
Efficiently Mining High Utility Co-location
Patterns from Spatial Data Sets
with Instance-Specific Utilities

Lizhen Wang, Wanguo Jiang, Hongmei Chen(&), and Yuan Fang

Department of Computer Science and Engineering, School of Information
Science and Engineering, Yunnan University, Kunming 650091, Yunnan, China

hmchen@ynu.edu.cn

Abstract. Traditional spatial co-location pattern mining attempts to find the
subsets of spatial features whose instances are frequently located together in
some regions. Most previous studies take the prevalence of co-locations as the
interestingness measure. However, it is more meaningful to take the utility value
of each instance into account in spatial co-location pattern mining in some cases.
In this paper, we present a new interestingness measure for mining high utility
co-location patterns from spatial data sets with instance-specific utilities. In the
new interestingness measure, we take the intra-utility and inter-utility into
consideration to capture the global influence of each feature in co-locations. We
present a basic algorithm for mining high utility co-locations. In order to reduce
high computational cost, some pruning strategies are given to improve the
efficiency. The experiments on synthetic and real-world data sets show that the
proposed method is effective and the pruning strategies are efficient.

Keywords: Spatial co-location patterns � High utility co-location patterns �
Intra-utility � Inter-utility � Pruning

1 Introduction

In recent years, spatial data are rapidly generated and the size of spatial data sets is
getting huger and huger. For example, NASA Earth Observing System has been
generating more than 1 TB of spatial data per day. With the popularity of mobile
devices, spatial data with location would increase faster and faster. The vast amounts
of spatial data contain potential and valuable information which can help us make
important decisions. There are a lot of researches on spatial data mining, including
spatial association rule analysis, spatial clustering, spatial classification, and so on.

In spatial data, if the distance between two spatial instances is no more than a given
distance threshold, the two instances satisfy the neighbor relationship. Traditional
spatial co-location pattern mining aims at finding the subsets of spatial features whose
instances are frequently located in neighborhoods. A row instance of a co-location
c represents a subset of instances, which includes an instance of each feature in c and
forms a clique under the neighbor relationship. All row instances of a co-location
c make up its table instance denoted as T(c). Similar to the support in Association

© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 458–474, 2017.
DOI: 10.1007/978-3-319-55699-4_28

Rules Mining (ARM), Participation Index (PI) is used to evaluate the prevalence of
co-locations. The PI of a co-location c is defined as PI cð Þ ¼ minfi2c PR c; fið Þf g, where
PR c; fið Þ is the Participation Ratio (PR) of feature fi in a co-location c, that is

PRðc; fiÞ ¼ pfi TðcÞj j
Number of instances of fi

, where p is the relational projection operation

with duplication elimination. Participation ratio is used to evaluate the prevalence of
features, and participation index is used to measure the prevalence of co-locations,
which is the interestingness measure in traditional co-location mining.

Mining co-locations is very significant in the real world. For example, botanists
have found that there are orchids in 80% of the area where the middle-wetness
green-broad-leaf forest grows. A mobile service provider may be interested in mobile
service patterns frequently requested by geographical neighboring users. Other appli-
cations include Earth science, public health, biology, transportation, etc.

In most previous studies, the importance of all features and instances are treated
similarly. However, there exist some difference between features and even instances
belonging to the same feature. For instance, the economic value of the rosewood is
much greater than that of the ordinary pine. What’s more, the value of rosewoods with
different sizes is also different. So, only checking the prevalence of co-locations might
be insufficient for identifying real interesting patterns. Traditional co-location mining
can’t find some low frequency but high interesting patterns [19], and some prevalent
patterns which just reflect the common sense may be worthless to users.

Here, we use an example to illustrate the problem. Figure 1 shows the locations of
instances of six kinds of plants (features), and each instance is denoted by the plant type
and a numeric id, e.g. A.1, and edges among instances indicate neighboring relation-
ships. The superscript of each instance represents its utility value, which can be con-
sidered as its price. Table 1 gives the total utility value of each kind of plant which is
the sum of utility value of all instances belonging to the plant type.

In Fig. 1, according to traditional co-location mining, for the co-location {A, B, C},
PI({A, B, C}) = 1/4. And if the prevalence threshold is 0.3, {A, B, C} would be

A.110 F.21

E.22 C.41

C.11 B.37

C.29 B.48

B.58

A.37

D.19

D.21

A.28

F.12
E.32

B.11

A.43

E.110

B.21

C.31

D.33

F.315

Fig. 1. An example spatial data set

Efficiently Mining High Utility Co-location Patterns 459

regarded as a non-interesting co-location. However, according to T({A, B,
C}) = {{A.110, B.48, C.29}, {A.37, B.58, C.29}}, the utility value of feature A’s
instances in {A, B, C} is 17, which accounts for 17/28 of total utility value of A.
Similarly, the proportion of B is 16/25 and C is 9/12. So the utility of each feature in
{A, B, C} account for a large proportion of its total utility. {A, B, C} may be inter-
esting. However, as to the pattern {E, F}, PI({E, F}) = 2/3, T({E, F}) = {{E.22, F.21},
{E.32, F.12}}. But the proportion of E is 4/14 and F is 3/18. So the utility of each
feature in {E, F} is less than 30%. {E, F} may be non-interesting.

Therefore, the traditional measure may not find interesting co-locations because the
utilities of features and instances are ignored. In this paper, we focus on high utility
co-location mining from spatial data sets with instance-specific utilities.

1.1 Related Work

The problem of mining spatial association rules was first discussed in [1]. The par-
ticipation index for prevalent co-location mining and join-based algorithm was pre-
sented in [2, 3]. Then a lot of existing works about co-location mining are based on the
participation index which satisfies the downward closure property. Join-less algorithm
was introduced in [4], using a novel model to materialize spatial neighbor relationships
and an instance-lookup scheme to reduce the computational cost of identifying table
instances. An efficient algorithm based on iCPI-Tree was proposed in [8]. In order to
mine the co-locations with rare features, a new prevalence measure called the maximal
participation ratio was proposed in [9]. A new general class of interestingness measures
based on the spatial distribution of co-locations and information entropy was proposed
in [5]. Probabilistic prevalent co-location mining was introduced in [6] to find
co-locations in the context of uncertain data. [7] studied co-location rule mining on
interval data and defined new related concepts based on the semantic proximity
neighborhood. An optimal candidate generation method was proposed in [17]. Com-
plex spatial co-location mining which can deal with complex spatial relationships was
introduced in [18].

The research on high utility mining was first discussed in ARM [10]. The utility of
each item consists of internal utility and external utility. The internal utility represents
the quantity of items in transactions and the external utility is the unit profit values of
items. But the utility of itemsets doesn’t satisfy the downward closure property which

Table 1. Total utility value of each plant in Fig. 1

Features Instances Total utility values

A A.110, A.28, A.37, A.43 28
B B.11, B.21, B.37, B.48, B.58 25
C C.11, C.29, C.31, C.41 12
D D.19, D.21, D.33 13
E E.110, E.22, E.32 14
F F.12, F.21, F.315 18

460 L. Wang et al.

can improve the mining efficiency, and a two-phase algorithm for fast mining high
utility itemsets was proposed in [11]. [12] introduced a novel framework to mine the
interesting high utility pattern with a strong frequency affinity. An incremental mining
algorithm for efficiently mining high utility itemsets was proposed to handle the
intermittent data environment in [13]. UP-Growth proposed in [14] enhances the
mining performance through maintaining the information of high utility itemsets by
UP-tree. A novel algorithm named GUIDE and a special data structure named
TMUI-tree were proposed for mining temporal maximal utility itemsets from data
stream environment in [15]. [16] introduced an efficient algorithm named USpan to
mine high utility sequences from large scale data with very low minimum utility.

There are more and more studies on co-location mining and high utility itemsets
mining, but there were rare literatures about high utility co-location mining [19, 20].
Similar to ARM [10], [19] divided the utility of features in a co-location into external
utility and internal utility. The external utility represents the unit profile and the internal
utility represents the quantity of different instances of features in a table instance. The
utility of a feature in a co-location is equal to the product of external and internal
utilities. And a framework for mining high utility co-locations was proposed in [19].
By following the definitions in [19], [20] discussed a problem of updating high utility
co-locations on evolving spatial databases.

In some real-world data, the utilities of features are different from each other and
even instances belonging to the same feature may have an obvious difference in util-
ities. Furthermore, in some cases, the data set can’t map into the model of external and
internal utility. Considering the complexity of real-world data, there exist two major
challenges in high utility co-location mining from spatial data sets with instance-
specific utilities. One is how to define the interestingness measure reasonably to judge
high utility co-locations, and another is how to mine high utility co-locations effi-
ciently. In this paper, we try to tackle these challenges.

1.2 Our Contributions

Different from previous researches, we make the following contributions in this paper:
First, we take the instances with utilities as study objects, and the importance of

features and instances is treated differently.
Second, we propose a new interestingness measure to identify high utility

co-locations in spatial data sets with instance-specific utilities.
Third, we present a basic algorithm to mine high utility co-locations. In order to

reduce the computational cost, some pruning strategies are given.
Finally, the extensive experiments on synthetic and real-world data sets verify that

the proposed method is effective and efficient.
The remainder of the paper is organized as follows: Sect. 2 gives the related

concepts for mining high utility co-locations from spatial data sets with instance-
specific utilities, and a basic algorithm is presented in Sect. 3. In Sect. 4, the pruning
strategies are detailed. Experimental results and evaluation are shown in Sect. 5. The
conclusion and future work are discussed in Sect. 6.

Efficiently Mining High Utility Co-location Patterns 461

2 Related Concepts

In the real world, the importance of each instance may be different. Thus, we take the
instances with utilities as study objects and the utilities reflect their importance. The
related concepts for mining high utility co-locations are given in this section, and
Table 2 summarizes notations frequently used throughout the paper.

Definition 1 (spatial instance with utility value). Given a set of spatial features F
and a set of their instances S. Let spatial instance fi � jv 2 S be the j-th instance of
feature fi 2 F. The utility value of fi � jv is expressed by the superscript v. We denote the
utility of spatial instance fi � jv as u fi � jð Þ ¼ v.

According to Definition 1, every instance may have distinct utility, even if they
belong to the same feature. For example, the feature A represents the rosewood.
A.11000 is a 100-year-old rosewood and worth $1000, i.e., u(A.1) = 1000. A.225 is a
10-year-old rosewood, which is worth $25, and u(A.2) = 25.

The total utility of a feature fi 2 F is the sum of utilities of its instances, denoted as
uðfiÞ ¼

Pm
j¼1 uðfi � jÞ, where m is the number of instances belonging to fi. For example,

the total utility of feature A in Fig. 1 is u(A) = u(A.1) + u(A.2) + u(A.3) +
u(A.4) = 10 + 8+ 7 + 3 = 28.

Definition 2 (utility of feature in co-location). Given a size k co-location c = {f1, f2,
…, fk}, we further define the sum of utilities of instances belonging to feature fi 2 c in
table instance T(c) as the utility of fi in c, denoted as uðfi; cÞ ¼

P
fi�j2pfi ðTðcÞÞ uðfi � jÞ,

where p is the relational projection operation with duplication elimination.

For example, for c = {A, B, C} in Fig. 1, T(c) = {{A.110, B.48, C.29}, {A.37, B.58,
C.29}}. The utility of A in c is u(A, c) = u(A.1) + u(A.3) = 10 + 7 = 17.

Table 2. Summary of notations

Notation Definition Notation Definition

F Set of spatial features u(fi) Utility of feature fi
fi i-th spatial feature u(fi, c) Utility of feature fi in co-location c
S Set of features’ instances IntraUR

(fi, c)
Intra-utility ratio of fi in c

fi � jv j-th instance with utility
v of fi

InterUR
(fi, c)

Inter-utility ratio of fi in c

c A co-location pattern UPR(fi, c) Utility participation ratio of fi in c
k Size of c UPI(c) Utility participation index of c
R A spatial neighbor

relationship
w1 Weighted value of IntraUR in

computing UPR
T(c) Table instance of c w2 Weighted value of InterUR in

computing UPR
u fi � jð Þ Utility of instance fi � j M A UPI threshold

462 L. Wang et al.

Definition 3 (intra-utility ratio). Given a size k co-location c = {f1, f2, …, fk}, the
intra-utility ratio of feature fi in co-location c is defined as the proportion of fi’s utility

in c to its total utility, i.e., IntraURðfi; cÞ ¼ uðfi;cÞ
uðfiÞ .

IntraUR(fi, c) indicates the direct utility of feature fi in co-location c, which can be
regarded as its direct influence on c.

For example, for c = {A, B, C} in Fig. 1, T(c) = {{A.110, B.48, C.29}, {A.37, B.58,
C.29}}. The intra-utility ratio of each feature in c is calculated as

IntraURðA; cÞ ¼ uðA.1Þþ uðA.3Þ
uðAÞ ¼ 17=28; IntraURðB; cÞ ¼ uðB.2Þþ uðB.5Þ

uðBÞ ¼ 16=25;

IntraURðC; cÞ ¼ uðC.2Þ
uðCÞ ¼ 9=12:

Definition 4 (inter-utility ratio). Given a size k co-location c = {f1, f2, …, fk}, the

inter-utility ratio of feature fi in co-location c is defined as InterURðfi; cÞ ¼
P

fj2c; j 6¼i
uðfj;cÞP

fj2c; j 6¼i
uðfjÞ .

The inter-utility ratio is regard as the influence of feature fi on other features in
co-location c, which is an indirect influence of fi on c. In a co-location, some instances
of features often co-occur in neighborhoods. Thus, in a co-location c = {f1, f2, …, fk},
the change of feature fi 2 c probably impact on the utility of other features in c. For
example, there are various services in Location-based Service. In the package service,
the sales of service A might promote the sales of service B. So, we use the inter-utility
ratio to indicate the effect of a feature on other features in a co-location. In Fig. 1, the
effect of feature A in co-location {A, B, C} on other features B and C is compute as

InterURðA; cÞ ¼ uðB; cÞþ uðC; cÞ
uðBÞþ uðCÞ ¼ 25=37:

We divide the influence of feature fi into two parts to evaluate a co-location
c comprehensively and reasonably. One is the influence of its utility in c denoted as
IntraUR(fi, c), and another is the indirect influence of fi on c denoted as InterUR(fi, c).

Definition 5 (Utility Participation Ratio, UPR). Given a size k co-location c = {f1,
f2, …, fk}, the weighted sum of IntraUR(fi, c) and InterUR(fi, c) is defined as the utility
participation ratio of feature fi in co-location c, which is denoted as UPR(fi, c) =
w1 � IntraUR(fi, c) + w2 � InterUR(fi, c), where 0 � w1, w2 � 1 and w1 + w2 = 1,
w1 represents the weighted value of IntraUR(fi, c) and w2 represents that of Inter
UR(fi, c).

The w1 and w2 in Definition 5 can be used to adjust the effect of IntraUR and
InterUR, which are assigned the specified values by users in application. For example,
in sales volume promotion of supermarkets, if we are more care the promoted sale
volume of different goods, w1 � w2 may be reasonable. Usually, w1 and w2 satisfy
w1 � w2.

Efficiently Mining High Utility Co-location Patterns 463

For example, in Fig. 1, if we suppose w1 = 0.7 and w2 = 0.3, then the UPR of each
feature in c = {A, B, C} is computed as

UPR A; cð Þ ¼ 0:7� IntraUR A; cð Þþ 0:3� InterUR A; cð Þ
¼ 0:7� 17=28ð Þþ 0:3� 25=37ð Þ ¼ 0:628:

UPR B; cð Þ ¼ 0:7� IntraUR B; cð Þþ 0:3� InterUR B; cð Þ
¼ 0:7� 16=25ð Þþ 0:3� 26=40ð Þ ¼ 0:643:

UPR C; cð Þ ¼ 0:7� IntraUR C; cð Þþ 0:3� InterUR C; cð Þ
¼ 0:7� 9=12ð Þþ 0:3� 33=53ð Þ ¼ 0:711:

Definition 6 (Utility Participation Index, UPI). Given a size k co-location c = {f1, f2,
…, fk}, We define the minimum utility participation ratio among all features in co-
location c as the utility participation index of c, i.e., UPI cð Þ ¼ minfUPRðfi; cÞ; fi 2 cg.

A co-location pattern c is a high utility co-location pattern if and only if
UPI(c) � M holds, where M is a UPI threshold given by users.

The UPI measure extends the traditional PI measure only based on prevalence. If
the utilities of instances and the influence between features in a co-location are ignored,
UPI is equal to the traditional PI.

The prevalent patterns may not be high utility patterns and the high utility patterns
may not be prevalent as well, which can be proved by patterns {E, F} and {A, B, C} in
Fig. 1. If w1 = w2 = 0.5 and M = 0.3, UPI({E, F}) = 0.226 and PI({E, F}) = 0.667,
while UPI({A, B, C}) = 0.628 and PI({A, B, C}) = 0.25. Because of full consideration
into the difference of each instance, our interestingness measure is more reasonable.
However, different from the traditional interestingness measure, UPI does not satisfy
the downward closure property which is a very efficient pruning strategy for mining
prevalent co-locations. Therefore, finding all high utility patterns directly is
time-consuming. For example, for c = {A, D} in Fig. 1, T(c) = {{A.37, D.19}}. Given
w1 = w2 = 0.5, we can get UPI({A, D}) = 0.471. But the super pattern
c0 ¼ A; C; Df g of c; T c0ð Þ ¼ A:37; C:29; D:19

� �� �
, and UPI({A, C, D}) = 0.485.

So, we have the inequality UPI c0ð Þ[UPIðcÞ.

3 A Basic Algorithm

In this section, we present a basic algorithm for mining the high utility co-locations
defined in Sect. 2. The basic algorithm has three phases. The first one is to materialize
the spatial neighbor relationships. The spatial data set is converted into the star
neighborhood partition model in [4]. The second one is to generate candidate
co-locations and compute their table instances. The third one is to compute the UPI of
each candidate co-location and find high utility co-locations. The second and third
phases are repeated with the increment of co-locations’ size. Algorithm 1 shows the
pseudocode of the basic algorithm.

464 L. Wang et al.

Initialization (Step 1–2): Given a spatial data set and a spatial neighbor rela-
tionship, find all neighboring instance pairs using a geometric method such as mesh
generation or plane sweep [4]. The star neighborhoods can be generated from the
neighbor instance pairs by lexicographical order [4]. After generating the star neigh-
borhood set (SN), we initialize all size 1 co-locations with utility participation index
1.0, which means all size 1 co-locations are high utility co-locations. Then, we add all
size 1 co-locations into H1.

Generating Candidate Co-locations (Step 4): A size k (k � 2) candidate
co-locations in Ck is generated from a size k−1 co-location c in Hk−1 or NonHk−1 and a
new feature fs which is not included in c and greater than all features of c in lexico-
graphical order, i.e., Ck ¼ fc0jc0 ¼ c[ffsg;8c 2 Hk�1 [NonHk�1; fs [8fi 2 cg.

Specially, the size 2 candidate co-locations in C2 can be generated from the star
neighborhood set directly.

Calculating the UPIs of Candidate Co-locations (Step 5–6): The size 2
co-locations’ table instances can be gathered from the star neighborhood set directly.
For size k (k > 2) co-locations, their table instances need to be extended by size k−1
co-locations’ table instances. For example, the table instance of co-location {A, B, C}
can be generated from the table instance of co-location {A, B}. Then, we can compute
the UPI of each candidate co-location according to the Definitions 5 and 6.

Identifying High Utility Co-locations (Step 7–8): We can filter high utility
co-locations by the UPIs of candidate co-locations and the given UPI threshold
M. Then, high utility co-locations are added into Hk and non-high utility co-locations
are added into NonHk.

Efficiently Mining High Utility Co-location Patterns 465

Steps 3–10 are repeated with the increment of size k.
In Fig. 1, if w1 = w2 = 0.5 and M = 0.5, we can get the high utility co-locations

{A, B}, {A, C}, {A, B, C}, {B, C}, {B, D}, {C, D}, and {C, E}. The basic algorithm
tests all possible patterns and computes their UPI accurately. So, it is complete and
correct, but it is inefficient. In the next section, we would give some pruning strategies
to improve the efficiency of the basic algorithm.

4 Pruning Strategies

In this section, we will introduce some pruning strategies to promote the efficiency of
the basic algorithm. Traditional co-location mining based on PI can efficiently find all
prevalent co-locations due to the downward closure property. But there is no a similar
method to find all high utility co-locations due to the non-existence of the downward
closure property. Similar to traditional co-location mining, the most time-consuming
component in mining high utility co-locations is to generate the table instances of
candidate patterns. In order to improve the efficiency of the basic algorithm, we have to
early identify some non-high utility candidate co-locations without generating their
table instances. The following pruning strategies are used to prune the non-high utility
candidate patterns ahead of time.

Lemma 1. For n1 � m1 > 0, n2 � m2 > 0, there exists the following inequality:

m1 þm2

n1 þ n2
�maxfm1

n1
;
m2

n2
g

Proof: Given n1 � m1 > 0, n2 � m2 > 0. If m1
n1

� m2
n2
, then there exists

m1 þm2
n1 þ n2

� m1
n1

¼ m2n1�m1n2
n1ðn1 þ n2Þ � 0. So, m1 þm2

n1 þ n2
� m1

n1
holds. Similarly, if m2

n2
� m1

n1
, then

m1 þm2
n1 þ n2

� m2
n2
. Therefore, m1 þm2

n1 þ n2
�maxfm1

n1
; m2
n2
g holds. □

Corollary 1. For k(k > 1) pairs mi and ni (i = 1, 2, …, k), if ni � mi > 0, there exists

the following inequality:
Pk

i¼1
miPk

i¼1
ni
�maxki¼1fmi

ni
g.

Definition 7 (non-high utility feature set). Given a size k co-location c = {f1, f2, …,
fk}, we call the set of all features in co-location c whose UPR is less than the UPI
threshold M as the non-high utility feature set of c.

For example, for c = {A, B, D} in Fig. 1, if M = 0.4 and w1 = w2 = 0.5, then UPR
(A, c) = 0.257, UPR(B, c) = 0.215 and UPR(C, c) = 0.422. The non-high utility fea-
ture set of c is {A, B}.

Theorem 1. If c1 and c2 are two non-high utility co-locations, and they have and only
have one common feature fi and it is a non-high utility feature, then the pattern
c ¼ c1 [c2 must be a non-high utility pattern, i.e., c ¼ c1 [c2 can be pruned.

Proof: Because fi is a non-high utility feature in c1 and c2, we have:

466 L. Wang et al.

UPRðfi; c1Þ ¼ w1
uðfi; c1Þ
uðfiÞ þw2

m1

n1
\M ð1Þ

where m1 ¼
P

fj2c1;j 6¼i uðfj; c1Þ and n1 ¼
P

fj2c1;j6¼i uðfjÞ. And

UPRðfi; c2Þ ¼ w1
uðfi; c2Þ
uðfiÞ þw2

m2

n2
\M ð2Þ

where m2 ¼
P

fj2c2;j 6¼i uðfj; c2Þ and n2 ¼
P

fj2c2;j6¼i uðfjÞ.
For the co-location c ¼ c1 [c2, the UPR of fi in c satisfies:

UPRðfi; cÞ ¼ w1
uðfi; cÞ
uðfiÞ þw2

m1 þm2

n1 þ n2
ð3Þ

due to fi is the unique common feature in c1 and c2.
According to Definition 2 and the concept of table instance, we have

u f ; cð Þ� u f ; c0ð Þ if f is the common feature in co-locations c and c0, and c0�c.
And according to Lemma 1, m1 þm2

n1 þ n2
�maxfm1

n1
; m2
n2
g.

Therefore, we can infer UPR(fi, c) < M by (1), (2) and (3), which can judge that
c ¼ c1 [c2 is a non-high utility co-location. □

For example, for c1 = {A, B, D} and c2 = {B, E} in Fig. 1, if w1 = w2 = 0.5 and
M = 0.5, T(c1) = {{A.37, B.11, D.19}} and T(c2) = {{B.48, E.32}}. The UPRs of
common feature B in c1 and c2 are UPR(B, c1) = 0.215 < M and UPR(B, c2)
= 0.231 < M respectively, which satisfy the conditions of Theorem 2. So,
c ¼ c1 [c2 = {A, B, C, D} must be a non-high utility co-location and can be pruned.

According to the Theorem 1 and Corollary 1, we can infer the Corollary 2.

Corollary 2. For size 2 non-high utility co-locations c1, c2, …, ck (k > 1), if they have
a common non-high utility feature f, then the pattern c ¼ c1 [c2 [. . .[ck must be a
non-high utility pattern, i.e., c can be pruned.

When the spatial data set is sparser or the UPI thresholdM is higher, there would be
large amounts of size 2 non-high utility co-locations. At that time, we could prune a
large number of higher size non-high utility co-locations by combining those size 2
non-high utility co-locations.

In Fig. 1, if w1 = w2 = 0.5 and M = 0.5, there are size 2 non-high utility
co-locations {A, E}, {B, E}, {D, E} and {E, F}. And E is a non-high utility feature.
The co-locations {A, B, E}, {A, D, E}, {A, E, F}, {B, D, E}, {B, E, F}, {D, E, F}, {A,
B, D, E}, {A, B, E, F}, {A, D, E, F}, {B, D, E, F} and {A, B, D, E, F} can be pruned
by Corollary 2.

According to Definition 2, for a size k co-location c = {f1, f2, …, fk} and fi 2
c; u fi; cð Þ� u fi; c0ð Þ holds, where c0 is an arbitrary size k−1 sub-pattern of c including fi.
So, we call the minimum of utilities of fi in size k−1 sub-patterns of c including fi as the
upper bound utility of fi in c, donated as upbound_u(fi, c).

Efficiently Mining High Utility Co-location Patterns 467

For example, for c = {A, B, C} in Fig. 1, the upper bound utility of feature A in c is
upbound_u(A, c) = min{u(A, {A, C}), u(A, {A, B})} = min{17, 28} = 17.

Lemma 2. Given a size k co-location c = {f1, f2, …, fk} and its size k+1 super-pattern
c0 ¼ c[fkþ 1f g, the upper bound of UPI c0ð Þ is computed as follows:

minfw1
uðfi; cÞ
uðfiÞ þw2

P
fj2c;j6¼i uðfj; cÞþ upbound uðfkþ 1; c0ÞP

fj2c;j 6¼i uðfjÞþ uðfkþ 1Þ ; 1� i� kg

Proof: If c = {f1, f2,…, fk} and c0 ¼ c[fkþ 1f g. As to any feature fi 2 c, the inequality
u fi; c0ð Þ � u fi; cð Þ holds.

So, we have UPRðfi; c0Þ �w1
uðfi;cÞ
uðfiÞ þw2

P
fj2c;j6¼i

uðfj;cÞþ upbound uðfkþ 1;c0ÞP
fj2c;j 6¼i

uðfjÞþ uðfkþ 1Þ .

Based on Definition 6, we can infer that:

UPIðc0Þ �minfw1
uðfi; cÞ
uðfiÞ þw2

P
fj2c;j 6¼i uðfj; cÞþ upbound uðfkþ 1; c0ÞP

fj2c;j 6¼i uðfjÞþ uðfkþ 1Þ ; 1� i� kg: □

Theorem 2. Given a size k non-high utility co-location c = {f1, f2,…, fk} and its size k+1
super-pattern c0 ¼ c[fkþ 1f g, if there is a non-high utility feature fi 2 c which satisfiesP

fj2c;j 6¼i
uðfj;cÞP

fj2c;j 6¼i
uðfjÞ [upbound uðfkþ 1;c0Þ

uðfkþ 1Þ , then c0 is a non-high utility co-location, i.e., c can be

pruned.

Proof: For a non-high utility co-location c = {f1, f2, …, fk} and c0 ¼ c[fkþ 1f g, if fi is
a non-high utility feature in c and M is the UPI threshold, we have

UPRðfi; cÞ ¼ w1
uðfi; cÞ
uðfiÞ þw2

m
n
\M ð4Þ

where m ¼ P
fj2c;j6¼i uðfj; cÞ and n ¼ P

fj2c;j6¼i uðfjÞ.
According to Lemma 2, the UPR of fi in c0 satisfies the following inequality:

UPRðfi; c0Þ �w1
uðfi; cÞ
uðfiÞ þw2

mþ upbound uðfkþ 1; c0Þ
nþ uðfkþ 1Þ

According to Lemma 1, we have

mþ upbound uðfkþ 1; c0Þ
nþ uðfkþ 1Þ �max

m
n
;
upbound uðfkþ 1; c0Þ

uðfkþ 1Þ
� �

If m
n [upbound uðfkþ 1;c0Þ

uðfkþ 1Þ , the following inequality holds.

468 L. Wang et al.

UPRðfi; c0Þ �w1
uðfi; cÞ
uðfiÞ þw2

m
n

Based on the inequality (4), we can infer that UPR fi; c0ð Þ\M. So, c0 must be a
non-high utility co-location. □

For example, for c = {B, C, D} in Fig. 1, if w1 = w2 = 0.5 and M = 0.5, due to T
(c) = {{B.48, C.29, D.21}}, UPR(B, c) = 0.36, UPR(C, c) = 0.493 and UPR(D, c)
= 0.268, c is a non-high utility co-location pattern. For the supper-pattern c0 ¼
B; C; D; Ef g of c; upbound u E; c0ð Þ ¼ minfu E; fB; C;ð EgÞþ u E; fB; D; Egð Þ

þ u E; fC; D; Egð Þg ¼ min 2; 2; 2f g ¼ 2. As to the feature B in {B, C, D}, we have:

uðC; cÞþ uðD; cÞ
uðCÞþ uðDÞ ¼ 9þ 1

12þ 13
[

upbound uðE; c0Þ
uðE) ¼ 2

14

So, based on the computing results of size 3 co-locations, we can infer that the size
4 co-location {B, C, D, E} must be a non-high utility co-location.

Theorem 1, Corollary 2 and Theorem 2 are regarded as three pruning strategies to
identify some non-high utility co-locations ahead of time.

5 Experimental Analysis

This section verifies the effect and efficiency of the basic algorithm and the algorithm
with pruning strategies on synthetic and real data sets through experiments. The
algorithms are implemented in Java 1.7 and run on a windows 8 operating system with
3.10 GHz Intel Core i5 CPU and 4 GB memory.

5.1 Data Sets

We conduct the experiments on synthetic data sets and plant data sets of the “Three
Parallel Rivers of Yunnan Protected Areas”. Synthetic data sets are generated using a
spatial data generator similar to [3, 4], and the utilities of instances are assigned
randomly between 0 and 20. In the plant data sets, we compute the utilities of plant
instances according the plant price associated with size and kind of plant. The effi-
ciency of the basic algorithm and the algorithm with pruning strategies are examined on
the synthetic and real data sets.

5.2 The Quality of Mining Results

We aim at finding the high utility co-locations whose instances are frequently located
together in geographic space and which have high utilities. So, we take the criterion
QðcÞ ¼ P

f2c uðf ; cÞ=
P

f2c uðf Þ to evaluate the quality of a mined co-location c.

Efficiently Mining High Utility Co-location Patterns 469

In order to illustrate the interestingness measure UPI proposed in this paper is more
reasonable, we compare the quality of mining results identified by different interest-
ingness measures. They are the traditional participation index measure (PI), the tra-
ditional pattern utility ratio (PUR) proposed in [19] and the UPI proposed in our paper.

In the experiments of Fig. 2, we take the number of spatial features |F| is 15, the total
number of instances |S| is 10000, the neighboring distance threshold d is 30, and
w1 = 0.9, w2 = 0.1. Figure 2(a) shows the sum of quality of top-k interesting
co-locations identified by the measure PI, PUR and UPI respectively. The x-axis refers
to the value k, while y-axis is the sum of quality of top-k interesting patterns. Figure 2(b)
shows the average quality of top-20 interesting patterns identified by the three measures
over different sizes. The x-axis is the sizes of co-locations, while the y-axis is the average
quality of top-20 interesting patterns. The results show that our UPI measure can
identify higher quality co-locations, and it can extract top co-locations with higher
average utility.

5.3 Evaluation of Pruning Strategies

We evaluate the effect of pruning strategies with several workloads, e.g. different
numbers of instances, neighbor distance thresholds, UPI thresholds and pruned rate on
synthetic and real data sets.

5.3.1 Influence of the Number of Instances
We compare the running time of the basic algorithm and the algorithm with pruning
strategies on synthetic and real data sets. We set |F| = 20, d = 20, M = 0.3, w1 =
w2 = 0.5, the running time of two algorithms by increasing the number of instances is
shown in Fig. 3. The x-axis represents the number of total instances and the y-axis is
the running time. As a result, the performance of the algorithm with pruning strategies
is better than the basic algorithm both in synthetic and real data sets. Compared with
synthetic data sets, the neighbor relationships of real data sets are relatively fewer,

100

150

200

250

300

350

300 600 900 1200 1500 1800

S
u

m
 Q

(c
)

of
 T

op
-k

 p
at

te
rn

s

k in Top-k patterns

PI PUR UPI

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 3 4 5 6 7 8A
ve

ra
ge

 Q
(c

)
of

 t
op

-2
0

pa
tt

er
ns

w

it
h

di
ff

er
en

t
si

ze

Size of patterns

PI PUR UPI

(a) (b)

Fig. 2. Testing the quality of mining results, where (a) the sum of quality of top-k interesting
patterns; (b) the average of quality of top-20 interesting patterns with different sizes.

470 L. Wang et al.

which results in less row instances to be computed. So, in our experiments, the runtime
of the algorithms on real data sets is less than that on synthetic data sets.

5.3.2 Influence of the Distance Threshold d
In Fig. 4, we set |F| = 20, |S| = 10000, M = 0.3, w1 = w2 = 0.5. We compare the
running time of two algorithms by changing the distance threshold d, where the x-axis
denotes the distances threshold d and the y-axis represents the running time in different
data sets. From Fig. 4, we can see that the algorithm with pruning strategies is still
faster than the basic algorithm. However, both algorithms have a huge time-cost with
the increase of d. This is because with increasing d, there are more cliques formed,
which results in huge row instances to be computed and more time consumption.

5.3.3 Influence of the UPI Threshold M
The parameters are set |F| = 20, |S| = 10000, d = 15, w1 = w2 = 0.5 in this experiment.
The running time of two algorithms by changing the UPI threshold M is shown in
Fig. 5. The x-axis denotes the value of the UPI threshold M and the y-axis is the
running time. With the increase of M, the more non-high utility co-locations are pruned
ahead of time, which improve the efficiency of the algorithm with pruning strategies.

5.3.4 Pruned Rate
In order to examine efficiency of the three pruning strategies (Theorem 1, Corollary 2,
and Theorem 2), we count the number of candidates pruned by each pruning strategy
respectively. In the experiment, we set |F| = 15, |S| = 4000, d = 20, M = 0.3, w1 =
w2 = 0.5, and we randomly generate 5 different data sets whose size is similar to each
other. We independently run the algorithm with pruning strategies on 5 different data
sets and compute the average proportion of the candidates pruned by each strategy. The
statistic result is shown in Fig. 6.

The result shows that the pruning strategies are very efficient. However, the effi-
ciency of pruning strategies doesn’t be improved in the same degree. There are two
reasons. First, the process of pruning candidates would cost some time. Second, some
pruned co-locations may be used to generate the table instances of super co-locations,

0

500

1000

1500

1 2 3 4 5

R
u

n
n

in
g

ti
m

e(
s)

Number of total instances (104)

basci algorithm on synthetic data

algorithm with the pruning strategies
on synthetic data
basci algorithm on real data

algorithm with pruning strategies on
real data

Fig. 3. The influence of the number of
instances over synthetic and real data sets

0

500

1000

1500

2000

15 20 25 30 35 40

R
u

n
n

in
g

ti
m

e(
s)

Distance threshold d

basic algorithm on synthetic data

algorithm with pruning strategies on
synthetic data

basic algorithm on real data

algorithm with pruning strategies on
real data

Fig. 4. The influence of the distance thresh-
olds over synthetic and real data sets

Efficiently Mining High Utility Co-location Patterns 471

so we might have to generate the table instances of pruned co-locations, which has a
negative effect on the algorithm. Fortunately, it rarely occurs in the experiments. Thus,
the average efficiency of pruning strategies is obvious.

In addition, the basic algorithm and the algorithm with pruning strategies presented
in this paper convert spatial data sets into the star neighborhood partition model in [4].
Algorithms in both papers store spatial neighbor relationships and table instances of
current candidates. Therefore, the memory cost of our algorithms is similar to the
join-less algorithm in [4]. Due to the non-existence of the downward closure property,
the scalability of the basic algorithm requires improvement. From Figs. 3, 4, 5 and 6,
we can see that the pruning strategies significantly reduce the overall runtime of the
basic algorithm, while in some extreme cases less so. Further improvement of scala-
bility is left for future work.

6 Conclusion and Future Work

Different from the previous researches, in this paper we take the instances with utilities
as study objects which are near to real world and a new interesting measure is pro-
posed. We combine the intra-utility ratio and the inter-utility ratio into the utility
participation index for identifying high utility co-locations, which is comprehensive
and reasonable. Because the utility participation index does not satisfy the downward
closure property, we propose the effective pruning strategies to improve the efficiency
of finding high utility co-locations. The experiments on synthetic and real data sets
show that the pruning strategies significantly reduce the overall runtime of the basic
algorithm. Although the algorithm with pruning strategies is better than the basic
algorithm, it also shows less improvement in some extreme case. Our future work
focuses on designing algorithms for bigger data sets and better pruning strategies.

0

20

40

60

80

0.1 0.2 0.3 0.4 0.5 0.6

R
u

n
n

in
g

ti
m

e(
s)

High utility threshold M

basic algorithm on synthetic
data
algorithm with pruning
strategies on synthetic data
basic algorithm on real data

algorithm with pruning
strategies on real data

Fig. 5. The influence of the UPI threshold
M over synthetic and real data sets

candidates
pruned by
stategy 1

candidates
pruned by
stategy 2

candidates
pruned by
stategy 3

unpruned
candidates

candidates pruned
by stategy 1

candidates pruned
by stategy 2

candidates pruned
by stategy 3

unpruned candidates

Fig. 6. The proportion of candidates pruned by
each strategy

472 L. Wang et al.

Acknowledgments. This work is supported by the National Natural Science Foundation of
China (61472346, 61662086), the Natural Science Foundation of Yunnan Province (2015FB114,
2016FA026), the Spectrum Sensing and borderlands Security Key Laboratory of Universities in
Yunnan (C6165903), and the Program for Young and Middle-aged Skeleton Teachers of Yunnan
University.

References

1. Koperski, K., Han, J.: Discovery of spatial association rules in geographic information
databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 47–66.
Springer, Heidelberg (1995). doi:10.1007/3-540-60159-7_4

2. Shekhar, S., Huang, Y.: Co-location rules mining: a summary of results. In: Spatio-Temporal
Symposium on Databases (2001)

3. Huang, Y., Shekhar, S., Xiong, H.: Discovering co-location patterns from spatial data sets: a
general approach. IEEE Trans. Knowl. Data Eng. 16(12), 1472–1485 (2004)

4. Yoo, J.S., Shekhar, S.: A joinless approach for mining spatial co-location patterns. IEEE
Trans. Knowl. Data Eng. 18(10), 1323–1337 (2006)

5. Sengstock, C., Gertz, M., Tran Van, C.: Spatial interestingness measures for co-location
pattern mining. In: SSTDM (ICDM Workshop 2012), pp. 821–826. IEEE Press, New York
(2012)

6. Wang, L., Wu, P., Chen, H.: Finding probabilistic prevalent colocations in spatially
uncertain data sets. IEEE Trans. Knowl. Data Eng. 25(4), 790–804 (2013)

7. Wang, L., Chen, H., Zhao, L., Zhou, L.: Efficiently mining co-location rules on interval data.
In: Cao, L., Feng, Y., Zhong, J. (eds.) ADMA 2010. LNCS (LNAI), vol. 6440, pp. 477–488.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17316-5_45

8. Wang, L., Bao, Y., Lu, Z.: Efficient discovery of spatial co-location patterns using the
iCPI-tree. Open Inf. Syst. J. 3(2), 69–80 (2009)

9. Huang, Y., Pei, J., Xiong, H.: Mining co-location patterns with rare events from spatial data
sets. Geoinformatica 10(3), 239–260 (2006)

10. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from
databases. In: 4th SIAM International Conference on Data Mining, pp. 482–486 (2004)

11. Liu, Y., Liao, W.-K., Choudhary, A.: A two-phase algorithm for fast discovery of high utility
itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518,
pp. 689–695. Springer, Heidelberg (2005). doi:10.1007/11430919_79

12. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., et al.: A framework for mining interesting high
utility patterns with a strong frequency affinity. Inf. Sci. 181(21), 4878–4894 (2011)

13. Hong, T.P., Lee, C.H., Wang, S.L.: An incremental mining algorithm for high average-utility
itemsets. Expert Syst. Appl. 39(8), 7173–7180 (2012)

14. Tseng, V.S., Wu, C.W., Shie, B.E., et al.: UP-Growth: an efficient algorithm for high utility
itemset mining. In: 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 253–262. ACM, New York (2010)

15. Shie, B.E., Tseng, V.S., Yu, P.S.: Online mining of temporal maximal utility itemsets from
data streams. In: ACM Symposium on Applied Computing, pp. 1622–1626. ACM,
New York (2010)

16. Yin, J., Zheng, Z., Cao, L.: USpan: an efficient algorithm for mining high utility sequential
patterns. In: 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 660–668. ACM, New York (2012)

Efficiently Mining High Utility Co-location Patterns 473

http://dx.doi.org/10.1007/3-540-60159-7_4
http://dx.doi.org/10.1007/978-3-642-17316-5_45
http://dx.doi.org/10.1007/11430919_79

17. Lin, Z., Lim, S.: Optimal candidate generation in spatial co-location mining. In: ACM
Symposium on Applied Computing, pp. 1441–1445. ACM, New York (2009)

18. Verhein, F., Al-Naymat, G.: Fast mining of complex spatial co-location patterns using
GLIMIT. In: SSTDM (ICDM Workshop 2007), pp. 679–984. IEEE Press, New York (2007)

19. Yang, S., Wang, L., Bao, X., Lu, J.: A framework for mining spatial high utility co-location
patterns. In: 12th International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD 2015), pp. 595–601. IEEE Press, New York (2015)

20. Wang, X., Wang, L., Lu, J., Zhou, L.: Effectively updating high utility co-location patterns
in evolving spatial databases. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds.) WAIM
2016. LNCS, vol. 9658, pp. 67–81. Springer, Heidelberg (2016). doi:10.1007/978-3-319-
39937-9_6

474 L. Wang et al.

http://dx.doi.org/10.1007/978-3-319-39937-9_6
http://dx.doi.org/10.1007/978-3-319-39937-9_6

	Efficiently Mining High Utility Co-location Patterns from Spatial Data Sets with Instance-Specific Utilities
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Related Concepts
	3 A Basic Algorithm
	4 Pruning Strategies
	5 Experimental Analysis
	5.1 Data Sets
	5.2 The Quality of Mining Results
	5.3 Evaluation of Pruning Strategies
	5.3.1 Influence of the Number of Instances
	5.3.2 Influence of the Distance Threshold d
	5.3.3 Influence of the UPI Threshold M
	5.3.4 Pruned Rate

	6 Conclusion and Future Work
	Acknowledgments
	References

