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Abstract. Overlapping Community Detection from a real network is
unsupervised, and it is hard to know the exact community number or
quantized strength of every node related to each community. Using Non-
negative Matrix Factorization (NMF) for Community Detection, we can
find two non-negative matrices from whole network adjacent matrix, and
the product of two matrices approximates the original matrix well. With
Bayesian explanation in factorizing process, we can not only catch most
appropriate count of communities in a large network with Shrinkage
method, but also verify good threshold how a node should be assigned
to a community in fuzzy situation.

We apply our approach in some real networks and a synthetic net-
work with benchmark. Experimental results for overlapping community
detection show that our method is effective to find the communities num-
ber and overlapping degree, and achieve better performance than other
existing overlapping community detection methods.

Keywords: Overlapping community detection · Non-negative matrix
factorization · Bayesian inference · Automatic relevance determination

1 Introduction

Overlapping Community Detection is an important approach in complex net-
works to understand and analysis large network character [3,50], such as social
network [30,49], collaborative network [39], and biological network [1]. We can
find most correlated overlapping sub-communities to simplify global structure
to understand the network topology, and keep original network with overlapping
structure especially in density network.

It is a recognition with community detection that nodes in same commu-
nity are densely connected, and nodes in different communities are sparsely
connected. A node can be allocated into different communities in overlapping
situation [55]. We can find overlapping communities with methods as clique
percolation techniques [23], random walk [18], label propagation [12,51], seed
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expansion [47], objective function optimization (modularity or other function)
[35], or statistical inference [11,40,48]. Overlapping communities can also be
detected based on the graph partitioning approach, which tries to find underling
clusters from minimize the number of edges between communities [8,43].

Macropol et al. [29] propose a biologically sensitive algorithm based on
repeated random walks (RRW) for discovering functional modules, e.g., com-
plexes or pathways, within large-scale protein networks. RRW considers the ele-
ment of network topology, edge weights, and long range interactions between
proteins. Zhang et al. [53] propose a learning algorithm which can learn a node-
community membership matrix via stochastic gradient descent with bootstrap
sampling. Lee et al. [25] introduce a community assignment algorithm named
Greedy Clique Expansion (GCE). GCE algorithm identifies distinct cliques as
seeds and expands these seeds by greedily optimizing a local fitness function.

In many clustering applications, object data is nonnegative due to their phys-
ical nature, e.g., images are described by pixel intensities and texts are repre-
sented by vectors of word counts. As to a graph-based network, the adjacency
matrix (or weighted adjacency matrix) A as well as the Laplacian matrix com-
pletely represents the structure of network, and A is non-negative naturally.
Meanwhile, Nonnegative Matrix Factorization (NMF) was originally proposed
as a method for dimension reduction and finding matrix factors with parts-of-
whole interpretations [15,27]. Based on the consideration that there is no any
physical meaning to reconstruct a network with negative adjacency matrix, using
NMF to obtain new representations of network with non-negativity constraints
can achieve much productive effect in overlapping community analysis [52,53]. It
is likely an efficient network partition tool to find the communities because of its
powerful interpretability and close relationship with other clustering methods.
Overlapping community detection with NMF can capture the underlying struc-
ture of network in the low dimensional data space with its community-based
representations [41]. Zhang et al. [54] propose a method called bounded nonneg-
ative matrix tri-factorization (BNMTF) with three factors in the factorization,
and explicitly model and learn overlapping community membership of each node
as well as the interaction among communities.

NMF decomposes a given nonnegative data matrix X as X ≈ UVT where
U ≥ 0 and V ≥ 0 (meaning that U and V are component-wise nonnegative).
Tan et al. [45] addresses the estimation of the latent dimensionality in non-
negative matrix factorization (NMF) with the β-divergence, and proposes for
maximum a posteriori (MAP) estimation with majorization-minimization (MM)
algorithms. Psorakis et al. [40] presents a novel approach to community detec-
tion that utilizes the Bayesian non-negative matrix factorization model to extract
overlapping modules from a network.

In this paper, we propose an adaptive Bayesian non-negative matrix factor-
ization (ABNMF) method for overlapping community detection. In a Bayesian
framework, ABNMF assumpts that original matrix X with object matrix U and
V follow a certain probability distribution. In this way, we expect that ABNMF
can obtain a relevant count of communities and quantized strength of each node
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related to every community from original network data. To achieve this, we
design a new non-negative matrix factorization objective function by incorpo-
rating Bayesian Detection, and suggest an adaptive node-based threshold for
different communities. Our experiments show that the proposed approach can
validly estimate relevant dimension in lower space, find suitable overlapping com-
munities, and also achieve better performance than the state-of-arts overlapping
methods.

2 Related Works

Let X be a m × n non-negative matrix, and NMF consists in finding an
approximation:

X ≈ UVT (1)

where U and V are m × k and n × k non-negative matrices. The factorization
rank k is often chosen such that k � min(m,n). The objective behind this
choice is to summarize and split the information contained in U into k fac-
tors (the columns of U). Depending on the application field, these factors are
given different names: basis images, metagenes or source signals. In community
detection, we equivalently and alternatively use the terms primary communities
to refer to matrix U, and mixture coefficient matrix or communities assignment
profiles to refer with matrix V. We examine each row of V, and assign node xj to
community c if c = arg max

c
vjc [44] in non-overlapping community detection like

crisp clustering. If we define a proper threshold set δ, a node j can be assigned
into community c if vjc ≥ δc in overlapping situation like fuzzy clustering [37].

The main approach of NMF is to estimate matrices U and V as a local
minimum with a cost function in some distance metric. Generally we use
β-Divergence Dβ(X;UVT) [7]. When β = 0, 1, 2,Dβ(X;UVT) is proportional
to the (negative) log-likelihood of the Itakara-Saito (IS), KL and Euclidean noise
models up to a constant.

Recently, Bayesian inference has been introduced into NMF with a noise E
between X and UVT.

X = UVT + E (2)

Morten et al. [31] demonstrate how a Bayesian framework for model selec-
tion based on Automatic Relevance Determination (ARD) can be adapted to the
Tucker and CandeComp/PARAFAC (CP) models. By assigning priors for the
model parameters and learning the hyperparameters of these priors the method
is able to turn off excess components and simplify the core structure at a compu-
tational cost of fitting the conventional Tucker/CP model. Morten et al. [32] also
formulate a non-parametric Bayesian model for community detection consistent
with an intuitive definition of communities, and present a Markov chain Monte
Carlo procedure for inferring the community structure.
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Automatic Relevance Determination is a hierarchical Bayesian approach that
widely used for model selection. In ARD, hyperparameters explicitly represent
the relevance of different features by defining the range of variation for these
features, and are usually by modeling the width of a zero-mean prior imposed
on the model parameters. If the width becomes zero, the corresponding feature
cannot have any effect on the prediction. Hence, ARD optimizes these hyperpa-
rameters to discover which features are relevant. While ARD based on Gaussian
or Poisson priors, we can prune excess components by admitting sparse repre-
sentation and retain active components. Applying ARD in some real network
community detection process, we can effectively find the relevant communities
number without knowing in advance.

Jin et al. [17] extend the stochastic model method to detection of overlap-
ping communities with the virtue of autonomous determination of the number
of communities. Their approach hinges upon the idea of ranking node populari-
ties within communities and using a Bayesian method to shrink communities to
optimize an objective function based on the stochastic generative model. Wang
et al. [46] propose a probabilistic model, Dynamic Bayesian Nonnegative Matrix
Factorization, for automatic detection of overlapping communities in temporal
networks. Their model can not only give the overlapping community structure
based on the probabilistic memberships of nodes in each snapshot network but
also automatically determines the number of communities in each snapshot net-
work based on automatic relevance determination.

Schmidt et al. [42] present a Bayesian treatment of NMF based on a Gaussian
likelihood and exponential priors, and approximate the posterior density of the
NMF factors. This model equals to minimize the squares Euclidean distance
D2(X;UVT) for NMF. Cemgil [5] proposes NMF models with a KL-divergence
error measure in a statistical framework with a hierarchical generative model
consisting of an observation and a prior component. We can see that this models
of D1(X;UVT) is equals to NMF model with Poisson noise likelihood:

P (n;λ) =
λn

n!
exp(−λ) (3)

P (X|U, V ) =
∏

i

∏

j

[UV T ]Xij

ij exp(−[UV T ]ij)
Xij !

(4)

We further assume that all entries of X are independent of each other (the
dependency structure is later induced by the matrix product), we can write:

ln(P (X|U, V )) =
∑

i

∑

j

Xij ln[UV T ]ij − [UV T ]ij − ln(Xij !) (5)

We use Stirling’s formula ln(n!) ≈ nln(n)−n for n >> 1 to get approximated
expression:

ln(P (X|U, V )) ≈
∑

i

∑

j

Xij ln
[UV T ]ij

Xij
− [UV T ]ij + Xij (6)
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3 Overlapping Community Detection with Bayesian
NMF

3.1 Bayesian NMF Model

In this section, we introduce Bayesian inference process of our Adaptive
Bayesian NMF (ABNMF) method. Given a network G consisting of n nodes
a1,a2, · · · ,an, we can represent the network as matrix X transformed from adja-
cency matrix. In our ABNMF processing, the diagonal elements are defined to
be 1 rather than 0 as in usual clustering cases, and X is n × n square matrix
and non-negative.

We consider there lies a relation between original network matrix X and
combination of factorized matrix UVT. The distribution of this relation can
be Gaussian [42] or Poisson [26] model. As Poisson noise model algorithm have
much better performance than Gaussian noise models [19,21] to achieve better
sparse estimation effect, we select Poisson likelihood in our ABNMF method. In
maximum-likelihood solution to find U and V, P(X|UVT) is maximized, or its
energy function −logP(X|UVT) is minimized.

To simplify likelihood with positive error [10,36], we chose the relation of
U,V and X as Xij ∼ Poisson(

∑
k Uik ∗ Vkj). In this Poisson model, the log-

likelihood of X and UVT is:

− ln(P (X|UV T )) = −∑
i

∑
j

{
Xij ln

[UV T ]ij
Xij

− [UV T ]ij + Xij

}
(7)

= −Xln(UV T ) + 1UV T 1T + const(X)

where 1 is an n × n matrix with every elements equal to 1. We use independent
half-normal prior over every column of U and V, where the mean is zero and
precisian is βj :

p(uij |βj) = HN (x|0, β−1
j ) (8)

p(vjk|βj) = HN (x|0, β−1
j )

when

HN (x|0, β−1) =

√
2
π

β
1
2 exp(−1

2
βx2) (9)

We define the diagonal matrix B with [β1, ..., βK ] and zeros elsewhere, and
the negative log priors of U and V are:

− ln(p(U |β)) =
∑

i

∑

j

1
2
βju

2
ij −

∑

j

N

2
logβj + const (10)

−ln(p(V |β)) =
∑

j

∑

k

1
2
βjv

2
jk −

∑

j

N

2
logβj + const
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At last, we set the independent prior distribution of βj as a Gamma distrib-
ution with parameters aj and bj :

p(βj |aj , bj) =
b
aj

j

Γ (aj)
β

aj−1
j exp(−βjbj) (11)

The negative log of βj is:

− ln(p(β)) =
∑

j [βjbjk − (aj − 1)lnβj ] + const (12)

The MAP(Maximum a Posteriori) of ABNMF is:

U = −lnP (X|UV T )) − lnP (U |β)) − lnP (V |β)) − lnP (β)) (13)

3.2 Iteration Rules of ABNMF

From Eq. (13), we can derive the multiplicative update rules of ABNMF with
Poisson likelihood. Let φij , ψjk be the Lagrange multiplier for constraint uij ≥ 0
and vjk ≥ 0, respectively, and Φ = [φij ],Ψ = [ψjk]. The Lagrange function L is

L = U + tr(ΦUT) + tr(ΨVT) (14)

Let the derivatives of L with respect to U or V vanish, we have:

∂L
∂U

= −2 ∗ X

UV T
U + 2 ∗ 1U + 2 ∗ BU + Φ = 0 (15)

∂L
∂V

= −2 ∗ X

UV T
V + 2 ∗ 1V + 2 ∗ BV + Ψ = 0 (16)

Using the KKT conditions φijuij = 0 and ψjkvjk = 0, we get the following
equations for uij , vjk:

uij ←− uij

(
X

UV T

)

ij

(
U

1U + UB

)

ij

(17)

vjk ←− vjk

(
X

UV T

)

jk

(
V

1V + V B

)

jk

(18)

and the βj will be updated below:

βj ←− n + aj − 1
1
2 (

∑
i u2

ij +
∑

k v2
jk) + bj

(19)

We can get an approximate fixed value in convergence for iteration. Suppose
the multiplicative updates stop after t iterations with parameters from Table 1,
the overall computational complexity for ABNMF will be O(tn2c + n2). A rela-
tively small initial c will save running time of the algorithm.
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Table 1. Parameters used in complexity analysis

Parameters Description

n Number of network nodes

c Number of initial communities count

βj Paraments of communities number

aj Hyper-hyperparaments a

bj Hyper-hyperparaments b

3.3 Determination of Overlapping Community Number
K and Threshold δ

In regular NMF methods for clustering, the object factorized dimension K should
be given. But in community detection situation, we just know the relation of
nodes without prior information of community number K, and it’s hard to count
out the suitable number. If K is too small, some communities will be very large
and the model can not be fitted well. On contrary, If K is too large, we can
not catch the group character effectively from an entire network and occur into
overfitting. We need to find K with a appropriate solution between network
fineness and overfitting.

To solve this problem, we propose a statistical shrinkage method in a
Bayesian framework to find the number of communities and build a model selec-
tion method based on Automatic Relevance Determination [31,45]. In ABNMF,
we principally iterate out vjk with gradual change, and the prior will try to
promote a shrinkage to zero of vjk with a rate constant proportional to βj . A
large βj represents a belief that the half-normal distribution over vjk has small
variance, and hence vjk is expected to get close to zero. We can see the priors
and the likelihood function (quantifying how well we explain the data) are com-
bined with the effect that columns of V which have little effect in changing how
well we explain the observed data will shrink close to zero. We can effectively
estimate the communities number K by computer the non-zero column number
from V with initial rank c.

In overlapping fuzzy detection, a sparse or dense network may have different
overlapping degree. A dense network may contain more communities overlapped.
Network density p describes the portion of the potential connections in a network
that are actual connections. Every node potentially has a basic probability p to
connect with rest nodes in a network, regardless of whether or not they actually
connect:

p =
2 ∗ |E|

n ∗ (n − 1)
(20)

There is a fact that nodes shared multiple community memberships receive
multiple chances to create a link in overlapping assumption. We may assume each
overlapping sub-community is larger than a potential network, that refer every
vij will large than one fixed threshold in each network. Yang et al. [52] suggest
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that the threshold value can be δ =
√−log(1 − p) to achieve good performance.

Note that this process adaptively generates an increasing relationship between
edge probability and the number of shared communities.

3.4 Performance Comparisons in Different Networks

We compare our algorithm with other four popular overlapping community
detection methods. Five algorithms are listed below:

1. CFinder tries to find overlapping dense groups of nodes in networks, and is
based on method Clique Percolation Method (CPM) [38].

2. COPRA (Community Overlap PRopagation Algorithm) is based on the label
propagation technique for finding overlapping community structure in large
networks [12].

3. OSLOM (Order Statistics Local Optimization Method) locally optimizes the
statistical significance information of a cluster with respect to random fluc-
tuation with Extreme and Order Statistics [24].

4. LCM (Link Communities Method) organizes community structures spanning
inner-city to regional scales while maintaining pervasive overlap, and builds
blocks that reveal overlap and hierarchical organization in networks [2].

5. ABNMF (Adaptive Bayesian Non-negative Matrix Factorization) with Pois-
son likelihood. Its overlapping threshold is related with network density.

We run OSLOM, LFM and ABNMF in different six network datasets without
groundtruth to evaluate its communities number, overlap fraction and modular-
ity. Then we generate a synthetic network with 5000 nodes in different overlap
fraction [22]. The details of experiments are stated below:

(1). In ABNMF methods, we select 10 different initial communities count c and
apply 10 independent experiments. Every experiment iterates for 500 times.

(2). We test the ABNMF method in Email network [14] to evaluate the perfor-
mance with different initial dimension number of c in Table 1.

(3). We use six different size and different character networks to compare com-
munities number, overlap fraction and Modularity [35]. Football (Ameri-
can College football), Email (Email network of University at Rovira i Vir-
gili in Tarragona, Spain), and PGP (Pretty Good Privacy communication
network) [9,13,14] are social networks. Erdos (Collaboration network with
famous mathematician Erdos) and Cmat (Condensed matter collaborations
2003) [4,34] are collaborative networks. Metabolic (Metabolic Network)
[16] is biological network.

(4). We use Omega Index [6,33] to evaluate overlapping communities detecting
performance with benchmark in a synthetic network.

Modularity has widely used to measure the strength of non-overlapping or
overlapping community structure found by community detection methods. In
Eq. (21), Aij is the adjacency matrix, and ki, kj are node degree of i, j. δ(ci, cj)
is probability of having a link between i and j in the null model are weighted
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by the belonging of i and j to the same community, since δ(ci, cj) is equal to 1
only when i and j belong to the same community, and it is 0 otherwise.

Qov =
1
n

∑

i,j∈V

[
Aijδ(ci, cj) − kikj

2n
δ(ci, cj)

]
(21)

The Omega Index can evaluate the extent of two different solutions for over-
lapping communities in which each pair of nodes is estimated to share same
community:

Omega(C1, C2) =

∑min(J,K)
j=0

Aj

N − ∑min(J,K)
j=0

Nj1Nj2
N2

1 − ∑min(J,K)
j=0

Nj1Nj2
N2

(22)

where J and K represent the maximum number of communities in which any pair
of nodes appears together in solution C1 and C2, respectively, Aj is the number
of the pairs agreed by both solutions to be assigned to number of community j,
and N is the number of pairs of nodes. Nj1 is the total number of pairs assigned
to number of communities j in solution C1, and Nj2 is the total number of pairs
assigned to number of communities j in solution C2.

Table 2. Overlapping community number K with different initial c in ABNMF

c K O Qov

1 23 22 0.3600 0.6876

2 30 26 0.3668 0.6887

3 52 30 0.3772 0.6975

4 76 34 0.3768 0.6960

5 114 35 0.3862 0.7058

6 227 36 0.3845 0.7063

7 378 35 0.3846 0.7064

8 567 37 0.3900 0.7133

We run ABNMF method to test the impact of different initial communities
numbers c in Email network. Table 2 lists the different result K, relevant overlap
fraction(O) and Modularity(Qov). ARD is effective well on features extraction
with large initial c, and contractive communities count K is around 30 in Email
network. We can find that different c has weak influence for O and Qov results
when c is set from 567 to 52. In ABNMF, we choose the initial count c from
1/5 to 1/10 of total nodes n to keep the performance of algorithm and keep the
operational efficiency.

3.5 Overlapping Community Detection in Different Network

On American Football Game real network with 115 nodes and 613 edges, we
run ABNMF for case study and the visualization of our found overlapping com-
munity structure is shown in Fig. 1, where same color nodes are allocated into
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same overlapping community. From Fig. 1, we can see that our proposed method
ABNMF automatically finds 10 strong sense communities which are gathered
by crisp clustering, and most of the football teams are correctly assigned into
their corresponding communities in our found overlapping community struc-
ture. Moreover, it is very interesting to note that our proposed method ABNMF
detects 32 overlapping nodes in different communities in total, in which each
overlapping node has two different colors indicating different communities the
node belongs to. This is because, besides against other football teams in the
same conference, these football teams corresponding to the overlapping nodes
also frequently play many games against football teams in other conferences.
Therefore, we can see that our proposed method ABNMF has a good perfor-
mance in detecting overlapping community structures in this real world social
network.

Fig. 1. Overlapping communities of Football network obtained by ABNMF.

We select 6 popular networks with different size, and compare community
number(K), overlap fraction(O) and overlap modularity(Qov) in OSLOM, LCM
and ABNMF. We can find from Table 3 that, our method ABNMF can effectively
find overlapping community number and is highly close to results of OSLOM
and LFM. ABNMF detects much dense communities in overlap fraction and
achieves high overlapping modularity than other two methods. In ABNMF with
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Multiplicative Update Rules [27], we achieve good performance in large PGP
and Cmat networks both of which have more than ten thousands of nodes.
We may also combine with Projected Gradient [28] method or Block Gradient
Descent method [20] to solve Eq. (13) in larger datasets with millions of nodes.

Table 3. Overlapping community detection comparison on different networks

Network Nodes OSLOM LCM ABNMF

K O Qov K O Qov K O Qov

Football 115 9 0.1956 0.6032 11 0.2134 0.5992 10 0.2444 0.6609

Metabolic 453 32 0.4347 0.4212 31 0.4525 0.4678 27 0.5055 0.6919

Email 1133 28 0.2567 0.5796 27 0.2754 0.5821 26 0.3766 0.6982

Erdos 6927 77 0.2765 0.7187 81 0.2897 0.6837 73 0.3098 0.8203

PGP 10680 233 0.4688 0.8782 230 0.478 0.8843 227 0.4944 1

Cmat 27519 486 0.356 0.7216 483 0.4121 0.7255 475 0.534 0.7340

We evaluate the performance of our proposed algorithm on the LFR synthetic
networks with benchmark, and compare with other four overlapping community
detection algorithms. The LFR (Lancichinetti-Fortunato-Radicchi) benchmark
[22] provides a class of artificial networks in which both the degrees of the nodes
and the sizes of the communities follows power laws the same as many real-world
networks. Here, we adopt a LFR benchmark with 5000 nodes respectively from
the benchmark generator source code1 in our experiment:

benchmark -N 5000 -k 10 -maxk 30 -mu 0.1 -minc 10 -maxc 50 -on 50 -om 2
In this LFR benchmark, we set the average degree of nodes davg = 10, the

maximum degree of nodes dmax = 30, the minimum community size minc = 10,
the maximum community size maxc = 50, the exponents of the power law of
the community size distribution t1 = 1, the exponents of the power law of the
community size distribution t2 = 2, the overlapping nodes in the entire network
on = 50, and the number of communities that each overlapping node belongs to
om = 2. Moreover, we define the mixing parameter μ as the average percentage
of edges that connect a node to those in other communities which indicates that
every node shares a fraction (1−μ) edges with other nodes in its community and
a fraction μ edges with nodes outside its community. The network community
structure will be weakened by increasing μ.

Five algorithms are executed on the LFR benchmark network, and the aver-
age Omega Index is used to measure the similarities between the known com-
munity structure and the obtained resultant community structure by these algo-
rithms. The results of different algorithms in the LFR networks are shown in
Table 4.

It can be seen that all these five algorithms perform well and our proposed
ABNMF algorithm has slightly better performance comparing with the other
1 https://sites.google.com/site/santofortunato/inthepress2.

https://sites.google.com/site/santofortunato/inthepress2.


350 X. Shi et al.

Table 4. Omega index comparison on LFR 5000 network

Overlap fraction CPM COPRA OSLOM LPM ABNMF

0.05 0.86 0.86 0.86 0.86 0.89

0.1 0.83 0.855 0.855 0.855 0.88

0.15 0.81 0.85 0.85 0.83 0.86

0.2 0.75 0.84 0.84 0.81 0.86

0.25 0.6 0.82 0.82 0.8 0.85

0.3 0.47 0.82 0.83 0.8 0.84

0.35 0.45 0.79 0.82 0.8 0.83

0.4 0.4 0.77 0.81 0.8 0.83

0.45 0.38 0.74 0.8 0.79 0.82

0.5 0.32 0.71 0.79 0.75 0.81

0.55 0.3 0.64 0.6 0.74 0.8

0.6 0.22 0.62 0.62 0.73 0.77

0.65 0.2 0.1 0.14 0.58 0.7

four algorithms when the value of overlap fraction μ is small on the LFR net-
work. Moreover, as the value of μ increasing, the performance of our proposed
algorithm does not degrade rapidly as shown in Table 4. Therefore, our pro-
posed algorithm has a good ability to detect overlapping community structures
in complex networks no matter whether they have dense or sparse overlapping
structure.

4 Conclusions

In this paper, we solve an overlapping community detection problem using Adap-
tive Bayesian NMF. We propose a model that considerate Bayesian inference
process with Poisson model into NMF, and derive the updating rules and conduct
experiments to valid our model. We also apply Automatic Relevance Determina-
tion method with sparse constrain to learn the community count of a network,
and compare the detection impact of different initial community rank. At last,
we adaptively select a most proper value related to network density as overlap-
ping threshold for mixture coefficient matrix. Our method can be applied in real
network data without any given information, and achieves good performance
than other overlapping community detection methods.
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