 – –

7 – – – –

4 Discussion and Conclusions

The objective of this paper was to optimize the daily revenue of a carsharing orga-

nization. An existing mathematical model to optimize the room occupancy of hotels

was adapted to station-based carsharing. This was possible through similarities

between the operating modes of both business segments. The resulting model allows

to implement differently structured networks with regards to stations and vehicles.

To fulfill (future) local prerequisites in terms of emissions, a CO2 threshold over

the average fleet can be set. This results in an assignment of differently powered

vehicles to the existing stations without exceeding the predefined threshold. To

demonstrate the general functionality and the influence of the parameter modifica-

tions with regards to emissions, we used the two extrema of possible propulsion

methods, diesel-engined and electrically powered vehicles. In addition, we assume

0 g/km CO2-emission for the electric vehicles. Future research should address certain

limitations of our approach. Possible enhancements include the creation of shorter

time frames and a minute- and/or kilometer-based billing. Additionally, the charging

process can be optimized by allowing charging as needed rather than at the end of a

period. To conclude, our developed model shows the applicability of revenue man-

agement to optimize the daily business of station-based carsharing services operating

with heterogeneous fleets.
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Exogenous Capacity Changes in Airline
Revenue Management: Quantifying
the Value of Information

Daniel Kadatz, Natalia Kliewer and Catherine Cleophas

Abstract In airline revenue management, capacity is usually assumed to be fixed.

However, capacity changes are common in practice. This contribution quantifies the

value of information when systematically considering possible capacity changes in

revenue optimization. It solves a stochastic model that anticipates capacity changes,

given different levels of information. A computational study compares solution

approaches with respect to the resulting revenue, seat load factor, and denied

boarding.

1 Introduction

Classic airline revenue management controls bookings for capacitated, perishable

products to maximize revenue from ticket sales. Most models assume that capac-

ity is not only limited, but given in advance and fixed (compare [6, p. 3]). However,

this does not always hold in practice. Analyzing data provided by Lufthansa German

Airlines, we found that up to 66% of all flights were affected by at least one capac-

ity change. Some contributions propose adjusting capacity to demand variation, but

existing research rarely considers capacity changes beyond that motivation.

While we call changes induced to compensate demand variation endogenous, we

call changes caused beyond revenue management exogenous. Reasons for exogenous

changes include technical defects, crew planning, special sales, bad weather condi-

tions, and strikes.
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Within the scope of this contribution, we assume different levels of information

on possible capacities, the timing, and the probability of changes to be given. As our

primary contribution, we examine the value of this information. In the course of such

analysis, we consider a formal stochastic optimization model as introduced in [3].

2 State of the Art

Most existing revenue management contributions endogenously adjust capacity in

response to demand variation. Related concepts are termed demand driven dispatch

[1], demand driven swapping [2], or dynamic capacity management [5].

One of the first to propose using aircraft families are [1]. They claim a resulting

revenue improvement of 1–5%. Bish et al. [2] only allow swaps of two aircrafts within

one aircraft family. Wang and Regan [8] also study aircraft swaps as an extension of

leg-based revenue management, albeit from a perspective of continuous time. To

adjust capacity while maximizing revenue, [4] proposes EMSR-d. The approach by

[5] allows for continuously adjusting capacity given a dependent demand model.

Vulcano and Weil [7] consider the joint optimization of virtual capacities and bid

prices. Our study employs the same demand factors, customer generation process,

and number of demand streams.

While those approaches propose capacity flexibility, we oppose to capacity uncer-
tainty. To the best of our knowledge, so far only two contributions integrate exoge-

nous capacity changes in revenue maximization. Wang and Regan [8] introduce the

concept of capacity uncertainty to support their framework of repeated aircraft swaps

under the assumption of continuous time. In contrast, [3] propose a formulation

based on a discrete-time revenue management approach. Both decompose the prob-

lem of capacity uncertainty into a time period before a capacity change can occur and

after that. However, [3] expand the framework by allowing a more realistic number

of capacity change variables. While [8] limit possible capacity changes to a single

swap [3] allow for any timing of change and an arbitrary number of potential changes.

The model by [3] provides the theoretical background of our work. In contrast to [3]

we allow for multiple changes over the booking horizon and re-optimize after every

change.

3 Model and Solution Approaches

The model considers optimizing the number of tickets per class over a single leg and

compartment. Customers do not cancel their reservation, so denied boardings only

occur when capacity is overestimated.

The booking horizon is characterized through time slices t ∈ T ∶= {̂t,… , 0},

where ̂t denotes the beginning of the booking horizon and 0 signifies the time of

departure. Revenue rf is fixed per fare class f ∈ F. For each time slice t and fare
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class f , expected demand is indicated by dft ∈ ℕ. In the model, ka ∈ ℕ denotes the

cost of the ath denied boarding, a ∈ {1, … , A}. Whether a denied boarding occurs

is indicated by ea ∈ {0, 1}. Denied boarding cost increase, i.e., k1 ≤ ⋯ ≤ kA.

Capacity changes are described by three characteristics: The resulting capacity,

the time in the booking horizon when capacity is updated, and the probability of a

particular change. The model uses scenarios to describe these characteristics. Each

combination of capacity cs ∈ ℕ and time ts ∈ T describes a scenario s ∈ S with a

respective probability ps, where
∑

s∈S ps = 1.

A decision variable for a global strategy xft ∈ ℕ defines the number of tickets to

offer in fare class f at time t. This strategy is executed until scenario s announces a

possible change to capacity cs at time ts. This triggers the scenario-based strategy
xsft ∈ ℕ, f ∈ F, t ∈ T , t > ts, which defines the number of tickets offered in fare class

f at time t ≤ ts.
The objective (1) is to maximize the number of sold tickets xft and xsft mul-

tiplied by revenues rf and to simultaneously minimize the denied boarding cost∑
a∈|A|

∑
s∈S esa ⋅ ka. The capacity restriction (2) ensures that the sum of sold tick-

ets xft and xsft exceeding an aircraft’s capacity cs results in denied boardings, denoted

by variable esa. The demand restrictions (3) ensure that sold tickets can not exceed

demand dft.

maximize
xft , xsft , esa

∑

s∈S
ps
(
∑

f∈F
rf

(ts+1∑

t=̂t
xft +

0∑

t=ts
xsft

)

−
A∑

a=1

∑

s∈S
esa ⋅ ka

)

(1)

s.t.

∑

f∈F
(
ts+1∑

t=̂t
xft +

0∑

t=ts
xsft) −

A∑

a=1
esa ≤ cs ∀ s ∈ S (2)

xft ≤ dft and xsft ≤ dft ∀ s ∈ S, f ∈ F, t ∈ T (3)

xft, xsft ∈ ℕ ∀ s ∈ S, f ∈ F, t ∈ T
esa ∈ {0, 1} ∀ s ∈ S, a ∈ {1,… ,A}

Given information on capacity, timing, and scenario probabilities, this stochastic

problem can be solved to optimality. We denote this approach as C-s/P-s/T-s. The

stochastic model collapses to a deterministic version when assuming a single sce-

nario with probability 1.0.

For different levels of information, alternative solution approaches are conceiv-

able. Each is updated to account for new information when a capacity change is

announced.

C*—Perfect foresight This upper bound solves the deterministic model given

perfect foresight of the actual final capacity.

C-s/P-s/T-s This solution approach uses the full spectrum of scenario informa-

tion. Thus C-s/P-s/T-s takes all capacities, probabilities and timings into account.



432 D. Kadatz et al.

C-s/P-uni/T-s Without information of scenario probabilities, this approach cre-

ates as many scenarios as there exist combinations of potential capacities and change

times. It assigns each scenario a uniform probability.

C-s/P-s/T-0 Without information on changes’ timing, this approach creates as

many scenarios as there exist possible capacities, and assigns each a given probabil-

ity. It assumes that the final capacity is revealed at departure.

C(P-max) This approach assumes that the most probable scenario will occur.

Therefore, it only solves the problem for the capacity resulting from that scenario.

C(P-s) This approach works similarly to C(P-max), but parameterizes the sin-

gle scenario using the arithmetic mean of all possible capacities weighted by their

probability. It does not require information on timing.

C-s/P-uni/T-0 Without information on change’s timing or probabilities, this

approach creates one scenario for each possible capacity. It assumes that each sce-

nario is equally probable and that capacity is revealed at departure with equal prob-

ability.

C(P-uni) This approach does not require information on changes’ timing or prob-

ability. It works similarly to C(P-s), but parameterizes the single scenario as the arith-

metic mean of all capacities.

C-min Without requiring information on probabilities and timings, this approach

solves the problem for the scenario given the minimum capacity.

C-ini Without any information on changes, this approach considers only the ini-

tially announced capacity. After every capacity update, it solves the model based on

the new capacity.

4 Computational Study

The computational study considers three classes with revenues per ticket respective

r1 = 200, r2 = 150 and r3 = 100. Denied boarding cost are modeled as exponentially

increasing by a factor. The first denied boarding costs 201, exceeding the highest fare.

The second denied boarding cost is k2 = k1 × 1.1 = 201 × 1.1 ≈ 221 and so on.

To generate patterns of request arrivals over the booking horizon, we analyzed

a set of historical booking data provided by Lufthansa. We emphasize the role of

request arrival timings as its interaction with the timing of capacity changes is of

high interest for our research. The resulting triangular distributions are used as input

for the customer generation via a non-homogenous Poisson process.

We assume demand for three fare classes to be independent and set the average

number of customers by multiplying the flight’s initial capacity by a demand factor in

{0.9, 1.2, 1.6, 1.8}. Furthermore, we implement three distributions of demand over

fare classes: {(50-25-25), (25-50-25), (25-25-50)}. E.g., (50-25-25) determines that

50% of all customers request the most expensive class, while 25% request each of

the other classes.

Results are given for 1,000 stochastic demand streams for every combination of

market, initial capacity, demand factor, and distribution of demand over fare classes.
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Fig. 1 Average revenue in relation to C* (grey bars) and 95% confidence interval (black lines)

We calibrate capacities based on Lufthansa data, focusing on the economy compart-

ment. For every capacity change, the empirical data set records the timing and the

resulting capacity.

We always put revenue in relation to the upper bound delivered by C*. Figure 1

shows revenues obtained with each solution approaches. C-s/P-s/T-s performs best

with an average of almost 95% of C*. This is an average advantage of 1.9% over

C-ini. Also, the confidence interval is small, which implies a more robust approach.

In contrast, C-min results in notably less revenue. Although C(P-max) performs

almost as well as C-ini, we can neglect this solution approach, as it imitates C-ini in

the majority of instances. While C(P-s) does not perform as well as C-ini, it seems to

be a good heuristic for high change probabilities. When comparing C-s/P-s/T-0 and

C-s/P-uni/T-s with C-s/P-s/T-s, we can state that knowing capacity changes’ prob-

abilities is more valuable than knowing their timing. Figure 2 explains the revenue

differences by illustrating the average seat load factor and denied boardings. The seat

load factor is the number of tickets sold divided by final capacity, expressed as per-

Fig. 2 Average seat load factor (dark bar) and average denied boardings (light bar)
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centage. The maximum seat load factor is 1.0, as exceeding tickets result in denied

boardings. Denied boardings are indicated in absolute numbers.

As expected, the oracle solution C* has the highest average seat load factor and

never induces denied boardings. C-min also never causes denied boardings, but its

seat load factor is lower. On average, C(P-uni) produces the most denied boardings,

as it overestimates scenarios with a high capacity. Both C-s/P-s/T-s and C-ini lead

to few denied boardings. However, C-ini’s seat load factor is almost 1% higher than

that of C-s/P-s/T-s. Nevertheless, C-s/P-s/T-s generates more revenue on average, as

it sells more high value tickets.

5 Conclusion

This contribution considered the value of information when modelling stochastic

capacity in a leg-based revenue optimization model. While some heuristics per-

formed close to optimality, taking all information into account could generate an

average 1.9% revenue advantage. When not all information can be considered, know-

ing a capacity change’s probability is more beneficial than only knowing its timing.

Future research requires further analyses with regard to aircraft sizes, demand level,

demand mix, and forecasting errors.

Acknowledgements We thank Lufthansa German Airlines for access to empirical data.
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Integrated Planning of Order Capture
and Delivery for Attended Deliveries
in Metropolitan Areas

Charlotte Köhler, Magdalena A.K. Lang, Catherine Cleophas
and Jan Fabian Ehmke

Abstract The ongoing boom in e-commerce increases the importance of profitable

and customer-oriented delivery services. Particularly in metropolitan areas, the high

population density offers great potential for e-commerce, while uncertain demand

and traffic conditions increase planning uncertainty. This contribution focuses on

e-commerce delivery fulfillment (e-fulfillment) for attended last-mile delivery ser-

vices in metropolitan areas. As the customer needs to be present for deliveries of

groceries, for example, a service time window has to be agreed upon already when a

customer’s order is accepted. We consider service time windows as a scarce resource

and as the critical interface between order capture and order delivery. To optimally

utilize this scarce resource, we propose combining concepts of revenue management

and vehicle routing to extend tactical and operational planning for e-fulfillment. We

define the research problem and provide a perspective on integrated planning for

attended deliveries. Furthermore, we present the design of a virtual laboratory to

support benchmarking in e-fulfillment research. To ensure realistic experimental

settings, we plan to incorporate real-world data provided by a major e-grocery in

Germany.

1 Introduction

With two-digit growth rates predicted for e-commerce revenues [2], profitable and

customer-oriented services gain importance. In case of attended deliveries, e.g., of
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perishable food, the customer has to be present at the time of delivery [4]. Therefore,

companies and customers need to agree on service time windows already during

order capture. This avoids costly delivery failures, but also reduces planning degrees

of freedom. Especially in metropolitan areas, retailers have to rise to the challenge of

successfully planning attended delivery services under uncertain demand and traffic

conditions. At the same time, customers expect on-time delivery within tight time

windows. Together with strong competition and potentially low profit margins, these

challenges lead to a high failure rate of business concepts and motivate new delivery

service approaches [1].

The process of e-commerce delivery fulfillment (e-fulfillment) can be structured

in three steps: order capture and promise, order sourcing, and order delivery [3].

Order capture aims to maximize the number or value of accepted orders. Sophis-

ticated planning methods for order capture require adequate demand forecast and

market segmentation techniques. Revenue management uses such techniques to max-

imize revenues by selling units of the same resource to different customers at differ-

ent prices. Order sourcing assembles the accepted orders, whereas order delivery
minimizes delivery costs given accepted orders. Finding a cost-minimal route for a

given fleet of vehicles while considering time window constraints can be modeled as

the vehicle routing problem with time windows (VRPTW). To make attended last-

mile deliveries in metropolitan areas more reliable, the VRPTW can be extended to

consider time-dependent travel times [6, 7].

In contrast to their independent and sequential handling, we propose to integrate

the planning of order capture and order delivery. This can be realized by combin-

ing methods of revenue management and vehicle routing. We consider service time

windows as a scarce resource and as the critical interface between order capture and

delivery. As such, it should be optimally utilized to maximize the profitability of

e-fulfillment.

This contribution focuses on identifying the underlying research problems and

discussing the idea of our approach. Additionally, we present the design of an

experimental laboratory to benchmark methods for current and future concepts of

e-fulfillment. We will calibrate the embedded simulation system with transactional

data from a major e-grocery in Germany to ensure realistic experimental settings.

2 Related Literature

Several authors already approach integrating order capture and delivery aspects for

e-fulfillment. They consider delivery costs, capacities, or revenues when accept-

ing customer requests. In the following, we shortly review recent contributions and

derive the research gap we want to target.

Some references emphasize the importance of time window allocation to increase

cost-efficiency and reliability of attended home deliveries. Campbell and Savels-

bergh [4] apply simple incentive schemes to attract customers to specific time slots.

They strive for cost-efficient delivery through short travel times and try to increase
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the number of accepted orders. Alternatively, Agatz et al. [1] control the availability

of time slots per zip code to minimize expected delivery costs. Ehmke and Camp-

bell [6] compare order acceptance mechanisms to maximize the number of accepted

orders while ensuring reliability of delivery. They include time-dependent travel time

information reflecting congestion in rush-hour time windows. These references con-

sider both expected transportation costs and number of accepted orders, but they do

not account for order value.

Revenue management considers the impact of an order’s contribution to over-

all revenue. Quante et al. [9] review and categorize models and planning systems

applicable for integrating revenue management into the general demand fulfillment

process. Yang et al. [10] present a joint model for e-fulfillment of attended deliver-

ies, concentrating on controlling delivery fees. Following a similar idea, Klein et al.

[8] apply a differentiated time window pricing approach to maximize revenues. The

direction of these contributions is similar to our approach. However, we argue that

the span of delivery pricing provides little leverage compared to differences in order

value within heterogeneous demand.

This paper builds on the work of Cleophas and Ehmke [5], who introduce an

iterative order value-based e-fulfillment process. In the model, service time win-

dows are fixed and their availability is flexibly controlled based on order values. A

given fleet size determines the transport capacities. The planning process starts with

a demand forecast for each combination of time window and delivery area. Addi-

tionally, orders are assigned to discrete value buckets. The forecast serves as input

for an initial route planning, which determines transport capacities per time window

and delivery area by preferring high-value orders. Order acceptance considers the

value of actual orders as well as the given transport capacities. Once the full order

set is determined, a final, cost-efficient routing prepares delivery.

The contribution calls for further research in regard to two main aspects. First, a

distinct, sequential application of revenue management and vehicle routing is likely

inferior to fully integrated planning. Furthermore, the computational study is based

on a rather simple simulation approach with synthetic order and delivery data. To

allow for a more realistic setting, we outline an experimental laboratory including

complex simulations and empirical data to benchmark different process variants.

3 An Integrated Planning Approach to E-Fulfillment

Our research focuses on the conditions and effects of different degrees of integration

between order capture and order delivery. Considering delivery time windows as a

scarce resource, we control time slot allocation on order acceptance through revenue

management and vehicle routing techniques. We aim to maximize overall revenue

from order values while supporting cost-efficient order delivery.

In a first step, we consider the information necessary to integrate the two tasks

and the planning methods that need to be extended. For example, order capture can

include preliminary capacity information from vehicle routing to determine fulfill-



438 C. Köhler et al.

Fig. 1 Example of an integrated e-fulfillment process

ment controls. Vehicle routing can be applied on forecasted orders, taking their value

into account.

Figure 1 exemplifies an adapted, more integrated process derived from the itera-

tive approach of Cleophas and Ehmke [5]. Based on historical sales, a demand fore-

cast anticipates future customer requests. A parallel process uses previous routing

results to forecast vehicle capacities per area and time window. This paralleliza-

tion can increase the speed of planning and reduce the impact of flawed demand

forecasts. Subsequently, a complex subroutine including revenue management and

routing algorithms incrementally adapts capacities and availability controls: Each

accepted order provides new information causing a rerouting for capacities, which

in turn triggers the need for new fulfillment controls. Once all orders are fixed, a final

routing defines the most efficient delivery process to implement.

Of course, alternative processes are conceivable. For instance, a small adaption

could be an initial routing for capacities instead of forecasting. Furthermore, alter-

native models and methods are worth being considered in the implementation. For

example, while frequent updates on order acceptance can align revenue and cost con-

siderations, they require more efficient solution methods to remain feasible. More-

over, modelling dependent choice of time windows would improve the understand-

ing of customer behavior. This can be leveraged in the availability control: Shifting

low value orders to less popular time windows can improve capacity utilization and

maximize revenue.

To benchmark the potential of iterative and integrated planning approaches, both

an application-oriented catalogue of problem instances and a complex testing envi-

ronment are necessary. To serve this purpose, we outline a virtual laboratory in the

following section.

4 A Virtual Laboratory for E-Fulfillment Planning

Selecting the best suited planning approach requires to examine the impact of differ-

ent degrees of integration using a data-driven procedure. In an empirical case study,

results can be affected by uncontrollable or unobservable factors. However, a sim-

ulation system can serve as a virtual laboratory to conduct computational studies

under realistically complex settings. By implementing a library of novel and estab-
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Fig. 2 Structure of the virtual laboratory for e-fulfillment planning

lished approaches, such a laboratory allows us to evaluate and benchmark alternative

solutions. Additionally, the included simulation system enables stochastic micro-

level sensitivity analyses over the impact of influence factors on all performance

areas. Thereby, we can compare different scenarios entirely based on parameterized

settings and methods. Appropriate data management ensures the reproducibility of

results.

Figure 2 illustrates the high-level structure of the virtual laboratory. The idea is to

embed an e-fulfillment system in a framework of complex traffic and demand behav-

ior. As such, the e-fulfillment system is conceptually encapsulated and independent;

it could readily be extracted for a stand-alone implementation in an empirical case

study.

Any conceivable e-fulfillment system implements a specific process from order

capture and delivery planning to recording of delivery data, with different degrees

of iterative to fully integrated approaches. To ensure adaptability and extensibility,

the system understands a process as a flexible orchestration of multiple, reusable

methods. For instance, in the iterative variant of Cleophas and Ehmke [5], a routing

method is applied both in the initial capacity estimation and in the final step. We treat

routing as an encapsulated module that can be invoked as a service from any step of

the process and provides different algorithms. This service is defined by its input and

output parameters. Such a service-oriented design avoids redundancies within and

between alternative process implementations and supports maintainability.

To allow for realistic experimental settings, real-world data has to be analyzed

to calibrate the system. In particular, we will rely on historical data provided by a

major e-grocery provider based in Germany. The included transactional data pro-

vides insights on customer demand such as basket value distributions and time win-

dow choice.

Since travel times in metropolitan areas vary for different daytimes, we consider

the time-dependent variant of the VRPTW [6, 7]. To determine time-dependent

travel times between customers, we want to include real traffic data from online map

providers.

The resulting application-oriented experimental settings ensure the practical rel-

evance of obtained insights. In addition, they can serve as starting point for alternate

constraints and sensitivity analyses. For instance, we can observe effects of different

degrees of heterogeneity in order basket value.
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5 Conclusion

This contribution pointed out the potential of integrated methods for order capture

and delivery. Furthermore, it outlined a virtual laboratory that could benchmark such

approaches. Future research should additionally improve planning models and meth-

ods within the two research areas and consider different optimization objectives. For

instance, next to short-term profitability, an e-fulfillment process could account for

customer equity and market visibility or consider the reliability and sustainability of

delivery strategies.
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Cruise Line Revenue Management:
Overview and Research Opportunities

Daniel Sturm and Kathrin Fischer

Abstract While cruise lines share a variety of characteristics with airlines, hotels

and especially casinos, revenue management approaches which are suitable for other

sectors of the hospitality industry have to be adapted in order to meet the special

requirements of cruise lines. Until now, decision support systems, optimization mod-

els, as well as pricing and allocation policies for cruise line revenue management

have attracted little attention in the field of operations research. Based on a review of

the existing literature, research gaps are identified and possible approaches to close

these gaps are suggested.

1 Introduction

The cruise industry constitutes an important branch of the global hospitality industry

with a worldwide revenue of $39.6 billion and 22.2 million passengers in 2015 [5].

Hence, this sector of the hospitality industry is of significant economic relevance and

optimization approaches for cruise lines can have a considerable financial impact.

Due to exceptionally high occupancy rates [23], the cruise industry is especially

well suited for revenue management (RM), which can improve the allocation of the

scarce cruise fleet resources to the most valuable booking requests.

Nevertheless, cruise line revenue management (CLRM) has not yet been given

much attention by the OR community. Accordingly, a recent review of CLRM [21]

focusses on marketing without capturing OR perspectives. Only few RM approaches

tailored to the specific challenges in the cruise industry have yet been suggested.

Therefore, the contributions of this work are a succinct description of the distinctive

characteristics of CLRM, a systematic analysis of the existing literature and sugges-

tions for the integration of the specific CLRM characteristics into RM approaches.
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2 Cruise Line Revenue Management

The problem of CLRM is associated with the general problem of RM, i.e. when to

sell which amount of a perishable resource to which customer at which price in order

to maximize revenue. On a cruise ship, the perishable resource consists of cabins,

which become worthless with the ship’s departure. Directly related problems arise

in traditional applications of RM (i.e. airlines and hotels), as well as in a variety

of other service industries. A comprehensive overview on RM in general is offered

by [3], while [8] review RM approaches for the hospitality industry.

In order to apply RM, well-known prerequisites have to hold, namely fixed and

perishable capacities, the possibility of market segmentation, advance bookings,

comparably low marginal costs and fluctuating demand. All of these are fulfilled

by the cruise line industry [10]. Based on [2, 14, 15, 17, 19, 22, 23] six additional,

distinguishing characteristics of CLRM can be identified which are relevant for RM

approaches from an OR perspective:

Multiple Capacity Limitations While for a flight leg or a hotel stay only a single

capacity limit has to be considered (i.e. seats or rooms), the number of passengers on

a cruise is limited by the quantity of cabins of different categories, as well as by the

number of lifeboat seats. Moreover, passengers often book additional “air packages”,

i.e. corresponding transfer flights, which can also have a limited availability. Further

limitations can be imposed by on-board facilities or shore excursions.

Guest Pricing Usually, in hotels each room category receives an individual price

tag. In contrast, cruise lines price their guests individually. The base fare for a cabin

usually consists of a “double occupancy” (i.e. the price for two adult passengers),

and each additional passenger is additionally billed.

Customer Value A major and growing part of cruise revenue stems from the on-

board expenses of passengers (e.g. food, beverages, entertainment, sports or shore

excursions). This implies that even a notably discounted fare may be overcompen-

sated by increased on-board revenue due to additionally attracted passengers. More-

over, as cruise passengers return often to cruising in general [4], customer satisfac-

tion is paramount in order to preserve customer loyalty to one’s own cruise line.

Demand Substitution A cruise ship, unlike a hotel, offers a multitude of different

cabin types, each with distinctive attributes. These types can be summarized into few

cabin type groups, which can be used for market segmentation. This also implies

that customers are, to a certain degree, indifferent between the cabin types of one

group. But, as types within the same group can still exhibit considerable physical

differences, demand substitution between different cabin types can occur.

Overbooking Airlines and hotels use overbooking to compensate for cancellations

and no-shows. As cruise lines impose strict cancellation policies upon their cus-

tomers, cancellations shortly before and no-shows at departure are uncommon.

Moreover, compensation of refused passengers is difficult: Unlike with hotels, a

cruise passenger cannot be “walked” to a comparable cruise in the vicinity.
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Customer Choice Behaviour Booking a cruise is a dynamic and highly interac-

tive process, which is almost entirely conducted and controlled by travel agents.

They receive customer requests, offer reservation options for multiple cruises, final-

ize bookings, collect deposits and handle overbooked cruises. At each stage of this

elaborate process, customers can be offered a variety of customized incentives (e.g.

discounts) in order to influence their choice behaviour and to control demand.

Despite the aforementioned particularities, similarities to other industries do

exist. For example, in container shipping multiple capacity limitations hold as well

as the number of container slots as well as the ship’s maximum loading weight limit

the number of loadable containers (see, e.g., [24]). Also, a resemblance to casino

hotels can be recognized, especially with respect to the importance of individual

customer value due to on-site spending (i.e. gambling, retail sales, food and bever-

age consumption) and customer loyalty considerations (see, e.g., [2, 9]).

As mentioned in Sect. 1, not much attention has yet been given to the theory and

practice of CLRM [2, 8, 17, 21], especially not by OR researchers. An analysis of the

existing literature on CLRM is summarized in Table 1. Besides a short description

of the methodological approach, a categorization with respect to the consideration

of the distinguishing characteristics of CLRM as presented above is shown.

Table 1 Consideration of distinguishing CLRM characteristics in OR based RM approaches

Reference Problem, objective, method MC GP CV DS OB CC

Ladany and Arbel [11]

1991
Determination of a profit maximizing

price differentiation strategy (i.e. market

segment sizes and respective fares)

◦ ◦ ◦ ◦ ◦ ◦

Biehn [2] 2006 Cabin capacity allocation maximizing

revenue, LP with deterministic demand

∙ ∙ ◦ ◦ ◦ ◦

Ji and Mazzarella [10]

2007
Booking limit determination using nested

and dynamic class allocation

◦ ◦ ◦ ◦ ◦ ◦

Li [12] 2010 Cabin capacity allocation maximizing

revenue using stochastic ILP and DP

∙ ∙ ◦ ◦ ◦ ◦

Maddah et al. [17] 2010 Cabin capacity control maximizing

revenue using DP and heuristics while

considering stochastic demand

∙ ∙ ◦ ◦ ◦ ◦

Ma and Sun [16] 2012 Cabin capacity control maximizing

revenue using nested and improved class

allocation using Bayesian inference

◦ ◦ ◦ ◦ ◦ ◦

Li [13] 2014 Optimal overbooking level determination

using real options valuation

◦ ◦ ◦ ◦ ∙ ◦

Li et al. [14] 2014 Cabin capacity allocation maximizing

revenue using deterministic ILP

∙ ∙ ∙ ◦ ◦ ◦

MC Multiple Capacity Limitations, GP Guest Pricing, CV Customer Value

DS Demand Substitution, OB Overbooking, CC Customer Choice Behaviour
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As can be concluded from Table 1, the literature on CLRM is not only scarce, but

also heterogeneous with respect to the considered problem formulations, method-

ologies, and especially the consideration of the specific characteristics of the cruise

industry identified above. As the unique and important characteristics of CLRM

have not been taken appropriately into account so far in the literature, there are

significant gaps in the research on CLRM from an OR perspective. Hence, this

area offers promising research opportunities for developing new RM approaches,

some of which are discussed below.

3 Research Opportunities

The possible approaches to close existing research gaps in CLRM suggested below

affect all subtasks of RM, namely market segmentation, forecasting, dynamic pric-

ing, as well as capacity and overbooking control.

An improved market segmentation and a reduced risk of demand substitution can

be achieved by employment of effective segmentation criteria which do not solely

rely on physical differences between cabin types. Even though this issue is more

related to consumer marketing research than to OR, effectively applied segmenta-

tion criteria and their integration into pricing, capacity and overbooking control will

improve the overall results of the respective RM approach.

Regarding capacity control and dynamic pricing, all relevant capacity limitations

have to be incorporated into optimization models and heuristics used for capacity

allocation (i.e. determination of booking limits or bid prices) and fare determina-

tion by formulating and incorporating the associated mathematical constraints into

these models. As cruise lines often procure a quota on a variety of airways for use in

transfer flights, these capacities should also be considered as limiting when decid-

ing on fares or the acceptance of potential booking requests with “air packages”.

A related problem has been tackled by [15], who determine the least-cost assign-

ment of cruise passengers to a predetermined set of available transfer flights. Also,

group bookings could be considered as it has been done for hotels, e.g. by [7].

Moreover, the consecutive stages of the cruise booking process should be incor-

porated into dynamic capacity control and pricing models, in order to capture the

high degree of interactivity between cruise lines (or travel agents) and prospective

customers. Especially individual customer choice behaviour has to be considered

in order to mitigate the risk of demand substitution. RM models could determine

at which stage of the booking process an incentive of a certain kind (e.g. fare dis-

count, upgrades) should be offered to a prospective customer. Thus, by inducing a

favourable customer choice behaviour (e.g. upgrading, purchase of packages), exist-

ing demand can be shaped optimally. This approach could be extended to include

multiple cruises, i.e. to use incentives to shift demand between similar cruises in

temporal proximity by optimizing not only a singular cruise, but a set of cruises.
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Furthermore, the individual customer value should be properly parametrized and

incorporated into capacity allocation and pricing optimization models and heuris-

tics [18]. This also includes customer loyalty, which on the one hand, when suffi-

ciently high, leads to a returning customer and hence the generation of future addi-

tional revenue and on the other hand could lead to the acquisition of new customers

due to recommendations. Combining monetary value and loyalty, the resulting pas-

senger’s customer lifetime value might pose another important decision criterion

with respect to capacities, fares and incentives offered to him. An example of cus-

tomer lifetime value determination for a cruise ship company is offered by [1].

According to [23], travel agents usually offer customers reservation options on

different cruises throughout the comparatively long booking horizon (up to one year

before departure), letting them delay their final booking decision. Overbooking of

cruise fleet capacities is common in this phase of the booking process as the cancel-

lation of a high number of reservation options is to be expected. Thus, this circum-

stance should be explicitly integrated into overbooking models, which in turn are to

be combined with capacity control and pricing models.

One important implication is inherent to the aforementioned suggestions: Instead

of demand aggregated on cabin type level, individual booking requests with their

constitutive attributes (e.g. party mix, cabin type requested, customer lifetime value,

individual choice behaviour) have to be considered in all steps of the RM process.

This will, beyond doubt, present additional challenges with respect to demand fore-

casting, as not only aggregated demand quantities, but the specific composition of

expected booking requests will have to be predicted. A starting point with regard to

forecasting can be found in [20], who compare a variety of forecasting models with

respect to their applicability in the cruise industry. However, they do not focus on

individual booking requests, but on aggregate demand for a single cabin category.

Finally, alternative objective functions and combinations thereof should be con-

sidered, like occupancy rate maximization, customer satisfaction maximization by

minimization of the deviation of customer requests (e.g. with regard to cabin types

or departure dates) from actual bookings or fair treatment of passengers with respect

to discounts and other beneficial treatments.

4 Conclusion

The presently available OR based CLRM research is scarce and heterogeneous. Most

approaches consider only few of the special characteristics of CLRM, and no com-

prehensive RM methodology taking into account all or most of the relevant features

has been developed yet. Existing optimization models and heuristics should there-

fore be extended, integrating as many of the aspects discussed in Sect. 3 as possible,

in order to subsequently develop customized optimal pricing and capacity control

policies. As the effects and implications of new RM approaches should be evaluated

by employing simulations [6], another important step consists of the design of a cus-

tomized simulation environment for CLRM with which the developed approaches
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can be tested. Hence, from an OR perspective, CLRM constitutes a promising area

for future research in the field of RM.
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Regionalized Assortment Planning
for Multiple Chain Stores

Hans Corsten, Michael Hopf, Benedikt Kasper and Clemens Thielen

Abstract In retail, assortment planning refers to selecting a subset of products

to offer that maximizes profit. Assortments can be planned for a single store or

a retailer with multiple chain stores where demand varies between stores. In this

paper, we assume that a retailer with a multitude of stores wants to specify her

offered assortment. To suit all local preferences, regionalization and store-level

assortment optimization are widely used in practice and lead to competitive advan-

tages. When selecting regionalized assortments, a trade-off between expensive, cus-

tomized assortments in every store and inexpensive, identical assortments in all

stores that neglect demand variation is preferable. We formulate a stylized model

for the regionalized assortment planning problem (APP) with capacity constraints

and given demand. In our approach, a common assortment that is supplemented

by regionalized products is selected. While products in the common assortment are

offered in all stores, products in the local assortments are customized and vary from

store to store. Concerning the computational complexity, we show that the APP is

stronglyNP-hard. The core of this hardness result lies in the selection of the common

assortment. We formulate the APP as an integer program and provide algorithms

and methods for obtaining approximate solutions and solving large-scale instances.

Lastly, we perform computational experiments to analyze the benefits of regional-

ized assortment planning depending on the variation in customer demands between

stores.
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1 Introduction

A retailer with a multitude of stores has two basic strategies for specifying her offered

assortment:

∙ Every store has a customized assortment. Here, all demand differences can be

considered, but customized assortments are expensive to maintain.

∙ Assortments in all stores are the same. Here, the assortments may not be optimized

to suit all local preferences, but with a single assortment, economies of scale and

a recognition value can be generated.

In this paper, we analyze the benefit of mixed strategies, i.e., the selection of a

common assortment that is supplemented by regionalized products. Thus, products

in the common assortment are offered in all stores, while products in the local assort-

ments are customized and vary from store to store.

The assortment planning problem (APP) is considered in both operations research

and retail literature in various settings. For extensive reviews, see [6, 7]. Generally,

most researchers take shelf space [1], inventory [4], or pricing decisions [9] into

account. Regionalization and store-level assortment optimization lead to competitive

advantages and are widely used in practice [3, 5]. In [6], the authors describe this as

follows: Chain store management dictates a portion of the assortment that is carried

in all stores, while the remainder is chosen to satisfy local customer preferences.

Surprisingly, very little research is done in this context. In [3, 8], the authors take a

step in that direction, but in their models, a recognition value and economies of scale

cannot be generated.

We propose an alternative solution method that reflects industry practice. Items

for the common assortment and items for the local assortments are selected simulta-

neously in order to maximize the total profit. We show that this problem is strongly

NP-hard and present a heuristic that is able to tackle large-scale instances that can-

not be solved within a reasonable amount of time by applying a commercial solver

to a standard integer programming formulation. Moreover, we evaluate the quality

of our algorithm in several computational experiments.

2 Formulation of the APP as an Integer Program

In this section, we formulate a stylized model for the APP that is obtained by sim-

plifying the original problem using some reasonable assumptions.

Assumption 1 We develop our model using the following assumptions:

∙ The assortment consists of standardized products, offered at standardized shelf

space (i.e., all products have unit size).

∙ Every store has the same capacity.

∙ Demand can be estimated for every product and every store.
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∙ Products that are assigned to the common assortment are offered in every store,

while products in a local assortment are offered only in this particular store.

The most restrictive assumption is that all products have unit size. However, we

can view the unit size as a standardized area (e.g., 1 m
2
) that is occupied by each

item. Then, an item corresponds to the number of units of a particular product that

fit into this area (e.g., 1000 pencils, 4 toasters). The assumption that every store has

the same capacity can be loosened (see Sect. 3).

Now, we describe the APP as a variant of the multiple knapsack problem. We

are given m bins (stores) with size K (capacity of the store) in which we want to

pack unit size items (products). In total, there are n different items. With each item j,
we associate m + 1 different profits wj ≥ 0 and vjk ≥ 0 for k = 1,… ,m. We obtain

profit wj if the item is packed into all bins (i.e., packed into the common assortment)

and profit vjk if item j is packed into bin k, but there is at least one bin in which we do

not pack it. Using this notation, we can model the problem as the following integer

program:

(APP)

maximize
n∑

j=1
wjxj +

n∑

j=1

m∑

k=1
vjkyjk

subject to
n∑

j=1
(xj + yjk) ≤ K ∀k ∈ {1,… ,m}

xj + yjk ≤ 1 ∀j ∈ {1,… , n}, k ∈ {1,… ,m}
xj, yjk ∈ {0, 1} ∀j ∈ {1,… , n}, k ∈ {1,… ,m}

where

xj =

{
1, if item j is packed into the common assortment

0, else

and

yjk =

{
1, if item j is packed into bin k (but not into the common assortment)

0, else

The profits wj and vjk are composed of estimated revenue and cost as follows:

Let rjk be the estimated revenue of product j in store k, cdjk the cost of type d (e.g.,

procurement, transportation, storage cost) of product j in store k, cx the assignment

cost for assigning a product to the common assortment, and cyk the assignment cost

for assigning a product to the local assortment of store k. Then, we can write the

objective function of the APP as

∑

j

∑

k
rjk(xj + yjk) −

∑

j

∑

k

∑

d
cdjk(xj + yjk) −

∑

j

∑

k
(cxxj + cykyjk).
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where

wj =
∑

k

(
rjk −

∑

d
cdjk − cx

)
and vjk = rjk −

∑

d
cdjk − cyk.

Thus, the estimation of the parameters wj and vjk is essentially the estimation of the

revenues and costs of the products.

The main goal of this model for the APP is to decide which products to place in

the common assortment and which in the local assortments, given estimated para-

meters wj and vjk.

3 Computational Complexity and Algorithmic Approach

In this section, we analyze the computational complexity of the APP. Theorem 2

states that the problem is strongly NP-hard. Thus, unless P = NP, there is no algo-

rithm that solves the APP exactly in polynomial time.

Theorem 2 The APP is strongly NP-hard.

The proof uses a reduction from the satisfiability problem SAT and can be found

in [2].

As it turns out, commercial solvers are unable to obtain optimal solutions within

a reasonable amount of time even for instances with 300 stores and 15.000 products.

This motivates the development of algorithms that run fast and produce close to

optimal solutions. We now present a greedy heuristic that is used in Sect. 4 to solve

large-scale instances of the APP. The idea of the algorithm is to first neglect the

advantages of using the common assortment and start with the best local assortment

for each store (independent of the others). Then, in each step, the algorithm adds the

item that currently grants the largest gain in total profit to the common assortment.

Denoting the current common assortment by C and the current set of items in bin k
by Ik, the algorithm can be formulated as follows:

Algorithm 1
1: Let C ∶= ∅ and, for each bin k, let Ik be the set containing the K items j with the highest

values vjk.

2: For j ∉ C, let uj ∶= wj −
(∑

k∶j∉Ik
minl∈Ik vlk

)
−
∑

k∶j∈Ik
vjk.

3: If uj ≤ 0 for all j or |C| = K, stop; else add the item j ∉ C with the largest value uj to the

common assortment C, update the sets Ik by removing j from Ik if it is contained in Ik and

removing an item j′ with minimum value vj′k from Ik otherwise, and go to Step 2.

Each time we update Ik, its size reduces by one since we remove one item and put

it into C. Observe that Algorithm 1 also works in the case where the capacities of the
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bins differ. Then, in the first step, for each bin k, we pack the best Kk items, where Kk
denotes the individual capacity of bin k. Moreover, the second stopping criterion

changes to |C| = mink Kk. The running time of Algorithm 1 is inO(nm(log(n) + K)).
Additionally, a preprocessing strategy can be used in order to identify items that

will never be contained in the common assortment. It can easily be seen that choosing

the better one of the best packings with |C| = K (ALG2) and C = ∅ (ALG3) yields

an approximation ratio of 2. If we modify Algorithm 1 (ALG1) slightly so that it

compares the computed solution with the one obtained by ALG2 and chooses the

better one, it also obtains this approximation guarantee. More detailed results on

approximation guarantees can be found in [2].

4 Experimental Results

In this section, we present computational experiments in order to compare the solu-

tion quality obtained by ALG1, ALG2, and ALG3. In particular, we are interested in

how large the common assortment profits wj must be in relation to the local profits vjk
in order to see substantial benefits from mixing common and local assortments as in

ALG1 (when compared to using only the common assortment as in ALG2 or only

the local assortments as in ALG3).

We randomly generate the values vjk and wj. However, it seems to be a reason-

able assumption that the values vjk are dependent for a fixed item j although the

cost of providing item j (e.g., the transportation cost) might vary for different stores.

Therefore, we consider three scenarios where we draw values vj uniformly at random

from [0, 1] independently for all j and then

∙ set vjk ∶= vj for all k (total dependence), or

∙ draw rk uniformly from [−0.5p, 0.5p] and set vjk ∶= max(0, vj + rk), where p is a

model parameter (intermediate dependence), or

∙ draw all values vjk uniformly and independently from [0, 1] (total independence).

In order to generate the values wj, we draw values qj uniformly at random from

[0.95, 1.05] and set wj ∶= qjb
∑

k vjk, where b represents the financial gains when a

product is in the common assortment (e.g., from economies of scale or recognition

value). We consider 100 equidistant values of b in [1, 2] and generate 100 instances

for each of these values and four different settings concerning the dependence of the

values vjk (total independence, intermediate dependence with p = 0.75 and p = 0.95,

and total independence). The optimal profit for each instance is calculated by solving

the IP formulation using Gurobi 6.5.

We observe that, when b is too small or too large, algorithms ALG2 and/or

ALG3 already yield close to optimal solutions. Therefore, for each of the four

settings concerning dependence of the values vjk, we concentrate on three values

of b that are neither too small nor too large. In the setting of total independence,

we consider b ∈ {1.2, 1.35, 1.5}, for p = 0.75 and total dependence, we consider
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Table 1 Average ratios
OPT
ALGi

for i = 2, 3 (for small instances) and
ALG1
ALGi

(for large instances)

Value b Small Medium Large Small Medium Large

Instance size Small Small Small Large Large Large

Dependence

Total dependence 1.01|1.02 1.00|1.05 1.00|1.09 1.01|1.02 1.00|1.05 1.00|1.09
p = 0.75 1.06|1.01 1.04|1.03 1.03|1.06 1.06|1.01 1.04|1.03 1.03|1.06
p = 0.95 1.07|1.02 1.05|1.05 1.04|1.08 1.08|1.02 1.05|1.05 1.04|1.08
Total independence 1.18|1.01 1.09|1.05 1.04|1.11 1.20|1.01 1.10|1.03 1.05|1.09

b ∈ {1.01, 1.05, 1.09}, and for p = 0.95, we consider b ∈ {1.04, 1.09, 1.14}. More-

over, we consider two different instance sizes (small and large), where (n,m,K) =
(1500, 50, 750) and (n,m,K) = (50.000, 150, 25.000), respectively. For all consid-

ered instances, ALG1 obtains nearly optimal solutions (i.e., the average ratio
OPT
ALG1

of the profits of an optimal solution and the algorithm is below 1.01). Table 1 shows

the average ratios
OPT
ALGi

for i = 2, 3 obtained by ALG2 and ALG3.
1

Here, we observe

that the gain in profit from using an optimized assortment compared to one of the

solutions produced by ALG2 or ALG3 can be up to 20%.

5 Conclusion

We have formulated a stylized model for the regionalized assortment planning prob-

lem (APP) and have shown that solving the APP can lead to significant profit gains

for a retailer with multiple chain stores. Moreover, we proposed a local improvement

heuristic that computes close to optimal solutions in polynomial time. In a next step,

we will test this algorithm with real world data. For future research, we propose

extensions of the model such as sub-regions (here, we also obtain a profit gain when

a product is placed in a certain set of stores) or individual item sizes.
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Optimizing Machine Spare Parts Inventory
Using Condition Monitoring Data

Sonja Dreyer, Jens Passlick, Daniel Olivotti, Benedikt Lebek
and Michael H. Breitner

Abstract In the manufacturing industry, storing spare parts means capital commit-

ment. The optimization of spare parts inventory is a real issue in the field and a

precise forecast of the necessary spare parts is a major challenge. The complexity

of determining the optimal number of spare parts increases when using the same

type of component in different machines. To find the optimal number of spare parts,

the right balance between provision costs and risk of machine downtimes has to be

found. Several factors are influencing the optimum quantity of stored spare parts

including the failure probability, provision costs and the number of installed com-

ponents. Therefore, an optimization model addressing these requirements is devel-

oped. Determining the failure probability of a component or an entire machine is a

key aspect when optimizing the spare parts inventory. Condition monitoring leads to

a better assessment of the components failure probability. This results in a more pre-

cise forecast of the optimum spare parts inventory according to the actual condition

of the respective component. Therefore, data from condition monitoring processes

are considered when determining the optimal number of spare parts.
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1 Introduction

Optimizing machine spare parts inventory means finding the right balance between

spare parts costs and costs caused by machine downtimes [6]. Therefore, inventory

control is an important topic in operations management [1]. The presented model

minimizes the costs by determining the optimal number of available spare parts.

The costs are optimized for a type of component which is installed multiple times

in the production site. It is possibles to reduce the amount of available spare parts

because one spare part can be used in several machines. To find the optimal number

of spare parts, the probability of default of each component has to be determined.

In the presented optimization model both the current state of the respective compo-

nent received through sensor data as well as empirical values are used to predict the

probability of default of a component. Further information are considered such as

the potential downtime costs, which are compared to each other.

The model is based on a new service concept that makes it possible to adjust the

number of available spare parts in each period. A general concept is problematic

because when buying a spare part it has to stay in stock until it is needed [2]. In the

newly developed service concept the spare parts do not have to be bought but a lump–

sum fee for the provision is charged. This lump–sum fee functions as a payment for

the provision of a spare part. The advantage is, when needing a spare part because

of a component failure, it can be installed directly. When the optimal stock amount

decreases, spare parts can be returned. Therefore, it is possible to decide anew in

each period how many spare parts should be available to minimize the costs.

2 Optimization Model

The model optimizes the sum of provision costs and the expected downtime costs for

one period by determining the optimal number of spare parts. The optimization is

performed through a stochastic model in conjunction with an algorithm (Fig. 1). The

central assumption is that it is only checked at the end of a period whether a compo-

nent is defective or not. This leads to the possibility of repairing components with

high downtime costs preferentially. Therefore, the installed components are sorted

in descending order according to the by the component caused machines downtime

costs. A decision tree illustrates all possible combinations of faultless and defec-

tive components. Each branch represents a discrete and stochastically independent

event, thus describing one possible combination of defective and faultless compo-

nents, which can be found at the end of a period. Thereby, the first component in the

branch represents the component causing the highest downtime costs. It results in

a number of branches of b = 2c. The probability of default is influenced by sensor

data and empirical values. The sensor data is received through condition monitor-

ing [3] whereas empirical values result from expert knowledge. This data may lead

to a Weibull distribution of life expectancy depending on the probability of default

[4, 5].
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Set input 
parameters

Determine all 
possible combi-

nations of faultless 
and defective 
components

Run algorithm to 
receive relevant 
probabilities of 

default

Determine related 
number of 

available spare
parts

Determine minimal 
costs through 

running 
optimization model

Fig. 1 General procedure to determine the optimal number of available spare parts

Sets:

i = (1, ..., c) considered component of in total c components where

i = 1 is the component which causes the highest downtime costs

j = (1, ..., b) considered branch of in total b branches

k = (0, ..., c − 1) possible number of available spare parts

Parameters:

Cdi downtime costs of the machine with the installed component i

Cp provision costs for one spare part

ei effect on the machine breakdown

pik probability of downtime costs; determined by algorithm
pdi total probability of default

pei probability of default resulting from empirical values

psi probability of default resulting from sensor data

w weighting of probability resulting from sensor data

csij 0, if component status is faultless, 1 else

qij probability of component within the branch

pdi if csij is 1, 1 − pdi else; with pdi from (4)

yijk 1, if downtime costs have to be paid, 0 else

Decision variable:

x number of available spare parts

Minf (x) =

{
x × Cp +

∑c
i=x+1 pix × Cdi × ei ∀x < c

x × Cp x = c
(1)

0 ≤ x ≤ c x ∈ ℕ0 (2)

0 ≤ ei ≤ 1 ∀i (3)

pdi = w × psi + (1 − w) × pei ∀i (4)

0 ≤ pik, pdi, pei, psi ≤ 1 (5)

0 ≤ w ≤ 1 (6)

csij ∈ {0, 1} ∀ i and j (7)
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yijk ∈ {0, 1} ∀ i, j and k (8)

b, c ∈ ℕ∖{0} (9)

The objective function (1) minimizes the costs consisting of the sum of provi-

sion costs and the expected downtime costs. All parameters refer to one period. It

is assumed that the number of available spare parts must not exceed the number of

installed components and not be less than zero (2). This is because the costs are min-

imized for one period. The effect of the component on the machine downtime has to

be between zero when there is no effect and one in case of a complete breakdown of

the machine when the component is defective (3). Sensor data as well as empirical

values are considered to determine the total probability of default of a component

(4). Constraint (5) ensures that the probabilities are between zero and one. To receive

a weighted average of the probabilities, the weighting factor must be between zero

when only considering empirical values and one when only sensor data are con-

sidered (6). The component status is defined as a binary variable according to the

decision tree (7). Depending on whether the downtime costs have to be paid for the

considered component the variable in equation (8) is zero or one. This is determined

by the developed algorithm. Equation (9) ensures that the number of branches and

installed components is a positive integer.

To solve the objective function (1) the respective probability of downtime costs pik
has to be determined for each possible combination of spare parts. Thus, all installed

components have to be considered. This is done by an algorithm. To avoid the cal-

culation of trivial cases, in the algorithm it is assumed that k < i.

(step 1) Set i = 1, j = 1 and k = 0.

(step 2) If csij = 0, set yijk = 0.

(step 3) Else: If
∑i

a1=1
csa1j ≤ k, set yijk = 0.

(step 4) Else set yijk = 1.

(step 5) Increment j by 1. If j ≤ 2c, go to (step 2).

(step 6) Else calculate pik =
∑b

a3=1
(yia3k ×

∏c
a2=1

qa2a3 ).
(step 7) Increment i by 1. If i ≤ c, set j = 1 and go to (step 2).

(step 8) Else increment k by 1. If k < c, set i = k + 1 and j = 1 and go to (step 2).

(step 9) Else terminate.

The number of spare parts is set to zero (step 1). Furthermore, (step 1) sets the

considered component to the component with the largest potential downtime costs.

In the beginning, the first branch is considered. In (step 2), (step 3) and (step 4) it

is checked whether the component is defective or faultless. Based on the finding it

can be decided if the downtime costs occur for the component in the viewed state.

This is done by determining the number of defective components which cause higher

machine downtime costs. Afterwards, it is looked at the following branch until the

last branch is reached (step 5). The probability of downtime costs is calculated for

the viewed component (step 6). The considered component is changed to the next

component in the ranking (step 7). The number of the branch is set back to one.
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When all relevant components are considered, the number of available spare parts is

incremented by one (step 8). The procedure starts anew. The algorithm is executed

until the maximum number of available spare parts is reached (step 9). The resulting

probabilities of downtime costs pik make solving the objective function (1) possible.

3 Experimental Results

Based on the presented model optimizations were conducted within a test case using

ten installed components of the same type. The configuration of the input parameters

is summarized in Table 1.

All input data are fixed and only the provision costs are varied to investigate their

influence on the optimal number of spare parts. Figure 2 presents the progression of

the total costs at different provision costs in relation to the number of available spare

parts.

The curve progression of the four different cases is similar. It is apparent that the

total costs are changing significantly depending on the provision costs in contrast to

the optimal number of spare parts. This results in a great scope for the provider of

spare parts when setting the provision costs. Furthermore it can be seen that the total

costs are determined by the provision costs, which is even more applicable when

Table 1 Input data to apply the model

Number of installed components Provision costs for one spare

part

Weighting of

probability

resulting from

sensor data

10 Varied 50%

Component Machine Downtime

costs of the

machine

Probability of

default (sensor

data)

Probability of

default

(empirical

values)

Effect on

machine

breakdown

1 1 20,000 0.02 0.01 0.8

2 1 20,000 0.06 0.05 0.8

3 2 30,000 0.20 0.07 0.8

4 2 30,000 0.08 0.70 0.7

5 3 15,000 0.09 0.11 0.5

6 3 15,000 0.80 0.13 0.3

7 4 35,000 0.11 0.05 1.0

8 4 35,000 0.12 0.17 0.2

9 5 25,000 0.13 0.11 0.6

10 5 25,000 0.14 0.21 0.9
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Fig. 2 Comparison of different provision costs in relation to the number of available spare parts

more spare parts are available. This leads to an almost linear increase. However, the

impact of provision costs is depending on the structure of the probability of default

and the influence of machine downtimes.

4 Conclusion

In this article, the challenge of determining the optimal number of spare parts was

discussed. A new service concept was presented with the option to adapt the num-

ber of available spare parts in each period. A model was developed to optimize the

number of spare parts through minimizing the total costs. To obtain a valid result

both sensor data and empirical values were considered to determine the probability

of default.

However, the number of branches is rising exponentially by an increasing number

of considered components which has a strong effect on the computation possibilities.

The calculation of the number of spare parts needed when a high number of com-

ponents is installed is a challenge that has to be met. When using the optimization

model it has to be taken into account that the calculations are conducted based on

probabilities received through sensor data and empirical values. The reliability of

this data determines decisively the quality of the calculations. Furthermore, several

assumptions were made to simplify the model. For instance, it is assumed that the

probabilities resulting from sensor data and empirical values are known as well as the

downtime costs of the different machines. In future versions of the model expansions

to reduce the quantity of assumptions should be made. The presented optimization

model provides the basis for further development of determining the optimal number

of available spare parts.
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Scheduling on Uniform Nonsimultaneous
Parallel Machines

Liliana Grigoriu and Donald K. Friesen

Abstract We consider the problem of scheduling on uniform processors which may

not start processing at the same time with the purpose of minimizing the maximum

completion time. We provide a variant of the MULTIFIT algorithm which generates

schedules which end within 1.382 times the optimal maximum completion time for

the general problem, and within

√
6∕2 times the optimal maximum completion time

for problem instances with two processors. Experimental results suggest that our

algorithm is a viable option for addressing this problem in practice.

1 Introduction and Related Work

In practical scheduling situations, the machines may not become available for

processing at the same time, and due to the progress in technology between the times

at which different machines were produced, they may process jobs at diverse speeds.

We consider the problem of nonpreemptively scheduling a given set of tasks on uni-

form processors with nonsimultaneous machine available times in order to minimize

the maximum completion time.

This problem is strongly NP-hard since it is a generalization of the multiproces-

sor scheduling problem. For scheduling on parallel machines in order to minimize

the maximum completion time, the algorithm MULTIFIT of Coffman, Garey and

Johnson [1] is one of the most studied. For same-speed processors which do not

start simultaneously, Lee [2] and Chang and Hwang [3] give worst-case analyses for

scheduling on nonsimultaneous parallel machines in order to minimize the maximum

completion time when using LPT and MULTIFIT, respectively. Recently, the exact

L. Grigoriu (✉)

Fakultät Für Wirtschaftswissenschaften, Wirtschaftsinformatik Und Wirtschaftsrecht,

Universität Siegen, Kohlbettstr. 15, 57068 Siegen, Germany

e-mail: liliana.grigoriu@uni-siegen.de

D.K. Friesen

Department of Computer Science, Texas A&M University, College Station,

TX 77840-3112, USA

e-mail: friesen@cs.tamu.edu

© Springer International Publishing AG 2018

A. Fink et al. (eds.), Operations Research Proceedings 2016,

Operations Research Proceedings, DOI 10.1007/978-3-319-55702-1_62

467



468 L. Grigoriu and D.K. Friesen

bound for scheduling using MULTIFIT on nonsimultaneous same-speed machines,

was established by Hwang and Lim [4] to be 24∕19 (about 1.2632).

For uniform processors that start simultaneously, worst-case approximation

bounds of 1.4 and respectively 1.382 for a MULTIFIT variant were obtained in

Friesen and Langston [5] and Chen [6]. For two uniform processors, Burkard and

He [7] derive a worst-case bound of

√
6∕2 (about 1.2247) if the MULTIFIT loop

is repeated enough times. When MULTIFIT is combined with LPT as an incum-

bent algorithm, they show that the worst case bound decreases to (
√
2 + 1)∕2 (about

1.2071).

Approximation for scheduling on uniform nonsimultaneous machines to mini-

mize the maximum completion time was previously considered in He [8], where the

maximum completion time of LPT schedules was shown to be within 5∕3 times the

optimal schedule’s maximum completion time, and that the bound is better when

there are only two machines. A PTAS for the case where the number of machines

is constant can be found in [9]. For the case where there is at most one period of

unavailability (downtime) on each machine, that must not necessarily occur at the

beginning of the schedule, Grigoriu and Friesen [10] give a MULTIFIT-like algo-

rithm, LMULTIFIT, the schedules of which have maximum completion times that

are at most 1.5 times the end of an optimal schedule or 1.5 times the latest end of

a downtime. The bounds that apply to the MULTIFIT variants presented in [5, 6]

for scheduling on simultaneous uniform machines also apply to LMULTIFIT when

scheduling on nonsimultaneous uniform machines. A proof for this can be found in

[11] (and a later version of it in [9]), and we give an outline thereof in this work,

while emphasizing the main ideas. We also present experimental results.

2 Using LMULTIFIT for Scheduling on Uniform
Nonsimultaneous Machines

A problem instance is given by a set of machines M = {M1,… ,Mm} and a set of

independent jobs J = {1,… , n}. Machine Mi has speed factor si and can start to

process jobs at time ri ≥ 0. On the slowest machine, job j has processing time pj. We

call pj the length of job j. The processing time of job j on a machine Mi is pj∕si. We

thus assume that the slowest machine has a speed factor of 1.

We address this problem by using the algorithm LMULTIFIT from [10] in the

simplified form it takes when it is used for the special case of scheduling on uniform

nonsimultaneous machines. Given a desired accuracy 𝜖, it works as follows [9, 11]:

LMULTIFIT (𝜖, ub, lb)

(1) Choose suitable values for upper bound ub and lower bound lb for the maxi-

mum completion time of the schedule, e.g., ub = maxi∈{1,…,m}(
∑n

j=1 pj
si

+ ri), and

lb = 0;
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(2) Order the jobs in nonincreasing order of pj;
(3) Set the deadline to b = ub+lb

2
;

(4) Order the machines in nondecreasing order of si(b − ri);
(5) FFD: Assign jobs in nonincreasing order of pj (as determined in step (2)) on the

first processor on which they fit;

(6) If all jobs were assigned save the schedule and decrease the upper bound (ub =
b);

(7) Else increase the lower bound (lb = b);

(8) If ub − lb ≥ 𝜖 loop back to step (3);

The upper bound chosen in step (1) should be at least the maximum completion

time of a schedule the user can construct and the lower bound should be at most the

maximum completion time of an optimal schedule. LMULTIFIT uses the algorithm

FFD (first fit decreasing) to assign tasks to processors (step (5)).

The MULTIFIT variants for scheduling on simultaneous uniform machines from

[5–7] order the time intervals available for scheduling tasks in the same way as

LMULTIFIT when applied to these problems. However, these variants have their

initial upper and lower bounds for the duration of the schedule defined as a part of

the algorithm, whereas LMULTIFIT allows the user to define these bounds. The

proofs in [5–7] do not use the fact that the upper and lower bounds are defined as

a part of their MULTIFIT variant when showing worst-case approximation bounds,

which leads to the conclusion that these bounds also apply to LMULTIFIT. In this

work we call worst case approximation bound of an algorithm A for a problem Q

the highest ratio between the maximum completion time of a schedule produced by

A for a problem instance I of Q and that of an optimal schedule of I.
We next summarize a proof that LMULTIFIT, when applied to nonsimultane-

ous uniform processors, obeys the worst-case approximation bounds from [6, 7] for

scheduling using MULTIFIT on simultaneous uniform processors. We assume that

the algorithm MULTIFIT for simultaneous uniform processors considered in this

work orders time intervals available for scheduling in nondecreasing order of the

speed factors of their processors, like the variants from [5–7].

For a problem instance I we denote with optI the end of an optimal schedule of

I. A main part of the proof of the worst-case approximation bound of 1.382 for the

general case where the number of processors is arbitrary, as it results from bound

shown in [6], can be found in [11], where the following statement shown:

Theorem 1 (Approximation bound [11]) Assuming that:

(a) q is a worst-case approximation bound for MULTIFIT when scheduling on
simultaneous uniform processors, and that

(b) for any Instance I of scheduling on uniform simultaneous parallel machines and
for any MULTIFIT deadline b ≥ q ∗ optI a feasible schedule is returned by the
FFD algorithm, q is also a worst-case approximation bound for LMULTIFIT
for scheduling on nonsimultaneous uniform processors.
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It has been shown in [1] that reducing the deadline of MULTIFIT from a deadline

where a feasible schedule exists to a smaller deadline does not necessarily result

in another feasible schedule for problem instances with at least three processors.

As a consequence, proofs about MULTIFIT worst-case approximation bounds are

likely to contain proofs of property (b) from Theorem 1, as is the case in [6, 7]. Thus

Theorem 1 implies that LMULTIFIT has a worst-case approximation bound of 1.382
when scheduling on uniform nonsimultaneous parallel machines.

In [9], a variant of Theorem 1 which applies to problems with at most m machines

is also proved. Together with the results from [7], this implies that LMULTIFIT has

a worst-case approximation bound of

√
6∕2 when scheduling on at most 2 uniform

nonsimultaneous parallel machines.

The statement of Theorem 1 can be proved by contradiction. For this, we assumed

that there is a counterexample, that is, a problem instance I and a deadline b ≥ q ∗
optI for which FFD within the LMULTIFIT loop does not produce a feasible sched-

ule. We define a minimal counterexample to be a counterexample with a minimal

number of processors. Obviously, if there is a counterexample, there also is a mini-

mal counterexample. Let I = (M, J) be a minimal counterexample, let m = |M| and

let b ≥ q ∗ optI be a deadline for which FFD within the LMULTIFIT loop does not

generate a feasible schedule. Using the concept of a minimal counterexample it can

be shown that:

optI > max
p∈M

(rp) (1)

We call length of a time interval available for scheduling tasks its duration times

the speed factor of the processor on which it is. The main idea of the proof of The-

orem 1 is to use the minimal counterexample I and the deadline b ≥ q ∗ optI where

FFD within the LMULTIFIT loop fails to schedule all tasks, in order to create an

instance I′ of the problem of scheduling on simultaneous uniform machines, where

the lengths of the time intervals available for scheduling are the same for I with dead-

line b as they are for I′ with deadline b. As a consequence, MULTIFIT also fails to

schedule all tasks for I′ with deadline b. Equation (1) results in the fact that no addi-

tional spaces are created by this construction, as b must be greater than the end of

an optimal schedule, and thus can not be smaller than the start of the processing

time of any processor according to (1). It can be shown that optI′ ≤ optI . This results

in a contradiction to q being a worst-case approximation factor for MULTIFIT for

scheduling on uniform simultaneous machines (which implies that b < q ∗ optI′ ), as

that would result in: b < q ∗ optI′ ≤ q ∗ optI ≤ b.

3 Experimental Results

In order to experimentally measure the performance of our algorithm, we use lower

bounds that are derived from the properties of each instance. Given an instance, we

know that all processing times must fit before the end b of the schedule, and thus
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m∑

i=1
(max(0, b − ri))si ≥

∑

j∈J
pj,

which, assuming the processors are ordered in nondecreasing order of their ready

times, that is, ∀i ∈ {1,… ,m} ∶ ri ≤ ri+1 in this ordering, implies that:

∃q ∈ {1,… ,m} ∶ b
q∑

i=1
si −

q∑

i=1
risi ≥

∑

j∈J
pj

⇔ ∃q ∈ {1,… ,m} ∶ b ≥

∑
j∈J pj +

∑q
i=1 risi

∑q
i=1 si

⇔ b ≥

m
min
q=1

(
∑

j∈J pj +
∑q

i=1 risi
∑q

i=1 si
)

We generated instances with 2, 3, 5, 10, 15 and 30 processors, with fractional

speed factors allowed between 1 and 5, with the slowest processor having speed fac-

tor 1, with job lengths that can take integer values between 0 and a constant MaxJob.

The machine available times can take integer values between 0 and MaxJob for one

set of instances, and values between 0 and MaxJob (we used MaxJob = 200) times

the average number of tasks per machine for another set of instances. We gener-

ated instances with an average of 2, 3, 5, 10, 15, 30 and 50 jobs per machine. All

values are generated using a uniform probability distribution in Python. Thus, each

time an instance is generated, two parameters are used, the number of machines and

the average number of jobs per machine. For each problem set, for each parame-

ter tuple, 100 instances are generated. In Tables 1 and 2 the average and the worst

Table 1 Approximation factors for LMULTIFIT, where the maximum ready time is the same as

the maximum processing time

|M| 2 jobs/

machine

3 jobs/

machine

5 jobs/

machine

10 jobs/

machine

15 jobs/

machine

30 jobs/

machine

50 jobs/

machine

2 1.025896

1.13408

1.014911

1.0735

1.008147

1.04756

1.001934

1.01002

1.000732

1.00594

1.000245

1.00129

1.000096

1.00057

3 1.035263

1.14637

1.015074

1.06251

1.006792

1.02619

1.002015

1.00786

1.000896

1.00261

1.000239

1.00105

1.000096

1.00032

5 1.028481

1.10762

1.013325

1.03651

1.005365

1.01495

1.001463

1.00495

1.000719

1.00238

1.0002

1.00052

1.000089

1.00023

10 1.018373

1.05363

1.008773

1.04028

1.003419

1.00889

1.001113

1.00302

1.000511

1.00163

1.000168

1.00033

1.000088

1.00013

15 1.014423

1.03671

1.006645

1.01426

1.002785

1.00799

1.000789

1.00176

1.000412

1.00091

1.000154

1.00025

1.000087

1.00014

30 1.007669

1.01573

1.00391

1.00999

1.00161

1.00249

1.000538

1.00078

1.000305

1.00052

1.000147

1.00021

1.00009

1.00012
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Table 2 Approximation factors for LMULTIFIT, where the maximum ready time is the maximum

processing time times the average number of jobs per processor

|M| 2 jobs/

machine

3 jobs/

machine

5 jobs/

machine

10 jobs/

machine

15 jobs/

machine

30 jobs/

machine

50 jobs/

machine

2 1.021748

1.14418

1.010174

1.06859

1.002774

1.02171

1.000954

1.01033

1.000312

1.00171

1.00011

1.00073

1.000036

1.00015

3 1.019345

1.11243

1.006942

1.0283

1.002532

1.01688

1.00067

1.00265

1.000333

1.00247

1.000073

1.00041

1.000031

1.00014

5 1.01877

1.12979

1.006211

1.02614

1.002511

1.01046

1.000545

1.00198

1.00023

1.001

1.000067

1.00023

1.000027

1.00008

10 1.011845

1.03491

1.00434

1.01386

1.001345

1.00378

1.000327

1.00107

1.000165

1.00042

1.000051

1.00019

1.000025

1.00005

15 1.008729

1.03341

1.002911

1.01034

1.000955

1.00393

1.000268

1.00077

1.000124

1.00029

1.000046

1.00012

1.000027

1.00005

30 1.00468

1.01159

1.001866

1.0045

1.000674

1.00248

1.000193

1.00035

1.000101

1.00018

1.000046

1.00008

1.000028

1.00005

encountered approximation factors are listed. To calculate the approximation factor,

we divide the end of the schedule found by LMULTIFIT by the lower bound of the

instance as described above, that is, minmq=1(
∑

j∈J pj+
∑q

i=1 risi∑q
i=1 si

).
We ran the same experiment with a maximum speed factor of 10, and then with

a maximum speed factor of 10 and a maximum job length of 2000 and obtained

similar results. The experiments suggest that LMULTIFIT performs very well in

the average case, and that it is thus a viable option for addressing our problem in

practice. The considered instances can be found at http://www.wiwi.uni-siegen.de/

dekanat/kontakt/grigoriu/instancesnonsim/insts_nonsim.zip.
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Markov Models for System Throughput
Analysis in Warehouse Design

Anja Heßler and Christoph Schwindt

Abstract In this paper we study the problem of computing the expected cycle

time of a storage and retrieval system executing single-command cycles and being

operated according to the closest open location rule. Assuming that the arrivals

of the storage and the retrieval orders at the storage follow independent Poisson

processes, we first consider the case of homogeneous inventory and develop closed-

form expressions for the steady-state probabilities of a given storage location being

selected for storage or retrieval. The approach is then generalized to storages with

multiple stock keeping units. Comparing our results with estimation formulas from

industry standards shows that the latter tend to significantly underestimate the

maximum throughput of storage and retrieval systems.

1 Introduction

In warehouse design, appropriately dimensioning the storage and retrieval (S/R) sys-

tem presupposes an accurate model of the system throughput under steady-state con-

ditions. The expected maximum system throughput, calculated from the reciprocal

expected cycle time, is largely influenced by the storage and retrieval strategy, which

defines the way in which storage and retrieval orders are executed during warehouse

operation. Given a set of orders to be processed, the strategy partitions the order set

into operation cycles of the S/R system and allocates appropriate storage locations

to each order. Disregarding the time savings achieved by optimally assigning storage

locations to storage and retrieval orders may heavily bias the throughput analysis.

Based on continuous-time Markov chains we derive analytical results for the

expected cycle time of S/R systems. We consider a rack storage under random stor-

age location strategy serviced by rack feeders performing single-command cycles.
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We assume that storage and retrieval orders are released according to independent

Poisson processes with arrival rates 𝜆 and 𝜇, respectively, and are executed in the

sequence of their arrivals. In the first setting (Sect. 2), we investigate the case of a

homogeneous inventory of a single stock keeping unit (SKU), which serves us as a

starting point to the analysis of the general case with multiple SKUs in Sect. 3. We

further suppose that all orders refer to single loading units like pallets and that each

storage location can hold exactly one loading unit of an arbitrary SKU. The storage

and retrieval strategy considered in the following models is the closest open location

rule often used in practice [5], which for each arriving order selects a storage loca-

tion with minimum cycle time. In the case of homogeneous inventory, this storage

and retrieval strategy maximizes the expected system throughput. For what follows,

we assume that the N storage locations n = 1,… ,N are numbered according to non-

decreasing cycle times.

The remainder of this paper is organized as follows. In Sects. 2 and 3 we develop

the Markov models for the cases of homogeneous inventory and multiple SKUs,

respectively. In Sect. 4 we then compare the results of our models with alternative

approaches to system throughput analysis from the literature and conclude the paper

with a short summary and some remarks on future research avenues in Sect. 5.

2 The Case of Homogeneous Inventory

Let {Y(t) ∣ t ≥ 0} =
{(

Y1(t),… ,YN(t)
)
∣ t ≥ 0

}
be the stochastic process with state

space E = {0, 1}N modeling the evolution of the inventory distributed over the stor-

age locations, where Yn(t) denotes the Bernoulli variable that equals 1 if storage loca-

tion n is occupied at time t, and 0 otherwise. The possible state transitions directly

follow from the closest open location rule. For each arriving order, the first feasi-

ble location in sequence n = 1,… ,N of the storage locations is selected, i. e., for a

storage order the first free and for a retrieval order the first occupied location is cho-

sen. The respective transition rates correspond to the arrival rates 𝜆 and 𝜇 of storage

and retrieval orders. The following proposition follows from the Poisson nature of

the arrival processes, the finiteness of the state space, and the observation that each

state i ∈ E can be reached from the empty state (0,… , 0) by a sequence of state

transitions and vice versa.

Proposition 1 {Y(t) ∣ t ≥ 0} is a homogeneous and irreducible continuous-time
Markov chain.

Consequently, the limiting distribution limt→∞ (P (Y(t) = i))i∈E exists and coincides

with the unique stationary distribution 𝜋 = (𝜋i)i∈E of the process, see, e.g.,

[6, p. 263]. We obtain the following global balance equations for 𝜋:
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𝜋(0,…,0) ⋅ 𝜆 =
∑

j∈E1

𝜋j ⋅ 𝜇, 𝜋(1,…,1) ⋅ 𝜇 =
∑

j∈EN−1

𝜋j ⋅ 𝜆 (1)

𝜋i ⋅ (𝜆 + 𝜇) =
no(i)−1∑

n=1
𝜋i+en ⋅ 𝜇 +

nf (i)−1∑

n=1
𝜋i−en ⋅ 𝜆 (i ∈ E′) (2)

Let Em ⊆ E be the set of states with exactly m occupied locations. Equation (1) refer

to the extremal states (0,… , 0) and (1,… , 1) corresponding to the empty and the full

storage. State (0,… , 0) is left with rate 𝜆 by executing a storage order and reached

with rate 𝜇 from every state j ∈ E1 by executing a retrieval order. Symmetrically,

state (1,… , 1) is left with rate 𝜇 by executing a retrieval order and reached with rate

𝜆 from every state j ∈ EN−1 by executing a storage order. All other states i ∈ E′ =
E ⧵ {(0,… , 0), (1,… , 1)} considered in Eq. (2) can be left either by a storage or a

retrieval order. With en denoting the nth unit vector and no(i) and nf (i) being the first

occupied and free storage location of state i, respectively, state i can be reached from

every state i + en with one more occupied location among the first no(i) − 1 storage

locations by executing a retrieval order and from every state i − en with one more

free location among the first nf (i) − 1 storage locations by executing a storage order.

We implemented the power method to solve this system of linear equations as

recommended by Stewart [6, pp. 301ff.]. Due to the exponential increase of the state

space’s dimension in the numberN of storage locations, we were only able to analyze

small storages withN ≤ 19. As we will show, however, we can calculate the expected

cycle time based on truncated and aggregated versions of process {Y(t) ∣ t ≥ 0}, for

which closed-form solutions of the stationary distributions can be specified. We are

interested in the probabilities of a given storage location n being assigned to a stor-

age or to a retrieval order. For fixed n ∈ {0,… ,N}, consider the stochastic process

{Z(n)(t) ∣ t ≥ 0} with random variables Z(n)(t) counting the number of occupied loca-

tions among the first n storage locations. For this stochastic process, the following

proposition holds.

Proposition 2 For each n ∈ {1,… ,N}, process {Z(n)(t) ∣ t ≥ 0} corresponds to the
throughput process of an M∕M∕1∕n queueing system with arrival rate 𝜆 and service
rate 𝜇.
Using the formulas for the stationary distribution 𝜋

(n)
k of an M∕M∕1∕n queueing

system with utilization 𝜌 = 𝜆

𝜇
and capacity n (see, e.g., [4, p. 79]), we obtain the

probabilities PS(n) and PR(n) for storage location n of being chosen for a storage

or a retrieval order in the following way. Storage location n is selected for a stor-

age order precisely if storage locations 1 to n − 1 are occupied and the nth storage

location is free. This holds true exactly if the first n − 1 but not the first n loca-

tions are occupied. As a consequence, PS(n) = P(first n − 1locations occupied) −
P(first n locations occupied). According to the PASTA property (Poisson arrivals see

time averages, see [6, p. 394]), arriving orders see the stationary distribution, which

provides

PS(n) = 𝜋
(n−1)
n−1 − 𝜋

(n)
n = (1 − 𝜌)2 ⋅ 𝜌n−1

(1 − 𝜌n)
(
1 − 𝜌n+1

)
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For the retrieval probability PR(n) of storage location n, we can apply similar argu-

ments. Storage location n is selected for a retrieval order precisely if storage locations

1 to n − 1 are free and the nth storage location is not.

PR(n) = 𝜋
(n−1)
0 − 𝜋

(n)
0 = 𝜌 ⋅ PS(n)

Note that probabilities PS(n) und PR(n) refer to arriving orders, which do not nec-

essarily enter the system. If the storage is full or empty, storage and retrieval orders

cannot be served, respectively, and are assumed to be lost. Consequently, it holds

that
∑N

n=1 PS(n) = 1 − 𝜋
(N)
N < 1 and

∑N
n=1 PR(n) = 1 − 𝜋

(N)
0 < 1.

3 The Case of Multiple SKUs

The aggregation approach presented in the previous section can be generalized to

the case of multiple SKUs 𝓁 = 1,… ,L with arrival rates 𝜆𝓁 and 𝜇𝓁 of their stor-

age and retrieval orders. For given n ∈ {0,… ,N}, we define the stochastic process

{Z(n)(t) ∣ t ≥ 0} = {(Z(n)
1 (t),… ,Z(n)

L (t)) ∣ t ≥ 0} with random variables Z(n)
𝓁 (t) count-

ing the number of storage locations among the first n locations occupied by SKU

𝓁 at time t. By E(n) =
{
( j1,… , jL) ∣

∑L
𝓁=1 j𝓁 ≤ n

}
we denote the state space of

{Z(n)(t) ∣ t ≥ 0}. From the Poisson property of the arrivals, the finiteness of the state

space, and the reachability of all states ( j1,… , jL) ∈ E(n)
we obtain

Proposition 3 For each n ∈ {0,… ,N}, process {Z(n)(t) ∣ t ≥ 0} is a homogeneous
and irreducible continuous-time Markov chain.

We derive the stationary probabilities of {Z(n)(t) ∣ t ≥ 0} from the concept of detailed

balance for Markov chains, see [6, p. 265], which splits the global balance equations

into balance equations for any pair of states. For 𝓁 = 1,… ,L and 0 ≤
∑L

𝓁=1 j𝓁 ≤

n − 1, we obtain the detailed balance equations

𝜆𝓁 ⋅ 𝜋
(n)
( j1,…,j𝓁 ,…,jL)

= 𝜇𝓁 ⋅ 𝜋
(n)
( j1,…,j𝓁+1,…,jL)

(3)

The probabilities 𝜋
(n)
(j1,…,jL)

solving the following system of product-form equations

with 𝜌𝓁 = 𝜆𝓁

𝜇𝓁
satisfy the detailed balance equations of Eq. (3).

𝜋
(n)
(j1,…,jL)

= 𝜋
(n)
(0,…,0) ⋅

L∏

𝓁=1
𝜌
j𝓁
𝓁 ((j1,… , jL) ∈ E(n))

n∑

k=0

∑

j1 ,…,jL∶
j1+⋯+jL=k

𝜋
(n)
(0,…,0) ⋅

L∏

𝓁=1
𝜌
j𝓁
𝓁 = 1
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As detailed balance implies global balance, see [6, p. 249], 𝜋
(n)

is the unique sta-

tionary distribution of {Z(n)(t) ∣ t ≥ 0}. Again, we can exploit an analogy to elemen-

tary concepts of queueing theory. For a closed Jackson network with L single-server

stations and n circulating customers in the network, the global balance equations

admit a similar product-form solution (see, e.g., [4, p. 196]). In difference to the

closed queueing network, however, the number of stored units may be smaller than

n. The probability 𝜋
(n)
(0,…,0) =

[∑n
k=0

∑
j1,…,jL∶j1+⋯+jL=k

∏L
𝓁=1 𝜌

j𝓁
𝓁

]−1
of an empty stor-

age can be computed recursively in O(L2n2) time invoking the convolution algorithm

of Buzen [2] for the normalizing constant of a closed Jackson network with single-

server stations for each k = 1,… , n. Once the stationary distribution 𝜋
(n)

is known,

the storage and retrieval probabilities PS(n) and PR(n) arise from

PS(n) =
∑

j1 ,…,jL∶
j1+⋯+jL=n−1

𝜋
(n−1)
(j1,…,jL)

−
∑

j1 ,…,jL∶
j1+⋯+jL=n

𝜋
(n)
(j1,…,jL)

(4)

PR(n) =
1

∑L
𝓁=1 𝜇𝓁

L∑

𝓁=1
𝜇𝓁PR(n,𝓁) with PR(n,𝓁) =

∑

j1 ,…,jL∶
j𝓁=0

(
𝜋
(n−1)
(j1,…,jL)

− 𝜋
(n)
(j1,…,jL)

)
(5)

According to Eq. (5), the retrieval probability PR(n) is equal to the weighted mean

of the retrieval probabilities PR(n,𝓁) for SKUs 𝓁. Again, using Buzen’s convolution

algorithm, the right-hand sides of Eqs. (4) and (5) can be calculated efficiently. In

analogy to the single-SKU case, it can be shown that PR(n,𝓁) = 𝜌𝓁 ⋅ PS(n) and hence

PR(n) = 𝜌 ⋅ PS(n) with 𝜌 =
∑L

𝓁=1 𝜆𝓁∕
∑L

𝓁=1 𝜇𝓁 .

4 Numerical Example

The expected cycle time highly depends on the storage and retrieval strategy. Nev-

ertheless, basic approaches to throughput analysis implicitly assume non-optimized,

random allocations, leading to identical storage and identical retrieval probabilities

PS(n) and PR(n) for all storage locations n, see, e.g., the handbook [1, pp. 659f.] or

the industry standards [3, 7]. Hausman et al. [5] argue under restrictive assumptions

that this uniform distribution can serve as a good approximation for PS(n) and PR(n)
under the closest open location rule. In this section, we compare the expected cycle

times arising from the uniform distribution assumption (UD) and our Markov model

(MM(L), with L as the number of SKUs) for the closest open location rule.

In our example, we examine one aisle of a rack storage with 10 rows and 60 storage

locations in each row. Assuming that the rack feeder can move simultaneously in

horizontal and vertical direction, the travel times between the storage locations are

determined using the Tchebychev metric. Furthermore, we suppose that 𝜆𝓁 = 𝜇𝓁
and hence 𝜌𝓁 = 1 for all SKUs 𝓁, which is generally satisfied by real-world storages

operating under steady-state conditions. Table 1 displays the results for the different

models.
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Table 1 Comparison of expected cycle times

Model MM(1) MM(3) MM(5) MM(10) MM(15) UD

Expected cycle time 3.12 5.34 6.86 9.61 11.69 60.55

The results show that the model assuming uniform distribution heavily underes-

timates the maximum system throughput when the storage system is operated under

the closest open location strategy. As a consequence, applying the industry standards

may lead to a largely oversized system. We also notice that the expected cycle time

significantly increases and hence the error of the UD model decreases when the num-

ber L of SKUs augments. In particular, it can be shown for 𝜌𝓁 = 1 for all SKUs 𝓁 that

as L tends to infinity, the limits of the storage probabilities PS(n) and PR(n) coincide

and are identical for all n = 1,… ,N.

5 Conclusion and Future Work

In this paper we developed Markov models for the system throughput analysis of S/R

systems executing single-command cycles under the closest open location strategy.

We showed how the expected cycle time can be calculated efficiently based on aggre-

gate models and exploiting analogies to finite-capacity service stations and closed

Jackson networks. Comparing our results with traditional approaches assuming ran-

dom selection of storage locations reveals that the latter may significantly underesti-

mate the maximum system throughput. Our future research will be concerned with

extending the models to dual-command cycles and considering batch arrivals of the

storage and retrieval orders.
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Lot Sizing and Scheduling for Companies
with Tooling Machines

Florian Isenberg and Leena Suhl

Abstract The growing globalization and the rapid technical development intensify

competition for nearly all manufacturing companies and increase the pressure to act.

For companies using tooling machines to process metal, there is only little potential

to improve the processing itself. A holistic view on the production system, however,

provides an opportunity for cost savings and optimization. Therefore a two-level

concept for lot sizing and scheduling is presented, transferring two different lot siz-

ing and scheduling models from the literature into an integrated one. Each of the two

models has a different time scope and an adjusted level of detail. The solution behav-

ior and solution quality is analyzed for different test instances, and the advantages

and disadvantages of such a two-level concept are pointed out.

1 Introduction

The increasing globalization and the rapid technology developments hold many dif-

ferent risks and opportunities for nearly all manufacturing companies. An intensified

competition, new markets and additional competitors force these companies to act.

This applies to companies with tooling machines as well. Especially for the small

and medium-sized companies of this industrial sector, it is essential to be aware of

these changes and to make full use of opportunities that already exist.

One possibility to increase the efficiency of the production is to improve the

machine efficiency. However, in many cases the technical and economic limits of

these machines are reached. The alternative is an efficiency improvement by opti-

mizing the planning procedure.
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Tooling machines provide a solid basis for this kind of optimization. The flex-

ibility is an advantage and can be used to produce many different products on one

machine or one product on alternative machines, as long as the nc-program is present.

This flexibility can also help to cope with unforeseen events, such as machine break-

downs or changes in the capacity or order situation. The goal of this paper is to solve

an integrated lot sizing and scheduling problem for such companies, regarding long

setup and processing times. Therefore, two different models from the literature are

combined into an integrated one, which creates a natural decreased degree of detail

within the planning horizon. This has the advantage of reducing the computational

effort for later periods, especially if the productions in these periods are more likely

to be changed before implementation.

The remainder of this paper is organized as follows. Section 2 gives a short

overview of related literature. In Sect. 3 the mathematical model of the underlying

problem is formulated. Numerical results for some test instances are discussed in

Sect. 4 and the paper closes with a conclusion in Sect. 5.

2 Related Literature

The existing literature about multi-level lot sizing and scheduling with parallel

machines is relatively scarce. Özdamar and Barbarosoǧlu [7] model a production

with serially-arranged manufacturing stages and parallel facilities. They use a CLSP

kind of model to formulate the problem and extend it to include the different stages

and loading decisions. The problem is solved by a combination of simulated anneal-

ing (SA), genetic algorithms (GA) and a Lagrangean relaxation scheme. In 2000 Bel-

vaux and Wolsey [1] developed the “bc—prod modeling and optimization system”.

They present a generic model with a multi-level structure and production on multi-

ple machines capable to produce one or more items per period. Test sets of different

adapted models are solved by the system using, e.g., preprocessing and cutting plane

techniques. Lead times are not considered. Kimms and Drexl [6] already introduced

a proportional lot sizing and scheduling model (PLSP) with multi-level structure and

parallel machines in 1998. The formulated model did not include setup times. For

solution purposes a randomized regret-based sampling method is presented in the

paper, but only evaluated for a model with multiple machines. The reviews of [2, 3]

give a good overview about further literature on the subject.

The idea behind this work is not entirely new. Araujo et al. [5] already stated that

it could be beneficial to use a simplified representation for later periods, as they are

more likely to be not implemented. In contrast to other works this will be done by

combining two different models here. A similar approach to use different models for

a different time horizon can be found in [4].
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3 Problem Statement

We combine a “multi-level continuous setup lot sizing problem” (MLCSLP) (detailed

scope) with a “multi-level capacitated lot sizing problem with linked lot sizes”

(MLCLSP-L) (rough scope). Both models include parallel resources.

Figure 1 shows the combined model and illustrates the different levels of detail.

The model is formulated using the notation in Table 1.

Model:

Min
∑

j∈J

∑

m∈Mj

∑

t∈T
(sjm ⋅ stjm) ⋅ xjmt −

∑

j∈J

∑

m∈Mj

∑

t∈TR

(sjm ⋅ stjm) ⋅ zjmt (1)

+
∑

j∈J

∑

t∈T
hjt ⋅ Ijt +

∑

j∈J

∑

t∈T
bcjt ⋅ rjt +

∑

m∈M

∑

t∈T
ocm ⋅ Omt +

∑

j∈J

∑

t∈TR

ecj ⋅ ejt

s.t. ∶
Ijt = Ij(t−1) +

∑

m∈Mj

qjmt + ejt − djt + rjt − rj(t−1) −
∑

i∈Sj

∑

m∈Mi

aji ⋅ qimt

∀ j ∈ J , t ∈ T (2)

Ijt ≥
∑

i∈Sj

∑

m∈Mi

Min(t+vj ,T)∑

𝜏=t+1
aji ⋅ qim𝜏 ∀ j ∈ J , t ∈ TD ∪ {0} (3)

∑

j∈Jm

(yjmt + ysjmt) + y0mt = 1 ∀m ∈ M , t ∈ TD (4)

yjmt − yjm(t−1) ≤ xjmt ∀ j ∈ J ,m ∈ Mj, t ∈ TD (5)

yjm(t−1) + ysjmt ≤ 1 ∀ j ∈ J ,m ∈ Mj, t ∈ TD (6)

ysjm(t−1) +
∑

i∈Jm∶i≠j
yimt ≤ 1 ∀ j ∈ J ,m ∈ Mj, t ∈ TD (7)

ysjm(t−1) +
∑

i∈Jm∶i≠j
ysimt ≤ 1 ∀ j ∈ J ,m ∈ Mj, t ∈ TD (8)

y0mt ≤ y0m(t−1) ∀m ∈ M , t ∈ TD (9)

pjm ⋅ qjmt + STjmt ≤ Cmt + Omt ∀ j ∈ J ,m ∈ Mj, t ∈ TD (10)
∑

j∈Jm

(pjm ⋅ qjmt) ≤ (Cmt + Omt) ∀m ∈ M , t ∈ TR (11)

qjmt ≤ (Cmt + OCmt) ⋅ yjmt ∀ j ∈ J ,m ∈ Mj, t ∈ TD (12)

Fig. 1 Schematic representation of the two combined model



484 F. Isenberg and L. Suhl

Table 1 Indices, index sets, parameters and decision variables of the model

Indices and index sets
T Set of periods

(t ∈ {1,⋯ ,T}),

with

T = TD ∪ TR

J Set of items to

produce

TD ⊆ T Set of detailed

periods

(t ∈ {1,⋯ , tD})

Jm Set of items

produced by

resource m
TR ⊆ T Set of rough

periods (t ∈
{tD + 1,⋯ ,T})

Sj Set of immediate

successors of

item j
M Set of resources Mj Set of resources

capable to

produce item j
Parameters
aji Number of units of item j required to produce one unit of item i
djt External demand of item j in period t
hjt, bcjt Holding and backorder cost of one unit of item j in period t
sjm Setup cost of item j at resource m
ocm Overtime cost per unit at resource m
ecj, vj Outsourcing cost per unit of item j and lead time of item j
pjm, stjm Production time per unit and setup time of item j at resource m
Cmt,OCmt Capacity and overtime capacity of resource m in period t
Decision variables
qjmt Production quantity of item j at resource m in period t
Ijt, rjt Inventory and backorder of item j at the end of period t, backorder is only

allowed for end items

Omt Overtime at resource m in period t
ejt Outsourcing of item j in period t, outsourcing is only allowed for end items and

rough periods

yjmt Setup state variable of item j at resource m at the end of period t, yjmt ∈ {0, 1}
xjmt Finished setup process of item j at resource m in period t, xjmt ∈ {0, 1}
ysjmt Setup process state variable of item j at resourcem at the end of period t, ysjmt ∈

{0, 1}
ksjmt Finished proportion of the setup process of item j at resource m at the end of

period t, ksjmt ∈ [0, 1]
STjmt Performed setup time for item j at resource m in period t
intjmt Already finished units of item j at resource m at the end of period t, intjmt ∈

{0, 1, 2,…}
sljmt Finished proportion of the processed unit of item j at resource m at the end of

period t, sljmt ∈ [0, 1]
zjmt Setup carry over of item j at resource m from period t − 1 to t, zjmt ∈ {0, 1}
vjmt Multiple period setup carry over of item j at resource m from period t − 1 to

t + 1, vjmt ∈ {0, 1}
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qjmt ≤ (Cmt + OCmt) ⋅ xjmt ∀ j ∈ J ,m ∈ Mj, t ∈ TR (13)

KSjm(t−1) +
1
stjm

⋅ STjmt = xjmt + KSjmt ∀ j ∈ J ,m ∈ Mj, t ∈ TD (14)

KSjmt ≤ 1 −
∑

i∈Jm

ximt ∀ j ∈ J ,m ∈ Mj, t ∈ TD (15)

KSjmt ≤ ysjmt ∀ j ∈ J ,m ∈ Mj, t ∈ TD (16)

yjmt ≤ 1 −
∑

i∈Jm∶i≠j
ximt ∀ j ∈ J ,m ∈ Mj, t ∈ TD (17)

STjmt ≤ (Cmt + OCmt) ⋅ (xjmt + ysjmt) ∀ j ∈ J ,m ∈ Mj, t ∈ TD (18)

intjmt = intjm(t−1) + sljm(t−1) + qjmt − sljmt ∀ j ∈ J ,m ∈ Mj, t ∈ T (19)

intjm(t−1) ≤ intjmt ∀ j ∈ J ,m ∈ Mj, t ∈ T (20)

sljmt ≤ 1 −
∑

i∈Jm∶i≠j
ximt ∀ j ∈ J ,m ∈ Mj, t ∈ TD (21)

sljmt ≤ 1 −
∑

i∈Jm∶i≠j
ysimt ∀ j ∈ J ,m ∈ Mj, t ∈ TD (22)

sljmt ≤ zjm(t+1) ∀ j ∈ J ,m ∈ Mj, t ∈ TR (23)

sljm(tD) ≤ zjm(tD+1) ∀ j ∈ J ,m ∈ Mj (24)

∑

j∈Jm

(zjmt) ≤ 1 ∀m ∈ M , t ∈ TR (25)

zjmt ≤ xjmt ∀ j ∈ J ,m ∈ Mj, t ∈ TR (26)

zjm(tD+1) ≤ yjm(tD) ∀ j ∈ J ,m ∈ Mj (27)

zjmt ≤ xjm(t−1) ∀ j ∈ J ,m ∈ Mj, t ∈ TR ⧵ {tD + 1} (28)

zjmt + zjm(t+1) ≤ 1 + vjmt ∀ j ∈ J ,m ∈ Mj, t ∈ TR ⧵ {T} (29)
∑

i∈Jm∶i≠j
ximt ≤ M ⋅ (1 − vjmt) ∀ j ∈ J ,m ∈ Mj, t ∈ TR (30)

All decision variables non-negative. Overtime and outsourcing limited.

The objective is to minimize the holding, setup, overtime, outsourcing and back-

order costs. The restrictions (2) and (3) ensure the inventory balance under consider-

ation of the lead times. Backorder is only allowed for the end items and outsourcing

only for the periods of the rough part of the model. The restrictions (4)–(9) deal with

the setup state at the end of a period. Note that a dummy setup state is present and not

all transitions are allowed. Inequalities (10)–(13) model the capacity restrictions and

link production and setup. The restrictions (14) to (18) model setup processes over

several adjacent periods. Setup times are only considered for the detailed part of the

model. Due to the considered practical problem, the production lots should be inte-

gral, especially for items with a long processing time, guaranteed by the restrictions

(19)–(24). The setup carry over of the MLCLSP-L is modeled by the inequalities

(25)–(30). Furthermore, the connections between the two models are formulated.

An advantage of such a model is the natural decreasing level of detail and the

separation between the two parts. It provides an opportunity for fast replanning of
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the rough part, while the detailed one will be untouched. In addition, as little effort

as possible is made for later periods. The savings can be used to increase the detail

of the early periods. The disadvantage is an imprecise modeling of demands and the

material flow in later periods, due to the bigger periods. Combined with the holding

costs, this can lead to unmeant backorders or increased productions in later periods.

4 Numerical Tests

The combined model is evaluated with a small test set generated similar to the ones

in [8]. A lead time of one period, backorder cost of 1000 per unit, a utilization of 0.7,

a relative setup of 0.6 and a tbo of (1, 1) are set. The gozinto factors are rounded up.

The instances, modeled completely with detailed periods, are used as a benchmark.

Table 2 shows the results, performed on an Intel Core i7, with 2.2 Ghz and 16 GB

main memory, using Gurobi 5.62. Only the two benchmark instances of C1B1a could

be solved to optimality, the other ones were limited to four hours, with a remaining

gap. Each line has #I instances with J items, M resources and T detailed periods.

The combined model is evaluated within a rolling horizon, where, e.g., the parame-

ter set (3, 10) means, each iteration considers the next three detailed periods, while

the other periods are united to rough periods, the size of up to 10 detailed periods. A

time limit of one hour per iteration is set. The combined model is suitable to model

the problem. For a few instances the last iteration was infeasible, due to unfortu-

nate solutions in the previous iterations and the set lead times. The other results

vary between poor solutions in almost four hours time and good or even improved

solutions with substantial time saving. The increased costs can be explained by the

missing information, leading to backorders in later periods. Therefore, the parame-

ters have to be chosen carefully and evaluated further.

5 Conclusion and Outlook

In this paper a combination of two models with a different level of detail are pre-

sented and analyzed. The most important benefit is a reduced computational effort

for later periods, especially when these will most likely be replanned. Apart from

this there are some drawbacks. The modeling is more complicated and tends to cause

additional costs in later periods due to lack of detail.
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Further work can address the treatment of these drawbacks, especially the

increased costs, the combination of different or more models or the comparison with

one model including a decreasing level of detail. Further topics are the synchroniza-

tion of the material flow for items with larger processing times or heuristic solution

procedures making use of the special structure combining the two models.
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Flexible Production Scheduling with Volatile
Energy Rates

Christoph Johannes, Matthias G. Wichmann and Thomas S. Spengler

Abstract The demand for electrical power in industrial production processes arises

often in high energy costs for companies. In the future volatile energy rates, which

are a consequence of the increasing power generation from renewable energies, can

influence these energy costs. In order to reduce the energy costs with the help of

volatile energy rates, latter have to be considered in the production scheduling. To

date, only few planning approaches in the field of job-shop scheduling deal with

volatile energy rates. A transfer into planning tasks of serial production as the eco-

nomic lot scheduling problem is missing. This contribution introduces a planning

approach for the energy-oriented lot sizing and scheduling problem.

1 Introduction

Energy is one of the most important inputs in manufacturing. In high energy-

intensive industries such as paper manufacture the proportion of energy costs among

the complete value added is about 18.7% and in middle energy-intensive industries

such as metal products manufacture 9.1%, respectively. Even in low energy-intensive

industries as automotive manufacture the share of energy costs among the value

added is about 3.3%. The energy costs of all industries split on electrical power

(50%), oil and natural gas (36%), coal (5%) and further energy sources (8%) [4].

As a consequence, companies demand for opportunities to reduce energy costs in

order to compete in the world market.
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Electrical power is a necessary and important input for most manufacturing

systems. One main application of manufacturing systems is serial production. In

serial production a periodic product mix of similar products is manufactured on one

machine. Exemplary products are milling products such as different types of gears

or formed products such as car body parts. To date, production planning in serial

production focuses on the reduction of inventory and setup costs using approaches

such as the economic lot scheduling problem (ELSP). Since in future time-dependent

volatile energy rates are expected, the consideration of them is necessary in order to

minimize production costs. By now, classical planning approaches do not account

for decision-relevant energy costs.

In this paper we present a planning model for the flexible production scheduling

with integrated lot sizing under consideration of volatile energy rates. In Sect. 2 the

problem characteristics and the resulting impact on the constraints and on the objec-

tive function are described in detail. In Sect. 3 a modeling approach is discussed,

which incorporates the aspects presented in Sect. 2. In Sect. 4 an illustrative exam-

ple is given to show the reduction potential of production-related costs. The paper

closes with a conclusion and an outlook.

2 Energy-Oriented Production Scheduling

In this section the problem characteristics of an energy-oriented lot sizing and

scheduling problem (EOLSSP) are described. The task is to generate a feasible pro-

duction schedule, meeting a given demand under consideration of machine capaci-

ties, with the aim of production-related cost minimization. In general, there are three

characteristics: time-dependent volatile energy rates, fluctuating energy consump-

tion of manufacturing machines and classical constraints of production scheduling.

The first characteristic concerns time-dependent volatile energy rates. Currently,

the majority of electrical power is generated by classical power plants, which have

a limited flexibility and are characterized by a constant supply of electrical energy.

Therefore, electricity tariffs for companies are based on a constant energy and peak

load rate. In the course of a sustainable power generation, most classical power plants

will be replaced by renewable energies. This leads to two mayor changes. First, the

energy supply of renewable energies fluctuates, as energy production from wind

and photovoltaic is influenced by weather. Second, in order to meet current power

demand, the fluctuating power supply is complemented by classical power plants.

Based on the time-dependent demand and offer of electrical power, a power market

with volatile energy rates arises. According to estimates, the new electricity tariffs

will consist of a variable energy rate referring to the price of the power exchange

market and a peak load rate limited on times with classical power generation [1]. As

a result, companies are faced with volatile energy rates.
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Second, as a consequence of time-dependent volatile energy rates, the manufac-

turing machines’ time-dependent energy consumption has to be taken into account.

The energy consumption is influenced by the machine state and load, whereby also in

non-processing times a significant amount of energy is consumed [3, 6]. To date, lot

sizing and scheduling approaches only determine the sequence of lots. Hereby, the

determination of machine states’ exact sequences with regard to idle times and inter-

ruptions in the production process is neglected (e.g. [2]). However, the sequence of

machine states is necessary to determine the time-dependent energy consumption. In

general, four types of machine states are distinguished. In the first machine state type

‘shutdown’ the manufacturing machine consumes few energy, but also manufactures

no product and loses its setup. In the second machine state type ‘idle’ the manufactur-

ing machine performs also no production process but consumes more energy than in

the machine state ‘shutdown’, based on the operating of auxiliary units. The setup is

not lost. In the third machine state type ‘setup’ the machine consumes energy for set-

ting up. This machine state is needed as transition between different product setups

or as starting-up from ‘shutdown’. In the fourth machine state type ‘manufacturing’

the machine performs a production process, whereby the most energy is consumed.

During the machine state ‘manufacturing’ the energy consumption depends on the

machine load that is linked to the product being manufactured. Therefore, for each

product a separate ‘manufacturing’ machine state is considered.

Third, conventional constraints concerning lot sizing and scheduling need to be

respected. These constraints are the fulfillment of demand without backlogging, the

balance of inventory and the consideration of setup and machine states. The majority

of these constraints are considered in existing models (e.g. [5]).

The objective of planning is the minimization of relevant production-related costs.

The production-related costs comprise inventory, setup and energy costs. While

inventory and setup costs are regarded in classical planning approaches (e.g. [5]),

energy costs have not been considered in this planning task before. The energy costs

are based on time-dependent energy consumption and time-dependent energy rates.

The time-dependent energy consumption is given by the sequence of machine states.

The time-dependent energy rates are given by extern.

3 Model

In this section the specifics of the mathematical formulation for the EOLSSP are

discussed. The objective function is presented and the constraints are described.

The introduced planning problem is a lot sizing and scheduling problem, i.e.

transforming customer demand into production lots with the aim to minimize the

production-related costs. We consider the case of a single machine. On this machine

p = 1,… ,P products have to be produced. The set of machine states S comprises

four different types of machine states. These are the non-producing states sidle,
sshutdown and ssetup. Besides, for the manufacturing of each product p there is a sepa-

rate machine state sman.p . The planning horizon comprises t = 1,… ,T periods. Three
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classes of binary and one class of continuous variables are used to formulate the

model. The binary decision variable xs,t is set to one if the machine starts with the

machine state in period t. The binary variable ys,t is set to one if the machine state s is

active in period t. The third binary variable zp,t is set to one if the machine can man-

ufacture product p in period t. The continuous variables Ip,t describe the inventory

of product p at the end of period t.
The objective function (1) minimizes the relevant production-related costs Ctotal,

consisting of setup, inventory and energy costs. The setup costs arise from the

amount of setups evaluated with the setup cost factor csetup. The inventory costs

arise from products on stock evaluated with the inventory cost factor cinventoryp in

dependence on the product p. The energy costs for one period t arise from the active

machine states ys,t evaluated with the energy consumption ps in dependence on the

machine state s and the volatile energy rate cenergyt .

minZ = Ctotal =
T∑

t=1

(
yssetup,t ⋅ csetup +

P∑

p=1
Ip,t ⋅ cinventoryp +

∑

s∈S
ys,t ⋅ ps ⋅ c

energy
t

)

(1)

Overall, five categories of constraints are considered in this modeling approach.

The first three categories result from the consideration of the exact sequence of

machine states and the production of various products, while the last two categories

are classical restrictions in the course of production planning. The first category of

constraints defines zp,t. It is needed to restrict the theoretical possible products p to

be manufactured in period t referring to the prior machine setup and state. So, if

the machine manufactures a product in the prior period the machine will be able to

only manufacture this product until the machine’s setup is renewed. If the machine is

transferred into the machine state ‘shutdown’, the setup will be lost. In the machine

state ‘idle’ the machine keeps the setup of zp,t−1 in period t. The second category of

constraints defines xs,t. While the machine states sidle, sshutdown and ssetup are permit-

ted at any time, machine state sman.p in period t will be only permitted, if the product

p according zp,t can be manufactured in period t. Third, the binary variable ys,t is

determined by a new active machine state xs,t and the machine state of the prior

period ys,t−1. Hereby, it has to be ensured that exactly one machine state s is active

in each period t. The fourth category of constraints defines the inventory stock Ip,t.
It is determined by the inventory stock of the prior period Ip,t−1, the demand dp,t and

in period t manufactured products given by ys,t and their output quantity of product

p in dependence of the machine state s. The last category comprises the binary and

nonnegativity constraints. They determine the range of decision variables. Also an

initial machine state is given.

All mentioned constraints can be formulated as linear constraints. Therefore, the

resulting model can be categorized as a MILP (mixed-integer linear problem). How-

ever, the model is hard to solve as several binary variables exist.
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4 Illustrative Example

In this section an illustrative example to show the effects of considering energy

costs is given. To achieve numerical results, the planning model was implemented

in CPLEX 12.6.2 and solved on a 2.5 GHz CPU with 8 GB RAM.

In the example, a production plan for T = 28 periods regarding P = 3 products

is determined. Thus, the set of machine states comprises 6 states, in which 3 are

non-producing and 3 are producing states. The further relevant parameters are ran-

domly generated based on real world values. The time-dependent volatile energy

rates cenergyt , measured in monetary units (MU) per kWh, are given in Table 1. The

product-related characteristics as inventory costs cinventoryp per period and product p,

measured in MU, the demand for products in various periods and the output quantity

of products in dependence of the machine states s are given in Table 2. The manu-

facturing machine’s energy consumption in dependence of their state s per period,

measured in kWh, is given in Table 3. The setup costs csetup are 150 MU per setup.

To obtain comparable results, the numerical example is solved in two different

ways. First, following a classical ELSP approach, the objective function is reduced

to the sum of setup and inventory costs. Second, following our EOLSSP approach,

the objective function is kept as given in Formula (1). The obtained results are given

in Fig. 1a for the sequence of machine states of the ELSP approach and in Fig. 1b for

the sequence of machine states of the EOLSSP approach. The two solutions differ

greatly from each other. There are three major findings. First, the total costs of the

ELSP schedule are 2248 MU, while the one of the EOLSSP are only 2185 MU. Thus,

in total, 2.9% of costs may be saved. Second, the number of setups decreases from

4 (ELSP) to 3 (EOLSSP). This is due to the fact that without the consideration of

Table 1 Time-dependent energy rates

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Energy

rate

4.09 4.04 4.00 3.96 3.91 4.45 4.98 5.51 6.05 6.80 7.56 8.31 9.07 9.21

Period 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Energy

rate

9.35 9.50 9.64 9.26 8.88 8.50 8.12 7.84 7.56 7.28 7.00 6.84 6.68 6.52

Table 2 Product-related characteristics

Product Inventory

costs

Demand in period Output quantity in machine state

18 26 28 sman.1 sman.2 sman.3
1 0.3 200 200 200 100

2 0.5 160 160 160 80

3 0.6 120 120 120 60
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Table 3 Energy consumption in dependence of machine states

Machine states

sshutdown sidle ssetup sman.1 sman.2 sman.3
Energy consumption 1 2 4 6 8 10

Fig. 1 Optimal solution schedule over 28 periods, a ELSP b EOLSSP

energy rates, it is useful to setup the machine for the production of product 2 twice.

Third, inventory costs in the EOLSSP increase from 380 MU to 619 MU. Thus,

a larger amount of products is stored for more periods, since production starts in

early periods with low energy rates. Nevertheless, due to savings of energy costs, a

positive impact is achieved. As a result, while being economically reasonable, the

consideration of energy costs has a high impact on planning and leads to highly

different production plans than classical approaches.

5 Conclusion and Outlook

In this paper we present the EOLSSP considering a machine’s energy consumption

and time-dependent volatile energy rates. The characteristics of the planning prob-

lem are discussed, transformed into an adequate planning approach and illustrated.

As a result, the contribution of the paper is twofold. First, energy costs are considered

within the EOLSSP. Second, we show a cost saving potential of 2.9%.

Future research should address three directions. First, there is an enormous need

of relevant data regarding energy consumption in different machine states. Here,

methods need to be applied in order to obtain the relevant data. Second, the model

formulation is hard to solve due to the binary variables. Here, either a different for-

mulation or a suitable solution procedure has to be developed. Third, the approach

should be applied to larger case studies in order to verify and outline the potential of

energy consideration in short term production planning.
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Audit Scheduling in Banking Sector

Ethem Çanakoğlu, İbrahim Muter and Onur Adanur

Abstract In this paper, we handle an audit scheduling problem in which the task

requirements and the auditor experiences are quantified and forge a set of restric-

tions in team formation. We propose a mathematical model for this problem, propose

two heuristics for its solution, and evaluate their performance through computational

experiments.

1 Introduction

Internal auditing is a key function in financial organizations in order to evaluate and

improve the effectiveness of risk management, control, and governance processes. It

involves examination and evaluation of the activities carried out at the headquarters

as well as local branches. The tasks of the branch audit program include the compli-

ance check with organization policies and regulatory requirements. Depending on

the size of a financial organization, the number of branches may range from a few to

thousands. Therefore, efficient scheduling of the auditor workforce to the branches

is an important problem for the internal auditing department because of the vital

role of workforce in the performance of auditing operations, and its share in the total

operational cost.

Audit scheduling is one of the prominent problems classified under staff schedul-

ing (See [4] for extensive review of staff scheduling problems). This problem deals

with the assignment of a set of personnel qualified as a team to a set of branches
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to be audited under operational constraints. Since these problems are perplexed by

the real-life operational constraints, they are generally solved by heuristic methods

[2, 3]. In this paper, we handle an audit scheduling problem arising at a Turkish

bank. The novel structure of this problem is that the auditor experience levels and

the experience requirements of the branches are quantified and the total experience

of each team is to satisfy the requirements of the assigned branches. The objective of

this problem is to complete all the audit tasks as early as possible by using the avail-

able auditors. An important imposition in handling this problem is that members of

a team work together until the end of the auditing horizon. Although this restriction

leads to longer audit horizon, it not only facilitates the solution of the problem but

also the performance evaluation of the team. We propose a mathematical model for

this problem in Sect. 2, which has two decomposable aspects: the team formation and

the branch scheduling. The former involves technical constraints associated with the

size and total experience of a team, and the latter evokes an extension of the paral-

lel machine scheduling problem with makespan minimization where the machines

correspond to the teams. We propose two heuristics for the solution of the mathe-

matical model that are explained in Sect. 3 and evaluate their performance through

computational experiments presented in Sect. 4.

2 Model Description

The internal auditing department has a set of auditors indexed by i ∈ I. Each auditor

i ∈ I has experience level denoted by ci ranging between 1 and 5 where 1 correspond-

ing to the trainee-level auditors and 5 being the top auditors. The set of branches that

need to be audited is denoted by B. Each branch b ∈ B is associated with two para-

meters, the total experience requirement (rb) and the duration of the audit (db). The

disjoint groups of auditors satisfying a set of constraints form the audit teams indexed

by j ∈ J, which are then assigned to the branches. The auditors with experience level

5 and some of those with level 4 constitute the senior auditor set Im ⊂ I. Each team

needs to have one senior auditor so that the maximum number of teams that can be

formed are equal to the number of senior auditors.

As alluded to previously, the teams, once formed, stay intact throughout the plan-

ning horizon. Hence, the total experience of the auditors assigned to a team must be

larger than or equal to the minimum experience requirement of the branches audited

by it. Also, lower (L) and upper (H) bounds limit the number of auditors in a team.

For the integer programming formulation of this problem, we define binary deci-

sion variable yj associated with j ∈ J which indicates whether team j is formed or not,

binary auditor assignment variable xij that takes value 1 only if auditor i is assigned

to team j, and binary branch assignment variable zjb which is equal to 1 only if group

j is assigned to branch b. Since each team must be assigned a senior auditor, we

set |J| = |Im| in the model, possibly causing some of the teams to be empty. The

mathematical model is given as follows:
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P ∶ Minimize Cmax

Subject to

∑

j∈J
xij ≤ 1, ∀i ∈ I, (1)

∑

i∈Im

xij ≥ yj, ∀j ∈ J, (2)

Lyj ≤
∑

i∈I
xij ≤ Hyj, ∀j ∈ J, (3)

∑

j∈J
zjb = 1, ∀b ∈ B, (4)

∑

i∈I
cixij ≥ rbzjb, ∀j ∈ J, b ∈ B (5)

∑

b∈B
dbzjb ≤ Cmax, ∀j ∈ J, (6)

∑

b∈B
zjb ≤ Myj, ∀j ∈ J, (7)

xij, yj, zjb ∈ {0, 1} ∀i ∈ I,∀j ∈ J,∀b ∈ B. (8)

Constraints (1) ensure that each auditor is assigned to at most one team. Constraint

set (2) imposes all groups to include at least one senior auditor. If a team is formed,

constraints (3) limit its size between L and H. While constraint set (4) forces each

branch to be assigned to a group, constraints (5) ensure that all branches are assigned

to teams with sufficient total experience level. Constraint set (6) determines the max-

imum completion time among the team schedules, referred as Cmax, which is min-

imized in the objective function. The assignment of branches to an unformed team

is prevented through constraint set (7), and finally, constraint set (8) imposes binary

restrictions on the decision variables.

This problem has a decomposable structure that yields two problems, namely a

team formation (1)–(3) and an extension of the parallel machine scheduling problem

(4)–(6). For a given set of teams, the resulting problem is an extension of the parallel

machine scheduling problem in which each job (branch) b ∈ B is only allowed to be

processed on subset of the parallel machines (teams). On the other hand, for a given

set of schedules, the remaining problem boils down to finding feasible teams. How-

ever, in both cases, finding a feasible solution is not guaranteed. Next, we propose

two heuristic methods to obtain a good upper-bound for this problem by exploiting

the decomposable structure of P . We form teams and schedules using a sequen-

tial approach in which the major difficulty is determining a limit on the total dura-

tion of branches assigned to a team. To that end, we determine an approximation of

the makespan by applying the longest processing time (LPT) first rule on |Im| ficti-

tious teams without considering constraints associated with team formation. Given

this Ĉmax value, (6) becomes a knapsack constraint. Next, we explain the proposed

heuristics which differ in the way the branches are combined together to form a team

schedule.
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3 Heuristic Methods

The first heuristic, which is given in Algorithm 1 and is referred to as the knapsack-

based heuristic, tries to form a team that is capable of auditing the unassigned branch

with the largest requirement, and then, solves a knapsack problem to select a set

of unassigned branches without considering the experience compatibility issues.

To accelerate the operations, we initialize the unassigned branch set B in a non-

decreasing order of the branch requirements rb. A feasible team that has total expe-

rience larger than or equal to the maximum requirement of the unassigned branches,

given as 𝛽 = rb1 , is sought by solving the assignment problem PA. We strive to form

a team whose total experience satisfies the requirement in the minimal way by mini-

mizing the surplus of constraint (13). If PA is infeasible, (14) is relaxed by allowing

more than one senior auditors for each team, which is more likely to give a feasible

solution. However, a team may still not be formed, in which case the branch with the

largest requirement b1 is added to the previously generated schedule with the small-

est duration due to the makespan objective. If a feasible team is formed, we solve the

knapsack problem, tagged PK , to form a schedule consisting of uncovered branches

including b1. The objective of this problem is to maximize the total requirement of

the selected branches, which is emphasized by the squares of rb, b ∈ B. Such an

objective prompts “hard” branches to be covered by teams at the early stages when

𝛽 is generally large. Finally, if there still exist unassigned branches but no senior

auditor remains, then these branches are allocated to the existing schedules using

the LPT rule. Observe that at the end of the algorithm, the actual Cmax value may be

larger than Ĉmax.

PK ∶ maximize

∑

b∈B
r2bzb, (9)

s.t.

∑

b∈B
dbzb ≤ Ĉmax − db1 , (10)

zb ∈{0, 1}, ∀b ∈ B. (11)

PA ∶ minimize s, (12)

s.t.

∑

i∈I
cixi − s = 𝛽, (13)

∑

i∈Im

xi = 1, (14)

L ≤

∑

i∈I
xi ≤ H, (15)

xi ∈{0, 1}, ∀i ∈ I. (16)
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The second algorithm, given in Algorithm 2, is reminiscent of the savings algo-

rithm that was proposed in [1] for solving the vehicle routing problem. The algo-

rithm makes use of a saving parameter defined for each pair of customers which cor-

respond to the actual saving in distance if two customers are visited consecutively

by the same vehicle. Similarly, we calculate the saving value for a pair of branches

(i, j) as Sij = |ri − rj| − max{rb ∶ b ∈ {i, j}}∕max{rb ∶ b ∈ B}. The branch pairs are

sorted in non-decreasing order of savings values since it is desirable that the branches

with similar requirements reside in the same schedule. Moreover, the term subtracted

ensures that the difficult branch pairs take smaller values so that they are prioritized

in the schedule generation. Instead of solving a knapsack problem as in the first algo-

rithm, we follow the list of branch pairs according to the savings values and concate-

nate an unassigned branch, say b′, to the current schedule S if its pair exists in this

schedule and the total duration of the schedule does not exceed Ĉmax. If the latter is

not satisfied, we remove b′ from the list of unassigned branches that can be added

to S, which is denoted by S′. When no more branch can be added to S, we solve PA
to form a feasible team that can audit S. Unlike in the knapsack-based algorithm, if

no feasible solution to PA can be found even after relaxing (14), there is a possi-

bility that the branch in S with the largest requirement may not be assigned to one

of the previously formed teams. This may lead to an infeasible solution, though not

encountered in the computational experiments.

Algorithm 1 Knapsack based

Apply LPT to calculate Ĉmax, sort B in non-decreasing order of rb
while B ≠ ∅ & idle seniors exist do

solve PA with 𝛽 = rb1 .
if PA is infeasible then

Relax (14) and resolve PA.

end if
if PA is feasible then

solve PK .

B ← B∖N1, N1 = {b ∶ zb = 1}.

I ← I∖N2, N2 = {i ∶ xi = 1}.

else
Add b1 to the schedule with the smallest duration.

end if
end while
if B ≠ ∅ & no idle seniors exist then

Apply LPT rule.

end if
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Algorithm 2 Savings based

Apply LPT to calculate Ĉmax, S = ∅
Sort sbb′ for b, b′ ∈ B in non-decreasing order.

while B ≠ ∅ && idle seniors exist do
(bb′) = argmin(s), S ← {b, b′}, dS = db + db′ , S′ ← B∖{bb, bb′ }
while dS ≤ Ĉmax − min(db ∶ b ∈ B) do

b′ = argmin(sbb′ ∶ b ∈ S, b′ ∈ S′), S′ ← S′∖{b′}
if ds + db′ ≤ Ĉmax then
S ← S ∪ b′, dS ← dS + db′

end if
end while
Solve PA with 𝛽 = max(rb, b ∈ S).
if PA is infeasible then

Relax (14) and resolve PA.

end if
if PA is feasible then

I ← I∖N2, N2 = {i ∶ xi = 1}, B ← B∖S
else

b ← argmax(rb, b ∈ S). Assign b. B ← B∖{b}
end if

end while
if B ≠ ∅ & no idle seniors exist then

Apply LPT rule.

end if

4 Numerical Experiment

In this section, we test our proposed heuristics on ten randomly generated instances

(set 1–10) for different problem sizes. The experiments were conducted with a

3.6 GHz Intel Xeon E5-1620 processor and 16 GB of RAM. The algorithms were

implemented in C++, and the MIP solver of CPLEX 12.6 is used for exact solu-

tion of the models. We used a small instance set with 15 auditors and 50 branches

in order to evaluate the performance of the heuristics against the optimal solution

whereas for large instances with 200 auditors and 1300 branches, we compared the

performance of the heuristics with lower and upper bounds found by CPLEX in 1 h

time limit. For both problem sizes, we have varied the Pearson correlation coeffi-

cient of duration and requirement of branches between 0 (set 1) to 0.9 (set 10). We

used the Gaussian copula model [5] to ensure correlation between the duration and

requirement of branches. The auditor capabilities (between 1–5) are not changed

through instances. The duration of the branches are generated from a discrete tri-

angular (3,7.5,16) distribution and the requirement of the branches follow discrete

triangular (6,12.5,17) distribution (Table 1).

The savings based method results in smaller Cmax compared to knapsack based

algorithm in all instances. The average gap between the optimal solution and savings

based method is 1%, and that between optimal and knapsack based method is 9%.

Knapsack based algorithm forms fewer teams with greater experience level yielding
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Table 1 1300 branch 200 auditor results

1 2 3 4 5 6 7 8 9 10

CPLEX (1 h) Upper bound 261 258 259 266 267 261 260 259 250 258

Lower bound 217 218 217 217 218 217 217 218 218 217

Knapsack Cmax 238 238 245 250 251 250 256 254 260 259

# of teams 40 43 42 42 41 40 40 40 40 40

# of idle auditors 11 1 2 0 1 16 15 14 13 11

Savings Cmax 226 224 224 222 225 223 224 223 222 221

# of teams 50 50 50 50 50 50 50 50 50 50

# of idle auditors 21 19 19 18 15 15 11 12 11 9

larger total completion time because of the large deviations of experience require-

ment of branches assigned to a team. On the other hand, the savings method forms

more teams with varying experience levels. As expected, the larger the number of

teams are formed, the better the value of Cmax gets. The auditors that remain idle in

the final solution can be appointed to teams with “high” workload.

In this paper, we present two heuristic methods for the audit scheduling problem.

In the future, we will strive to improve the solutions of these heuristics using a meta-

heuristic algorithm, and to balance the workloads of the teams.

Acknowledgements This study is supported by The Scientific and Technological Research Coun-

cil of Turkey (TÜBİTAK) under grant 115M544.

References

1. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery

points. Oper. Res. 12, 568–581 (1964)

2. Dodin, B., Elimam, A.A., Rolland, E.: Tabu search in audit scheduling. Eur. J. Oper. Res. 106,

373–392 (1998)

3. Drexl, A., Frahm, J., Salewski, F.: Audit-staff scheduling by column generation. In: Perspectives

on Operations Research, pp. 137–162. DUV (2006)

4. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: a review of

applications, methods and models. Eur. J. Oper. Res. 153, 3–27 (2004)

5. Nelsen, R.B.: An introduction to copulas. Springer Science & Business Media (2007)



Machine Scheduling for Multi-product
Disassembly

Franz Ehm

Abstract Increasing emergence of large amounts of discarded products puts pres-

sure on manufacturers in the consumer goods industry. They have to balance eco-

nomic considerations with environmental expectations of their costumers and legal

obligations imposed by the government body. In this context, efficient disassembly

helps to enable profitable remanufacturing of end-of-life products or at least limit

the losses from disposal. This study represents a novel approach to combine the

problems of disassembly sequence planning and machine scheduling. In contrast to

existing formulations in the research field, the proposed model explicitly considers

divergence of the product structure as inherent feature of disassembly. As a result,

disassembly operations related to separate sub-assemblies of the same product can be

scheduled at the same time. The proposed mixed integer programming formulation is

solved using commercial optimization software and first computational implications

are drawn from a short numerical study.

1 Introduction

Over the past three decades, varying disassembly planning problems have been

addressed by operations researchers. Perhaps the most classical problem consists in

determining a sequence of joint or part removal operations which satisfies all techni-

cal precedence constraints and leads to minimal disassembly cost or time, maximum

revenue or profit. Several variations of the so called disassembly sequencing prob-
lem (DSQP) have been approached. Lambert [7] suggests a linear program using

AND/OR-graphs to maximize the net revenue from complete disassembly. In con-

trast to completely dismounting a product into its basic components, selective dis-

assembly problems as studied in [6] by means of a two-commodity network flow

model seek to determine both the optimal level and sequence simultaneously. An

extension to that model is presented by [8] using a two-stage approach to incorpo-

rate the assignment of EOL options such as reuse, recycling or remanufacturing into
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the decision making. Furthermore, numerous heuristic or meta-heuristic solution

techniques have been deployed for similar problem statements [11].

In the disassembly line balancing problem such as studied by [5] disassembly

tasks for a finite supply of single product type are sequenced and allocated to a

set of linearly arranged stations in order to meet the demand of parts and a given

cycle time. Interestingly however, only few publications address the interdependen-

cies between sequence planning and time-wise resource allocation in the presence of

multiple products. In the two-phase model in [3] disassembly tasks are first assigned

to one of several flexible disassembly cells before forming sequences to minimize

inter-cellular movements of the products. Cheng [4] propose a two-stage flow-shop

formulation with dismantling taking place in the first and refurbishment being real-

ized in the second stage. Finally, [1] address the reverse flow of products in a job-shop

by combining two flow-shop problems with reversed machine order of the jobs.

Disassembly jobs may present various feasible process plans depending on prod-

uct specific precedence constraints. Machine scheduling related problem statements

considering process plan flexibility have emerged under the terms of flexible job-
shop scheduling [10] or integrated process planning and scheduling [2]. While exist-

ing formulations are applicable to certain product types, the proposed model allows

for divergence of the disassembly structure which occurs when a parent-assembly is

separated into multiple child-assemblies. Since the resulting sub-assemblies can be

processed independently the associated tasks are no more subject to non-overlapping

constraints within the respective job.

The remainder of this work is structured as follows. In Sect. 2 we derive a graph-

oriented representation of the problem based on a given product structure. Section 3

contains a comprehensive mixed integer programming (MIP) formulation. Section 4

visualizes the operation of the model using a numerical example and discusses first

computational effects. Finally, Sect. 5 summarizes the findings of this paper and pro-

vides some indications for future research.

2 Graph Based Problem Representation

In a dismantling facility, a given order of n products has to be completely disassem-

bled using a shop of m stations. Each of the products consists of a given number of

parts and joints. Removal of a joint leading to the release of single components or

sub-assemblies is denoted as a disassembly task k. We assume that only one station

is available per task. The problem is to find a disassembly sequence for each prod-

uct and a machine schedule for the corresponding tasks which minimizes makespan.

For each product, feasible sequences of tasks can be represented by means of an

AND/OR graph which is derived via construction of a transition matrix with respect

to the connection and precedence system of the structure [7]. This work does not

discuss these steps in detail but builds upon the information about feasible disas-

sembly plans provided by existing AND/OR graphs or transition matrices. In order

to be able to process this information in a combined scheduling approach we deploy
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Fig. 1 Operations graphs for product 1 (a), 2 (b) and 3 (c): edges correspond to tasks connecting

decision nodes (solid) or splitting nodes (empty)

extended operations graphs as depicted in Fig. 1. Their structure is inspired by [6]

which is originally aimed at selective one-product disassembly. In this work, opera-

tions graphs are used to model precedence relations, exclusiveness and parallelism

of tasks. Edges following a decision node, marked by a solid dot, denote alternative

operations whereas splitting nodes, marked by empty circles, enable all outgoing

edges to be passed. Additionally, dummy operations, marked as dashed edges, are

introduced to avoid ambiguity when multiple edges lead to the same node. Consis-

tently, all ingoing edges of a decision node represent alternative operations except

for the sink node e. As shown in Fig. 1, disassembly may involve serial (a) or parallel

execution (b, c) of tasks depending on the product structure.

3 Mixed Integer Programming Formulation

Based on existing operations graphs we formulate a MIP to determine a disassem-

bly path for each product and schedule the corresponding operations at the stations

to minimize makespan. The implementation of typical scheduling constraints are

guided by the formulations of [10] and [2] which are based on the popular model of

Manne [9]. The notation and the presentation of the proposed MIP are as follows:

Notation
Indices and sets

i disassembly station index, i ∈ I = {1, 2,… ,m}
j EOL product index, j ∈ J = {1, 2,… , n}
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k, l disassembly operations indices, k, l ∈ Oj for product j
Pj Set of task pairs (k, l) of j with direct precedence “k before l”
Qj Set of task pairs (k, l) of j allowing parallel processing

r Decision node index r ∈ Rj for product j
Rin
jr ,R

out
jr Set of ingoing and outgoing tasks of decision node r of j

Sinjt , S
out
jt Set of ingoing and outgoing tasks of splitting node t of j

t Splitting node index, t ∈ Sj for product j

Parameters

Ijk Singleton containing station i for processing k of j
M Large number

pjk Processing time of operation k of product j

Decision variables

Cmax Makespan

cjk Integer completion time of operation k of product j
sjk Integer start time of operation k of product j
xijkhl Boolean, 1, if l of h precedes k of j at i, 0 otherwise

yjkl Boolean, 1, if l precedes k for product j, 0 otherwise

zjk Boolean, 1, if k of j is processed, 0 otherwise

Minimize Cmax (1)

Subject to
Cmax ≥ cjk ∀j ∈ J, k ∈ Oj (2)

sjk ≤ zjk ⋅M ∀j ∈ J, k ∈ Oj (3)

cjk − sjk = pjk ⋅ zjk ∀j ∈ J, k ∈ Oj (4)

∑
k∈Rin

jr
zjk =

∑
k∈Rout

jr
zjk ∀j ∈ J, r ∈ Rj, r > 1 (5)

∑
k∈Rout

jr
zjk = 1 ∀j ∈ J, r = 1 (6)

zjk ≥ zjl ∀j ∈ J, t ∈ Sj, l ∈ Sinjt , k ∈ Soutjt (7)

shl − cjk +M ⋅
(
1 − xijkhl

)
≥ 0 ∀j, h ∈ J, j < h, k ∈ Oj, l ∈ Oh, i ∈ Ijk ∩ Ihl (8)

sjk − chl +M ⋅ xijkhl ≥ 0 ∀j, h ∈ J, j < h, k ∈ Oj, l ∈ Oh, i ∈ Ijk ∩ Ihl (9)

sjl − cjk +M ⋅
(
1 − yjkl

)
≥ 0 ∀j ∈ J, k, l ∈ Oj|(k, l) ∈ Qj, k < l, Ijk = Ijl (10)

sjk − cjl +M ⋅ yjkl ≥ 0 ∀j ∈ J, k, l ∈ Oj|(k, l) ∈ Qj, k < l, Ijk = Ijl (11)

sjl − cjk +M ⋅
(
1 − zjl

)
≥ 0 ∀j ∈ J, k, l ∈ Oj|(k, l) ∈ Pj (12)

cjk, sjk ≥ 0 ∀j ∈ J, k ∈ Oj (13)
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Makespan is characterized by the latest completion time in the schedule as defined

in (2). Conditions (3) and (4) ensure that solely tasks which are selected in the dis-

assembly sequence of j are scheduled. We deploy (5) to make sure that ingoing and

outgoing flow of each decision node are identical. This restriction is supplemented

by (6) which specifies that exactly one task option is chosen at the start node r = 1.

(7) enforces that all outgoing operations of a splitting node are realized providing

that this node is reached via a selected task. Referring to [2] and [10] we use (8), (9)

and (10), (11) to implement non-overlapping constraints for each station and within

each job, respectively. In contrast to these formulations, we assume that only one

station is available for each task and thus omit the machine index in the start and

completion times. Furthermore, non-overlapping within a job is relaxed for combi-

nations of tasks that belong to disjoint sub-assemblies enabling parallel processing.

Finally, (12) ensures that task l can only be started after any of its predecessors k has

been completed providing that l is selected in the disassembly sequence of j.

4 Numerical Study

The operation of the model is illustrated using a small example of three different EOL

products and three disassembly stations. The products are represented by the opera-

tions graphs depicted in Fig. 1. Data for station assignment and processing times is

set arbitrarily. The model is solved within less than 1 sec using standard optimization

software CPLEX and running an Intel
®

i5 CPU@3.40GHz and 4GB memory. As

shown in the Gantt chart in Fig. 2 divergent product structures 2 and 3 enable over-

lapping of some of the tasks in the schedule. Notably, tasks 10 and 12 of product

3 and operations 6 and 11 of job 2 can be processed in parallel. Note that dummy

operations do not appear in the schedule due to processing times of zero.

Preliminary testing was conducted considering 9 problem configurations for three

different product types and solving samples of 10 random instances each. It revealed

a rapidly increasing solution time with larger values of n and smaller m as illustrated

in Fig. 3. On the one hand, computational effort is driven by the amount of real and

dummy operations in the problem which is essentially controlled by the number of

jobs. On the other hand, involving more disassembly stations reduces the number of

tasks sharing the same station and thus results in fewer non-overlapping constraints

in the model. Product structure is another important aspect. Providing identical data

0 2 4 6 8 10 12 14 16 18 20 time

1
2
3
i

1(1) 3(2) 3(8) 3(10) 2(4) 2(8) 2(11) 1(13)

1(2) 2(2) 3(12) 3(13) 1(11) 2(13)

2(1) 1(3) 1(6) 1(9) 3(11) 1(12) 2(6)

Cmax = 21

Fig. 2 Gantt chart for the optimal solution of exemplary three-product disassembly
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Fig. 3 Solution time and relative objective value (
∗

average MIP gap) from samples of 10 random

instances with varying number of stations m and jobs n assuming the product types shown in Fig. 1

for the number of tasks per job, processing times and station assignment across all

three structures we observe higher degrees of parallelism in disassembly to result in

shorter schedules while increasing computational effort.

5 Conclusions

In this paper, a novel approach to integrate the problems of disassembly sequenc-

ing and machine scheduling for multiple products was presented. Based on product

structure information a graph-oriented representation was introduced to facilitate

application of existing scheduling formulations. We then developed a MIP model

which was illustrated by a numerical example and tested on 270 random instances.

However, more extensive testing has to be undertaken in order to better assess the

performance of the model. In this context, feasible random product graphs should

be automatically generated and used instead of arbitrary disassembly structures.
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A Hybrid Metaheuristic for the Multi-mode
Resource Investment Problem with Tardiness
Penalty

Patrick Gerhards and Christian Stürck

Abstract In this work we propose and analyze a hybrid approach for the multi-

mode resource investment problem with tardiness penalty (MRIPT). The MRIPT is

a project scheduling problem where, for a given deadline, the objective is to mini-

mize the costs of resources allocated to the project as well as tardiness penalty costs

for not respecting the given deadline. For each project activity multiple execution

modes with differing resource requirements and durations are given. In particular,

we propose a large neighborhood search where destroy operators are applied to a fea-

sible solution to obtain subproblems. These subproblems are solved with MIP-based

recreate operators to obtain an improved solution.

1 Introduction

The resource investment problem (RIP, also called resource allocation cost problem

(RACP)) was first considered by Möhring [4]. In contrast to resource constrained

project scheduling problems (RCPSP) he describes them as the “problem of scarce

time”. For a given project deadline the objective is to find a resource allocation

that minimizes the resource costs. Compared to the resource constrained project

scheduling problem and its multi-mode extension (MRCPSP) that have been exten-

sively studied, the resource investment problem received relatively little attention.

For the RIP several exact (e.g. [1, 6]) and metaheuristic approaches (e.g. [5, 9])

have been studied. Hsu and Kim [2] considered a multi-mode extension of the RIP

and Shadrokh and Kianfar [7] introduced an extension of the RIP where exceeding

the due date is permitted but penalized with tardiness costs (RIPT). To our knowl-

edge, an extension of the RIP with multiple modes and tardiness penalty costs has

received very little attention by the scientific community so far. In this work we pro-
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pose a hybrid metaheuristic for the multi-mode resource investment problem with

tardiness penalty (MRIPT) and evaluate it on modified instances for the MRCPSP.

This article is structured as follows: In Sect. 2 we will give a formal definition of

the MRIPT and a mathematical model. In Sect. 3 the proposed hybrid metaheuristic

is presented and in Sect. 4 we present selected computational experiments and give

an outlook on further research. With this work we want to show that this type of

hybrid metaheuristic can be effectively applied to this problem.

2 Problem Formulation

The MRIPT is defined by the following properties: A set of nonpreemptable activ-

ities A = {0,… , n + 1}, precedence constraints E = {(i, j) ∶ i, j ∈ A}, a set R of

renewable resources and a set Rn
of nonrenewable resources. For each activity i

there is a set Mi of modes that can be chosen for the execution of activity i. If mode

m ∈ Mi is chosen, activity i has duration di,m ∈ Z+
and it has a resource consump-

tion ri,m,k ∈ Z+
for each resource k ∈ R ∪Rn

. A due date D ∈ Z+
for the makespan

of the project and tardiness penalty cost factor ct ∈ Z+
are given. For each resource

k ∈ R ∪Rn
the available capacity of the resource has to be chosen and resource cost

factors ck ∈ Z+
are given. The objective is to find a precedence and resource feasible

schedule that minimizes the sum of tardiness and resource costs.

min
LSn+1∑

t=D+1
ct ⋅ (xn+1,1,t ⋅ (t − D)) +

∑

k∈R∪Rn

ck ⋅ ak (1)

s.t.
∑

m∈Mi

LSi∑

t=ESi

xi,m,t = 1 ∀i ∈ A (2)

∑

m∈Mi

LSi∑

t=ESi

xi,m,t ⋅ (t + di,m) ≤
∑

m∈Mj

LSj∑

t=ESj

xj,m,t ⋅ t ∀(i, j) ∈ E (3)

∑

i∈A

∑

m∈Mi

LSi∑

t=ESi

xi,m,t ⋅ ri,m,k ≤ ak ∀k ∈ Rn
(4)

∑

i∈A

∑

m∈Mi

min(t,LSi)∑

q=max(ESi,t−di,m)
xi,m,q ⋅ ri,m,k ≤ ak ∀k ∈ R,∀t ∈ T (5)

xi,m,t ∈ {0, 1} ∀i ∈ A,∀m ∈ Mi, t = ESi,… ,LSi (6)

ak ∈ Z+ ∀k ∈ R ∪Rn
(7)

In the mathematical model we define binary decision variables xi,m,t which are set

to 1 if and only if activity i starts in mode m in period t (see (6)) and integer-valued

decision variables ak which represent the available capacity of resource k (see (7)).
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For each activity i we calculate a lower bound ESi and an upper bound LSi for its

possible starting period using the critical path methods (CPM).

The objective function (1) minimizes the sum of tardiness costs and resource

costs. Equation (2) makes sure that for every activity i exactly one mode and one

starting time is assigned. With constraint (3) we ensure the precedence constraints.

Constraints (4) and (5) model the nonrenewable and renewable resource require-

ments, respectively.

3 Proposed Hybrid Metaheuristic

The proposed hybrid metaheuristic consists of a large neighborhood search (LNS)

which is used as a master search algorithm. The concept of LNS was first applied to

vehicle routing problems by Shaw [8]. Given a feasible solution, in each iteration of

the LNS large parts of the current solution are destroyed and then those destroyed

parts are recreated to a (hopefully better) solution. Several destroy and recreate oper-

ators can be used.

Our proposed approach is both a hybrid metaheuristic and a matheuristic since it

uses mathematical programming in the recreate step. We define a solution candidate
to consist of a vector of start and finish periods for all activities, a vector of modes

for all activities and resource availabilities for all resources. A destroyed candidate
consists of earliest and latest start times (EST and LST, respectively) for each activity

and a list of executable modes for each activity.

The LNS algorithm is displayed in Fig. 1. In line 3 a destroy operator d is cho-

sen according to the probability vector P. These probabilities can vary based on the

properties of the problem instance. The call of the destroy operator in line 4 returns

a destroyed candidate destroyedC. Here, freeVar is an upper bound on the number of

decision variables in the MIP that is solved in the recreate step. In line 5 the recre-

ate function r is called to obtain a solution candidate cproposal. The recreate function

Data: initial candidate cinitial, pool of destroy operators D, probabilities P ,
number free variables freeV ar
Result: best obtained candidate cbest

1 cbest := cinitial

2 while stopping criterion is not met do
3 Choose a destroy operator d from D with probabilities in P

4 destroyedC := d(cbest, freeV ar)
5 cproposal := r(cbest, destroyedC)
6 if costs(cproposal) < costs(cbest) then
7 cbest := cproposal

8 return cbest

Fig. 1 LNS
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solves a MIP using the mathematical model presented in Sect. 2 but with the EST,

LST and list of modes stored in destroyedC. Hence, it is possible to “fix” some of the

activities by setting their EST and LST in the destroyed candidate equal to the start

time in cbest. Additionally, we can add only the mode selected in cbest which speeds

up the solving of the MIP a lot. Only if a better solution candidate was found, cbest
is updated in line 7.

As a stopping criterion we use the number of evaluated schedules which is com-

mon practice in project scheduling. Since we use MIP techniques we define the num-

ber of evaluated schedules by one call of the recreate operator as the number of deci-

sion variables of the activities in the MIP divided by the number of activities. For

example, if we allowed only one mode for each activity and set the EST and LST to

be equal, that would result in one evaluated schedule.

The first destroy operator is called destroyHighResourcePeriods and works well

if the tardiness penalty costs ct are relatively low compared to the resource costs. It

aims to find activities that are scheduled (in the current candidate) in time periods

where the usage of renewable resources is above the average renewable resource

usage per time period. While the threshold freeVar of decision variables is not

exceeded, destroyHighResourcePeriods randomly selects an activity that is sched-

uled in a “high resource usage period” and sets its EST and LST to the values calcu-

lated by CPM. Then, all available modes are added to the list in the destroyed can-

didate. For example, if an activity with EST = 10, LST = 19 and 3 modes is chosen,

it would result in 30 decision variables for that activity in the MIP. For all activities

that are not chosen, i.e. they are not scheduled in high resource usage periods or the

threshold was exceeded, we add only the mode that was used in the current solution

candidate to the mode list in the destroyed candidate and set the EST in the destroyed

candidate to be the starting period in the current solution. However, we set the LST in

the destroyed candidate to be the LST computed by CPM. This increases the number

of decision variables in the MIP slightly but also allows to schedule these activities

at a later period.

The second destroy operator is called destroyLowResourcePeriods and does the

opposite of the first operator. Here, we search for activities that are scheduled in time

periods with a renewable resource usage below the average renewable resource usage

per time period. Similarly, we set the EST and LST of randomly selected activities

that are scheduled (in the current candidate) in such areas to those computed by CPM

and add all their modes in the destroyed candidate. For the unchosen activities we

allow only the mode used in the current candidate and earlier start times, i.e. we set

the LST to the start period of the current candidate and the EST to the EST computed

by CPM. This operator is expected to work well if the tardiness costs are relatively

high compared to resource costs.

The initial candidate is generated simply by assigning the first mode to each activ-

ity and assigning a schedule with a serial generation scheme where every activity has

equal priority. The resource capacities are then set to values such that the initial can-

didate is feasible.
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4 Computational Experiments and Outlook

We implemented a software prototype of the proposed LNS in C# and used CPLEX

12.6.3 as a solver for the MIP in the recreation step. Since to our knowledge no

established benchmark instances for the MRIPT exist, we used the J30 instances of

the PSPLIB [3] for the MRCPSP and modified them. In J30 there are 640 instances

with projects consisting of 30 activities and 3 modes per activity. They each have 2

renewable and 2 non-renewable resources. To get MRIPT instances we draw num-

bers from a discrete uniform distribution U {1, 5} for the resource cost factors and

one random number from a discrete uniform distribution U {1, 10} for the tardiness

penalty cost factor for each instance in J30. Based on these cost values, for each

instance in J30 we create six new MRIPT instances that only differ in the due date.

As a base value for the due date we take the earliest finishing time of the project

(obtained by CPM) and increase it by 0%, 10%,… , 50% for each instance type. This

results in six classes of instances that are named MRIPJ30_1 , … , MRIPJ30_6, each

consisting of 640 instances. For all instances we computed a lower bound (LB) using

the linear programming relaxation of the MIP.

Our first experiment was conducted only on MRIPJ30_1 and tested the behav-

iour of the destroy operators as well as the influence of the parameter freeVar. In

Table 1, LNS (LowResourcePeriods) used only destroyLowResourcePeriods while

LNS (HighResourcePeriods) exclusively applied destroyHighResourcePeriods as a

destroy operator. In the case of LNS (dynamic) both destroy operators are used and

the probabilities of their usage depend on the cost values of the instance (for instances

with relatively low tardiness cost factor destroyHighResourcePeriods was used two

times more often and vice versa).

We see that a higher value of freeVar improves the results which was expected

since the number of decision variables in the MIP defines the size of the neighbor-

hood that is searched. The destroy operator destroyLowResourcePeriods performs

better than destroyHighResourcePeriods when they are solely used but the combi-

nation of the two operators outperforms both. Hence, we decided for further experi-

ments to present only results for the dynamic variant that uses both operators.

In Table 2 we show the results of LNS (dynamic) for each instance class after

1,000 and 5,000 schedules and the parameter freeVar = 2,000. For the rather poor

lower bounds retrieved by the LP relaxation the proposed procedure achieves good

Table 1 Results on MRIPJ30_1 for 5,000 evaluated schedules

Method freeVar Avg deviation LB (%) Avg time in s

LNS (LowResourcePeriods) 500 9.95 1,709

LNS (HighResourcePeriods) 500 29.31 762

LNS (dynamic) 500 6.56 1,521

LNS (LowResourcePeriods) 2,000 8.53 1,321

LNS (HighResourcePeriods) 2,000 20.54 748

LNS (dynamic) 2,000 6.22 1,250
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Table 2 Results on all MRIPJ30 instances with LNS (dynamic) and freeVar = 2,000

Number of

schedules

1,000 5,000

Instances Avg deviation LB

(%)

Avg time in s Avg deviation LB

(%)

Avg time in s

MRIPJ30_1 6.57 258 6.23 1,246

MRIPJ30_2 6.83 260 6.47 1,243

MRIPJ30_3 7.06 258 6.69 1,232

MRIPJ30_4 7.36 253 6.91 1,208

MRIPJ30_5 7.46 244 6.99 1,151

MRIPJ30_6 7.46 234 7.00 1,093

results but it seems to work better on instances with smaller due dates. It is interest-

ing that the evaluation of more schedules increases the quality of the solutions only

slightly. Therefore, we need to do further investigation on how to control the neigh-

borhood size with freeVar during the search. Since in many iterations of the LNS no

better solution is found we also want to focus on improving the destroy operators. In

further research, the parameter freeVar should be adapted during the search but we

still need to identify the best strategy for this. Since the results on these instances

with 30 activities are satisfactory we will also test the procedure on instances with

50 or 100 activities.
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A Decomposition Method for the Multi-Mode
Resource-Constrained Multi-Project
Scheduling Problem (MRCMPSP)

Mathias Kühn, Sebastian Dirkmann, Michael Völker
and Thorsten Schmidt

Abstract Multi-Mode Resource-Constrained Multi-Project Scheduling Problems

(MRCMPSP) with large solution search spaces cannot be optimized in an accept-

able computation time. In this paper, we have focused on decomposition strategies

for such large scale problems. Based on literature review a time-based decomposi-

tion approach was adopted for the present problem. With time-based decomposition

approaches a schedule is divided into several time periods. All activities in a time

period describe an independent problem, termed as a sub-problem. Due to the inde-

pendent optimization of these sub-problems project information regarding the rela-

tionships among activities in different time periods is not considered. This loss of

information has a negative impact on the overall solution quality. We developed a

decomposition strategy to improve the interactions between the sub-problems for a

better target performance while reducing the computation time. Based on an initial

solution the sub-problems are created and sequentially optimized in a concept simi-

lar to rolling horizon heuristics. We introduce a transition stage with a constant and

a variable component at the end of each partial schedule to improve the interactions

among sub-problems and thus taking the volatile nature of the examined problems

into account. In comparison, our approach proved to provide significant improve-

ments in runtime and target performance.

1 Introduction

Currently large scale Multi-Mode Resource-Constrained Multi-Project Scheduling

Problems (MRCMPSP) cannot be optimized in an acceptable computation time.

Previous experiments showed that the computation time needed to generate suffi-

cient results increases exponentially with larger problem size. (Fig. 1) We present an

approach to significantly reduce the computation time for large MRCMPSPs.
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Fig. 1 Experimental

comparison between

computation time and

problem size

This paper is organized as follows. Section 2 provides a brief description of the

problem. The decomposition method is introduced in Sect. 3. Section 4 presents the

computational experiments and their results, while Sect. 5 provides a summary with

suggestions for future research in the proposed research area.

2 Problem Description

The Resource-Constrained Scheduling-Problem (RCPSP) has been extensively used

in practical applications. Nevertheless, the model does not incorporate all aspects of

real-world problems [8]. Therefore many extensions of the RCSPSP have been pre-

sented [4]. The MRCMPSP generalizes the RCPSP in two ways. Activities can be

executed in multiple modes (MRCPSP) and multiple projects have to simultaneously

compete for the same resources (RCMPSP) (Fig. 2). The RCPSP and thus, in exten-

sion, MRCMPSP have been acknowledged as NP-hard [2]. These kind of schedul-

Fig. 2 The multi-mode resource-constrained multi-project scheduling problem
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ing problems are commonly solved by heuristics [5]. In this paper a metaheuristic

implemented in a simulation-based optimization platform is used [1]. Besides the

improvement in heuristic approaches and the adoption of machine learning tech-

niques, decomposition has experienced a lot of scientific attention.

Decomposition methods attempt to decompose complex problems into sub-

problems, which are easier to optimize and understand. Solutions are generated for

each sub-problem individually and integrated to solve the initial complete problem.

Sub-problems can be created by decomposition or aggregation along two main

axes—time and scheduling entities (e.g. resources) [6]. A systematic literature review

on the MRCMPSP and other relevant problem indicates that temporal and hierar-

chical approaches have the biggest potential regarding reduction of complexity and

adaptability. Although, two decomposition methods have been proposed in literature,

none of them has been used in an environment based on simulation based optimiza-

tion [3, 7]. Due to the large order and project sizes of the examined problems a

hierarchical decomposition is not able to sufficiently simplify the problem. A flexi-

ble time based approach, which is easier to implement, is chosen instead. Deficit of

current time based approaches is the negligence of relationships among activities in

different time periods during their independent optimization which results in a dete-

rioration of the overall solution quality. Our approach tries to compensate for this

shortcoming.

3 Decomposition Method

The proposed decomposition procedure as depicted in Fig. 3 operates as follows: The

initial base solution is converted into several sub-problems by dividing it into time

intervals. The time intervals for generation of sub-problems are created by dividing

Fig. 3 Decomposition procedure
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the base solution into equal parts. Basically, a sub-problem represents parts of base-

line schedule where a string of tasks has been assigned resources and the objective

is to optimize the user defined criteria. Since the sub-problems are determined with-

out taking into account the project structure, a certain risk regarding coherence of

projects is involved. For instance, it is possible that for a certain assembly group,

only one task is assigned to the current sub-problem and the rest of that particular

group has been assigned to the following sub-problem. Since this activity can be

shifted during the optimization far away from the rest of the activities and therefore,

total cycle time for this assembly group increases. The reason behind this problem is

the missing successor information. To avoid that lack of information, we developed

a strategy which consists of components based on a constant and flexible amount

of activities at the transitions stages. The constant component takes a fixed amount

of activities from the optimized sub-problem to the following sub-problem while

the flexible component includes all activities which are started after the previously

defined time interval. The flexible component is optional and results from the opti-

mization. Based on the exponential growth in computation time, a smaller problem

size consequently leads to a reduction in computation time. The separate solution

process of time intervals also enables the usage of individual strategies depended

on the properties of the sub-problem. We are currently working on the extension

of the method by considering different assignment scenarios for the constant activ-

ities and also to add a constant component that can provide information about the

predecessors from the previous sub-problem.

4 Computational Experiments

To analyze the performance of the decomposition method computational experi-

ments were performed. We designed a number of experiments to evaluate the cor-

relation between the base schedule and the number of time intervals regarding the

overall optimization results as well as a comparison of the computational runtime. A

Design of Experiments is shown in Table 1. The input parameters for the base sched-

ules are set in four steps which determine their overall solution quality. For every step

four different time interval sizes are compared. For each experiment the best sched-

Table 1 Experiment design

Experiments Base schedule

Generation size Population size Number of intervals

1-4 1 1 1 2 3 4

5-8 5 10 1 2 3 4

9-12 25 50 1 2 3 4

13-16 50 100 1 2 3 4
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Fig. 4 Comparison between cycle-time, computation time and number of time intervals

ule with respect to the objective cycle time is selected for further investigations.

Sub-problems are optimized with generation size 50 and population size 100. The

constant transition stage was defined as 10% of the activities per time interval. The

results are depicted in Fig. 4. An analysis of the experiments implies that cycle-time

improves with increasing quality of base schedules. While the improvement of cycle-

time in the conducted experiments was observed to be linear, the run time decreases

approximately exponentially with a higher number of time intervals. The cycle-time

for experiments with the same base schedule shows significant improvement with a

higher quantity of time intervals.

The improvement between each individual step is nearly constant. Furthermore,

the computation time, which is calculated by the accumulation of the time needed

to generate the base schedule and optimize each interval, shows an increase until

two sub-problems and decreases afterwards. This can be affiliated to the correlation

between computation time and model size. Hence, with an increase in the number of

intervals, the total computation time approaches the time needed for generating the

base schedule. We were able to surpass the best solution of the conventional opti-

mization 50_100 with a cycle-time of 2288 h and computation time of 285 min, with

a base schedule 25_50 and three time intervals in a computation time of 193 min.

The best a cycle-time of 2248 h was reached with the highest quality base schedule

and four time intervals. The optimal computation time for the decomposition method

of 82 min was also able to improve the target value of the best conventional solution.

Considering the average cycle-time for each quantity of time intervals, three or four

sub-problems are an improvement in comparison to the best conventional solution.

Overall, we were able to achieve a significant improvement of the target value and

and computation time based on the developed decomposition method.
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5 Conclusions

In this paper, we investigated decomposition methods for the MRCMPSP. We came

to the conclusion that there is a lack of application-oriented methods for discrete

event decomposition. Especially the interactions between sub-problems was

neglected in previous research of this field. Therefore we developed a strategy for

optimizing the performance of the decomposition according to the objective value

by using flexible transitions between the sub-problems. Several experiments were

carried out to analyze and evaluate the best compromise between the quality of the

base schedule and the amount of decomposition intervals concerning the computa-

tion time. Our conclusion is that the proposed decomposition method provides good

results, even for low quality base schedules. The optimal parameter for generating

the base schedule and the size of the time intervals still needs further investigation.

In future, we will focus on performing such experiments with different input models,

incorporating varying structure.
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Lower Bounds for the Two-Machine
Flow Shop Problem with Time Delays

Mohamed Amine Mkadem, Aziz Moukrim and Mehdi Serairi

Abstract We consider the flow shop problem with two machines and time delays

with respect to the makespan, i.e., the maximum completion time. We recall the

lower bounds of the literature and we propose new relaxation schemes. Moreover,

we investigate a linear programming-based lower bound that includes the implemen-

tation of a new dominance rule and a valid inequality. A computational study that

was carried out on a set of 480 instances including new hard ones shows that our

new relaxation schemes outperform the state of the art lower bounds.

1 Introduction

This paper is devoted to dealing with the flow shop scheduling problem with two

machines and time delays, denoted by F2|lj|Cmax. Let I = (J, p1, l, p2) be an instance

of F2|lj|Cmax, where J = {1, 2,… , n} is a set of n jobs, p1 and p2 are the vectors of

processing times on the first and the second machines, and l is the vector of the time

delays. Each job j has two operations. The first operation (resp. the second operation)

must be executed without preemption during p1,j (resp. p2,j) time units on M1 (resp.

M2). For each job j ∈ J, a time delay of at minimum lj time units must separate the

end of the first operation and the start of the second one. The objective is to find a

feasible schedule that minimizes the completion time of the last scheduled job on

M2. A feasible schedule is such that at most one operation is processed at a time on a

given machine. In addition, the operations are executed without preemption, where

interruption and switching of operations are not allowed.
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Mitten [2] proves that the permutation flow shop F2𝜋|lj|Cmax, where a feasible

schedule consists in having the same job sequence on both machines, can be solved

in polynomial time. However, solving our problem as a permutation flow shop does

not necessarily provide an optimal solution. F2|lj|Cmax is an NP-hard problem in the

strong sense even with unit-time operations [3].

The objective of this paper is to introduce new lower bounds. First, we improve

the most promising lower bound of the literature. Second, we investigate a linear

programming-based lower bound.

2 Combinatorial Lower Bounds

We present here the lower bounds of the literature and propose new ones. Hereafter,

C∗
max(I) represents the optimal makespan value of instance I and Cmax(S) stands for

the makespan value of schedule S.

First, we survey four lower bounds of Yu [3]. We start by two O(n) basic lower

bounds LB1=max1≤j≤n(p1,j + lj + p2,j) and LB2=max(
∑n

j=1 p1,j + min1≤j≤n(lj + p2,j),
∑n

j=1 p2,j + min1≤j≤n(lj + p1,j)). Moreover, Yu [3] interested in the problem where

each job j ∈ J is splitted into min(p1,j, p2,j) unitary sub-jobs. The lower bound LB3 =
⌈(
∑n

j=1 min(p1,j, p2,j).luj )∕
∑n

j=1 min(p1,j, p2,j)⌉ + 1 +
∑n

j=1 min(p1,j, p2,j) was introdu-

ced, where luj = lj + max(p1,j, p2,j) − 1 is the time delay observed by each sub-job

derived from j ∈ J.

The fourth lower bound is presented as follows. Let S∗ be an optimal sched-

ule and pk,[𝓁] the processing time of the job scheduled at position 𝓁 on Mk, k ∈
{1, 2}. Moreover, let jk be the position of job j on Mk, k ∈ {1, 2}. For each job

j ∈ J, it holds that Cmax(S∗) ≥
∑j1

𝓁=1 p1,[𝓁] + lj +
∑n

𝓁=j2 p2,[𝓁]. By adding together

the above equations for all jobs and by considering that the makespan is integral,

LB4 = ⌈(
∑n

j=1 lj +
∑n

m=1 𝜌1,m +
∑n

m=1 𝜌2,m)∕n⌉ is a valid lower bound, where 𝜌k,m is

the sum of the m smallest values in {pk,1, pk,2,… , pk,n}.

The following lower bounds were introduced by Dell’Amico [1]. In the first one,

it is assumed that all jobs are executed at time 0 on M1. The problem is then a

single-machine scheduling problem with release dates denoted by 1|rj|Cmax. Let

Ir be the instance for 1|rj|Cmax with rj = p1,j + lj and pj = p2,j, j ∈ J. Obviously,

L1 = C∗
max(Ir) is a valid lower bound on the F2|lj|Cmax original instance, which can

be computed in O(n log n)-time by scheduling the jobs in a nondecreasing order of

rj, j ∈ J. By interchanging the role of M1 and M2, we yield a symmetric lower bound

called L2. Finally, we define the lower bound LB5 = max(L1,L2).
Solving our problem as a permutation flow shop does not necessarily provide an

optimal solution. However, special cases exist where it is true. Dell’Amico [1] proved

that permutation schedules are dominant if lj ≤ min1≤i≤n(p1,i + li), j ∈ J and then he

introduced the following lower bound. Let ̄I = (J, p1, ̄l, p2) be a new instance that is

derived from instance I = (J, p1, l, p2), where ̄lj = min(lj,min1≤i≤n(li + p1,i)), j ∈ J.

Since ̄I verifies Dell’Amico’s [1] conditions, an optimal solution for ̄I can be found
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in polynomial time using Mitten algorithm [2]. Therefore, LB6 = C∗
max(̄I) is a valid

lower bound.

Furthermore, we introduce two new lower bounds which can be considered as a

generalization of LB6. In fact, Yu [3] extended Dell’Amico’s [1] result after showing

that the permutation schedules are dominant if lj ≤ min1≤i≤n(li + max(p1,i, p2,i)), j ∈
J. Therefore, from an instance I = (J, p1, l, p2) of F2|lj|Cmax problem, we derive a

new instance ̃I(J, p1, ̃l, p2), where ̃lj = min(lj,min1≤i≤n(li + max(p1,i, p2,i))), j ∈ J. As

a consequence of Yu’s [3] result, LBN
1 = C∗

max(̃I) is a valid lower bound on instance

I, which is computed in O(n log n)-time using Mitten [2].

Moreover, we consider two instances I = (J, p1, l, p2) and I′ = (J′, p1, l, p2) of

F2|lj|Cmax, where J′ ⊂ J. Then, any valid lower bound on I′ is also a valid lower

bound on I. A new lower bound called LBN
2 can be obtained by invoking LBN

1 on dif-

ferent sub-instances of I. Interestingly, we consider n sub-instances. We start by the

original instance I, the next sub-instance is built from the one in hand by removing

the job that has the minimum value of lj + max(p1,j, p2,j), j ∈ J.

3 Linear Programming-Based Lower Bound

We consider a mathematical formulation that is based on determining the precedence

relationships between jobs on the two machines where it is supposed that the jobs are

continuously processed on M1 and M2. Indeed, any valid schedule on an F2|lj|Cmax
instance can be transformed to a schedule with the same makespan value C where

jobs are continuously processed on the two machines from time 0 and from time

C −
∑n

j=1 p2,j on M1 and M2, respectively.

The decision variables are defined for each pair of jobs i, j ∈ J, whereXk
i,j takes the

value 1 if i precedes j onMk and 0 otherwise, k ∈ {1, 2}. Furthermore,Ck,j represents

the completion time of job j on Mk and the total idle time on M2 is denoted by L.

Using these definitions, the model can be formulated as follows:

𝐦𝐢𝐧 L (1)

s.t. Xk
i,j + Xk

j,i = 1, ∀i, j ∈ J i ≠ j; k ∈ {1, 2} (2)

Xk
i,j ≥ Xk

i,v + Xk
v,j − 1, ∀i, j, v ∈ J; k ∈ {1, 2} (3)

C1,i =
∑n

j=1 p1,j.X
1
j,i + p1,i, ∀i ∈ J (4)

C2,i ≥ C1,i + li + p2,i, ∀i ∈ J (5)

C2,i = L +
∑n

j=1 p2,j.X
2
j,i + p2,i, ∀i ∈ J (6)

L ≥ 0, Ck,j ≥ 0, Xk
i,j ∈ {0, 1} ∀i, j ∈ J, k ∈ {1, 2} (7)

The objective function (1) minimizes the total idle time onM2. Constraints (2) ensure

that for each pair of jobs, one of them has to precede the other on each machine.

Constraints (3) guarantee the absence of cyclic precedence relationships between all
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jobs. Constraints (4) and (6) take into account the job’s precedence and enforce them

to be processed continuously without idle on M1 and M2, respectively. In addition,

Constraints (5) ensure that a job after being processed onM1 has to wait its time delay

to be executed on M2. The nature of decision variables L, Ck,j and Xk
i,j is displayed

by Constraints (7).

In order to strengthen the LP relaxation of the model, we propose a valid inequal-

ity, which is based on the additional waiting time that a job has to fulfill after being

available for processing on M2. We remark that given a sequence of jobs on M1,

solutions in which the jobs are scheduled on M2 according to their arrival times are

dominant. Therefore, if a job j is preceded by a job i on M1, then a lower bound

on the minimum additional waiting time observed by job j or job i is wi,j, where

(i)wi,j = max(0, li + p2,i − p1,j − lj), if li ≤ p1,j + lj (ii)wi,j = max(0, p1,j + lj + p2,j −
li), if li > p1,j + lj.

A lower bound on the total additional waiting time 𝛥 can be obtained by solving

the assignment problem where the assignment costs are 𝛿i,j, i, j ∈ {1,… , n}. In the

following, we describe how the assignment costs are computed. Note that the first

scheduled job (resp. the last scheduled job) on M1 is assumed to be preceded (resp.

followed) by a dummy job (job 0, resp. job n + 1). Obviously, since job 0 cannot

precede job n + 1, and a job cannot precede itself, then we set 𝛿0,n+1 = ∞ and 𝛿j,j =
∞, ∀j ∈ {1,… , n}.

Remark 1 Let us consider an instance I of F2|lj|Cmax and LB (resp. UB) a lower

bound (resp. an upper bound) on the value of the makespan. If a schedule of

makespan LB exists, then the jobs can be continuously processed without any idle

time, from time 0 on M1 and from time (LB −
∑n

j=1 p2,j) on M2. Then, we obtain the

following assignment costs:

∙ ∀i ∈ {1,… , n}, 𝛿0,i = max(0,LB −
∑n

j=1 p2,j − li − p1,i)
∙ ∀i ∈ {1,… , n}, if

∑n
j=1 p1,j + li + p2,i > UB, i cannot be processed at the last posi-

tion on M1, then 𝛿i,n+1 = ∞. Otherwise 𝛿i,n+1 = 0

In order to set 𝛿i,j, ∀i, j ∈ {1,… , n}, i ≠ j, we introduce in the following lemma

a new dominance rule.

Lemma 1 Let I = (J, p1, l, p2) be an instance of F2|lj|Cmax and two jobs i, j ∈ J such
that p1,j + lj ≤ p1,i + li ≤ p2,j + lj. For any schedule S of I, if j and i are adjacent on
M1 then j should precede i on M1.

Proof Let us suppose that j is executed before i on M1. First, thanks to the rela-

tion p1,i + li ≤ p2,j + lj, i is ready for processing on M2 while the processing of job

j has not yet ended. Then these two jobs are executed continuously without idle on

M2. Second, since p1,j + lj ≤ p1,i + li, the operations O2,j and O2,i would have started

earlier than if i had preceded j on M1.

Corollary 1 Let I = (J, p1, l, p2) be an instance of F2|lj|Cmax and two jobs i, j ∈ J.
If p1,j + lj ≤ p1,i + li ≤ p2,j + lj, then 𝛿i,j = ∞. Otherwise 𝛿i,j = wi,j.
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Similarly, by interchanging the role of M1 and M2, we obtain 𝛥

′
another lower

bound on the total additional waiting time. Therefore, the following valid inequality

holds:
∑n

j=1 C2,j ≥
∑n

j=1 C1,j +
∑n

j=1(p2,j + lj) + max(𝛥, 𝛥′ ).

4 Computational Results

We present in this section the computational results of the new lower bounds and we

compare their performance. We test them on a set of six classes A–F that was pro-

posed by Dell’Amico [1]. Furthermore, preliminary computational results conducted

on the literature classes show that previous lower bounds give bad performance when

time delays are very large compared to processing times. To that aim, we introduce

two new classes of instances where the processing times on M1 and M2 and the time

delays are randomly generated between [1… 𝛼], [1… 𝛽] and [1… 𝛾], respectively,

where 𝛼 = 𝛽 = 20 and 𝛾 = n
2
10 (resp. 𝛼 = 𝛽 = 100 and 𝛾 = n

2
100) for class 1 (resp.

class 2). For each class, the number of jobs is n = 10, 30, 50, 100, 150, 200. For each

combination of class and number of jobs, 10 instances were randomly generated. All

algorithms were coded in C++ and compiled under CentOS 6.6. Moreover, we used

CPLEX 12.6 to implement the linear programming-based lower bound. The exper-

iments were conducted on an Intel(R) Xeon(R) @ 2.67 GHz processor. For pages

limitation, we interest only to the most competitive lower bounds.

In the following, we denote by LBN
3 the optimal objective value that is obtained

after solving the LP relaxation of the mathematical model (1)–(7) including the valid

inequality and by LBN
4 a version of LBN

3 without Constraints (3). We conducted pre-

liminary computational results on LBN
3 and LBN

4 . Clearly, LBN
3 dominates LBN

4 . How-

ever, LBN
4 offers a good trade-off between effectiveness and efficiency. Indeed, for all

the considered instances where n < 100, LBN
4 achieves the same lower bound values

as LBN
3 within a very short time. The average computational time of LBN

4 on these

instances is 0.77 s while LBN
3 needs 61.54 s. Furthermore, LBN

3 fails to solve all large

scale instances (i.e. n ≥ 100) within 1800 s, while LBN
4 solves them in an average

time of 1.47 s.

In order to present a detailed image of the performance of lower bounds LB3, LB4,

LB5, LB6, LBN
2 and LBN

4 , a pairwise comparison between them is given in Table 1. In

this table, we illustrate for each pair of lower bounds LBrow and LBcol, which are dis-

played in some given row and column, respectively, the percentage of times where

LBcol > LBrow. We observe on classes A–F that LBN
2 outperforms LB5 in 10.83% of

instances and LB6 in 26.38% of instances. However, on the new classes 1–2, we

notice that LBN
4 provides a much better performance than the rest, since it outper-

forms LB5 and LBN
2 in 77.5% and 75% of instances, respectively.

To get a better picture of the lower bounds performance, we provide in Table 2

the average percentage deviation (over the instances of each class) with respect to

the maximal lower bound value, that is delivered by the considered lower bounds.

Note that (-) means that the average CPU time is less than 10−2 s. From Table 2, we
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Table 1 Pairwise comparison between lower bounds

Classes A–F Classes 1–2

LB3 LB4 LB5 LB6 LBN
2 LBN

4 LB3 LB4 LB5 LB6 LBN
2 LBN

4
LB3 – 63.33 99.44 98.05 99.44 100 – 46.66 60.83 52.5 61.66 100

LB4 36.66 – 99.72 98.33 99.72 100 50 – 61.66 54.16 61.66 100

LB5 0.55 0.27 – 3.33 10.83 2.5 39.16 38.33 – 7.5 52.5 77.5

LB6 1.94 1.66 23.33 – 26.38 2.77 47.5 45.83 67.5 – 72.5 79.16

LBN
2 0.55 0.27 0 0 – 1.94 38.33 38.33 0 0 – 75

LBN
4 0 0 97.5 97.22 98.05 – 0 0 20.83 19.16 23.33 –

Table 2 Relaxation performance by class

Class LB3 LB4 LB5 LB6 LBN
2 LBN

4
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

A 29.9 – 30.26 – 0.04 – 0.3 – 0 – 19.81 0.82

B 27.8 – 28.26 – 0.06 – 0.33 – 0.01 – 17.82 0.81

C 23.96 – 24.16 – 0.89 – 2.56 – 0.69 – 13.73 0.79

D 32.24 – 32.29 – 0.04 – 0.03 – 0 – 21.46 0.84

E 53.96 – 46.26 – 0.003 – 0.02 – 0 – 33.09 0.82

F 53.32 – 45.85 – 0.02 – 0.22 – 0 – 32.93 0.85

1 10.35 – 11 – 1.78 – 2.19 – 1.56 – 0.92 0.58

2 10.42 – 10.42 – 13.89 – 19.26 – 13.66 – 0.11 0.69

Avg 30.24 – 28.56 – 2.09 – 3.11 – 1.99 – 17.48 0.77

observe that the average gaps significantly depend on the classes. On one hand, LBN
2

exhibits an average gap of 1.99% on all classes. However, for the instances of class

2, its average gap jumps to 13.66%. On the other hand, LBN
4 presents a much better

performance on the new classes. Indeed, the average gap of this bound is equal to

0.92% and 0.11% on class 1 and class 2, respectively.

5 Conclusion

This paper addressed the two-machine flow shop problem with time delays. We

recalled the lower bounds of the literature and proposed new ones. In particular,

the linear relaxation of a mathematical formulation with the consideration of a valid

inequality and a dominance rule provides the best performance on a set of 120 new

instances. Future research needs to be focused on investigating new valid inequalities

and dominance rules in order to improve the resolution of the considered model.
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Efficient Ship Crew Scheduling Complying
with Resting Hours Regulations

Anisa Rizvanolli and Carl Georg Heise

Abstract To ensure safe and efficient ship operations a proper schedule of crew

tasks is necessary. This encompasses a work plan for the crew, consisting of appropri-

ately qualified seafarers, which also complies with the rules of the Maritime Labour

Convention (MLC). The optimized crew schedule can reduce crew costs for shipping

companies and also help to avoid expensive ship detentions by port state authorities

due to incompliances in the crew’s work plan. A mathematical model is presented

for the crew scheduling problem, which is subject to complex rule sets for working

and resting hours. In this model the mandatory tasks for safe ship operation and the

crew qualification requirements for these tasks represent the main input parameters.

They depend on variables such as the ship type and route and may differ substan-

tially. Furthermore, the model considers common watch-keeping patterns and special

constraints on mandatory tasks. This problem is formulated as mixed integer linear

program. Numerical experiments with different small real data sets from business

practice are also presented.

1 Introduction to the Ship Crew Scheduling Problem
with Resting Hours Constraints

Efficient crew scheduling is crucial for safe ship operation during a given voyage.

With the main goals being to ensure safety, to avoid accidents, and to establish a

reliable management of working and resting hours legislative regulations [5] have

to be taken into account during a ship’s voyage. For shipping companies crew costs

are a considerable part of the total costs. Even more expensive are accidents, dam-

ages due to crew fatigue, and fines for being incompliant with the legislative rest-

ing regulations. A rested crew that executes all mandatory tasks during a ship’s
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voyage is therefore critical. The challenge is to find a minimal crew constellation

for a container ship and a given voyage, without violating the complex resting hours

regulations. At the moment pre-planning and on-board staff scheduling during the

voyage are done independently and manually based on the officer’s experience.

Similar staff scheduling problems [9] have been treated in many different industry

sectors [2] from the airline industry [3], public transportation, call centers [1] to

nurse scheduling. They are generally known as cyclic scheduling problems and each

of them has quite specific requirements on working shifts and off-days or off-hours.

In the shipping industry a similar problem is described in [8]. The main difference

between the model presented there and the one treated in this paper lies in the resting

hours requirements and the way the qualifications of seafarers are matched with the

tasks.

In this paper we present the problem of determining the minimal crew for a con-

tainer ship and a given voyage, so that all complex resting hours conditions hold for

each planned crew member—the ship crew scheduling problem with resting hours
constraints. A voyage is defined as a sequence of ports together with estimated times

of arrival and departure. As described in [7] the start and end times of the manda-

tory tasks are determined by the voyage. Based on positions and certificates certain

seafarers are qualified for a given mandatory task or not. The duration of the tasks

can be smaller or equal than the time-span between begin and end and the seafarers

planned for one task may be interrupted. We present a mixed integer linear program

formulation of this scheduling problem for fixed, flexible, and consecutive tasks. This

combinatorial problem [6] consists of two parts: the assignment of tasks to seafarers

and the scheduling part with the complex resting hours constraints. These constraints

distinguish this problem strongly from the traditional day-off and cyclical schedul-

ing problems, where rest periods are given with fixed start and end times. The length

of the planning horizon is determined by the voyage and we quantize the planning

horizon into half hour units.

Mandatory tasks and seafarers qualification: mandatory tasks can be assigned to

more than one seafarer. Each task can only be assigned to one seafarer simultaneously

and only qualified seafarers can be assigned to a given task. Seafarers cannot be

scheduled for different tasks in parallel.

Resting hours constraints: Based on the MLC 2016 [5] the following rules must

hold for each seafarer and for each half hour time interval during the whole voyage.

A seafarer must rest at least 10 h in every 24 h interval. The maximum working hours

for a week are 91. The 10 h of rest in 24 h must be at most divided into 2 blocks and

one of the blocks must consist of at least 6 h. In the case of a rest being longer than

10 h, a division of it into more than two blocks is allowed, presuming that for 10 h

the above constraint holds. The minimal duration of a rest period is 1 h.
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2 Mathematical Formulation

The scope of this mixed integer linear program is to determine the minimal crew

needed for a container ship for a given port sequence, such that the work schedule of

each crew member is compliant with the working/resting hours regulations and has

minimal interruptions during the work. In the following the input parameters and

variables needed for the MILP formulation are presented.

Parameters
S The set of all seafarers.

J The set of all mandatory tasks.

Sj The set of all seafarers that are qualified for task j ∈ J.

T The time horizon, i.e. the set of all 30 min long time intervals that are

to be planned; T = {1,… , tmax} for some tmax ∈ ℕ.

aj, ej ∈ T The start and end time of task j ∈ J, respectively.

dj ∈ T The duration of task j ∈ J in time intervals, satisfying dj ≤ ej − aj + 1.

mmin ∈ T The minimum length of a rest period; mmin = 2.

M ⊆ T The set of all possible durations for a rest period in 30 min time inter-

vals; M = {mmin,… , tmax}.

mC ∈ T The minimum length (in time intervals) for at least one consecutive

rest period in each 24 h interval; mC = 12 and mC ≥ mmin.

mD ∈ T The minimum length (in time intervals) that each seafarer needs to rest

in each 24 h interval; mD = 20 and mD ≥ mC.

mW ∈ T The minimum length (in time intervals) that each seafarer needs to rest

in each one week interval; mW = 154.

𝜀 ∈ ℝ An arbitrary constant that satisfies 0 < 𝜀 < 1 (e.g., choose 𝜖 = 0.9).

T∗
⊆ T The set of all time intervals such that the next 49 − mD = 29 time

intervals (including this interval) are still within the time horizon,

implying that minimum rest period lengths need to be checked; T∗ ∶=
T ∩ [1, tmax − 48 + mD] = T ∩ [1, tmax − 28].

Variables
zs is 1 if seafarer s ∈ S is active, otherwise 0.

xsjt is 1 if seafarer s is executing task j at the t-th time interval, otherwise 0.

wsjt is 1 if xsjt = 1 and xsj(t+1) = 0, otherwise 0.

bmst is 1 if at the t-th time interval a rest period of length m begins for seafarer s,
otherwise 0.

ust The length of one rest period, capped at mD, that satisfies the 6-h-condition

for seafarer s during the 24 h time interval starting from the i-th time interval.

(s ∈ S, t ∈ T∗).

The following function represents the objective function to be used in the problem

setting. Note that we also minimize the number of schedule switches to minimize

interruptions during work.
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min

(∑
s∈S

zs

)
+ 𝜀

(|S| ⋅ |T| )−1 ⋅ ⎛⎜⎜⎝
∑
j∈J

∑
s∈Sj

min(ej,tmax−1)∑
t=aj

wsjt

⎞⎟⎟⎠

Constraints

0 ≤ zs ≤ 1 ∀s ∈ S; 0 ≤ bmst ≤ 1 ∀s ∈ S, t ∈ T ∪ {tmax + 1},m ∈ M
mC ≤ ust ≤ mD ∀s ∈ S, t ∈ T∗; 0 ≤ xsjt ≤ 1 ∀s ∈ S, j ∈ J, t ∈ T

0 ≤ wsjt ≤ 1 ∀s ∈ S, j ∈ J, t ∈ T ∩ [aj,min(ej, tmax − 1)] (1)

The constraints in Eq. 1 are the basic domains for the variables. All variables

are integers. Below we present the block of constraints for the assignment of tasks

to seafarers without involving any resting hours constraints. Constraint 2 ensures

each seafarer only executes tasks if he is active and Constraints 3 and 4 guarantee

that each task is executed for its whole length and only by qualified seafarers. With

Constraints 5 and 6 no parallel assignment of the same task to different seafarers is

allowed and each seafarer can be scheduled for only one task at a time. Constraint 7

ensures that tasks are assigned only between the given begin and end times. Con-

straint 8 together with the second part in the objective function ensures that tasks are

assigned with as few interruptions or (changes of the executing seafarer) as possible.∑
j∈J

∑
t∈T

xsjt ≤ tmax ⋅ zs ∀s ∈ S (2)

∑
s∈Sj

ej∑
t=aj

xsjt = dj ∀j ∈ J (3)

∑
j∈J

∑
s∈S∖Sj

∑
t∈T

xsjt = 0 (4)

∑
j∈J

xsjt ≤ 1 ∀s ∈ S, t ∈ T (5)

∑
s∈S

xsjt ≤ 1 ∀j ∈ J, t ∈ T ∩ [aj, ej] (6)

∑
j∈J

∑
s∈Sj

∑
t∈T∖[aj,ej]

xsjt = 0 (7)

wsjt ≥ xsjt − xsj(t+1) ∀j ∈ J, s ∈ Sj, t ∈ T ∩ [aj,min(ej, tmax − 1)] (8)
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The following two constraints represent the general resting hours regulations. Con-

straints 9 and 10 ensure that each seafarer rests at least mD∕2 = 10 h each day and at

least mW∕2 = 77 h each week.

min(tmax,t+47)∑
i=t

∑
j∈J

xsji ≤ 48 − mD ∀s ∈ S, t ∈ T∗
(9)

min(tmax,t+335)∑
i=t

∑
j∈J

xsji ≤ 336 − mW ∀s ∈ S, t ∈ T ∩ [1, tmax − 336 + mW ] (10)

Finally, we introduce the constraints for the rest blocks. Constraint 11 ensures that

tasks are not assigned during rest periods for each seafarer. Constraint 12 ensures

that each rest period has only one beginning and is not counted twice. Constraint 13

connects the ust variables with the bmst variables, so that ust ≥ m only if a sufficient

rest period of length m occurs in the corresponding 24 h time interval. Constraint 14

ensures that each seafarer has one or two consecutive rest periods of combined length

at least mD∕2 = 10 h per 24 h interval.

min(t+m−1,tmax)∑
i=t

∑
j∈J

xsji ≤ min(m, tmax − t + 1) ⋅ (1 − bmst) ∀s ∈ S, t ∈ T ,m ∈ M (11)

(min(t+m−1,tmax+1)∑
i=1

tmax∑
n=max(t−i+1,mmin)

bnsi

)
− bmst ≤ (1 − bmst)

⌈max(t + m − 1, tmax)
mmin + 1

⌉

∀s ∈ S, t ∈ T ∪ {tmax + 1},m ∈ M (12)

min(tmax+1,t+48−m)∑
i=1

tmax∑
n=max(t−i,0)+m

bnsi ≥
ust − m + 1
mD − m + 1

∀s ∈ S,∀m ∈ M ∩ [mC,mD], t ∈ T∗
(13)

min(tmax+1,t+48−m̂)∑
i=1

tmax∑
n=max(t−i,0)+m̂

bnsi ≥
m − ust + 1
m − mC + 1

+ 1

∀s ∈ S,∀m ∈ M ∩ [mC,mD − 1], t ∈ T∗
, m̂ ∶= max(mmin,mD − m) (14)

The model can be further enhanced with some additional cuts to speed up the

optimization, though due space constraints we do not present them here.

3 Numerical Results and Conclusion

In this section we present a small instance with 12 tasks to be scheduled among

4 deck officers. These tasks include watch-keeping given in a 4/8 pattern and further

mandatory tasks needed to be scheduled during approaching, staying, and leaving
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Fig. 1 Work schedule for 4 Deck Officers with 12 mandatory tasks during a port approach, stay

and leave. The white spaces indicate rest times

a port. This instance as well as all other schedules are calculated using IBM ILOG

CPLEX Optimization Studio v12.6 [4]. The computation time for this instance is

0.47 s. For the same instance size but without watch-keeping pattern the computation

time was 9 min. Extending the planning horizon by 12 h, we realize that it is not

possible to cover the watch-keeping pattern requirements and the total work load

with the given manpower. We get a feasible work schedule with 4 Officers only if

we resign the pattern. In that case the computational time increases to 5.6 h. With

the increase of number of tasks and size of the sets with qualified seafarers for each

task, the computation time increases very fast (Fig. 1).

In this paper we presented the MILP formulation for the crew scheduling problem

with complex resting hours constraints. With additional cuts and a feasible good

start solution quite big instances of the problem can be solved or at least further

improved in realistic time frames. First experiments have shown that the additional

cuts save half of the computation time needed to solve the model without them, at

the cost of increasing the total number of constraints. Calculations with small real

world data instances can still be a very good base for decision makers and a first step

toward optimization of crew scheduling in the shipping industry. A lot of knowledge

and information can be gained from these results regarding optimal watch-keeping

patterns for officers. Furthermore, this model enables for the first time the automatic

check of the complex working resting hours for each seafarer planned on the ship.
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AMulti-criteria MILP Formulation
for Energy Aware Hybrid
Flow Shop Scheduling

Sven Schulz

Abstract Managing energy consumption more sustainably and efficiently has been

gaining increasing importance in all industrial planning processes. Energy aware

scheduling (EAS) can be seen as a part of that trend. Overall, EAS can be subdivided

into three main approaches. In detail, the energy consumption can be reduced by

specific planning, time-dependent electricity cost might be exploited or the peak

power may be decreased. In contrast to the majority of EAS models these ideas are

adopted simultaneously in the proposed new extensive MILP formulation. In order to

affect peak load and energy consumption, variable discrete production rates as well

as heterogeneous parallel machines with different levels of efficiency are considered.

As a result, the interdependencies of different energy aware scheduling approaches

and especially a dilemma between peak power minimization and demand charge

reduction can be shown.

1 Introduction

To reduce electricity demand, companies normally invest in new technologies and

processes. However, with intelligent scheduling we are also able to reduce energy

demand and costs without losing productivity. Moreover, scheduling has two major

advantages: firstly, no high investments are necessary and secondly, it can be imple-

mented immediately.

There are three different strategies in energy-aware scheduling (EAS) which can

be pursued to reduce energy costs. Reducing energy consumption directly is the first

approach. Such savings can be achieved by selecting parallel machines with low

energy consumption, by decreasing production speed or by taking advantage of dif-

ferent machine states like idle or standby (intelligent on/off decisions). A second
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strategy is to make use of time depending energy prices. By shifting energy con-

sumption from peak price times to times of lower energy prices, energy costs can be

reduced while energy consumption stays at the same level. Besides the consumption

charge, companies often pay also a demand charge for the maximum power demand

during the billing period. A third approach in EAS is now to level the energy needs

in order to lower the peak power and hence the demand charge.

Only a handful hybrid flow shop problems consider some of the mentioned

approaches. In [2] an EAS problem can be found, whereby the peak power is grad-

ually reduced on the basis of an APS-system. Whereas [6] publish a hybrid flow

shop problem with variable machine speed and time depending electricity prices,

an approach for on-off decisions for a closed loop flow shop plant is presented in

[7]. Also [3] consider different machine states in a flexible flow shop problem to

reduce energy consumption and makespan simultaneously. Tan et al. [9] describe a

two-stage mathematical programming approach to solve a parallel hybrid scheduling

problem in steel making process with variable energy prices.

To the best of our knowledge, there is no paper considering the three mentioned

basic strategies simultaneously. The primary concern of this paper is to analyze the

effects and interdependencies of different EAS measures. Therefore, a comprehen-

sive MIP including a wide range of energy-aware aspects is developed in Sect. 2. In

Sect. 3 a numerical example serves to illustrate how the model operates as well as to

visualize the interdependencies in EAS. Section 4 gives a short summary.

2 A Comprehensive MIP for EAS

Indices

j Job in J
m Machine in Ms
s Production stage in S
t Time period in T
v Speed level in V

Parameters

Pmax Maximum peak power

Em
sj Energy consumption

Dj Due date

Rj Release date

Smsj Standard processing time

cet Electricity cost

cpj Production cost

ctj Tardiness cost

amvs Energy savings
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Decision Variables

csj ∈ ℕ Completion time of task s of job j
gmvsj ∈ {0, 1} Processing time extension v of task s of job j on machine m
Tj ∈ ℕ Tardiness of job j
pmsjt ∈ ℕ Power consumption of task s of job j on machine m in time

period t
xmsjt ∈ {0, 1} Task s of job j is performed on machine m in time period t
ymsj ∈ {0, 1} Task s of job j is assigned to machine m
zmsjt ∈ {0, 1} Execution of task s of job j on machine m starts in time period t

Every job j has to be processed at each production stage and in every stage s there is

a set of unrelated parallel machines denoted as Ms. The planning horizon is divided

into Tmax time-intervals of equal length. Using the introduced notation above the

EAS Mixed Integer Problem can be modelled as follows:

Minimize
∑

j∈J
(ctj ⋅ Tj + cpj ⋅ (cSmaxj − (Rj − 1))) +

∑

t∈T
(cet ⋅

∑

j∈J

∑

s∈S

∑

m∈Ms

pmsjt) (1)

Subject to:
∑

j∈J
xmsjt ≤ 1 ∀ s,m, t (2)

∑

t∈T

∑

m∈Ms

zmsjt = 1 ∀ j, s (3)

xmsjt ≤ zmsjt ∀ j, s,m, t = Rj (4)

xmsjt − xmsj,t−1 ≤ zmsjt ∀ j, s,m, t ≥ Rj (5)

∑

t∈T
xmsjt = Smsj ⋅ y

m
sj +

∑

v∈V
gmvsj ∀ j, s,m (6)

∑

m∈Ms

ymsj = 1 ∀ j, s (7)

∑

t∈T|t≥Rj

∑

m∈Ms

(zmsjt − zms−1,jt) ⋅ t ≥
∑

m∈Ms−1

(Sms−1,j ⋅ y
m
s−1,j +

∑

v∈V
gmvsj ) ∀ j, s > 1 (8)

∑

t∈T|t≥Rj

∑

m∈Ms

zmsjt ⋅ t = csj −
∑

m∈Ms

(Smsj ⋅ y
m
sj +

∑

v∈V
gmvsj ) + 1 ∀ j, s (9)

Tj ≥ csj − Dj ∀ j, s (10)

pmsjt = max(0;Em
sj ⋅ (x

m
sjt −

∑

v∈V
gmvsj ⋅ amvsj )) ∀ j, s,m, t (11)
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∑

v∈V
gmvsj ≤ Smsj ⋅ y

m
sj ∀ j, s,m (12)

gm,v−1sj ≥ gmvsj ∀ j, s,m, v > 1 (13)

∑

j∈J

∑

s∈S

∑

m∈Ms

pmsjt ≤ Pmax ∀ t (14)

(2) ensures that every machine can process only one job in each period. Since non-

preemption is assumed, (3) guarantees that each job has only one starting time period

at each production stage. (4) and (5) are necessary to determine zmsjt depending on

xmsjt. We introduce (6) to accurately reflect machining time that consists of standard

processing time and extra time caused by production speed reductions (gmvsj ). Hereby,

ymsj serves to select machine m for each job at production stage s. With (7) every job

is exactly allocated to one machine at each stage. As a matter of course, no job can

be scheduled on a machine before the previous job on this machine is completed (8).

(9) serves to calculate the completion time of a task, the tardiness of a job finally

results from (10).

Since it is assumed that the parallel machines have different energy efficiencies

for different jobs, energy consumption can be reduced by assigning jobs to machines

with lower demand. Energy demand may also be reduced by decreasing production

speed. Therefore, in (6) and (8) the possibility of increasing the manufacturing time

gradually is already considered by gmvsj . Depending on the additional time energy

consumption is reduced by the percentage amvsj in (11).

While energy conversion efficiency is very high for power usage greater than 75%

of rated load, electric motors operating slower than 50% of maximal speed show

excessive wear and energy consumption in relation to the production output. Kaya

et al. [5] condition (12) ensures that the cumulative number of speed reductions can

never exceed the standard processing time and a throttling higher than 50% is thus

avoided. Furthermore, (13) is deployed in order to enable stepwise speed changes

while making sure that no speed level is skipped.

An important characteristic of the model is to take advantage of energy price fluc-

tuations. This unavoidably requires a time-dependent electricity price cet. Besides

the electricity costs, the objective function (1) minimizes delays and total completion

time which are multiplied by a cost factor. Since energy costs consist of consumption

and demand charges also costs for energy peak should be considered.

Peak load charges have to be paid for long time periods (quarterly, yearly). In

contrast, scheduling is used most commonly for the purpose of operational decision-

making and it normally examines shorter periods (daily, weekly). Therefore, opti-

mizing peak load costs within the scheduling model is only advisable if the billing

period corresponds to the period considered. The approaches of [1] or [4] are exam-

ples of models that directly include energy peak costs in the objective function.

In this contribution a different approach is pursued. Due to the usually unequal

time periods of peak load charges and scheduling horizon it is preferred to integrate
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the peak load as a constraint into our model. Often the maximum peak power is

known from the past. Constraint (14) ensures that energy consumption is always

lower than this value. By varying Pmax a Pareto front can be developed and the peak

load can be improved too.

3 Computational Experiments

A two-stage hybrid flow shop with two parallel machines on each stage shall serve

as an example. Eight jobs with non-identical release and due dates are considered.

All examples are based on randomly generated parameters within given ranges.

In order to give a high incentive to meet due dates, the tardiness cost parameter ctj
is put at 500 for each job j. Obviously, the ratio between production and energy costs

is of substantial importance. It is assumed that 50% of the variable costs are energy

costs. To allow the energy costs to be as realistic as possible, Phelix spot market

prices (15 August 2015) are used. The prices are depicted in Fig. 1. Considering the

average energy consumption, the production cost factor is assumed to be 100. Addi-

tionally, the energy savings depending on production speed reductions are required.

For the example electric motor energy savings following [8] are discretized. The

EAS-model is solved using IBM ILOG CPLEX. All problem instances are tested on

an Intel Xeon, 3.46 GHz computer.

Leaving aside (14) leads to an energy peak of 45. Based on this value, Pmax will

be parametrically reduced. To keep the calculation time low, the optimal costs of the

previous instance are always the lower bound for the next lower peak power scenario.

Selected parts of the results are represented in Table 1.

At first, Pmax can be reduced without any changes in the results. After this initial

reduction total costs increase with lower peak power. Therefore, it must be kept in

mind that peak power charges decline with lower peak power and these charges are

not included in the total costs. Moreover, a diminishing maximum peak power goes

along with decreasing energy demand, while makespan, delays and computing time

increase. The energy costs tend to decrease with shrinking maximum peak power.
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Fig. 1 Energy consumption for different peak power scenarios and real time energy price (RTP)
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Table 1 Selected solutions of the numeric example

Pmax 45 39 35 30 25 20 15 11

Total cost 17584.8 17776.1 18265.9 18358.3 20282.2 22040.2 25095 32031.4

Energy cost 8384.8 8576.1 9165.9 8558.3 8282.2 7240.2 7195 6031.4

Delays 3 3 3 4 7 11 16 29

E. demand 386.5 370.6 395.5 368.5 344.7 302.2 280.0 228.4

Makespan 19 19 19 19 21 22 21 24

Throttlings 5 5 6 5 10 15 17 24

Nevertheless, due to the volatile energy prices it is possible that lower energy demand

leads to higher energy costs.

Peak power reduction causes postponements and more production speed throttling

and hence lower total energy demand. The load curves in Fig. 1 illustrate the effects

on energy demand. By taking a closer look at the curves it can be noted, that the

possibilities of taking advantage of energy price fluctuations decrease with lower

peak power. This is due to the leveling effect on the energy consumption that goes

along with lower Pmax-values. The example illustrates what theoretically has already

been explained. Reducing energy peak and making use of time depending energy

prices are contrary objectives (energy cost dilemma).

Besides this insight also the general influence of energy cost consideration and

variable production speed shall be examined. Therefore, our EAS-model will be

solved further three times disregarding certain aspects. All scenarios are put into

relation with the basic model as regards our cost-oriented objective function and the

energy consumption. The results are shown in Fig. 2.

As might be expected, ignoring some aspects leads to higher total costs in all

scenarios. The influence of time-depending energy prices is relatively low. For

Pmax = 45 the costs are 1.6% higher, but for lower peak power the gap is less than

1%. Interestingly, the scenario with constant energy prices leads to less energy con-

sumption.
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Fig. 2 Cost and energy demand changes with problem variations
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Without any energy price considerations costs increase up to 5% and energy con-

sumption up to 14%. This means that the consideration of energy costs can lead to

significant savings. Large percentage deviations can occur, if the production speed

is assumed to be fixed. Facing low peak power limits, speed changes are especially

important to avoid cost increases up to 25%.

4 Conclusions and Further Research

In this paper a cost-oriented energy-aware MILP-model was developed to solve

hybrid flow-shop problems. Recently, several articles have been published concern-

ing EAS. However, to the best of our knowledge none of them simultaneously exam-

ines all three basic strategies of EAS mentioned above. To close this research gap,

a comprehensive MILP for hybrid flow shop scheduling is formulated. The specific

functioning of the model was illustrated by a numerical example and the impact

of different EAS strategies was investigated. It could be shown that there are con-

trary effects in the different approaches of EAS. Especially peak power reduction

and exploiting time depending energy prices are contrary objectives.
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Providing Lower Bounds for the Multi-Mode
Resource-Constrained Project Scheduling
Problem

Christian Stürck and Patrick Gerhards

Abstract We present lower bounds (LB) for the multi-mode resource-constrained

project scheduling problem (MRCPSP). Traditionally, the LB for the MRCPSP are

derived from the critical path method (CPM). Here, the mode with the shortest dura-

tion of each activity is chosen. We improve these LB. New earliest starting times

(EST) are calculated by solving several integer programs with a standard solver.

These new EST partially improve the EST calculated by the critical path method.

This also reduces the number of variables in the model and, in the best case, proves

optimality of the best known solutions. Computational results show that these new

starting times provide a tighter bound than the LB obtained from CPM.

1 Introduction

The multi-mode resource-constrained project scheduling problem (MRCPSP) min-

imizes the makespan of a project. A project consists of several activities which

have precedence relations between themselves. They can be executed in different

modes. Each mode has a duration and a consumption of a given number of renew-

able (e.g. manpower) and non-renewable resources (e.g. budget). Each activity has

to be assigned to a mode and a starting time, such that all precedence and resource

constraints are satisfied.

Lower bounds for the MRCPSP are traditionally computed with the critical path

method using the mode with the shortest duration for each activity [9]. While there

are several ways for calculating lower bounds for the single mode problem (see [5]),

there are only few methods for obtaining tight lower bounds for the multi-mode

extension. For the MRCPSP extension with minimum and maximum time lags

(MRCPSP/max) a destructive lower bound is presented by Brucker and Knust [1].

For the MRCPSP/max Heilmann [3, 4] presented lower bounds using the properties
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of the modes of the activities. LP-based lower bounds for the MRCPSP were pre-

sented by Maniezzo and Mingozzi [7]. Zhu et al. [13] computed a distance matrix

with the distances between each activity in the preprocessing step of a branch and

cut algorithm for the MRCPSP. New earliest finishing times were provided with the

distance matrix, which led to new lower bounds. Muller [8] used a modified distance

matrix as well as adaptations of lower bound techniques for the single mode RCPSP

to compute new LB for the MRCPSP.

The goal of our approach is providing new lower bounds for the MRCPSP. We

apply these to instances of the MMLIB [12]. To our knowledge, no one else has

worked on calculating lower bounds for the MMLIB yet. The procedure of Zhu et al.

[13] inspired our approach. They applied their procedure to the PSPLIB [6]. Because

the MMLIB instances have more activities with more modes than the PSPLIB, we

did not calculate a distance matrix (cf. above). We used a MIP-solver instead of a

genetic algorithm to calculate the distance between each activity and their predeces-

sors. With these distances new earliest starting times (ESTMIP) of all activities are

provided. These adapted starting times lead to a new lower bound for the makespan.

Besides providing a new lower bound, the new starting times reduce the number of

variables in time indexed models for the MRCPSP.

In Sect. 2 the solution approach is described. A mathematical model is given and

the procedure is explained by a small example. In Sect. 3 the computational results

are presented. The paper closes with a brief conclusion and an outlook on further

research.

2 Solution Approach

The MRCPSP contains a set of non-preemptable activities A = {0,… , n + 1} with

a set R of renewable and a set Rn
of non-renewable resources. For each activity i

there is a set of modes Mi. Depending on the chosen mode m, activity i has a duration

di,m and renewable and non-renewable resource consumption rri,m,l and rni,m,k. The

objective is to find a resource and precedence feasible schedule that minimizes the

makespan of the project.

In this work, our goal is to determine new earliest starting times (EST) for the

activities of the MMLIB instances. We obtain a new lower bound with these new

earliest starting times. A solution of our approach is represented by a vector ESTMIP
of earliest starting times for all activities of the project. Traditionally, the EST of

each activity is calculated with the critical path method (CPM), which ignores the

resource constraints. We initialize the value of ESTMIP for each activity by using

CPM. We then try to improve these by using integer programs (IP) which ensure

that none of the resource constraints is exceeded by the parallel execution of the

predecessors. For each activity with more than one predecessor, an IP given by (1)–

(7) is used to determine a feasible schedule with minimal starting times. The current

activity is called z. The objective of the IP is to minimize the starting time of z. Thus

for all its predecessors, a feasible schedule (with respect to precedence and resource
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constraints) has to be determined for the problem (1)–(7). Therefore all predecessors

Pz of z are passed to the IP which is stated as follows:

min
LSTz∑

t=ESTz

zt ⋅ t (1)

s.t.
∑

m∈Mi

LSTi∑

t=ESTi

xi,m,t = 1 ∀i ∈ Pz (2)

∑

m∈Mi

LSTi∑

t=ESTi

xi,m,t ⋅ (t + di,m) ≤
LSTz∑

t=ESTz

zt ⋅ t ∀i ∈ Pz (3)

∑

i∈Pz

∑

m∈Mi

LSTi∑

t=ESTi

xi,m,t ⋅ rni,m,k ≤ ank −MCz
k ∀k ∈ Rn

(4)

∑

i∈Pz

∑

m∈Mi

min(t,LSTi)∑

q=max(ESTi
,t−di,m+1)

xi,m,q ⋅ rri,m,l ≤ arl ∀l ∈ R, t = 0,… ,LSTz
(5)

zt ∈ {0, 1} ∀t = ESTz
,… ,LSTz

(6)

xi,m,t ∈ {0, 1} ∀i ∈ Pz,∀m ∈ Mi, t = ESTi
,… ,LSTi

(7)

The objective function (1) minimizes the starting time of the regarded activity.

Therefore, zt is 1 for the earliest starting time t of activity z. Constraint (2) ensures that

all predecessors are assigned to exactly one mode. The next constraint (3) replaces

the precedence constraints from the original model [11]. Activity z can only start if

all predecessors have finished. In term (4) we subtract MCz
k from the non-renewable

resource availability ank . The term MCz
k is stated as follows:

MCz
k =

∑

i∈A∖Pz

min{rni,m,k ∶ m ∈ Mi} ∀k ∈ Rn
(8)

It is the sum of the minimal consumption of the non-renewable resource k for all

activities A of the project, excluding the set of predecessors Pz of z. This subtraction

is possible because we know that each activity has to be assigned to exactly one mode

during the project. The overall resource consumption must not exceed the remaining

resource availability.

The constraint (5) ensures that the capacities of the renewable resources arl are

not exceeded by the resource consumptions of the predecessors. In (6) and (7) the

binary decision variables are defined. The EST and LST (latest starting times) that

are used in the IP are calculated by the critical path method. For the calculation of

LST the best known solutions of the instances were used (see Sect. 3).

The value of ESTz
MIP is updated with the objective value of the IP. The integer

programs of the following activities are then solved with updated starting times.
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Table 1 Project information

i mi dim rrim rnim
0 1 0 0 0

1 1 1 3 2

2 2 2 3

2 1 1 3 4

2 4 1 3

3 1 2 2 9

2 3 3 4

4 1 1 1 6

2 2 2 4

5 1 1 4 3

2 2 3 2

6 1 0 0 0

To illustrate our procedure, we consider an example project with 5 non-dummy

activities. Each activity has two modes. We have one renewable and one non-

renewable resource. The availability of the renewable resource is 5, the availability

of the non-renewable resource is 17. The precedence constraints are shown in the

network in Fig. 1. In Table 1, the duration di,m and resource requirements (rri,m and

rni,m) of each activity and mode are shown.

The first activity with more than one predecessor is activity 4. First, we have to

calculate the minimal resource consumption MC4
1. All non-dummy variables that are

not predecessors of 4 are: 3, 4 and 5. Note that also the minimal consumption of rni,m,k
for the current activity z is taken into account. The minimal resource consumptions

rnim are 4, 4, and 2 (for the activities 3, 4 and 5). Therefore,MC4
1 is 10. All predecessors

(activity 1 and 2) and MC4
1 are passed to the MIP-solver. Because of the conflict of

the renewable resources rrim, the EST4
CPM = 1 cannot be realised. With activity 1 set

to mode 2 and activity 2 to mode 1, the product zt ⋅ t is minimised. The new earliest

starting time (ESTMIP) of 4 is EST4
MIP = 2.
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Next, we look at activity 5. We calculate MC5
1: 2 + 4 + 4 = 8. The predeces-

sors are activity 2 and 3. Mode 1 of activity 3, which was originally selected by

the CPM, cannot be taken in combination with any mode of activity 2. This would

exceed the non-renewable resource constraint (available: 17 − 8 = 9). This leads to

an EST5
MIP = 4.

The last activity that we consider is the dummy activity 6, with MC6
1 = 9. With

activity 4 executed in mode 2 and activity 5 in mode 1, the EST6
MIP is minimal with 5.

Because of the different (updated) starting times (EST4
MIP = 2 and EST5

MIP = 4), no

conflict of the renewable resources occurs. Activity 6 is the end of the project. Thus,

EST6
MIP = 5 is the new lower bound of the makespan. This bound is tighter compared

to the lower bound obtained by the critical path method (EST6
CPM = 3).

3 Computational Results

We applied this approach to the MMLIB instances [12]. For our experiments we

took the best known solutions from the work of Van Peteghem and Vanhoucke [12],

Geiger [2] and Stürck et al. [10]. We used a PC with an Intel Xenon CPU at 3.33 GHz

and 12 GB of RAM. The implementation of the algorithm was done with C# and

CPLEX 12.6.3 as solver for the IP sub-problems.

The computation times were highly depending on the number of predecessors and

modes. For 13/12/10 predecessors (with 3/6/9 modes) or less, the IPs were solved

within milliseconds. Because there were activities with more predecessors, the MIP-

solver was given a time cap of 60 s. If the time cap was reached, the lower bound of

the IP found so far was taken. This value was rounded up to the next integer. Because

of the design of the MMLIB we know that only integer starting times are valid. The

results are shown in Table 2.

For some instances the best known solutions are already equal to the critical path

lower bound and thus optimal. These instances were not investigated. This leaves us

with 3,477 instances which could be improved. Our procedure was able to update the

Table 2 Computational results

MMLIB50 MMLIB100 MMLIB+

Number of instances 540 540 3,240

Known optima from the results of [2, 10, 12] 218 248 377

Instances without known optimum 322 292 2,863

Number of instances with improved EST 83 50 713

New known optima from ESTMIP 2 3 0

New known optima from LP-relaxation 12 9 6

New known optima from

LP-relaxation + ESTMIP

13 11 6
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starting times of 25.78%, 17.12%, 24.90% of the MMLIB50, MMLIB100, MMLIB+

instances, respectively. The algorithm was also able to close the gap to optimality

for 2 instances of the MMLIB50 and 3 instances of the MMLIB100. We compared

these results with the LP-relaxation of the MIP formulation [12]. Next, we solved

the LP-relaxation again but now with the updated starting times ESTMIP. While the

LP-relaxation could close the gap for more instances than the ESTMIP alone, the

integration of ESTMIP in the LP-relaxation performs best. It was able to close the gap

to the best known solutions for 13 instances of the MMLIB50, 11 of the MMLIB100

and 6 of the MMLIB+.

4 Conclusion

We presented a new procedure to compute lower bounds for the MRCPSP. It uses

improved earliest starting times of activities derived from solutions of specific IP

sub-problems. The computational experiments have shown that new earliest starting

times could be calculated for 24.33% of the instances. Much tighter lower bounds

(compared to the critical path method) were provided for all problem classes of the

MMLIB. The gap to optimality was closed for 27 instances.

Besides of providing lower bounds, the calculation of ESTMIP can be used as a

preprocessing procedure. Especially exact methods and matheuristics can benefit

from the new earliest starting times because they reduce the number of variables in

the model (if the model is time indexed). For future work the impact of the ESTMIP
as a preprocessing element of a matheuristic will be investigated.
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AMacroscopic System Dynamics Model
for a Generic Airport

G. Barbeito, M. Moll, S. Pickl and M. Zsifkovits

Abstract The overall dynamics of an airport are multifaceted and very complex.

With the ever increasing number of visitors everyday it is important to understand

their behaviour. In this paper we present a new macroscopic system dynamics model

of the overall workings of a generic airport. The model follows passengers through

to the gates modeling various different behaviors on the way there. It also includes

implicitly the fleet composition, the number of lanes and explicitly the impact on the

noise level. Extra effort was taken to allow for the inherent stochasticity of many of

these multi-layered processes. To make it more flexible on- and off-peak times are

implemented as well. Moreover random extreme events in the form of emergency

landings and heightened security levels have been included. First results provide

insight to the change in system behavior under these circumstances.

1 Introduction

With the number of air travel passengers ever increasing—from 3.2 Billion in 2014

to 3.4 Billion in 2015
1
—airport analysis has not lost any importance. How relevant

security issues with these complicated system are, has been brought back to attention

with the attacks on Brussels and Istanbul airports in 2016.

1
According to http://data.worldbank.org/indicator/IS.AIR.PSGR.
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Ranging from microscopic models with focus on operational issues, to strategy-

centered macroscopic models, airport modeling has been a popular research topic

for the last two decades [8]. A well-known approach commonly used for mid to

high level analysis is System Dynamics (SD) [1, 7]. This is a modeling and simu-

lation technique introduced by Forrester in [3] for studying the behavior of systems

over time with well documented models providing interesting insights for system

improvement. SD models are basically composed of stocks, flows and delays. These

simple elements allow being composed in such a way that complex systems can be

represented [6]. In this paper we introduce a model for a generic airport using this

technique. Instead of focusing on specific areas like boarding or security checks the

emphasis is put on the interplay of the various subsystems of the airport as a whole.

Being driven by the number of arriving and departing flights, it keeps track of the

number of passengers at each point and the noise level of the airport. Following the

idea of using SD for risk modeling and terroristic threat analysis in [2] our model

includes emergency landings and heightened terror related threat levels based on

random events. Our first results provide decision makers with a good and approach-

able overview of challenges and problems an airport can face. In order to achieve

this, results can be either considered for each subsystem individually or aggregated

for arbitrarily large parts of the model.

2 Model Description

The approach for this model assumes a pull logic in which the aircraft dynamics are

determining the behavior of the rest of the system. Defining such a logic required

the creation of an auxiliary time management submodel to align present events with

future timetables.

The model breaks quite naturally into two major parts, the aircraft and the passen-

ger dynamics, the first of which summarizes all dynamics and interactions directly

related to the landing and takeoff procedures—both limited by structural and dynam-

ical resources. Contrary to the structural resources, for which only the consequences

can be seen, the dynamical ones are explicitly modeled through takeoff and landing

availability and can be automatically reassigned matching the required load. Partic-

ular care had to be taken to keep track of passing hours and time slots correctly. The

system for landing permissions works in the same fashion.

The other major part of the model consists of all subsystems relating to passenger

flows. Its core is the submodel handling the load and analysis of the airport sections,

which can be found in Fig. 1. The approach chosen for this model has the potential to

cover all four objectives for analysis presented in [5] namely capacity planning, oper-

ational planning and design, security policy and planning, and airport performance

review.
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Fig. 1 Airport sections load and analysis

3 First Results

We now go on to describe simulation results obtained. First, results regarding typical

operations are being discussed. These are followed up by observations in random

extreme event scenarios.

Given a finite amount of resources, one of the managers highest priorities is to

make the best possible use of them. Computational modeling in general and SD in

particular has proven to be an effective approach for generating strategies to solve this

problem to optimality [4]. As pointed out before, this model aggregates resources

in two different groups, variable and structural. Variable resources account for all

those susceptible of being modified in short periods of time, while fixed resources

are modified in the medium to long term horizon. As a result of this distinction,

policy optimization for the latter can be influenced only through improvements in
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Fig. 2 Details for the available resources of the landing subsystem

the resource consumption schedule, while the former can be affected by resource

allocation as well.

Figure 2 provides the results for current allocation and use of variable resources,

particularly for airplane landing. The peaks are associated with wasted resources

that could be potentially relocated to a time window with higher necessity for it. In

the same way, pits indicate a profound scarcity. The results of the simulation on this

level, show that the system is not well balanced, and needs to reconfigure either its

resource allocation or its consumption schedule. The optimization of a policy will

ideally influence both variables for a more balanced resource utilization.

The results for fixed resources are not as easily disaggregated. The basic restric-

tion is set in place in the form of a minimum time between landings or takeoffs.

Through this restriction the model accounts for several constrains, associated to

structural characteristics of the airport, e.g. the number of available runways and

the capacity of the airport for handling parked airplanes. Figure 3 provides a com-

prehensive detail on the airport load for the analyzed week. It is clear that the load

is not correctly balanced, with several peaks that could be avoided.

As the aim of this work is not an accurate reproduction of a system, but to test the

resilience of said system and its behavior under current conditions, we will highlight

the changes of the system when put under stress. In Fig. 4 the effect of an emer-

gency landing is shown. As can be seen, this increases the window between regular

landings, resulting in delays for the queuing aircrafts and hence congestion of the

passenger flow. Comparison of the two flows in Fig. 5 shows the effects of a terror

threat on the passenger dynamics. It can be seen that longer security checks lead to

empty boarding zones, as the passenger flows are stopped at this bottle neck.
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Fig. 3 System load measured in number of airplanes simultaneously at the airport

Fig. 4 Effects of an emergency landing—indicated by the red line—on queuing aircrafts and pas-

sengers after security controls

Fig. 5 Effect of security threats on passenger dynamics
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4 Conclusion

In this paper we presented a new SD model for a generic airport. We also showed

some first simulation results and the impact of security threats and emergency land-

ings. The next step should be to adapt the model to match an existing airport. The

changes for this should be mainly in the parameter tuning, as the macroscopic struc-

ture allows for a variety of different airport layouts. From this, policy optimisation

can be applied to improve the use of structural and dynamical resources.

Acknowledgements We want to thank Andreas Tahedl, Michael Rampetsreiter, Jan-Peter Neutert

and Martin Weiderer for constructing a first version of the model during their work with our group.
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Simulating the Diffusion of Competing
Multi-generation Technologies: An
Agent-Based Model and Its Application
to the Consumer Computer Market in
Germany

Markus Günther and Christian Stummer

Abstract Consumer adoption of innovations is a key concern for strategic man-

agement in many companies as adoption ultimately drives the market success of

new products. The respective adoption processes are inherently complex due to the

social systems (i.e., the respective consumer markets) from which they arise. Mar-

kets characterized by the simultaneous presence of several multi-generation tech-

nologies, wherein products that rest upon successively introduced generations of

technology compete against each other, constitute a particularly challenging case.

Our agent-based model contributes to the field of technology diffusion research in

that it accounts for novel and advanced product features in each technology genera-

tion, the reluctance of (some) users to switch to a new (as yet unfamiliar) technology,

and various social influences between consumers. Calibrated with data from several

sources, our results closely replicate the actual development of the German consumer

computer market from 1994 to 2013.

1 Introduction

Running an agent-based simulation can be as simple as instantiating an agent popu-

lation, letting the agents behave and interact, and observing what happens globally

[1]. Nevertheless, when studying complex systems like markets, societies, and orga-

nizations, such an approach can produce richer and more accurate results than tra-

ditional analytical approaches. Agent-based modeling and simulation has thus been

widely adopted by researchers from various communities [15], particularly within

the context of innovation and technology diffusion, where such an approach takes

into account the heterogeneity of consumers who may differ in their individual pref-

erences, behaviors, expertise, geographical position, etc. (for a review of agent-based
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models of innovation diffusion see, for instance, [7], and for some recent applications

see [3, 9, 11, 12, 14, 16]).

Today’s continuous technological improvements give rise to successive genera-

tions of technology. Products belonging to a new generation usually offer specific

innovative performance enhancements and/or new features, while the core function-

ality generally stays the same [8]. Such successive introductions may be rewarding

not only for customers but also for companies (for an example see [4]). However,

the specific patterns of adoption of each product generation are not yet well under-

stood [13].

Our contribution lies at the intersection of these two streams of research: we pro-

pose an agent-based approach that simulates the market diffusion of several tech-

nologies as well as the diffusion of the products that rest upon the various technology

generations over time. The underlying model accounts for (i) novel and/or advanced

product features in each generation, (ii) interactions between multiple competing

technologies, (iii) repeat and postponed purchase decisions, (iv) normative influ-

ences, and (v) a social network that reflects both spatial and social proximity between

consumers. Its applicability is demonstrated by replicating the development of the

German consumer computer market. A previous version of the model was presented

at the Portland Conference for Management of Engineering and Technology [5].

The remainder of the paper is organized as follows: In Sect. 2, we outline our

agent-based model. The sample application is then presented in Sect. 3. The paper

concludes with a summary and an outlook to future research in Sect. 4.

2 The Agent-Based Model

An overview of the main entities and the model dynamics is depicted in Fig. 1 and

is described in more detail in the following.

Products and Technologies Several (technological) generations of products are

successively introduced into the market. Each product is characterized by various

attributes that differ in their performances. A newer generation of a product may

not only perform better than previously introduced products in regard to certain

attributes (e.g., faster network connectivity), but may also have new, additional

attributes (e.g., internet connectivity). Every product’s attribute has a true perfor-

mance value which, however, may not be instantly observable. Once consumers have

adopted a product, they learn about its characteristics through first-hand experience.

This experience may differ between consumers as well as by attribute. Every product

also has a predefined price, which may vary over time, and a predefined date for its

market introduction and its discontinuation. Finally, products belong to a particular

technology, which enables us to capture diffusion patterns at both the product and

the technology level.

Consumers Our agent-based model distinguishes all five phases of the adoption of

an innovation as described by Rogers [10]. Initially, consumers are not aware of the
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Fig. 1 Model overview

available products, their attributes, or their ‘true’ performances. In the course of the

simulation presented here, consumers form their attitudes about products either by

being exposed to marketing activities, through first-hand experience after purchas-

ing, or by word-of-mouth from their peers. Note that word-of-mouth communication

can be negative if personal experience with a product does not match the expecta-

tions.

In the current version of the model, consumers can only possess one product at a

time and they replace it occasionally based on an individual buying cycle. If a pur-

chasing need arises, they evaluate all available products of which they are aware.

For the evaluation of a product, an additive utility function is used that takes into

account (i) the attitudes of a consumer agent with respect to the available products

and their attributes (analogous to [11]), (ii) social influence that may play a criti-

cal role in purchasing a product [2], and, of course, (iii) price. We also allow for

re-purchases and postponed purchases. Reasons for the latter might be that con-

sumers do not have sufficient information about a new product, that they are not

aware of all (new) attributes of the product (as they have not heard about it via mar-

keting activities or word-of-mouth), that their preference structure leads to a lower

evaluation of the new product compared to the original product, or that its utility

does not exceed a minimum utility threshold. After their purchase, consumers start

to use the (new) product, thus learning more about its ‘true’ features (attributes).

Social Network When constructing the social network model, we followed the

notion that agents with closer cognitive proximity (e.g., they are of the same con-

sumer type) and/or geographic proximity have a higher probability of being inter-

connected. To this end, we have extended earlier approaches by [6, 11].
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Marketing Marketing events make consumers aware of new products and/or

attributes and provide consumers with information about the performances of (some)

product attributes. Accordingly, each marketing event is characterized by the targeted

product and topic (attribute) as well as the content (i.e., information about the per-

formance, which might also be exaggerated in comparison to the true value). So far,

our model implements only mass media advertising.

3 Application Case

Our model was implemented in AnyLogic 7.0.3. In order to demonstrate its appli-

cation to the German (private) consumer market of desktop computers, notebooks,

and tablets, we have relied on historical sales data that is publicly available through

the ‘Consumer Electronics Market Index Germany’ (CEMIX) for the years 2005

through 2013. Further data was received for the years 1994 through 2004 from the

same publisher through personal correspondence.

Parametrization Based on product characteristics such as computer performance

(driven by, e.g., the processor type), mobility, battery life, and (internet) connectivity,

we have formed several product generations for each of the considered technologies:

desktop computer (seven generations), notebook (four generations), and tablet (one

generation).

The required parameters for the consumer agents (preferences, communication

behavior, and habits of adopting new products, etc.), the social network, the attributes

of the considered products, and the effectiveness of marketing measures have been

either derived from literature or calibrated to match the available sales data. Detailed

information on the sources for the parameters are provided in [5].

Results Each simulation was initialized with 10,000 consumer agents and the time

horizon was set to 20 years. Simulation runs were repeated fifty times using different

seeds. A comparison between the empirical data and the outcome of the agent-based

simulation is depicted in Fig. 2.

The outcome of the simulation experiment fits the actual market development for

our application case exceptionally well—with the exception of small deviations in

the last three years. Moreover, an in-depth analysis reveals that the measures that had

to be set during simulation runs in order to achieve such a close fitting are plausible

in that the resulting market behavior is consistent with common managerial expe-

riences. For instance, it can be shown (for the simulated market) that a substantial

increase in marketing effort is required to increase sales once consumers have formed

opinions about a product’s attributes. Compensating for a lack in technological per-

formance with marketing is therefore viable only shortly after market introduction.

We also found that the decline in sales of desktop computers can be explained by a

combination of decreasing prices and new product characteristics within the com-

peting technologies. Furthermore, novel attributes apparently function as an enabler

for new technology generations and price has a strong impact on the sales rate
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Fig. 2 Simulated sales versus real data

(as can be observed particularly well in the case of the diffusion of notebooks). Over-

all, the comparison of outcomes and market behavior of the simulated market with

the real market provides additional evidence for the feasibility of agent-based models

to properly represent such complex markets.

4 Conclusions

In this paper, we have described an agent-based model simulating the complex dif-

fusion process of (competing) multi-generation technologies and have demonstrated

its applicability by replicating the diffusion of three different computer technologies

(desktop computer, notebook, and tablet) in Germany for the years 1994–2013.

Further research is possible in several directions. Once additional data becomes

available, it will be interesting to investigate whether the small deviation between the

real data and the simulation output concerning notebook technology is still present

or whether this deviation is just an artifact. Next, the model could be extended by

allowing for possessing more than one product simultaneously, which seems espe-

cially useful for models including tablets, as tablets are often used in addition to

a desktop computer or notebook. Furthermore, the influence of teething problems

(i.e., failure rate, bugs) on the diffusion process may be explored. Finally, the model

might be tested for application in other fields (e.g., mobile phones).

Acknowledgements We would like to thank Immanuel Block for his support in acquiring the

empirical data.
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Decomposition of Open Queueing Networks
with Batch Service

Wiebke Klünder

Abstract The decomposition method for non-product form networks with

non-exponentially distributed interarrival and service times assumes that nodes

within the network can be treated being stochastically independent and internal flows

can be approximated by renewal processes. The method consists of three phases to

calculate the interarrival times of a node: merging, flow, splitting. Some well-known

approximation formulas for ordinary single class open queueing networks calculate

the characteristics in each phase for each node as shown by Kuehn, Chylla, Whitt and

Pujolle/Ai. Node performance measures such as mean queue length are determined

by using approximation formulas for non-Markovian queues. In 2011 the decom-

position method was extended to open queueing networks with batch processing

using the approximation formula described by Pujolle/Ai. A comparison with dis-

crete event simulation as benchmark shows that the approach provides good results.

Thus, the approach was expanded for the approximation given by Kuehn, Chylla and

Whitt. Since the method consists of several phases it is possible to combine different

formulas. For example, merging will be approximated by Kuehn and flow by Whitt.

To perform an evaluation the benchmark was done in regard to the 2011 publication.

Approximation formulas with the same approach generate similar results. In some

cases, it is apparent that some formulas have advantages over other ones and a few

tend to larger errors. Thus, the focus of interest particularly addresses the load and

batch size changes within the network and the impact on the accuracy of the decom-

position method as a fast solver or pre-evaluation for optimization using simulation.

1 Introduction

The importance of analysis of non-product form networks by applying approxima-

tions has increased steadily in recent years. The most important strategy approach is

given by the decomposition method. The decomposition method enables an
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isolated treatment of the nodes within the network. The method is particularly

applied in planning and optimization of production systems by calculating character-

istics of each node. In this paper, a decomposition method will be presented serving

primarily as a pre-evaluation tool. If the calculated characteristics move in accept-

able ranges Monte-Carlo simulations can be performed.

Until now the decomposition method for open queuing networks with batch ser-

vice was developed using the approach of Pujolle/Ai [1]. The aim is to expand the

method to common approximations developing the approaches to batch service and

to transfer them to the developed method of [1]. This includes the approximate for-

mation of the superposition of the input streams by Kühn [2] and Chylla [3] as well

as the approximation of the departure stream by Whitt [4], Kühn and Chylla.

2 Description of the Model

The open network consists of 1 to N nodes numbering successively and presenting

GIXi∕GI(bi,bi)∕ci queueing systems. Jobs arrive in groups of size b0 from outside the

network according to a renewal process with rate λ0 < ∞ and the squared coefficient

of variation SCV[I0] < ∞. 0 ≤ pij ≤ 1 describes the transition probability that an

arriving batch reaches node j from node i and
∑N

i=1 p0i = 1 applies meaning jobs

enters the network from outside. Each queueing systems have ci identical servers,

an unlimited waiting room and the FCFS queueing discipline. The service starts if a

batch of the required size bi was generated. The service times are distributed as some

random variables Si with rates μi < ∞ and SCV[Si]. It is assumed that the interarrival

and service times are independent. After a complete service of a batch it will arrive

in a form of a batch to the subsequent node according to the transition probabilities.

Xi is described by an integer random variable and represents the input size of the

groups at node i. The first and second moment are calculated by

E[Xi] =

N∑

j=0
bj ⋅ τj ⋅ pji

N∑

j=0
τj ⋅ pji

E[X2
i ] =

N∑

j=0
b2j ⋅ τj ⋅ pji

N∑

j=0
τj ⋅ pji

.

τi denotes the relative throughput and can be determined by a modified traffic equa-

tion:

τi = p01 ⋅
b0
bi

+
N∑

j=1
τj ⋅ pji ⋅

bj
bi

τ0 ∶= 1.

The modified arrival rate of batches can be calculated by λ∗
i = λ0 ⋅ τi and the modi-

fied utilization by ρ∗
i = λ∗

i ∕(ciμi) < 1.
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3 Decomposition of Open Queueing Networks
with Batch Service

3.1 Phase 1: Merging

There exist three different approaches to form the superpositions of the arrival

streams. The first approach was developed by Pujolle/Ai [5]. The counting process

representing the incoming jobs and incoming groups, respectively is described by

knowledge of the asymptotic behavior of renewal processes:

SCV[Ii] =

( N∑

j=0
τjpji

)−1 N∑

j=0
τj ⋅ pji ⋅ SCV[Aji]

Chylla uses the approach in order to approximate the splitting of the departure stream

(see phase 3):

SCV[Ii] = 1 +
N∑

j=0

λ∗
j

λ∗
i
pji(SCV[Aji] − 1).

The approach of Kühn is based on a case-by-case analysis which depends on the

values of SCV[Aji] (see phase 3):

SCV[Ii] = 2 ⋅
t1 + t2
(t1 ⋅ t2)2

⋅ (I1 + I2 + I3 + I4) tj =
1

pjiτj
, j = 1, 2.

The components I1,… , I4 are either a composition of hypoexponentially, hyperex-

ponentially distributed sub-processes or a mixture. For details see [2].

After the interarrival times of the single jobs has been determined the interarrival

times of batches will be approximated by [1]:

SCV[I∗i ] ≈
E[Xi]
bi

(SCV[Xi] + SCV[Ii]).

3.2 Phase 2: Flow

There are fundamentally two approaches to approximate the departure stream in a

non-product form network. Pujolle/Ai and Chylla use the approach

Di =
{

Si ∶ with probability ρ∗
i

Si + I∗i ∶ with probability 1 − ρ∗
i
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and it results for Pujolle/Ai according to the calculation of the first and second

moment of the process Di

SCV[Di] ≈ ρ∗2
i SCV[Si] + (1 − ρ∗

i )SCV[I
∗
i ] + ρ∗

i (1 − ρ∗
i )

and a slightly modified version of Chylla

SCV[Di] = 1 + P2
i (SCV[Si] − 1) + (1 − Pi)(SCV[I∗i ] − 1),

where Pi is described by the Erlang-C formula. Whitt and Kühn use the approach of

Marshall [6] to approximate the departure stream basing on Lindley’s recursion of

waiting times. The formula

SCV[Di] ≈ 1 + (1 − ρ∗2
i ) ⋅ (SCV[I∗i ] − 1) +

ρ∗2
i

√
ci

⋅ (SCV[Si] − 1)

represents the approximation of Whitt and Kühn developed the approximation

SCV[Di] = SCV[I∗i ] + 2𝜌∗2i SCV[Si] − 𝜌

∗2
i (SCV[I∗i ] + SCV[Si])gKLB,

where gKLB is the correction factor given by Krämer/Langenbach-Belz [7].

3.3 Phase 3: Splitting

The splitting of the departure stream in accordance with the transition probabilities

can be considered as a Bernoulli experiment. After service completion at node i,
jobs are directed to node j with probability pij and with probability 1 − pij they are

routed elsewhere. The number of the first batch to be directed to node j is geomet-

rically distributed. The first moment and the variances of the splitting process are

calculated by using the Wald’s equation respectively the Blackwell-Girshick equa-

tion. The squared coefficient of variation results by SCV[⋅] = (E[⋅2]∕E[⋅]2) − 1:

SCV[Aij] = 1 + pij(SCV[Di] − 1).

If the phases are inserted successively into each other a system of linear equations

is formed whose solutions provide the squared coefficient of variation of the interar-

rival times of the batches. Characteristics like the average number of individual jobs

in the system of the various queueing systems can be determined by the modified for-

mula of Allen-Cunneen [1] and the correction factor of Krämer/Langenbach-Belz:

E[Ni] ≈ E[Z∞,i] + bi ⋅ E[Q]GI∕GI∕cgKLB(ρ∗
i , SCV[I

∗
i ], SCV[Si]) + biciρ∗

i + h.
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4 Numerical Results

Due to the independence of the phases, the presented approaches can be arbitrar-

ily combined, e.g. merging will be approximated by Kühn and flow by Whitt. The

benchmark which was done in regard to [1] was used to evaluate the decomposition

method using all possible combinations of the presented approximation approaches.

The Fig. 1 shows the reference network. All in all, 16 cases were investigated in detail

differing in the characteristics of the utilization, batch sizes, number of servers and

SCV[Si].
Exemplarily, case 11 (benchmark: table 3, case 3) will be evaluated shortly.

Table 1 presents the parameterization of the open queueing network. Table 2 summa-

rizes the results and shows the relative errors. The relative error is the discrepancy

between calculated approximate values by the decomposition method and the mean

of the simulation results. The ratio of mean input batch size (E[X4] = 6.048) and

batch size b4 at node 4 explains the increased discrepancies. A similar phenomenon

occurs at the node 2 (E[X2] = 3 > b2). These situations affects an overestimation of

the SCV[I∗i ] and at last of the approximate characteristics. The approximations of

the input stream of Pujolle/Ai and Kühn are robust. In contrast Chylla’s approxima-

tion caused larger errors at node 2. The study of this case also clearly shows that

Chylla’s approximation combined with the approximation of the departure stream

based on Marshall does not work well if there exist large changes of batch size (node

3). The formation of the superposition of the arrival streams under the circumstances

of larger batch size changes revealed weaknesses of the approximation from Kühn

(node 4).

Fig. 1 Reference model

Table 1 Queueing network with λ0 = 2, SCV[I0] = 1, b0 = 1, E[S1] = 3.6, E[S2] = 0.45, E[S3] =
4.5, E[S4] = 4, E[S5] = 8.889 and E[S6] = 11.4
Node bi ci ρi SCV[Si]
1 3 3 0.8 0.25

2 1 1 0.72 0.25

3 10 1 0.648 0.25

4 5 2 0.8 0.25

5 2 4 0.6 0.25

6 3 3 0.887 0.25
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5 Conclusions

All approaches yield acceptable results being useful as pre-evaluation for optimiza-

tion. Generally it has been shown that the approximation of the input streams from

Pujolle/Ai and Kühn are robust. The approximate approach from Chylla on the other

hand caused in cases of larger batch size changes high errors (cases 9–16, bench-

mark: tables 3 and 4). The approach of Kühn, who has a complex case distinction is

more difficult to handle than the approach of Pujolle/Ai.

The two approaches of the approximation of the departure streams yield simi-

lar results which could be expected since the approaches provide similar approxi-

mations. An interesting phenomenon discovered in many cases is that if bi < E[Xi]
and SCV[Si] → 0 the approach based on Marshall’s method works better than the

approach from Pujolle/Ai and in case of bi > E[Xi] and SCV[Si] → 0 Pujolle/Ai’s

approach provides better approximations than the approach of Marshall. In the appli-

cation it is possible to make a case analysis for each node to approximate the depar-

ture streams to reduce the error of the decomposition method.
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Decision Support for Power Plant Shift
Configuration Using Stochastic Simulation

Pia Mareike Steenweg, Matthias Schacht and Brigitte Werners

Abstract Power generation companies have to ensure a secure supply of power to

their customers at any time. Hence, this particular application context implies a spe-

cial feature of shift planning where a very robust solution of assignment is needed.

In daily business this means all business functions have to be staffed competently at

any time, otherwise a smooth power plant operation cannot take place. In this regard,

optimal shift assignment is a highly important and complex task, where reliability

is prioritized with respect to all other criteria, e.g. employee’s interests. In order to

test a shift configuration on operational level, we conceptualise a reactive framework

to support tactical decision making. The concept switches between optimisation and

stochastic simulation which takes uncertainty associated with employee sickness into

account. An exemplary case study with realistic data of a power generation company

analyses the operational consequences of uncertain absences on the performance of

a given shift configuration.

1 Introduction

A stable power supply is extremely important so that it is even regulated by law.

Therefore, power generation companies have to ensure a smooth operation, which

bases on the working machinery as well as on enough and qualified manpower. The

latter can be influenced by appropriate shift planning, which comprises a variety of

business functions to cover. Each business functions has to be staffed at any time to

guarantee a smooth operation. Hence, a very robust shift configuration is needed. In

this context, absences of the workforce due to sickness is a crucial aspect since it

possibly causes under-staffing or unfavourable assignments. However, if only these

aspects were considered, the worker’s preferences would not be respected. The work-

ers have individual and shared interests like fairness within the workforce or free
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week-ends. Thus, the shift planner has to satisfy both the company’s and the worker’s

interest when deciding on the tactical shift configuration.

This contribution analyses the effects of uncertain absence on the performance

of a given shift configuration. While the assignment reliability has to be assured at

any time, results focus on employee’s objectives. Thus, the special decision situation

is analysed before a reactive framework modelling the real-world decision process

is developed. Section 4 presents first results of an exemplary case study and Sect. 5

gives a short conclusion and an outlook.

2 Related Literature and Decision Analysis

Qualified personnel planning requires a good understanding of the related conse-

quences and is highly important in power generation companies as stable operation

is the essential objective. The short-term planning for example includes the suitable

assignment of attendant employees to business functions. Unexpected notification of

sick workers as stated in [1] complicates the decision situation as well as the depen-

dence of taken strategical and tactical decisions. Therefore, staffing in the long-term

has to ensure that enough qualified workers are available and the scheduling in the

mid-term has to schedule them equally over the shift groups. Thus, the preceding

interdependences demonstrate the importance of an integrated approach including

the consequences of the decision on lower planning levels as also shown in [6].

This contribution analyses the shift configuration for a power generation company

in-depth, which has two special challenges: First, many different functions have to be

covered; second, a very robust solution is needed where all tasks are fulfilled at any

time. The latter might lead to expensive over-staffing as shown in [3]. Note that the

problem of over- and under-staffing has been widely addressed in recent literature

[5]. To comply with these challenges, we analyse shift configurations on a tactical

level by prioritising the consequences on the robustness on the operational level.

Sickness arises randomly and for an unpredictable time. Therefore, we examine the

influence of unexpected sickness while taking predictable absence, like holiday and

training, into account.

In this context, the non-absent workers of the scheduled shift group are assigned

optimally to the various functions that need to be covered by every shift group.

Although every worker has a primary function he or she usually covers, adjustments

regarding the workers’ skills are regularly needed due to unexpected absences as

stated in [2]. Hence at the beginning of each shift, the foreman reallocates the atten-

dant workers to cover any function as qualified as possible. It is not unlikely that a

shift is overstaffed since a smooth operation has the highest priority and a break-

down of operations due to a missing personnel is unacceptable. In practice, employ-

ees who are not assigned to a specific function will still be available. They carry out

maintenance or other accompanying tasks or do trainings-on-the-job to appropriately

comply with their contractual workload. Consequently, an subordinated objective is
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a balanced assignment of workers to tasks which is favourable if at the same time

assignment robustness stays the same.

Our proposed concept covers an optimal assignment incorporating the shift fore-

man’s approach by respecting the company’s interest of reliability to guarantee a

stable power generation process. Additionally, employee’s interest like fairness in

the actual workload is considered as far as possible.

3 A Reactive Optimisation Framework
for Decision Support

As mentioned in Sect. 2, the daily manpower depends on predictable (e.g. holi-

days) and unpredictable (e.g. sickness) employee attendance. In the following, we

introduce a reactive concept to support the decision makers by examining the per-

formance of varying shift configurations under uncertainty. For this purpose we

assess the employee’s attendance taking predictable absences (holidays and train-

ings) for T shifts into account. Furthermore, we simulate sickness for the current shift

𝜏 ∈ {1,… ,T}. Based on the resulting attendance for shift 𝜏 and the anticipated for

future shifts, each of the attendant workers i is optimally assigned to a function j for

the current shift 𝜏 and planned for the following shifts with t ∈ {𝜏 + 1,… ,T}. The

assignment of the past shifts with t ∈ {1,… , 𝜏 − 1} is fixed as it cannot be changed

any more. The interaction between past, current and future assignments can be seen

in Fig. 1. As unpredicted changes in absence can occur every day, the simulation

and optimisation is rerun for every 𝜏 ∈ {1,… ,T}. Thus, the proposed concept has a

reactive structure and conceptualises the assignment process as realistic as possible.

The optimal assignment of workers to functions is determined by an integer opti-

misation model of which the most relevant elements will be presented below:

min
∑

j∈J

∑

t∈T
Gjmjt + 𝜀 n (1)

The objective function (1) minimizes the number of un-covered functions by

the sum of under-staffing mjt over all functions and periods, weighted by Gj which

considers the varying impact of different functions. If a complete schedule without

under-staffing in any shift is assigned,
∑

j∈J
∑

t∈T mjt equals zero. By the first part of

the objective function, company’s objective is taken into account. Additionally, the

Fig. 1 Interaction between current and past assignments of workers to functions
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objective function considers employee fairness by n, which denotes the maximum

number of shifts a worker is assigned to a specific function. Thus, the workload is

balanced by avoiding situations where some workers are extremely frequent and oth-

ers rather seldom assigned. To ensure a stable power supply, generating a complete

schedule has the highest priority. As a result, n is only weighted with a marginal

term 𝜀. Consequently, the assignment is optimised in terms of assigning qualified

workers to all functions and provided that several assignments are optimal, the best

assignment with respect to employee’s interests is determined as discussed in [4].

∑

j∈J

∑

t∈T
cijt ≤ n ∀ i ∈ I (2)

Constraints (2) determine the number of shifts every employee is assigned to a spe-

cific function. The binary assignment variable cijt ∈ {0; 1} equals 1 if worker i is

assigned to function j in shift t, and zero otherwise. The minimax value n ensures

choosing the number of shifts n of those worker i who is assigned most frequently.

Due to the importance of a robust and smooth operation as mentioned in Sect. 2,

there might be overstaffed shifts which will lead to a situation where a worker is

present but will not be assigned to a specific task (i.e. cijt = 0). However, the worker

will be able to support in general work.

The presented parts of the optimisation model reflect the dynamic relationship

of the components reliability and fairness. On the one hand, mjt representing com-

pany’s interest is re-optimised in every shift independent of prior or future shifts.

On the other hand, n is determined over all shifts of the planning horizon, which

includes the fixed past assignments as well as the anticipated future ones. There-

fore, n indicates the impact of the reactive structure considering current and future

shifts while respecting the fixed assignments in the past. Within this concept, a given

tactical shift configuration can be tested on an operational level, where an optimal

assignment takes place (especially taking non-anticipated uncertain absences on a

day-to-day basis into account). The concept will be tested in Sect. 4 with respect to

its suitability for real-world application.

4 Evaluating Fairness in the Reactive Optimisation

In this section, the presented concept is applied using realistic data from a German

power generation company with a given configuration consisting of 4 fixed shift

groups working daily in 3 shifts of 8 h. Employee fairness from a tactical point of

view is guaranteed by rotating every two days (except for Sundays) from early to

late to night to free shift (see Table 1). Thus this roster complies with labour law,

e.g. days-off and rests between two shifts. As a result of strategic planning, each shift

group is sufficiently staffed and qualified to balance the historically expected values

of absences. A time period of 90 days is considered in which a maximum of 66 shifts

per worker occurs according to the roster in Table 1. This maximum is individually



Decision Support for Power Plant Shift Configuration . . . 587

Table 1 Roster with 4 groups

Day Early Late Night Free

Mo 1 2 3 4

Tu 1 2 3 4

We 4 1 2 3

Th 4 1 2 3

deducted by holidays, sickness etc. With an uniform distribution of these days, every

worker would be assigned in 43.37 shifts (ideal but unrealistic solution).

The given situation is evaluated in terms of the assignment criteria reliability and

fairness. Therefore, we compare the results of the introduced reactive framework to

scenario-optimal results, which occur if sickness is known in advance for all shifts.

The scenario-optimum represents the lower bound for maximum assignments since

the objective function is minimised.

The reactive framework re-optimises the assignment for every shift 𝜏 based on

updated information on sickness. Since the prioritised objective reliability is not

affected by past and future assignments, the results of reliability coincide with the

scenario-optimal assignment. Consequently, the optimal reactive assignments are as

robust as possible from a company’s perspective which renders unnecessary further

analysis. Therefore, this analysis focuses on worker fairness, particularly on how

uncertain absences affects employee’s interests of a fair assignment to functions.

Analysing the maximum number of shifts a worker is assigned relates to the reac-

tive structure. Since it is linked to the fixed assignments in the past, fairness in terms

of maximum workload can only be optimised for the current and future shifts. The

past assignments reduce the degrees of freedom in the process of determining a fair

assignment. Figure 2 illustrates the maximum number of assigned shifts n for the

impossible to obtain ideal solution (dashed) and reactive framework (black) and the

scenario-optimal results (gray) by distribution functions for 50 simulation runs.

In Fig. 2, the distribution function of the reactive concept is about 2 maximum

assigned shifts more to the right than the scenario optimum. This is tantamount to

about 2 shifts (≈4%) the worker with most assignments has to fulfil additionally

Fig. 2 Distribution functions of fairness for reactive, scenario-optimal and ideal
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in 90 days in the reactive concept. In relation to the ideal solution with uniformly

distributed absence (dashed) of 43.37 shifts, this gap of about 2 shifts appears less

significant. The preceding analysis has evaluated the performance of the reactive

framework compared to the scenario-optimal results. In terms of reliability, the reac-

tive framework coincides with the scenario-optimal results. Considering fairness,
the reactive concept performs very well even for unexpected changes in attendance.

5 Conclusion and Outlook

We have presented a general concept for decision support on a tactical level to test

given shift configurations in which a reactive framework switches between sim-

ulation and optimisation. In particular, we have analysed a situation in which an

extremely robust and smooth operation is prioritised over employee fairness. The

particular application requires a robust shift configuration since an under-staffing

of functions prevents a smooth operation. Moreover all workers are assumed to be

available in their scheduled shifts. However, in case of over-staffing, the unassigned

workers will do general work, which is fairly assigned by the reactive framework.

The presented concept has been analysed using realistic data of a German power

generation company. Hence it can be used to optimise current and future assign-

ments for every shift, whereas past assignments are fixed. The analysis of the reac-

tive framework yields scenario-optimal results concerning the company’s interest.

Regarding the employee’s objectives, the results are almost as good as the scenario-

optimum under certainty as they are subordinated in the optimisation.

In conclusion, the reactive framework provides high quality decision support for

real-world applications. Further research will be to apply the presented concept on

further shift configurations to compare performance of different configurations with

respect to the proposed criteria.
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Planarization of CityGML Models
Using a Linear Program

Steffen Goebbels, Regina Pohle-Fröhlich and Jochen Rethmann

Abstract CityGML is an XML based description standard for 3D city models that

requires model buildings to have planar roof facets. Unfortunately, current tools

that generate building models from airborne laser scanning point clouds violate this

requirement to some extent. We propose a definition of approximate planarity and

present a post-processing tool that establishes approximate planarity using linear

optimization. It preserves the characteristic shape of roofs. In most cases, triangula-

tion of non-planar facets is no longer needed to heal models. This not only reduces

the number of facets and increases performance of applications that process city

models, but also avoids disturbing edges in 3D prints.

1 Introduction

CityGML is an established, XML-based standard for describing and exchanging vir-

tual 3D city models. Such models can be used for planning, simulation, and market-

ing, cf. [8]. Still challenging is the automated generation of building models from

cadastral data in combination with sparse point clouds from airborne laser scanning.

There are two different algorithmic approaches: Model driven methods fit standard

roof shapes with a point cloud. Data driven methods try to detect single planar facets

and combine them to complete roofs (cf. [6, 7, 11]). To make facets fit together, small

adjustments might be necessary. This often leads to a violation of the CityGML

requirement of roof facet planarity [5, p. 25], cf. [12]. The problem is more rele-

vant for data driven methods, because real roof facets often are not exactly planar,

especially if buildings are old. For example, the algorithm of [4] merges vertices
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Fig. 1 Triangulation of non-planar roofs leads to visible triangles with different normal vectors.

Left two pictures show the original model, right pictures display the result of optimization

with equal x- and y-coordinates, and z-coordinates within a certain range determined

by a threshold value. This deliberately violates planarity. Missing planarity seems

to be not only a problem of data driven methods. The current model driven North

Rhine Westphalian city model [10] also shows a few non planar roof facets, probably

because of rounding errors, further examples can be found in [1]. The problem can be

solved using tessellation. But by splitting up non-planar surfaces into triangles, the

number of roof facets increases and single triangles might become visible because

they do not fit with the building’s geometry, see Fig. 1. Alam et al. [1] propose an

iterative least-squares fitting algorithm, where for each roof facet a plane is com-

puted that fits the z-coordinates of the polygon’s vertices best according to a square

norm. This has to be done iteratively, because local adjustment of one polygon might

undo changes to polygons previously dealt with. Therefore, the algorithm stops after

a maximum number of iterations and does not assure overall optimal results. This is

our motivation to formulate a global optimization problem. Optimization of energy

functions is a standard tool in architecture reconstruction. For example Arikan et al.

[2] use a Gauss-Seidel algorithm to snap together polygons within a semi-automated

framework. However, the linear structure of planes suggests the use of linear pro-

gramming. Mixed integer linear programming is an established means for surface

reconstruction using optimum binary labelings, see for example [3] and the litera-

ture cited there. In contrast to these approaches that lead to a surface model, we start

with an existing model and improve it.

2 Linear Program

City models are expected to be given in level of detail 2 (LoD2), i.e. they consist of

wall and roof polygons. We define a roof topology T as the given set of roof polygons

Pk, k ∈ [n] ∶= {1, 2,… , n}. Each polygon is a vector of at least three different ver-

tices pk,1,… , pk,mk
∈ V , pk, j = (pk, j.x, pk, j.y, pk, j.z), where V ⊂ ℝ3

is the roof’s finite

vertex set. The edges between subsequent polygon vertices and between the last and

the first vertex define the boundary of a roof’s surface facet. Vertices p ∈ V can be
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Fig. 2 From left to right: Planarization was done to the tower’s nearly vertical roof facets without

considering deviation of x- and y-coordinates, i.e. with 𝛿k ∶= 𝜇 ∶= 0.001

shared between different polygons. This implies that corresponding surfaces have

common heights p.z in that spot. Then surfaces fit together leading to a watertight

roof. But, belonging to different polygons, there also might be vertices with identical

x- and y- but different z-coordinates. At such points, surfaces differ in height so that

there are step edges (i.e. walls) occurring in the roof.

Because vertices are given with up to three decimal places (millimeters), we

propose a concept of approximate planarity of polygon Pk with respect to round-

ing errors of magnitude 𝜇 ∶= 0.001 m. If the polygon lies on a plane with nor-

mal vector 𝜈 = (𝜈k.x, 𝜈k.y, 𝜈k.z), then deviation of coordinates by 𝜇 might result in

distances up to 𝜇(|𝜈k.x| + |𝜈k.y| + |𝜈k.z|) between vertices and plane. Our building

models have to match footprints from cadastral data. Therefore, we will not mod-

ify x- and y-coordinates and have to derive a bound for feasibility of z-coordinates. It

will be independent of structural and auxiliary variables. For roof planes, we assume

that 𝜈k.z > 0. Deviation of pk,j.x and pk,j.y by 𝜇 leads to a height change of at most

(
√
1 − 𝜈k.z2∕𝜈k.z) ⋅

√
2 ⋅ 𝜇2, cf. Fig. 2. We also consider deviation of pk,j.z and call

polygon Pk 𝜇-approximate planar if and only if there is a plane such that for all

j ∈ [mk] the height pk,j.z differs from the z-coordinate of the plane at (pk,j.x, pk,j.y)
less than

𝛿k ∶= 𝜇 +
√
1 − 𝜈k.z2

𝜈k.z
⋅
√
2 ⋅ 𝜇. (1)

This means that each vertex pk,j has to be closer to the plane than 𝜈k.z ⋅ 𝛿k.
Current CityGML data sets often violate this definition. The task is to find a

function h ∶ V → ℝ that maps each vertex to a “better” height, such that poly-

gons with vertices (pk,j.x, pk,j.y, h(pk,j)) become 𝜇-approximately planar. Each con-

stant function is such a mapping. However, typical appearances of roofs have to be

maintained. This can be achieved by solving the approximation problem to find

h(p) ∶= p.z + h1(p) − h2(p) such that h1(p) ≥ 0 and h2(p) ≥ 0 for all p ∈ V , and
∑

p∈V h1(p) + h2(p) is minimized subject to the linear condition that all surfaces have

to be (approximately) planar. To avoid large local errors, we further bound h1 and h2
by h1(p) ≤ 𝜀 and h2(p) ≤ 𝜀 using a threshold value 𝜀 > 0.



594 S. Goebbels et al.

For polygon Pk, we define a plane using three vertices pk,u, pk,v, and pk,w. For

numerical stability, we choose indices u and v such that the vertices, if projected to

the x-y-plane, have a largest distance. Then pk,w is selected such that the sum of x-y-

distances to pk,u and pk,v becomes maximal and vectors 𝐚k ∶= (pk,u.x − pk,v.x, pk,u.y −
pk,v.y) and 𝐛k ∶= (pk,w.x − pk,v.x, pk,w.y − pk,v.y) become linear independent. We can

uniquely write each point (pk,j.x, pk,j.y), j ∈ [mk], as (pk,j.x, pk,j.y) = (pk,v.x, pk,v.y) +
rk,j𝐚k + sk,j𝐛k, where rk,j and sk,j can be computed, for example, with Cramer’s rule.

The surface defined by polygon Pk and heights h is planar, if and only if

h(pk,j) = h(pk,v) + rk,j(h(pk,u) − h(pk,v)) + sk,j(h(pk,w) − h(pk,v))

for each j ∈ Mk ∶= [mk] ⧵ {u, v,w}. But we only require 𝜇-approximate planarity.

Hence, we introduce auxiliary variables 𝛼k,j,

𝛼k,j ∶= −h1(pk,j) + h2(pk,j) + (1 − rk,j − sk,j)(h1(pk,v) − h2(pk,v))
+rk,j(h1(pk,u) − h2(pk,u)) + sk,j(h1(pk,w) − h2(pk,w)) + ck,j, (2)

with constants ck,j ∶= −pk,j.z + (1 − rk,j − sk,j)pk,v.z + rk,jpk,u.z + sk,jpk,w.z and

bounds −𝛿k ≤ 𝛼k,j ≤ 𝛿k, see (1).

As mentioned, in V there might be vertices pk,i and pk,j with pk,i.x = pk,j.x, pk,i.y =
pk,j.y but pk,i.z ≠ pk,j.z. At such points, there is a height difference between adjacent

roof facets, i.e. there is a step edge that defines a wall between roof segments. For

example, such step edges occur with shed roofs or dormers and are very characteristic

for the shape of the roof. Therefore, a higher roof segment should still be higher in the

outcome of the optimization process. To this end, we determine all sets of vertices

with a common pair of x- and y-coordinates. For each set we sort by increasing z-
coordinates. Let v1,… , vl ∈ V be the vertices of such a set, so that v1.z ≤ v2.z ≤
· · · ≤ vl.z. Then, for each set, we add following constraints:

h(v2) − h(v1) ≥ 0, h(v3) − h(v2) ≥ 0, … , h(vl) − h(vl−1) ≥ 0. (3)

To summarize, we have constructed a linear program with structural variables

h1(p), h2(p), p ∈ V , and auxiliary variables 𝛼k,j, k ∈ [n], j ∈ Mk:

Minimize

∑

p∈V
h1(p) + h2(p)

s.t. inequalities (3) hold true, 0 ≤ h1(p), h2(p) ≤ 𝜀 for all p ∈ V ,
−𝛿k ≤ 𝛼k,j ≤ 𝛿k for all k ∈ [n], j ∈ Mk, see (1), (2).

The use of weights in the objective function has no influence on existence of solu-

tions but determines appearance of the optimized model. Since our research group is

interested in facade mapping, changes to vertices of walls should be more expensive

than changes to vertices purely belonging to roof facets. Let w(p) ∶= 2 if p ∈ V does
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not only belong to a roof facet but also to at least one wall. Otherwise let w(p) ∶= 1.

Thus, we replace the objective function by

∑

p∈V
w(p)[h1(p) + h2(p)]. (4)

Alternatively, one could replace threshold value 𝜀 by a function 𝜀(p), p ∈ V . Addi-

tionally, one could consider the number of roof facets, to which a vertex belongs.

Our tool parses CityGML data sets and generates the set V of all roof vertices

by searching for CityGML bldg:RoofSurface tags that directly correspond

to polygons Pk. Then it solves the linear optimization problem using GNU Linear

Programming Kit library (GLPK) [9]. If it finds an optimal solution, then it replaces

old z-coordinates in the CityGML file with optimized heights, now considering roof

and wall vertices.

3 Evaluation

We apply the algorithm to two different CityGML data sets of a German city. We

focus on one square kilometer at the heart of the city of Krefeld but also give num-

bers for the city center’s 16 km
2
. The files of the square kilometer consist of 4161

buildings. One file is part of the official model driven city model of North Rhine

Westphalia [10] and contains 41,496 different LoD2 roof vertices belonging to 4102

buildings. 59 complex buildings are described in LoD1, i.e. with a simplified flat

roof. The other data set contains the data driven model [4] with 77,243 vertices and

3987 buildings in LoD2 for the same square kilometer. 174 tiny buildings were not

sufficiently covered by laser scanning points and are described in LoD1.

Maximum number of structural variables for a single building is 1388, maximum

number of auxiliary variables for one building is 1324. On one kernel of an i5 proces-

sor, the running time for the square kilometer is about 5 s.

Results depend on threshold 𝜀. For each building the algorithm starts with

𝜀 = 0.1 m. If there is no feasible solution, than optimization is repeated with a dou-

bled 𝜀 value. Table 1 and Fig. 3 summarize results. Figure 1 shows the outcome of

optimization in connection with objective function (4). To see how numbers scale,

we repeat the experiment for 16 km
2
, also see Table 1 and Fig. 3. If we iteratively

apply the algorithm to its own outcome then we observe a residual number of build-

ings only becoming planar with 𝜀 = 0.1 m. This is due to rounding errors, espe-

cially in plane computation, and optimization with float arithmetic. Therefore, col-

umn 𝜀 = 0.1 m in Table 1 might contain more realistic numbers of approximately

planar buildings than column 𝜀 = 0 m.

The proposed tool works excellent for a model driven approach with simple stan-

dard roofs from a catalogue but it also shows good results for a data driven city

model with larger deviations. Our results prove that it is possible to merge vertices

during model creation without considering the CityGML planarity requirement and
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Table 1 Numbers of approximately planar LoD2 buildings for one and 16 km
2

(UTM intervals

[32330000, 32331000] × [5689000, 5690000] and [32329000, 32333000] × [5687000, 5691000])
𝜀 (m) 0.0 0.1 0.2 0.4 0.8 1.6 3.2 6.4 Rest

1 km
2

Data

driven

732 2368 2791 3204 3619 3849 3973 3987 0

Model

driven

3119 4050 4066 4078 4091 4099 4102 4102 0

16 km
2

Data

driven

9704 22,446 24,887 27,772 30,183 31,605 32,486 32,575 2

Model

driven

26,721 32,646 32,714 32,772 32,838 32,873 32,884 32,884 0

Fig. 3 Numbers of planar buildings for 1 km
2

(left) and 16 km
2

(right), see Table 1

correct missing planarity later. To get even better results, one could split up per-

viously merged vertices and introduce additional walls. An integer linear program

could select such vertices. Also, the tool could be extended to not only modify height

values but x- und y-coordinates, too. However, expected improvement is limited

because the building’s footprint must not be changed and roof segments have to keep

connected.
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Distributed Solving of Mixed-Integer
Programs with GLPK and Thrift

Frank Gurski and Jochen Rethmann

Abstract Branch-and-bound algorithms for Mixed-Integer Programs (MIP) are

studied for over 40 years [1, 3, 7]. Object-oriented frameworks for parallel branch-

and-bound algorithms like ALPS [9], ParaSCIP [8], and PICO [5] are well known.

Our aim is to develop a powerful yet easy-to-use parallel MIP-solver by combin-

ing open-source tools or frameworks that are platform independent and free of

charge so that even small companies come to the benefit of an optimization suite.

Licenses of commercial solvers like CPLEX or GUROBI are often not affordable

for small companies. Our tool combines the Gnu Linear Programming Kit (GLPK)

and the remote procedure call framework Thrift. To make our development inde-

pendent of the GLPK-development, we use the GLPK-solvers as independently run-

ning processes. So we are able to profit from further development and algorithmic

progress of GLPK in future. We describe how to combine these technologies to get

an optimization suite for mid-sized problems and evaluate the power of our tool by

solving some benchmark data from Chu and Beasley [4] and MIPLIB 2003 [2].

1 Introduction

It is well known that large mixed-integer programs can be solved by sophisticated,

massively parallel branch-and-bound based frameworks like ParaSCIP. Such frame-

works require much knowledge from the user and adjusting of many parameters is

needed in order to solve specific classes of problems efficiently. In contrast to that
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we would like to know whether it is possible to build powerful, easy-to-use solvers

by using open-source and platform independent software running on ordinary office

hardware. Our tool should be easy to use, because small companies often lack special

skills in mixed-integer programming. We are interested in the gap between solvers

that are easy to use and sophisticated frameworks used in scientific computing. How

good and powerful can be a simple solver?

To evaluate the power of our tool we solve benchmark data from MIPLIB 2003

[2] and Chu and Beasley [4]. We compare our tool to the power of CPLEX and we

measure parallel scaling performance. The MIP-solver should run in parallel to nor-

mal office work without affecting this work. Therefore we have to minimize network

traffic and we have to start daemons on idle cpu-cores.

In our explanations we always consider mixed-integer programs of the following

form: minimize cTx subject to Ax ≤ bwhere x ∈ ℤ𝓁 ×ℝn−𝓁
, A ∈ ℝm×n

, b ∈ ℝm
, and

c ∈ ℝn
. GLPK is able to deal with MIPs given in MPS- and LP-format.

In usual branch-and-bound algorithms an integer variable with fractional value

after LP-relaxation is chosen and two new bounds are added to the problem. In con-

trast to this we choose more than one variable to branch on. We take k variables,

compute for each of them two new bounds, build all possible 2k combinations of

these new bounds, and append them to the problem.

To apply the current best upper bound copt found so far we extend the constraints

of the problem by one additional row, namely cTx ≤ copt. Initially, the incumbent

value copt is set to infinity. Adding this constraint to a subproblem possibly makes a

subproblem infeasible.

Since Integer Programming is NP-hard [6] there is little hope to find a branch-

ing rule and a selection rule that works well for all integer problems. In [7] sev-

eral branching rules and selection rules are investigated, but none of them clearly

dominates the others. A rule that works well for some problems may fail for other

problems. Even if we would have had several selection rules, branching rules, or

heuristics implemented, there is little hope to choose always the right one for the

given problem.

2 Architecture

Our architecture is not designed to allow massively parallel computing. In a typi-

cal office of small or mid-sized companies there will be no more than a few tens

of computers. Therefore the architecture must not be high scalable, and since load

balancing and termination detection are easy, we use a well-known farmer-worker

model to parallelize the MIP-solver. Since GLPK is not multi-threaded, we have to

start GLPK as an independently running process on each computer. The number of

processes should be at most the number of cpu-cores so that the processes really run

in parallel. Each worker gets a job from the farmer. Therefore the farmer has a pool of

jobs. The communication between farmer and worker is done by remote procedure
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Fig. 1 Pseudo-C-code fragment of farmer

Fig. 2 Pseudo-C-code fragment of worker-proxy

calls via the Thrift framework which was originally developed by Facebook, and is

nowadays available under an Apache licence.

Farmer First the farmer reads the problem from file. Afterwards it solves the LP-

relaxation of the problem by the method glp_simplex. This step is necessary to

determine integer variables that have fractional value. Some of these variables are

chosen and the farmer creates jobs by adding bounds over the chosen variables. A

pseudo-C-code fragment of the farmer is shown in Fig. 1. Finally threads are started

to communicate with the workers. These threads are called worker-proxies. Initially,

the farmer produces always at least as much jobs as workers are available.

Worker-proxy As long as there are jobs in the pool each worker-proxy selects one

subproblem and sends it to its associated worker. The pool of jobs is realized as a

priority queue. A pseudo-C-code fragment of the worker-proxy is given in Fig. 2.

The worker-proxy first calls the function setInstance on the worker. The prob-

lem is sent only once to the worker to reduce network traffic. After that only the

jobs, i.e. the additional bounds on the variables, are sent to the worker. If the worker

finds a solution, this solution is sent back to the worker-proxy. At the proxy it is

checked whether this solution is better than the best solution copt found so far and it

is stored in the variable curOptVal when required, which is done by the method

updateValue.
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Fig. 3 Pseudo-C-code fragment of the method solve(job, curOptVal) at worker

In GLPK we have the ability to restrict the running time of the MIP-solver at

starting time. If the MIP-solver needs more time, it is stopped automatically. In this

case the worker generates some new jobs by adding bounds to the old job, sends

these new jobs back to the worker-proxy, and the worker-proxy puts them into the

job-pool. If the MIP-solver has found a feasible solution this is also sent back to the

worker-proxy and the value of this solution has to be stored in variable curOptVal
at the farmer as a new incumbent value when required.

Worker The function setInstance on the worker stores the problem to be solved

for future calls of function solve, it does the pre-processing like computing a

branching order, and it adds the row cTx ≤ copt to the constraints of the original

problem by calling the method glp_add_rows.

To solve a subproblem the worker first puts the incumbent copt as a bound to the

additional row, see Fig. 3 for a pseudo-C-code. Then it solves the LP-relaxation by

calling the glp_simplex method. If no feasible solution has been found, or in

other words if the dual bound is worse than the best solution copt found so far then

there is no need to call the MIP-solver. Otherwise, the MIP-solver glp_intopt
is called. If the time of the MIP-solver is expired then the best feasible solution is

returned and new jobs must be created and returned. If a solution of the subproblem

was found in time, it is sent back to the farmer, otherwise the farmer is informed

about the failure.

Subproblem selection rules While the job-pool is not empty a worker-proxy has to

select a job from the pool and send it to its associated worker. In the literature many

job selection rules like Breadth-First Search (BFS), Depth-First Search (DFS), Best-

Bound Search (BBS), and even more complex rules like estimate-based methods are

studied. DFS performs poorly in practice [7]. BFS often takes too much space, since

many of the primary generated jobs cannot run to completion and therefore many

jobs are produced. So we decided to choose BBS.

To compute bounds of the subproblems for BBS we use the simplex method of

GLPK. This may be time consuming but this selection rule reduces the number of

subproblems in the job-pool so that the memory consumption hopefully is small and

so is the influence on office work.
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Branching rules In the literature many branching rules like pseudo-cost, full strong

and most fractional branching are studied. In [1] it is shown that most fractional

branching is in general not better than selecting a variable randomly. Our rule comes

from [3]: The integer variables are processed in the decreasing order of their absolute

cost values in the objective function. This is computed on each worker in a pre-

processing phase only once.

3 Experimental Results

The farmer is always started on a dedicated computer. Since the farmer has to store

many jobs in its pool it should have large physical memory, at least 16 GB. The MIP-

solver uses presolving and Gomory cuts, it is running on common office hardware

using Ubuntu Linux 14.04 (LTS), kernel 3.16, GLPK 4.52, Gnu C++-compiler 4.8.4,

and Thrift 0.9.3. Two parameters of our tool must be set: the time-limit of the MIP-

solver and the number of jobs to generate in case of a worker time-out. After some

measurements it turns out to be a good compromise to choose 10 s as the time-limit

for the MIP-solver and to generate 4 times more jobs as workers if the MIP-solver

has not run to completion. To prevent a memory overflow the number of generated

jobs is reduced if more than half of the total memory on farmer is used. To decrease

network traffic the farmer removes all jobs from the pool whose dual bound is worse

than the incumbent value copt. This is done in function updateValue.

Parallel scaling performance In Table 1 the speedup is shown for instances of Chu

and Beasley’s benchmark set and for instances of MIPLIB 2003. We have used up to

16× 4 workers, the comparison with CPLEX version 12.6.0.0 using default settings

running on a common office computer with 8 GB RAM, Debian Linux 6.0.10, and

4 threads is given too.

4 Conclusion and Acknowledgment

In our future work we will implement checkpointing and restarting. This is common

in parallel computing to protect against failures.

Our algorithm performs non-deterministically: Two executions might follow dif-

ferent paths in the search tree, produce different solutions, and need different solv-

ing times. Practitioners do not accept such non-determinism, so we will implement

deterministic solving, and we will study the resulting performance degradation.

We would like to thank Jochen Peters for some first implementations of our tool

during the work on his bachelor thesis, and Jens Gräbel for some fruitful discussions.
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Table 1 Parallel scaling performance. Running times are given in seconds, times greater than 2 h

are indicated by a bar. Sequential running time of GLPK is always greater than 3 h, except pk1 is

solved in 5056 s and qiu in 2309 s. In the last row we count the instances that our parallel solver

computes at least as fast as CPLEX

Instance 4× 4 8× 4 12× 4 16× 4 CPLEX

OR30x100-0.50_2 1041 498 322 244 456

OR30x100-0.50_3 1341 682 406 311 626

OR30x100-0.25_9 2111 1426 920 703 1098

OR10x250-0.75_1 3000 1459 982 750 755

OR10x250-0.75_2 – 4177 3243 2434 3160

OR10x250-0.75_3 2380 1278 826 624 478

OR10x250-0.75_4 1421 741 446 338 413

OR10x250-0.75_5 3597 1627 1032 782 1198

OR10x250-0.75_6 1844 920 609 461 381

OR10x250-0.75_9 1362 701 466 353 276

OR10x250-0.25_2 4875 1449 982 744 3003

OR10x250-0.25_3 4091 2081 1445 1099 1224

OR10x250-0.25_6 5341 2733 1964 1488 1568

OR10x250-0.25_7 4544 2427 1676 1273 1028

OR10x250-0.25_9 – 5519 4339 3236 3603

danoint 601 328 222 171 780

mas74 4172 2016 1095 830 224

mas76 116 50 37 31 14

modglob 1677 1041 823 630 1

pk1 66 30 22 20 17

qiu 258 132 109 90 4

As fast as CPLEX 1 2 6 12
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Extension of Mittelmann’s Benchmarks:
Comparing the Solvers of SAS and Gurobi

Werner E. Helm and Jan-Erik Justkowiak

Abstract SAS Institute has long been recognized by Gartner (most recently in 2016,

see Kart et al. Magic Quadrant for Advanced Analytics Platforms (09 February

2016|ID:G00275788), [1]) as leader in the magic quadrant for Advanced Analyt-

ics Platforms. Bundled in SAS/OR are the Institute’s offerings for solving a broad

range of OR-problems on various software platforms. We present what appears to

be the first independent benchmarking of SAS Institute’s OR-solvers. In the present

paper we concentrate on the problem classes LP, MILP, Network and Infeasibility

Detection.

1 Introduction

As each and every software vendor tries to present its own products in a best pos-

sible way truly independent comparisons (benchmarks) are an invaluable source of

information for any decision maker who decides upon a company’s IT. With regard

to OR-Software and solvers for LP-, MILP-, Network- and related problems Hans D.

Mittelmann of Arizona State University has almost gained cult status: several times

a year he publishes benchmarks that define the state-of-the-art. Mittelmann’s bench-

marking results (see [2]) in turn are being used as marketing instruments by vendors.

During the years 2010–2015 his benchmarks documented the way of a then new com-

pany (albeit being based on decades of prior experience) Gurobi to the absolute top

of performance in most if not all (sub-)categories of common problems. There is no

easy and direct way to assess or compare market shares (volume or dollars). Some

company people speak of the ‘big four’ of commercial vendors comprising (could

be disputed) IBM ILOG - CPLEX, FICO - XPRESS, Gurobi - Gurobi Solvers and

SAS Institute - SAS/OR. Up to most recently only the first three (plus MOSEK,
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Matlab and open source products) had been covered by H.D. Mittelmann. Hence we

set out to extend this range to cover SAS/OR, too. As benchmarks depend on a large

number of parameter settings starting from hardware, OS, etc. we directly compared

SAS/OR with Gurobi and used our results on Gurobi to link these numbers to Mit-

telmann’s suite of benchmarks. Derived from recent projects we added a class of

vehicle routing problems (VRP); results will be published elsewhere.

2 Benchmarks: Basic Setup

As we want to generate results for solvers in SAS/OR that are comparable to Hans

D. Mittelmann, we use the same basic setup, which we summarize very briefly (all

details are on the web pages [2]). Benchmarks are done in categories (classes) and

subcategories (subclasses), e.g. MILPs (mixed integer linear programs) and Infeasi-

bility Detection for MILPs. Basic performance measure is run time in the form of

elapsed time or wall-clock time including the input of the problem data from mps-

files. In the class of MILPs a solution checker is used by Mittelmann [2]. After all

run times are collected the key performance measure of a solver for a specific prob-

lem class P is the following shifted geometric mean with shift factor r. Let tsp denote

the run time to solve problem p by solver s (from solver collection S). The shifted

geometric mean for solver s to which we simply refer as geo-mean is then defined by

̄ts ∶= n

√∏
p∈P

(tsp + r) − r,

where n is the number of problem instances in problem class P. Of course ̄ts = ̄ts(P),
i.e. the value depends on the problem class P under consideration. We use a shifting

of r = 10 s. As in Mittelmann we then apply the following scaling ̄t∗S = mins∈S ̄ts, to

calculate for each solver its scaled shifted geometric mean ̃ts =
̄ts
̄t∗S

, which we denote

in tables below simply by scaling. This value shows the factor that a specific solver

is slower than the best one with scaled value of 1.00. Each problem class is given a

maximal time value; a solver’s performance on a particular instance is graded suc-

cess if it solves the instance to optimality within that maximal time. Otherwise suc-

cess is denied and the maximal value is used. The maximal values being used are

LP (25,000 s), MILP (7200 s), Network (3600 s), Infeasibility Detection (3600 s).

Concerning the choice of Simplex variant we respected the systems’ default settings

(Dual Simplex). As SAS historically has used resources-saving defaults we had to

activate the memsize-option to enable the full usage of available RAM. In the fol-

lowing we concentrate on the classes LP, MILP, Network and Infeasibility Detec-

tion. Most problem instances and reference solutions are taken from MIPLIB [3] or

directly from Mittelmann [2].
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Table 1 Direct comparison SAS/OR and Gurobi

Summary of results Success rate Geo-mean
a

Scaling

Problem class SAS Gurobi SAS Gurobi SAS Gurobi

LP 98% 100% 163.82 51.29 3.20 1.00

MILP (1 thread) 85% 99% 432.50 78.81 5.49 1.00

MILP (4 threads) 87% 100% 226.91 45.88 4.95 1.00

MILP (12 threads) 89% 99% 240.27 53.57 4.49 1.00

NETWORK
b

100% 100% 48.39 17.08 2.83 1.00

NETWORK
c

100% 100% 14.52 17.08 1.00 1.18

INFEASIBILITY 78% 100% 297.72 17.01 17.50 1.00

VRP 73% 80% 542.37 272.30 1.99 1.00

a
Shifted geometric mean of run times (elapsed time)

b
SAS Proc Optlp - Dual Simplex

c
SAS Proc Optlp - Network Simplex

2.1 Direct Comparison SAS/OR - Gurobi

All direct comparisons were done on a PC with Intel i7-4790 cpu @3.60 GHz (4

cores) with 24 GB RAM under Windows 7 X64 between SAS 9.4 TS1M3 - Analytics

14.1 and Gurobi 6.5.0. We used Python scripts to drive Gurobi [4]. Out of SAS/OR

[5] the procedures OPTLP, OPTMILP and OPTNET were applied. Concerning SAS

several peculiarities had to be mastered. We mention just one: SAS does not natively

read mps-files but circulates a macro to convert external mps-files into an internal

mps-format, a process that frequently requires special attention. Hence all mps-files

were first converted and manually checked and only then read in to the solver from

this internal mps-format.

Table 1 contains the main results of the direct comparison. With the exception of

network problems Gurobi outperforms SAS by a considerable margin (scaling fac-

tors of around 3 for LP-, around 5 for MILP-problems and around 17 for infeasibility

detection). The positive exception for SAS are network problems due to the Network

Simplex being implemented in the dedicated procedure Proc Optlp. Figures 1 and 2

display a more detailed comparison showing the robustness of the shifted geometric

mean when compared to the arithmetic mean (denoted by a star).

3 Linking the Results to Mittelmann’s

It is well known that a uniform behaviour of all solvers across different machines,

different amounts of memory, different hard disks and operating systems and differ-

ent problems cannot be expected. Most of Mittelmann’s benchmarks are being run

on a PC with Intel i7-4790K (4 cores) @4.0 GHz with 32 GB RAM under Linux.

As we ran the same version of Gurobi on our slightly less powerful system under
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LP-Benchmarks: run times of SAS und Gurobi

Fig. 1 Boxplot of run times for 40 LP instances; one data point for SAS with value 25,000 (problem

not solved) is not visible on plot, but included in the evaluation
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MILP-Benchmarks: run times of SAS und Gurobi

Fig. 2 Boxplot of run times for 87 MILP instances. 12 threads are beyond the hardware’s true

capabilities, hence performance is degrading. Frequently the best performance was observed when

we let the number of threads chosen within the software equal the number of cores of the Intel chip

Windows 7 for each problem class we computed a conversion factor (in the range

0.73–0.85) to upscale our results and make them comparable to Mittelmann. Hence

we add a column of adjusted SAS-values to Mittelmann’s tables and discuss the

results.
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Table 2 Performance - LP

SOLVER CPX GRB MSK XPS CLP LPSLV GLPK MTB SAS
a

Success (of 40) 38 40 40 40 40 23 28 31 39

Geo-mean
b

82.90 42.80 106.00 41.50 42.90 5068.00 1834.00 485.00 135.97

Scaling 2.00 1.03 2.55 1.00 1.04 122.00 44.20 11.70 3.28

a
Adjusted by conversion factor of 0.83

b
Shifted geometric mean

Table 3 Performance - MILP (4 threads)

SOLVER CBC CPX FSCIPC FSCIPS GRB XPS SAS
a

Success (of 87) 61 86 75 69 87 87 76

Geo-mean
b

1053.00 46.00 339.00 641.00 39.00 48.00 192.87

Scaling 27.40 1.19 8.82 17.00 1.00 1.25 4.95

a
Adjusted by conversion factor of 0.85

b
Shifted geometric mean

We use the abbreviations GRB (Gurobi), CPX (CPLEX), XPS (Xpress), CLP and

CBC (Coin-OR), MSK (MOSEK), SCIPC, SCIPS, FSCIPC and FSCIPS (SCIP fam-

ily), GLPK (GNU LP Kit), LPSLV (LP Solve), MTB (Matlab), QSOPT (U Water-

loo), SAS (SAS/OR) and the colloquial phrase ‘Big Three’ for the set GRB, CPX,

XPS. Further details are found on [2]. When linking our results to Mittelmann’s [2]

we took his benchmarks as of April, 6, 2016 with the following publication dates LP

(April, 2nd, 2016), MILP (April, 4, 2016), Network (November, 25, 2015), Infea-

sibility Detection (February, 29, 2016). Table 2 displays the results of the 40 LP-

problems. Xpress, Gurobi and remarkably CLP (Coin-OR) are the clear leaders. SAS

comes in behind MOSEK. Table 3 (and tables 3A, 3B (omitted)) contain results for

87 MILPs differing in the number of threads being activated. The commercial Big

Three are in the lead with Gurobi in the top position. With some margin SAS ranks

fourth, slightly before SCIPC, but markedly before the rest of the field. Going from

1 to 4 threads improves performance by a factor of two with no effect on the rank-

ing. The results of Mittelmann show that further performance gains can be realized

when using more threads on appropriate hardware (more cores). He utilizes an Intel

Xeon X5680 (12 Threads), 3.33 GHz Processor instead of his main PC. However, it

is unclear if the solvers of all competitors scale in the same way and when to expect a

change in the ranking of the top 4 or 5 contenders. There are very promising attempts

to move on supercomputers into the range of thousands to a million cores (see [6, 7]

who solved 12 previously unsolved MIP-instances from MIPLIB with an enhanced

version of ParaSCIP, using up to 80,000 cores).

Table 4 displays results for 10 network problems in default mode (Dual Simplex).

The results are similar to those for LP problems with SAS ranking behind the Big

Three as well as behind MOSEK and CLP. Using the Network Simplex SAS Proc

Optlp achieves the best geo-mean of all tested solvers (see Table 5). The commercial

solvers are close together. Results for 18 infeasible problems show superior perfor-

mance of the Big Three over all other solvers including those of SAS.



612 W.E. Helm and J.-E. Justkowiak

Table 4 Performance - Network (Proc Optlp - Dual Simplex)

SOLVER CPX MSK CLP QSOPT GRB XPS SAS
a

Success (of 10) 10 10 10 6 10 10 10

Geo-mean
b

13.22 17.73 29.03 416.43 12.42 25.37 35.32

Scaling 1.06 1.43 2.34 33.50 1.00 2.04 2.83

a
Adjusted by conversion factor of 0.73

b
Shifted geometric mean

Table 5 Performance - Network (Proc Optlp - Network Simplex)

SOLVER CPX MSK CLP QSOPT GRB XPS SAS
a

Success (of 10) 10 10 10 6 10 10 10

Geo-mean
b

13.22 17.73 29.03 416.43 12.42 25.37 10.60

Scaling 1.25 1.67 2.74 39.29 1.18 2.29 1.00

a
Adjusted by conversion factor of 0.73

b
Shifted geometric mean

4 Conclusion and Outlook

Based on subjective impressions the SAS/OR solvers have improved in recent years

in scope and in performance. Due to the lack of benchmarks until now one can-

not say if the distance to the Big Three and to Gurobi in particular is increasing or

decreasing. It appears that the developers at SAS do not only focus on speed but on a

broad leverage of OR-technology into different parts of the SAS system. SAS Insti-

tute has provided information that considerable improvements can be expected with

its Analytics 14.2 release (due in late 2016). We are working on a solution checker

for the SAS benchmarks and plan to publish results for new SAS/OR releases. Addi-

tionally we will try to cover the High-Performance Optimization of SAS running in

distributed mode.
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3D Printing as an Alternative Supply Option
in Spare Parts Inventory Management

Marko Jakšič and Peter Trkman

Abstract We study a spare parts stochastic production/inventory problem of a man-

ufacturer, where he has an option to source parts from a relatively inflexible con-

ventional regular supplier ordering in large batches with long replenishment lead

time, or alternatively from a flexible in-house or outsourced 3D printing facility. We

derive the dynamic programming formulation for cost associated with utilizing the

3D printing supply option and give some insights into the structure of the optimal

policy. In a numerical experiment, we compare the performance of this hybrid sourc-

ing strategy with the regular sourcing option, and provide some managerial insights.

1 Introduction

3D printing, also commonly referred to as additive manufacturing, has lately received

considerable attention in practice and research community. 3D printing enables small

quantities of customized goods to be produced at relatively low costs and has been

compared to such disruptive technologies as digital books and music downloads that

enable consumers to order their selections online, allow firms to profitably serve

small market segments, and enable companies to operate with little or no unsold

finished goods inventory [1]. However, the way that the quickly developing technol-

ogy will earn its spot in production environments and supply chains usually revolves

around a radical redesign of conventional manufacturing and supply chain processes.

We take a different approach, and explore how novel technology can be combined

with existing operational practices to attain imminent operational benefits.

Our research is motivated by the spare parts inventory control problem faced

by one of the leading European home appliance manufacturers. The company has

recently undergone a major redesign of their spare parts distribution system by mov-

ing from a decentralized distribution system to a central spare parts storage loca-

tion, while at the same time offering a direct replenishment of spare parts to the
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field-technicians. While this has led to considerable savings particularly related to

spare parts inventory holding costs, it has also provided the company the opportu-

nity to centralize their spare parts production capacities. The company currently still

strongly relies on off-shore production facilities for replenishment of spare parts,

where for plastic parts the injection moulding is the prevalent technology.

Inline with the goal of continually reducing the inventory levels of spare parts,

while maintaining near perfect service level to their customers, the company is

exploring the opportunity to manufacture parts on demand by using the 3D print-

ing technology. However, while the move towards 3D printing has not posed large

technological difficulties for a relatively large assortment of spare parts, the major

obstacles are relatively more expensive per part production costs and the lack of 3D

printing capacity availability. In order to keep the paper concise, we direct the reader

to [2–5] for the description of the fundamental differences in both manufacturing

approaches.

Several papers discuss the impact of additive manufacturing in spare parts supply

chains [2, 6–8]. These papers focus on the trade-offs involved in switching to a new

manufacturing technology, where on demand and centralized production is proposed

as the most likely scenario currently. Until 3D printing becomes a more general pur-

pose technology, a full switch to 3D printing is not expected in most applications. In

spare parts supply in particular, the availability of mass production resources even

after the regular production has stopped generally ensures a relatively cheap supply

of spare parts. Therefore, the objective of this paper is to study the possibility of

using regular supply and possibly capacity constrained 3D printing supply option

simultaneously to ensure adequate supply of spare parts.

There has not been notable effort made by the inventory research community to

study 3D printing as an alternative supply option, and its effect on the inventory

control policy on a operational level. Apart from [9], authors rely to simple safety

stock calculations to assess the potential benefits of 3D printing [7, 8]. This can

be attributed to the fact that 3D printing, as an alternative supply option, fits well

within the two closely related groups of inventory models: emergency replenishment

models [10–13], and dual sourcing inventory models [14–17]. Most of the papers

we refer to also incorporate the capacity constraint on the alternative supply option,

which is particularly relevant for our paper.

2 Model Formulation and Inventory Policy
Characterization

In this section, we give the notation, the model description and provide some insights

into the properties of the proposed inventory policy. We model a spare parts inven-

tory system where a stationary stochastic demand for spare parts is assumed. We

denote the demand realization in period t as dt and the distribution function of the

demand as D(⋅). The inventories are normally replenished from the regular produc-
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tion at the cost of cr per part. As the regular supply channel using injection molding

is characterized by large production batches, it is reasonable to assume that the need

to replenish spare parts from an alternative supply source possibly only emerges

towards the end of the regular replenishment cycle, shortly before the regular pro-

duction order is delivered.

We focus on modeling the alternative 3D supply option, where the parts can be

produced internally with the company’s own 3D printing capabilities at the cost cp
per unit, or sourced from an outsourced 3D printing facility at a cost ce per unit.

As the costs of outsourced production are assumed to be higher, cr < cp < ce, this

supply option is considered as an emergency 3D printing option, while the in-house

production is considered as a primary 3D printing supply source. Given the 100%

service level guarantee, we assume that the combined 3D printing production capac-

ity is always sufficient to cover the current period’s demand. If in-house production

capacity is not sufficient (or completely unavailable) on a particular day, the fully

available outsourcing supply option is utilized to meet the demand. We assume sta-

tionary stochastic in-house production capacity, where the capacity availability in

period t is denoted as qt, and the distribution function of capacity as Q(⋅).
Presuming that demand is always met with certainty, the goal is to find a 3D

printing replenishment policy that would minimize the production/sourcing costs,

and the inventory holding costs in the periods until the end of the regular replen-

ishment cycle. In a period t, prebuilding inventories might be desired to cope with

future periods of possibly insufficient in-house capacity, instead of relying to a more

expensive outsourcing supply option. This results in a positive starting inventory

position xt+1 in the following period.

Rather than waiting till the inventories of spare parts from regular replenishment

are depleted to zero, the policy should give the inventory level at which it is optimal

to start utilizing the 3D printing supply option. In addition, the policy is determined

by the optimal starting inventory position x̂t for each of the subsequent periods before

the arrival of the next regular order. We denote the period in which the 3D printing

supply option is used first as period k, where k represents the number of periods

till the end of the regular replenishment cycle (k = 0). Our objective is to determine

the optimal starting inventory positions (x̂k, x̂k−1,… , x̂2, x̂1). It is expected that the

need to prebuild the inventories diminishes as k decreases towards 0 (where for k =
0, x̂0 = 0 is optimal), therefore intuitively the optimal starting inventory positions

should be ordered in the following way: x̂k ≥ x̂k−1 ≥ ⋯ ≥ x̂2 ≥ x̂1.

We assume the following sequence of events: (1) At the start of period t, the

demand dt for spare parts that need to be replenished in the current period is revealed.

Current inventory position xt and the available in-house 3D printing production

capacity qt are checked. (2) Depending on the replenishment requirements, the order

zt is placed at most up to qt in the case where zt ≤ qt, while in the case of zt > qt
the outsourcing option is used to cover the excess part of the order (zt − qt)+. (3)

The order zt from in-house production, and possibly outsourcing supply option, is

replenished, and the production costs are charged. The demand is satisfied and the

inventory holding costs are charged based on the end-of-period inventory position,

h(xt + zt − dt)+, where h denotes the per unit per period inventory holding costs.
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The single period cost function Ct(xt, zt, qt, dt) can be written as:

Ct(xt, zt, qt, dt) = cp min(zt, qt) + ce(zt − qt)+ + h(xt + zt − dt)+, (1)

where the first term denotes the in-house production costs charged in the production

quantity that is potentially limited by the available capacity, the second term denotes

the outsourcing costs associated with the part of the order in excess of in-house

capacity, and the third term denotes the inventory holding costs charged on the end-

of-period inventory position. Recall that the end-of-period inventory position (that

also corresponds to the starting inventory position xt+1 in period t + 1) cannot be

negative due to the 100% service level assumption.

As available capacity qt and demand dt are known prior to making the order-

ing decision, the policy is straightforward for the single period problem. It instructs

that the demand is satisfied by utilizing the in-house production capacity first, and

it resorts to the outsourcer only if in-house capacity is insufficient. Also, it is not

rational to source spare parts in the quantity that exceeds the demand as this leads

to inventory holding costs. The decision maker would follow such policy in the last

period before the arrival of the regular order.

As already pointed out above, prebuilding of inventories is a viable option in a

multiperiod setting. Producing above the demand dt in period t results in increased

starting inventory position xt+1 in the following period. This enables the system to

cope better with the possible capacity shortages in the following periods, and avoid

using the expensive outsourcing supply option. Thus, intuitively, outsourcing supply

option is never used to prebuild inventories, but it is utilized only in the case when

in-house is insufficient to cover current period’s demand.

Correspondingly, the minimal discounted expected cost function associated with

using a 3D printing supply option that optimizes the cost over a finite planning hori-

zon T from period t onward, starting in the initial state xt, can be written as:

ft(xt) = EQt ,Dt
f̃t(xt, qt, dt) = min

xt+zt≥dt

{
Ct(xt, zt, qt, dt) + 𝛼ft+1(xt+1)

}
, (2)

and the ending condition is defined as fT+1(xT+1) = hx+T+1. Period T + 1 denotes the

period in which the regular replenishment arrives (k = 0), where the inventory hold-

ing are charged in the likelihood that any inventory is carried over.

3 Numerical Study

In this section, we present the results of the numerical analysis, which we carried out

to determine the optimal starting inventory positions x̂k, and the benefits of the hybrid

3D sourcing option. Numerical calculations were done by solving the dynamic pro-

gramming formulation given in (2) to determine the performance within a regular

replenishment cycle.
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Table 1 (a) The optimal safety stock levels, and (b) the cost benefits of 3D sourcing

CVD Sourcing

type

Optimal safety stock level Cost savings

k 30 25 20 15 10 5 1 p 0.1

(%)

0.5

(%)

0.9

(%)

0.5 Regular 13 12 12 11 10 8 5 1.53 1.54 2.25

Hybrid 11 10 10 9 8 7 5

1 Regular 27 26 25 23 21 18 13 2.77 3.44 3.46

Hybrid 22 22 21 20 18 16 12

2 Regular 52 51 49 47 44 40 32 5.28 5.87 6.46

Hybrid 42 41 41 39 38 35 30

We present the results in Table 1, where we use the following set of parameters.

The demand for spare parts was modeled using Gamma distribution with expected

demand of 2 units per day, and the coefficients of variation CVD = {0, 0.5, 1, 2}. The

primary in-house printing capacity is of “all-or-nothing” type Bernoulli distribution,

with probability of fully available capacity on a particular day p = {0.1, 0.5, 0.9}. We

assume the following production costs: cm = 5, cp = 8 and ce = 10; and the hold-

ing cost h = 0.008 per day. The regular replenishment is characterized by the order

quantity Q = 125, which corresponds to 4 replenishment cycles per year, and the

lead time of 30 days is assumed.

As expected, we see in Table 1(a) that the optimal safety stock levels, defined

as x̂k −
∑k

j=1 E(Dj), are higher for the regular single sourcing supply option. The

hybrid sourcing option, which is (in addition to regular supply) using both 3D print-

ing options, saves on inventory holding costs at the expense of relatively higher pro-

duction costs of utilizing 3D printing when needed. The savings of the hybrid policy

are positive despite the relatively large difference in per part production costs, and

are higher in the case of higher demand variability and higher availability of the

primary in-house 3D printing capacity.

4 Conclusions

In this paper we derive the model formulation and characterize the optimal inventory

policy for the inventory model with two supply sources. The regular supply source

is typical inflexible large batch production with long lead time, while in the case of

imminent stockout, the alternative 3D printing supply option is utilized. 3D print-

ing technology enables responsive production, either in-house or at the outsourced

production facility. Here we point out that the optimal policy does not have a sim-

ple order-up-to structure, which is attributed to two major system characteristics: the

similarity to the lost sales inventory models and the additional complexity due to the

assumption of stochastic production capacity constraint.
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As we only provide limited insights within this short paper, the research work

is generally targeted towards an analytical characterization of the target inventory

levels. In addition, based on our observations from practice, there is a need for a more

detailed modeling of the production capacity associated with 3D printing. In this

paper, we assume that the production capacity availability is exogenous to system,

while in reality it is a direct consequence of the capacity level decisions on a strategic

level, and the capacity allocation decisions on a daily operational level.
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Drivers and Resistors for Supply Chain
Collaboration

Verena Jung, Marianne Peeters and Tjark Vredeveld

Abstract Due to a constantly growing competition among organizations and higher

customer expectations, in the last decades companies started to realize the need for

supply chain collaboration (SCC). Although the idea of SCC may sound easy in

theory, SCCs in practice often fail. This can be explained by the fact that for a specific

SCC a huge amount of drivers and resistors has to be taken into account by all parties

involved. However, these drivers and resistors are often unknown or misunderstood

by the parties, which leads to the fact that SCCs likely fail. To avoid this, we present a

framework which provides a complete overview and the correct understanding of all

possible drivers and resistors identified through an extensive literature review. The

completeness of the framework in practice is investigated through interviews with

companies. In theory, usually dyadic relationships are observed. The companies we

interviewed participated in triangular relationships or in SCCs where even more than

three parties were involved. Preliminary results indicate that even for these more

complex relationships in practice the framework is complete.

1 Introduction

In the last decades companies realized the need for looking outside their

organizational boundaries for new opportunities [4, 10, 12]. According to [9, 13],

a new vital base of competitive advantage that has not yet been fully exploited is

supply chain collaboration (SCC). Nowadays, SCC is a widely discussed topic and
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it means that “two or more independent companies work jointly to plan and execute

[...] operations with greater success than when acting in isolation” [12].

Although the idea of SCC may sound easy in theory, SCCs in practice often fail.

According to [6], SCC promises theoretically huge benefits but it appears that reality

falls short, which indicates a gap between theory and practice. This can be explained

by the fact that for a specific SCC a huge amount of drivers and resistors has to be

taken into account by all parties involved. However, these drivers and resistors are

often unknown or misunderstood by the parties, which leads to the fact that SCCs

likely fail. To avoid this, it is necessary that the parties have a complete overview of

all possible drivers and resistors, so that the parties can identify their relevant drivers

and resistors for the specific SCC. To achieve this, it is important that the parties have

the correct understanding of the different drivers and resistors.

The goal of our paper is to create a framework, which should provide this

complete overview and to ensure that the parties are provided with the correct

understanding of all drivers and resistors. Until now, such a framework is missing

in literature. The remainder of the paper is organized as follows. In Sect. 2 a critical

discussion of an extensive literature review is given, and based on this our frame-

work is created. Next, the completeness of the framework in practice. Preliminary

results are presented in Sect. 3. Furthermore, we intend to investigate whether the

framework can provide parties with a higher awareness of all possible drivers and

resistors in order to increase the probability of successful SCCs and to close the gap

between theory and practice. Ideas are presented in an outlook in Sect. 3 as well.

2 Critical Discussion and Framework

Until now, a great amount of researchers tried to identify important drivers and resis-

tors for SCC but there exists some ambiguity in literature. Through an extensive lit-

erature review, two different kinds of ambiguity for the drivers could be identified.

The first kind of ambiguity is that the same terms are often used for different cat-

egories and that for each category no unique term exists. Examples are the terms

“drivers” and “driving forces”. In [1] the term “drivers” is used to define two dif-

ferent categories. First, they use the term to define factors which enable someone

to collaborate like “trust” or “commitment”. Second, they use the term for expected

benefits of a successful SCC like “enhancement in customer service” or “increase

in market share”. Next to the term “drivers” they also use the term “driving forces”

for the expected benefits. However, the term “driving forces” is used by [8] to define

factors which force a party to collaborate like “more demanding customers” or “eco-

nomic globalization”. The second kind of ambiguity is that factors are assigned to

more than one category. An example is the factor “trust”, which is assigned in [1]

to the factors which enable someone to collaborate and in [3] to the outcomes of

SCC. For the resistors a unique term and definition is also still missing. However, in

contrast to the drivers most of the time only one category is named for the resistors.

Even for this single category there exists different terms like “barriers” (e.g. [2]) or
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“impediments” (e.g. [5]). Moreover, for the drivers and resistors it can be observed

that in one paper a factor of a category is named but is missing in another paper. An

example is the factor “interdependence” which is named as a factor which enables

someone to collaborate in [1] but it is not mentioned in [2] for the same category.

Because of the ambiguity, it is hard for the parties to understand and identify the

relevant drivers and resistors for their specific SCC. Therefore, a clear structure and

a complete overview of the drivers and resistors is needed, which is provided by our

following framework.

Our framework consists of two umbrella terms for the categories. The first

umbrella term is called “drivers” and the second one is called “resistors”. We choose

the term “drivers” because it has been used ambiguous for every category of the

drivers in the literature. For all the retarding factors we use the umbrella term “resis-

tors” because it represents the meaning very well. The drivers are divided up into

three different categories. The first category, "benefits", represents the expected

benefits of a successful SCC like “cost reduction” (e.g. [2]). The second category,

"forces", and it represents external factors which force a company to collaborate like

“greater competitive intensity” (e.g. [8]). The last category, "enablers", represents

the factors which enable someone to collaborate and, in addition, have an effect on

the success of SCC like “trust” (e.g. [1]). The distinction between the three cate-

gories has been made because they all represent different drivers and, additionally,

have different influences on SCC. Benefits and forces are both motivation factors

for parties to collaborate. Nevertheless, there is a big difference. Benefits represent

the intrinsic motivation, which means that the party decides to collaborate out of

its own motivation [10]. Therefore, the benefits usually have a positive influence on

SCC. However, forces represent the extrinsic motivation. Here a party is forced to

collaborate. This has a great effect on management’s ability to implement SCC which

can have a negative influence on SCC, because a change in management practices

towards more SCC is dictated but not necessarily wished by the company itself [8].

It is important to understand that not only resistors can have a negative influence on

collaboration, but also a category of the drivers, the forces. In addition to the two

kinds of motivation, enablers are needed, because a strong desire to build a SCC is

not enough. The enablers increase the probability of success and, therefore, they have

a positive influence on SCC [10]. The resistors are divided up into two categories.

One category is called “barriers” and this are impediments, which could limit SCC

before collaborating. An example is “lack of commitment” (e.g. [2]). The other cat-

egory is called “risks”. Risks are events which might occur in the future but they are

unknown yet like “decreased competitiveness” (e.g. [11]). This distinction has not

often been made in literature so far. However, it is necessary to distinguish between

these two categories because a barrier is something which is occurring now and a

risk is future-based. This was also mentioned in [7] in the context of strategic plan-

ning. Both categories of the resistors have a negative influence on SCC. However,

there is a difference, because the barriers are already known for sure when the party

decides whether to collaborate or not. This leads to the fact that the party can already

take actions against the barriers. In contrast to this, the risks are not known for sure

at this point in time, only an uncertainty that something might occur can be present.
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Because of this, the decision to collaborate or not is dependent on the decision maker

and his risk preference (risk averse, risk neutral or risk loving).

The current framework represents what we have found in the literature. However,

we want to go one step further because we saw that there is a connection between

the driver “enablers” and the resistor “barriers”. It is striking, that for every enabler

a resistor, in particular a corresponding barrier, can be found, which is stressed by

[15]. An example is the enabler “trust” and the barrier “lack of trust” (e.g. [14]).

Therefore, we combine the factors of these two categories. The factors can either be

present in a collaboration, “presence of ...”, or not, “lack of ...”.

In Fig. 1 our framework with definitions and explanations of the influences of the

categories on SCC together with some examples of different factors for each category

is presented. To get a better overview we group the factors in an intuitive way. An

example is that the factor “cost reduction” is a general term for e.g. transportation or

inventory cost reduction.

To evaluate a potential SCC, it is important for parties to have this complete

overview given. However, it is not necessarily the case that all factors, except from

the category “enablers/barriers”, are relevant in every SCC; it depends on the party

itself, its industry and the type of SCC. An example is provided by [2] who inves-

tigated a SCC in the construction industry from the manufacturer’s perspective. In

their paper they identified “reducing bureaucracy and paperwork” as an important

benefit. This is a direct benefit for the manufacturer and, therefore, a relevant benefit

for him but probably not for a logistic service provider (LSP). Moreover, it is possible

that a whole category is not relevant for a SCC. When a party is forced to collaborate

the intrinsic motivation for starting this SCC, so all factors in this category, can be

absent.

In summary, a complete overview and the right understanding of all possible fac-

tors is needed, which is provided by our framework. Without the framework it is

often not possible to identify all relevant factors. However, missing an important

one can increase the probability of failure.

Fig. 1 Our framework
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3 Preliminary Results and Outlook

Our main goal in the research is to investigate whether our literature based frame-

work is also complete in practice. Hereto, we conducted individual semi-structured

in-depth interviews with manufacturers, LSPs and retailers from the Dutch fast mov-

ing consumer goods industry. The purpose of the interviews is to investigate whether

relevant general factors are missing, through the identification of important factors

for parties to start a SCC. In theory, usually dyadic relationships are observed. How-

ever, the companies we interviewed participated mostly in triangular relationships

or in SCCs with even more than three involved parties. A triangular relationship is

more complex than a dyadic, because instead of two parties three parties try to start

a SCC. Therefore, also three parties have to identify their relevant factors for start-

ing a SCC taking into account the other two parties, which increases the complexity.

Hence, if no additional general factors can be identified, we can conclude that the

framework is complete for triangular but also for less complex dyadic relationships.

Preliminary results indicate that no additional general factor is needed.

Our secondary goal is to investigate whether the framework can increase the prob-

ability of successful SCCs and, thus, close the gap between theory and practice by

providing a higher awareness of all possible factors. This includes an increase in the

likelihood that SCCs with a high failure probability will not be started. Results to that

research question cannot be presented yet. However, our intention is to interview par-

ties who participated in a failed SCC to investigate whether the failure would have

been prevented if the party had given our framework. To increase the reliability of

our research, we intend to cluster the factors for every specific SCC.

In summary, we showed that there exists some degree of ambiguity in the lit-

erature that makes the identification and the correct understanding of the different

drivers and resistors for staring SCC nearly impossible. This leads to the fact that

SCCs often fail. To avoid this, we presented a framework which provides a complete

overview and the correct understanding of all possible drivers and resistors. In our

research we have been investigating whether the framework which covers the exist-

ing literature is complete in practice. Preliminary results indicate this. The investi-

gation whether the framework can increase the probability of a successful SCC is

what we will do next. Furthermore, future research will investigate what influence

Stackelberg games have on the relevant factors in our framework.
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Balancing Effort and Plan Quality: Tactical
Supply Chain Planning in the Chemical
Industry

Annika Vernbro, Iris Heckmann and Stefan Nickel

Abstract Tactical supply chain planning in the chemical industry is a frequently

recurring task, which typically involves not only automated planning procedures

but also manual planning efforts. Competent application of optimization techniques

in this context requires specialized skills and method-related knowledge. However,

planners might have a background in overseeing production or comparable functions

and personnel with expertise in optimization is scarce. Common simple heuristic

planning approaches provided by ERP-systems do not even consider capacity con-

straints. This leads to considerable amounts of manual planning efforts. Still, for

complex supply chains the resulting plans likely lack in quality. Available advanced

heuristics can produce better plans but at the same time require expertise and mainte-

nance efforts comparable to optimization based approaches. We introduce a concept

of quality of supply network plans and investigate the potential for achieving bal-

ance between effort and plan quality by incorporating certain dimensions of quality

in application friendly planning heuristics.

1 Introduction

Models for tactical supply chain planning from literature make implicit assumptions

on plan quality requirements by incorporating certain constraints, choosing an objec-

tive function and choosing a level of data- and model-granularity. For chemical and

related industries this concerns basic mixed integer programs (as e.g. in [12]) as well

as advanced models (as e.g. in [1, 3, 4, 10]). To the best of our knowledge there is not
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yet an explicit definition of what constitutes quality of tactical plans. [2] stresses the

importance of integration and comprehensiveness in planning to enable creation of

value in the supply chain, [9] emphasizes linking planning levels in a planning hier-

archy. According to our insights from planning practice in the chemical industry,

tactical plans often lack utility for subsequent planning steps and dependent func-

tional areas. Reevaluation of common implicit assumptions on plan quality is neces-

sary. At the same time advanced planning methods may be rejected in practice due

to usability issues.

We discuss the potential for certain aspects of plan quality to be considered by a

still simple heuristic planning approach and evaluate a heuristic planning algorithm

for this purpose based on a real instance from chemical industry.

2 Conceptual Approach to Tactical Plan Quality

The planning process is designed to enable operations which meet demand in the

intended way. This concerns cost minimization/profit maximization objectives as

well as preference of certain customers or markets according to strategic goals.

Within the hierarchical planning process (see [5, 11]) tactical planning performs

a preparatory and coordinating role. This includes properly preparing and coordi-

nating subsequent planning steps (like scheduling or procurement planning) under

consideration of industry specific features like sequence dependent changeovers. We

derive:

Definition 1 The quality of a tactical supply chain plan is determined by the degree

to which it (via subsequent planning steps) enables operations to match demand in

the way intended by business strategy. Core aspects are:

1. Fulfillment of objectives set by business strategy (like cost minimization/profit

maximization/... or prioritization of certain demands) evaluated based on detailed

supply chain information.

2. Appropriate preparation and coordination of subsequent planning steps.
3. Consideration of operations-specific requirements, which concern the tactical

horizon (like aspects of similarity between subsequent plans).

The first core aspect is to be treated with care. The degree to which strategic goals like

profit maximization are met by an aggregate tactical plan reveals itself only under

consideration of detailed supply chain data and information—particularly in case of

substantial sequence dependent changeovers.

The degree to which plans generated in tactical planning meet the postulated

quality requirements depends on the choice of planning method. At the same time

this choice affects planning efforts and complexity. With regard to planning practice

we suggest to consider these aspects jointly when choosing or designing a planning

method.
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3 A Simple Heuristic in the Light of Plan Quality

Plan quality as conceptualized in Sect. 2 can be influenced by means of the com-

plexity and sophistication of planning models and methods. At the same time these

levers have an impact on planning efforts.

Based on the uncapacitated algorithm we encountered in planning practice we

briefly describe a basic heuristic planning approach for Supply Network Planning

(SNP). It incorporates freely available information on the uncapacitated heuristic

algorithm as implemented in the SAP APO Supply Network Planning-module (see

[7]).

Principles of the BasicUncapacitated-Heuristic

1. Move upstream through the tiers of the supply chain, for each tier move through

production facilities following predefined order

2. In case of multiple sourcing options, initially assign dependent demands to facil-

ities of following tiers according to predefined quota

3. Starting from primary demands, following the order from (1.) plan production

quantities and derive dependent demands via given bills of material without con-

sideration of capacity constraints.

Incorporating capacity constraints in the planning algorithm can save large

amounts of manual replanning efforts to arrive at a feasible plan while improving

plan quality.

Incorporating capacity constraints and quality requirements: BasicPQ-Heuristic
In the following we discuss whether central aspects of plan quality can addition-

ally be incorporated in a still simple planning heuristic like the BasicUncapacitated-

heuristic. Based on the core aspects of tactical plan quality as introduced in Sect. 2

we consider a selection of concrete quality requirements:

(a) Profit maximization
(b) Prioritization of demands
(c) Issues with preparation and coordination of subsequent planning steps related

to e.g. sequence dependent changeovers
(d) Similarity over time horizons.

In Fig. 1 we introduce a planning heuristic for SNP which extents the BasicUn-
capacitated heuristic described above by consideration of production capacities and

prioritization of product-demands e.g. based on profit margins. Capacity constraints

are enforced based on the priority ranking of the primary demands which dependent

demands at a certain facility originate from. Due to shelf life-issues in the chemical

industry, cuts regarding ingredients for a certain end product are propagated for all

other ingredients.

For initial illustration, here, we compare the results of BasicPQ under two dif-

ferent demand allocation quotas and a profit-optimal assignment for a small, sim-

plified, two-period instance without backlog (see Fig. 2). We observe, that already
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define strictly monotonous order of priority on end products [EPs]

define sourcing quotas for all products (including internal and external sources)

for all ers

iden fy ers of supply chain 

choose processing order for produc on facili es

for all facili es of the er (following the processing order)

open demand 0>0=

assign primary demands to produc on facili es according to sourcing quotas

check if alterna ve sourcing op ons exist later
in processing order of er 

yes no

assign open demand 
to next alterna ve 
sourcing op on 

reduce all posi ons already planned associated  
with currently associated EP propor onally

reduce dependent demands associated with  
currently associated end EP previously derived at 
current er propor onally

reduce all demands associated with currently 
associated EP assigned to subsequent facili es of 
current er propor onally

for all ers (moving upstream the supply chain)

planned demand

Calculate dependent demands (in product-for-EP format)  

for all product-for-EP combina ons assigned to current facility (ordered by priority of associated EP)

> 0 = 0

Assign dependent demands to produc on facili es of subsequent ers or raw material requirements 
according to sourcing quotas

plan demand as far as permi ed by capacity constraint

Fig. 1 Overview BasicPQ-heuristic

for this very small instance the results of the heuristic approach show a variation

in deviation from an optimal plan depending on the demand figures and demand

allocation quotas. For this small, exemplary instance different quotas even allow the

BasicPQ-Heuristic to deliver profit-optimal plans for the different demand instances

encountered in period 1 and 2 (see Fig. 2).
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26 2 0

26 2 0
0 30 0
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26 0 4
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Product B 2 1

Product C 1 1
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Product A 10

Product B 9
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capacity (each):
30 days

Demand Alloca on Quota for 
BasicPQ-Heuris c 
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2

Prod
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C 10 10

S1

S2

(Profit-) 
op mal
Plan

Period 1 Period 2
Produc on Plans 

A B C Profit
e1
e2

e1
e2
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A B C Profit

0 26 4
26 0 4

26 2 0
0 22 8

0 26 4
26 0 4

502

484

502

Fig. 2 Comparison of BasicPQ-heuristic with prioritization of demands based on profit per unit

under different demand allocation quotas and profit-optimal assignment for a rudimentary instance

Aspects of Quality-Performance
The BasicPQ-heuristic was evaluated based on an appropriately modified two-tier

instance from chemical industry (ten processing- and three filling-facilities, 128

products with 686 facility-specific bills of material) and benchmarked against a basic

MIP-formulation for SNP at the same level of detail and information. Exploratory

analyses for ten demand instances suggest a large influence of the chosen demand

allocation quota on achievable profit (see quality requirement (a), (b)). With the

best found quota-assignment-strategy BasicPQ reached on average 78% of the MIP-

benchmark-value. Facility assignment per material for different demand instances

was stable which is favorable in terms of similarity requirements (see quality require-

ment (d)).

We expect overall and detailed network structure (e.g. for serial, divergent and

convergent structures see [8]) to impact the performance potential of the BasicPQ-

heuristic. As demonstrated in [13] the utility of tactical plans based on aggregate

simplified supply chain information (as BasicPQ is based on) is strongly dependent

on the degree of sequence dependency and extent of change over times (see qual-

ity requirement (c)). Additionally, suitable campaign lengths with regard to inven-

tory holding and changeover costs should impact the applicability of the BasicPQ-

heuristic. As a next step we suggest sensible utilization of idle capacity based on

inventory levels. Extent and effect of uncertainty regarding demand and supply chain

operations (see [6]) should be investigated as well.
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4 Conclusions

Motivated by practicability issues in the chemical industry regarding advanced plan-

ning methods for tactical supply chain planning in practice, we suggested balancing

planning efforts and plan quality and proposed a novel structural approach to plan

quality. We enriched a customary simple uncapacitated heuristic planning approach

by considering certain aspects of plan quality. The BasicPQ-heuristic was illustrated

by a numeric example, and evaluated based on a real instance from chemical indus-

try. Theoretical deliberations already make it obvious, that a simple approach of this

type can only be sensibly applied for supply chains with certain characteristics, par-

ticularly regarding sequence dependent changeovers and campaign lengths.
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The Modulo Network Simplex
with Integrated Passenger Routing

Ralf Borndörfer, Heide Hoppmann, Marika Karbstein
and Fabian Löbel

Abstract Periodic timetabling is an important strategic planning problem in public

transport. The task is to determine periodic arrival and departure times of the lines

in a given network, minimizing the travel time of the passengers. We extend the

modulo network simplex method (Nachtigall and Opitz, Solving periodic timetable

optimisation problems by modulo simplex calculations 2008 [6]), a well-established

heuristic for the periodic timetabling problem, by integrating a passenger (re)routing

step into the pivot operations. Computations on real-world networks show that we

can indeed find timetables with much shorter total travel time, when we take the

passengers’ travel paths into consideration.

1 Introduction

Classical optimization approaches to periodic timetabling are based on formulations

in terms of the period event scheduling problem (PESP) [7], see, e.g., Liebchen [4]

and the references therein. A powerful heuristic for the PESP is the modulo net-
work simplex method, which has been proposed by Nachtigall and Opitz [6]. It iter-

atively improves a given feasible solution by pivot operations. This algorithm has

been improved by Goerigk and Schöbel [3] who introduced pivot selection rules and

cuts to escape local optima.
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Standard PESP models work with fixed travel paths. The passengers, however,

choose their routes depending on the timetable. Approaches to integrate passen-

ger routing in periodic timetabling have been presented recently, see, e.g., [1, 2].

In this paper, we propose to apply the modulo network simplex method to a periodic

timetabling model with variable passenger routing, i.e., to the integrated periodic

timetabling and passenger routing problem. We show that a pivot selection that con-

siders updated passenger routes allows to find better timetables in terms of total travel

time.

2 Periodic Timetabling with Fixed Passenger Routes

Consider a directed graph N = (V ,A), the event-activity network. The nodes V are

called events and represent arrivals and departures of lines at their stations. The arcs

A ⊆ V × V model activities of lines (driving between stations, waiting at stations)

and possible transfers between lines at stations. Further, we are given lower and upper

time bounds 𝓁a, ua ∈ ℚ
≥0, respectively, for the duration of activity a ∈ A. Activity

weights w ∈ ℝA
≥0 represent the number of the passengers traveling on arc a ∈ A.

A periodic timetable 𝜋 ∶ V → ℚ determines for each line periodic arrival and

departure times at its stations. We call a timetable feasible if 𝜋 satisfies the peri-
odic interval constraints 𝓁a ≤ [𝜋j − 𝜋i]T ≤ ua for each activity a = (ij) ∈ A; here,

we define [y]T ∶= y mod T for y ∈ ℝ. We may assume without loss of general-

ity that 0 ≤ 𝓁a ≤ ua, ua − 𝓁a < T , and 𝓁a < T holds for all a ∈ A, see [4]. By Ser-

afini and Ukovich [7], 𝜋 satisfies the periodic interval constraints if and only if there

exist modulo parameters z ∈ ℤA
such that 𝓁a ≤ 𝜋j − 𝜋i + T za ≤ ua ∀ a = (ij) ∈ A.

For a feasible timetable 𝜋 with modulo parameters z, the resulting duration of activ-

ity a = (ij) ∈ A is given by xa ∶= 𝜋j − 𝜋i + T za, and is called periodic tension. The

periodic slack is defined by ya ∶= xa − 𝓁a; it measures how much the lower bound

is exceeded. The goal is to find a feasible timetable such that the resulting weighted

total travel time of all passengers is minimized.

Periodic tensions and slacks can be characterized by means of cycles in N, see

[4, 5]. Let T ⊆ A be a spanning tree of N. For a co-tree arc ā ∈ A ⧵ T, denote by Cā
the fundamental cycle of ā, i.e., the unique oriented cycle Cā induced by adding ā to

the tree. Arcs in Cā with the same orientation as ā are called forward arcs C+
ā , arcs

with opposite orientation are called backward arcsC−
ā . The fundamental cycle matrix

𝛤 ∈ {−1, 0, 1}A⧵T×A
of T is defined by 𝛤āa = 1 if a ∈ C+

ā , 𝛤āa = −1 if a ∈ C−
ā , and

𝛤āa = 0 if a ∉ Cā for all ā ∈ A ⧵ T and a ∈ A.

We introduce slack variables y ∈ ℚA
for the arcs and modulo parameter vari-

ables z ∈ ℤA⧵T
for the co-tree arcs of T. As suggested by Nachtigall [5], the periodic

timetabling problem can be formulated as the following integer program:
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(PTTw) min

∑

a∈A
wa (ya + 𝓁a)

s.t. 𝛤 y − T z = −𝛤 𝓁 (1)

0 ≤ ya ≤ ua − 𝓁a ∀ a ∈ A (2)

ya ∈ ℚ ∀ a ∈ A (3)

za ∈ ℤ ∀ a ∈ A ⧵ T. (4)

The model (PTTw) minimizes the total passenger travel time for a fixed passenger

routing given by the arc weights w ∈ ℝA
≥0. A timetable given by tensions is feasi-

ble if and only if the tensions sum up to a multiple of the period time along every

fundamental cycle. This is expressed by Eq. (1) in terms of slack variables.

3 The Modulo Network Simplex Method

In this section, we recall the modulo network simplex method as proposed by Nachti-

gall and Opitz [6].

A point (y, z) ∈ ℝA × ℤA⧵T
is called a spanning tree solution for (PTTw), if there

exists a spanning tree structure S = S𝓁 ∪ Su, where S is a spanning tree of N, the

periodic slack ya is zero for all a ∈ S𝓁 , and at its upper bound ua − 𝓁a for all a ∈ Su.

The values for all non-tree arcs and the modulo parameters are uniquely determined

by Eq. (1). The spanning tree solution is called feasible if 0 ≤ ya ≤ ua − 𝓁a for all

a ∈ A, i.e., (y, z) is a feasible solution of (PTTw).

Theorem 1 (Nachtigall [5]) Define the periodic slack polyhedron by

Y ∶= conv
{
(y, z) ∈ ℝA × ℤA⧵T ∶ 0 ≤ y ≤ u − 𝓁, 𝛤 y − T z = −𝛤 𝓁

}
.

Then, (y, z) ∈ Y is an extremal point of Y if and only if it is a spanning tree solution.

The idea of the modulo network simplex is as follows: starting with a feasible

spanning tree solution (y, z) for a spanning tree structure S = S𝓁 ∪ Su, the current

solution is iteratively improved by exchanging a co-tree arc ā ∈ A ⧵ S with a tree

arc â ∈ S in its fundamental cycle. This is done by shifting the slack from the co-

tree arc ā to the other arcs in the fundamental cut of â. For every tree arc â ∈ S, the

fundamental cut induced by â is defined by the unique minimal oriented cut Xâ ⊆ A
of N such that Xâ ∩ S = â. As commonly known, ā is contained in the fundamental

cut induced by â if and only if â is contained in the fundamental cycle induced by ā.

Let ̃
𝛤 be the fundamental cycle matrix of S and let 𝛿 ∈ {yā, yā − uā + 𝓁ā}. Then

y′a =
⎧
⎪
⎨
⎪⎩

[ya + ̃
𝛤āâ 𝛿]T if a ∈ X+

â ,

[ya − ̃
𝛤āâ 𝛿]T if a ∈ X−

â ,

ya else,

∀ a ∈ A,



640 R. Borndörfer et al.

induces a feasible spanning tree solution if y′a ≤ ua − 𝓁a for all a ∈ A. That is, if

y′a ≤ ua − 𝓁a for all a ∈ A, then there exists z′ ∈ ℤA⧵T
such that (y′, z′) is a feasible

spanning tree solution of (PTTw) with respect to S′ = S ∪ {ā} ⧵ {a}. If 𝛿 = yā, then

we are pivoting the co-tree arc ā into S′𝓁 , i.e., y′ā = 0. On the other hand, if 𝛿 =
yā − uā + 𝓁ā, then we are pivoting the co-tree arc ā into S′u, i.e., y′ā = uā − 𝓁ā.

We call y′ a feasible pivot operation if y′ is a feasible solution. If the difference

in the objective value is negative, i.e.,
∑

a∈A wa (y′a + 𝓁a) <
∑

a∈A wa (ya+𝓁a
), then we

call this an improving pivot operation.

The modulo network simplex iteratively applies improving pivot operations to the

current tree solution until it terminates with a solution, which cannot be improved

further by exchanging a co-tree arc with a tree arc.

4 Integrating Passenger Routing

In order to integrate passenger routing into the modulo network simplex method, we

replace the fixed arc weights w by a variable passenger routing along paths in the

network N.

The passenger demand is given in terms of an origin-destination matrix (OD-

matrix) (dst) ∈ ℚ
≥0 specifying for each pair (s, t) ∈ V × V the number of passengers

that want to travel from s to t. Let D = {(s, t) ∈ V × V ∶ dst > 0} be the set of all

OD-pairs and for an OD-pair (s, t) let Pst be the set of (s, t)-paths in N and P ∶=⋃
(s,t)∈D Pst be the set of all passenger paths.

We extend the model (PTTw) to a version (PTTP) with integrated passenger rout-

ing. We introduce passenger variables fp ≥ 0 for the fraction of passengers that travel

on path p ∈ P and enforce the passenger flow by constraints
∑

p∈Pst
fp = 1 for all

(s, t) ∈ D. We include constraints (1)–(4) and change the objective as follows:

min c(y, z, f ) ∶=
∑

a∈A

∑

(s,t)∈D

∑

p∈Pst
a∈p

dst fp (ya + 𝓁a).

The resulting model (PTTP) is a mixed-integer non-linear program that minimizes

the total passenger travel time among all feasible timetables.

Theorem 2 There exists an optimal solution (yS, zS, f S) of (PTTP) such that (yS, zS)
is a spanning tree solution, i.e., there exists a spanning tree structure S = S𝓁 ∪ Su
such that ySa = 0 for all a ∈ S𝓁 and ySa = ua − 𝓁a for all a ∈ Su.

Proof Let (y∗, z∗, f ∗) be an optimal solution of (PTTP). Define arc weights w∗
a ∶=∑

(s,t)∈D
∑

p∈Pst∶a∈p
dst f ∗p , a ∈ A. Let (yS, zS) be an optimal spanning tree solution of

(PTTw∗ ) for the arc weights w∗
. Since (yS, zS) is optimal and (y∗, z∗) is feasible for

(PTTw∗ ), we have:
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c(yS, zS, f ∗) =
∑

a∈A
w∗
a(y

S
a + 𝓁a) ≤

∑

a∈A
w∗
a(y

∗
a + 𝓁a) = c(y∗, z∗, f ∗). (5)

This inequality implies that (yS, zS, f ∗) is also an optimal solution of (PTTP). □

Theorem 2 shows that it suffices to investigate spanning tree solutions as well

when we integrate passenger variables. In the integrated case we have to consider

the passenger flow in order to compute the difference in the objective value between

two solutions. Let (y, z, f ) be a feasible spanning tree structure solution of (PTTP)
and let y′ be a feasible pivot operation. The passenger flow that minimizes the travel

time with respect to the modified timetable y′ is given by

f ′ ∶= argmin
{
c(y′, z′, f ) ∶

∑

p∈Pst

fp = 1∀ (s, t) ∈ D, f ∈ [0, 1]P
}
.

Hence, y′ is an improving pivot operation in the integrated case if c(y′, z′, f ′) <
c(y, z, f ).

5 Computational Experiments

We implemented four variants of the modulo network simplex method in C++11 to

assess the improvement potential of our integrated approach. We call the standard

modulo network simplex method with fixed arc weights static. The variant with fully

integrated passenger routing, which compares the objective values with updated pas-

senger flows when searching for improving pivot operations, is called integrated.

Since the integrated variant takes a toll on the runtime compared to the classic sta-

tic variant, we also implemented an iterative version that applies the static modulo

network simplex method and, at its end, updates the arc weights by passenger flow

computations; this process is iterated until it cannot improve the solution any further.

We finally tested a hybrid mode that updates the passenger flow induced arc weights

after each pivot operation.

Instead of selecting the most improving pivot operation in each modulo network

simplex iteration we used a faster “Quality First” rule as proposed in [3], which

selects the first pivot with a satisfying improvement on the objective value. We used

an improvement threshold of 0.1% and a scaling factor of 0.2 in all computations. A

run was terminated after at most two hours plus finishing the incumbent iteration.

All computations were done on an Intel(R) Xeon(R) CPU E3-1290 V2, 3.7 GHz

computer (in 64 bit mode, 15 GB system memory), running Linux.

Statistics on four test instances are given in Table 1. The instance Wuppertal is

based on the real multi-modal public transportation network of the city of Wuppertal

for 2013. The remaining two Wuppertal-instances are obtained by selecting a subset

of lines of this instance. The Dutch instance is based on a network that was introduced

by Bussieck in the context of line planning. In all instances the lines are operated at

different frequencies; their period times are 10, 15, 20, 30, or 60 min.
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Statistics on the computations are given in Table 2. The integrated variant appar-

ently outperforms the others in terms of quality but at the cost of a strong increase in

the computation time. The computations confirm the existence of substantial opti-

mization potentials of integrating passenger routing into periodic timetable compu-

tations.
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A Re-optimization Approach for Train
Dispatching

Frank Fischer, Boris Grimm, Torsten Klug and Thomas Schlechte

Abstract The Train Dispatching Problem (TDP) is to schedule trains through a
network in a cost optimal way. Due to disturbances during operation existing track
allocations often have to be re-scheduled and integrated into the timetable. This has
to be done in seconds and with minimal timetable changes to guarantee smooth
and conflict free operation. We present an integrated modeling approach for the
re-optimization task using Mixed Integer Programming. Finally, we provide com-
putational results for scenarios provided by the INFORMS RAS Problem Soling
Competition 2012.

1 Introduction

The Train Dispatching Problem (TDP) deals with the determination of a railway
timetable by constructing train routes and corresponding arrival and departure times
to operate train requests in a given railway network. Due to the complex operation
rules, limited capacity, which is only upgradeable with massive financial effort, the
infrastructure network builds a natural bottleneck. Thus, it is appreciable to utilize
the existing infrastructure in the best way.

The TDP integrates several major requirements like safety system rules, train
characteristics, blocking and headway times, timetable requirements, and infrastruc-
ture capacities. A detailed problem description and a Mixed Integer Programming
formulation to solve this problem is described in detail in [5]. In this paper, we report
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on a Re-optimization or Re-scheduling approach for the TDP in a real time setting
using a state-of-the-art MIP solver.

The authors of [2] introduced a re-optimization approach for rolling stock rotation
planning problems. In case of the TDP, we adapted it as follows: At some point in
time a railway undertaking has to agree on a timetable, ideally, utilizing an opti-
mization algorithm or by manual planning. Later in time this problem or aspects
changes that much, such that the reference solution, in case of the TDP the timetable,
becomes infeasible. Thus, a modified problem has to be solved. In contrast to the first
process leading to the reference timetable the time limitations are in the second stage
rather strict. Since an operator has only minutes or seconds for his decisions, the
re-optimization algorithm has to calculate solutions within a real time management
system. Another major goal is to change as few as possible in comparison to the
original timetable. This should minimize the disturbance of the ongoing timetable
because fewer changes are easier to communicate, easier to apply, and hence more
reliable. Moreover, it is impossible for an operator to change many routes at the
same time, because the running and blocking times highly depend on the routes and
interaction between the trains. In case of the timetable construction this is evaluated
in detail by microscopic simulation which is not applicable in a real time setting.
Therefore, the reference solution highly influences the objective function. There are
various causes that can lead to a situation where the implemented timetable becomes
unexpectedly infeasible. Predictable and unpredictable construction sites and break-
downs that block a track must be integrated into the timetable as fast as possible. In
addition, delayed trains and modifications of speed limits may require an adjustment
of the timetable. The paper contributes an adaption of the Mixed Integer Program-
ming approaches presented in [5, 7] to re-optimize timetables. We show how to
incorporate re-optimization requirements into the disjunctive graph based formula-
tion, see [1, 3, 4, 6]. An iterative approach is used by [4] to solve real-time instances
of the Dutch railway network. They use a branch-and-bound algorithm for sequenc-
ing train movements and improving the solution by locally rerouting some trains.
The connection between adjacent dispatching areas is studied by [3]. Mascis and
Pacciarelli [6] use a disjunctive graph formulation to model and solve a job-shop
scheduling problem with blocking constraints. This paper is organized as follows.
Section2 defines the considered problem including an overview of the disjunctive
based formulation. In Sect. 3 we present some real world scenarios, consider com-
mon re-optimization use cases for the TDP, and presents computational results. This
indicates that the model and algorithmic approach produces high quality solutions
in a very short time and is able to tackle the real time re-optimization setting.

2 A Re-optimization Model for the TDP

Consider the following problem setting for the TDP. We model the infrastructure
network by a directed graphG = (V, A). The arcs correspond to track segments with
fixed running times τ r

(v,w) for each train r that is able to operate on track segment
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(v,w) ∈ A. For each track segment (v,w) and train pair r, r ′ exists a headway time
hr,r

′
(v,w) which is defined as the minimal time between two consecutive trains r and

r ′ that use the same track segment (v,w), see details in [9]. The set of scheduled
train requests is denoted by R. Each train r ∈ R is associated with an initial route
p∗ ∈ Pr , where Pr is the set of possible routes for request r . Additionally, there are
essential stops Sr ⊂ V for each train r ∈ R. Each stop s ∈ Sr of train r have to be
fulfilled during the time period [αr

s , α
r
s ]. A time unit of deviance from the scheduled

departure of train r , denoted by αr
s , is penalized by crs if the actual departure time

is before αr
s , and crs if the actual departure time is after αr

s . Furthermore, we denote
by δrp the cost that occur from re-routing train r on route p instead of its initial
route p∗ with cost δrp∗ = 0. By γ r ∈ R

− we denote a (negative) profit value for not
routing train r . Usually, this value should ensure that a maximal number of trains is
scheduled. Ifmeaningful data is available this could also be used to give the algorithm
a priority estimation for each train depending on the demand. The set B ⊆ A is the
set of arcs (v,w) where some kind of disturbance takes place during the period of
[β

(v,w)
, β(v,w)].

A solution of the TDP has to associate each scheduled train r ∈ R at most one
route p ∈ Pr with departure times for each node v ∈ p under consideration of the
headway constraints. The task of the model is to select a path for each train and to
determine departure times trv for each node v that is visited by train r on its path. For
this, we enforce relations between different departure times w. r. t. the chosen paths
and the order in which different trains traverse the same arc. In particular, we will
make use of the following three types of decisions:

1. r uses (v,w), which is satisfied if and only if the selected path for r contains arc
(v,w),

2. r ≺(v,w) r ′, which is satisfied if and only if r traverses (v,w) before r ′,
3. r ≺ b(v,w) and r � b(v,w), which are satisfied if and only if r uses (v,w) before

or after the disruption, respectively.

Depending on these conditions, we can formulate the following constraints for the
departure times:

running times:r uses (v,w) ⇒ trv + τ r
(v,w) ≤ trw,

(1)

headway times:r ≺(v,w) r
′ ⇒ trv + hr,r

′
(v,w) ≤ tr

′
v ,

(2)

disruption times:r ≺ b(v,w) ⇒ trw ≤ β
(v,w)

, and r � b(v,w) ⇒ trv ≥ β(v,w).

(3)

We using the following binary variables

1. zrp = 1 ⇐⇒ r runs on p ∈ Pr ,

2. xr,r
′

(v,w) = 1 ⇐⇒ r runs before r ′ on (v,w),
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3. br(v,w) = 1 ⇐⇒ r runs before disruption on (v,w)

and formulate the disjunctive constraints as linear big-M constraints.
With this notation the TDP can be stated as a mixed integer program as follows:

minimize
∑

v∈S
(crvΔ

r
v + crvΔ

r
v) +

∑

r∈R

∑

p∈Pr

δrpz
r
p +

∑

r∈R

γ r
∑

p∈Pr

zrp (4)

subject to (1), (2), (3), (5)
∑

p∈Pr

zrp ≤ 1, r ∈ R,

(6)

trv − Δ
r
v ≤ αr

v, r ∈ R, v ∈ Sr ,
(7)

trv + Δr
v ≥ αr

v, r ∈ R, v ∈ Sr ,
(8)

trv ∈ [αr
v, α

r
v], r ∈ R, v ∈ Sr ,

(9)

trv ,Δ
r
v,Δ

r
v ≥ 0, r ∈ R, v ∈ Sr ,

(10)

z, x, b binary (11)

In addition to the three types of binary variables, the continuous variables trw model
the departure time of train r at node w. The continuous cost variables Δr

w and Δ
r
w

measure the deviation between the departure time of the reference timetable and re-
allocated departures times of train r at node w. The linear objective function (4)
minimizes the sum of the total costs for deviance at stops, costs for alternative
routes, and costs for unscheduled trains. The constraints for the running times (1), the
headway times (2) and the disruption times (3) are formulated as big-M constraints as
mentioned above. The inequalities (7) and (8) ensure the correct values for the time
deviation cost variables and constraints (6) ensure that at most one route is selected
for each train. The departure time windows of the stops are modeled by (9).

If the trains have delays the model aims at pushing the trains back to its actual
routing and timing. In some cases this is not desired since the new schedule may
lead to a lot of modifications of the current timetable, which is not realizable. In this
case the reference departure times could be adjusted to keep the delays at the current
level. Of course, by setting the variables cost crs , c

r
s and δrp to zero for all stops, paths

and trains it is possible to calculate a timetable that is completely independent from
the reference timetable.
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Table 1 Key numbers of re-optimization scenarios from RAS

Instance |R| Disrupted arcs Disrupted routes Planning horizon
(h:m:s)

RAS_1 12 2 5(41%) 17:58:47

RAS_2 18 2 6(33%) 18:07:47

RAS_3 20 12 18(90%) 16:32:15

3 Computational Study

We implemented the proposed re-optimization model in a C++-framework. This
implementation takes use of MIP solver CPLEX 12.6. All our computations were
performed on a desktop computerwith an Intel XeonCPUE3-1245 v3with 3.40GHz
and 32GB of RAM. The set of instances are scenarios derived from the INFORMS
RAS Problem Solving Competition 2012, see [8].

The RAS instances include a microscopic infrastructure network containing 82
nodes and 184 arcs. There are three different scenarios with increasing complexity,
i.e., in terms of larger number of trains and disturbances. Table1 shows the corre-
sponding sizes.

In all cases we chose γ r = −103 for the profit value of routing train r . The
parameter δrp equals the number of deviating tracks between route p and reference
route p∗. The cost parameters are set in such a way that the optimization goals
are weighted in order of importance. First the number of cancelled trains should
be minimal, second the number of route changes should be minimal and third the
departure times should be as close as possible at the reference timetable. For theMIP
solvers we set a time limit of 1800s.

We limited the set of possible routes for each train since otherwise most of the
trains have 192 possible routes which is far too much to handle. In addition, most of
those ignored potential routes cannot be part of an optimal solution. An observation
is that the model can be solved in a few seconds if the number of alternative routes
per train is small. Therefore we sort accordingly to δrp the alternative routes for each
train and select the first 4, 8 and 16 alternative routes for each train, respectively. We
use the cost parameters δrp since there are the only costs that can be calculated in
advance.

The computational results are in Table2. The second column is the number of
alternative routes for each train and is followedby the number of trains in the reference
time table. Then we have the number of blocked trains and the number of planned,
cancelled and rerouted trains in the solution. If the time limit was reached than this
is indicated with TL in the running time column.

From the practical point of view even the restriction to four tours per train is more
than a dispatcher can overlook in a couple of minutes or even seconds. We are able to
solve the first two scenarios to optimality and solve the third with an optimality gap
of at most 5.3%. It turns out that for the RAS instances the first four selected tours
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are sufficient to provide high quality solutions. Furthermore the optimality gaps after
20 s indicate that we are able to get good solutions fast.

4 Conclusion

We extended a well known MIP formulation for the TDP to be able to tackle
re-optimization scenarios. Our computational study demonstrates that our
re-optimization approach can be used to produce high quality solutions in reasonable
computation time for a real time application.
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Electric Vehicle Scheduling—A Study
on Charging Modeling for Electric Vehicles

Nils Olsen and Natalia Kliewer

Abstract Electric Vehicle Scheduling extends the traditional Vehicle Scheduling by

restricting the range of deployed vehicles and considering the possibility to recharge

a vehicle at some charging stations. A fundamental aspect of electro-mobility which

hasn’t attract much attention within existing solution approaches for the E-VSP, is

the functionality of charging an electric vehicle’s battery. In this paper, we propose

models for the charging process of electric vehicles and analyse their impacts on

resulting vehicle schedules. We focus on the question whether widely used assump-

tions concerning the charging times of electric vehicles, for instance constant or lin-

ear charging times, reflect the reality of electro-mobility sufficiently or should be

considered in a more accurate way.

1 Introduction

Scheduling a fleet of vehicles represents a fundamental task within the planning

process of companies in public transportation. The mathematical optimization prob-

lem which results from this task is widely known as the Vehicle Scheduling Problem
(VSP), which determines the vehicle deployment for serving timetabled service trips.

The VSP is a well studied problem in the research community and has been widely

analyzed (cf. [5]).

In the course of global warming and the proceeding rejection of fossil energy

sources towards renewable energies, the importance of alternative engines in the

transport sector has increased strongly. Electro-mobility occupies a special position

in the scope of alternative engines since electric vehicles (EVs) enable an emission-

free movement. Their crucial properties are the much shorter range compared to

combustion engine vehicles, due to the restricted battery capacity and the possibility

to recharge their batteries at charging stations (cf. [13]). Despite of profound research
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in the area of battery technologies, modern EVs merely reach a fractional part of

the range of conventional vehicles (cf. [10]). For companies in public transporta-

tion, there arise new challenges for their planning processes, especially within vehi-

cle scheduling, when providing their services with EVs. Due to the electro-mobility

restrictions, solution methods for the traditional VSP cannot be applied to the electric

case. If we ignore this aspect EVs would very likely stop within their rotations when

they run out of energy and cause high costs, due to recovery services or dissatisfied

passengers. The resulting mathematical optimization problem is denoted as the Elec-
tric Vehicle Scheduling Problem (E-VSP), which is a very current research topic. In

the last few years, researchers have focused on developing solution approaches for

the E-VSP. As a first approach, [7, 8] extended the traditional VSP by restricting

the length of the vehicles’ paths, but neglect the possibility to recharge a vehicle’s

battery. [6] consider, beside a limited range, the possibility to swap a vehicle’s bat-

tery, which can be considered as a constant charging time. [1] present a column-

generation approach, which incorporates both a limited range and chargings at fixed

locations, which is also done in constant time. For generating initial solutions, an

heuristic algorithm is proposed, which generates vehicle schedules greedily with

respect to electro-mobility constraints. [12] develop a column-generation approach,

which considers partial chargings of EVs by a discrete set of states.

Within existing solution approaches for the E-VSP, there are some fundamental

aspects of electro-mobility which have remained unconsidered up to now. In this con-

text, determination of the underlying charging infrastructure or more accurate reflec-

tions of an EV’s technical properties need to be considered. Technical issues concern

battery life-cycles, battery degeneration or the charging and discharging process of

electric batteries. A more realistic consideration of these aspects may likely lead to

optimization potentials, due to the more realistic mapping and increasing degrees of

freedom.

In this paper we focus on the charging process of EVs. We face the question

whether simplified assumptions, like constant or linear charging times as used in [1]

or [12], can be justified in practice, or whether a more specific consideration is nec-

essary. In practice, most EVs use lithium ion batteries to power their engines (cf.

[6] or [13]). [3] present a crucial property of lithium ion batteries, concerning the

required time to recharge a battery depending on its residual energy. Accordingly,

for charging a battery from zero to approximately 65% of its battery capacity, the

actual percentage value depends on the C-rate of the battery, the maximum charging

ratio, the amount of energy which can be fed into a battery per time unit, is avail-

able while the charging ratio decreases quickly when exceeding this threshold. As

a consequence, a lithium ion battery can be charged to an amount of energy less or

equal to 65% in a relatively short time frame, whereas the time needed to fully charge

the battery may take a multiple of that time. This coherence between the charging

time and the residual energy is often connected to the most utilized charging mode

constant current/constant voltage (CC/CV) (cf. [9]). In general, the charging process

of an EV follows a nonlinear pattern depending on its residual energy, the charging

system or other circumstances. Thus, a charging process comprises two components

which are mutually linked: a specific charging time during a vehicle stops at a charg-
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ing station and a specific amount of energy, which is fed into the vehicle’s battery

within this time frame.

In order to answer the introduced question the paper is organized as follows: in

Sect. 2 we define the E-VSP and introduce a heuristic solution method for the E-VSP

from [1], which we will use later. In Sect. 3 we present a modeling for the charging

process of EVs and perform a computational study in Sect. 4 to analyse the results

and give key statements.

2 The Electric Vehicle Scheduling Problem

The objective of the traditional VSP is to determine a cost-optimal assignment of

a set of timetabled service trips to a set of vehicle rotations while satisfying the

following constraints: (1) A vehicle’s schedule begins and ends at the same depot,

(2) trips of a vehicle’s schedule are mutually compatible and (3) every service trip

is covered exactly once. Then, each vehicle rotation represents a sequence of trips,

which a vehicle executes consecutively. The E-VSP extends the VSP by additional

constraints due to the deployment of EVs: (4) A vehicle’s residual energy cannot

fall below zero and cannot exceed its battery capacity and (5) a vehicle can only be

recharged at stoppoints, which are equipped with charging technology.

To evaluate the modeling approaches for the charging process of EVs, we use

a heuristic solution method from [1] based on a concurrent greedy algorithm. The

basic procedure is to consecutively assign service trips to the set of already used

vehicles, subject to electro-mobility constraints. If the range restriction is violated

a charging process is inserted if there’s enough time for charging. From the set of

used vehicles able to execute the current service trip, the one is chosen which causes

minimum additional operative costs. Is there no such vehicle a new one is added.

The procedure is repeated until every service trip is covered.

3 Modeling Approaches for the Charging Process of EVs

As stated previously, the charging process of EVs follows a nonlinear pattern, which

is influenced by several factors. To incorporate external influences beside a vehicle’s

residual energy, we assume that the charging process of an EV is given by a function

e
(
x1,… , xn, c

)
∶ X1 ×⋯ × Xn × [0, cmax] → ℝ

≥0 (1)

which indicates the amount of energy (measured in kWh) that can be fed into the

battery per minute depending on countably many influencing factorsXi, as well as the

residual energy c ∈ [0, cmax] whereby cmax > 0 represents the battery capacity. For

reasons of simplification, we concentrate on a vehicle’s residual energy and neglect

any other factors, i.e. we assume X1,… ,Xn = ∅. (1) is denoted as the charging ratio.
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If a vehicle arrives at a charging station with residual energy c, the required charging

time z ∈ ℤ in min for charging its battery to a charge 𝛽 ∈ [c, cmax] is given implicitly

by

𝛽 = c +
∫

𝛼

c
e(x) dx (2)

with 𝛼 ≥ c and z = ⌈𝛼 − c⌉. Depending on the shape of e, the charging time z may be

computed analytically or has to be approximated, if the integral is not computable or

doesn’t exist. In these cases we use Newton-Cotes formulas together with Newton’s

method to approximate z (cf. [11]). In order to find appropriate shapes of (1), we

gradually approach the nonlinear pattern described in Sect. 1. To enable a compari-

son between constant resp. linear charging times and more complex ones we assume

a linear charging ratio

e(c) = a ⋅ c + b (3)

with a < 0 and b > 0, first. (3) is strictly monotonically decreasing and depends

strongly on the choice of a and b. Thus, (3) implies a decreasing charging ratio rel-

ative to the residual energy, as it was stated before. The parameters a and b must

be chosen in such a way that (3) always remains positive. As a representative of

nonlinear charging ratios we propose a logarithmical charging ratio in the form of

e(c) =
{

a ⋅ log(c) + b , c ≥ lb
b , else (4)

with a, b ∈ ℝ and a lower bound lb ∈ [0, cmax]. The case differentiation is used to

avoid negative charging ratios and enable more accurate modeling.

4 Computational Study

A charging process contains a holding time at a charging station and an amount of

energy, which is fed into a vehicle’s battery during this period. A constant charg-

ing time implies that residual energies are completely neglected, whereas a linear

charging time reflects residuals in a linear way. In order to evaluate these model

assumptions with regard to a battery’s internal processes, we use them for determin-

ing required charging times but, however, we use the more realistic models of the

charging ratio to determine resulting amounts of energy that are fed into a battery

within the respective charging time. For this purpose we assume a constant charg-

ing time of t = 30 min and fit the generic charging ratios (3) and (4) in such a way

that a full charging takes particularly t minutes when a battery is completely empty.

t can be seen as a comparative value but any other choice may be reasonable too.

Since (3) and (4) don’t reflect the hard change of the charging ratio with regard to

CC/CV we use an interpolation of the charging ratio proposed in [3], additionally.
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Fig. 1 Average changes in number of used vehicles using constant and linear charging time and

linear, logarithmical and interpolated charging ratio

We solve two instances of the E-VSP by the algorithm described in Sect. 2, which

differ in the number of service trips (876 vs. 1135) and number of stoppoints (207 vs.

101). The instances’ names contain these two aspects. The charging process within

the algorithm follows the procedure described in Sect. 3. We analyse the number of

used vehicles, since this has the most significant impact on the total costs and helps

us to answer the introduced question. Both instances are based on real-world data

of German public transport companies but are modified to address electro-mobility.

Within the respective route network, 5% of all stoppoints are equipped with charg-

ing technology and are sampled 20 times. Thus, the following results comprise aver-

age values. Due to nonlinear shapes of charging ratios the bounds until a battery is

charged plays an important role when computing charging times. For that reason, we

distinguish between a full charging (𝛽 = 100%) and a charging up to 𝛽 = 75%.

Figure 1 illustrates the average changes in the number of deployed vehicles using

the constant resp. linear time frames for charging together with each of the proposed

charging ratios. We can observe that in both instances, as well as in both scenarios

of 𝛽, the computed numbers of used vehicles exceed the original numbers when

using more complex charging ratios. This is reasonable, because the constant and

linear time frames for charging are not sufficient when the linear, logarithmical and

interpolated charging ratios are assumed as the actual ones. Due to the monotonically

decreasing profiles the time needed to fully recharge a vehicle exceeds the constant

and linear time frame. Consequently, vehicles continue their rotations too early and,

thus, charged amounts of energy are lower than actually required, which leads to

an increase of used vehicles. Furthermore, the nearer we approach the interpolated

charging ratio, which likely represents a realistic modeling, the more vehicles are

used. In addition, we can observe that the numbers of used vehicles for 𝛽 = 75% are

lower than for 𝛽 = 100%. This is comprehensible because computed charging times

by the linear, logarithmical and interpolated approaches come closer to the constant

and linear time frames when charging up to 75% of a vehicle’s battery capacity.
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5 Summary and Conclusion

In this paper, we focused on the charging process of EVs within solution methods

for the E-VSP. In both instances and both scenarios we revealed major gaps between

model assumptions concerning an EV’s charging time and actually loaded energy.

This inconsistency leads to shorter vehicle rotations between charging stations as

actually computed and to an increasing number of deployed vehicles. Furthermore,

the bound of energy until a vehicle’s battery is charged directly influences resulting

vehicle schedules especially when more accurate modeling of the charging ratio is

considered. This crucial aspect of an EV’s charging process may be incorporated in

further research.
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