
Selçuk Candan · Lei Chen
Torben Bach Pedersen · Lijun Chang
Wen Hua (Eds.)

 123

LN
CS

 1
01

78

22nd International Conference, DASFAA 2017
Suzhou, China, March 27–30, 2017
Proceedings, Part II

Database Systems
for Advanced Applications

Lecture Notes in Computer Science 10178

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

Selçuk Candan • Lei Chen
Torben Bach Pedersen • Lijun Chang
Wen Hua (Eds.)

Database Systems
for Advanced Applications
22nd International Conference, DASFAA 2017
Suzhou, China, March 27–30, 2017
Proceedings, Part II

123

Editors
Selçuk Candan
Arizona State University
Tempe - Phoenix, AZ
USA

Lei Chen
Hong Kong University of Science
and Technology

Hong Kong
China

Torben Bach Pedersen
Aalborg University
Aalborg
Denmark

Lijun Chang
University of New South Wales
Sydney, NSW
Australia

Wen Hua
The University of Queensland
Brisbane, QLD
Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-55698-7 ISBN 978-3-319-55699-4 (eBook)
DOI 10.1007/978-3-319-55699-4

Library of Congress Control Number: 2017934640

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

It is our great pleasure to welcome you to DASFAA 2017, the 22nd edition of the
International Conference on Database Systems for Advanced Applications (DASFAA),
which was held in Suzhou, China, during March 27–30, 2017.

The long history of Suzhou City has left behind many attractive scenic spots and
historical sites with beautiful and interesting legends. The elegant classical gardens, the
old-fashioned houses and delicate bridges hanging over flowing waters in the drizzling
rain, the beautiful lakes with undulating hills in lush green, and the exquisite arts and
crafts, among many other attractions, have made Suzhou a renowned historical and
cultural city full of eternal and poetic charm. Suzhou is best known for its gardens: the
Humble Administrator’s Garden, the Lingering Garden, the Surging Wave Pavilion,
and the Master of Nets Garden. These gardens weave together the best of traditional
Chinese architecture, painting, and arts. Suzhou is also known as the “Venice of the
East.” The city is sandwiched between Taihu Lake and Grand Canal. A network of
channels, criss-crossed with hump-backed bridges, give Suzhou an image of the city on
the water.

We were delighted to offer an exciting technical program, including three keynote
talks by Divesh Srivastava (AT&T Research), Christian S. Jensen (Aalborg Univer-
sity), and Victor Chang (Xi’an Jiaotong University and Liverpool University), one
10-year best paper award presentation; a demo session with four demonstrations; two
industry sessions with nine paper presentations; three tutorial sessions; and of course a
superb set of research papers. This year, we received 300 submissions to the research
track, each of which went through a rigorous review process. Specifically, each paper
was reviewed by at least three Program Committee (PC) members, followed by a
discussion led by the PC co-chairs. Several papers went through a shepherding process.
Finally, DASFA 2017 accepted 73 full research papers, yielding an acceptance ratio of
24.3%.

Four workshops were selected by the workshop co-chairs to be held in conjunction
with DASFAA 2017. They are the 4th International Workshop on Big Data Man-
agement and Service (BDMS 2017), the Second Workshop on Big Data Quality
Management (BDQM 2017), the 4th International Workshop on Semantic Computing
and Personalization (SeCoP), and the First International Workshop on Data Manage-
ment and Mining on MOOCs (DMMOOC 2017).

The workshop papers are included in a separate volume of the proceedings also
published by Springer in its Lecture Notes in Computer Science series.

The conference received generous financial support from Soochow University. The
conference organizers also received extensive help and logistic support from the
DASFAA Steering Committee and the Conference Management Toolkit Support Team
at Microsoft.

We are grateful to the general chairs, Karl Aberer, EPFL, Switzerland, Peter
Scheuermann, Northwestern University, USA, and Kai Zheng, Soochow University,
China, the members of the Organizing Committee, and many volunteers, for their great
support in the conference organization. Special thanks also go to the DASFAA 2017
local Organizing Committee: Zhixu Li and Jiajie Xu, both from Soochow University,
China. Finally, we would like to take this opportunity to thank the authors who sub-
mitted their papers to the conference and the PC members and external reviewers for
their expertise and help in evaluating the submissions.

February 2017 K. Selçuk Candan
Lei Chen

Torben Bach Pedersen

VI Preface

Organization

General Co-chairs

Karl Aberer EPFL, Switzerland
Peter Scheuermann Northwestern University, USA
Kai Zheng Soochow University, China

Program Committee Co-chairs

Selçuk Candan Arizona State University, USA
Lei Chen HKUST, Hong Kong, SAR China
Torben Bach Pedersen Aalborg University, Denmark

Workshops Co-chairs

Zhifeng Bao RMIT, Australia
Goce Trajcevski Northwestern University, USA

Industrial/Practitioners Track Co-chairs

Nicholas Jing Yuan Microsoft, China
Georgia Koutrika HP Labs, USA

Demo Track Co-chairs

Meihui Zhang Singapore University of Technology and Design,
Singapore

Wook-Shin Han POSTECH University, South Korea

Tutorial Co-chairs

Katja Hose Aalborg University, Denmark
Huiping Cao New Mexico State University, USA

Panel Chair

Xuemin Lin University of New South Wales, Australia

Proceedings Co-chairs

Lijun Chang University of New South Wales, Australia
Wen Hua University of Queensland, Australia

Publicity Co-chairs

Bin Yang Aalborg University, Denmark
Xiang Lian University of Texas-Pan American, USA
Maria Luisa Sapino University of Turin, Italy

Local Organization Co-chairs

Zhixu Li Soochow University, China
Jiajie Xu Soochow University, China

Steering Committee Liaison

Xiaofang Zhou University of Queensland, Australia

Conference Secretary

Yan Zhao Soochow University, China

Webmaster

Yang Li Soochow University, China

Program Committee

Amr El Abbadi University of California at Santa Barbara, USA
Alberto Abello UPC Barcelona, Spain
Divyakant Agrawal University of California at Santa Barbara, USA
Marco Aldinucci University of Turin, Italy
Ira Assent Aarhus University, Denmark
Rafael Berlanga Llavori University Jaume I, Spain
Francescho Bonchi ISI Foundation, Italy
Selcuk Candan Arizona State University, USA
Huiping Cao New Mexico State University, USA
Barbara Catania Università di Genova, Italy
Qun Chen Northwestern Polytechnical University, China
Reynold Cheng University of Hong Kong, SAR China
Wonik Choi Inha University, South Korea
Gao Cong Nanyang Technological University, Singapore
Bin Cui Peiking University, China
Lars Dannecker SAP, Germany
Hasan Davulcu Arizona State University, USA
Ugur Demiryurek University of Southern California, USA
Francesco Di Mauro University of Turin, Italy
Curtis Dyreson Utah State University, USA
Hakan Ferhatosmanoglu Bilkent University, Turkey

VIII Organization

Elena Ferrari Università dell’Insubria, Italy
Johann Gamper Free University of Bozen-Bolzano, Italy
Hong Gao Harbin Institute of Technology, China
Yunjun Gao Zhejiang University, China
Yash Garg Arizona State University, USA
Lukasz Golab University of Waterloo, Canada
Le Gruenwald University of Oklahoma, USA
Ismail Hakki Toroslu Middle East Technical University, Turkey
Jingrui He Arizona State University, USA
Yoshiharu Ishikawa Nagoya University, Japan
Linnan Jiang HKUST, SAR China
Cheqing Jin East China Normal University, China
Alekh Jindal MIT, USA
Sungwon Jung Jung Sogang University, South Korea
Arijit Khan Nanyang Technological University, Singapore
Latifur Khan University of Texas at Dallas, USA
Deok-Hwan Kim Inha University, South Korea
Jinho Kim Kangwon National University, South Korea
Jong Wook Kim Sangmyung University, South Korea
Jung Hyun Kim Arizona State University, USA
Sang-Wook Kim Hanyang University, South Korea
Peer Kroger LMU Munich, Germany
Anne Laurent Université de Montpellier II, France
Wookey Lee Inha University, South Korea
Young-Koo Lee Kyung Hee University, South Korea
Chengkai Li University of Texas at Arlington, USA
Feifei Li University of Utah, USA
Guoliang Li Tsinghua University, China
Zhixu Li Soochow University, China
Xiang Lian Kent State University, USA
Eric Lo Chinese University of Hong Kong, SAR China
Woong-Kee Loh Gachon University, South Korea
Hua Lu Aalborg University, Denmark
Nikos Mamoulis University of Ioannina, Greece/University

of Hong Kong, SAR China
Ioana Manolescu Inria, France
Rui Meng HKUST, SAR China
Parth Nagarkar Arizona State University, USA
Yunmook Nah Dankook University, South Korea
Kjetil Norvag Norwegian University of Science and Technology,

Norway
Sarana Yi Nutanong City University of Hong Kong, SAR China
Vincent Oria New Jersey Institute of Technology, USA
Paolo Papotti Arizona State University, USA
Torben Bach Pedersen Aalborg University, Denmark
Ruggero Pensa University of Turin, Italy

Organization IX

Dieter Pfoser George Mason University, USA
Evaggelia Pitoura University of Ioannina, Greece
Silvestro Poccia University of Turin, Italy
Weixiong Rao Tongji University, China
Matthias Renz George Mason University, USA
Oscar Romero UPC Barcelona, Spain
Florin Rusu University of California Merced, USA
Simonas Saltenis Aalborg University, Denmark
Maria Luisa Sapino University of Turin, Italy
Claudio Schifanella University of Turin, Italy
Cyrus Shahabi University of Southern California, USA
Jieying She HKUST, SAR China
Hengtao Shen University of Queensland, China
Yanyan Shen Shanghai Jiao Tong University, China
Alkis Simitsis HP Labs, USA
Shaoxu Song Tsinghua University, China
Yangqiu Song HKUST, SAR China
Xiaoshuai Sun University of Queensland, Australia
Letizia Tanca Politecnico di Milano, Italy
Nan Tang Qatar Computing Research Institute, Qatar
Egemen Tanin University of Melbourne, Australia
Junichi Tatemura Google, USA
Christian Thomsen Aalborg University, Denmark
Hanghang Tong Arizona State University, USA
Yongxin Tong Beihang University, China
Panos Vassiliadis University of Ioannina, Greece
Sabrina De Capitani

Vimercati
University of Milan, Italy

Bin Wang Northeastern University, China
Wei Wang National University of Singapore, Singapore
Xin Wang Tianjin University, China
John Wu Lawrence Berkeley Lab, USA
Xiaokui Xiao Nanyang Technological University, Singapore
Xike Xie University of Science and Technology of China, China
Jianliang Xu Hong Kong Bapatist University, SAR China
Jeffrey Xu Yu Chinese University of Hong Kong, China
Xiaochun Yang Northeastern University, China
Bin Yao Shanghai Jiao Tong University, China
Hongzhi Yin University of Queensland, Australia
Man Lung Yiu Hong Kong Polytechnic, SAR China
Yi Yu National Institute of Informatics, Japan
Ye Yuan Northeastern University, China
Meihui Zhang Singapore University of Technology and Design,

Singapore
Wenjie Zhang University of New South Wales, Australia
Ying Zhang University of Technology Sydney, Australia

X Organization

Zhengjie Zhang Advanced Digital Sciences Center, Singapore
Xiangmin Zhou RMIT, Australia
Yongluan Zhou University of Southern Denmark, Denmark
Lei Zhu University of Queensland, Australia
Esteban Zimanyi Université Libre de Bruxelles, Belgium
Andreas Zufle George Mason University, USA

Industry Track Program Committee

Akhil Arora Xerox Research Centre, India
Jie Bao Microsoft, China
Senjuti Basu Roy UW Tacoma, USA
Neil Zhenqiang Gong Iowa State University, USA
Defu Lian University of Electronic Science and Technology,

China
Qi Liu University of Science and Technology of China, China
Alkis Simitsis HP Labs, USA
Kostas Stefanidis University of Tampere, Finland
Lu-An Tang NEC Lab, USA
Fuzheng Zhang Microsoft, China
Hengshu Zhu Baidu, China

Demo Track Program Committee

Jinha Kim Oracle Labs, USA
Xuan Liu Baidu, China
Yanyan Shen Shanghai Jiao Tong University, China
Yongxin Tong Beihang University, China

Additional Reviewers

Jinpeng Chen Beihang University, China
Xilun Chen Arizona State University, USA
Yu Cheng Turn Inc., USA
Alexander Crosdale UC Merced, USA
Tiziano De Matteis University of Pisa, Italy
Vasilis Efthymiou University of Crete, Greece
Roberto Esposito University of Turin, Italy
Yixiang Fang The University of Hong Kong, SAR China
Christian Frey LMU Munich, Germany
Yash Garg Arizona State University, USA
Concorde Habineza George Mason University, USA
Jiafeng Hu The University of Hong Kong, SAR China
Zhiyi Huang UC Merced, USA
Zhipeng Huang The University of Hong Kong, SAR China
Shengyu Huang Arizona State University, USA

Organization XI

Petar Jovanovic UPC Barcelona, Spain
Elvis Koci Technische Universität Dresden, Germany
Georgia Koloniari University of Macedonia, Greece
Haridimos Kondylakis ICS-FORTH, Greece
Rohit Kumar
Xiaodong Li The University of Hong Kong, SAR China
Xinsheng Li Arizona State University, USA
Mao-Lin Li Arizona State University, USA
Xuan Liu Google, USA
Sicong Liu Arizona State University, USA
Yujing Ma UC Merced, USA
Sebastian Mattheis BMW Car-IT, Germany
Mirjana Mazuran Politecnico di Milano, Italy
Gabriele Mencagli University of Pisa, Italy
Faisal Munir
Sergi Nadal Universitat Politècnica de Catalunya, Spain
Silvestro Poccia University of Turin, Italy
Emanuele Rabosio Politecnico di Milano, Italy
Klaus A. Schmid Ludwig-Maximilians Universität München, Germany
Caihua Shan The University of Hong Kong, SAR China
Haiqi Sun The University of Hong Kong, SAR China
Massimo Torquati University of Turin, Italy
Martin Torres UC Merced, USA
Jovan Varga Universitat Politècnica de Catalunya, Spain
Paolo Viviani University of Turin, Italy
Hongwei Wang
Jianqiu Xu Nanjing University of Aeronautics and Astronautics,

China
Yong Xu The University of Hong Kong, SAR China
Xiaoyan Yang Advanced Digital Sciences Center, Singapore
Liming Zhan University of New South Wales, Australia
Xin Zhang UC Merced, USA
Weijie Zhao UC Merced, USA
Yuhai Zhao Northeastern University, China

XII Organization

Contents – Part II

Map Matching and Spatial Keywords

HIMM: An HMM-Based Interactive Map-Matching System 3
Xibo Zhou, Ye Ding, Haoyu Tan, Qiong Luo, and Lionel M. Ni

HyMU: A Hybrid Map Updating Framework . 19
Tao Wang, Jiali Mao, and Cheqing Jin

Multi-objective Spatial Keyword Query with Semantics 34
Jing Chen, Jiajie Xu, Chengfei Liu, Zhixu Li, An Liu, and Zhiming Ding

Query Processing and Optimization (II)

RSkycube: Efficient Skycube Computation by Reusing Principle 51
Kaiqi Zhang, Hong Gao, Xixian Han, Donghua Yang, Zhipeng Cai,
and Jianzhong Li

Similarity Search Combining Query Relaxation and Diversification 65
Ruoxi Shi, Hongzhi Wang, Tao Wang, Yutai Hou, Yiwen Tang,
Jianzhong Li, and Hong Gao

An Unsupervised Approach for Low-Quality Answer Detection
in Community Question-Answering . 85

Haocheng Wu, Zuohui Tian, Wei Wu, and Enhong Chen

Approximate OLAP on Sustained Data Streams . 102
Salman Ahmed Shaikh and Hiroyuki Kitagawa

Search and Information Retrieval

Hierarchical Semantic Representations of Online News Comments
for Emotion Tagging Using Multiple Information Sources 121

Chao Wang, Ying Zhang, Wei Jie, Christian Sauer, and Xiaojie Yuan

Towards a Query-Less News Search Framework on Twitter 137
Xiaotian Hao, Ji Cheng, Jan Vosecky, and Wilfred Ng

Semantic Definition Ranking . 153
Zehui Hao, Zhongyuan Wang, Xiaofeng Meng, Jun Yan,
and Qiuyue Wang

An Improved Approach for Long Tail Advertising in Sponsored Search 169
Amar Budhiraja and P. Krishna Reddy

String and Sequence Processing

Locating Longest Common Subsequences with Limited Penalty 187
Bin Wang, Xiaochun Yang, and Jinxu Li

Top-k String Auto-Completion with Synonyms . 202
Pengfei Xu and Jiaheng Lu

Efficient Regular Expression Matching on Compressed Strings 219
Yutong Han, Bin Wang, Xiaochun Yang, and Huaijie Zhu

Mining Top-k Distinguishing Temporal Sequential Patterns
from Event Sequences . 235

Lei Duan, Li Yan, Guozhu Dong, Jyrki Nummenmaa, and Hao Yang

Stream Data Processing

Soft Quorums: A High Availability Solution for Service Oriented
Stream Systems . 253

Chunyao Song, Tingjian Ge, Cindy Chen, and Jie Wang

StroMAX: Partitioning-Based Scheduler for Real-Time Stream
Processing System. 269

Jiawei Jiang, Zhipeng Zhang, Bin Cui, Yunhai Tong, and Ning Xu

Partition-Based Clustering with Sliding Windows for Data Streams 289
Jonghem Youn, Jihun Choi, Junho Shim, and Sang-goo Lee

CBP: A New Parallelization Paradigm for Massively Distributed
Stream Processing . 304

Qingsong Guo and Yongluan Zhou

Social Network Analytics (II)

Measuring and Maximizing Influence via Random Walk in Social
Activity Networks . 323

Pengpeng Zhao, Yongkun Li, Hong Xie, Zhiyong Wu, Yinlong Xu,
and John C.S. Lui

Adaptive Overlapping Community Detection with Bayesian NonNegative
Matrix Factorization . 339

Xiaohua Shi, Hongtao Lu, and Guanbo Jia

XIV Contents – Part II

A Unified Approach for Learning Expertise and Authority
in Digital Libraries . 354

B. de La Robertie, L. Ermakova, Y. Pitarch, A. Takasu, and O. Teste

Graph and Network Data Processing

Efficient Local Clustering Coefficient Estimation in Massive Graphs 371
Hao Zhang, Yuanyuan Zhu, Lu Qin, Hong Cheng, and Jeffrey Xu Yu

Efficient Processing of Growing Temporal Graphs 387
Huanhuan Wu, Yunjian Zhao, James Cheng, and Da Yan

Effective k-Vertex Connected Component Detection
in Large-Scale Networks . 404

Yuan Li, Yuhai Zhao, Guoren Wang, Feida Zhu, Yubao Wu,
and Shengle Shi

Spatial Databases

Efficient Landmark-Based Candidate Generation for kNN Queries
on Road Networks . 425

Tenindra Abeywickrama and Muhammad Aamir Cheema

MinSum Based Optimal Location Query in Road Networks 441
Lv Xu, Ganglin Mai, Zitong Chen, Yubao Liu, and Genan Dai

Efficiently Mining High Utility Co-location Patterns from Spatial Data Sets
with Instance-Specific Utilities . 458

Lizhen Wang, Wanguo Jiang, Hongmei Chen, and Yuan Fang

Real Time Data Processing

Supporting Real-Time Analytic Queries in Big
and Fast Data Environments . 477

Guangjun Wu, Xiaochun Yun, Chao Li, Shupeng Wang, Yipeng Wang,
Xiaoyu Zhang, Siyu Jia, and Guangyan Zhang

Boosting Moving Average Reversion Strategy for Online Portfolio
Selection: A Meta-learning Approach . 494

Xiao Lin, Min Zhang, Yongfeng Zhang, Zhaoquan Gu, Yiqun Liu,
and Shaoping Ma

Continuous Summarization over Microblog Threads 511
Liangjun Song, Ping Zhang, Zhifeng Bao, and Timos Sellis

Drawing Density Core-Sets from Incomplete Relational Data 527
Yongnan Liu, Jianzhong Li, and Hong Gao

Contents – Part II XV

Big Data (Industrial)

Co-training an Improved Recurrent Neural Network with Probability
Statistic Models for Named Entity Recognition . 545

Yueqing Sun, Lin Li, Zhongwei Xie, Qing Xie, Xin Li, and Guandong Xu

EtherQL: A Query Layer for Blockchain System. 556
Yang Li, Kai Zheng, Ying Yan, Qi Liu, and Xiaofang Zhou

Optimizing Scalar User-Defined Functions in In-Memory Column-Store
Database Systems . 568

Cheol Ryu, Sunho Lee, Kihong Kim, Kunsoo Park, Yongsik Kwon,
Sang Kyun Cha, Changbin Song, Emanuel Ziegler, and Stephan Muench

GPS-Simulated Trajectory Detection . 581
Han Su, Wei Chen, Rong Liu, Min Nie, Bolong Zheng, Zehao Huang,
and Defu Lian

Social Networks and Graphs (Industrial)

Predicting Academic Performance via Semi-supervised Learning
with Constructed Campus Social Network . 597

Huaxiu Yao, Min Nie, Han Su, Hu Xia, and Defu Lian

Social User Profiling: A Social-Aware Topic Modeling Perspective. 610
Chao Ma, Chen Zhu, Yanjie Fu, Hengshu Zhu, Guiquan Liu,
and Enhong Chen

Cost-Effective Data Partition for Distributed Stream Processing System 623
Xiaotong Wang, Junhua Fang, Yuming Li, Rong Zhang,
and Aoying Zhou

A Graph-Based Push Service Platform. 636
Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He

Edge Influence Computation in Dynamic Graphs . 649
Yongrui Qin, Quan Z. Sheng, Simon Parkinson,
and Nickolas J.G. Falkner

Demos

DKGBuilder: An Architecture for Building a Domain Knowledge Graph
from Scratch. 663

Yan Fan, Chengyu Wang, Guomin Zhou, and Xiaofeng He

XVI Contents – Part II

CLTR: Collectively Linking Temporal Records Across
Heterogeneous Sources . 668

Yanyan Zou and Kasun S. Perera

PhenomenaAssociater: Linking Multi-domain Spatio-Temporal Datasets. 672
Prathamesh Walkikar and Vandana P. Janeja

VisDM–A Data Stream Visualization Platform . 677
Lars Melander, Kjell Orsborn, Tore Risch, and Daniel Wedlund

Author Index . 681

Contents – Part II XVII

Contents – Part I

Semantic Web and Knowledge Management

A General Fine-Grained Truth Discovery Approach for Crowdsourced
Data Aggregation . 3

Yang Du, Hongli Xu, Yu-E Sun, and Liusheng Huang

Learning the Structures of Online Asynchronous Conversations 19
Jun Chen, Chaokun Wang, Heran Lin, Weiping Wang, Zhipeng Cai,
and Jianmin Wang

A Question Routing Technique Using Deep Neural Network
for Communities of Question Answering . 35

Amr Azzam, Neamat Tazi, and Ahmad Hossny

Category-Level Transfer Learning from Knowledge Base to Microblog
Stream for Accurate Event Detection . 50

Weijing Huang, Tengjiao Wang, Wei Chen, and Yazhou Wang

Indexing and Distributed Systems

AngleCut: A Ring-Based Hashing Scheme for Distributed
Metadata Management . 71

Jiaxi Liu, Renxuan Wang, Xiaofeng Gao, Xiaochun Yang,
and Guihai Chen

An Efficient Bulk Loading Approach of Secondary Index in Distributed
Log-Structured Data Stores. 87

Yanchao Zhu, Zhao Zhang, Peng Cai, Weining Qian, and Aoying Zhou

Performance Comparison of Distributed Processing of Large Volume
of Data on Top of Xen and Docker-Based Virtual Clusters 103

Haejin Chung and Yunmook Nah

An Adaptive Data Partitioning Scheme for Accelerating Exploratory Spark
SQL Queries . 114

Chenghao Guo, Zhigang Wu, Zhenying He, and X. Sean Wang

Network Embedding

Semi-Supervised Network Embedding . 131
Chaozhuo Li, Zhoujun Li, Senzhang Wang, Yang Yang,
Xiaoming Zhang, and Jianshe Zhou

CirE: Circular Embeddings of Knowledge Graphs . 148
Zhijuan Du, Zehui Hao, Xiaofeng Meng, and Qiuyue Wang

PPNE: Property Preserving Network Embedding. 163
Chaozhuo Li, Senzhang Wang, Dejian Yang, Zhoujun Li, Yang Yang,
Xiaoming Zhang, and Jianshe Zhou

HINE: Heterogeneous Information Network Embedding. 180
Yuxin Chen and Chenguang Wang

Trajectory and Time Series Data Processing

DT-KST: Distributed Top-k Similarity Query on Big Trajectory Streams 199
Zhigang Zhang, Yilin Wang, Jiali Mao, Shaojie Qiao, Cheqing Jin,
and Aoying Zhou

A Distributed Multi-level Composite Index for KNN Processing on Long
Time Series . 215

Xiaqing Wang, Zicheng Fang, Peng Wang, Ruiyuan Zhu, and Wei Wang

Outlier Trajectory Detection: A Trajectory Analytics Based Approach 231
Zhongjian Lv, Jiajie Xu, Pengpeng Zhao, Guanfeng Liu, Lei Zhao,
and Xiaofang Zhou

Clustering Time Series Utilizing a Dimension Hierarchical
Decomposition Approach . 247

Qiuhong Li, Peng Wang, Yang Wang, Wei Wang, Yimin Liu, Jiaye Wu,
and Danyang Dou

Data Mining

Fast Extended One-Versus-Rest Multi-label SVM Classification Algorithm
Based on Approximate Extreme Points . 265

Zhongwei Sun, Zhongwen Guo, Xupeng Wang, Jing Liu,
and Shiyong Liu

Efficiently Discovering Most-Specific Mixed Patterns from Large
Data Trees . 279

Xiaoying Wu and Dimitri Theodoratos

Max-Cosine Matching Based Neural Models for Recognizing
Textual Entailment . 295

Zhipeng Xie and Junfeng Hu

An Intelligent Field-Aware Factorization Machine Model 309
Cairong Yan, Qinglong Zhang, Xue Zhao, and Yongfeng Huang

XX Contents – Part I

Query Processing and Optimization (I)

Beyond Skylines: Explicit Preferences . 327
Markus Endres and Timotheus Preisinger

Optimizing Window Aggregate Functions in Relational Database Systems . . . 343
Guangxuan Song, Jiansong Ma, Xiaoling Wang, Cheqing Jin,
and Yu Cao

Query Optimization on Hybrid Storage . 361
Anxuan Yu, Qingzhong Meng, Xuan Zhou, Binyu Shen,
and Yansong Zhang

Efficient Batch Grouping in Relational Datasets . 376
Jizhou Sun, Jianzhong Li, and Hong Gao

Text Mining

Memory-Enhanced Latent Semantic Model: Short Text Understanding for
Sentiment Analysis . 393

Fei Hu, Xiaofei Xu, Jingyuan Wang, Zhanbo Yang, and Li Li

Supervised Intensive Topic Models for Emotion Detection over Short Text 408
Yanghui Rao, Jianhui Pang, Haoran Xie, An Liu, Tak-Lam Wong,
Qing Li, and Fu Lee Wang

Leveraging Pattern Associations for Word Embedding Models 423
Qian Liu, Heyan Huang, Yang Gao, Xiaochi Wei, and Ruiying Geng

Multi-Granularity Neural Sentence Model for Measuring
Short Text Similarity . 439

Jiangping Huang, Shuxin Yao, Chen Lyu, and Donghong Ji

Recommendation

Leveraging Kernel Incorporated Matrix Factorization for Smartphone
Application Recommendation . 459

Chenyang Liu, Jian Cao, and Jing He

Preference Integration in Context-Aware Recommendation 475
Lin Zheng and Fuxi Zhu

Jointly Modeling Heterogeneous Temporal Properties
in Location Recommendation . 490

Saeid Hosseini, Hongzhi Yin, Meihui Zhang, Xiaofang Zhou,
and Shazia Sadiq

Contents – Part I XXI

Location-Aware News Recommendation Using Deep Localized
Semantic Analysis . 507

Cheng Chen, Thomas Lukasiewicz, Xiangwu Meng, and Zhenghua Xu

Review-Based Cross-Domain Recommendation Through Joint
Tensor Factorization . 525

Tianhang Song, Zhaohui Peng, Senzhang Wang, Wenjing Fu,
Xiaoguang Hong, and Philip S. Yu

Security, Privacy, Senor and Cloud

A Local-Clustering-Based Personalized Differential Privacy Framework
for User-Based Collaborative Filtering . 543

Yongkai Li, Shubo Liu, Jun Wang, and Mengjun Liu

Fast Multi-dimensional Range Queries on Encrypted Cloud Databases. 559
Jialin Chi, Cheng Hong, Min Zhang, and Zhenfeng Zhang

When Differential Privacy Meets Randomized Perturbation: A Hybrid
Approach for Privacy-Preserving Recommender System. 576

Xiao Liu, An Liu, Xiangliang Zhang, Zhixu Li, Guanfeng Liu, Lei Zhao,
and Xiaofang Zhou

Supporting Cost-Efficient Multi-tenant Database Services with Service
Level Objectives (SLOs) . 592

Yifeng Luo, Junshi Guo, Jiaye Zhu, Jihong Guan, and Shuigeng Zhou

Recovering Missing Values from Corrupted Spatio-Temporal Sensory Data
via Robust Low-Rank Tensor Completion . 607

Wenjie Ruan, Peipei Xu, Quan Z. Sheng, Nickolas J.G. Falkner, Xue Li,
and Wei Emma Zhang

Social Network Analytics (I)

Group-Level Influence Maximization with Budget Constraint 625
Qian Yan, Hao Huang, Yunjun Gao, Wei Lu, and Qinming He

Correlating Stressor Events for Social Network Based Adolescent
Stress Prediction . 642

Qi Li, Liang Zhao, Yuanyuan Xue, Li Jin, Mostafa Alli, and Ling Feng

Emotion Detection in Online Social Network Based
on Multi-label Learning . 659

Xiao Zhang, Wenzhong Li, and Sanglu Lu

XXII Contents – Part I

Tutorials

Urban Computing: Enabling Urban Intelligence with Big Data 677
Yu Zheng

Incentive-Based Dynamic Content Management in Mobile Crowdsourcing
for Smart City Applications . 680

Sanjay K. Madria

Tutorial on Data Analytics in Multi-engine Environments 682
Verena Kantere and Maxim Filatov

Author Index . 685

Contents – Part I XXIII

Map Matching and Spatial Keywords

HIMM: An HMM-Based Interactive
Map-Matching System

Xibo Zhou1(B), Ye Ding2, Haoyu Tan2, Qiong Luo1, and Lionel M. Ni3

1 Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology,

Kowloon, Hong Kong
{xzhouaa,luo}@ust.hk

2 Guangzhou HKUST Fok Ying Tung Research Institute,
The Hong Kong University of Science and Technology,

Kowloon, Hong Kong
{yeding,haoyutan}@ust.hk

3 University of Macau, Zhuhai, China
ni@umac.mo

Abstract. Due to the inaccuracy of GPS devices, the location error of
raw GPS points can be up to several hundred meters. Many applica-
tions using GPS-based vehicle location data require map-matching to
pre-process GPS points by aligning them to a road network. However,
existing map-matching algorithms can be limited in accuracy due to
various factors including low sampling rates, abnormal GPS points, and
dense road networks. In this paper, we propose the design and imple-
mentation of HIMM, an HMM-based Interactive Map-Matching system
that produces accurate map-matching results through human interac-
tion. The main idea is to involve human annotations in the matching
process of some elaborately selected error-prone points and to let the
system automatically adjust the matching of the remaining points. We
use both real-world and synthetic datasets to evaluate the system. The
results show that HIMM can significantly reduce human annotation costs
comparing to the baseline methods.

Keywords: Map-matching · Interactive system · Trajectory

1 Introduction

With the ubiquity of location sensing technologies in a wide range of location-
based devices such as vehicle GPS navigators and mobile phones, large amounts
of trajectory data have been collected from different sources. These data have
been utilized by various location-based services such as route recommenda-
tion, traffic control, and location-based social networks. A trajectory consists
of a sequence of location points with latitudes, longitudes, and time-stamps.
In practice, the location information of a trajectory are imprecise due to mea-
surement noises and sampling errors [5]. It is therefore necessary to perform
map-matching [5] by aligning the observed location points to the road networks
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-55699-4 1

4 X. Zhou et al.

in a digital map so that these position data can be sufficiently accurate for
trajectory-based applications.

The fundamental difficulty of map-matching is that raw trajectory data typ-
ically do not consist the actual paths of moving objects, especially when the
location information is collected passively. Without the ground truth, it is diffi-
cult to train or evaluate any map-matching algorithms. Hence, in order to collect
the ground truth, it is necessary to involve human contributions such as driving
a vehicle along the road network and collecting the raw trajectory data along
with the corresponding path manually. However, the cost of such methods is
quite high. Hence, in this paper, we propose an interactive system called HIMM
to process the raw trajectories to reduce the cost of generating the ground truth.

The main process of the system is to interactively select raw trajectory points
for human annotators to match, and the challenge is in how to facilitate the inter-
active map-matching process. A näıve approach would be to simply throw all
the sample points on a trajectory onto the road network, and then ask the anno-
tator to drag each point to the correct road segment. However, it is tedious and
at times challenging for the annotator to find a proper candidate road segment
for each point of the trajectory. A more effective and user-friendly approach
would be the following: (1) generate an initial path using certain map-matching
algorithms, and display the path on the digital map along with the original
trajectory; (2) ask the annotator to drag each mismatched point to the correct
road segment. Furthermore, given the feedbacks of an annotator, the interactive
system could keep updating the path in display after each human annotation.
Unfortunately, to the best of our knowledge, none of the existing map-matching
algorithms is able to utilize the feedbacks of annotators.

In this paper, we propose a novel interactive map-matching algorithm that
takes the feedbacks of annotators to improve the matching result. Although such
an interactive system can help an annotator to easily adjust a single point, the
total annotation cost of a trajectory may still be high, because in order to pick
and confirm the exact points that are mismatched, the annotator may check a
large portion of the points, which could be up to the entire trajectory. As a result,
it is desirable that the interactive map-matching system provides some guidance
recommending potentially mismatched points for the annotator to check. Such a
strategy of posing queries to the annotator can reduce the annotation cost, which
is a key research issue in active learning and crowd-sourcing [12]. However, due
to the complexity of map-matching algorithms as well as the input trajectories
and the road network, existing query selection strategies are not suitable for the
interactive map-matching task. Therefore, we design efficient strategies to pose
queries for the interactive map-matching algorithm.

The contributions of this paper lie in the following aspects: (1) we propose
a novel system framework for interactive map-matching. It is a general frame-
work that combines human efforts with algorithms in an iterative manner to
achieve high map-matching accuracy; (2) we design a new HMM (Hidden Markov
Model)-based map-matching algorithm that can take an arbitrary number of
human annotations into consideration. To the best of our knowledge, this is the
first map-matching algorithm whose accuracy can be largely enhanced by the
input of human knowledge; (3) we propose different query selection strategies to

HIMM: An HMM-Based Interactive Map-Matching System 5

effectively reduce the number of points that are required to be manually anno-
tated. Compared with traditional approaches, our query selection strategies can
reduce the number of queries by up to 44%; and (4) we use both real world and
synthetic trajectory datasets to perform experiments and analyze the empiri-
cal results. The results demonstrate that HIMM can significantly reduce human
annotation cost.

In the remainder of this paper, we first discuss related work in Sect. 2, and
then introduce the problem definitions and the framework of our system in
Sect. 3. The map-matching algorithms and the query selection strategies are
described in Sects. 4 and 5, respectively. We evaluate our system in Sect. 6, and
conclude the paper in Sect. 7.

2 Related Work

Map-Matching. Existing map-matching algorithms can be categorized into
three types: geometric algorithms, topological algorithms, and statistical algo-
rithms. Geometric algorithms [6] utilize spatial information to find local matches
for each point of the trajectory, thus the accuracy is highly affected by the mea-
surement noises. Topological algorithms [2] consider both the connectivity and
contiguity of the road network as well as the geometric information, but the
accuracy is reduced when the sampling rate of the trajectory is low. Statistical
algorithms make use of advanced statistical models such as Kalman filter [10],
particle filter [7], and HMM [8,9,14], to find the global optimal path for the
trajectory. These algorithms are less sensitive to measurement noise and sam-
pling rate, but the time complexity is high. To the best of our knowledge, none of
the existing map-matching algorithms takes feedbacks from human annotators to
improve accuracy or provides interactive mechanisms to facilitate map-matching.
More details are shown in Sect. 4.2.

Active Learning. Many learning tasks face a situation where unlabeled data
are easy to obtain but annotation is costly [12]. Active learning aims to minimize
the annotation cost by querying the most informative instances in the unlabeled
dataset. Although the scope of active learning is broad, most of the methods
are not suitable to the map-matching problem. For example, graph-based active
learning [1] focuses on using graph-based metrics to define the informativeness
of instances and querying the most informative instances. These approaches uti-
lize link information with node-specific features or partial network structures to
improve the classification accuracy. Different from graph-based active learning,
the points of a trajectory in this paper are not part of the graph, but have
certain mapping relations with the edges of the graph. Another example is the
active learning algorithms for structured prediction tasks [13], which ignore the
annotation cost of a single structured object, but query the instances with the
highest joint uncertainty or utility. However, the map-matching task for a single
trajectory is costly, which cannot be disregarded. To the best of our knowl-
edge, none of the existing active learning frameworks is designed for interactive
map-matching.

6 X. Zhou et al.

3 Overview

3.1 Preliminary

Definition 1 (Road Segment). A road segment e is a directed polyline
between two road intersections vi and vj, and there is no other road intersection
on e. We denote vi ∈ e and vj ∈ e.

Definition 2 (Road Network). A road network is a weighted directed graph
G = (V,E), where V is a set of road intersections (or vertices), and E is a set
of road segments (or edges). The weight of a road segment is represented by its
properties.

A moving object is only allowed to travel on the road segments within the
road network.

Definition 3 (Trajectory). A trajectory T is a sequence of location points
sampled from the GPS device of a moving object, denoted as T = (p1, p2, · · · , pn).
We say pi ∈ T for i = 1, · · · , n and |T | = n.

A location point is represented by its latitude and longitude. The sampled
location points on a trajectory may not be the actual locations of the moving
object due to measurement inaccuracy.

Definition 4 (Path). A path P = (e1, e2, · · · , en) is a sequence of road seg-
ments where ei and ei+1 are connected for i = 1, 2, · · · , n−1. Two road segments
ei and ej are connected if there exists some intersection v such that v ∈ ei and
v ∈ ej.

Definition 5 (Match). Given a trajectory T and a road network G = (V,E),
a match mi,j = 〈pi, ej〉 where pi ∈ T and ej ∈ E specifies point pi was sampled
when the object was moving on road segment ej.

Definition 6 (Map-Matching Query). Given a trajectory T and a road
network G = (V,E), a map-matching query Q(T,G) finds a path P , such that
each point pi ∈ T is matched to exactly one road segment ej ∈ E. The resulting
set of matches is denoted as M = {〈p1, ej1〉, · · · , 〈pn, ejn〉}.
Definition 7 (Interactive Map-Matching Query). Given a trajectory T ,
a road network G = (V,E), and a set of matches M ′ conducted by the annotator,
an interactive map-matching query Q(T,G,M ′) finds a new path P , such that
each point pi ∈ T is matched to exactly one road segment ej ∈ E. The resulting
set of matches is denoted as M , where M ′ ⊆ M .

3.2 Framework

Figure 1 shows the workflow of HIMM, our interactive map-matching system.
First, an annotator requests a trajectory T to perform the map-matching task.

HIMM: An HMM-Based Interactive Map-Matching System 7

Fig. 1. The workflow of HIMM.

If T is not map-matched before, HIMM automatically generates a path for T
using our interactive map-matching algorithm with M ′ = ∅. Then, HIMM plots
the trajectory T along with the path onto the digital map for the annotator to
review. In each iteration, if the annotator considers that the trajectory is not
correctly map-matched, an unlabeled point p is selected for the annotator to
review using our query selection strategy. If the annotator considers that p is
not correctly matched, the annotator marks a correct match for p; otherwise,
the annotator leaves the match as is. During the task, HIMM maintains a set of
matches M ′ that are specified by the annotator. After receiving the feedbacks
from the annotator, HIMM adds the match of p to M ′, and then performs an
interactive map-matching query with M ′ to complete the iteration. Finally, if
the annotator considers that all points are correctly map-matched, the map-
matching task for the trajectory T terminates.

HIMM contains two major components shown in Fig. 1: (1) an interactive
map-matching algorithm that takes the feedbacks of the annotator and auto-
matically adjusts the map-matching results; and (2) a query selection strategy
that recommends potentially mismatched points for the annotator to review.
The details are introduced in Sects. 4 and 5, respectively.

4 Interactive Map-Matching

4.1 Map-Matching Model

As shown in Fig. 2, we model a map-matching query as a hidden Markov model,
which is one of the most suitable models in this area [9,15]. Given a map-
matching query Q(T,G), trajectory T represents an observation sequence, where
each point pi ∈ T is an observation, and each candidate road segment ei,j ∈ E
represents a hidden state of pi. The total number of points of a trajectory is
denoted by n, where n = |T |, and the total number of hidden states of each
point pi is denoted by r, where r = |E|.

For each point pi, each state ei,j has an emission probability denoted as
Pr(ei,j |pi), which represents the likelihood of pi being observed if the vehicle
is on road segment ei,j . A higher emission probability is associated to pi if ei,j
is closer to pi, and the emission probability follows a Gaussian distribution of
positioning measurement noise [9]:

8 X. Zhou et al.

Fig. 2. The map-matching model of HIMM.

Pr(ei,j |pi) =
1√
2πδ

e
−

1
2

⎛
⎝pdist(ei,j , pi)

δ

⎞
⎠

2

(1)

where δ is the standard deviation of the positioning measurement noise, and
pdist(ei,j , pi) is the minimum perpendicular distance [3] between ei,j and pi.

For each pair of consecutive points (pi, pi+1), each pair of candidate states
(ei,ji , ei+1,ji+1) associated with them has a transition probability denoted as
Pr(ei,ji , ei+1,ji+1 |pi, pi+1), which represents the likelihood for a vehicle moving
from ei,j to ei+1,ji+1 . ei,ji and ei+1,ji+1 are more likely to be matched to pi and
pi+1, respectively, if the driving distance along ei,ji and ei+1,ji+1 from pi to pi+1

is closer to the great circle distance between pi and pi+1; and the transition
probability follows an exponential distribution:

Pr(ei,ji , ei+1,ji+1 |pi, pi+1) =
1
β

e
−

|cdist(pi, pi+1) − route(pi, pi+1)|
β (2)

where β is the rate parameter [9], cdist(pi, pi+1) is the great circle distance
between pi and pi+1, and route(pi, pi+1) is the driving distance along ei,ji and
ei+1,ji+1 from pi to pi+1.

4.2 Interactive Map-Matching Algorithm

Recall that a map-matching query Q(T,G) finds a path P , such that each
point pi ∈ T is matched to exactly one road segment ej ∈ E. Hence, the
objective of the map-matching algorithm is to find a sequence of hidden states
P = (e1,j1 , e2,j2 , · · · , en,jn) with the maximum joint probability Pr(P), where:

Pr(P) =
n∏

i=1

Pr(ei,ji |pi) ×
n−1∏

i=1

Pr(ei,ji , ei+1,ji+1 |pi, pi+1) (3)

Traditional hidden Markov model uses the Viterbi algorithm [11] to find the
optimal solution, denoted as P ∗. The Viterbi algorithm uses dynamic program-
ming to quickly find the state sequence that maximizes Pr(P ∗) in a recursive
manner. Hence, if the annotator specifies a match 〈pi, ei,k〉 where ei,k /∈ P ∗,
the Viterbi algorithm will ignore such feedback of the annotator. Therefore, the
traditional Viterbi algorithm cannot utilize the feedbacks of an annotator.

HIMM: An HMM-Based Interactive Map-Matching System 9

We propose an interactive map-matching algorithm based on the Viterbi
algorithm to utilize the feedbacks of the annotator. The recursive formulation
(a.k.a., forward formulation [11]) is defined as:

C(i, j) =

⎧
⎪⎨

⎪⎩

O(i, j) 〈pi, ei,k〉 ∈ M ′, k = j

0 ∃〈pi, ei,k〉 ∈ M ′, k 	= j

Pr(ei,j |pi) × O(i, j) 	 ∃〈pi, ei,k〉 ∈ M ′
(4)

where 1 ≤ k ≤ r, and:

O(i, j) =

{
1 i = 1
max1≤k≤r C(i − 1, k) Pr(ei−1,k, ei,j |pi−1, pi) i > 1

(5)

In Formula (4), C(i, j) represents the highest value of the probabilities of
state sequences Pi = (e1,j1 , e2,j2 , · · · , ei,ji) for the first i observations Ti =
(p1, p2, · · · , pi) that have ei,j as the final state.

The recursion terminates when the last observation is processed. The opti-
mal state sequence that results in C(i, j) can be retrieved reversely from the
last hidden state that results in the maximum C(i, j) in each step through the
following formulation (a.k.a. backward formulation [11]):

ei,ji =

⎧
⎪⎨

⎪⎩

arg max
1≤j≤r

C(i, j) i = n

arg max
1≤j≤r

C(i + 1, j)
Pr(ei,j , ei+1,ji+1 |pi, pi+1)

1 ≤ i < n
(6)

Similar to the Viterbi algorithm, our interactive map-matching algorithm
uses dynamic programming [11] to quickly find the optimal state sequence in a
recursive manner. When the algorithm calculates the local optimal probability
C(i, j) for each hidden state ei,j as the final state for the first i observations
Ti = (p1, p2, · · · , pi), it first checks whether pi is manually matched by the
annotator. If so, the algorithm prunes all candidate hidden states of pi except ei,j ,
which is chosen by the annotator (i.e., 〈pi, ei,j〉 ∈ M ′) by modifying the emission
probability Pr(ei,j |pi) to 1, and all other emission probabilities Pr(ei,k|pi) to 0,
where 1 ≤ k ≤ r and k 	= j. Otherwise, the emission probability Pr(ei,j |pi) is set
via Formula (1). This way, all C(i, k) where 1 ≤ k ≤ r and k 	= j are 0, and the
backward formulation is guaranteed to select the state sequence that contains
ei,j with respect to C(i, j).

5 Query Selection Strategy

A good query selection strategy is critical to effectively guide the annotator by
picking the points that are likely to be mis-matched. In this section, we propose
four query selection strategies for comparison.

10 X. Zhou et al.

5.1 Distance-Based Strategy

A commonly used query selection strategy in active learning is uncertainty sam-
pling. The basic idea is to query the instance whose label is the least certain.
In the map-matching problem, the most straight-forward factor that reflects the
uncertainty of a trajectory point pi is the distance distribution from pi to its
candidate road segment set Ei. Consider the example shown in Fig. 3(a), p1 and
p3 are clearly closer to e1 and e7, respectively. Thus, there is no need to check
p1 or p3 since their labels are almost certain. However, the distances between p2
and e2/e3/e6 are quite similar, which makes p2 the most uncertain point to be
labeled.

A general strategy of uncertainty measurement in information theory is Shan-
non entropy [12], which represents the average amount of information generated
by a probability distribution. As described in Sect. 4.1, the emission probability
distribution of the candidate state set Ei of pi reflects the distance distribution
from pi to each eij ∈ Ei. Thus, a distance-based strategy defines the uncertainty
H(pi) of pi as the Shannon entropy of the emission probability distribution of
the candidate state set Ei of pi. More specifically,

H(pi) = −
r∑

j=1

Pr(eij |pi) log(Pr(eij |pi)) (7)

where r is the number of candidate states of pi.
Based on Formula (7), given a trajectory T , in each iteration of the interactive

map-matching process, the next point recommended for the annotator is:

p′ = arg max
pi∈T

H(pi) (8)

After the annotator checks pi, the system modifies H(pi) to -∞, so that pi
will not be checked again until the interactive map-matching process terminates.
Hence, the time complexity of the distance-based strategy is O(1) with respect
to the number of points on the trajectory n.

5.2 Confidence-Based Strategy

In the distance-based strategy, the emission probability distribution of a trajec-
tory point pi only considers the local information of each point on the trajectory.
Consider the example shown in Fig. 3(b). The distances between p2 and e2/e4
are similar, whereas p3 is closer to e5 than e3. According to the distance-based
strategy, p2 has a higher uncertainty than p3. However, if we consider the entire
trajectory, p3 is the point that mostly likely to be checked, because the optimal
path differs a lot if p3 is matched to e3 or e5. On the other hand, p2 is not likely
to be matched to e4 considering the topological information ((e1, e4, e8, e5, e3) vs.
(e1, e2, e3)). Hence, in order to utilize the connectivity and contiguity of the road
segments along each trajectory point, we define the confidence Pr(〈pk, ek,l〉) for

HIMM: An HMM-Based Interactive Map-Matching System 11

Fig. 3. Examples of the query selection strategy scenarios.

each candidate match 〈pk, ek,l〉 of pk, and evaluate the uncertainty of pk accord-
ing to the Shannon entropy of the confidence distribution among all candidate
matches for pk. More specifically, given a trajectory T and a match 〈pk, ek,l〉, we
generate a set of matches Mk,l and a path Pk,l by applying Q(T,G, {〈pk, ek,l〉})
using the interactive map-matching algorithm. Thus,

Pr(〈pk, ek,l〉) = Pr(Pk,l) =
n∏

i=1

Pr(ei,ji |pi) ×
n−1∏

i=1

Pr(ei,ji , ei+1,ji+1 |pi, pi+1) (9)

where each ei,ji ∈ Pk,l.
Based on Formula (9), the uncertainty H(pi) of pi is:

H(pi) = −
r∑

j=1

Pr(〈pi, ei,j〉) log(Pr(〈pi, ei,j〉)) (10)

where r is the number of candidate states of pi.
The next point recommended in each iteration is similar to the distance-based

strategy with the uncertainty computed in Formula (10). The time complexity
is O(1) with respect to the number of points on the trajectory n.

5.3 Dynamic Confidence-Based Strategy

In the confidence-based strategy, the confidence for each candidate match of a
point is defined under the assumption that all the other points of the trajectory
are not map-matched. Consider the example shown in Fig. 3(c), where p1, p2
and p3 are close to both e1 and e2. According to the confidence-based strategy,
the probabilities of the paths that pass either e1 or e2 are similar, thus the
uncertainty of p1, p2 and p3 are similar. If there is another point of the trajectory
that is wrongly matched but has a lower uncertainty, p1, p2 and p3 will all be
checked. However, if we have confirmed that p2 is matched to e2, the labels of
p1 and p3 are no longer uncertain. Hence, the confidence-based method cannot
prune the case when the match of a point is constrained by other points of the
trajectory.

To deal with such situations, we propose a dynamic confidence-based strat-
egy utilizing the set of labeled matches M ′ maintained by the system. More
specifically, given a trajectory T , a set of labeled matches M ′, and a match

12 X. Zhou et al.

〈pk, ek,l〉, we generate a set of matches Mk,l and a path Pk,l by applying
Q(T,G,M ′ ∪ {〈pk, ek,l〉}) using the interactive map-matching algorithm. The
confidence measure Pr(〈pk, ek,l〉) is then defined as Formula (9), and the uncer-
tainty H(pi) of pi is defined as Formula (10).

In each iteration, since the set of labeled matches M ′ is updated, the uncer-
tainty of each point should be re-calculated via Formula (10). Hence, the time
complexity of the dynamic confidence-based strategy O(n × r), where n is the
number of points on the trajectory, and r is the number of hidden states of each
point. In practice, we restrict r in order to ensure high efficiency, which will be
explained in Sect. 6.1. The next point recommended in each iteration is similar
as the confidence-based strategy.

5.4 Stability-Based Strategy

Another strategy of uncertainty measurement is stability. Based on our obser-
vation, if the match of a point is frequently influenced by other points on the
trajectory (i.e., the match of this point is not stable), the uncertainty of this
point is often high. Consider the example shown in Fig. 3(d), p1 has a similar
probability to be matched to e1 or e2, and p5 has a similar probability to be
matched to e3 or e4. Therefore, the uncertainty of p1 and p5 are similar. How-
ever, since p6 is much closer to e3 while e7 is much closer to e4, there must be a
large measurement noise for either of these two points. Hence, the match of p5 is
very unstable if either p6 or p7 is removed from the trajectory. On the contrary,
p2, p3, p4 are all slightly closer to e1. Thus the match of p1 is much more stable
than p5. In this case, since p1 and p5 belong to the same trajectory, the priority
of checking p5 is higher than p1, because there is a higher probability that there
exists a major measurement noise for the points around p5.

In order to define the stability of a point, we first define the influence between
two points. Given a trajectory T = (p1, p2, · · · , pn) and two points pa, pb ∈ T ,
we first generate a set of matches M for T using our interactive map-matching
algorithm. Next we generate another trajectory Tb omitting pb, so that Tb =
(p1, p2, · · · , pb−1, pb+1, · · · , pn), and then similarly obtain Mb for Tb. Suppose
〈pa, ea〉 ∈ M , we denote that pa is influenced by pb as pa ≺ pb if and only if
〈pa, ea〉 /∈ Mb. Given a point pi ∈ T , the stability H(pi) of pi is:

S(pi) = |Dpi
| (11)

where Dpi
is the set of points that have no influence on pi. More specifically,

Dpi
= {p1, p2, ..., pk}, where pj ∈ T and pi 	≺ pj for all pj ∈ Dpi

.
Based on Formula (11), given a trajectory T , in each iteration of the inter-

active map-matching process, the next point recommended is:

p′ = arg min
pi∈T

S(pi) (12)

The stability-based strategy is efficient for selecting problematic points. How-
ever, since S(pi) is defined as a cardinality rather than a probability, it is possible

HIMM: An HMM-Based Interactive Map-Matching System 13

that the points of a trajectory have the same S(pi). In this case, the stability-
based method is not able to determine an efficient order for these points. To deal
with this case, we dynamically switch to dynamic confidence-based strategy in
each iteration if two points have the same S(pi). Hence, the time complexity of
the stability-based strategy is between O(n) and O(n × r). Similar to dynamic
confidence-based strategy, we restrict r to ensure high efficiency.

6 Evaluation

6.1 Experiment Setup

Experiment Environment. The experiments are conducted on a Linux server
with a CPU of Intel Core i5-4590 and 8 GB memory. The operating system is
Ubuntu 14.04, and the code is written in Python 2.7.6.

Road Network. In our experiments, the road network data is provided by
the government of a large city in China and consisted of 25,613 intersections
and 36,451 road segments. There are no direction information thus all the road
segments are bi-directional.

Synthetic Trajectory Data. We build a trajectory generator to generate
synthetic trajectories with the following parameters: (1) the number of points np

on the trajectory, (2) the number of road segments ne covered by the trajectory,
and (3) the standard deviation δ of the positioning measurement noise.

The trajectory generator selects a starting point p1 ∈ e1 and an ending point
pnp

∈ ene
from an ne-hop random path P = (e1, e2, . . . , ene

), and then computes
the distance interval Δ between two consecutive points:

Δ =
route(p1, pnp

)
np − 1

(13)

where route(p1, pnp
) is the driving distance between p1 and pnp

. Starting from
p1, the trajectory generator derives the locations of the remaining points along
P such that route(p1, pi+1) = route(p1, pi) + Δ. Finally, the generator adds
a Gaussian distributed measurement noise to each point with δ so that T =
(δ(p1), δ(p2), . . . , δ(pnp

)).
In our experiments, we study the impact of different parameters including:

(1) the number of points on a trajectory; (2) the initial accuracy of a trajectory
in terms of the number of points that are matched to the correct road segments
by comparing Q(T,G, ∅) with P ; (3) the sampling rate of a trajectory which
is represented by ne given a fixed average driving speed; and 4) the standard
deviation of the measurement noise.

Real Trajectory Data. Our real world trajectory data contains 154 million
records of 15,231 vehicles for 26 days [4].

14 X. Zhou et al.

Evaluation Metrics. To evaluate the effectiveness of our interactive map-
matching algorithm, we simulate the work flow of HIMM with the assumption
that each query annotation is correct and the time of trajectory review is triv-
ial. In order to reduce the response time, for each point on the trajectory, we
empirically reserve the top 10 nearest road segments as its candidate set. In our
experiments, it is sufficient to produce a high percentage of the correct matches
within this range. The correct road segment is also added into the candidate set
in case it is excluded.

We use two metrics to evaluate the efficiency of our query selection strategies:
(1) the response time for a query selection strategy; and (2) the execution time of
an interactive map-matching task for a single trajectory. In addition, we define
three metrics to evaluate the effectiveness of our query selection strategies. Given
a trajectory T along with the initial path generated by HIMM, the number of
mis-matched points is denoted as ζ(T). After the map-matching task for T is
terminated, the total number of points that are reviewed by the annotator is
denoted as η(T), and the total number of points that are corrected by the anno-
tator is denoted as ψ(T). The three metrics are defined as follows: (1) cost ratio
CR = η(T)/|T | representing the review cost of the interactive map-matching task;
(2) selection accuracy SA = ψ(T)/η(T) representing the accuracy of selecting
mis-matched points; and (3) true negative rate TNR = ψ(T)/ζ(T) represent-
ing the ratio of the corrections conducted by the annotator rather than the
interactive map-matching algorithm. A lower CR indicates fewer iterations for a
map-matching task; a higher SA indicates a higher rate of selecting mis-matched
points; and a lower TNR indicates more points are automatically corrected by our
interactive map-matching algorithm.

6.2 Experiment Results

The experiments are conducted on both synthetic and real data. For each data
set, we apply all the query selection strategies proposed in this paper: distance-
based strategy (DIST), confidence-based strategy (CONF), dynamic confidence-
based strategy (D-CONF), and stability-based strategy (STAB); as well as two base-
lines: sequential strategy (SEQ) and random strategy (RAND), where the annotator
checks each point along the trajectory in a sequential and random order, respec-
tively.

Efficiency. In order to evaluate the scalability of our query selection strategies,
we conduct experiments on 8 groups of trajectories whose numbers of points
range from 10 to 80. The initial accuracy is fixed within 60–70%. The sampling
rate and measurement noise are fixed to 1.5 min and 101.04 m, respectively.

Figure 4(a) shows the impact of number of points on response time. Con-
sistent with the analysis in Sects. 5.3 and 5.4, the response time of D-CONF
and STAB increases linearly with the number of points. Figure 4(b) shows the
impact of number of points on TNR, where TNR drops at first when the num-
ber of points grows, but rises after the number of points reaches 50. Therefore,

HIMM: An HMM-Based Interactive Map-Matching System 15

0 10 20 30 40 50 60 70 80 90

0

5

10

15

20

25

30
R
es

po
ns

e
Ti
m
e
(s
ec

)

Number of Points

DIST
CONF
D-CONF
STAB

(a) Response Time

0 10 20 30 40 50 60 70 80 90
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

TN
R

Number of Points

DIST
CONF
D-CONF
STAB

(b) True Negative Rate

DIVIDE NON-DIVIDE
0

500

1000

1500

2000

2500

3000

3500

Ta
sk

Ti
m
e
(s
ec

)

Interactive Strategy

DIST
CONF
D-CONF
STAB

(c) Task Execution Time

Fig. 4. Performance of query selection strategies.

HIMM achieves the best performance when the number of points on the query
selection trajectory is 50. Hence, for long trajectories, the most efficient strat-
egy is to divide them into sub-trajectories with 50 points each, and perform
an interactive map-matching task for each sub-trajectory. In order to show the
effectiveness of this dividing strategy, we generate a group of trajectories con-
sisting of 100 points each, and then compare the average execution time of the
interactive map-matching task for each trajectory with or without using the
dividing strategy. As a result, Fig. 4(c) shows that dividing long trajectories into
sub-trajectories significantly reduces the task time.

Effectiveness on Synthetic Data. To study the impact of initial accuracy, we
generate 5 groups of trajectories with 5 categories of initial accuracy: 50–60%,
60–70%, 70–80%, 80–90%, and 90–100%. The sampling rate and measurement
noise are fixed to 1.5 min and 101.04 m respectively. To study the impact of
sampling rate, we generate 3 groups of trajectories with 3 categories of sampling
rates: 0.5, 1.5, and 4.5 min. The initial accuracy and measurement noise are fixed
to 70–80% and 11.23 m respectively. To study the impact of measurement noise,
we generate 3 groups of trajectories with 3 categories of measurement noises:
11.23, 33.68, and 101.04 m. The initial accuracy and sampling rate are fixed to
60–70% and 0.5 min respectively.

The experiment results on synthetic trajectory data are shown in Fig. 5. In
general, the performance (in terms of CR and SA) of our query selection strategies
(DIST, CONF, D-CONF, and STAB) achieve a much higher efficiency than the two
baseline strategies (SEQ and RAND). Among our query selection strategies, the
performance of D-CONF is better than the two global strategies (DIST and CONF),
and STAB outperforms the other three strategies. Compared with the two baseline
strategies, CR reduced by our query selection strategies is up to 44%, and SA is
improved up to 24%.

Moreover, the TNR results in Fig. 5 show that the percentage of mis-matched
points that are automatically corrected by the interactive map-matching algo-
rithm during human annotation is up to 59%, which indicates a significant reduc-
tion of the annotation cost.

16 X. Zhou et al.

Fig. 5. Effectiveness of query selection strategies on the synthetic trajectory data.

Next, we discuss the impact of each parameter on the performance of our
query selection strategies. Firstly, we observe that the gaps of CR and SA between
baseline strategies and our query selection strategies enlarge when initial accu-
racy grows. This indicates that our query selection strategies are more effective
in picking out wrongly matched points when the initial accuracy is high. Mean-
while, TNR decreases when the initial accuracy falls for all the query selection
strategies. This indicates that the ratio of the automatic corrections triggered
by human annotation rises when the initial accuracy is low, which also saves
the annotation cost. In conclusion, HIMM can reduce η(T) no matter the initial
map-matching accuracy is low or high.

Secondly, we observe that a larger sampling rate or measurement noise will
hurt the performance both in CR and SA for all the query selection strategies.
However, compared with the baseline strategies, our query selection strategies
are more sensitive to sampling rate, but less sensitive to measurement noise. This
is because a larger sampling rate reduces the topological correlations between
points, thus the advantage of our query selection strategies is less effective. In
contrast, a larger measurement noise only increases the deviation of each point
within its local area rather than the topological information, thus the advan-
tage of our query selection strategies remains. As a result, our query selection
strategies outperform the baseline strategies in most of the cases.

Effectiveness on Real Data. Since the cost of a manual map-matching task
is very high, due to the limit of time, we manually processed 200 trajectories
with 50 points each. We use HIMM to annotate these trajectories, and record
the resulting paths as the ground truth. For the experiments on real trajectory
data, based on our statistics, the initial accuracy is 89% on average; the sampling
rate ranges from 30 s to 5 min; and the measurement noise is around 33.68 m.

HIMM: An HMM-Based Interactive Map-Matching System 17

SEQ RAND DIST CONF D-CONF STAB
0.3

0.4

0.5

0.6

0.7

(a) Cost Ratio

SEQ RAND DIST CONF D-CONF STAB
0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) Selection Accuracy

SEQ RAND DIST CONF D-CONF STAB
0.8

1.0

(c) True Negative Rate

Fig. 6. Effectiveness of query selection strategies on the real trajectory data.

The experiment results on real trajectory data are shown in Fig. 6. It is clear
that the effectiveness of our query selection strategies are much higher than the
baseline strategies in terms of both CR and SA. Similar to the experiments on
synthetic trajectory data, the performance of STAB is the best, which reduces 29%
of CR and improves 21% of SA compared with baseline strategies. Moreover, 12%
mis-matched points are automatically corrected by the interactive map-matching
algorithm, which is a satisfactory result for such a high initial accuracy.

In general, the performance of HIMM on the real trajectory data is similar
to that on the synthetic trajectory data, which indicates that HIMM achieves a
satisfactory performance on a wide range of trajectories, and significantly reduces
the annotation cost.

7 Conclusion

In this paper, we propose an interactive map-matching system called HIMM for
the annotators to perform effective interactive map-matching tasks. We design
and implement an interactive map-matching algorithm that can be improved
by manual annotations, and propose four different query selection strategies
to reduce the costs of interactive map-matching tasks. We conduct intensive
experiments on both synthetic and real trajectory data. The results show that
our query selection strategies achieve a satisfactory performance. In this paper,
we only consider single annotators for interactive map-matching tasks, and it
could be further discussed when multiple annotators and crowd-sourcing are
introduced, which will be our future work.

Acknowledgments. This work is supported in part by NSFC Grant 61300030 and
the National Key Basic Research and Development Program of China (973) Grant
2014CB340304.

18 X. Zhou et al.

References

1. Bilgic, M., Mihalkova, L., Getoor, L.: Active learning for networked data. In: Pro-
ceedings of ICML, pp. 79–86 (2010)

2. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking
data. In: Proceedings of VLDB, pp. 853–864. VLDB Endowment (2005)

3. Ding, Y., Liu, S., Pu, J., Ni, L.M.: HUNTS: a trajectory recommendation system
for effective and efficient hunting of taxi passengers. In: Proceedings of MDM, vol.
1, pp. 107–116. IEEE (2013)

4. Ding, Y., Zheng, J., Tan, H., Luo, W., Ni, L.M.: Inferring road type in crowd-
sourced map services. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L.,
Muliantara, A., Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8422, pp. 392–406.
Springer, Cham (2014). doi:10.1007/978-3-319-05813-9 26

5. Jagadeesh, G., Srikanthan, T., Zhang, X.: A map matching method for GPS based
real-time vehicle location. J. Navig. 57(03), 429–440 (2004)

6. Karimi, H.A., Conahan, T., Roongpiboonsopit, D.: A methodology for predicting
performances of map-matching algorithms. In: Carswell, J.D., Tezuka, T. (eds.)
W2GIS 2006. LNCS, vol. 4295, pp. 202–213. Springer, Heidelberg (2006). doi:10.
1007/11935148 19

7. Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation
routines. Artif. Intell. 171(5), 311–331 (2007)

8. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for
low-sampling-rate GPS trajectories. In: Proceedings of SIGSPATIAL, pp. 352–361.
ACM (2009)

9. Newson, P., Krumm, J.: Hidden Markov map matching through noise and sparse-
ness. In: Proceedings of SIGSPATIAL, pp. 336–343. ACM (2009)

10. Pink, O., Hummel, B.: A statistical approach to map matching using road network
geometry, topology and vehicular motion constraints. In: Proceedings of ITSC, pp.
862–867. IEEE (2008)

11. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE 77(2), 257–286 (1989)

12. Settles, B.: Active learning literature survey, vol. 52, no. 55–66, p. 11. University
of Wisconsin, Madison (2010)

13. Settles, B., Craven, M.: An analysis of active learning strategies for sequence label-
ing tasks. In: Proceedings of Empirical Methods in Natural Language Processing,
pp. 1070–1079. Association for Computational Linguistics (2008)

14. Wang, G., Zimmermann, R.: Eddy: an error-bounded delay-bounded real-time map
matching algorithm using HMM and online Viterbi decoder. In: Proceedings of
SIGSPATIAL, pp. 33–42. ACM (2014)

15. Xue, A.Y., Qi, J., Xie, X., Zhang, R., Huang, J., Li, Y.: Solving the data sparsity
problem in destination prediction. VLDB J. 24(2), 219–243 (2015)

http://dx.doi.org/10.1007/978-3-319-05813-9_26
http://dx.doi.org/10.1007/11935148_19
http://dx.doi.org/10.1007/11935148_19

HyMU: A Hybrid Map Updating Framework

Tao Wang, Jiali Mao, and Cheqing Jin(B)

School of Data Science and Engineering,
School of Computer Science and Software Engineering,

East China Normal University, Shanghai, China
{toy king,jlmao1231}@stu.ecnu.edu.cn, cqjin@sei.ecnu.edu.cn

Abstract. Accurate digital map plays an important role in mobile nav-
igation. Due to the ineffective updating mechanism, existing map updat-
ing methods cannot guarantee completeness and validity of the map. The
common problems of them involve huge computation and low precision.
More importantly, they scarcely consider inferring new roads on sparse
unmatched trajectories. In this paper, we first address the issue of find-
ing new roads in sparse trajectory area. On the basis of sliding window
model, we propose a two-phase hybrid framework to update the digi-
tal map with inferred roads, called HyMU, which takes full advantage
of line-based and point-based strategies. Through inferring road candi-
dates for consecutive time windows and merging the candidates to form
missing roads, HyMU can even discover new roads in sparse trajectory
area. Therefore, HyMU has high recall and precision on trajectory data
of different density and sampling rate. Experimental results on real data
sets show that our proposal is both effective and efficient as compared
to other congeneric approaches.

1 Introduction

With the widespread use of onboard navigators and smart phones, the accu-
racy of navigation map has aroused universal concern. An inaccurate road map
with disconnected and misaligned roads may make the experienced drivers get
lost and even cause traffic accidents. Essentially, the accuracy and completeness
of a digital map depend on whether road information is updated timely and
effectively. However, such a task is difficult to achieve due to two factors, one
is the rapid development of road construction, and the other is the ineffective
map updating mechanism. Specifically, rapid construction of roads has increased
great difficulties to timely update of digital map. Massive amount of roads all
over the world change every year. According to the reports by the Ministry of
Transport of China1, 4,500 km of new expressways will be built in China, and
29 road projects will be pushed forward in Shanghai in 2016. While at the same
time, existing techniques cannot guarantee the timeliness of map updating. The
commercial map companies update digital map by periodically conducting geo-
logical survey of the entire road network. To cut down the overall cost, survey
1 http://www.chinahighway.com/.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 19–33, 2017.
DOI: 10.1007/978-3-319-55699-4 2

http://www.chinahighway.com/

20 T. Wang et al.

Fig. 1. An example of point-based and line-based method

period is quite long and thus the map updating rate lags far behind the con-
struction of new roads. Alternative mechanism is to adopt the crowdsourced
map project to generate customized map (e.g. OpenStreetMap), but it largely
depends on the geographic data directly provided by volunteers. As a result, the
amount of users and even the editing skills of users greatly influence the quality
of map updating. As mentioned above, it is desirable to devise a low-cost but
high reliable map updating mechanism.

Huge amount of trajectory data of vehicles can be applied to update the
map. Recently, a few researches have been done in map updating with trajec-
tories [13,16,18], and they can be grouped into two classes: line-based strategy
(e.g., CrowdAtlas [16]) and point-based strategy (e.g., Glue [18] and COBWEB
[13]). To be specific, the former is to infer the missing roads for a given map
based on clustering considerable volume of unmatched trajectory segments, and
the latter on massive unmatched trajectory points. These methods still face a
series of problems, such as high computational overhead, low accuracy of inferred
roads, and bad timeliness of map updating, etc. Moreover, line-based strategy
has poor performance in processing low-sampling data (sampling interval longer
than 30 s [18]), because it may infer the roads with false directions when the line
segments cross over several roads. Although point-based methods can overcome
this issue, they easily infer some short road segments rather than long roads due
to the low coverage caused by point-based clustering. As shown in Fig. 1(a), two
consecutive sampling points that are located on two roads are connected as a
line segment, and accordingly an incorrect road R2-b is inferred by line-based
strategy. Though point-based strategy solves the above deficiencies, it infers two
short road segments, R2-a and R2-b, instead of a long road that covers them, as
illustrated in Fig. 1(b). Thus, the inferred roads in Fig. 1(a) and (b) are incor-
rect. To improve the inferring accuracy and obtain the ideal result in Fig. 1(c),
it necessitates a hybrid framework to integrate virtues of both line-based and
point-based strategies.

Furthermore, the aforementioned map updating mechanisms focus on discov-
ering the missing roads on trajectory data of dense areas. They usually define
a threshold of minimum clustering quantity standard, and cluster unmatched
trajectory line segments (or points) to infer new roads only when satisfying a
specific threshold. Hence, for the top road region with sparse positional points
in Fig. 1(a) and (b), both line-based and point-based strategies cannot infer the

HyMU: A Hybrid Map Updating Framework 21

road R3 in Fig. 1(c). Actually, we can obtain two insights from the observation
of trajectories. When the new roads first come into service, relatively few vehi-
cles will drive along them and thus the track data are more sparse than that of
normal roads. Distinct from noisy data, sparse trajectories appear on such roads
in many days, i.e., the amount of trajectories will not increase tremendously in a
short time period. If simply lowering the threshold of aforementioned methods,
noisy data may also be clustered and some incorrect roads can be inferred. Thus,
both methods are not tailored to inferring new roads in sparse trajectory area.
Given the two insights above, on the basis of sliding window model, we propose
a two-phase road inferring framework, including candidate generation and miss-
ing roads inferring, called HyMU. Additionally, we employ a hybrid scheme to
enhance the accuracy of map updating by integrating line-based and point-based
strategies. Specifically, the contributions of this paper are summarized below.

– We first address the issue of new roads inferring on sparse trajectory data to
improve the overall inferring precision.

– Based on the sliding window model, we take full advantage of line and point-
based strategies, and propose a two-phase hybrid framework to update the
map, called HyMU.

– We compare our proposal with other congeneric approaches by conducting sub-
stantial experiments on real data sets. Experimental results show that HyMU
method has good inferring performance on trajectory data under different
sampling rate and density.

The remainder of this paper is organized as follows. Section 2 reviews the
most related work. In Sect. 3, the preliminary concepts are introduced and the
problem is defined formally. In Sect. 4, we outline and analytically study the
details of HyMU framework. In Sect. 5, a series of experiments are conducted on
real datasets to evaluate our proposal. Finally, we briefly conclude this article in
Sect. 6.

2 Related Work

In this section, we briefly conduct a systematic review over the related work in
two relevant areas: map inference and map updating.

2.1 Map Inference

Based on the track data set or satellite images, map inference aims to infer the
entire road map. Image processing technology is mainly applied to infer map from
satellite images [10,12]. But it is costly to obtain high-resolution satellite images
data. Therefore, most researches on map inference are based on the trajectories of
vehicles and they can be divided into three classes: K-means [1,5,11], KDE algo-
rithm [2,4], and trace merging algorithm [3,8]. Nevertheless, most approaches
have poor performance in handling trajectory data with excessive random noise,
nonuniform distribution, and uneven sampling rate. Additionally, they are too
time-consuming to fit online map inference.

22 T. Wang et al.

2.2 Map Updating

Compared with time overhead of inferring the whole map, simply adding or
modifying the roads for a given map is more realistic. Map updating methods
are to discover missing roads to update a given map based on unmatched tra-
jectories, including CrowdAtlas [16], Glue [18] and COBWEB [13]. CrowdAtlas
consists of four stages: trajectory clustering, centerline fitting, connection and
iteration. When the number of unmatched trajectory segments reaches the spec-
ified quantity criterion, CrowdAtlas implements clustering and polyline fitting
functions to generate the centerlines that represent new roads. However, Crow-
dAtlas may infer new roads with false directions when unmatched trajectory
segments cross over two or more roads, as illustrated in Fig. 1(a). In addition,
CrowdAtlas obtains poor accuracy when dealing with low sampling rate data. To
improve the precision of inferred roads on low sampling rate trajectory data, Glue
clusters the unmatched trajectory points to infer new roads. Similarly, COBWEB
organizes the GPS points using a Cobweb data structure and reduces the ver-
tices and edges from Cobweb to generate Road-Tree, and finally finishes map
updating. Nevertheless, both Glue and COBWEB cluster unmatched trajectory
points and easily infer incomplete road segments instead of intrinsically long
roads, as illustrated in Fig. 1(b). Moreover, all the above mentioned approaches
cannot infer the new roads based on sparse trajectory data. Thus, it necessitates
devising a map updating mechanism with high precision and noise tolerance
to online infer the new roads on trajectory data of various sampling rate and
density.

3 Problem Definition

In this section, we introduce preliminary concepts, and formally define the prob-
lem of map updating upon trajectory data.

A complete digital map contains road type, geometry, turn restriction, speed
limit, etc. We aim to find the roads that have not been marked on the map. The
road network G that corresponds to the map is defined as follows.

Definition 1 (Road Network). A road network is denoted by a graph G =
(V,E), where V is a set of vertexes and E refers to a set of edges. Each edge
e ∈ E represents a road segment.

To infer the missing roads, we need to cope with the continuously arrived
trajectories. The trajectory of an object that consists of a series of points is
defined below.

Definition 2 (Trajectory). The trajectory of a moving object, denoted as Tr,
consists of a sequence of points, (p1, t1), (p2, t2), · · · , where pi is the position at
ti. Such records arrive in chronological order, i.e., ∀i < j, ti < tj. A trajectory
segment is a line segment between two adjacent trajectory points, which is denoted
as Ts = (pi, pi+1).

HyMU: A Hybrid Map Updating Framework 23

Fig. 2. An example of denoising in distance and direction (Color figure online)

Trajectory data are collected in real-time with massive scale. In order to
describe the portions of trajectories in different time periods, we employ the
sliding window model, and a trajectory in a time window is denoted as Tw. Given
a window size N , the window range at timestamp t0 is (t0, t0+N). Hereafter, we
infer the missing road candidates based on the trajectories in each time window.

Due to different resolutions of various GPS-enabled equipments and city
canyon surrounded by high-rise buildings, trajectory data are noisy. According
to our observation, noisy data often behave abnormally in direction or distance
relative to its neighborhood. The neighborhood of a trajectory segment Ts(x) is
defined as follows.

Definition 3 (Trajectory Segment Neighborhood). Given a trajectory
segment Ts(x), a distance threshold thdis, and a set of trajectory segments TS,
if we denote dist(Ts(x), T s(y)) as the shortest Euclidean distance between any
two points in two line segments, the neighborhood of Ts(x) is defined as follows:

Nd(Ts(x)) = {Ts(y) ∈ TS|dist(Ts(x), T s(y)) ≤ thdis}

Correspondingly, the neighborhood of a trajectory point pi is denoted as
Nd(pi), which represents the set of points that their distances to pi are within
a distance threshold thdis. Subsequently, we define noisy trajectory segment as
below.

Definition 4 (Noisy Trajectory Segment). Given a trajectory segment
Ts(x) and the directions’ distribution of its surrounding segments U(Ts(x)), Ts(x)

is noisy if Nd(Ts(x)) is empty or the direction of Ts(x) does not tally with the
top-k most popular directions of its surrounding segments.

We take the starting point of Ts(x) as center and the length of Ts(x) as radius
of a circle, and generate a region. For example, in Fig. 2(a), we divide the region
into 8 pieces representing 8 sector [6]. The distribution is represented as below.

U(Ts(x)) = (C1, C2, C3, C4, C5, C6, C7, C8)

24 T. Wang et al.

Fig. 3. The framework of HyMU

where Ci records the number of trajectory segments of Nd(Ts(x)) that belong to
the ith direction. Considering that each road usually has at least two lanes with
opposite directions, we decide whether Ts(x) is a noisy trajectory segment by
calculating whether Ts(x) belongs to the top two most popular directions. For
example, in Fig. 2(a), for a trajectory segment Ts(x), we can determine which
direction the trajectory segment Ts(x) belongs to according to the angle range
between Ts(x) and V1, denoted as ∠(Ts(x), V1).

Besides, each inferred road is represented by a road centerline.

Definition 5 (Road Centerline). A road centerline, denoted as Rc, is rep-
resented by a polyline. It consists of a sequence of continuous positional points,
(p1, p2, . . . , pn), where pi is the geographical position.

Finally, we summarize the problem as below.
Given a road network G and a set of trajectories in different time periods,

our goal is to infer the missing roads as early as possible, and then update the
road network G by using the inferred missing roads.

4 Framework

In this section, we introduce a novel framework, which is called Hybrid Map
Updating (HyMU). HyMU is to identify missing roads based on trajectory
data. As shown in Fig. 3, HyMU is mainly composed of two phases: candidates
generation and missing roads inferring. During the first phase, we obtain the
unmatched trajectories in each time window by map matching, distance denois-
ing and direction denoising. Then, through clustering and centerline fitting on

HyMU: A Hybrid Map Updating Framework 25

Algorithm 1. Candidate Generation
Input: A trajectory set TwS in current time window
Output: Line-based candidate set RCl and point-based candidate set RCp

1 RCl ← ∅; RCp ← ∅; //line-based and point-based candidate set
2 TuS ← ∅; //unmatched trajectory segment set

3 foreach trajectory Tw(i) in TwS do

4 Tu ← MapMatching(Tw(i)); //unmatched trajectory segments
5 TuS ← TuS ∪ Tu;

6 foreach trajectory segment Ts(x) in TuS do

7 if Ts(x) is noisy trajectory segment then

8 TuS ← TuS \ {T (x)
s };

9 CSl ← LClustering(TuS); //line-based clustering
10 CSp ← PClustering(TuS); //point-based clustering

11 foreach cluster CS
(i)
l in CSl do

12 RCl ← RCl ∪ CLFitting(CS
(i)
l); //line-based candidate generation

13 foreach cluster CS
(j)
p in CSp do

14 RCp ← RCp ∪ CLFitting(CS
(j)
p); //point-based candidate generation

15 return RCl and RCp;

the unmatched and denoised trajectories, we derive the road candidates in each
time window. During the second phase, we combine the candidates of multiple
time windows via continuous observation. When the number of hybrid candidates
related to a certain road reaches the threshold k, they will be merged to form
a missing road. Finally, through road combination, we update the road network
with inferred roads. Note that our hybrid framework integrates the advantages
of line-based and point-based strategies, including high coverage and greater
precision of inferred roads.

4.1 Candidate Generation

As shown in Algorithm 1, the candidate generation phase involves map matching
(at lines 3–5), denoising (at lines 6–8), clustering (at lines 9–10) and centerline
fitting (at lines 11–14). First, the trajectories in each time-window are matched
with the road network to obtain unmatched trajectories. Then, after denoising,
the denoised and unmatched trajectories are grouped into clusters using both
line-based and point-based clustering methods. Finally, each cluster is fitted into
a polyline that represents a road candidate through centerline fitting.

Map Matching. The purpose of map matching is to match the GPS trajecto-
ries to the right roads. Commonly used map matching can be divided into two
categories: incremental approach [9,15], which aims to select the best match-
ing candidate only on the basis of the preceding observations; global methods
[14,17], which is to observe the entire series to select the best candidate. The
Fast Viterbi [17], one of the most popular map matching methods, has been

26 T. Wang et al.

Algorithm 2. LClustering
Input: Trajectory segment set TuS, a threshold thc

Output: Cluster set CS
1 CS ← ∅; l ← 1;

2 foreach unvisited segment Ts(i) in TuS do

3 Mark Ts(i) as visited;

4 if Nd(Ts(i)) > thc then

5 Cl ← {Ts(i)}; Q ← ∅; Q.enqueue(Ts(i));
6 while Q is not empty do

7 Ts(x) ← Q.dequeue();

8 foreach segment Ts(y) in Nd(Ts(x)) do

9 Mark Ts(y) as visited;

10 if Nd(Ts(y)) > thc and Ts(x) and Ts(y) are similar then

11 Q.enqueue(Ts(y));

12 if Ts(y) does not belong to any cluster then

13 Cl ← Cl ∪ {Ts(y)};

14 CS ← CS ∪ {Cl}; l ← l + 1;

15 return CS;

adopted by most of map updating methods (e.g. CrowdAtlas and Glue) due to
its excellent performance. Likely, the MapMatching function in Algorithm1 (at
line 4) also implements Viterbi, and derives unmatched trajectory segments by
selecting candidates with the maximal weight after calculating the candidate
positions within a certain radius. Finally, we will obtain a set of unmatched
trajectory segments.

Denoising. GPS samples often have a few noisy data of position or direction.
To improve the accuracy of inferred missing roads, denoising process is required
to reduce the noisy samples. For example, there are a few noisy points (in red) in
Fig. 2(b). First, the red circled points can be removed through distance denoising
because they are far from most of its surrounding points. Subsequently, as the
red track points in Fig. 2(b) are significantly different from most of its surround-
ing points in directions, they are removed by direction denoising [6]. Specifically,
we search the nearby segments of each trajectory segment, and compare the
direction of it with its neighboring segments. Then, we identify a noisy trajec-
tory segment according to the significant gap between its direction and most
of its surrounding segments’ direction. The denoising result after distance and
direction denoising is shown in Fig. 2(c).

Clustering. After map matching and denoising, the unmatched trajectory seg-
ments need to be clustered to infer the road candidates. To enhance the accuracy
of inferred missing roads, we combine both line-based clustering (LClustering)
and point-based clustering (PClustering). The point-based clustering takes two
endpoints of all trajectory segments as input, while the line-based cluster takes

HyMU: A Hybrid Map Updating Framework 27

trajectory segments as input. In Algorithm2 (LClustering), each trajectory seg-
ment is initialized as a cluster once the number of its similar trajectory segments
is greater than a specific threshold, i.e., Nd(pi) > thc (at lines 2–5). The similar
trajectory segment is defined below.

Definition 6 (Similar Trajectory Segment). Given two trajectory segments
T

(x)
s and T

(y)
s , a distance threshold thdis and a direction threshold thdir, T

(x)
s and

T
(y)
s are two similar trajectory segments if the distance between Ts(x) and Ts(y)

is smaller than thdis, and the angle between Ts(x) and Ts(y) is less than thdir.

Then, for each segment Ts(x) in one cluster and each segment Ts(y) in
Nd(Ts(x)), if they are similar and Nd(Ts(y)) > thc, we add Ts(y) into queue.
If Ts(y) does not belong to any cluster, it should also be added into the clus-
ter of Ts(x) (at lines 7–13). The PClustering approach also divides the input
points into several clusters according to the similar criterion. The directions of
two endpoints of a segment can be seen as the direction of the segment. Due to
space limitations, we omit the detail of PClustering.

Centerline Fitting. The centerline fitting step aims to generate the centerlines
to represent road candidates. Since a cluster that consists of the trajectory points
or segments may belong to the same road candidate, we need to fit a centerline
to represent a road candidate. For the clustering results of former stage, we use
the sweeping line method in [7] to realize the centerline fitting process. The
CLFitting function in Algorithm1 takes trajectory points or segments as input,
and generates the road candidates (at lines 11–14). Finally, we obtain line-based
candidates and point-based candidates.

4.2 Missing Roads Inferring

In this phase, we group road candidates belonging to the same road based on
two kinds of road candidates, RCl and RCp, generated in Algorithm 1. To be
specific, if k road candidates (at least one line-based candidate and one line-based
candidate) are located on the same road, they are merged to infer a missing
road. After that, we connect the inferred roads with existing roads in network.
Therefore, the missing roads inferring phase is composed of two steps, including
continuous observation and road combination.

R c 3
R c 2

R c 1i n f e r r e d m i s s i n g r o a d

Fig. 4. An example of missing road
generated in the MBR

d e l e t e d r o a d i n m a p

i n f e r r e d m i s s i n g r o a d

T s 1 T s 2 T s 3 T s 4

T s 1' T s 2' T s 3' T s 4'

Fig. 5. An example of two similar road
centerlines

28 T. Wang et al.

Algorithm 3. Continuous Observation
Input: Road candidate sets RCp and RCl, a threshold k (k � 3)
Output: A missing road set RS = {R1, R2, ..., Rm}

1 RS ← ∅; i ← 1;

2 foreach unvisited candidate Rc(i) in RCp ∪ RCl do

3 Z ← Rc(i) ∪ {Rc(j) | Rc(j) ∈ RCp ∪ RCl, Rc(i) and Rc(j) are similar} ;
4 Mark all road candidates in Z as visited;
5 if |Z| � k and at least one point-based candidate in Z then
6 Ri ← CLFitting(Z) ;
7 RS ← RS ∪ {Ri}; i ← i + 1;

8 return RS;

Continuous Observation. As mentioned in Sect. 1, since the sparse trajecto-
ries in one time window may be confused with noise, the road candidates derived
from them may imply wrong missing roads. To improve the precision, we pro-
pose a continuous observation approach to infer the missing roads based on the
candidates of multiple time windows. To be specific, as show in Algorithm 3, we
collect the candidates of consecutive time windows so far and take them as input.
First, we divide all road candidates according to the roads which they belong to
(at line 3). When the number of road candidates exceeds a predefined threshold
k (k � 3) and at least one point-based candidate is involved, we can identify
a missing road. Next, we fit them into a missing road by invoking CLFitting
function (at line 6).

For example, there are three similar road candidates (e.g. the black poly-
line) co-exist in Fig. 4. As the number of road candidates reaches the predefined
threshold (k = 3), we combine them to generate a new road centerline to repre-
sent a missing road. To be specific, given two road candidates Rc(x) and Rc(y),
if ∃Ts(i) ∈ Rc(x), T s(j) ∈ Rc(y), and Ts(i) and Ts(j) are similar, we take Rc(y)

as one of the similar road candidates of Rc(x) and take them as candidates of
the same road. In Fig. 4, if the number of road candidates reaches k (k = 3), a
missing road will be inferred through centerline fitting. If k = 4, we continue to
observe the road candidates in the following time windows until the number of
road candidates belonging to the same road reaches 4.

Road Combination. After inferring missing roads, we update the existing road
network by connecting the inferred roads to the existing neighboring roads. Given
an inferred missing road Rc(x), we try to find a road Rc(y) in the road network
such that the Rc(y) is close to one of the endpoints of Rc(x) (e.g. smaller than
20 m). If such Rc(y) exists, we update the existing road network by connecting
Rc(x) and Rc(y).

5 Experimental Evaluation

We conduct substantial comparison experiments on real data sets to evaluate the
performance of HyMU. Specifically, we compare HyMU with line-based method

HyMU: A Hybrid Map Updating Framework 29

(CrowdAtlas [16]) and point-based method (Glue [18]) to verify the superiority
of HyMU. Our codes, written in Java, are conducted on a PC with 16 GB RAM,
Intel Core CPU 3.2 GHz i7 processor, and the operating system is Windows 10.

5.1 Evaluation Method

In order to ensure fairness, we randomly select an area on the existing map and
remove some road segments from this region. The goal is to verify whether the
deleted road segments can be inferred by different map updating methods. Evalu-
ation criteria includes Precision, Recall and F-measure [8,18]. Let truth denote
the deleted roads, inferred denote all inferred road segments, and tp denote
the correctly inferred roads. Accordingly, we use len(truth), len(inferred) and
len(tp) to represent the length of all the deleted roads, the inferred roads and
the correctly inferred roads respectively. Then, Precision, Recall and F-measure
can be calculated as follows.

Precision =
len(tp)

len(inferred)
Recall =

len(tp)
len(truth)

F-measure =
2 × Precision × Recall

Precision + Recall

As shown in Fig. 5, the deleted roads and their corresponding inferred missing
roads are split into small segments with fixed length. Then, tp can be denoted
as below.

tp = {si(Ts(x), T s(y))|∀Ts(x) ∈ inferred, ∀Ts(y) ∈ truth}
The function si(Ts(x), T s(y)) returns Ts(x) if Ts(x) and Ts(y) are similar.

Otherwise, it returns null.

5.2 Data Sets and Map

We use two real data sets to evaluate the effectiveness of HyMU method, includ-
ing a taxi trajectory data set of 2015 in ShanghaiOpen Data Apps2 (here-
after termed Taxi2015) and a high-sampling Shanghai taxi data set in 2013
(hereafter termed Shanghai2013). In addition, we choose an open source map
OpenStreetMap(OSM)3 as our map data.

Taxi2015 contains the GPS logs of taxis from Apr. 1 to Apr. 30, 2015. It
involves about 10,000 trajectories every day (about 115 million points). Each
GPS log, represented by a sequence of time-stamped points, contains Vehicle
ID, Time, Longitude and Latitude, Speed, etc.

Shanghai2013 contains the GPS logs of taxis in 2 days (from Oct. 1 to Oct.
2). It involves about 50,000 trajectories every day (about 107 million points).
The average sampling rate of the objects is about 60 s. Besides, each GPS log,
represented by a sequence of time-stamped points, contains Vehicle ID, Time,
Longitude and Latitude, Speed, etc.
2 http://soda.datashanghai.gov.cn/.
3 http://wiki.openstreetmap.org/.

http://soda.datashanghai.gov.cn/
http://wiki.openstreetmap.org/

30 T. Wang et al.

(a) OSM Map (b) AutoNaviMap

Fig. 6. Visualization result of HyMU on Taxi2015

5.3 Effectiveness Evaluation

Results for Taxi2015. We first implement HyMU on Taxi2015 to infer about
150 road segments that haven’t been described in OSM map. The visualization
result is shown in Fig. 6(a), where the red lines represent the missing roads
detected by HyMU. As compared to the roads in AutoNaviMap4 (as shown in
Fig. 6(b)), we can find that six roads (R1–R6) are correctly inferred by HyMU.
This verifies the high precision of our proposal. In addition, we infer the road R7

that is not marked on AutoNaiveMap, which further confirms the superiority of
HyMU in discovering missing roads on sparse trajectory data.

Results for Shanghai2013. We compare HyMU with CrowdAtlas and Glue
on Shanghai2013 and randomly select a test area consists of 19 road segments
(from North Zhang Yang Road, through Wuzhou Avenue and Shenjiang Road, to
Jufeng Road). Firstly, to verify the robustness of HyMU, we evaluate sensitivity
of parameters (thdis, thdir and k) on Shanghai2013, as illustrated in Fig. 7. After
tuning them repeatedly, we find that HyMU achieves the best performance on
Shanghai2013 when thdis = 20m, thdir = π

6 and k = 3. Secondly, we further
evaluate HyMU, CrowdAtlas and Glue by varying the sampling interval from 40 s
to 160 s. As shown in Fig. 8, we find that Glue has the best precision because
the point-based strategy will not infer the missing roads with wrong direction.
But it does not take into account inferring roads on sparse region, which result
in a lower recall rate. By contrast, HyMU combines the advantage of line-based
and point-based strategies. It attains almost the same precision as Glue, and
the highest recall as well as F-measure. Thirdly, we evaluate the performance of
HyMU, CrowdAtlas and Glue under various data volume, as shown in Fig. 9. As
data volume becomes larger, we observe that the precision, recall and F-measure
value of HyMU increases accordingly, and the precision approaches Glue. Hence,
HyMU has a good scalability. Additionally, we observe that HyMU has higher
recall than other methods in all situations, which demonstrates that it is capable
of inferring missing roads on sparse trajectory data.

4 http://ditu.amap.com/.

http://ditu.amap.com/

HyMU: A Hybrid Map Updating Framework 31

(a) Varying thdis (b) Varying thdir (c) Varying k

Fig. 7. Performance of HyMU under different parameters on Shanghai2013

(a) Precision (b) Recall (c) F-measure

Fig. 8. Performance comparison under various sampling intervals on Shanghai2013

(a) Precision (b) Recall (c) F-measure

Fig. 9. Performance comparison under various data volume on Shanghai2013

5.4 Efficiency Evaluation

Next, we assess the efficiency of HyMU by comparison with CrowdAtlas and Glue
on Shanghai2013. As shown in Fig. 10(a), HyMU run faster than the other two
methods with the increase of trajectory data. It indicates that HyMU is more
efficient than other map updating methods. GLUE, by contrast, is extremely
time-costing, due to the cost on calculating direction of each point. Addition-
ally, we evaluate the efficiency of HyMU by varying the time window size N .
Figure 10(b) shows the processing time comparison when N is set to 3 h, 6 h
and 21 h respectively. When N = 6 h, the execution time is the smallest. This is
due to that massive amount of data in a time window requires to be denoised
and clustered which is quite time-consuming if the time window size is large.
Conversely, when time window size is small, we need to deal with too many road
candidates, which is also time-consuming. So the appropriate window size is 6 h

32 T. Wang et al.

(a) Efficiency comparison (b) Efficiency of HyMU

Fig. 10. Efficiency evaluation

on Shanghai2013, and we also use this optimal value to execute effectiveness
evaluation on Shanghai2013. Consequently, HyMU is efficient and effective to
infer the missing roads for a given map.

6 Conclusion

In this paper, we address the issue of inferring missing roads on sparse trajec-
tory data of vehicles. On the basis of sliding window model, we propose a hybrid
framework called HyMU to infer the missing roads. HyMU is mainly composed
of two phases: road candidates generation and missing roads inferring. Owing
to advantages of the hybrid framework, HyMU attains a better performance as
compared to the other map updating methods. Substantial experimental results
demonstrate the superiority of HyMU especially in dealing with sparse trajec-
tory data. In addition, since there are other forms of road changes in the road
network (e.g. blocked roads). Such road changing information is very important
in navigation applications. In the future work, we proceed to study how to detect
road changes, and provide real-time traffic information to users to enable route
planning.

Acknowledgement. Our research is supported by the National Key Research and
Development Program of China (2016YFB1000905), NSFC (61370101, 61532021,
U1501252, U1401256 and 61402180), Shanghai Knowledge Service Platform Project
(No. ZF1213).

References

1. Agamennoni, G., Nieto, J.I., Nebot, E.M.: Robust inference of principal road paths
for intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 12(1), 298–
308 (2011)

2. Biagioni, J., Eriksson, J.: Map inference in the face of noise and disparity. In:
SIGSPATIAL, pp. 79–88 (2012)

3. Cao, L., Krumm, J.: From GPS traces to a routable road map. In: GIS, pp. 3–12
(2009)

HyMU: A Hybrid Map Updating Framework 33

4. Davies, J.J., Beresford, A.R., Hopper, A.: Scalable, distributed, real-time map
generation. IEEE Pervasive Comput. 5(4), 47–54 (2006)

5. Edelkamp, S., Schrödl, S.: Route planning and map inference with global posi-
tioning traces. In: Computer Science in Perspective, Essays Dedicated to Thomas
Ottmann, pp. 128–151 (2003)

6. Ge, Y., Xiong, H., Zhou, Z., Ozdemir, H.T., Yu, J., Lee, K.C.: Top-eye: top-k
evolving trajectory outlier detection. In: CIKM, pp. 1733–1736 (2010)

7. Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group frame-
work. In: SIGMOD, pp. 593–604 (2007)

8. Liu, X., Biagioni, J., Eriksson, J., Wang, Y., Forman, G., Zhu, Y.: Mining large-
scale, sparse GPS traces for map inference: comparison of approaches. In: KDD,
pp. 669–677 (2012)

9. Mazhelis, O.: Using recursive bayesian estimation for matching GPS measurements
to imperfect road network data. In: International IEEE Conference on Intelligent
Transportation Systems, pp. 1492–1497 (2010)

10. Mokhtarzade, M., Zoej, M.J.V.: Road detection from high-resolution satellite
images using artificial neural networks. Int. J. Appl. Earth Obs. Geoinf. 9(1),
32–40 (2007)

11. Schrödl, S., Wagstaff, K., Rogers, S., Langley, P., Wilson, C.: Mining GPS traces
for map refinement. Data Min. Knowl. Discov. 9(1), 59–87 (2004)

12. Seo, Y., Urmson, C., Wettergreen, D.: Exploiting publicly available cartographic
resources for aerial image analysis. In: SIGSPATIAL, pp. 109–118 (2012)

13. Shan, Z., Wu, H., Sun, W., Zheng, B.: COBWEB: a robust map update system
using GPS trajectories. In: UbiComp, pp. 927–937 (2015)

14. Thiagarajan, A., Ravindranath, L., Balakrishnan, H., Madden, S., Girod, L.: Accu-
rate, low-energy trajectory mapping for mobile devices. In: NSDI (2011)

15. Velaga, N.R., Quddus, M.A., Bristow, A.L.: Developing an enhanced weight-based
topological map-matching algorithm for intelligent transport systems. Transp. Res.
Part C Emerg. Technol. 17(6), 672–683 (2009)

16. Wang, Y., Liu, X., Wei, H., Forman, G., Chen, C., Zhu, Y.: CrowdAtlas: self-
updating maps for cloud and personal use. In: MobiSys, pp. 27–40 (2013)

17. Wei, H., Wang, Y., Forman, G., Zhu, Y., Guan, H.: Fast viterbi map matching
with tunable weight functions. In: SIGSPATIAL, pp. 613–616 (2012)

18. Wu, H., Tu, C., Sun, W., Zheng, B., Su, H., Wang, W.: GLUE: a parameter-tuning-
free map updating system. In: CIKM, pp. 683–692 (2015)

Multi-objective Spatial Keyword Query
with Semantics

Jing Chen1, Jiajie Xu1(B), Chengfei Liu2, Zhixu Li1, An Liu1,
and Zhiming Ding3

1 Department of Computer Science and Technology,
Soochow University, Suzhou, China

20164227012@stu.suda.edu.cn, {xujj,zhixuli,anliu}@suda.edu.cn
2 Faculty of SET, Swinbourne University of Technology, Melbourne, Australia

cliu@swin.edu.au
3 Department of Computer Science and Technology,

Beijing University of Technology, Beijing, China
zmding@bjut.edu.cn

Abstract. Multi-objective spatial keyword query finds broad applica-
tions in map services nowadays. It aims to find a set of objects that
can cover all query objectives and are reasonably distributed in spatial.
However, existing approaches mainly take the coverage of query keywords
into account, while leaving the semantics behind the textual data to be
largely ignored. This limits us to return those rational results that are
synonyms but morphologically different. To address this problem, this
paper studies the problem of multi-objective spatial keyword query with
semantics. It targets to return the object set that is optimum regarding
to both spatial proximity and semantic relevance. We propose an index-
ing structure called LIR-tree, as well as two advanced query processing
approaches to achieve efficient query processing. Empirical study based
on real dataset demonstrates the good effectiveness and efficiency of our
proposed algorithms.

1 Introduction

Spatial keyword query is widely used in location based service (LBS) systems to
recommend users the needed services or places to visit. The study on this topic
has attracted a great deal of attention. Existing methodologies mainly study
the efficient retrieval of spatial web objects that can best match the query in
terms of both spatial and textual relevances. The spatial keyword query itself
sometimes has multiple objectives, which may lead to none or few objects that
can fully cover all keywords in query. To address this problem, [5] returns a
group of objects that can cover all required keywords with reasonable spatial
distribution. But the keyword match cannot help us to find out those objects
with highly related semantics but low similarity in spellings, such as market
and Wal-Mart. This limitation motivates us to investigate other approaches to
capture the semantic relatedness to multi-objective spatial keyword queries.
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 34–48, 2017.
DOI: 10.1007/978-3-319-55699-4 3

Multi-objective Spatial Keyword Query with Semantics 35

Fig. 1. Distribution of Spatial Web Objects

Example 1. Figure 1 shows an example with ten spatial web objects, each has a
geographical location and a set of keywords. A user issues a query with three
objectives described by market, fast food and cinema respectively. By using
traditional methods [7,9] to process each objective in query independently, the
objects {O4, O5, O9} are returned because of the spatial and textual similar-
ities to query. Alternatively by using the collective spatial keyword querying
method [5], the search engine tends to return a more qualified result such as
{O1, O2, O3}, because they are coherent in spatial and been close to the query
together. However if we check the semantics of query objectives more carefully,
instead of {O1, O2, O3}, we can easily observe that {O6, O7, O8} is the set of
objects that should be returned, because they are best matched in spatial, and
all objectives in the query can be fully matched in semantics. The key issue is
how to take the semantics into account and process the query efficiently.

To represent the semantics of spatial web objects and query objectives, we
can apply powerful tools in the field of machine learning, such as probabilistic
topic model or word embedding. By using them on textual descriptions, query
objectives (e.g., market in q of Fig. 1) and spatial web objects are represented
as high dimensional vectors called topic distributions in semantic space. A topic
distribution indicates the semantic relevance between a textual description and
a latent topic, and accordingly, the similarity between an object and an objective
in query can be measured on top of their topic distributions. In this way it is
possible to find the collective object set that can satisfy all query objectives
while coherent in spatial and close to the query point.

While the incorporation of semantics helps us to return more meaningful
feedbacks, the query processing becomes more challenging and time-consuming
for three main reasons: firstly, finding the optimal result (the subset according
to spatial and semantic similarity) is an NP complete problem, which cannot
be solved in a polynomial time; secondly, existing spatial keyword indices, such
as IR-tree [4], cannot be directly used to organize the information of spatial
web objects because of its difficulties in representing their topic distributions
regarding to semantics. Last but not the least, the high dimensionality of vector
(topic distribution in semantics) deteriorates the pruning effectiveness in query
processing due to the large dead space.

36 J. Chen et al.

To address all above difficulties, we propose a novel query processing mech-
anism that has good efficiency and precision. To ensure the pruning effect in
semantic space, we take advantage of the locality sensitive hashing (LSH) to
hash the objects by their high dimensional topic distributions. Each bucket is
understood as a semantic tag, and the LSH mechanism ensures that objects in
the same bucket to have consistent semantic meanings. We design a candidate
bucket set oriented searching mechanism to reduce the search space. It retrieves
and compares local result for each candidate bucket set, and finally derives a
result in global optimum. In addition, a more efficient approach is proposed
to avoid checking all candidate bucket sets while ensuring high accuracy of the
result. The main contributions of the paper can be briefly summarized as follows:

– We formalize a probabilistic topic model based similarity measure between a
multi-objective query and a set of objects;

– We design a semantic hashing based algorithm by applying LSH index struc-
ture, so that collective objects can be derived by making use of the collective
spatial keyword querying technologies.

– We propose a novel mechanism that can start from a good result directly, and
then guide us to improve the result while ensuring the accuracy by distance
based replacement strategy.

– We conduct an extensive experiment analysis based on real spatial databases
and make the comparisons with baseline algorithm, and then demonstrate the
efficiency of our method.

2 Preliminaries and Problem Definition

In this section, we introduce some preliminaries about probabilistic topic model
and then formalize the problem of this paper.

2.1 Probabilistic Topic Model

Probabilistic topic model is a well-known technique on theme interpretation and
document classification. In this paper, we apply one of the most frequently used
probabilistic topic models, i.e. the Latent Dirichlet Allocation (LDA) model to
understand the semantic meanings of textual descriptions. In LDA, each latent
topic, or topic in short, is a feature that represents a semantic meaning. By
carrying out statistical analysis on the large amount of textual descriptions, the
LDA model automatically derives the semantic relevance of a textual description
to all latent topics, known as topic distribution defined as follows:

Definition 1 (Topic Distribution). Given a textual description W , a topic dis-
tribution derived from LDA is a high dimensional vector that describes the
semantic relevance between the textual description and each latent topic. We
use TDW to denote the topic distribution of W over finite latent topics, and a
component TDW [i] indicates the relevance between W and the ith latent topic.

Multi-objective Spatial Keyword Query with Semantics 37

Table 1. Topic distributions of textual descriptions

Textual descriptions Topics

Exercise Movie Drink Shop Food

market (in O1, O10) 0.09 0.09 0.09 0.64 0.09

fast food (in O2) 0.04 0.04 0.16 0.04 0.72

cinema (in O3, O9) 0.07 0.72 0.07 0.07 0.07

noodle shop (in O5) 0.07 0.07 0.07 0.07 0.72

Wal-Mart (in O6) 0.07 0.07 0.07 0.72 0.07

theater (in O7) 0.04 0.84 0.04 0.04 0.04

KFC (in O8) 0.03 0.03 0.03 0.03 0.88

Example 2. Table 1 shows the LDA interpretation on all the spatial web objects
in Fig. 1. Each tuple in Table 1 is a topic distribution over five topics. Each com-
ponent is the relevance between the textual description and a specific topic, for
example, TDmarket[1] = 0.09 means the relevance between market and exercise
is 0.09. We can learn from Table 1 that cinema has high coherence with theater
due to TDcinema[2] = 0.72 and TDtheater[2] = 0.84 while in contrast that KFC
is distinct to cinema because of TDKFC [2] = 0.03.

2.2 Problem Definition

A spatial web object is a place of interest in LBS systems, and it is formalized
as o = (o.λ, o.ψ) where o.λ is the position of o and o.ψ is the textual information
for describing o. A user issues a multi-objective query q = (q.λ, q.Ψ), where q.λ
represents a geographical location, and q.Ψ is a set of query objectives which
are textual descriptions for describing an activity intention. In the rest of this
paper, we simply use objects to represent spatial web objects.

Definition 2 (Spatial Distance). The objects in the result set are supposed
to be not only close to query, but also close with each other. We thus follow
collective spatial keyword query [5] and measure the spatial distance DS to
range [0,1] from a query q to an object set O as follow:

DS(q,O) = β × maxoi∈O (sd(q, oi))
+ (1 − β) × maxoi,oj∈O(sd(oi, oj)) (1)

where β ∈ [0, 1] is a user-specified weight parameter, sd(q, oi) = 2
1+e||q.λ,oi.λ|| − 1

is the normalized spatial distance between query q and object oi by sigmoid
function. The spatial measure allows us to find a set of objects close to query and
have spatial coherence with each other. That means, the objects are rationally
distributed in spatial when DS(q,O) is small.

Definition 3 (Semantic Distance). Semantic distance DT between a query q
and an object set O can be measured on top of their topic distributions through

38 J. Chen et al.

LDA. By calculating the distance between high dimensional vectors, we define
DT to range [0,1] by using the sigmoid function as follow:

DT (q,O) =
∑

q.Ψi∈q.Ψ

minoj∈O(dT (q.Ψi, oj)) (2)

such that,

dT (q.Ψi, oj) =
2

1 + e−√
Σ(TDq.Ψi

[z]−TDoj
[z])2

− 1 (3)

where DT (q,O) ∈ [0, 1]. It is obvious that when semantic distance is smaller, the
query q and a correspond object o are more relevant in semantics.

Definition 4 (Distance). By combining spatial distance DS(q,O) and semantic
distance DT (q,O), we define the distance Dist(q,O) of query q and object set
O in Equation below.

Dist(q,O) = α × DS(q,O) + (1 − α) × DT (q,O) (4)

where α ∈ [0, 1] is a user-specified weight parameter that balance spatial distance
and semantic distance.

Problem Statement. Given an object set O and a query q = (q.λ, q.Ψ), the
multi-objective spatial keyword query (MoSKQ, in short) in this paper aims to
return a subset O′ of objects O(O′ ⊂ O, |O′| � |q.Ψ |), such that ∀O′′ ⊂ O,
Dist(q,O′) � Dist(q,O′′).

3 Baseline Algorithm

In this section, we propose a baseline algorithm which seeks to find the optimal
result within a subspace incrementally. A lower bound and an upper bound are
used to stop the searching process in the middle if possible.

Starting from a search region centered at the query q with a radius r, we
execute an exhaustive search to get the best object set R(|R| � |q.Ψ |) which
minimizes the distance to the query according to Definition 4. If needed, we
enlarge the search radius r = r + Δr and search all combinations of objects in
this region to find a best object set R′. During this process, a set S is used to
store all the solutions found. In this process, we dynamically maintain an upper
bound UB = minR∈O(Dist(q,R)) and a lower bound LB = α × β × (2

1+e−r − 1)
which equals to part of spatial distance.

During the process, if UB � LB or the search radius extends to the most dis-
tant object, the algorithm terminates and returns the best group in the solution
set S, because the spatial distance of all unprocessed objects are no less than
the distance to query of the found result object sets. However, this algorithm
may require an exhaustive search sometimes because the bound is relative loose.
Therefore more efficient approaches are required to find the results.

Multi-objective Spatial Keyword Query with Semantics 39

4 Semantic Hashing Based Algorithm

In this section, we propose a novel solution called semantic hashing based
algorithm (SH-based algorithm in short) to speed up the querying process.
In Sect. 4.1, we introduce the details of the LSH based indexing structure.
Section 4.2 plots the search algorithm over the index.

4.1 Index Structure

In this subsection, we devise a new index, namely LIR-tree, based on LSH and
IR-tree. As is known, LSH [3,8,17] is a method widely used for similarity search
in high dimension. We first utilize LSH to preprocess all objects in the dataset,
i.e., hash the object into buckets based on their topic distributions. Every bucket
in LSH can be regarded as the tag of the semantic meanings of the objects in
this bucket. That is to say, the objects in the same bucket are considered to
be similar in semantics. In this way, all the objects in the dataset derive the
bucket ids that they are hashed into, which makes the semantic similarity search
possible based on the bucket ids. Then we use IR-tree [6,16,19] to organize the
objects according to their geographical locations and corresponding bucket ids
for a given query with specified location and bucket ids.

Fig. 2. An example of LIR-tree

LSH part. The LSH is a well-known index scheme for high-dimensional sim-
ilarity search with the basic idea to use a family of locality-sensitive hashing
functions to map the objects into the same buckets with high probability. LSH
hash families have the property that objects close to each other have a higher
colliding probability than those far apart, which is determined by different dis-
tance measure functions. In this paper, we use the hash family proposed by
Datar et al. [8] based on p-stable distributions [12], which is defined as:

h (p) = �a × p + b

W
� (5)

40 J. Chen et al.

where a is a random topic distribution vector, W represents the width of the
hash function, b is a random variable belongs to [0,W]. All the objects in the
dataset are divided into corresponding buckets based on their topic distributions.
Each bucket can be considered as the semantic tag of the objects in this bucket
and the objects in the same bucket have high proximity in semantics. We record
the geographical location and the bucket ids that every object in dataset are
hashed into.

IR-tree part. The IR-tree part of LIR-tree is similar to the conventional
inverted R-tree, except that we store the inverted list of the buckets of the
objects derived by LSH, rather than the keywords that describe the objects.
All the objects in the dataset are organized using the R-tree according to their
geographical location. Since the objects also have the bucket ids that they are
hashed into, we build the inverted list of the R-tree node in a bottom up fashion.
The inverted list of both leaf node and non-leaf node includes the buckets and
the objects that are hashed to this bucket.

4.2 Search Algorithm

In this subsection, we propose a search algorithm that prunes the search space
effectively over the proposed index. The prune process is complished on topic
layer and spatial layer respectively.

Let us consider how to match all query objectives first. Recall that all objects
in the dataset have a topic distribution after applying the LDA model to interpret
their textual descriptions. The objects are then hashed into buckets by LSH on
top of their topic distributions. By using LSH, objects in a same bucket are
supposed to be consistent in semantics, each bucket can thus be understood as
a semantic tag. Given a query q, we can derive a topic distribution for each
objective in q, and then hash the query objectives into the LSH buckets in the
same way to objects. By taking advantage of the LSH structure, we can simply
evaluate if an object can match a query objective if they share a same semantic
tag (i.e. in a same LSH bucket), and accordingly, the semantic distance can be
rewritten to:

dT (q.Ψi, o) =

{
0 ∃Bij : q.Ψi ∈ Bij ∧ o ∈ Bij

∞ otherwise
(6)

where q and o are the query and the object respectively. Equation 6 means that
an object can be matched to a query objective in semantics if they share at least
one LSH bucket, and they have no semantic relevance otherwise.

On top of the LSH based semantic distance defined above, the next issue is
to justify if a given object set is semantically relevant to all query objectives.
Conceptually, the relevance requires us to find an object from the set to share
a same bucket for each query objective (having a same semantic tag). To define
the semantic relevance more clearly, we further define the concept of candidate
bucket set as follows.

Multi-objective Spatial Keyword Query with Semantics 41

Definition 5 (Candidate bucket set). A candidate bucket set is a smallest unit
of buckets to ensure the relevance to a query about its objectives. Given a query
q, a candidate bucket set cbs satisfy the following two requirement: (1) contain-
ment. A cbs contains at least one bucket in bucket set of each query objective
q.Ψi ∈ q.Ψ such that BS(q.Ψi) ∩ cbs �= ∅, where BS(q.Ψi) is the set of buckets
which q.Ψi is hashed to; (2) minimum. The above condition fails for each subset
of these buckets, i.e., cbs′

� cbs.

The candidate bucket set ensures that all query objectives can be matched.
Given a set of objects O, it can be returned if the union of buckets contain-
ing an object in O can cover a candidate bucket set of query q. In Fig. 2,
{b1M , b21, ..., bL2} is a candidate bucket set which covers all query objectives,
but {b12, b22, ..., bL2} is not a candidate bucket set which covers only part of
query objectives {q.Ψ1, q.Ψ2}.

Here we describe the searching mechanism. The target of SH-based algorithm
search is to find the object set such that: (1) its related bucket set covers at least
one candidate bucket set to meet all query objectives; (2) the distance to query
is the minimum. We use a candidate bucket set oriented searching mechanism.
For each candidate bucket set, if each bucket is regarded as a keyword (denoting
a semantic tag), our problem can be transfered to the well studied collective
spatial keyword query [5]. We apply the Top-Down Search algorithm in [5] to
obtain the best object set for the given candidate bucket set (line 7). The basic
idea of the Top-Down Search algorithm is to perform a best-first search on the
IR-tree to find the covering node sets, such that some objects from these nodes
can constitute a group to cover all required buckets in the set. We process the
covering node set with the lowest distance to query to find covering node sets
from their child nodes. While reaching a covering node set consisting of leaf
nodes, a group of objects with the lowest distance to query can be found by
performing an exhaustive search (lines 6–10). The Top-Down Search algorithm
return the exact result set and it is invoked L|q.Ψ | times according to Lemma 1.

Lemma 1. There are L hash functions and query q have |q.Ψ | query objectives.
The SH-based Algorithm would retrieve collective objects for L|q.Ψ | times.

Proof. Assuming that there are L hash functions, each query objective q.Ψi can
be put into L buckets as a bucket set BS(q.Ψi) after hashing. The quantity of
this bucket set is L, namely |BS(q.Ψi)| = L, i ∈ [1, |q.Ψ |]. Then the |q.Ψ | query
objectives correspond to |q.Ψ | bucket sets. All candidate bucket sets produced
by Cartesian product BS(q.Ψ1) × BS(q.Ψ2) × ... × BS(q.Ψ|q.Ψ |) and obviously
the size of these sets is L|q.Ψ |. Therefore, this query step will be repeated L|q.Ψ |

times. Lemma 1 can be proven. �

This method avoids the worst situation in which the whole search region
needs to be scrutinized. The search process is subject to at most BS(q.Ψ1)× ...×
BS(q.Ψ|q.Ψ |) candidate bucket sets, each of them calls for a Top-Down Search
whose time complexity is |q.Ψ | − |N | + 1, where N represents the number of
nodes which cover the query keywords and each node contributes at least one

42 J. Chen et al.

Algorithm 1. SH based Search Algorithm
Input: IR-tree ir, query q, λ
Output: a set of objects O

1 O ← ∅;
2 CBS ← BS(q.Ψ1) × BS(q.Ψ2)... × BS(q.Ψ|q.Ψ |);
3 for each cbs in CBS do
4 O′ and Dist(q, O′) ← TopDownSearch(q, cbs);
5 if Dist(q, O′) < Dist(q, O) then
6 Dist(q, O) = Dist(q, O′);
7 O = O′;

8 return O and Dist(q, O);

object to the final result [5]. The time complexity of SH-based Algorithm is
L|q.Ψ | × (|q.Ψ | − |N | + 1) which cannot be solved in polynomial time either.
The computational overhead will rapidly increase when the number of query
objectives grows.

5 Distance Based Replacement Algorithm

This section presents a novel strategy called Distance Based Replacement (DBR)
Algorithm, which starts at the SH-based algorithm but aims to find a high quality
result more efficiently. Instead of taking every possible candidate bucket set as
input, the DBR algorithm randomly sample a number of candidate bucket sets
and derive a result based on SH-based algorithm. Then it aim to improve the
result by replacement iteratively. Besides, the DBR Algorithm takes both spatial
layer and topic layer into consideration, and LIR-tree is used to accelerate query
processing as well.

We randomly sample some candidate bucket sets to obtain object sets by
invoking SH-based Algorithm and choose the object set with the minimum dis-
tance to query from these object sets before replacement. Objects in this set are
replaced individually and iteratively until a stable object set is found according
to Lemma 2. A stable object set is obtained by iteratively replacing object until
no reduction can be achieved on distance to query. The critical operation is that
how to set the standard for replacement. In the procedure of replacement, an
object in initial object set replaced by an object which beyond this set and has
farther MG than others. The important concept marginal gain MG defined as

MG(oi, oj) = Dist(q,O) − Dist(q,O′) (7)

where O = {o1, .., oi, .., on} is the initial object set and O′ = {o1, .., oj , .., on}
represents a replaced object set where oi is replaced by oj . The object oi should
be replaced by oj while max

oj∈O
(MG(oi, oj)) and MG(oi, oj) > 0. The replacement

strategy terminates when no object can be found to touch positive marginal gain,

Multi-objective Spatial Keyword Query with Semantics 43

i.e., for each object o′
i in object set, ∀o′

j ∈ O,MG(o′
i, o

′
j) < 0. The stable object

set is final result of DBR Algorithm. And this result may have lower distance to
query than the object set found by SH-based Algorithm.

Lemma 2. Given dataset and bucket sets related to query objectives. The stable
object set can be found through distance based replacement strategy.

Proof. We assume that the object set after DBR Algorithm is not stable. Thus
there must exist an object oi in this object set which can be replaced by another
object oj and MG(oi, oj) > 0. According to terminating condition, replacement
will be continued until the stable object set is found. Therefore, the object set
must be stable. Lemma 2 has been proved. �

Algorithm 2. Distance based Replacement Search Algorithm
Input: IR-tree ir, query q, λ
Output: a set of objects V

1 V ← ∅;
2 CBS ← BS(q.Ψ1) × BS(q.Ψ2)... × BS(q.Ψ|q.Ψ |);
3 Somecbs ← randomSome(CBS);
4 V and Dist(q, V) ← getMinimum(q, Somecbs);
5 for object oi in V do
6 for object oj in O do
7 (o′

i, o
′
j)=argmax(MG(oi, oj));

8 V=Replace(oi,o
′
j);

9 return V;

The pseudocode is shown in Algorithm 2. Firstly, we obtain all candidate
bucket sets CBS which is the cartesian product of bucket sets (line 2). Next, we
randomly select some candidate bucket sets (line 3). Then we apply Top-Down
Search Algorithm to query q and each cbs(cbs ∈ Somecbs) and obtain the object
set V with minimum distance Dist(q, V) (line 4). Then, we compute MG(oi, oj)
to find an object oj with the maximum marginal gain and apply DBR strategy to
replace it until finding a stable object set (line 5–8). Through DBR strategy, the
problem of time consuming caused by messive candidate bucket sets has been
solved. Assuming there are n objects in datasets and the stable object set is
found after m replacement, the time complexity of DBR algorithm is O(n × m).

6 Experiment Study

In this section, we conduct extensive experiments on real datasets to evaluate
the performance of our proposed algorithms.

44 J. Chen et al.

6.1 Experiment Settings

We create the real datasets by using the online check-in records of Foursquare
within the areas of New York City. Each record contains the user ID, venue
with geographical location (place of interest) and the tips written in English.
We put the records belonging to the same object to form textual descriptions
of the objects, and the textual descriptions for each place are interpreted into
a probabilistic topic distribution by the LDA model. The number of objects in
this dataset is 206,097 in sum.

Table 2. Default values of parameters

Parameter Default value Description

|q.Ψ | 3 Number of query objectives

α 0.5 Weight factor for distance

β 0.5 Weight for spatial distance

L 100 Number of hash table

M 8 Number of LSH function

t 50 Number of latent topics

We compare the query time cost of proposed algorithms respectively. The
default values for parameters are given in Table 2. All algorithms are imple-
mented in Java and run on a PC with a 2-core Intel CPU at 2.5 GHz and 4 GB
memory.

6.2 Performance Evaluation

(1) Comparisons of proposed methods
We evaluate the efficiency and accuracy of the proposed methods by varying

the parameters in Table 2.

Effect of |q.Ψ |. We investigate the effect of |q.Ψ | on the efficiency and accuracy
of the proposed algorithms. As shown in Fig. 3, the DBR algorithm has much
less time consumption than both the baseline and the SH-based algorithms. The
query time of the SH-based algorithm and the baseline algorithm are exponen-
tially increasing with the growth of the number of query objectives, while in
contrast the query time for the DBR algorithm increases smoothly. Within our
expectations, the baseline and DBR algorithms have similar accuracy perfor-
mance, better than the SH-based algorithm in all |q.Ψ | settings.

Effect of α. We study the effect of weight factor α which varying from 0 to 1.
As shown in Fig. 4, all algorithms including the baseline algorithm, the SH-based
algorithm and the DBR algorithm have a marginal increase on query time when
α grows. The DBR algorithm has the best time performance while the baseline

Multi-objective Spatial Keyword Query with Semantics 45

algorithm always takes most of the time to complish search processing. The DBR
algorithm and the baseline algorithm outperform the SH-based algorithm in
accuracy. And the distances to query for these algorithms are smoothly increase
with the grows of value of α.

Effect of β. We investigate the performance of these algorithms when the
threshold of weight factor β for spatial distance is varying. Figure 5 shows the
results of our experiment. With the increase of β, these algorithms have the
same increasing trend on query time. On the other hand, the baseline algorithm
and the DBR algorithm always outperform the SH-based algorithm in accuracy
when β varies from 0 to 1.

Effect of t. We proceed to examine the effect of number of latent topics by
ploting query time and distance to query. As Fig. 6 shown, query time for these
algorithms will increase as t grows. Besides, the SH-based algorithm and the
baseline algorithm need more query time than the DBR algorithm. The DBR
algorithm achieves high accuracy compared with other algorithms and the dis-
tances to query for these algorithms are almost unaffected by the increase in the
number of topics.
(2) Evaluations of LSH parameters

The performance of the SH-based Algorithm and the DBR Algorithm is
mainly influenced by LIR-tree. LIR-tree can be measured by parameters hash
tables L and hash families M . We will tune these parameters to evaluate the
performance of LIR-tree in sequence in this part.

2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 104

number of query objectives

qu
er

y
tim

e
(m

s)

Baseline Algorithm
SH−based Algorithm
DBR Algorithm

(a) Efficiency

2 4 6 8
0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of query objectives

di
st

an
ce

 to
 q

ue
ry

Baseline Algorithm
SH−based Algorithm
DBR Algorithm

(b) Accurancy

Fig. 3. Effect of |q.Ψ |

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4
x 104

alpha

qu
er

y
tim

e
(m

s)

Baseline Algorithm
SH−based Algorithm
DBR Algorithm

(a) Efficiency

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

alpha

di
st

an
ce

 to
 q

ue
ry

Baseline Algorithm
SH−based Algorithm
DBR Algorithm

(b) Accurancy

Fig. 4. Effect of α

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4
x 104

beta

qu
er

y
tim

e
(m

s)

Baseline Algorithm
SH−based Algorithm
DBR Algorithm

(a) Efficiency

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

beta

di
st

an
ce

 to
 q

ue
ry

Baseline Algorithm
SH−based Algorithm
DBR Algorithm

(b) Accurancy

Fig. 5. Effect of β

20 40 60 80 100
0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4
x 104

number of topics

qu
er

y
tim

e
(m

s)

Baseline Algorithm
SH−based Algorithm
DBR Algorithm

(a) Efficiency

20 40 60 80 100
0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of topics

di
st

an
ce

 to
 q

ue
ry

Baseline Algorithm
SH−based Algorithm
DBR Algorithm

(b) Accurancy

Fig. 6. Effect of t

46 J. Chen et al.

10 20 30 40 50
0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

9.5

x 104

number of L

qu
er

y
tim

e
(m

s)

SH−based Algorithm
DBR Algorithm

(a) Efficiency

10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of L
di

st
an

ce
 to

 q
ue

ry

SH−based Algorithm
DBR Algorithm

(b) Accurancy

Fig. 7. Effect of L

6 7 8 9 10
4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

number of M

qu
er

y
tim

e(
m

s)

SH−based Algorithm
DBR Algorithm

(a) Efficiency

6 7 8 9 10
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of M

di
st

an
ce

 to
 q

ue
ry

SH−based Algorithm
DBR Algorithm

(b) Accurancy

Fig. 8. Effect of M

Effect of L. Parameter L denotes the number of hash tables. Intuitively, a
larger L indidates more information provided by the LIR-tree, which facilitates
the accuracy of object sets. To achieve higher quality with lower time, we vary
L from 10 to 50. As shown in Fig. 7, the DBR algorithm takes much less query
time than the SH-based algorithm with the growth of the topics. This can be
explained by the fact that the SH-based algorithm avoids computing for all
candidate bucket set. Compared to the SH-based algorithm, the DBR algorithm
always obtains result with less distance to query when L varies from 10 to 50.

Effect of M . A group of experiments are conducted to evaluate the performance
of LIR-tree under different M , which is a fundamental parameter for constructing
a hash table. We vary M from 6 to 10 with L fixed as 30. Figure 8 indicates that
the query time goes up as M increases. And similar to Effect of L, the DBR
algorithm transcends the SH-based algorithm in both efficiency and accuracy as
we expected.

To sum up, compared the DBR algorithm with the SH-based algorithm and
the baseline algorithm, the DBR algorithm can achieve a relatively high quality
collective object set within short time in all settings.

7 Related Work

Spatial keyword query has been intensively studied in previous decades. Many
contributions have already been made in the literature to support different types
of spatio-textual querying. Some efforts are made to support the Spatial Key-
word Boolean Query (SKBQ) [7,9,10,20,24] that requires exact keywords match,
which may lead few or no results to be found. To overcome this problem, lots
of work have been done to support the Spatial Keyword Approximate Query
(SKAQ) [14,16,19,21–23], which ensures the query results are no longer sensi-
tive to spelling errors and conventional spelling differences. Many novel indexing
structures are proposed to support efficient processing on SKBQ and SKAQ,
such as IR-tree [7], IR2-tree [9], MHR-tree [19], S2I [16], etc. Numerous work
studies the problem of spatial keyword query on why-not questions [18], contin-
uous querying [1], interactive querying [23], pub/sub system [11,15], etc. Specifi-
cally, [20] addresses a more challenging problem on spatial keyword top-k queries,
where some known object is unexpectedly missing from a result; and [18] inves-
tigates a novel problem, namely, continuous top-k spatial keyword queries on

Multi-objective Spatial Keyword Query with Semantics 47

road networks; [13] eliminates the requirement of users to explicitly specify their
preferences between spatial proximity and keyword relevance by enhancing the
conventional queries with interaction; towards multi-objective query, [5] studies
the CSKQ problem to retrieve a group of objects that can collectively cover all
keywords in query, while having the minimum distance cost.

But as far as we know, none of those existing approaches can retrieve spatial
objects that are semantically relevant but morphologically different which are
collectively cover all user-supplied keywords. The probabilistic topic models are
statistical methods to analyze the words in documents and to discover the themes
that run through them, how those themes are connected to each other, with no
prior annotations or labeling of documents been required. Based on topic models,
it is possible to measure the relevance of a testual description with regrad to a
theme, as well as the relevance between different textual descriptions. The most
classical topic models includes LDA [2], Dynamic Topic Model, etc. However, this
method cannot find the object set that can satisfy all query objectives collectively
and distributed in spatial rationally. Therefore, we investigate the topic model
based collective spatial keyword querying to recommend users collective spatial
objects that have both high spatial and semantic similarities to query.

8 Conclusion and Future Work

This paper committed to the problem of retrieving a group of spatial web objects
more effectively and reasonably by converting keywords matching to topic distri-
bution. The probabilistic topic model is utilized to interpret the textual descrip-
tions attached to spatial objects and query objectives into topic distributions.
To find the object set that can satisfy all query objectives collectively and dis-
tributed in spatial rationally, we propose an indexing structure to combine the
spatial and semantic information effectively, as well as a searching algorithm to
achieve efficient query processing. Extensive experimental results on real datasets
demonstrate the efficiency of our proposed method. In the future, it will be
interesting to consider the possible spatial dynamics of users and investigate the
problem of continuous multi-objective spatial keyword querying with semantics.

Acknowledgement. This work was partially supported by Chinese NSFC project
under grant numbers 61402312, 61232006, 61402313, 61572336, 61502324, 61572335,
and Australia Research Council discovery projects under grant numbers DP140103499,
DP160102412.

References

1. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL:
SPARQL for continuous querying. In: WWW, pp. 1061–1062 (2009)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

3. Buhler, J.: Efficient large-scale sequence comparison by locality-sensitive hashing.
Bioinformatics 17(5), 419–428 (2001)

48 J. Chen et al.

4. Cao, X., Cong, G., Jensen, C.S.: Retrieving top-k prestige-based relevant spatial
web objects. PVLDB 3(1), 373–384 (2010)

5. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying.
In: SIGMOD, pp. 373–384 (2011)

6. Chen, Y.-Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web
search engines. In: SIGMOD Conference, pp. 277–288 (2006)

7. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects. PVLDB 2(1), 337–348 (2009)

8. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Symposium on Computational Geom-
etry, pp. 253–262 (2004)

9. De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In:
ICDE, pp. 656–665 (2008)

10. Jiang, H., Zhao, P., Sheng, V.S., Xu, J., Liu, A., Wu, J., Cui, Z.: An efficient
location-aware top-k subscription matching for publish/subscribe with Boolean
expressions. In: Navathe, S.B., Wu, W., Shekhar, S., Du, X., Wang, X.S., Xiong,
H. (eds.) DASFAA 2016. LNCS, vol. 9643, pp. 335–350. Springer, Cham (2016).
doi:10.1007/978-3-319-32049-6 21

11. Huiqi, H., Liu, Y., Li, G., Feng, J., Tan, K.-L.: A location-aware publish, subscribe
framework for parameterized spatio-textual subscriptions. In: ICDE, pp. 711–722
(2015)

12. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC, pp. 604–613 (1998)

13. Jin, J., Szekely, P.: Interactive querying of temporal data using a comic strip
metaphor. In: IEEE VAST, pp. 163–170 (2010)

14. Li, F., Yao, B., Tang, M., Hadjieleftheriou, M.: Spatial approximate string search.
IEEE Trans. Knowl. Data Eng. 25(6), 1394–1409 (2013)

15. Li, G., Wang, Y., Wang, T., Feng, J.: Location-aware publish, subscribe. In: KDD,
pp. 802–810 (2013)

16. Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørv̊ag, K.: Efficient processing of
top-k spatial keyword queries. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento,
M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp.
205–222. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22922-0 13

17. Slaney, M., Casey, M.: Locality-sensitive hashing for finding nearest neighbors.
IEEE Sig. Process. Mag. 25(2), 128–131 (2008)

18. Tran, Q.T., Chan, C.-Y.: How to conquer why-not questions. In: SIGMOD, pp.
15–26 (2010)

19. Yao, B., Li, F., Hadjieleftheriou, M., Hou, K.: Approximate string search in spatial
databases. In: ICDE, pp. 545–556 (2010)

20. Zhang, C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: efficient top k
spatial keyword search. In: ICDE, pp. 901–912 (2013)

21. Zheng, B., Yuan, N.J., Zheng, K., Xie, X., Sadiq, S., Zhou, X.: Approximate key-
word search in semantic trajectory database. In: ICDE 2015, pp. 975–986 (2015)

22. Zheng, K., Huang, Z., Zhou, A., Zhou, X.: Discovering the most influential sites over
uncertain data: a rank-based approach. IEEE TKDE 24(12), 2156–2169 (2012)

23. Zheng, K., Han, S., Zheng, B., Shang, S., Jiajie, X., Liu, J., Zhou, X.: Interactive
top-k spatial keyword queries. In: ICDE 2015, pp. 423–434 (2015)

24. Ding, Z., Xu, J., Yang, Q.: SeaCloudDM: a database cluster framework for man-
aging and querying massive heterogeneous sensor sampling data. J. Supercomput.
66(3), 1260–1284 (2013)

http://dx.doi.org/10.1007/978-3-319-32049-6_21
http://dx.doi.org/10.1007/978-3-642-22922-0_13

Query Processing and Optimization (II)

RSkycube: Efficient Skycube Computation
by Reusing Principle

Kaiqi Zhang1, Hong Gao1, Xixian Han1, Donghua Yang2(B), Zhipeng Cai3,
and Jianzhong Li1

1 School of Computer Science and Technology,
Harbin Institute of Technology, Harbin, China

{zhangkaiqi,honggao,lijzh}@hit.edu.cn, hanxixian@gmail.com
2 Academy of Fundamental and Interdisciplinary Sciences,

Harbin Institute of Technology, Harbin, China
yang.dh@hit.edu.cn

3 Department of Computer Science, Georgia State University, Atlanta, USA
zcai@gsu.edu

Abstract. Over the past years, the skyline query has already attracted
wide attention in database community. In order to meet different pref-
erences for users, the skycube computation is proposed to compute sky-
lines, or cuboids, on all possible non-empty dimension subsets. The key
issue of computing skycube is how to share computation among multi-
ple related cuboids, which classified into sharing strict space dominance
and sharing space incomparability. However, state-of-the-art algorithm
only leverages sharing strict space dominance to compute skycube. This
paper aims to design a more efficient skycube algorithm that shares
computation among multiple related cuboids. We first propose a set of
rules named identical partitioning (IP) for constructing a novel struc-
ture VSkyTree. Moreover, we present the reusing principle, which uti-
lizes both sharing strict space dominance and sharing space incompara-
bility by reusing VSkyTree on parent cuboids to compute child cuboids.
Then, in top-down fashion, we design an efficient skycube computation
algorithm RSkycube based on the reusing principle. Our experimental
results indicate that our algorithm RSkycube significantly outperforms
state-of-the-art skycube computation algorithm on both synthetic and
real datasets.

Keywords: Skyline · Skycube · Space partitioning

1 Introduction

The skyline query is coined out by Börzsönyi et al. in [1]. In the past several
years, many researchers have paid much attention to it, and it has becomes an
important preference query in multi-criteria decision making applications. For a
multi-dimensional dataset, the skyline query returns a set of interesting points,
which are not dominated by any other point in the dataset. Specifically, given
two points p and q, if p is not worse than q in all dimensions and better than q
in at least one dimension, then p dominates q.
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 51–64, 2017.
DOI: 10.1007/978-3-319-55699-4 4

52 K. Zhang et al.

However, it is common that users have many different preferences. For a
dataset in an online hotel booking system with 4 dimensions, i.e., hotel (price,
distance, room number, star level). Some users may focus on price and distance.
And others could pay attention to room number and star level. Different people
may have different preferences (i.e., dimension subsets). In order to meet all
possible preferences, Yuan et al. propose the concept of skycube [10]. For a
d -dimensional dataset, skycube computes 2d − 1 skylines, or cuboids, on all
possible non-empty dimension subsets.

Skycube computation has recently received considerable attention. [9] empha-
sizes updating skycube in dynamic environment. Kailasam et al. [2] focus on
utilizing bitmap index for skycube computation. [6–8] concentrate on using sky-
cube to construct skyline group lattice and decisive subspace. The most relevant
work with us is [5,10].

The key issue of computing skycube is how to share computation among mul-
tiple related cuboids as much as possible. Yuan et al. [10] propose two skycube
computation algorithms, Bottom-Up Skycube (BUS) and Top-Down Skycube
(TDS). BUS adopts bottom-up fashion, which computes a cuboid by utilizing
their child cuboids. In top-down fashion, TDS takes parent cuboids as input and
avoids accessing entire dataset. With top-down fashion, TDS is reported to be
faster than BUS, especially in large or high-dimensional data [10].

Based on top-down fashion, Lee et al. [5] propose a new skycube algorithm
QSkycube exploiting SkyTree [4], which is a space partitioning technique. How-
ever, we observe that there is still much room for optimization. Sharing strate-
gies on space partitioning is divided into sharing strict space dominance and
sharing space incomparability. It aims to reduce duplicate computation in sky-
cube computation. Sharing strict space dominance can straightly filter out some
non-skyline points and reduce the amount of input. And sharing space incompa-
rability can reduce duplicate comparisons between incomparable points. While
QSkycube only leverages sharing strict space dominance to compute skycube.
Because it is necessary for QSkycube to reconstruct SkyTree to compute child
cuboids, which makes space incomparability relationship between points disap-
peared.

This paper aims to design a more efficient skycube algorithm that shares com-
putation among multiple related cuboids. We first propose a set of rules named
identical partitioning (IP) for constructing a novel structure VSkyTree. More-
over, we present the reusing principle, which utilizes both sharing strict space
dominance and sharing space incomparability by reusing VSkyTree on parent
cuboids to compute child cuboids. Then, in top-down fashion, we design an effi-
cient skycube computation algorithm RSkycube based on the reusing principle.
Our experimental results indicate that our algorithm RSkycube significantly out-
performs state-of-the-art skycube computation algorithm on both synthetic and
real datasets.

Our contributions can be summarized as follows:

– We analyze the room of optimization for the existing skycube computation
algorithms.

RSkycube: Efficient Skycube Computation by Reusing Principle 53

– We propose a set of rules named identical partitioning (IP) for constructing
a novel structure VSkyTree.

– we present the reusing principle, which utilizes both sharing strict space dom-
inance and sharing space incomparability by reusing VSkyTree on parent
cuboids to compute child cuboids.

– We design an efficient skycube computation algorithm RSkycube based on the
reusing principle.

– We evaluate our proposed algorithm RSkycube by comparing it with state-of-
the-art skycube algorithm in dimensionality and cardinality on both synthetic
and real datasets.

The rest of this paper is organized as follows. Section 2 introduces some defini-
tions about skycube. Section 3 proposes a set of rules named identical partitioning
(IP) for constructing a novel structure VSkyTree and present a reusing princi-
ple which utilizes both sharing strategies to compute child cuboids. Section 4
designs an efficient skycube algorithm RSkycube based on the reusing principle.
Section 5 evaluates experimentally our proposed algorithm with state-of-the-art
skycube algorithm on both real and synthetic datasets. Finally, our conclusion
is summarized in Sect. 6.

2 Preliminaries

For easy explanation, we present some notations used throughout this paper.
Given a dataset S with d dimensions, D represents the full dimension set. i.e.,
D = {D0, D1, ..., Dd−1}. And the domain space for D is denoted by S

D, where
S

D
i is the domain on dimension Di. Actually, S is a subset of S

D. For any point
p in S, we denote the value of point p on ith dimension by p(Di), abbreviated as
p(i), where i ∈ [0, d–1]. Without loss of generality, we assume that lower values
are better for all users on all dimensions.

Given two points p and q in the dataset S on D, p dominates q on dimension
subset U , where U ⊆ D, denoted by p �U

P q iff ∀Di ∈ U , p(i) ≤ q(i) and ∃Di

∈ U , p(i) < q(i). Otherwise p �
U
P q. If p �

U
P q and q �

U
P p, then p and q are

incomparable on U . The skyline query on U returns all the points that are not
dominated by any other points on U , denoted by SKYU (S) = {p ∈ S | ∀q ∈ S,
q �

U
P p}.

Definition 1 (Skycube and Cuboid). Given a dataset S on D, the skycube of
S consists of all skyline results on 2d − 1 non-empty dimension subsets, denoted
by SKYCUBE(S) = {SKYU (S) | U ⊆ D, U �= ∅}, where SKYU (S) is called the
cuboid on U , abbreviated as cuboid U .

Actually, to meet users having different preferences, Skycube computes sky-
line results on all possible non-empty dimension subsets. Skycube can be visual-
ized as a lattice as shown in Fig. 1(b) for 3-dimensional datasets. For two cuboids
A on U and B on V, if U ⊂ V and |V − U| = 1, then A is a child of B and B is
a parent of A. For example, Fig. 1(c) gives the skycube computation result for
the dataset in Fig. 1(a).

54 K. Zhang et al.

Fig. 1. Skycube

To explore sharing strategies, we first assume distinct value condition, which
is also adopted in [5,10] and the general case beyond the assumption is also
resolved in them. This assumption is that ∀p, q ∈ S, ∀Di ∈ D : p(i) �= q(i).

Based on distinct value condition, for two dimension subsets U and V ⊆ D,
if U ⊆ V, then SKYU (S) ⊆ SKYV(S). It means that the non-skyline points
on V must be non-skyline points on U . For example in Fig. 1(c), SKYD01(S) ⊆
SKYD012(S). Therefore, SKYV(S) can be took as input for computing SKYU (S),
which is called top-down fashion. The correctness is proved in [5,10].

3 Sharing Strategies by Reusing Principle

3.1 Sharing Strategies on Space Partitioning

We first introduce the space partitioning technique, given a dataset S on D, S
D

is the whole d-dimensional space, for any point p̂ in S
D, p̂ divides S

D into 2d

disjoint subspaces S
D,p̂ = {S0, S1, ..., S2d−1}. For any subspace Sb, the subscript

b indicates the address of Sb, represented by a d-bit bitmap vector B. ∀p ∈ SB ,
∀i ∈ [0, d–1], p(i) satisfies the following condition:

{
p(i) < p̂(i), if B[i] = 0,
p(i) ≥ p̂(i), if B[i] = 1.

Obviously, p̂ also divides S into 2d subsets, each of them belongs to one of
subspaces. Figure 2(a) gives a 3-dimensional partitioning. If S000 is not empty,
then the points in S111 must be dominated by any one in S000 and straightly
pruned.

Definition 2 (Dominance on Spaces). Given two subspaces SB and SB′ ∈ S
D,p̂,

SB dominates SB′ on dimension set U ⊆ D, denoted by SB �U
S SB′ , if B | B′

= B′, where “|” is bitwise or operator. Otherwise SB �
U
S SB′ . In addition, SB

strictly dominates SB′ on U , if ∀Di ∈ U , B[i] = 0 and B′[i] = 1.

Given two subspace SB and SB′∈ S
D,p̂, if SB �

U
S SB′ and SB′ �

U
S SB , we call

that SB and SB′ are space incomparability.

RSkycube: Efficient Skycube Computation by Reusing Principle 55

Fig. 2. Subspaces and projected subspaces

Theorem 1. Given two subspaces SB and SB′ ∈ S
D,p̂, if SB �

U
S SB′ , U ⊆ D,

then ∀p ∈ SB and ∀q ∈ SB′ , p �
U
P q.

Theorem 1 has already been proved in [11]. Given any two points p ∈ SB

and q ∈ SB′ , if SB and SB′ are space incomparability on D, then p and q are
incomparable each other on D.

A point p̂ partitions 3-dimensional space into 23 subspaces {S000, S001, S010,
S011, S100, S101, S110, S111} as shown in Fig. 2(a). The projections of these sub-
spaces on D01 are {S00∗, S01∗, S10∗, S11∗} in Fig. 2(b), symbol “*” represents any
binary value. There still exist two relationships between the projected subspaces:
strict space dominance and space incomparability. For example, S00∗ and S11∗
are strict space dominance on D01, S01∗ and S10∗ are space incomparability on
D01.

Sharing strategy on space partitioning for computing skycube is that sharing
the two relationships from parent cuboid to compute child cuboids. It aims to
reduce duplicate computation in skycube computation. Sharing strict space dom-
inance can straightly filter out some non-skyline points and reduce the amount
of input. For example, S001 and S110 are strict space dominance on D01, the
points in S110 must be dominated by any point in S001 on D01, therefore, for
the computation of cuboid D01, the points in S110 can be straightly pruned
without new comparisons. Sharing space incomparability can reduce duplicate
comparisons between incomparable points. For example, for any p ∈ S011 and
q ∈ S100, we can conclude that p and q can not dominate each other on D01

without duplicate comparisons.

3.2 SkyTree

It needs three steps to construct SkyTree using space partitioning. First step,
select a skyline point p̂ as root of SkyTree to partition space into 2d subspaces
{S0...00, S0...01, ..., S1...11}. Since p̂ is a skyline point, S0...00 must be empty and
all points in S1...11 must be dominated by p̂. S1...11 need not be considered in
subsequent processing. The other 2d − 2 subspaces are organized as the child
nodes of p̂. Second step, for any SB and SB′ in the above 2d − 2 subspaces, if
SB �D

S SB′ , that is the points in SB may dominate the points in SB′ , then the
dominated points in SB′ need to be filtered out. Third step, for each non-empty
subspace, recursively repeat above two steps.

56 K. Zhang et al.

Fig. 3. SkyTree

Given a dataset in Fig. 3(a), first select skyline point p4 as root to divide
2-dimensional space into 22 subspaces {S00, S01, S10, S11}, p1, p2, p3 ∈ S01,
p5, p6 ∈ S10, and p7, p8 ∈ S11. p7 and p8 are dominated by p4 and straightly
pruned. Since S01 �

D
S S10 and S10 �

D
S S01, no point needs to be filtered out.

Then, select skyline point p3 to recursively partition S01 into 22 subspaces. In
order to distinguish S01 and partitioned subspaces by it, the four subspaces are
denoted by {S0100, S0101, S0110, S0111}. After partitioned by p3, p1 ∈ S0101, p2 ∈
S0111, p2 is dominated by p3 and pruned. Select skyline point p5 to recursively
partition S10 into 22 subspaces {S1000, S1001, S1010, S1011}, p6 ∈ S1010. Finally,
each leaf node has only one point, SkyTree is completely constructed as shown
in Fig. 3(b).

QSkycube utilizes SkyTree to compute skycube in top-down fashion. Given
U ⊂ V ⊆ D and |V − U| = 1, QSkycube utilizes SkyTree TV on V to compute
TU , which contains cuboid U . Firstly, it exploits sharing strict space dominance
to straightly filter out some non-skyline points to reduce duplicate comparisons.
Then it traverses TV to get the remaining points and use them to construct TU .
However, we observe that there is still much room for optimization. To guaran-
tee the partitioning points of SkyTree are skyline points, QSkycube must recon-
struct SkyTree, which makes space incomparability relationship between points
disappeared. Therefore, QSkycube only adopts sharing strict space dominance
to accelerate skycube computation.

In order to utilize both sharing strategies to compute TU from TV , TU should
be straightly derived from TV , instead of being reconstructed completely.

3.3 Sharing Strategies by Reusing VSkyTree

We first propose a novel structure VSkyTree based on identical partitioning (IP)
rules. Then, we utilize both sharing strategies by reusing VSkyTree to compute
child cuboids.

The difference between SkyTree and VSkyTree is how to determine parti-
tioning points. Given any subspace SB = [(l0, h0),..., (ld−1, hd−1)], ∀Di ∈ D,
S
i
B = {p(i) | ∀p ∈ S, li ≤ p(i) ≤ hi}, li and hi are boundaries of SB on Di,

RSkycube: Efficient Skycube Computation by Reusing Principle 57

Fig. 4. VSkyTree and CVSkyTree

Mi is the median of S
i
B . The partitioning point p̂ of SB is (M0,M1, ...,Md−1).

Actually, the partitioning points based on this method may be not in dataset
S, therefore we call them virtual partitioning points. This method of selecting
virtual partitioning points is call identical partitioning (IP) rules.

The construction of VSkyTree is similar to that of SkyTree. First step, deter-
mine the partitioning point p̂ based on above IP rules. p̂ partitions space into
2d subspaces {S0...00, S0...01, ..., S1...11}. If S0...00 is not empty, all the points in
S1...11 must be dominated by any point in S0...00 and S1...11 need not be consid-
ered in subsequent processing. These subspaces are organized as the child nodes
of p̂. Second step, for any SB and SB′ in the above subspaces, if SB �D

S SB′ , that
is the points in SB may dominate the points in SB′ , then the dominated points
in SB′ need to be filtered out. Third step, for each subspace with more than one
point, recursively repeat above two steps.

Given a dataset in Fig. 4(a), first select the virtual partitioning point p̂ based
on above IP rules as root, p̂(0) = p5(0), p̂(1) = p2(1), p5(0) and p2(1) are medians
of the projections of all points in whole space on D0 and D1, respectively. p̂
divides 2-dimensional space into 22 subspaces {S00, S01, S10, S11}, p3, p4 ∈
S00, p1, p2 ∈ S01, p5, p6 ∈ S10 and p7, p8 ∈ S11. S00 is not empty, p7 and p8 are
dominated by any point in S00 and straightly pruned. Since S00 �D01

S S01 and S00

�D01
S S10, p1, p2, p5 and p6 need to be compared with p3 and p4, p2 is dominated

by p3 and pruned. Then, select the virtual partitioning point p̂00 of subspace
S00 based on above IP rules. p̂00 recursively partition S00 into 22 subspaces
{S0000, S0001, S0010, S0011}, p3 ∈ S0001, p4 ∈ S0011. Since S0001 �D01

S S0011, p4 is
compared with p3 and not dominated by it. Select the virtual partitioning point
p̂10 of S10 to recursively partition S10 into 22 subspaces {S1000, S1001, S1010,
S1011}, p5 ∈ S1000, p6 ∈ S1010. Since S1000 �D01

S S1010, p6 is compared with p5
and not dominated by it. Finally, each leaf node has only one point, VSkyTree
is completely constructed as shown in Fig. 4(b).

Given SkyTree TV on V, we can combine the points in TV to generate a
combined VSkyTree, named CVSkyTree. For example in Fig. 4, p̂00(1) = p̂10(1),
when we only consider the partitioning on D1, p̂00 and p̂10 can be combined

58 K. Zhang et al.

together. Similarly, p5 and p6 are combined into S∗0∗0, p3 and p4 are combined
into S∗0∗1.

Fig. 5. The reusing principle

We present the reusing principle, which utilizes both sharing strict space
dominance and sharing space incomparability by reusing VSkyTree on parent
cuboids to compute child cuboids as shown in Fig. 5. Given VSkyTree TV on V
and VSkyTree TU on U , where U ⊂ V and |V − U| = 1. TV and TU are took
as input and output, respectively. The basic principle of reusing VSkyTree is
utilizing TV to compute TU . The principle is divided into two phases: Phase I
mainly aims to combine the points of TV into CVSkyTree CT U on U . CT U can
share both strict space dominance and space incomparability from TV . And the
cost of combining points is low. Phase II focuses on filtering out non-skyline
points in CT U , it is similar to the second step in the process of constructing
VSkyTree. The CT U after being filtered is the output result TU . Finally, the
cuboid U can be obtained by traversing TU .

4 Algorithms

We design an efficient skycube computation algorithm RSkycube, which takes
advantage of both sharing strategies by reusing principle. RSkycube computes
skycube in top-down fashion, which utilizes parent cuboid to compute child
cuboids.

Algorithm 1 depicts the pseudo code of RSkycube algorithm. We conduct
D.size iterations in top-down fashion as shown in line 1. And each iteration
computes the cuboid for these dimension sets with same size in line 2–8. For
the first iteration in line 3–4, function ComputeVSkyTree computes cuboid on
full dimension set D and organizes them as VSkyTree according to IP rules
and space partitioning technique. For any other dimension subset U ⊂ D, as
shown in line 6, first selecting a parent dimension set V of U . Then, according to
reusing principle, utilizing TV to compute TU , which contains the cuboid U . The
reusing principle has two phases as shown in line 7–8, function CombineVSkyTree
implements Phase I, it aims to combine the points in TV to generate CT U , which
can share strict space dominance and space incomparability from TV . Owing to
the limitation of space, we omit the detail of CombineVSkyTree. The detailed
process of combining the points is introduced in Section. Phase II mainly focuses
on filtering out all non-skyline points. After filtering, all the points in CT U is
the cuboid U .

RSkycube: Efficient Skycube Computation by Reusing Principle 59

Algorithm 1. RSkycube(S, D)
Input: A dataset S on dimension set D
Output: The SKYCUBE result of S on D
1: for iteration ← |D| to 1 do
2: for ∀U ⊆ D and |U| = iteration do
3: if iteration = |D| then
4: TU ← ComputeVSkyTree(S, D).
5: else
6: select V ⊃ U and |V| = |U| + 1.
7: CTU ← CombineVSkyTree(TV , U , V). // Phase I of Reusing Principle
8: TU ← FilterCVSkyTree(CTU , U). // Phase II of Reusing Principle
9: insert skyline points in TU into SKYCUBE(S).

10: return SKYCUBE(S).

Algorithm 2. ComputeVSkyTree(S, D)
Input: A dataset S on dimension set D
Output: The VSkyTree on D
1: max ← 2d−1.
2: L[0,max] ← {}.
3: Select virtual partitioning point as root p̂.
4: for ∀p ∈ S do
5: i ← Partition(p̂,p)
6: L[i].Add(p).
7: for i ← 0 to max do
8: if L[i].Size() > 0 then
9: for ∀Ttmp ∈ p̂.child and Ttmp.space �U

S Si do
10: Filter(Ttmp, L[i]).
11: T ← ComputeVSkyTree(L[i], D).
12: p̂.AddChild(T).
13: return SKYCUBE(S).

Algorithm 2 depicts the pseudo code of ComputeVSkyTree algorithm. The
pseudo code of ComputeVSkyTree algorithm, as shown in Algorithm 2, accords
with the processing of constructing VSkyTree. It aims to compute VSkyTree
TD on D. TD contains all the skyline points on cuboid D. As well as it can be
input in next iteration for computing its child cuboids. First step, in line 3–6,
according to IP rules, selecting a virtual partitioning point p̂. Using p̂, all the
points in S are partitioned into 2d subsets, which are stored in L[0,max]. For
example, L[i] contains all the points in subspace Si. Second step, for any non-
empty subset L[i], as shown in line 8–10, the points in L[i] need to be compared
with the points in Ttmp, where Ttmp.space �U

S Si. And the non-skyline points in
L[i] dominated by any one in Ttmp need to be pruned. Third step, recursively
partition subset L[i] and add subtree corresponding to L[i] as a child of p̂.

Algorithm 3 gives the pseudo code of function FilterCVSkyTree, which is the
Phase II of reusing principle. It is a recursive function and aims to filter out

60 K. Zhang et al.

Algorithm 3. FilterCVSkyTree(CTU , U)
Input: A CVSkyTree CTU on U
1: for ∀CT ∈ CTU .child do
2: for ∀CT tmp ∈ CTU .child and CT tmp.space �U

S CT .space do
3: Filter(CT tmp, CT).
4: FilterVSkyTree(CT).

all non-skyline points in CVSkyTree CTU using itself. Line 3 implies that the
points in subtree CT only need to be compared with the points in CT tmp, where
CT tmp.space �U

S CT .space. It accelerates the efficiency of filtering.

5 Experimental Evaluation

We conduct the evaluation for our proposed algorithm RSkycube in dimension-
ality and cardinality, by comparing it with the naive method and state-of-the-
art skycube computation algorithm QSkycube [5] on both synthetic and real
datasets. The experimental results indicate that our algorithm RSkycube signif-
icantly outperforms other skycube computation algorithms.

5.1 Experimental Settings

According to the instructions in [1], we generate two types of synthetic datasets
that are Independent (IND) and Anti-correlated (ANT), respectively. On the
synthetic datasets, dimensionality d is from 5 to 9 and cardinality is from 200 K
to 1000 K. By default, they are 8 and 200 K, respectively. The domain of all
values in points is [0, 1000]. For real datasets, ColorMoments1 and IPUMS (see
Footnote 1) are collected. They have 9 dimensional 68404 data points and 6
dimensional (selected from 23) 74954 data points, respectively. Colormoments is
related with the image features and IPUMS describes unweighted PUMS census
data from the Los Angeles and Long Beach areas in the year 1980. All algorithms
are implemented by C++ languages and run on Intel Core-i7 CPU at 3.6 GHz,
with 32 GB of RAM.

We regard response time and DC as the performance parameter. DC is the
number of comparisons on dimensions per point for skycube computation, and
computation formula is shown as follows.

DC =
Total number of dimension comparisons

The number of points

Skycube computation is a compute-intensive operation, and main operation
is the comparisons among points. Similar measure DT has been widely utilized
in prior work [3,4]. There are two kinds of dominance tests: (1) Only check one
point p whether is dominated by another point q or not. It does not require
1 The data set is collected from kdd.ics.uci.edu.

http://kdd.ics.uci.edu

RSkycube: Efficient Skycube Computation by Reusing Principle 61

Fig. 6. Performance over dimensionality variation

to compare all dimensions when p is not dominated. (2) Dominance tests in
space partitioning, it needs to compare all dimensions. For example, p = (1, 3,
5) and q = (3, 1, 2). For the first case, it only compares one dimension D0 and
indicates that p is not dominated by q. For the second case, over three dimensions
comparisons, p locates in S011 w.r.t q. Different conditions adopt corresponding
cases. In order to unify above two conditions, we first present DC measure. It
is applicable for the two cases. Apparently, DC is more persuasive than DT.
Furthermore, DC as the measure of performance, can avoid the difference of
implementation of all developers.

We compare our algorithm RSkycube with Naive and QSkycube. Naive
straightly computes all cuboids without any sharing strategy. It adopts BSkytree
[4] as the skyline algorithm for cuboid computation. QSkycube is state-of-the-
art skycube algorithm. It develops sharing strict space dominance by exploiting
SkyTree.

5.2 Scalability

Varing Dimensionality. This section evaluates the effect of above three algo-
rithms on dimensionality as shown in Fig. 6. The size of dataset is 200 K and
dimensionality varies from 5 to 9. IND and ANT represent independent and
anti-correlated datasets, respectively. RSkycube and QSkycube have no perfor-
mance difference on IND when dimensionality is 5, because almost points are

62 K. Zhang et al.

(a) IND (b) ANT

(c) IND (d) ANT

Fig. 7. Performance over cardinality variation

non-skyline points such that sharing strict space dominance is dominant. In
other conditions on both kinds of datasets, our proposed algorithm RSkycube
is greatly better than Naive and QSkycube. The skycube computation cost on
ANT is larger than that on IND, because there are more skyline points on ANT.
In addition, the advantage of our proposed algorithm RSkycube for the others
on ANT is rather larger than that on IND, since that the skyline points on ANT
are more uniform in subspaces than that on IND, which accelerates the reusing
principle in RSkycube.

Varing Cardinality. This section evaluates the effect about cardinality as
depicted in Fig. 7. The dimensionality of dataset is 8 and cardinality varies from
200 K to 1000 K. RSkycube outperforms the other algorithms in every cardinal-
ity. Similar with dimensionality, our algorithm RSkycube has a stronger applica-
bility than others on ANT. We observe that the three methods all decrease for
DC with cardinality increasing on IND. This is because the density of skyline
decreases as cardinality augments on IND. However, ANT is not.

5.3 The Performance on Real Datasets

This section evaluates the effect of all algorithms on real datasets ColorMoments
and IPUMS as shown in Table 1. We observe that our proposed RSkycube is
better than Naive and QSkycube on both datasets.

RSkycube: Efficient Skycube Computation by Reusing Principle 63

Table 1. Performance on real datasets.

Algorithm ColorMoments IPUMS

n = 68,040; d= 9 n = 74,954; d= 6

Naive 17 s (DC = 18815) 8.3 s (DC = 10961)

QSkycube 1.4 s (DC = 650) 0.3 s (DC = 58)

RSkycube 0.8 s (DC = 342) 0.2 s (DC = 41)

6 Conclusion

This paper studied efficient skycube computation. We analyzed two sharing
strategies sharing strict space dominance and sharing space incomparability.
And observed that there is still much room for optimization for state-of-the-art
skycube algorithm. We first propose a set of rules named identical partition-
ing (IP) for constructing a novel structure VSkyTree. Moreover, we present the
reusing principle, which utilizes both sharing strict space dominance and sharing
space incomparability by reusing VSkyTree on parent cuboids to compute child
cuboids. Then, in top-down fashion, we design an efficient skycube computation
algorithm RSkycube based on the reusing principle. Our experimental results
indicate that our algorithm RSkycube significantly outperforms state-of-the-art
skycube computation algorithm on both synthetic and real datasets.

Acknowledgments. This work was supported in part by the Key Research and
Development Plan of National Ministry of Science and Technology under grant No.
2016YFB1000703, the National Natural Science Foundation of China under grant
Nos. 61402130, 61272046, U1509216, the Natural Science Foundation of Heilongjiang
Province, China under grant No. F201317.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
of the 17th International Conference on Data Engineering, Heidelberg, Germany,
2–6 April 2001, pp. 421–430 (2001)

2. Kailasam, G.T., Lee, J., Rhee, J., Kang, J.: Efficient skycube computation using
point and domain-based filtering. Inf. Sci. 180(7), 1090–1103 (2010)

3. Khalefa, M.E., Mokbel, M.F., Levandoski, J.J.: Skyline query processing for incom-
plete data. In: Proceedings of the 24th International Conference on Data Engineer-
ing, ICDE, Cancún, México, 7–12 April 2008, pp. 556–565 (2008)

4. Lee, J., Hwang, S.: Bskytree: scalable skyline computation using a balanced pivot
selection. In: EDBT Proceedings of the 2010 13th International Conference on
Extending Database Technology, Lausanne, Switzerland, 22–26 March 2010, pp.
195–206 (2010)

5. Lee, J., Hwang, S.: Qskycube: efficient skycube computation using point-based
space partitioning. PVLDB 4(3), 185–196 (2010)

64 K. Zhang et al.

6. Pei, J., Fu, A.W., Lin, X., Wang, H.: Computing compressed multidimensional
skyline cubes efficiently. In: Proceedings of the 23rd International Conference on
Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, 15–20 April
2007, pp. 96–105 (2007)

7. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the best views of skyline: a semantic
approach based on decisive subspaces. In: Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim, Norway, 30 August–2 Septem-
ber 2005, pp. 253–264 (2005)

8. Räıssi, C., Pei, J., Kister, T.: Computing closed skycubes. PVLDB 3(1), 838–847
(2010)

9. Xia, T., Zhang, D.: Refreshing the sky: the compressed skycube with efficient
support for frequent updates. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Chicago, Illinois, USA, 27–29 June 2006, pp.
491–502 (2006)

10. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation
of the skyline cube. In: Proceedings of the 31st International Conference on Very
Large Data Bases, Trondheim, Norway, 30 August–2 September 2005, pp. 241–252
(2005)

11. Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable skyline computation using
object-based space partitioning. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2009, Providence, Rhode
Island, USA, 29 June–2 July 2009, pp. 483–494 (2009)

Similarity Search Combining Query
Relaxation and Diversification

Ruoxi Shi(&), Hongzhi Wang, Tao Wang, Yutai Hou, Yiwen Tang,
Jianzhong Li, and Hong Gao

Harbin Institute of Technology, Harbin, China
{shiruoxi,wangzh,lijzh,honggao}@hit.edu.cn,

isabeltang147@gmail.com, atma.hou@gmail.com,

yt6789299@163.com

Abstract. We study the similarity search problem which aims to find the
similar query results according to a set of given data and a query string. To
balance the result number and result quality, we combine query result diversity
with query relaxation. Relaxation guarantees the number of the query results,
returning more relevant elements to the query if the results are too few, while the
diversity tries to reduce the similarity among the returned results. By making a
trade-off of similarity and diversity, we improve the user experience. To achieve
this goal, we define a novel goal function combining similarity and diversity.
Aiming at this goal, we propose three algorithms. Among them, algorithms
genGreedy and genCluster perform relaxation first and select part of the can-
didates to diversify. The third algorithm CB2S splits the dataset into smaller
pieces using the clustering algorithm of k-means and processes queries in
several small sets to retrieve more diverse results. The balance of similarity and
diversity is determined through setting a threshold, which has a default value
and can be adjusted according to users’ preference. The performance and effi-
ciency of our system are demonstrated through extensive experiments based on
various datasets.

1 Introduction

Similarity search that finds objects with distance larger than a given similarity threshold or
within a certain distance threshold with the query in a dataset has a wide range of
applications, such as web page detection, entity linking and protein identification [13–15].

Recently, the quality of similarity search results has attracted more attention. The
result quality is often measured in two dimensions.

One is the number of results. Too few results provide insufficient results to the user,
while too many results are inefficient to display and impossible for users to explore.
When too few results are returned, the query has to be relaxed to obtain more results.
For example, wrong or fuzzy input may cause few searching results if the keyword is
“Briatney”. The searching engine will obtain more results by correcting the keyword to
“Britney”, which is the name of a famous singer.

The other is the diversification of results, which is the quantitative description of
the variety of elements in the result set. A good search engine attempts to provide

© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 65–84, 2017.
DOI: 10.1007/978-3-319-55699-4_5

various kinds of information within limited number of results. In web search engines
and recommendation systems, query result diversification helps counteract the over-
specialization problem in which the retrieved results are too homogeneous to meet
users’ needs [3, 16, 17].

During the similarity search process, these two dimensions are correlative and
should be balanced. We use an example to illustrate this point. Consider the scenario of
searching for commodities in an e-commerce site. The best search result is to show
users abundant but not redundant commodities. These commodities meet the require-
ment of user input and meanwhile, different enough to one another. Similarly, such
technique can also be applied to information retrieval, image search and some other
areas [28, 29].

Such requirements bring challenges to query processing to obtain high-quality
results. To find the most diverse elements has been proved to be an NP-complete
problem [20], and one optimal solution leads to incredible time and space cost, espe-
cially on massive and complex datasets.

Even though many query relaxation and result diversification approaches have been
proposed, they fail to balance result number and diversification. Relaxation techniques
in [21, 22] only perform relaxation when the query result is empty, and the result
number is uncontrollable. Moreover, the similarity among the results gets high due to
the relaxation. Algorithms in [3–5] return k diverse neighbors, and most of them have a
two-step of candidate-filter selection based on greedy selection. Due to the facts that the
optimality of greedy selection is not guaranteed, and the result quality of
candidate-filter algorithms is greatly affected by the quality of the candidate set, a bad
candidate set may lead to worse results.

In this paper, we attempt to obtain a proper number of results with high diversity.
We control the result number within a range kmin; kmax½ � instead of a fixed integer k in
previous studies [7, 19]. In practice, the lower bound is often given by the user, while
the upper bound is limited to the result display interface or the user’s ability of
exploring the result. With the consideration of relaxation, we define the problem with
the measure combining diversity and similarity and develop various algorithms based
on this measure.

For different scenarios, we develop three algorithms to solve this problem. gen-
Greedy is based on greedy selection strategy, with high efficiency, and is more
applicable for a frequently changing dataset. Based on multiple sequence alignment,
genCluster costs more time than genGreedy, but more stable. The third algorithm
CB2S is based on cluster analysis and machine learning. It is designed to achieve high
efficiency aiming at complex and massive datasets.

The contributions of this paper are as follows.

– We study efficient query processing with the consideration of both result number
and diversification. As far as we know, this is the first paper considering both of
these dimensions.

– To achieve the goal, we design a novel measure of query result quality combining
similarity and diversity. We develop three efficient algorithms for different
scenarios.

66 R. Shi et al.

– For efficient query processing, we develop a string vectorization strategy and iter-
ative query processing strategy to speed up the search process.

– We tested our approaches on various real datasets. Extensive experimental results
show that when returning similar diversity with existing algorithms, our approach
provides a proper number of results. The runtime comparison shows that our
approaches are more efficient.

The rest of the paper is organized as follows. Problem definition is discussed in
Sect. 2. Sections 3, 4 and 5 describes our three searching approaches in detail. Our
experimental results are presented in Sect. 6, and we conclude our paper in Sect. 7.

2 Problem Definition

In this section, we define the problem by defining the quality of query results inte-
grating similarity between query and result, the number of results and diversification.
For simplification, we focus on string and use edit distance [23] as the similarity
measure. Our approaches can also be adapted to other applications such as semantic or
image similarity search with minor changes on the search criteria.

We denote the dataset as DS ¼ fs1; s2;; sng, the query as q, the given
threshold of distance as e and the given result number range kmin; kmax½ �.
Definition 1. Given a query q and a result set S, the similarity between q an S is
defined as the average distance between q and all elements in S, i.e.

argSim S; qð Þ ¼ 1
jSj

X
si2S Dis q; sið Þ

where Dis q; sið Þ is the distance between q and si.
In this paper, we adopt content-based diversity based on edit distance, since the

other two kinds (intent based diversity and novelty based diversity) are mainly used for
semantic analysis [2]. The definition is as follows.

Definition 2. Given a result set S, the diversification of S is defined as follows.

argDiv S; qð Þ ¼ 2
kðk � 1Þ

X
si;sj2S Disðsi; sjÞ

Intuitively, the goal of query processing is to minimize the similarity distance and
maximize the diversity. However, these two dimensions are correlative. To balance
these two dimensions, we use a coefficient k and define the objective function of the
query process as follows.

Definition 3. Given a trade-off parameter of similarity and diversity, coefficient k (k 2
[0,1]), the objective function F S; qð Þ for a result set S is as follows.

Similarity Search Combining Query Relaxation and Diversification 67

F S; qð Þ ¼ k argDiv S; qð Þþ ð1� kÞ ð�argSim S; qð ÞÞ

In this definition, the trade-off parameter k can be determined by users. Hence the
inner structure of returned set is flexible, i.e. a small k leads to more relevant results
while a large k leads to more diverse results. Also, this parameter can be also decided
by analyzing various datasets through model building or sampling like [20].

We chose the form F S; qð Þ in three reasons. First, F S; qð Þ is an efficient and
effective assessment since it combines similarity and diversity into one expression and
uses an adjustable parameter to balance these two dimensions. Furthermore, F S; qð Þ
increases with the growth of argDiv S; qð Þ and drops with the growth of argSim S; qð Þ,
which excellently reflects our aim at finding the most diverse results which are also
similar to query q. Finally, this formula is simple and the computation cost is small.

According to this definition, the query processing algorithm works for a given
query q and range kmin; kmax½ �, to retrieve a result set S with |S| ¼ k 2 kmin; kmax½ � and
maximize F S; qð Þ. According to [20], even when k = 0, this problem is NP-Complete.
Thus, we attempt to design efficient heuristic algorithms in the following sections.

3 genGreedy

Intuitively, the proposed problem can be solved by two steps, generating sufficient
candidates through relaxation and greedy selection. Based on this framework, we
develop the query processing algorithm genGreedy.

This algorithm has two phases, candidate generation and diversification filter.

3.1 Candidate Generation

Candidate generation phase first generates k results with the highest relevance with the
query, which will be used for further selection. If the result number of an accurate
query is smaller than k, relaxation is performed.

To ensure the number of final results, k should be large enough, while to achieve
high efficiency in the diversification filter phase and select the results similar enough to
q, k should not be too large. Hence in the relaxing process we make k dependent on
kmin and kmax, k 2 ðkþ 1Þkmin; ðkþ 1Þkmax½ �, k 2[0,1], as mentioned in Sect. 2. Thus,
[k, 2 k] strings are retrieved in the phase of relaxation, and in selecting phase, we pick
1=ðkþ 1Þ of the candidates since we enlarge the number constraint by kþ 1 in
relaxation.

To obtain the results which are the most similar to q, we develop an iterative
algorithm for candidate generation phase. In this algorithm, the query is relaxed iter-
atively from the one most similar string to q to those different ones until total k results
are obtained with the relaxed queries.

That is, if insufficient results are obtained through q in the first round, then a greater
threshold is used for query relaxation to retrieve results within difference e with
q. Initially, e is set to 1 to retrieve the results within distance smaller than 1 with q. If
such relaxation does not return sufficient results, e is relaxed to a larger value.

68 R. Shi et al.

The pseudo code is shown in Algorithm 1. In this algorithm, for efficiency issues
q-gram and inverted index [24] are adopted. We first initialize min com with 0 and the
output set rlxResult with ; (Line 1–2). Line 3–12 describe the iterative process. In Line
3, we start the iteration until the result number equals or exceeds ðkþ 1Þ � kmin. During
each iteration, we turn to next string if the current string s is already in rlxResult (Line
5–6). In each iteration, we set the value of min com, which is the minimum number of
same grams that two strings should contain. Considering that the similarity of each
result cannot be guaranteed to be within e if only one step of q-gram approach is used.
Hence, we add a verification step in Line 8–9. The results that pass verification are
added into the result set in Line 9. In Line 10, we check the number of results. The
program jumps out the loop and returns set rlxResult (Line 13) if jrlxResultj ¼
ðkþ 1Þ � kmax is satisfied. If there are insufficient results, we enlarge e (Line 12) to
perform the next round of searching.

Note that the computation of set similarity for the q-gram set of each string is
inefficient, we involve inverted list to accelerate the process. The details will be dis-
cussed in Sect. 6.

The complexity of Algorithm 1 is OðkminNÞ, where kmin is the minimum bound of
the result number, and N is the size of dataset DS.

3.2 Diversification Filter

In the diversification filter phase, we select top 1=kþ 1ð Þ � rlxResultj strings that make
the greatest contribution to result diversity. Since the diversity of a set is measured

Similarity Search Combining Query Relaxation and Diversification 69

through argDiv in Sect. 2, we define the contribution that a string t makes to the final
result set S, denoted by DDt Sð Þ; as follows.
Definition 4. Given two strings si and sj in dataset S, the edit distance between them is
Disðsi; sjÞ. The contribution is computed as the sum of each distance between t and any
other string s, which is denoted as DDt Sð Þ ¼ Pn

s2S Dis s; tð Þ:
We accelerate the selection by pruning the strings that are not diverse enough

according to a prune function F r;Xð Þ ¼ X 1
r�jrlxResultj

PjrlxResultj
s2rlxResult;t2samSet Dis s; tð Þ where

r and X are the parameters of pruning, r 2 0; 0:5ð Þ with default value of 0.25, X 2
0:5; 1ð Þ with default value of 0.75. The sample set of rlxResult is samSet with size of
r � rlxResultj j. r decides how many elements samSet contains. In order to guarantee
the number of query results, we use parameter X to control pruning number. And X can
be adjusted by users according to the preferences. Higher r and X increase the accuracy
but decrease the efficiency of algorithm, and vice versa.

The pseudo code is shown in Algorithm 2. Initially, for each candidate ci in rlxResult;
we calculate how much contribution ci makes for rlxResult by DDci rlxResultð Þ in Line 1
and 2. In Line 3, we calculate F r;Xð Þ for pruning in Line 5. Candidates with
DDci rlxResultð Þ lower than F r;Xð Þ are considered to have a too low diversity and
removed from rlxResult (Line 6). After this pruning, we sort the candidates by
DDnode rlxResultð Þ and return top (1/k + 1)�jrlxResultj results as S (Line 7 and 8).

The time complexity of Algorithm 2 is OðklogkÞ, in which k ¼ jrlxResultj. Since
the cost of merge sort is OðklogkÞ and that of one loop is O kð Þ, the total complexity of
genGreedy is OðkNþ klogkÞ.

This algorithm is simple and efficient without heavy preprocessing cost. Thus, it is
suitable for scenarios with frequently changing datasets. As shown in Sect. 6, this

70 R. Shi et al.

algorithm could generate a good result set efficiently in most conditions, especially
when dealing with complex and massive datasets. However, this method is not stable
when datasets are too small. To remedy the shortage, we present a more stable
approach genCluster in the next section.

4 genCluster

genCluster is presented to solve the unstable problem of genGreedy. As a trade-off, it
relatively costs more time than genGreedy. Hence, it is more applicable for scenarios
when the result quality requirement is more important than query runtime restriction.

To make the algorithm more stable, we cluster the candidates in rlxResult based on
multiple sequence alignment. Such idea is inspired by the method of multiple sequence
alignment in bioinformatics [25], which finds genetic relation among series of DNA or
proteins. We apply such idea to find similarity connection among strings. First of all,
we make pairwise alignment to create a distance matrix. Thereafter, a guide tree is built
by applying clustering algorithms. Then a motif string is created by a method of
scoring. Finally, strings far away from the motif in edit distance are picked out to
maximize the diversity. This algorithm can also be divided into two parts, relaxing
(described in Sect. 3 hence we will not repeat here) and clustering.

4.1 Definitions

Before discussing the specific steps of this algorithm, we first introduce two concepts,
substitution matrix and score function. After accomplishing multiple sequence align-
ment on strings, in order to obtain the motif sequence, which is considered to be the
center to have the closest edit distance to all sequences, we define substitution matrix as
follows.

Definition 5. Given a group of m sequences, a ¼ fA1;A2; . . .;As; . . .;Amg. A substi-
tution matrix is a group of sequences a0 ¼ A

0
1;A

0
2; . . .;A

0
s; . . .;A

0
m

� �
generated by

changing As to A
0
s by enlarging every As in a to the same length with place holders

filling in the unmatched blanks. That is to say, all sequences in the matrix have a same
length.

For each sequence As which has not been enlarged in a, we fill its i-th character in
in A

0
s if it matches the i-th character in the enlarged sequences in a0. Otherwise, we fill

this i-th position in A
0
s with a place holder. Figure 1 shows the process of transfor-

mation. The left figure shows the original a with sequences of various lengths, and the
right one shows a0, in which sequences are extended to the same length.

The method of obtaining the substitution matrix is as follows.
First, each pair of leaf nodes is compared and scored using a scoring matrix. Global

optimization of dynamic programming algorithm is used in this process [30]. As for the
comparison among clusters, actually, it is the comparison among groups of the multiple

Similarity Search Combining Query Relaxation and Diversification 71

sequences which have already been compared. Until all sequences are processed, we
obtain the substitution as a result.

To obtain the motif sequence for further selection, we need to score the sequences
in the substitute matrix through a score function. This function computes scores of each
kind of characters in each column of substitute matrix.

Definition 6. Score function, also called penalty function, is used to score the sequence
alignment and generate the substitute matrix a0 of sequences a and then, create motif
according to a0: The basis of score function is the scoring matrix, usually obtained by
hamming distance. Higher mark represents a higher similarity among sequences.

dHða; bÞ ¼ 0; if a ¼ b
1; else

�

In addition, one of the popular methods of computing scores is called SP (sum of
pairs) standard. Take the following sequences as an example.

C1 ¼ ���gttag

C2 ¼ acag��� g

C3 ¼ �cagttag

If the bit of one sequence matches with the other one, it is marked 1, otherwise
marked 0. Its mark is deducted by 1 during the inserting process. Considering the
example above, we can easily find that the score of comparison between C1 and C2 is
−4. Then, comparison of C1 and C3 is scored 3, and that of C2 and C3 is 0. Thus, the
total score of the multiple sequences is −4 + 3 + 0 = −1.

Fig. 1. Substitute matrix transformation

72 R. Shi et al.

Hereby, we select the character with the highest score to fill in the corresponding
position of the motif sequence. That is to say, we find characters which appear most
frequently in every column to create the motif.

Generally, creating motif in this method makes a good result, except some unde-
sirable situation when the selected sequences are far away from the motif sequence but
close to each other, which negatively affects the diversity. Hence, we use F S; qð Þ to
measure the result quality. When meeting with unsatisfying results, technique men-
tioned in [18] is applied, where several profiles sequences or sub-sequences are used to
create a more accurate motif with a cost of longer runtime. Fortunately, such special
situations seldom happen in our experiment. In fact, according to triangle inequality,
i.e. the sum of the length of two edges is larger than the length of the third in a triangle,
two sequences cannot be too similar if they are both far away from the motif.

4.2 Description of Cluster

In this section, we propose the specific cluster algorithm to solve the unstable problem
of genGreedy. This algorithm tries to create a motif sequence of rlxResult and select
results with the farthest distance to the motif for diversification.

We first treat each string as a set among which the branch length is initialized by
ED matrix. After that, we perform search for each set in SET to find two sets setj and
setk that has the minimum branch length. These two sets are merged into setz, and the
branch lengths are updated by average distance from setj and setk to the other sets.

Similarity Search Combining Query Relaxation and Diversification 73

Hence, a phylogenetic tree is built, in which closer nodes are more similar to each
other. From the leaves, we start to compare the nodes. For each time, we choose two
closest nodes to be added to the substitution matrix and build up this matrix by iterative
processing. After that, by applying the score function, we obtain the motif sequence,
which is considered to be the center with the closest edit distance to all sequences.
After that, we sort the sequences by the distance to motif and return 1/(1 + k)*|
rlxResult| items as the final result.

In Algorithm 3, we initialize the branch lengths among sets by edit distance among
strings (Line 1 to Line 3). Line 4–Line 8 are the iterative process of building a phylo-
genetic tree. When two sets are merged into one, we update the branch lengths of the new
set in Line 8 by computing the average of two old sets, 12 ðDis sett; setj

� �þDis sett; setkð Þ.
In Line 9, we transfer our tree into a substitution matrix by multiple sequence alignment
and use the score function to find themotif (Line 10). Thereafter, we calculate the distance
among sequences to motif (Line 12) and return those with the farthest distance (Line 13
and 14). In this algorithm, the time complexities of ‘while’ loop, merge sort and other
lines areO(k2logk),O(klogk) andO(k), respectively. Thus, the total time complexity is
O(k2logk), in which k is the size of rlxResult.

5 CB2S

genGreedy and genCluster perform well in some cases. However, they still have dis-
advantages. genGreedy is unstable for greedy selection, and genCluster costs more
time. Motivated by this, we develop a novel algorithm CB2S (Cluster-Based String
Search), which is stable and meanwhile, efficient. This method combines query
relaxation with diversification in one iterative process instead of two separate steps of
picking candidates and filtering. Therefore, it eliminates the exceptional situations that
bad candidates lead to terrible results. Meanwhile, one iterative process helps to reduce
algorithm runtime. Hence, the efficiency of CB2S outperforms these algorithms and is
high especially when meeting with massive datasets.

Basically, this algorithm reduces the searching space by cluster analysis in advance
and then searches several clusters to retrieve results that fit our requirement. This
method involves a complex pretreatment process (described in Sect. 5.1) of cluster
analysis based on kmeans algorithm [26]. In Sect. 5.2, we discuss the details of the
searching process based on knn algorithm [27], which is used for string classification in
our approach. Given some clusters of classified strings and an unclassified string t,
KNN tells which cluster t belongs to according to a training set by uniform random
sampling from classified strings. For efficiency issues of clustering and classification,
strings are vectored before searching.

During the whole process, we first separate dataset into clusters, and treat the
sampled data of these clusters as the training set. Given a query q, the training set and
KNN algorithm vaguely classify q to one of the clusters. This cluster is considered as
the search center. The search starts from the center cluster, and the search space spreads
to neighbor clusters to diversify the results. This process iterates until we obtain enough
number of results.

74 R. Shi et al.

5.1 Data Pretreatment

The pretreatment process of CB2S aims at splitting a large dataset into small clusters
and generating a complete graph by treating clusters as vertexes and distances among
clusters as edges. The process is divided into the following steps. First, strings are
changed to vectors. This step is necessary since using feature vectors to conduct cluster
and classification work is more efficient [9]. Second, the dataset is separated into
clusters by kmeans algorithm. In this step, similar strings are clustered in the same
cluster, and strings in different clusters are less alike. After that, we generate the
complete graph of clusters by calculating the distance from the center of one cluster to
the others’. Strings are more similar if their clusters are near, vice versa. The details of
these steps are shown below.

Vectorization. In the area of machine learning, text is transferred into feature vectors
to perform text mining [9]. In our work, we transfer strings into vectors and classify
strings by cluster analysis on vectors. Since the representation of a string has a strong
impact on the accuracy of a learning system, various techniques are proposed to fit the
need of various systems [10, 11]. Word stems work well on strings. Hence, similar
strings have a closer space vector. For example, the distance between the vector of
“computer” and “computing” should be smaller than that between “computer” and
“apple” because “computer” and “computing” are mapped in the same stem. In our
paper, we use the method of vectorization presented in [9] and feature selection
technique proposed in [8]. Before this process, the long strings are segmented and some
end words or stop words such as “the” and “a” are removed.

Establishment of clusters. We cut the whole searching space into smaller pieces and
search in only small clusters to reduce the cost. Given the feature vectors of long strings
obtained by vectorization, we use algorithm K-means to cluster them into M categories.
In our approach, the number of categories (M) is determined according to the sizes of
datasets. The size of each cluster is controlled to no more than 64 MB, for it is the
default capacity of block storage in a distributed system, considering a future opti-
mizing work of running our algorithm on distributed platforms. We create a distance
matrix by calculating the distances among the cluster centers, i.e., the median of the set.
Through the process, we obtain the complete graph of M clusters.

5.2 The Searching Process

During search, we first vaguely determine which category the query input q belongs to,
and this category will be considered as the center set for further searching. During this
process of classification, we use KNN algorithm for it does not need any evaluation
parameters [27]. After that, the distance matrix among clusters is checked and sorted.
A set list is returned according to the ascending order of distances between center set
and the other clusters.

After determining the center set, the iterative process of retrieving enough items is
shown in Fig. 2. We first focus the searching range on center set, adding the string
whose vector is the closest to that of query q. This process continues until the objective

Similarity Search Combining Query Relaxation and Diversification 75

function F S; qð Þ starts to decrease, which means that the quality of result set starts to
drop. Hence, we need to switch to next category to get items with better quality. The
iteration ends when the number of results satisfies user’s requirement.

The pseudo code of the algorithm is shown in Algorithm 4. We search at least
ð1� kÞkmin strings for similarity and at least kkmin strings for diversity. We first use
KNN algorithm to decide the center set (Line 1). In Line 2 we check the distances
among sets and prune sets that are far from the center set. From Line 3–13, we search
iteratively until jSj\kmin. For each round, we add the closest string to S and check the
change of Fðq; SÞ (Line 7). When F q; Sð Þ decreases, or when Sj j[1� kð Þkmin is
satisfied, which means that we already have enough similar strings, the searching space
switches to the next cluster (Line 9). We check the number of results and jump out the
loop when jSj[¼ kmax to finish searching. Otherwise, we update F q; Sð Þ and con-
tinue the search processing.

We apply pruning technique when determining the search space of CB2S algo-
rithm. The first step utilizes k NN algorithm to find the set of search center, to which the
string of query input is vaguely classified. To reduce the search space, we abandon
some of the separated sets with the lowest possibility to contain the final search result.
Consider that we have M sets in total, a parameter r is used to prune ð1� rÞ *M sets
that have the farthest distance to the center set. This question is converted into SSSP
(single source shortest path) problem which pick s r *M closest sets to the center set. r
is changeable according to various datasets and the user input of kmin and kmin. No
matter how large a dataset is, the real search space includes only several clusters. For a
large dataset, we set a small r. And we set a relatively large one for small datasets to
ensure enough but not redundant search space.

Fig. 2. Searching process of CB2S

76 R. Shi et al.

Suppose that we have N strings in the whole dataset DS, and DS is cut into M small
categories. The training set used to decide the center set is N

0
which is much smaller

than N. (In our work, we sample 5% content of each dataset randomly to do training
task.) Thus The time complexity of CB2S is OðkMþN

0 Þ, in which k is the number of
searching results. After applying the technique of pruning, the complexity is reduced to
OðrkMþN 0Þ, where r\1 and is a changeable threshold of pruning.

6 Experiments

In this section we evaluate the performance of our methods of optimizing the search
results, and compare them with some other methods from previous papers [12].

6.1 Setup

We use four datasets from different domains, including Computer Conference, Infor-
mation of Mammal, Protein and Random Sequence. Conference set is extracted from
DBLP, containing names of journals and conferences respectively. The datasets Protein
and Mammal are available on UNIPROT. Finally, the Random Sequence is generated
by ourselves, containing strings made of random combinations of letters specially used
to evaluate the runtime of the algorithms. The specific statistics of all datasets are
summarized in Table 1. The statistics show that the strings in Mammal and Conference
are shorter than the other two datasets, usually with lengths of 50–100 characters. On
the contrary, Protein and Random consist of relatively long strings.

Similarity Search Combining Query Relaxation and Diversification 77

All of our experiments are performed on a PC with quad-core, 64-bit, 1.7 GHz
CPU and 4 GB memory. Apart from the preprocessing of CB2S which is written in
Python (containing transferring strings to vectors and classification of the query input),
the other parts of this system are implemented with c++. The operating system is
Windows 7. Comparisons were made among our methods and two previously pre-
sented algorithms dealing with a similar problem. Performances of these five algo-
rithms are measured through the value of F S; qð Þ and the number of results. Efficiency
is measured through runtime and the impacts of some parameters are tested by variable
controlling.

6.2 Preprocessing Time

Establishing index. Before doing similarity query, inverted table needs to be estab-
lished to shorten the query time. The cost of our inverted index is Oðn2Þ. This
experiment is tested on three real datasets and one synthetically generated dataset. The
dataset description and the time used to build inverted table are shown in Table 2. Such
is offline time, for the inverted table is only built once every time when a new dataset
was read, which means that when processing other queries, we use the same inverted
table.

By using such index, query processing can be very fast. We make comparison of
processing query by traditional method and by using our index, the histogram Fig. 4(a)
with time unit of millisecond illustrates that when doing similarity query, the runtime of
using index only costs about one-third time when the dataset is not very big and the
advantage can be more obvious on more complex datasets. Even though we add the
query time together with time of building inverted table, the total time is still much
shorter than that of the traditional method.

Table 1. Dataset characteristics

Dataset Number of items Max length Average length

Conference 2199 125 89
Protein 10000 2163 465
Mammal 50000 142 73
Random 150194 572 277

Table 2. Time of establishing inverted table

Dataset Number of strings Time of establishing inverted table (s)

Conference 2199 0.09245
Protein 10000 0.64021
Mammal 50000 0.94835
Random 150194 3.78483

78 R. Shi et al.

Vector transformation and dataset cluster. In algorithm CB2S we perform vec-
torization by calling the python interface ‘word2vec’ provided by Spark 2.0.0. with
Hadoop 2.7. The development tool is pyCharm. After getting access to the vectors, we
use the interface of k-means in MATLAB to separate datasets into clusters. The runtime
of transformation in four datasets is shown below. Although the vectorization costs
some time, this process does not need to be run for a second time if there is not any
change in the searching space. Also, vector matrix does not need to rebuild when new
items are added. Just update the vector matrix by calling the interface of increment
(Table 3).

6.3 Impact of Parameters

In this section, we tested the performance of our query processing algorithms con-
sidering two parameters that might influence the final object function F S; qð Þ, including
the trade-off threshold k, the value of average of kmin and kmax. When making analysis
of F S; qð Þ, we can clearly find the associated relationship between F S; qð Þ and k.
However, when it comes to k, k influences argDiv and argSim. Hence, k influences
F S; qð Þ but not directly. We fix k to see how F S; qð Þ changes with the change of k.
After that, we do the same to k. This part is tested in dataset Random, for this dataset is
more well-distributed without too much special or extreme data. The default value of k
is 0.5 and kmin = 25, kmax = 55. We set e = 30 and changes of F S; qð Þ of three algo-
rithms are shown as below.

From Fig. 3, we see an increasing trend of three algorithms, which is just as what
we expected. The goal function F S; qð Þ ¼ kargDiv S; qð Þþ 1� kð Þ �argSim S; qð Þð Þ ¼
k argDiv S; qð Þþ argSim S; qð Þð Þ � argSim S; qð Þ, when k = 0.5, F S; qð Þ ¼ 0:5ðargDiv�
argSimÞ. Both argDiv and argSim rise when k gets larger. However, argDiv grows
faster than argSim, thus leads to the final trend.

The result of F S; qð Þ changing with k is relatively similar. k ¼ 0 means traditional
similarity query without considering inner diversity, while a higher value of k tries to
involve more diversity. When k ¼ 1, only diversity is taken into consideration ignoring
the distance to query input. Although the line of genCluster slightly decreased from
k ¼ 0:6 to k ¼ 0:7, the increasing trends of three algorithms are obvious.

6.4 Comparisons

In this section, we compared the performance of our relaxation-diversify algorithms
with two other algorithms swap and comGreedy presented in previous paper [12].

Table 3. Preprocessing time of CB2S

Dataset Number of strings Time of vectorization (s) Time of clustering (s)

Conference 2199 5.373 0.810
Protein 10000 24.694 1.383
Mammal 50000 11.025 1.278
Random 150194 41.78483 1.735

Similarity Search Combining Query Relaxation and Diversification 79

Although they are used to solve a different problem of document mining, when
changing the document to be processed into dataset of strings, processing query in
datasets and diversifying the query results can get a result set similar to our approaches.
Thus, we choose these two algorithms for comparison.

In this experiment, we set kmin ¼ 25 and kmax ¼ 55 to do query with our algorithms
and use e = 40 as the initial edit distance threshold. The datasets used for comparison
are mentioned in Sect. 6.1. We use runtime to evaluate the efficiency and the value of
object function F S; qð Þ, the number of results to estimate their performance.

Efficiency. The runtime of five algorithms is tested on dataset Mammal, for Mammal
is well-distributed and large enough. The string length covers from 40–200 and does
not have too much special data. We set k, e and k the default values mentioned in the
last section, and change the data size to see how runtime changes. The efficiency shows
in Fig. 4(b) and the time unit is second.

From the figure we observe that CB2S runs fastest and comGreedy is the slowest
one. CB2S puts more time on preprocessing which makes a contribution to its fast
speed. Especially when running on larger datasets, the advantage of CB2S is more
obvious for it effectively reduces the searching space. With the growth of data size, the
runtime does not increase too much. Behind CB2S, the efficiencies of genGreedy,
genCluster and swap are similar. ComGreedy is the slowest algorithm due to its
complexity. The speed can also be proved by comparing the algorithm complexity of

20 30 40 50 60
0

10

20

30

40

50

60

70

0.0 0.3 0.6 0.9

10

20

30

F(
S,

q)

genGreedy
genCluster
CB2S

(kmin+kmax)/2

F(
S,

q)

genGreedy
genCluster
CB2S

λ

Fig. 3. Impacts of parameters

Mammal Conference Protein Random
0

2000

4000

R
un

tim
e

(m
s)

Dataset

index
traditional

5k 1.5w 2.5w
0

10

20

30

40

(b) Runtime with Data Size

R
un

tim
e

(s
)

Data Size (item)

genGreedy
genCluster
CB2S
swap
comGreedy

(a) Efficiency of Index

Fig. 4. Runtime comparison

80 R. Shi et al.

these five methods. Complexities of CB2S, genGreedy, swap, genCluster and com-
Greedy are O rkMþN 0ð Þ;O kN þ klogkð Þ;O Nklogkð Þ;O Nkð Þ and O Nkð Þ, respectively.
CB2S wins in complexity. Although the comGreedy also possesses a low complexity,
it takes longer time to run for multiple passes [12].

Performance. We tested the performance through measuring the value of F S; qð Þ and
the number of results. We change the threshold of edit distance to query a specific
string. Relevance of each algorithm is obtained by calculating the average of edit
distance between result items and the user input, and the diversity is calculated by inner
edit distance between each pair of strings. In four datasets the results appear similar in
some extent.

Figure 5 illustrates the generally increasing trend of five algorithms. On different
datasets, the lines fluctuate at some thresholds of e. Such conditions happen when the
items added to result set are not good enough but still has to be added to fit the
requirement of returning kmin to kmax results. The gaps among algorithms are not very
significant.

From Fig. 6, we observe that the numbers of items in the result set generated by
genCluster and genGreedy and CB2S are obviously more than the other two, nearly
double in Conference, Protein and Radom. genGreedy and genCluster usually return
the most results in five algorithms while CB2S is just a little fewer. These three
algorithms fit the requirement of range from 25–55 items. We can find that comGreedy
is not very stable according to variable datasets. Also, when the threshold of edit
distance is small, the results returned by swap and comGreedy can be too few. In this
section, our algorithms perform better.

20 40 60

10

20

30

40

20 40 60
8

16

24

60 90 120

10

20

30

40

60 90 120

6

12

18

F(
S

,q
)

Edit Distance

genGreedy
genCluster
CB2S
swap
comGreedy

RandomProtein

Conference

F(
S

,q
)

Edit Distance

genGreedy
genCluster
CB2S
swap
comGreedy

Mammal

F(
S

,q
)

Edit Distance

genGreedy
genCluster
CB2S
swap
comGreedy

F(
S

,q
)

Edit Distance

genGreedy
genCluster
CB2S
swap
comGreedy

Fig. 5. Performance comparison of F S; qð Þ

Similarity Search Combining Query Relaxation and Diversification 81

7 Conclusion

To obtain high-quality results, this paper combines query relaxation and result diver-
sification. We develop a new measure for such combination. To process query effi-
ciently, we propose three algorithms, genGreedy, genCluster and CB2S, for different
scenarios. As far as we know, this is the first work to balance query relaxation and
result diversification. We evaluate our work on various datasets. The experiment shows
that when providing similar relevance to query input and similar inner diversity in
result set, our algorithms relax the result set to a proper size at high speed. genGreedy
and genCluster are simple and effective without complex preprocessing. CB2S needs
some time to do preprocessing work, but performs very well in speed, especially in
large searching space. Our future work will focus on parallelizing CB2S on a dis-
tributed system to achieve higher efficiency.

Acknowledgments. This paper was partially supported by NSFC grant U1509216, 61472099,
National Sci-Tech Support Plan 2015BAH10F01, the Scientific Research Foundation for the
Returned Overseas Chinese Scholars of Heilongjiang Province LC2016026 and MOE–Microsoft
Key Laboratory of Natural Language Processing and Speech, Harbin Institute of Technology.
Hongzhi Wang is the corresponding author of this paper.

References

1. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate string
searches. In: IEEE International Conference on Data Engineering (2008)

2. Zheng, K., Wang, H.: A survey of query result diversification. Knowl. Inf. Syst. 50, 1–36
(2016)

20 40 60
0

20

40

genGreedy
genCluster
CB2S
swap
comGreedy

genGreedy
genCluster
CB2S
swap
comGreedy

genGreedy
genCluster
CB2S
swap
comGreedy

genGreedy
genCluster
CB2S
swap
comGreedy

N
um

be
r o

f R
es

ul
ts

Edit Distance

genGreedy
genCluster
CB2S
swap
comGreedy

20 40 60
0

20

40

N
um

be
r o

f R
es

ul
ts

Edit Distance

60 90 120
0

20

40

RandomProtein

Mammal

N
um

be
r o

f R
es

ul
ts

Edit Distance
60 90 120

0

20

40

N
um

be
r o

f R
es

ul
ts

Edit Distance

Conference

Fig. 6. Performance comparison

82 R. Shi et al.

3. Ziegler, C.N., Mcnee, S.M., et al.: Improving recommendation lists through topic
diversification. Promontory Press (1974)

4. Drosou, M., Pitoura, E.: DisC diversity: result diversification based on dissimilarity and
coverage. In: Proceedings of the Vldb Endowment (2013)

5. Agrawal, R., Gollapudi, S., Halverson, A., et al.: Diversifying search results. In: ACM
International Conference on Web Search & Data Mining (2009)

6. Deng, D., Li, G., Feng, J.: A pivotal prefix based filtering algorithm for string similarity
search. SIGMOD (2014)

7. Jain, A., Sarda, P., Haritsa, J.R.: Providing diversity in K-Nearest neighbor query results. In:
Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 404–413.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24775-3_49

8. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In:
Advances in Information Sciences & Service Sciences (2012)

9. Joachims, T.: Text categorization with support vector machines: learning with many relevant
features. In: Proceedings of European Conference (1998)

10. Kim, J.D., Ohta, T., Tateisi, Y., et al.: GENIA corpus–semantically annotated corpus for
bio-text mining. Bioinformatics 19, 180–182 (2003)

11. Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering.
In: KDD-ACM (1999)

12. Yu, C., Lakshmanan, L., Amer-Yahia, S.: It takes variety to make a world: diversification in
recommender systems. In: EDBT (2009)

13. Haveliwala, T.H., Gionis, A., Klein, D., et al.: Evaluating strategies for similarity search on
the web. In: International Conference on World Wide Web (2010)

14. Zheng, J.G., Howsmon, D., Zhang, B., et al.: Entity linking for biomedical literature. BMC
Med. Inform. Decis. Making 15, S4 (2015)

15. Gish, W., States, D.J.: Identification of protein coding regions by database similarity search.
Nat. Genet. 3(3), 266–272 (1993)

16. Drosou, M., Pitoura, E., et al.: Search result diversification. In: Proceedings of the National
Academy of Sciences (2010)

17. Vee, E., Srivastava, U.: Efficient computation of diverse query results (2008)
18. Jones, C., Pevzner, P.: An Introduction to Bioinformatics Algorithms, pp. 97–100. MIT

Press, Cambridge (2004)
19. Santos, L., et al.: Combine-and-conquer: improving the diversity in similarity search through

influence sampling. In: ACM Symposium on Applied Computing (2015)
20. Santos, L.F.D., Oliveira, W.D., Ferreira, M.R.P.: Parameter-free and domain-independent

similarity search with diversity. In: SSDBM (2013)
21. Mirzadeh, N., Ricci, F., Bansal, M.: Supporting user query relaxation in a recommender

system. In: Bauknecht, K., Bichler, M., Pröll, B. (eds.) EC-Web 2004. LNCS, vol. 3182,
pp. 31–40. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30077-9_4

22. Zhou, X., Gaugaz, J.: Query relaxation using malleable schemas. In: ACM SIGMOD (2007)
23. Wagner, R.A., Lowrance, R.: The string-to-string correction problem. J. ACM 21(1), 168–

173 (1974)
24. Zhang, Z., Hadjieleftheriou, M.: Bed-tree: an all-purpose index structure for string similarity

search based on edit distance. In: SIGMOD (2010)
25. Thompson, J.D.: CLUSTAL W: improving the sensitivity of progressive multiple sequence

alignment through sequence weighting position-specific gap penalties and weight matrix
choice. Nucleic Acids Res. 22(22), 4673–4680 (1994)

26. Hartigan, J.A., Wong, M.A.: A K-Means clustering algorithm. Appl. Stat. 28, 100–108
(1979)

Similarity Search Combining Query Relaxation and Diversification 83

http://dx.doi.org/10.1007/978-3-540-24775-3_49
http://dx.doi.org/10.1007/978-3-540-30077-9_4

27. Han, E.H., Karypis, G.: Text categorization using weight adjusted k-Nearest neighbor
classification. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining (2001)

28. Vargas, S., Castells, P.: Explicit relevance models in intent-oriented information retrieval
diversification. In: International ACM SIGIR Conference on Research & Development in
Information Retrieval (2012)

29. Sun, F., Wang, M., Wang, D., et al.: Optimizing social image search with multiple criteria:
relevance, diversity, and typicality. Neurocomputing 95, 40–47 (2012)

30. Yang, J., Hu, G.: Computational biology: methods and applications for the analysis of
biological sequences (2010). www.sciencep.com

84 R. Shi et al.

http://www.sciencep.com

An Unsupervised Approach for Low-Quality
Answer Detection in Community

Question-Answering

Haocheng Wu1, Zuohui Tian2, Wei Wu3, and Enhong Chen1(B)

1 University of Science and Technology of China, Hefei, China
ustcwhc@outlook.com, cheneh@ustc.edu.cn

2 Harbin Institute of Technology, Harbin, China
zuohuitian@gmail.com

3 Microsoft Research, Beijing, China
weiwu@microsoft.com

Abstract. Community Question Answering (CQA) sites such as Yahoo!
Answers provide rich knowledge for people to access. However, the qual-
ity of answers posted to CQA sites often varies a lot from precise and
useful ones to irrelevant and useless ones. Hence, automatic detection
of low-quality answers will help the site managers efficiently organize
the accumulated knowledge and provide high-quality contents to users.
In this paper, we propose a novel unsupervised approach to detect low-
quality answers at a CQA site. The key ideas in our model are: (1) most
answers are normal; (2) low-quality answers can be found by checking
its “peer” answers under the same question; (3) different questions have
different answer quality criteria. Based on these ideas, we devise an unsu-
pervised learning algorithm to assign soft labels to answers as quality
scores. Experiments show that our model significantly outperforms the
other state-of-the-art models on answer quality prediction.

Keywords: Community question answering · Answer quality evaluation

1 Introduction

In the last decade, many community question answering (CQA) sites such as
Yahoo! Answers and Baidu Knows have emerged and accumulated a large num-
ber of questions, answers, and users. The quality of answers may be high in the
sense that the answers are precise and useful. However, it may be low in the
sense that the answers are irrelevant to the topic and thus useless. It becomes
an important problem how to detect low-quality answers in order to improve the
experience of user when he browses a question and its answers (a QA thread).

One way to improve user experience in CQA is to provide the best answer for
each QA thread. Many studies have been conducted along this line [7,18,21,23].
However, we have found that many non-factoid questions do not have single best
answers, especially those asking for reasons, instructions or opinions. Therefore,
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 85–101, 2017.
DOI: 10.1007/978-3-319-55699-4 6

86 H. Wu et al.

selection of one best answers may not satisfy the user needs in such cases. In
the meantime, the existence of low-quality answers can seriously decrease user
satisfaction. Therefore, there is a clear need to detect low-quality answers, which
is the problem we want to address in this paper.

There are three main challenges in low-quality answer detection. (1) Manu-
ally labeled datasets are costly and hard to obtain, which is one of the bottle-
necks of existing methods, since they are mainly based on supervised learning.
(2) Existing methods usually focus on relevance measures between questions and
answers. However, a low-quality answer usually uses the same key words with the
question but talks on totally different and irrelevant topics. In this case, it is very
hard to say that they are useless answers. (3) The answer quality criteria may
vary on different questions. For example, for non-factoid questions long answers
are quite common, while for factoid questions short answers are often sufficient.
Existing supervised learning methods usually favor long answers because long
answers tend to have good human judged labels in training datasets.

Table 1 shows an example1 of a question with a low-quality answer. We find
that most answers can answer the question and the high-quality ones (A3–A6)
are quite similar. While, A1 is marked as the best answer in Yahoo! Answers,
but it makes an impolite joke and has no similarities in terms of content to
other answers. Thus, we can pick A1 as low-quality answer from the others by
comparing the differences among them. From this example, we can infer that
low-quality answers are usually outliers from all the other answers.

In this paper, we propose a new method for low-quality answer detection, on
the basis of unsupervised learning. There are three assumptions in our method:
(1) Most answers are normal answers and only a few answers are of low-quality.
(2) Low-quality answers can be found by checking whether they are significantly
different from its peer-answers, i.e. the other answers under the same QA thread.
(3) Different questions should have different answer quality criteria.

Our method takes three solutions based on the three assumptions to tackle
the three challenges. (1) Inspired by outlier detection algorithms, we propose
a novel unsupervised optimization approach to detect low-quality answers by
minimizing the data variance and maximizing the number of normal answers.
(2) We incorporate a set of features which can capture the content differences
between the answer and its peer-answers. (3) We apply the optimization model
on each question individually, rather than on all questions at once.

We conduct experiments with three datasets. We make use of two bench-
mark datasets for answer quality prediction: an English dataset with 3,229 ques-
tions and 20,162 answers, and an Arabic dataset with 1,700 questions and 8,501
answers. We also label a third dataset sampled from Yahoo! Answer with 636
questions and 3,723 answers to test the performances on the popular CQA site.
Experimental results on three datasets show that our method significantly out-
performs other state-of-the-art methods.

Our contributions in this paper are of three-fold: (1) a proposal for an unsu-
pervised optimization model for low-quality answer detection; (2) a proposal of

1 https://answers.yahoo.com/question/index?qid=20090408172834AArbCtu.

https://answers.yahoo.com/question/index?qid=20090408172834AArbCtu

An Unsupervised Approach for Low-Quality Answer Detection in CQA 87

Table 1. An example of a question thread.

Question

What 2 colors make green?

Description

I was painting a mission so I needed green paint for the grass but I run out

Answers

A1*: You know there is something called google right?

A2: If you are mixing pigments it is blue and green. Things work differently on a
computer and in some photo stuff. If you are mixing paint/pigments lookup
RBG color wheel

A3: Yellow, blue, mix em together

A4: Blue and yellow

A5: Blue and yellow, but more yellow than blue

A6: Blue and yellow?

*: A1 is marked as the best answer.

using a set of features for capturing content differences among peer-answers;
(3) empirical verification of the efficacy of the proposed method on two bench-
mark datasets and another dataset from a popular CQA site.

2 Related Work

Although there have been many studies on CQA, to our best knowledge, no work
has been done aiming at detecting low-quality answers based on the content
differences among answers in a QA thread before. The related work can be
broadly categorized into three threads.

Answer Quality Prediction. In previous studies, there are no commonly
agreed definitions of answer quality in CQA. Jeon et al. [7] define that a good
answer tends to be relevant, informative, objective, sincere and readable. Sakai
et al. [20] propose a new evaluation methods based on graded-relevance metrics.
Recently, two workshops of answer quality prediction are hold for SemEval-2015
& 2016 Task 3 [15,16]. The organizers publish large manually judged English
and Arabic datasets where answers are labeled in three levels: good, potential
useful, and bad. And bad answers are subdivided into four categories: Irrelevant,
Dialogue, Non-English and Others. We conduct our experiments on the two
datasets published in SemEval-2015 Task 3.

Despite the lack of agreement on the answer quality definitions, researchers
have made great progress in answer quality prediction these years. In the begin-
ning, many works focus on the methods based on non-textual features. Jeon
et al. [7] use the maximum entropy approach and kernel density estimation
to predict answer quality scores based on statistics of question and answer.

88 H. Wu et al.

Shah et al. [21] propose a supervised method based on additional user infor-
mation, which is considered as one of the state-of-the-art methods who use only
non-textual features. Recently, a workshop in SemEval-2015 Task 3 [15] starts
to target on semantically oriented solutions using rich language representations.
Tran et al. [23] and Nicosia et al. [18] win on English and Arabic datasets respec-
tively by using supervised methods with various of lexical, syntactic and semantic
similarity measures. We take the methods of Shah et al. [21], Tran et al. [23] and
Nicosia et al. [18] as three baselines in this paper.

Review Spam Detection. Review spam detection are also related to our work.
Crawford et al. [4] categorize review spams into three groups in their survey:
untruthful reviews, reviews only on brands and non-reviews. By representing a
review using a set of features of reviews, reviewers and products, classification
techniques are used to assign spam labels to reviews [8,11].

However, our work on low-quality answer detection is clearly different from
review spam detection on three aspects. (1) Target: our work only detects irrel-
evant and useless answers. While as suggested by Crawford et al. [4], a good
review spam detection system should be able to identify whether a review is
fake or untruthful. (2) Feature: a bunch of features representing the relevance
between question-answer pair can be used in our work. While review comments
can only refer to product names, thus features may heavily rely on review con-
tent. (3) Candidates: a question only have seven answers on average (See Sect. 4),
while a popular product may have thousands of review comments.

Anomaly Detection. Anomaly detection (also known as outlier detection),
referring to the problem of finding patterns in data that do not conform to
expected behavior, is also related to our work. Hodge et al. [6] indicate in their
survey that techniques in unsupervised mode do not require training data, and
thus are most widely applicable on this problem. Unsupervised methods make
the implicit assumption that normal instances are far more frequent than anom-
alies [3]. Based on this assumption, many optimization models are proposed
based on minimizing a customized loss function of data variance, where vari-
ables are classification labels of 0(anomaly) or 1(normal), and parameters are
features. And techniques like soft labels [12] and gradient descent method [25]
are proved useful when solving the optimization problems.

Our work still makes a difference with classical anomaly detection methods
on the scope of similarities between instances. In anomaly detection, instances
usually share lower similarities. For example, in review spam detection, reviews
are often on a wide range of topics. While in CQA, questions, especially factoid
questions, usually have very specific information needs, which narrow the topics
and contents of answers. Thus, similarities in answers tend to be higher than in
reviews. We take advantage of this characteristic in our optimization model.

An Unsupervised Approach for Low-Quality Answer Detection in CQA 89

3 Our Method of Low-Quality Answer Detection

In this section, we first formally present the problem of low-quality answer detec-
tion, and then illustrate our three key assumptions, and then devise a unsuper-
vised method, and finally propose a set of features.

3.1 Problem

Given a question q and a set of its n answers {a1, a2, · · · , an}. Each answer ai

is represented by an m-dimensional feature vector xi = {xi1, xi2, . . . , xim}�. All
answers {ai} construct a m × n feature matrix X = {x1,x2, . . . ,xn}.

Our goal is to learn a label vector y = {y1, y2, . . . , yn}� with yi ∈ {0, 1},
where yi = 0 means the corresponding answer ai is low-quality, and yi = 1
means ai is a normal one and should be kept.

3.2 Assumptions

The first assumption is based on the observations in Table 1. In fact, most unsu-
pervised anomaly detection methods have the same implicit assumption [3]. And
the labeled datasets in Table 3 verify that it is true. And it helps to construct
the second factor of our loss function in Formula (1).

Assumption 1. Most answers under a question are normal ones and only a
few of them are low-quality answers.

Secondly, a question usually has specific information needs, which makes
answers tend to have similar content. Then if an answer is significantly different
with its peer-answers, it is likely to be low-quality. The second assumption helps
to construct the first factor of Formula (1), and also inspires us to design features
to capture the content differences between an answer and its peer-answers.

Assumption 2. Whether an answer is low-quality or not can be known by
checking its peer-answers.

Moreover, different questions should judge answers in different quality crite-
ria. For example, non-factoid questions favor long answers, and general questions
expect yes/no, and factoid questions accept short noun-phrase, etc. Based on this
observation, we have the third assumption, and apply our unsupervised model on
each question instance, rather than on overall questions like supervised models.

Assumption 3. Questions should have different answer quality criterion.

90 H. Wu et al.

3.3 Method

We propose an unsupervised learning approach to detect low-quality answers by
minimizing the data variance and maximizing the number of kept answers.

Let X · y denotes average weighted vector 1
n

∑n
i=1 yi · xi. According to

Assumption 3, we consider the optimization problem for each question instance:

argmin
y={yi}

1
mn

n∑

i=1

||yi · xi − X · y||2 − α

n

n∑

i=1

yi (1)

s.t. yi ∈ {0, 1}, 1 � i � n

Where 1
mn

∑n
i=1 ||yi·xi−X · y||2 comes from Assumption 2, representing the data

variance averaged on feature count. It will lead answers to have same labels, and
those significantly different with other answers to have label 0. And −α

n

∑n
i=1 yi

comes from Assumption 1, helping to maximize number of answers with label 1,
and α denotes the trade-off for the number of kept answers.

Formula (1) is novel in anomaly detection methods [12]. As described in
Sect. 2 and Assumption 2, questions have specific information needs thus narrow
topics, then answers tend to be more similar than instances in classical anomaly
detection, such as reviews. We use variance with average weighted vector: ||yi ·
xi −X · y||2, instead of using variance with prediction: ||f(xi)−yi||2, or variance
with average vector: ||xi −x||2. In this way, the negative influence of low-quality
answers is removed by labeling them 0, and the similarities between high-quality
answers are highlighted since their feature values are similar.

This is an 0-1 programming problem, and thus it is NP-hard. To solve it, we
adopt the soft label technique [12] and soften the label constraints to interval [0,
1]. By this means, it becomes a probabilistic constraint solving problem, and the
learned distribution can represent the probabilities to be high-quality answers.
By denoting as L({yi}), we have a new optimization problem:

argmin
{yi}

L({yi}) = argmin
{yi}

1
mn

n∑

i=1

m∑

j=1

(yi · xij − 1
n

n∑

k=1

yk · xkj)2 − α

n

n∑

i=1

yi (2)

s.t. 0 � yi � 1, 1 � i � n

We employ a coordinate descent method to solve Problem (2) by taking yi

as a variable and fix other labels in each iteration. We calculate the partial
derivative of L({yi}) with respect to yi, and set the result to be 0, we have

∂L
∂yi

=
2(n − 1)

mn2
||xi||2 · yi − 2

mn2

n∑

k=1,k �=i

x�
i · xk · yk − α

n
= 0

s.t. 0 � yi � 1

By defining the solution as ŷi, we have:

ŷi =
2
∑n

k=1,k �=i x
�
i · xk · yk + αmn

2(n − 1)||xi||2

An Unsupervised Approach for Low-Quality Answer Detection in CQA 91

Then the optimal solution of Problem (2) is:

y∗
i =

⎧
⎨

⎩

0, if ŷi < 0,
ŷi, if 0 � ŷi � 1,
1, if ŷi > 1.

The procedure ends when the Euclidean distance of two label vectors in
consecutive iterations is less than ε or iteration number exceeds N2. The final
{y∗

1 , y
∗
2 , . . . , y

∗
n} represents the possibilities of being normal answers. A threshold

μ ∈ [0, 1] is used for classification, if y∗
i < μ, then ai is a low-quality answer.

3.4 Features

Given a question q, and its description d and n answers {a1, a2, · · · , an}, we have
173 features for each answer ai. We choose these features because they represent
nearly all aspects of a question-answer pair.

Table 2 clusters them into five groups. Group 1,2 and 3 are widely used and
proved to be effective [18,21,23]. And Group 4 is a simple expansion of Group 3.
We propose the last group, which seems to be new for answer quality prediction,
as far as we know, although the idea is quite simple. All features are normalized
to interval of [0, 1] in our unsupervised models.

Question Features: features with prefix “Q” (denoted as {f1(q)}, and its feature
index set is denoted as FQ) are obtained from statistics of question’s and asker’s
information. Although all ai share the same feature values (normalized 0 or 1) in
this group, {f1(q)} can still be proved to be useful: in Formula (2), if t answers
are classified as 1, the contribution of {f1(q)} in the first factor is:

1
mn

n∑

i=1

∑

j∈FQ

(yi · xij − 1
n

n∑

k=1

yk · xkj)2 =
t(n − t)

mn2

∑

j∈FQ

x2
1j (3)

When
∑

j∈FQ
x2
1j �= 0, Formula (3) have minimum value when t = 0 or t = n.

And influenced by −α
n

∑n
i=1 yi, t will approach n.

Answer Features: features (denoted as {f2(a)}) with prefix “A” are obtained
from the statistics of answer ai and the answerer’s information.

Question-to-Answer Features: features (denoted as {f3(q, a)}) with prefix “QA”
are obtained from contents of question-answer pair. The relevance of q and ai

are measured by various similarities on lexical, syntactic and semantic levels.
Many of the state-of-the-art methods focus on this part.

Description-to-Answer Features: features (denoted as {f4(d, q, a)}) in DA repeat
and QDA repeat are obtained from contents of question, description and answer.
DA repeat take the same feature calculation methods in {f3(q, a)} to measure
the relevance between d and ai. QDA repeat does the same way by concatenating
question and description.
2 We set ε = 0.00001 and N = 200 in our experiments.

92 H. Wu et al.

Table 2. Features of low-quality answer detection

Feature #∗ Description [23] [18] [21]

Q len 2 Word # of q and d ©
Q category 1 The q’s category. This feature is discretized to c

boolean dimensions, where c equals to # of categories
©

Q ans# 1 # of answers for the q ©
Q u post# 2 # of total questions and answers of the asker © ©
Q u other 5 Other features of the asker: points, level, # of best

answers, # of resolved questions and star count
©

A len 1 Length of the ai ©
A rank 1 Reciprocal rank of the ai in the answer list ©
A symbol 2 Two booleans to identify whether the ai contains some

special strings (question marks, laugh symbols), and
words which are only frequent in bad answers

©

A u same 1 A boolean to indicate whether answerer is the asker ©
A u post# 2 # of total questions and answers of the answerer © ©
A u other 5 Other feature of the answerer: points, level, # of best

answers, # of resolved questions and star count
©

QA word 1 Cosine similarity of bag-of-word vectors of qa pair ©
QA ngram 20 5 similarity measures for n-grams(n ∈ {1, 2, 3, 4}) of qa

pair: greedy string tiling [24], long common
subsequence, Jaccard index, word containment [13]
and cosine similarity

©

QA pos 1 Cosine similarity of bag-of-POS [22] tags vectors of qa
pair

©

QA noun 1 Cosine similarity of bag-of-noun vectors of qa pair.
Noun are words containing “NN” in POS tags

©

QA tfidf 2 Sum of tf-idf [17] scores in answer collection of
intersect subset of unigrams/bigrams between q and ai

©

QA dep 1 Cosine similarity of bag-of-word-dependency vectors of
qa pair. We parse sentences to dependency trees [10]
and regard dependency arcs (like “pre:buy-for”) as
words

©

QA meteor 1 Alignment score from Meteor Toolkit [5] between q
and a

©

QA lda 1 Cosine similarity of LDA [2] topic vectors of qa pair ©
QA w2v 1 Alignment score between q word vectors and to ai

word vectors from pre-trained word2vec model [14].
(See details in [23])

©

QA trans 1 Translation probability [1] from q to a by utilizing
pre-trained translation model. (See details in [23])

©

DA repeat 30 For each method in {f3(a, q)}, get f3(d, ai) as feature

QDA repeat 30 For each method in {f3(a, q)}, get f3(q + d, ai) as
feature

AP repeat 60 For each method in {f3(a, q)}, get maxp �=i(f3(ai, ap))
and 1

n−1

∑
p �=i(f3(ai, ap)) as features

*: The second column represents the actual feature count.

An Unsupervised Approach for Low-Quality Answer Detection in CQA 93

Answer-to-Peer Features: features (denoted as {f5(a, ap)}) in AP repeat are
obtained from answer ai and its peer-answers {ap|1 � p � n, p �= i}. They
consist of two basic values: maximum and average of the similarities between ai

and peer-answers {ap} by repeating the feature methods in {f3(q, a)}. According
to Assumption 2, we propose these features to capture the differences between
bad answers and peer-answers.

The time complexity of our method consists of two parts: feature calcula-
tion and coordinate descent method. In feature calculation, the time complexity
is O((lQ + ld)lamn2), where lQ, ld, la the maximum length of questions, descrip-
tions and answers, respectively, and m,n are the feature count and answer count,
respectively. In coordinate descent method, it is O(Nmn2), where N is the max-
imum iteration count. How to improve the efficiency of the process is still an
interesting topic for future research that we will not address at this time. One
possibility is to calculate the features off-line and store them in database.

4 Experiment

4.1 Experimental Setup

Datasets Preparation. We conduct experiments on three datasets: two public
datasets from a workshop for SemEval-2015 Task 33 and our labeled dataset from
Yahoo! Answers, and their statistics are given in Table 4.

Qatar Corpus: The workshop provides an large English dataset from Qatar Liv-
ing website. Each question contains a description, several answers and aliases
of askers and answerers. Each answer is labeled with one of six labels: “Good”,
“Potential”, “Irrelevant”, “Dialogue”, “Non-English”, “Other”. The last four
are regarded as “Bad” answers. See Table 3 for labeling guidelines and distribu-
tions. The task provides a split: Train, Dev and Test, for training model, tuning
parameters and testing performances, respectively.

Fatwa Corpus: The workshop also provides an Arabic dataset from The Fatwa
website. Each question has five answers, some of them are carefully answered
by knowledgeable scholars in Islamic studies, while some are answers to other
questions. Each answer is labeled with one of three labels: “Good, “Potential”
and “Irrelevant”. The task also provides a split: Train, Dev and Test.

Yahoo Corpus: In order to evaluate our methods on popular CQA site, we also
label a dataset from Yahoo! Answer. Specifically, we crawl 6.4M questions asso-
ciated with descriptions, answers and users’ information4 from Yahoo! Answer
using a public API5. We then sampled 636 questions for labeling. Two expert
labelers are invited to give each answer one of six labels with guideline in Table 3.
If the judges disagree on an answer, we invited a third expert to make the final
decision. We provide a split by ratio 2:1: Train and Test, for tuning parameters
by cross validation, and testing performances, respectively.
3 http://alt.qcri.org/semeval2015/task3.
4 Features of Q u other and A u other in Table 2 are only traceable in Yahoo dataset.
5 http://developer.yahoo.com/answers.

http://alt.qcri.org/semeval2015/task3
http://developer.yahoo.com/answers

94 H. Wu et al.

Table 3. Labeling guideline and label distribution

Label Description Qatar Fatwa Yahoo

Good The answer directly responds to the
question with relevant and useful content

49.3% 20.2% 66.3%

Potential The answer is potentially useful to the
question

10.0% 22.5% 11.3%

Bad The answer is bad or irrelevant that the
asker does not expect to receive

40.7% 57.3%∗ 22.4%

- Irrelevant The answer is totally irrelevant to the
question

17.9% - 12.5%

- Dialogue The answer does not directly respond to the
question but hold an irrelevant chat, such as
expressing gratitude or asking questions

22.3% - 8.0%

- Non-English Irrelevant non-English answer 0.5% - 1.5%

- Other Other irrelevant answer, such as
advertisements

0.0% - 0.4%

*: Bad answers in Fatwa are manually added as noise data, so the proportion is large.

Preprocessing. We illustrate the preprocessing method on each corpus. (1) We
prepare an initial collection {q, d, {ai}} consisting of questions with descriptions
and answers, where words are stemmed and stopwords are removed. (2) We
prepare a concatenated collection {qd, {ai}} by concatenating q and d. (3) We
prepare a document collection of qd and ai to train a LDA model and a Word2vec
model. (4) We prepare a mapping collection where qd is source and ai is target
to train a translation model.

The tools we used are: Stemmers(English/Arabic) in Lucene system6 for
word stemming, stopword lists(English/Arabic) from the Ranks website7 for
stopword removal, GibbsLDA++8 for training LDA models, Word2vec tool9 for
training word2vec models, GIZA++10 for training translation models, Stanford
Tagger11 and Parser 12 (English/Arabic) for part-of-speech tagging and depen-
dency parsing, and Meteor System13 (English/Arabic) for translation alignment
score evaluation.

Evaluation Measure. We use four widely used measures to evaluate the per-
formances: accuracy, precision, recall and F1-score.

6 http://lucene.apache.org/.
7 http://www.ranks.nl/stopwords.
8 http://gibbslda.sourceforge.net/.
9 https://code.google.com/archive/p/word2vec/.

10 http://www.statmt.org/moses/giza/GIZA++.html.
11 http://nlp.stanford.edu/software/tagger.shtml.
12 http://nlp.stanford.edu/software/lex-parser.shtml.
13 http://www.cs.cmu.edu/∼alavie/METEOR/.

http://lucene.apache.org/
http://www.ranks.nl/stopwords
http://gibbslda.sourceforge.net/
https://code.google.com/archive/p/word2vec/
http://www.statmt.org/moses/giza/GIZA++.html
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
http://www.cs.cmu.edu/~alavie/METEOR/

An Unsupervised Approach for Low-Quality Answer Detection in CQA 95

Table 4. Overview of three CQA datasets

Qatar Fatwa Yahoo

Train Dev Test Train Dev Test Train Test

of question 2,600 300 329 1,300 200 200 419 217

of description 2,599 300 329 1,300 200 200 367 175

of answer 16,541 1,645 1,976 6,500 1,000 1,001 2,407 1,316

of answer per question 6.3 5.5 6.0 5.0 5.0 5.0 5.7 6.1

of good answer 8,069 875 997 1,300 200 215 1,582 888

of potential answer 1,659 187 167 1,469 222 222 278 144

of bad answer 6,813 583 812 3,731* 578* 564* 547 284

- # of irrelevant answer 2,981 269 362 - - - 305 160

- # of dialogue answer 3,755 312 435 - - - 196 101

- # of non-English answer 74 2 15 - - - 36 18

- # of other answer 3 0 0 - - - 10 5

*: Bad answers in Fatwa are manually added as noise data, so the number is large.

Baselines and Our Methods. We consider four state-of-the-art baselines:
Tran et al. [23] and Nicosia et al. [18] use feature-rich supervised models and
win first place on the Qatar and the Fatwa datasets respectively, denoted as TS

and NS . Method of Shah et al. [21] is another state-of-the-art method among
supervised methods using only non-textual features, denoted as SS . We create
another supervised baseline by utilizing all above features plus DA repeat and
QDA repeat features, denoted as AS . Features of baselines are listed in Table 2.

To evaluate the effectiveness of answer-to-peer features, we create a super-
vised model by utilizing all features in Table 2, denoted as OS .

Last, and most importantly, to evaluate the effectiveness of our unsupervised
method, five comparison models are considered. They are the unsupervised mod-
els based on the same features from TS , NS , SS , AS and OS , denoted as TU ,
NU , SU , AU and OU respectively.

Parameter Tuning. There are three parameters in supervised models and two
parameters in unsupervised models need to be tuned.

We train SVM classification models for supervised methods by the tool of
SVMLight [9]. There are three parameters {c, j, b}14. The ranges are: c in {0.001,
0.002, 0.005, 0.01, · · · , 50}, j in {0.5, 1, 1.5, · · · , 8}, and b in {1, 0}. For Qatar
and Fatwa datasets, we train models on Train sets, and choose the combinations
with best F1-score on Dev sets. And for Yahoo dataset, we conduct four-fold
cross validation on Train set and choose the one with the best F1-score.

In unsupervised methods, there are two parameters: the tradeoff weight α
and decision threshold μ. The ranges are: α in {0, 0.1, 0.2, · · · , 1}, and μ in
14 c: trade-off between training error and margin. j: cost-factor of training errors dif-

ference between positive and negative examples. b: use biased hyperplane or not.

96 H. Wu et al.

Table 5. Low-quality answer detection results on Qatar, Fatwa and Yahoo datasets

Corpus Measures SS [21] SU NS [18] NU TS [23] TU AS AU OS OU

Qatar Precision 50.0 49.6 54.3 55.0 64.6 69.8∗ 64.7 70.1∗ 67.0# 73.6∗

Recall 76.5 72.7 71.2 67.8 79.2 71.7 80.3 72.3 80.5 75.3

F1-score 60.5 57.7 61.6 60.7 71.2 70.7 71.6 71.2 73.1# 74.4

Accuracy 58.9 56.2 63.5 64.0 73.6 75.6∗ 73.9 75.9∗ 75.7# 78.8∗

Fatwa Precision 56.7 56.8 80.9 79.4 84.3 84.7 84.5 84.8 87.3# 89.4∗

Recall 84.9 91.8∗ 87.8 90.4∗ 88.3 90.4∗ 89.3 89.9 90.1 90.5

F1-score 68.0 70.2∗ 84.2 84.6 86.3 87.5 86.8 87.3 88.7# 90.0

Accuracy 54.9 56.0∗ 81.4 81.4 84.1 85.4∗ 84.7 85.2 87.0# 88.6∗

Yahoo Precision 51.4 54.0∗ 47.6 49.3 59.8 65.7∗ 63.5 69.1∗ 66.4# 73.6∗

Recall 64.1 56.2 66.2 52.0 76.2 67.4 78.8 73.2 79.2 75.5

F1-score 57.1 55.1 55.4 50.6 67.0 66.5 70.3 71.1 72.2# 74.5∗

Accuracy 79.2 80.2 77.0 78.1 83.8 85.4 85.6 87.1 86.9 88.9∗

Bold: the highest performance in terms of the measure.

*,#: statistically significant improvement of our models (two-sided sign-test, p < 0.05).

{0, 0.01, 0.02, · · · , 1}. We choose the combinations with best F1-scores on Dev
sets for Qatar and Fatwa and on Train set for Yahoo.

4.2 Main Results

Table 5 shows the results on Qatar(English), Fatwa(Arabic) and Yahoo(English).
The experimental results show that: (1) Our unsupervised model OU outper-
forms all baseline methods on three datasets for nearly all metrics. (2) And our
supervised model OS outperforms other supervised methods on three datasets
for all metrics. Most of the improvements are statistically significant by two-
sided sign-test (p < 0.05). The results indicate that our methods are effective
for low-quality answer detection.

4.3 Analysis Based on Models

We investigate the main reasons of the improvements of our unsupervised
method.

(1) Supervised models do not take advantage of the fact that only minority
are low-quality answers. Therefore, more answers are tended to be classified
as bad answers. That is why supervised models often have high recall but low
precision on this problem. This is particularly serious when the question is short.
Specifically, for short questions, feature values are usually small on relevance
measures. Then answers will have low SVM score and tend to be classified as bad
answers. For example, we observe that TS misclassifies all six correct answers
under question “Write 5/2 as a percent?”, since all the answers do not have
common words with the question. While our unsupervised method TU only
misclassifies one, which increases the precision.

(2) Answers in supervised models share the same quality criteria. For exam-
ple, it can be inferred from the labeled datasets that longer answers tend to be

An Unsupervised Approach for Low-Quality Answer Detection in CQA 97

“Good”. Thus, the supervised models have a bias on short answers. This bias
causes misclassification when short answers are also acceptable. For example,
for question “What is your favorite poptart flavor?”, six in eight are one-word-
answer “strawberry”. We observe that TS misclassifies them to be bad. While
our unsupervised method TU applies on each question instance, and is able to
capture the high similarities between these answers. TU results in the safest
solution by assigning them all “Good”, which increases the precision again.

4.4 Analysis Based on Features

In Table 5, our unsupervised model OU effectively improves supervised model
OS , while others with less features are not the same. For example, AU is only
comparable with AS , and SU is even worse than SS on Qatar and Yahoo. Since
feature utilization is the only difference between unsupervised models, an inter-
esting question is: what features are effective or useless in unsupervised models?

(1) We study on the effective features for unsupervised models. Notice that by
bringing in extra answer-to-peer features, both OS and OU outperform AS and
AU , and OU is even better then OS , while AU and AS have similar performances.
We investigate the main reason of effectiveness of answer-to-peer features.

Many baselines focus on the relevance between question and answer, but over-
look the difference between answer and its peer-answers. In fact, normal answers
in a question usually share words that bad answers do not have. For example, for
question “Where can I buy carrot cake?”, most normal answers contain the same
shop names but do not contain “carrot cake”. While one bad answer expresses
his dislike on carrot cake, which is useless to the question but contains “car-
rot cake”. AS gives out totally opposite wrong classifications. On the contrary,
answer-to-pear features in OS provide more clues for identifying normal answers,
then less normal answers are predicted to be bad, which increases the precision
indeed. Moreover, OU uses the strategy of operating on each question instance,
then the effects of answer-to-peer features are larger in a single question than in
the whole dataset, which makes OU has better performances than OS .

(2) Then, we investigate on the useless features for unsupervised model. A
feature is useless if it is uncorrelated with human labels. Specifically, we assign
2, 1 and 0 to “Good”, “Potential” and “Bad” answers, respectively. By this
means, each feature has two vectors in a dataset, one is the vector of feature
values, the other one is the assigned label vector, both dimensions are the size of
dataset. We then calculate the Pearson correlation coefficient for the two vectors
to represent the correlation between a feature and human labels.

Figure 115 (left) counts the features according to correlation coefficients. All
values turn out to be in range of [−0.3, 0.3]. We divide them into five groups by
thresholds {−0.1, −0.01, 0.01, 0.1}. We find that: 20% of features are highly pos-
itive correlated with quality, such as QA w2v, QDA trans, QDA w2v, etc.; 25%
are median positive, such as QA tfidf, DA lda, QDA meteor, etc.; 4% are highly

15 To save space we only report the results on Qatar dataset. The results in terms of
Fatwa and Yahoo have similar trends.

98 H. Wu et al.

negative, such as A u same, A len; 20% are median negative, which include most
of answer-to-peer features. While 32% have near-zero coefficient, we treat them
as uncorrelated with human labels, such as A rank, A symbol, etc.

To test the effectiveness of uncorrelated features, we conduct another experi-
ment for OS and OU by removing uncorrelated features, denoted as OS

− and OU
−.

Figure 1 (right) shows their performances on Qatar dataset: OS
− drops apparently

from OS in supervised scope, while OU
− drops slightly from OU in unsupervised

scope. There are two reasons for these changes. Firstly, features are normalized
in unsupervised methods but not normalized in supervised methods. Therefore,
those features uncorrelated in unsupervised models may be correlated in super-
vised models. Secondly, features have global influences in supervised models,
since all feature weights will change if any feature is removed. While uncorre-
lated features may have limited influences in unsupervised models since it is
operating on each question instance. Take feature A symbol as an example. In
fact, only a few answers with special symbols and words inside are influenced by
this feature.

4.5 Analysis Based on Data Sources

It is interesting to notice that, Fatwa dataset has more bad answers than other
answers (see Table 3), which seems inconsistent with Assumption 1, but its per-
formance scores are even higher than in Qatar and Yahoo (see Table 5). In fact,
the Fatwa dataset is quite different. As we described in Sect. 4.1, bad answers in
Fatwa are manually inserted as noise data. Thus, organizers can create as many
bad ones as they want. That is why Fatwa has more bad answers. Moreover, all
answers in Fatwa are carefully answered to the original questions. This means
they are normal originally. Therefore, it is easier to distinguish a bad answer
from other answers in Fatwa since they have totally different topics.

-0.3
-0.1

-0.02

0.02

0.1

0.3

4%

20%

32%

25%

20%

Precision Recall F1-score Accuracy
55

60

65

70

75

80

85
O-

S

OS

O-
U

OU

Fig. 1. Feature-label correlation coef-
ficient distribution (left), and perfor-
mances after removing no-correlation
features (right).

Qatar Fatwa Yahoo
0

50

100

150

200

Fe
at

ur
e

C
ou

nt

16%

31%

53%

61%

22%

18%

10%

26%

65%

[0.3,1]
(0.1,0.3)
[0,0.1]

Fig. 2. Distributions of divergence
of feature distributions between bad
answer and normal answers.

An Unsupervised Approach for Low-Quality Answer Detection in CQA 99

In order to confirm our guess, we investigate the divergences between bad
and normal answers on each dataset. Specifically, (1) for each feature, we get the
min and max among all answers. (2) Then we split the region [min,max] into
100 slots, and count bad/normal answers on each slots, and then divide by total
bad/normal answer count to get a discrete distribution. Thus, for each feature
we have a distribution of bad answers and a distribution of normal answers.
(3) We calculate a Jensen-Shannon divergence for the two distributions. (4)
Finally, we count divergences in three slots [0, 0.1], (0.1, 0.3) and [0.3, 1].

Figure 2 shows the results on three datasets. 61% of features in Fatwa have
big divergences ([0.3, 1]), which is much larger than Qatar’s 16% and Yahoo’s
10%. It means that in Fatwa bad answers are more different from normal answers,
making it easier to detect bad answers. Meanwhile, 65% of features in Yahoo have
small values ([0, 0.1]). It means that in Yahoo bad answers are more ambigu-
ous with normal answers, making it more difficult to detect bad answers. That
explains why Yahoo has the lowest performance scores.

4.6 Analysis Based on Answer Labels

We study the effectiveness on different answer types. Models of AS , OS and OU

are used to see the gradual changes, where OS uses extra answer-to-peer features
to improve AS , and OU uses unsupervised model to improve OS . We study on
Qatar dataset since it is the largest one with full labels.

Figure 3 shows the number of correct and wrong predictions on each answer
type16. (1) It is interesting to notice that OS improves AS mainly by reducing
false predicted “Good” answers. It indicates that answer-to-peer features help to
reduce false detections in supervised model, which also confirms the statements
in Sect. 4.4. (2) It is also interesting that the “Potential” answers have exactly
fifty-percent precision, well proving that they are potentially useful or useless.
(3) OU classifies less answers to be low-quality based on Assumption 1. There-
fore, precision on “Good” answers is significantly improved, while the recall of
“Irrelevant” answers also drops. (4) The performances on “Dialogue” answers is
steady since some features are too strong, such as A u same, A u symbol, etc.
For example, nearly all answers are labeled by “Dialogue” if their answerers are
identical with the askers, or they contain special words like “thank”.

4.7 Analysis Based on User Experience

As we discussed in Sect. 1, the target of detecting low-quality answers is to
improve the user experience when he browses a question page. A user usually
browse answers from top-ranked to lower-ranked on question page. A top-ranked
low-quality answer will reduce the user experience.

We conduct a re-ranking experiment to study on the improvement of user
experience. Specifically, (1) re-rank answers according quality scores by descend-
ing order. (2) then evaluate user experience by precision at top positions

16 “Non-English” and “Other” answers are categorized into “Irrelevant” answers.

100 H. Wu et al.

AS OS OU AS OS OU AS OS OU AS OS OU
0

200

400

600

800

1000

An
sw

er
 C

ou
nt

Good Potential Irrelative Dialogue

73%
27% 76%

24%
86%
14%

50%
50%

50%
50%

52%
48%

78%
22%

79%
21%

69%
31%

82%
18%

82%
18%

81%
19%

Correct
Wrong

Fig. 3. Prediction results of AS , OS

and OU methods on each answer type.

Precision@1 Precision@2 Precision@3 MRR
88

90

92

94

96

98
Org
AS

OS

OU

Fig. 4. Performances of re-ranking for
improving user experience in browsing.

(Precision@1,2,3) and mean reciprocal rank (MRR) [19] methods. We report the
results on Yahoo since the original rank is obtainable only on Yahoo! Answer.

Figure 4 shows the result of original rank (denoted as “Org”) and the re-
ranking results of three different models AS , OS and OU . All Precision@1,2,3
and MRR are improved by answer quality prediction methods compared with
original results, which means some low-quality answers are correctly removed
from the top positions by re-ranking methods. Moreover, the better method in
classification generates better results in re-ranking. For example, OU is better
than OS on classification in Table 5, and OU is also better than OS on re-ranking
in Fig. 4. It is because performances of classification and re-ranking are highly
correlated.

5 Conclusion

In this paper, we have investigated the problem of low-quality answer detection
in community question and answering. We propose an unsupervised learning
method based on three assumptions that most answers under a question are
normal ones, and low-quality answers are different from other answers under
the same question, and questions have different quality criteria. We propose a
set of features to describe the difference from answers by taking advantage of
the state-of-the-art methods. We empirically study the efficacy of the proposed
unsupervised learning method as well as supervised methods on three datasets,
including two benchmark datasets. The evaluation results show that our unsu-
pervised method can significantly improve the supervised method.

Acknowledgements. This research was partially supported by grants from
the National Key Research and Development Program of China (Grant No.
2016YFB1000904), the National Science Foundation for Distinguished Young Schol-
ars of China (Grant No. 61325010), the National Natural Science Foundation of China

An Unsupervised Approach for Low-Quality Answer Detection in CQA 101

(Grant No. 61672483), and the Fundamental Research Funds for the Central Universi-
ties of China (Grant No. WK2350000001).

References

1. Berger, A., et al.: Bridging the lexical chasm: statistical approaches to answer-
finding. In: SIGIR 2000 (2000)

2. Blei, D.M., et al.: Latent Dirichlet allocation. In: NIPS 2001 (2001)
3. Chandola, V., et al.: Anomaly detection: a survey. ACM Comput. Surv. 41(3)

(2009)
4. Crawford, M., et al.: Survey of review spam detection using machine learning

techniques. J. Big Data 2(1), 23 (2015)
5. Denkowski, M.J., Lavie, A.: Meteor universal: language specific translation evalu-

ation for any target language. In: EACL 2014 (2014)
6. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell.

Rev. 22(2), 85–126 (2004)
7. Jeon, J., et al.: A framework to predict the quality of answers with non-textual

features. In: SIGIR 2006 (2006)
8. Jindal, N., Liu, B.: Review spam detection. In: WWW 2007, pp. 1189–1190 (2007)
9. Joachims, T.: Learning to Classify Text Using Support Vector Machines - Methods,

Theory, and Algorithms. Kluwer/Springer, New York (2002)
10. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: ACL 2003 (2003)
11. Li, F., et al.: Learning to identify review spam. In: IJCAI 2011 (2011)
12. Liu, W., et al.: Unsupervised one-class learning for automatic outlier removal. In:

CVPR 2014 (2014)
13. Lyon, C., et al.: Detecting short passages of similar text in large document collec-

tions. In: EMNLP 2001, pp. 118–125 (2001)
14. Mikolov, T., et al.: Efficient estimation of word representations in vector space.

CoRR, abs/1301.3781 (2013)
15. Nakov, P., et al.: Semeval-2015 task 3: answer selection in community question

answering. In: SemEval@NAACL-HLT 2015 (2015)
16. Nakov, P., et al.: Semeval-2016 task 3: community question answering. In:

SemEval@NAACL-HLT 2016, pp. 525–545 (2016)
17. Nallapati, R.: Discriminative models for information retrieval. In: SIGIR 2004

(2004)
18. Nicosia, M.Q., et al.: QCRI: answer selection for community question answering -

experiments for arabic and english. In: SemEval@NAACL-HLT 2015 (2015)
19. Radev, D.R., et al.: Evaluating web-based question answering systems. In: LREC’s

2002 (2002)
20. Sakai, T., et al.: Using graded-relevance metrics for evaluating community QA

answer selection. In: WSDM 2011 (2011)
21. Shah, C., Pomerantz, J.: Evaluating and predicting answer quality in community

QA. In: SIGIR 2010 (2010)
22. Toutanova, K., et al.: Feature-rich part-of-speech tagging with a cyclic dependency

network. In: HLT-NAACL (2003)
23. Tran, Q.H., et al.: JAIST: combining multiple features for answer selection in

community question answering. In: SemEval@NAACL-HLT 2015 (2015)
24. Wise, M.J.: YAP3: improved detection of similarities in computer program and

other texts. In: SIGCSE 1996, pp. 130–134 (1996)
25. Xia, Y., et al.: Learning discriminative reconstructions for unsupervised outlier

removal. In: ICCV 2015 (2015)

Approximate OLAP on Sustained Data Streams

Salman Ahmed Shaikh1(B) and Hiroyuki Kitagawa2

1 Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
salman@kde.cs.tsukuba.ac.jp

2 Faculty of Engineering Information and Systems,

University of Tsukuba, Tsukuba, Japan

Abstract. Many organizations require detailed and real time analysis
of their business data for effective decision making. OLAP is one of the
commonly used methods for the analysis of static data and has been
studied by many researchers. OLAP is also applicable to data streams,
however the requirement to produce real time analysis on fast and evolv-
ing data streams is not possible unless the data to be analysed reside
on memory. Keeping in view the limited size and the volatile nature of
the memory, we propose a novel architecture AOLAP which in addi-
tion to storing raw data streams to the secondary storage, maintains
data stream’s summaries in a compact memory-based data structure.
This work proposes the use of piece-wise linear approximation (PLA) for
storing such data summaries corresponding to each materialized node in
the OLAP cube. Since the PLA is a compact data structure, it can store
the long data streams’ summaries in comparatively smaller space and
can give approximate answers to OLAP queries.

OLAP analysts query different nodes in the OLAP cube interactively.
To support such analysis by the PLA-based data cube without the unnec-
essary amplification of querying errors, inherent in the PLA structure,
many nodes should be materialized. However, even though each PLA
structure is compact, it is impossible to materialize all the nodes in the
OLAP cube. Thus, we need to select the best set of materialized nodes
which can give query results with the minimum approximation errors
within the given memory bound. This problem is NP-hard. Hence this
work also proposes an optimization scheme to support this selection.
Detailed experimental evaluation is performed to prove the effectiveness
of the use of PLA structure and the optimization scheme.

1 Introduction

With the increase of stream data sources, such as sensors, GPS, micro blogs,
e-business, etc., the need to aggregate and analyze stream data is increasing.
Many applications require instant decisions exploiting the latest information
from the data streams. For instance, timely analysis of business data is required
for improving profit, network packets need to be monitored in real time for identi-
fying network attacks, etc. Online analytical processing (OLAP) is a well-known
and useful approach to analyse data in a multi-dimensional fashion, initially
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 102–118, 2017.
DOI: 10.1007/978-3-319-55699-4 7

Approximate OLAP on Sustained Data Streams 103

given for disk-based static data (we call it traditional OLAP). For the effec-
tive OLAP analysis, the data is converted into a multi-dimensional schema, also
known as star schema. The data in star schema is represented as a data cube,
where each cube cell contains measure across multiple dimensions. A user may
be interested in analysing data across different combination of dimensions or
examining different views of it. These are often termed as OLAP operations and
to support these operations, data is organized as lattice nodes.

A number of solutions have been proposed for OLAP analysis on data streams
in the near past [1–3]. The requirement to produce real time OLAP analysis on
fast and evolving data streams is not possible unless the data to be analysed
reside on primary memory. However the size of the primary memory is limited
and it is volatile. Therefore we need an in-memory compact data structure that
can quickly answer user queries in addition to a non-volatile backup of the data
streams. Hence we propose a novel architecture AOLAP (Approximate Stream
OLAP), which in addition to storing raw data streams to the secondary storage,
maintains data stream’s summaries in a compact memory-based data structure.
This work proposes the use of piece-wise linear approximation (PLA) for storing
such data summaries corresponding to each materialized node in the OLAP cube.
PLA can store the long data streams’ summaries in comparatively smaller space
on the primary memory and can give approximate answers to OLAP queries.
It provides an impressive data compression ratio and answers user queries with
max error guarantees, and has been studied by many researchers [4–7].

When performing OLAP analysis, users usually request different lattice
nodes. Generally only a few nodes are materialized while the other requested
nodes are computed on ad-hoc basis, because the materialization of all the nodes
is memory expensive. On the other hand, materialization of too less nodes require
a lot of ad-hoc computation which is computationally (time) expensive. The
optimization of the space-time trade-off in traditional OLAP, when choosing the
lattice nodes to materialize is a NP-hard problem [8]. Selecting the lattice nodes
to materialize for PLA-based stream OLAP is a space-error trade-off in addition
to the space-time trade-off. Since PLA can maintain long data stream summaries
on memory and in the most cases can answer queries from it, where the com-
putation is extremely fast, space-error trade-off is more significant among the
two trade-offs in the context of PLA-based stream OLAP. Hence this work also
proposes an optimization scheme which selects the η (user defined parameter)
lattice nodes to materialize such that the overall querying error is minimized. We
support the contributions of this work with the following real-world example.

Example 1. A big retail chain collects sales quantities of their stores at the
granularity of individual product, store location and promotion (under which the
product is sold) dimensions which arrive every minute as an infinite time series
data stream. The top management is interested in analysing the sales in real
time to avoid shortage of products’ supply in any city or state. In addition, the
top management is interested in finding the recent past advertisement strategies
and/or promotional campaigns for specific products and brands to decide future
advertisement budget/strategy and to execute promotional campaigns.

104 S.A. Shaikh and H. Kitagawa

It is not possible to perform such analysis in real-time if all the data to be
analysed must be fetched from secondary storage. Keeping in view the impor-
tance and demand of real-time analysis, a small degree of error in query results
may be tolerated as a trade-off for timely analysis. �

Our contributions in this work can be summarized as follows:

– A novel architecture AOLAP, which in addition to storing raw data streams
to the secondary storage, maintains data streams summaries in a compact
memory-based data structure.

– Use of the PLA structure to compactly maintain the stream OLAP cubes.
– An optimization scheme to select the lattice nodes to materialize which can

minimize the querying error.
– Detailed experimental evaluation to prove the effectiveness of the use of PLA

structure for the materialized nodes and the optimization scheme.

The rest of the paper is organized as follows: Sect. 2 reviews essential con-
cepts. Section 3 discusses the related work. In Sect. 4, PLA-based sustained stor-
age is presented. In Sect. 5, the proposed AOLAP architecture and query process-
ing over PLA-based storage are presented. The estimation of querying error is
presented in Sect. 6. The proposed optimization scheme is presented in Sect. 7.
The effectiveness of our contributions is experimentally evaluated in Sects. 8 and
9 concludes this paper and discusses future directions.

2 Essential Concepts

2.1 Piecewise Linear Approximation (PLA)

PLA is a method of constructing a function to approximate a single valued
function of one variable in terms of a sequence of linear segments [9]. Precisely,
let S be a time series of discrete data points (ti, xi), where i ∈ [1, n], ti is the
i-th timestamp, xi is the i-th value and we wish to approximate xi with a piece-
wise linear function f(ti), using a small number of segments such that the error
|f(ti) − xi| ≤ ε, where ε is a user defined error parameter. The goal is to record
only the successive line segments, and not the individual data points, to reduce
the overhead of recording entire time-series.

Authors in [9] proposed an online algorithm to construct such an f having the
minimum number of line segments. For completeness, the algorithm is described
in Algorithm 1. It takes a data point p = (ti, xi) and an error parameter ε. Let
P be the set of points processed so far, the algorithm maintains the property
that all the points in P can be approximated with a line segment within ε. If
P ∪{p} can be approximated with a line segment then it is added to P , else the
points in P are output as a line segment and a new line segment is started with
the point p.

Example 2. Consider a retail chain time series with the dimensions and a busi-
ness fact of Example 1. It is a series of a 5-tuple < t, p, s,m, x >; the timestamp
(minute) (t), product (p), store (s), promotion (m) and the sales quantity (x).

Approximate OLAP on Sustained Data Streams 105

(1, p1, s1, m1, 48), (1, p2, s1, m1, 48), (2, p1, s1, m1, 43), (2, p2, s1, m1, 64), (3, p1, s1, m1,

60), (3, p2, s1, m1, 73), (4, p1, s1, m1, 75), (4, p2, s1, m1, 58), (5, p1, s1, m1, 35), (5, p2,

s1, m1, 87), (6, p1, s1, m1, 52), (6, p2, s1, m1, 7), (7, p1, s1, m1, 95), (7, p2, s1, m1, 2), ...

Algorithm 1. PLA
Input: data point p, error parameter ε

/*P : Set of points processed so far.*/

1: if P ∪ {p} can be approximated with a

line segment within ε then

2: Add p to P ;

3: else

4: return a line segment approximat-

ing P ;

5: Set P ← {p};
6: end if

48
43

60

75
f1(t) = 9.8t + 32

0

20

40

60

80

100

120

0 1 2 3 4

Sa
le

s Q
ua

n
ty

Timestamp (t)

35

52

95f2(t) = 30t - 119.33

5 6 7 8

Fig. 1. Data points approximated
by PLA segments

Assuming ε = 10, the tuples for the dimension keys p1, s1 and m1 in the
above time series can be approximated by the following piecewise function.

fp1,s1,m1(t) =

⎧

⎪

⎨

⎪

⎩

9.8t + 32 1 ≤ t ≤ 4

30t − 119.33 5 ≤ t ≤ 7

...

Figure 1 shows the PLA segments of the fp1,s1,m1(t). f1(t) and f2(t) are the
PLA segments formed by the tuples for timestamps 1 ≤ t ≤ 4 and 5 ≤ t ≤ 7,
respectively. The accurate sales quantities are shown in the figure for illustration
only, while the approximate sales quantities can be obtained from the PLA
segments. Note that when using PLA, we only maintain PLA segments (slopes
and intercepts) in memory and not the actual data points, resulting in data size
reduction. �

2.2 Online Analytical Processing (OLAP)

OLAP is a technique for interactive analysis over multidimensional data. For
efficient OLAP analysis, the underlying database schema is usually converted
into a partially-normalized star schema. The data in star schema is represented
as a data cube consisting of several dimension tables and a fact table. Dimen-
sion tables contain descriptive attributes, while the fact tables contain business
facts called measures and foreign keys referring to primary keys in the dimen-
sion tables. Some of the dimension attributes are hierarchically connected. A
number of dimension hierarchies compose a cube lattice, where each node corre-
sponds to different combination of attributes at different hierarchy levels and an
edge between two nodes represents a subsumption relation between them. Hence
nodes in a lattice are combinations of dimension attributes and represent OLAP
queries.

106 S.A. Shaikh and H. Kitagawa

(a) Schema [10]

All

Supplier Part Customer

Supplier, Part Part, Customer
Supplier, Customer

Supplier, Part, Customer
Low/Fine

granularity

High/Coarse
granularity

Supp Part Cust Qty

S3 P11 C87 125

S9 P23 C43 400

S3 P11 C56 196

S8 P57 C99 250

Supp Part Qty

S3 P11 321

S9 P23 400

S8 P57 250

(b) Lattice

Fig. 2. Star schema benchmark

For instance, consider the star schema benchmark [10] shown in Fig. 2a with a
fact table LINEORDER and four dimension tables, PART, CUSTOMER, SUP-
PLIER and DATE. Attributes Quantity, ExtendedPrice, OrdTotalPrice, Dis-
count, Revenue, etc. of the LINEORDER are the business facts, while CustKey,
PartKey and SuppKey are foreign keys of CUSTOMER, PART and SUPPLIER
dimensions respectively. Additionally, each dimension table contains hierarchical
relationship among some of its attributes. For example, SUPPLIER dimension
contains hierarchy among the following attributes: City− > Nation− > Region.
If we consider interaction of the PART, CUSTOMER and SUPPLIER dimen-
sions only (without considering their internal hierarchies), the corresponding
lattice is given by Fig. 2b. In the figure, the nodes with the border are materi-
alized and the associated tables show their tuples. Once an OLAP lattice has
been generated, users can register queries and apply OLAP operations to it. The
queries registered to non-materialized nodes are computed from the materialized
nodes on ad-hoc basis.

3 Related Work

3.1 Compact Data Structures and Approximate Querying

Compact data structures have long been utilized to summarize voluminous and
velocious data streams and answer queries from them approximately. H. Elmeleegy
et al. in [4] proposed two PLA-based stream compression algorithms, swing filters
and slide filters, to represent a time-varying numerical signal within some preset
error value.ThePLA line segments in the swingfilter are connectedwhereasmostly
disconnected in the slide filter. The slide filter proposed in their work is almost
similar to the one proposed by O’Rourke in [9].

Zhewei et al. in [7] proposed sketching techniques that support historical
and window queries over summarized data. The data summary is maintained
using the count-min sketch and the AMS sketch and the persistence is achieved

Approximate OLAP on Sustained Data Streams 107

by utilizing PLAs. Their work can provide persistence for counters only and
can support point, heavy hitter and join size queries. [6] presented an online
algorithm to optimize the representation size of the PLA for streaming time-
series data. A PLA function f can be constructed using either only continuous
(joint) line segments or only disjoint line segments. To optimize the size of f ,
the authors gave an adaptive solution that uses a mixture of joint and disjoint
PLA segments and they named it mixed-type PLA.

Wavelet is also a famous technique which is often used for hierarchical data
decomposition and summarisation. The technique proposed in [11] can effec-
tively perform the wavelet decomposition with maximum error metrics. However,
since the technique uses dynamic programming, it is computationally expensive.
Therefore it cannot be used effectively for the data streams, which require one-
pass methodology in linear time. [12] proposed a method for one-pass wavelet
synopses with the maximum error metric. [12] shows that by using a number
of intuitive thresholding techniques, it is possible to approximate the technique
discussed in [11]. However, wavelet summarization can have a number of disad-
vantages in many situations as many parts of the time series may be approxi-
mated very poorly [12]. [13] used a sampling approach to answer OLAP queries
approximately, however they did not consider lattice nodes materialization issue
as we do. [2] compared different summarization methods on data streams and
proved that the PLA is the best data summarization technique as far as querying
error is concerned. Hence we propose the use of PLAs to summarize the data
streams in this work. None of the above work considered the use of compact
data structure for the OLAP as we do in this work.

3.2 Stream OLAP and View Maintenance

OLAP has been intensively studied by database researchers. [14] proposed a
systematic study of the OLAP node and index-selection problem. Authors in [8]
investigated the issue of nodes materialization when it is expensive to materialize
all nodes. They presented a greedy algorithm that determines a good set of nodes
to materialize. However, these work can only deal with static data.

One of the earliest work on stream OLAP was given by J. Han et al. [1]. They
proposed an architecture called StreamCube to facilitate OLAP for streams. In
order to reduce the query response time and the storage cost, StreamCube keeps
the distant data at coarse granularity and very new data at fine granularity and
pre-computes some OLAP queries at coarser, intermediate, and finer granularity
levels. However, their work does not use compact data structures, therefore can
not be used to maintain long data histories. Furthermore older data in their
work is only available at coarser granularity, thus limiting the range of queries.

Phantoms are intermediate queries to accelerate user queries. Zhang et al.
[15] proposed the use of phantoms to reduce the overall cost (processing and
data transfer cost) within very limited memory of a network interface card.
Although their work can reduce aggregation query cost, but is not capable of
answering ad-hoc OLAP queries. M. Sadoghi et al. in [3] presented a lineage-
based data store that combines real-time transactional and analytical processing

108 S.A. Shaikh and H. Kitagawa

within an engine with the help of the lineage-based storage. However their focus is
storage architecture and not the core OLAP. Ahmad et al. [16] presented viewlet
transforms, which materializes a query and a set of its higher-order deltas as
views resulting in a reduced overall view maintenance cost by trading space.

In contrast to the above works, this work proposes a compact data structure
based stream OLAP, capable of maintaining sustained data stream summaries
and answering user queries approximately with maximum error guarantees.

4 PLA-Based Sustained Storage

The PLA is a compact data structure and can be used for sustained in-memory
data summaries. The term sustained in this work corresponds to the long data
summaries that PLA can accommodate by approximating several data points
with a segment. Thus the main idea of our proposal is to store time series
data points as PLA line segments for all the OLAP lattice nodes that need to
be materialized, to reduce the overhead of recording complete time-series. This
paper assumes that only the business facts arrive as time-series stream, while
the dimensions are not treated as stream as they are updated less frequently.

Let S be a time-series data stream consisting of tuples (ti, k1i, k2i, ..., kdi,mi),
where ti is a timestamp, i ∈ [1, n] and ti ≤ ti+1, k1i, k2i, ..., kdi constitute a
d-dimensional key and mi is a business fact or measure. To keep the discussion
simple, this work assumes that one tuple for every key combination arrives at
each timestamp, however it is easily extendible for the general case. Recall that
PLA approximates data points using a piece-wise linear function, such that the
error between the approximated and the actual data point is within the user-
defined error parameter, ε. For the data points in S, we wish to approximate
mi using a piece-wise linear function fk1i,...,kdi

(ti), such that the |fk1i,...,kdi
(ti)−

mi| ≤ ε. The PLA needs to be maintained for each d-dimensional key. This
paper, like most of the previous work that discussed this problem in an online
setting [4,6,17,18], assumes L∞-metric for the error computation. This is due
to the fact that other error computations are not suitable for online algorithms
as they require sum of errors over the entire time series.

The above approach would result in a sustained PLA-based storage for each
key. The number of line segments required for each PLA and the cost of a PLA
line segment computation depend on the choice of error parameter ε. Larger
ε would result in a smaller number of line segments but larger line segment
computation cost and approximation error and vice versa. Also note that for
multiple measures, multiple PLA structures need to be maintained per key.

5 Architecture and Query Processing

5.1 AOLAP Architecture

This section presents the proposed Approximate Stream OLAP (AOLAP) archi-
tecture, shown in Fig. 3, that enables users to obtain approximate answer of their

Approximate OLAP on Sustained Data Streams 109

OLAP queries. Given the dimension information, the number of dimensions to
materialize (η) and utilizing the proposed optimization scheme (Sect. 7), the
AOLAP system selects the η nodes to materialize. For each materialized node,
the AOLAP system maintains a PLA structure discussed in Sect. 4.

PLA-based storage for
materialized ver ces

Old segments are flushed
to secondary memory

User
Results

Materialized
Ver ces

Secondary
Memory

User Query

Raw Data Stream
(Supplier, Part, Customer, Time)

Primary Memory

St
or

ag
e

M
an

ag
er

Display extendedPrice
Aggregated w.r.t. Supplier Dim

Query Manager

AOLAP System

La
ce

M
an

ag
er

Queried
Vertex

Fig. 3. AOLAP Architecture

As the time series data arrive, the Lattice Manager calls the PLA algorithm
(Algorithm 1) for each materialized node and update the corresponding PLA
structures (hereafter materialized node is called PLAV). In Fig. 3, lattice nodes
within rectangular boundaries represents PLAVs. The node at the lowest gran-
ularity, i.e., the node (Supplier, Part, Customer) in the figure, is always materi-
alized to enable the AOLAP system to answer all possible user queries. The raw
data stream is also stored in some non-volatile storage to avoid permanent data
loss in case of system failure and to enable users to obtain accurate answers of
their queries if needed.

In contrast to data stream, primary memory is finite. Since the users are inter-
ested in analysing recent data more frequently than the old or historical data, the
Storage Manager flushes the old PLA segments to the secondary storage once
they reach the memory limits or as specified by end user. These segments may
be used to answer the historical queries to avoid computing the results from raw
data stream, which is computationally expensive. Since the data is compact, this
flushing may be done periodically rather than continuously or when the system
is not overloaded by user queries. This also makes the system durable as in the
case of system crash, the old segments are not permanently lost while the very
new segments, not yet flushed to the secondary storage, can be reconstructed
from the raw data stream available in the non-volatile storage.

110 S.A. Shaikh and H. Kitagawa

Table 1. Querying PLA

Timestamp (ti) mi m̂i mi − m̂i

t1 48 41.8 6.2

t2 43 51.6 -8.6

t3 60 61.4 -1.4

t4 75 71.2 3.8

t5 35 30.67 4.33

t6 52 60.67 -8.67

t7 95 90.67 4.33

Table 2. OLAP Operations on Table 1
data

OLAP Operations m1,7 m̂1,7

MAX 95 90.67

MIN 35 30.67

SUM 408 408.01

AVG 58.286 58.287

5.2 Query Processing

The Query Manager in the AOLAP architecture is responsible for accepting user
queries, computing the results from the PLAVs and sending the results to the
end user. Since a user can query any lattice node, the results are generated using
the nearest PLAV to keep the querying error small. The Lattice Manager, on the
request from Query Manager, generates the query results and sends them to the
Query Manager. For example in Fig. 3, the user query (Supplier), represented
by oval boundary, can be answered using the PLAV (Supplier, Part).

OLAP queries over data streams generally involve aggregation operations
over current, historical or some window data. Typical OLAP aggregation oper-
ations include SUM, MAX, MIN, AVG, etc. Users may also be interested in
analysing raw facts across multiple dimensions. To answer a historical window
query for a key k or any combination of keys from d-dimensional key for time
range (t′, t], find the recorded measures m̂i for all ti ∈ (t′, t] as an approximation
of mi and perform the requested aggregate operations to obtain m̂t′,t. Let the
average length of a PLA line segment in terms of timestamp is l, then the cost
of finding a measure m̂i can be given by n

l , where n is the length of stream.

Example 3. Once again consider the time series and piecewise function
fp1,s1,m1(t) of Example 2. Now we would like to query fp1,s1,m1(t) segments
for the following OLAP aggregation operations: MAX, MIN, SUM, AVG, where
1 ≤ t ≤ 7.

Table 1 shows the accurate (mi) and approximate (m̂i) measures of the Exam-
ple 2 time series for keys p1, s1 and m1. The approximate measures are obtained
from the PLA-based storage. Table 2 lists the OLAP aggregation operations
performed on m̂i. It is interesting to note that the exact and the approximate
measures for the OLAP operations SUM and AVG are quite similar, although
they are computed from several approximate measures. This is due to the mutual
cancellation of + and - errors in the individual approximate values. �

Approximate OLAP on Sustained Data Streams 111

6 Querying Error

In order to select the optimal PLAVs (nodes to materialize), an estimation of
the overall querying error is needed, i.e., the aggregated querying error of all the
lattice nodes, which forms the basis of our optimization problem presented in
Sect. 7. In a d-dimensional lattice, there exist 2d nodes [19]. Let V = {v1, ...v2d}
denotes the set of all the lattice nodes. The overall querying error is computed
by taking into consideration the set of nodes chosen for materialization (Vm) and
the number of rows in each node (|vi|). Since the number of rows in a node is not
known beforehand, it is estimated using the domain size of dimension attributes.

Consider two nodes vi ∈ V and vj ∈ Vm, then vi � vj shows the dependence
relationship between the queried node (vi) and the materialized node (vj), that
is, a query can be answered from a materialized node if the queried node is
dependent on the materialized node. Since a query can be answered from more
than one materialized nodes, we choose the nearest node which can minimize the
fraction |vj |

|vi| , as the larger |vj |
|vi| results in the amplification of the overall querying

error. The overall querying error can be expressed as:

ε.
∑

vi∈V

min∀vj∈Vm|vi�vj

(|vj |
|vi|
)

(1)

Note that in the Eq. 1, the fraction |vj |
|vi| depends on the number of rows in

the materialized and the querying nodes. By choosing the smaller fraction we
actually choose the node vj with the smaller number of rows, that is, we need to
aggregate a less number of rows to answer a query, resulting in smaller processing
time and querying error as each row may contributes to the querying error.

7 Optimization Scheme

The PLA-based sustained storage discussed in Sect. 4 can be used to materialize
only one lattice node. Since an OLAP lattice contain several nodes and during
analysis a user may request any node, a baseline approach is to materialize all
the lattice nodes. However, the baseline approach may results in prohibitively
large number of nodes to materialize (2d), specially when the number of dimen-
sions is high, which is extremely memory costly. In the following we propose an
optimization algorithm to solve this issue. Additionally we consider the reference
frequency (fi), the frequency with which a lattice node is queried by end-users,
of each lattice node in the computation of querying error. Nodes or queries with
the low reference frequencies contribute less to the overall querying error and
vice versa. Hence the overall querying error considering the reference frequencies
can be expressed as:

ε.
∑

vi∈V

min∀vj∈Vm|vi�vj

(|vj |
|vi| .fi

)

(2)

112 S.A. Shaikh and H. Kitagawa

7.1 Optimization Problem

Choosing which lattice nodes to materialize for the PLA-based stream OLAP
is a space-error trade-off in addition to the space-time trade-off of traditional
OLAP. However the focus of this work is only the space-error trade-off which is
more significant in the context of PLA-based stream OLAP and is a NP-hard
problem. Hence we propose a greedy optimization algorithm to find the optimal
solution. Here we assume that the number of nodes to be materialized (η) is
provided and the reference frequencies of the lattice nodes is known.

Optimization Problem: Given the number of nodes to materialize, η, and
the reference frequency of each lattice node, f = {f1, f2, ..., f2d}, materialize the
nodes that can minimize the overall querying error.

7.2 Greedy Optimization Algorithm

Having introduced the optimization scheme, we are ready to present the proposed
optimization algorithm (Algorithm 2). The algorithm takes as input a set of
lattice nodes (V), the finest node (vf), the number of nodes to materialize (η), the
PLA error parameter (ε) and the reference frequencies (f). The algorithm outputs
a set of nodes to materialize (Vm). Note that the node at the finest granularity,
(vf), is always chosen to materialize because it contains data at the most granular
level and therefore can answer all the queries, however answering coarser level
queries from vf results in the amplification of querying error. Therefore the
proposed greedy algorithm finds η nodes to materialize, besides vf , such that
the overall querying error (Eq. 2) is minimized.

In the algorithm, the inner for loop (Lines 5–13) computes the overall query-
ing error for each candidate node vj in V \ Vm using Eq. 2 (Line 7). Lines 8–11
keeps track of the current best candidate node. At the end of the inner for loop,
the best candidate node is selected and added to the set of materialized nodes
(Line 14). This loop is executed η times to select the η best nodes to material-
ize (outer for loop). At the end of the algorithm, the set of the best nodes to
materialize Vm is returned (Line 17).

8 Experiments

8.1 Experimental Setup

Environment: For the sake of experiments a prototype system corresponding
the AOLAP architecture is developed in C++. The experiments are performed
on one of the node of HP BladeSystem c7000 with Intel Xeon (ES-2650 v3 @
2.3 GHz) processor and 6 GB RAM running Ubuntu 14.10 OS.

Data:We used TPC-H1 benchmark for experiments, well-known for OLAP analy-
sis.However its schema ismodified according to the Star SchemaBenchmark (SSB)

1 TPC-H. http://www.tpc.org/tpch/.

http://www.tpc.org/tpch/

Approximate OLAP on Sustained Data Streams 113

Algorithm 2. Greedy Optimization Algorithm
Input: V : a set of lattice nodes, vf : the finest node, η: the number of nodes to mate-

rialize, f : a set of reference frequencies corresponding to nodes in V , ε
Output: Vm: a set of nodes to materialize
1: Vm ← {vf};
2: Vc ← V \ Vm; {Vc: List of candidate nodes}
3: for i = 1 to η do
4: Δmin ← ∞;
5: for each vj ∈ Vc do
6: Vm ← Vm ∪ {vj};
7: Δ ← QueryingError(V, Vm, ε, f);

{Δ: Overall querying error computed for current Vm using Eq. 2}
8: if Δ < Δmin then
9: Δmin ← Δ;

10: vmin ← vj ;
11: end if
12: Vm ← Vm \ vj ;
13: end for
14: Vm ← Vm ∪ {vmin};
15: Vc ← Vc \ {vmin};
16: end for
17: return Vm;

[10] as shown in Fig. 2a. The LINEORDER fact table contains 6,000,000 tuples
and the dimension tables,PART,CUSTOMER and SUPPLIER contains 200,000,
30,000 and 2,000 tuples respectively. We considered the following dimensional hier-
archies. CUSTOMER: Custkey − > Nation − > Region, SUPPLIER: Suppkey
− > Nation − > Region, PART: PARTKEY, where NATION and REGION con-
tain 25 and 5 unique tuples, respectively. The hierarchical lattice of the dimensions
contain 32 nodes.

The time series is generated by identifying 10 K unique dimension keys com-
binations in the LINEORDER fact table and feeding them repeatedly to the
system. In order to avoid the repetition of fact values, we only fed the dimension
keys repeatedly. The fact values are repeated after every 6,000,000 tuples (which
is the size of the fact table) and are quite non-uniform. We selected this business
fact to show the usability of the PLA on non-uniform data, as the PLA results
in low compression ratio on non-uniform data while high compression ratio on
uniform data. The system time is used as the time series timestamp.

Comparative Methods: To evaluate the effectiveness of the proposed opti-
mization scheme, we compared it with the following methods: (1) Random:
The lattice nodes to materialize are chosen randomly. (2) Frequency: The
lattice nodes with high reference frequencies are chosen for materialization.

We used the following five ways to assign reference frequencies to lattice
nodes to cover different types of use cases in various applications.

– Rand: Frequencies are assigned randomly within [0, 1] range.

114 S.A. Shaikh and H. Kitagawa

– AllHigh: High frequencies are assigned randomly within [0.8, 1] range.
– AllLow: Low frequencies are assigned randomly within [0, 0.2] range.
– CoarseHigh: Higher frequencies are assigned to coarser aggregation levels.
– FineHigh: Higher frequencies are assigned to finer aggregation levels.

8.2 Experimental Evaluation

Experimental evaluation is subdivided into measuring the memory space utiliza-
tion and querying error percentage. The evaluation is done for the worst case
SUM operation, i.e., we aggregated the absolute querying error values. Unless
otherwise stated, the following default parameter values are used in the experi-
ments: η = 6, ε = 3% (the value of ε is set as the percentage of the maximum
value in the fact table) and frequency method = Rand. Each experiment is per-
formed 5 times and their average values are reported in the graphs.

0
100k
200k
300k
400k
500k
600k
700k

1 2 3 4 5

M
em

or
y

Sp
ac

e

PLA Error Parameter (%)

PLA-based Storage Ordinary Storage

(a) Freq.method=Rand, η=6

0

200k

400k

600k

800k

1,000k

1 2 3 4 5

M
em

or
y

Sp
ac

e

PLA Error Parameter (%)

PLA-based Storage Ordinary Storage

(b) Freq.method=Rand, η=9

0

200k

400k

600k

800k

1,000k

1,200k

1 2 3 4 5

M
em

or
y

Sp
ac

e

PLA Error Parameter (%)

PLA-based Storage Ordinary Storage

(c) Freq.method=Rand, η=12

0
200k
400k
600k
800k

1,000k
1,200k
1,400k

1 2 3 4 5

M
em

or
y

Sp
ac

e

PLA Error Parameter (%)

PLA-based Storage Ordinary Storage

(d) Freq.method=Rand, η=15

Fig. 4. Average memory usage for different η

Memory Space Utilization. To evaluate the effectiveness of the PLA, we
compared the memory space consumed when using PLA-based storage to that
of ordinary storage (which stores the actual data points) in Figs. 4 and 5. The
storage space is measured in terms of the number of PLA segments for the PLA-
based storage and the number of data points for the ordinary storage. Since a
PLA segment requires twice memory space than a data point, we divided the
total number of data points by a factor of 2 to keep the comparison fair.

Approximate OLAP on Sustained Data Streams 115

0
200k
400k
600k
800k

1,000k
1,200k
1,400k

3 6 9 12 15 18

M
em

or
y

Sp
ac

e

Materialized Ver�ces

PLA-based Storage Ordinary Storage

Fig. 5. Effect of varying η on space
(Freq. method = Rand, ε = 3%)

The average amount of memory con-
sumed by the PLA-based storage decreases
with the increase in PLA error-parameter
(ε), as can be observed from Fig. 4. This is
because as the ε increases, a PLA segment
can approximate a larger number of data
points thereby reducing the number of line
segments required by the PLA-based storage,
which results in reduced memory space con-
sumption. In most of the cases in Fig. 4, the
memory space used by the PLA-based stor-
age is upto 3 times less than the ordinary
storage for ε = 4% and higher. This proves that the use of PLA for the materi-
alization of lattice nodes can significantly reduce the memory consumption.

We also measured the memory space consumption by varying the number of
materialized lattice nodes (η) as shown in Fig. 5. As η increases, the memory
space consumption of both the PLA-based storage and the ordinary storage
increases because we need to store data at increased number of aggregations
levels. However the memory consumption of the PLA-based storage is lower
than that of ordinary storage for all the η values. Note that we used highly
non-uniform data values for the experiments, where it is difficult for the PLA
algorithm to approximate the larger number of data points with one line segment.
For the uniform time series data, for instance hourly temperature values or stock
price data, the PLA-based storage is expected to be far more advantageous.

0

0.2

0.4

0.6

0.8

1

1.2

Rand All High All Low Coarse High Fine High

Q
ue

ry
in

g
Er

ro
r %

Reference Frequency Alloca on

Op mized Frequency Random

(a) η=6, =3%

0

0.2

0.4

0.6

0.8

1

Rand All High All Low Coarse High Fine High

Q
ue

ry
in

g
Er

ro
r %

Reference Frequency Alloca on

Op mized Frequency Random

(b) η=9, =3%

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Rand All High All Low Coarse High Fine High

Q
ue

ry
in

g
Er

ro
r %

Reference Frequency Alloca on

Op mized Frequency Random

(c) η=12, =3%

0

0.2

0.4

0.6

0.8

1

1.2

Rand All High All Low Coarse High Fine High

Q
ue

ry
in

g
Er

ro
r %

Reference Frequency Alloca on

Op mized Frequency Random

(d) η=15, =3%

Fig. 6. Querying error percentage for different frequency allocation methods

116 S.A. Shaikh and H. Kitagawa

Querying Error. This section compares the querying error of the proposed
optimization scheme to the frequency and the random methods.

Firstly, experiments are performed for different frequency allocation methods
as shown in Fig. 6. It is evident from the Figs. 6a, b, c and d that the greedy opti-
mization scheme selects the best η nodes to materialize, resulting in the least
querying error. Note the use of logarithmic scale on the y-axis. On the other
hand, frequency based method gives priority to the nodes with high frequencies
to materialize, while random method randomly chooses η nodes to materialize,
however both the comparative methods results in higher querying error. Further-
more in Fig. 6, the proposed optimized scheme results in the similar querying
error for all the reference frequency allocations, because it always chooses the
nodes that minimizes the querying error. Additionally the frequency method
performs best for the frequency allocation approach FineHigh because it causes
most of the nodes at finer granularity to materialize, which are at the middle
or finer level of the lattice. When the nodes from these levels are materialized,
coarser level queries can be answered from them leading to the reduction of the
big querying error, that may otherwise results when the coarser level nodes need
to be answered from the most finer level node. On the other hand, the random
method behaves randomly for all the frequency allocations because of the reasons
discussed above.

Next we perform experiments by varying η. Increasing η reduces the querying
error as can be observed from Fig. 7. Here again the optimization scheme per-
forms the best. Furthermore when using the proposed optimized scheme, we do
not need to materialize many nodes to get the results with acceptable querying
error. For instance in Fig. 7, out of the total 32 nodes, materialization of 9 or 12
nodes can significantly reduces the querying error, hence saving a lot of memory.

0

0.2

0.4

0.6

0.8

1

3 6 9 12 15 18

Q
ue

ry
in

g
Er

ro
r %

Materialized Ver ces

Op mized Frequency Random

Fig. 7. Varying # materialized nodes
(Freq. method = Rand, ε = 2%)

0
5

10
15
20
25
30
35

1 2 3 4 5

Q
ue

ry
in

g
Er

ro
r %

PLA Error Parameter (%)

Op mized Frequency Random

0

1

2

1 2 3 4

Fig. 8. Varying PLA error parameter ε
(Freq. method = Rand, η = 6)

Finally experiments are performed by varying ε in Fig. 8. Increasing ε slightly
increases the querying error which is mainly observable from the bars of the
optimized scheme and the frequency method. However, here again the ran-
dom method results in random querying errors for each ε value due to the
random selection of the lattice nodes to materialize. Moreover, the querying
error increases significantly for ε = 5%, because for higher ε, the PLA algorithm

Approximate OLAP on Sustained Data Streams 117

approximates a larger number of data points with a single PLA segment, possibly
with higher absolute error values. Thus resulting in higher querying error.

9 Conclusion and Future Work

In this work we propose a novel architecture Approximate Stream OLAP
(AOLAP) for maintaining time series data streams summaries, corresponding
to each materialized lattice node, in a compact memory-based data structure, in
addition to storing raw data streams to the secondary storage. We used piece-wise
linear approximation as an in-memory compact data structure which can answer
user queries approximately. In addition, we propose an optimization scheme to
select the η lattice nodes to materialize, such that the overall querying error,
caused by the approximation, is minimized. Experiments prove that the PLA-
based storage can significantly reduce the memory consumption for a small cost
of querying error and the nodes selected by the optimization algorithm to mate-
rialize can minimize the overall querying error. In the future we plan to extend
this work to incorporate dependence relation between lattice nodes so that the
number of PLA structures need to be maintained can be further reduced.

Acknowledgment. This research was partly supported by the program “Research
and Development on Real World Big Data Integration and Analysis” of the RIKEN,
Japan.

References

1. Han, J., Chen, Y., et al.: Stream cube: an architecture for multi-dimensional analy-
sis of data streams. Distrib. Parallel Databases 18(2), 173–197 (2005)

2. Duan, Q., Wang, P., Wu, M.X., Wang, W., Huang, S.: Approximate query on
historical stream data. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X.
(eds.) DEXA 2011. LNCS, vol. 6861, pp. 128–135. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-23091-2 12

3. Sadoghi, M., Bhattacherjee, S., Bhattacharjee, B., Canim, M.: L-store: a real-time
OLTP and OLAP system. In: CoRR (2016)

4. Elmeleegy, H., Elmagarmid, A.K., Cecchet, E., Aref, W.G., Zwaenepoel, W.:
Online piece-wise linear approximation of numerical streams with precision guar-
antees. Proc. VLDB Endow. 2(1), 145–156 (2009)

5. Xie, Q., Zhu, J., et al.: Efficient buffer management for piecewise linear represen-
tation of multiple data streams. In: ACM CIKM, pp. 2114–2118 (2012)

6. Luo, G., Yi, K., Cheng, S.W., Li, Z., Fan, W., He, C., Mu, Y.: Piecewise linear
approximation of streaming time series data with max-error guarantees. In: 2015
IEEE 31st ICDE, pp. 173–184 (2015)

7. Wei, Z., Luo, G., Yi, K., Du, X., Wen, J.-R.: Persistent data sketching. In: ACM
SIGMOD 2015, pp. 795–810 (2015)

8. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes effi-
ciently. In: ACM SIGMOD, pp. 205–216 (1996)

9. O’Rourke, J.: An on-line algorithm for fitting straight lines between data ranges.
Commun. ACM 24(9), 574–578 (1981)

http://dx.doi.org/10.1007/978-3-642-23091-2_12

118 S.A. Shaikh and H. Kitagawa

10. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The Star Schema Benchmark and
Augmented Fact Table Indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC
2009. LNCS, vol. 5895, pp. 237–252. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-10424-4 17

11. Garofalakis, M., Kumar, A.: Deterministic wavelet thresholding for maximum-error
metrics. In: ACM PODS (2004)

12. Karras, P., Mamoulis, N.: One-pass wavelet synopses for maximum-error metrics.
In: PVLDB, pp. 421–432 (2005)

13. De Rougemont, M., Cao, P.T.: Approximate answers to OLAP queries on stream-
ing data warehouses. In: Proceedings of the Fifteenth International Workshop on
Data Warehousing and OLAP, pp. 121–128 (2012)

14. Talebi, Z.A., Chirkova, R., Fathi, Y., Stallmann, M.: Exact and inexact methods
for selecting views and indexes for OLAP performance improvement. In: EDBT
(2008)

15. Zhang, R., Koudas, N., Ooi, B.C., Srivastava, D., Zhou, P.: Streaming multiple
aggregations using phantoms. VLDB J. 19(4), 557–583 (2010)

16. Koch, C., Ahmad, Y., Kennedy, O., Nikolic, M., Nötzli, A., Lupei, D., Shaikhha,
A.: DBToaster: higher-order delta processing for dynamic, frequently fresh views.
VLDB J. 23(2), 253–278 (2014)

17. Lazaridis, I., Mehrotra, S.: Capturing sensor-generated time series with quality
guarantees. In: ICDE, pp. 429–440 (2003)

18. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over dis-
tributed data streams. In: ACM SIGMOD, pp. 563–574 (2003)

19. Gray, J., Chaudhuri, S., et al.: Data cube: a relational aggregation operator gener-
alizing group-by, cross-tab, and sub-totals. Data Min. Knowl. Discov. 1(1), 29–53
(1997)

http://dx.doi.org/10.1007/978-3-642-10424-4_17
http://dx.doi.org/10.1007/978-3-642-10424-4_17

Search and Information Retrieval

Hierarchical Semantic Representations
of Online News Comments for Emotion Tagging

Using Multiple Information Sources

Chao Wang1, Ying Zhang1(B), Wei Jie2, Christian Sauer2, and Xiaojie Yuan1

1 College of Computer and Control Engineering,
Nankai University, Tianjin, People’s Republic of China

{wangchao,zhangying,yuanxiaojie}@dbis.nankai.edu.cn
2 School of Computing and Engineering, University of West London, London, UK

{wei.jie,christian.sauer}@uwl.ac.uk

Abstract. With the development of online news services, users now
can actively respond to online news by expressing subjective emotions,
which can help us understand the predilections and opinions of an indi-
vidual user, and help news publishers to provide more relevant services.
Neural network methods have achieved promising results, but still have
challenges in the field of emotion tagging. Firstly, these methods regard
the whole document as a stream or bag of words and can’t encode the
intrinsic relations between sentences. So these methods cannot properly
express the semantic meaning of the document in which sentences may
have logical relations. Secondly, these methods only use semantics of the
document itself, while ignoring the accompanying information sources,
which can significantly influence the interpretation of the sentiment con-
tained in documents. Therefore, this paper presents a hierarchical seman-
tic representation model of news comments using multiple information
sources, called Hierarchical Semantic Neural Network (HSNN). In par-
ticular, we begin with a novel neural network model to learn document
representation in a bottom-up way, capturing not only the semantics
within sentence but also semantics or logical relations between sentences.
On top of this, we tackle the task of predicting emotions for online news
comments by exploiting multiple information sources including the con-
tent of comments, the content of news articles, and the user-generated
emotion votes. A series of experiments and tests on real-world datasets
have demonstrated the effectiveness of our proposed approach.

Keywords: Emotion tagging · Hierarchical semantic representation ·
Multiple information sources · Neural network

1 Introduction

Due to the development of the internet, the past decades have witnessed an
explosive growth in different types of web services such as blogs, forums, social
networks and online news services. Among these various types of web services,
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 121–136, 2017.
DOI: 10.1007/978-3-319-55699-4 8

122 C. Wang et al.

online news has been an important type of information that attracts billions of
users to read and actively respond by making comments. Users often express
subjective emotions like sadness, happiness and surprise in their comments.
Extracting these emotions contained in the comments can help us understand
the preferences and perspectives of users, and help online news publishers to
provide users with more personalized services. Therefore, an automatic emotion
tagging method for online news comments is strongly desirable.

Emotion tagging is a fundamental problem in the research area of opinion
mining and sentiment analysis, which has attracted much attention in informa-
tion retrieval and natural language processing communities [14,17]. The emotion
tagging problem can be formulated as a multi-classification problem, which calls
for identifying multiple emotion categories (e.g., happiness, sadness and angry,
etc.) from user-generated content including product reviews, posts on blogs or
social networks, comments in forums or comments in online news services.

The dominating approaches usually utilize machine learning algorithms to
build a classifier with hand-crafted features. Since the performances of tradi-
tional machine learners are heavily dependent on feature representations [5],
deep learning methods become more and more popular recently due to the abil-
ity to learn discriminative features from data automatically.

Despite the achievement of neural network approaches, there still are some
challenges. Firstly, how to encode the intrinsic relations between sentences in the
semantic meaning of a document. This is important for emotion tagging because
relations such as causality and contrast have great influence on determining
the meaning of a document. However, existing studies usually fail to effectively
capture the intrinsic relations, since sentences influence the semantic meaning
equally whether they are before or after the adversatives. Secondly, these meth-
ods only use semantics of the document itself, while ignoring the accompanying
information sources, which can have significant influence on interpreting the
sentiment of the document. In the news comment scenario, the comments are
users’ response to the news articles, thus the emotions of the comments are influ-
enced by the content of the news articles obviously. Moreover, many online news
websites provide a emotion voting service through which users can share their
emotions after reading news articles. These user-generated emotion votes can
naturally provide guidance for assigning emotion tags to comments.

Therefore, this paper presents a hierarchical semantic representation model of
news comments using multiple information sources, called Hierarchical Semantic
Neural Network (HSNN). Firstly we bring in a novel neural network model to
learn a hierarchical semantic representation of documents which encodes not only
the semantics between words in a sentence but also the relations between sen-
tences. Further, we combine the representations of multiple information sources
including the comments, the news articles and the user-generated emotion votes
together and introduce a novel classification method utilizing this hierarchical
semantic representation in order to improve the result of emotion predicting and
tagging. A series of experiments and tests on real-world datasets have demon-
strated that our HSNN demonstrated good performances in emotion tagging
compared with a selection of baseline models.

Hierarchical Semantic Representations of Online News Comments 123

The remainder of this paper is organized as follows. Section 2 gives a brief
overview of some state-of-the-art research on emotion tagging and makes discus-
sions regarding the differences between our work and previous works. In Sect. 3,
we present our proposed approach HSNN including hierarchical semantic repre-
sentation model of document and semantic representations using multiple infor-
mation sources with their classifiers utilized. Experiments are shown in Sect. 4.
We end the paper with conclusions and an outlook on future work.

2 Related Work

Emotion tagging has become an important subtask of opinion mining and senti-
ment analysis [14], which aims at identifying the emotion tag of a document (e.g.,
review of products [24–26], news article [1,2,12,21], news comment [29,30]). For
a general survey, please refer to [17]. This paper focuses on emotion tagging for
comments of online news.

Many machine learning techniques have been applied on sentiment classifi-
cation, such as unsupervised learning techniques (e.g., [26]), supervised learning
techniques (e.g., [18]) and semi-supervised learning techniques (e.g., [22]). Many
studies now focus on designing an effective feature schema. On this basis, rele-
vant features can be extracted and classifiers like SVM could be used to classify
each text into emotion categories. Other than these methods using only words to
classify text, prior works [1,2,21] asserted it is arguable that emotions should be
linked to specific topics instead of a single keyword, and proposed emotion-topic
models by incorporating a intermediate layer of emotion into LDA. Moreover, in
Li’s method [12], documents are not treated equally and influence the prediction
at different levels, in order to reduce the impact of noisy documents. The weak-
ness of the aforementioned methods are obvious. They regarded the document
as a bag of words, and didn’t take semantics of the document into account, while
the sentiment of the document have close ties to the semantic meaning. At the
meantime, some other studies analyse the emotion present in documents by con-
sidering semantics. Zhang et al. [28] brought in a Conditional Random Fields
based model which take the context into account to encode the reviews. and
mined the sentiment polarity to the products. Tang et al. [24,25] constructed
a neural network model, which modelled user-comment and product-comment
consistencies and rated numeric scores to products accordingly. Inspired by word
embedding, [15,16] presented a batch of methods by using both local and global
semantics to improve the performance on sentiment analysis. Differing from the
aforementioned approaches, this paper presents a neural network model captur-
ing both the semantics within sentence and relations between sentences to learn
hierarchical document representation. Thus we can make full use of the semantic
information to predict the sentiment of the documents.

On another hand, these methods only use the information of the document
itself, while ignoring the accompanying information sources, which can signif-
icantly influence the interpretation of the sentiment contained in documents.
This paper uses heterogeneous information sources to analyse the sentiment.

124 C. Wang et al.

To the best of our knowledge, the only work on emotion tagging for news com-
ments is Zhang’s prior works [29,30], which used a fixed combination strategy
to merge heterogeneous information sources, and employed traditional machine
learning method to tag emotions for the comments of news. Our work differs
from Zhang’s work since we build our model based on artificial neural networks,
instead of traditional machine learning. In addition, Zhang only uses two kinds
of information sources, while we use more.

3 Hierarchical Semantic Neural Network

We now state the emotion tagging problem as follows: Given a set of users’
comments on news along with the news articles and user-generated emotion
votes of the news, we should identify the emotion tags of individual comments.

Furthermore, we formulate the problem setting as follows: Given a collection
of comments C and a collection of news articles D, each c ∈ C has its d ∈ D which
means c is made by a user after reading d. We also have a predefined emotion set
E = {e1, e2, e3, · · · , eK} from which we assign emotion tag for each comment.
Afterwards each news article d is accompanied by user-generated emotion votes
Md = {μ1, μ2, μ3, · · · , μK} where μk ∈ R is the count of votes over emotion
ek. On the top of this, we cast the emotion tagging problem into a multi-class
classification problem that we classify a comment c into one emotion tag ek of
the emotion set, according to the content of the comment itself, the content of
its news article d and the emotion votes Md of d.

The problem involves three issues. First, we develop a hierarchical semantics
representations model of the document, according to not only the contextual
relations within sentence, but also the intrinsic relations between sentences to
encode the semantic meaning of document. Second, we reconstruct comments as
a combination of the semantic representations of the comment itself, its news
article and the user-generated emotion vote of the news. Then we use this rep-
resentation as feature to classify and assign emotion tags to comments.

3.1 Hierarchical Semantic Representation Model of the Document

We introduce our proposed hierarchical semantic representation model of the
document in this section, which computes fixed length continuous vector repre-
sentations for documents of variables length.

Words are the basic components of sentences, and sentences constitute docu-
ments structurally and semantically. The principle of compositionality [7] states
that the meaning of a longer expression (e.g., a sentence or a document) comes
from the meanings of its constituents and the rules used to combine them. Thus
our method to compute the document representation can be divided into two
steps. We first model sentence semantic representations by producing continu-
ous sentence vectors from word vectors/representations. Then we use sentence
semantic representations to get the final document semantic representations.

Hierarchical Semantic Representations of Online News Comments 125

3.1.1 Sentence Semantic Representation.
In order to model the sentence semantic representation, word embedding [3] is
innovated to represent each word. According to word embedding, each word is
represented as a low dimensional, continuous and real-valued vector, all of which
are stored in a matrix L ∈ R

dim×|V |, where dim is the dimension of word vectors
and V is the vocabulary. The word embedding can be initialized randomly from
a uniform distribution and learned as a parameter at the some time with the
training of a neural network [10,23], or be pre-trained from text corpus with
embedding learning algorithms [16,19,24]. We employ the latter method using
word2vec1 to make better use of semantic and grammatical associations of words.

After that, we apply a modified convolutional neural network (CNN) to com-
pute representations of sentences. CNN are a state-of-the-art semantic model
from sentiment classification and emotion tagging [10,11,24], and it can learn
fixed length vectors for sentences of varying length, according to the words order
in a sentence and doesn’t depend on an external parse tree.

w5

w4

w3

w2

w1

wl

Fig. 1. Convolutional neural network for sentence semantic representation

Figure 1 shows the overview of our sentence method to capture the sen-
tence semantic representation. The first lookup layer mapping words into low-
dimensional vectors. The next layer performs convolutions over the embedded
word vectors using filters with multiple sizes of windows. Next, we average-pool
and average-fold the outputs of the convolutional layer into the representation.

We use different convolutional filters with different window widths to capture
local semantics of various granularities to generate the sentence representation,
which have been proven effective for sentiment classification and emotion tag-
ging. For example, a convolutional filter with a window width of 3 essentially
captures the semantics of a sentence in the perspective of trigram. In this paper,
we use three different convolutional filters with widths of 3, 4 and 5 to encode
the semantics of trigrams, 4-grams and 5-grams in a sentence.

Formally, given a sentence consisting of n words denoted as {w1, w2, w3, . . . ,
wn}, lcf is the window width of a convolutional filter cf , Wcf and bcf is the
shared parameters of linear layers of this filter. Each word wi in the sentence is
mapped to its word embedding wei ∈ R

dim through word a embedding matrix
L ∈ R

dim×|V |, where dim is the dimension of word embedding. The input of
1 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/

126 C. Wang et al.

a linear layer is the concatenation of lcf word embeddings in the window of
this filter, which is denoted as Icf =

[
wei;wei+1; . . . ;wei+lcf−1

] ∈ R
dim·lcf . The

output of a linear layer is shown as follows:

Ocf = tanh (Wcf · Icf + bcf) , (1)

where Wcf ∈ R
locf×dim·lcf , bcf ∈ R

locf , locf is the length of the output of this
convolutional layer, tanh is the hyperbolic tangent to increase the non-linear
property without affecting the receptive fields of the convolution.

Afterwards, we feed all the outputs of a convolutional filter into an average
pooling layer to capture the overall semantics. Then we use an average fold layer
to merge the outputs of different filters to get the final sentence representation.

3.1.2 Document Semantic Representation.
Next, we introduce our method to generate a document representation from the
obtained sentence vectors, utilizing long-short term memory model (LSTM).

Given a set of vectors of sentences, a simple and natural strategy to form a
text vector is taking the average/max/min value of the sentence vectors as text
vector. Obviously it can’t capture complex relations such as causality and con-
trast between sentences since it totally ignores the order and logical relationship
of sentences. Using convolutional neural network is an alternative to model local
relations using its convolution with shared parameters partly. But this capabil-
ity is considerably limited by the window size of the convolutional filter. The
main idea behind recurrent neural network is to make use of sequential infor-
mation of sentences. RNN is called recurrent because it performs the same task
for every element of a sequence, with the output being depended on the pre-
vious computations. This helps it to encode the relations between sentences in
long sequences, even if the two related sentences are far from each other in the-
ory. Unfortunately, RNN suffers from gradient vanishing or exploding [4], which
means gradients may grow or decay exponentially over long sequences. This
makes it nearly impossible to model long-distance correlations in a sequence.

To solve this problem, we use a modified long-short term memory model.
The transition function of LSTM used in this paper is shown as follows:

ft = δ (Wf · [ht−1;xt] + bf) , (2)
it = δ (Wi · [ht−1;xt] + bi) , (3)

C̃t = δ (WC · [ht−1;xt] + bC) , (4)
Ct = ft � Ct−1 + it � C̃t, (5)

ht = δ (Wh · [ht−1;xt] + bh) � tanh(Ct), (6)

where xt is the input vector of LSTM at the t-th step, in this section it’s the t-th
sentence semantic representation. ft, it, Wf , Wi, bf , bi adaptively forget and
update the information of hidden vector and input vector, WC and bC form the
candidate vector, ht−1 is the hidden vector which represents the history status
and maintains the accumulated knowledge of previous t − 1 step, Ct−1 and

Hierarchical Semantic Representations of Online News Comments 127

x1

x2

x3

xn

Fig. 2. Classical LSTM

x1

x2

x3

xn

Fig. 3. Avg LSTM

c d Md

w w w w w w w w w w w w w w w w w mm1
1

1
2

1
1l 1 1 1

1 1 1
1 1 1

n
n

nnn
n

nnn
n

nnn
n

nn
l l l l l

2 2
2

2
2 2 2

2
2

2 2
2 2

+
+

+++
+

+++
+

++

Fig. 4. The overview of our hierarchical semantic representation model using multiple
information sources. wi

j is the j-th word in the i-th sentence, li is the length of the i-th
sentence, n and m are the numbers of sentences in the comment and the news article.

C̃t represent the old cell state and new candidate vector respectively at the t-th
step, Wh and dh help to update the hidden vector from the old hidden vector,
input vector and cell state vector. As a side note, � is element-wise multiplication
of two vector, which means two vectors are multiplied element by element.

In classical LSTM [8], the last hidden vector is regarded as the text repre-
sentation as shown in Fig. 2. In this paper, we make a further extension called
Avg LSTM by using the average of all hidden vectors as text representation.
Thus we can take considerations of the differences of semantics and sentiment
relations between sentences and with different historical granularities (Fig. 3).

3.2 Hierarchical Semantic Representation Using Multiple
Information Sources

In this subsection, we introduce three heterogeneous information sources to mine
sentiment of user comments, which are content of comments, content of news
articles, and user-generated emotion votes of news articles.

The first and second information sources are hierarchical semantic represen-
tation of the contents of the comments and contents of the news articles. The
comments are users’ response to the news articles, thus the emotions of the
comments are directly influenced by the content of the news articles. So we take
contents of the news articles into consideration. For modelling the semantics of
the comments and the news articles, we embed the content of comment c and
news article d as continuous vectors c̄ ∈ R

dimc and d̄ ∈ R
dimd using the hier-

archical semantic representation model in Sect. 3.1, where dimc and dimd are
dimensions of the comment vector and the news vector respectively.

128 C. Wang et al.

The last information source is derived from the emotion votes of the news
articles generated by users. When tagging emotion for each comment, we can
follow the normalized user-generated emotion votes of the news article to which
the comment belongs. How likely the comment c of news article d will be tagged
by emotion ei according to the information of emotion votes can be denoted by
μ̄i. Hence we reconstitute the votes vector Md through normalization as follows:

M̄d = {μ̄1, μ̄2, μ̄3, · · · , μ̄K} , μ̄i =
μi∑K
j=1 μj

. (7)

On this basis, we define the final semantic representation vector of comment
c as rep(c) =

[
c̄; d̄; M̄d

]
and feed it to the classifier.

At last, an overview of our proposed hierarchical semantic representation
model using multiple information sources is shown in Fig. 4.

3.3 Sentiment Classification

In this section, we use hierarchical semantic representations using multiple infor-
mation sources as discriminative features instead of handcrafted features which
are used in traditional machine learning.

As shown in Sect. 3.2, the hierarchical semantic representation is the concate-
nation of semantic representation of comment, semantic representation of news
article and continuous representation of user-generated emotion votes. On top of
this, we introduce a Softmax classifier to transform the feature representations
into conditional probabilities which can be interpreted as the probabilities of
comments to be assigned into each emotion tag.

Given the i-th comment ci in the corpus, the conditional probability that the
comment should be associated with emotion ek(k = 1, 2, · · · ,K) within the set
of emotion tags can be calculated as probability values with a softmax function.

P (ek|ci) = P (ek|repi) =
exp(ωT

k repi)∑
ej∈E exp(ωT

j repi)
(8)

where ci is the i-th comment, repi is the input hierarchical semantic represen-
tation feature of ci, E is the set of emotion categories, ω is the matrix that
transforms representation repi into a real-valued vector with dimension of |E|,
ωj is the combination parameter for each term with emotion ej .

Afterwards, we train the model in a supervised way, where each comment
in the training corpus is accompanied with its ground truth emotion tag. We
introduce the cross-entropy error between ground truth sentiment distribution
and predicted sentiment distribution as the objective loss function as follows:

J(θ) = −
∑

c∈C

∑

e∈E

P g(e|c) · log (P (e|c)) , (9)

where c ∈ C is a comment, e is a emotion in the set of emotion categories E,
P (e|c) is the predicted distribution, P g(e|c) is the ground truth sentiment distri-
bution with the same dimension of E, in which only the dimension corresponding
to the ground truth is set to 1, and the others are set to 0.

Hierarchical Semantic Representations of Online News Comments 129

We feed the cross-entropy error loss function into the back propagation algo-
rithm to update the whole set of parameters of θ = [Wcf , bcf ,Wf , bf ,Wi, bi,WC ,
bC ,Wh, bh, ω] with stochastic gradient descent.

In this paper, we didn’t enforce L2 norm constraints on parameters, instead
we employ dropout [20,27] as a regularization method to reduce overfitting. The
main idea of dropout is bringing in random removal of some units in a neural
network during training, but keeping all of them during testing. Dropout involves
a hyper parameter p, which means individual units are either “dropped out” of
the network with the probability 1 − p or kept with the probability p in each
iteration, so that a reduced network is left to be trained in each iteration and
the removed units keep their original weights.

Specifically, for the CNN part in this paper, before we feed Icf into the
convolutional layer, we add a dropout mask vector to the input vector to produce
a dropout-modified input vector ˆIcf which is formulated as follows:

ˆIcf = Icf � m, (10)
m(i) ∼ Bernoulli(p), (11)

where m is the dropout mask with the same dimension of Icf , and m(i) is the
i-th element of m. Note that, m keeps changing for every Icf . For the LSTM
part, the hidden vector is also converted into a dropout-modified form similarly.

4 Experiment

In this section, we first introduce our experimental settings including the datasets
used, evaluation metrics and baseline algorithms, then we present the experimen-
tal results with analysis and discussion.

4.1 Dataset

We collected the most-viewed news articles with their comments and user emo-
tion votes in 6 months of 2011 from the Society channel of Sina News2 and
the Entertainment channel of QQ News3. We only use these Chinese datasets
since we have not found similar services in English yet, but the proposed model
is language independent. We randomly sampled news articles with their top-20
popular comments4 and user-generated emotion votes as our training and testing
datasets, which are referred as the Sina dataset and the QQ dataset respectively
in the following pages. There are 5,185 comments, 369 news articles and 83,634
emotion votes in the Sina dataset, and 5,414 comments, 372 news articles and
993,089 emotion votes in the QQ dataset. Each comment is accompanied by its
corresponding news articles and emotion votes of the news articles.

2 http://news.sina.com.cn/society/.
3 http://ent.qq.com/.
4 If the number of comments was under 20, then we took all of them.

http://news.sina.com.cn/society/
http://ent.qq.com/

130 C. Wang et al.

Table 1. The statistics of labeled comments of datasets.

Emotion Number Proportion

Sina dataset

Touched 905 17.45%

Sympathetic 614 11.84%

Bored 336 6.48%

Angry 1,752 33.79%

Amused 408 7.87%

Sad 654 12.61%

Surprised 196 3.78%

Fervent 320 6.17%

QQ dataset

Happy 1,619 29.90%

Touched 139 2.57%

Sympathetic 641 11.84%

Angry 1,639 30.27%

Amused 563 10.40%

Sad 355 6.56%

Surprised 85 1.57%

Anxious 373 6.89%

For the purpose of performance evaluation, emotion labels in both datasets
are manually annotated. In Sina News and QQ News, even though users can tag
articles with built-in emotion categories, the tag-systems are independent from
the commenting systems so a tag cannot be paired with a specific comment. Thus
we cannot utilize users tags as labels, instead, we just borrow the built-in emotion
categories as predefined emotion categories in the annotating task. Due to the
substantial laboring efforts, each dataset is annotated by only three annotators.
The detailed statistic of labelled comments on the 8 emotions in Sina and QQ
dataset are shown in Table 1. To test the annotating quality, 100 comments
are randomly sampled from each dataset and a reviewer (not the annotator)
annotated them blindly from the original labels. The number of consistent labels
are 91 for the Sina dataset and 94 for the QQ dataset.

4.2 Evaluation Metrics

In this paper, we apply two measures to compare the performances:

1. Mean Reciprocal Rank (MRR). Given a comment c ∈ C with its ground
truth emotion tag êc and the predicted emotion ranking list Lc of c, let

Hierarchical Semantic Representations of Online News Comments 131

rankLc
(êc) be the position of êc in Lc, MRR can be denoted as follows:

MRR =
1

|C|
∑

c∈C

1
rankLc

(êc)
. (12)

2. Accuracy (Accu@m). Given a comment c ∈ C with its ground truth emo-
tion tag êc and the predicted emotion ranking list Lc@m including top-m
emotions in Lc, accuc@m can be defined as follows:

accuc@m =
{

1, êc ∈ Lc@m
0, êc /∈ Lc@m

. (13)

and Accu@m for the entire dataset is Accu@m =
∑

c∈C accuc@m/|C|.

4.3 Baseline Methods

We compared the proposed HSNN with the following methods for emotion tag-
ging with 10-fold cross validation on the two datasets.

1. In SVM+n-grams, we used bag-of-n-grams of comments as features and
trained SVM classifier with LIBLINEAR [6].

2. WE, namely Word-Emotion method [21], is a generative model based on
emotional dictionaries. It first builds the word-level and topic-level emotion
dictionaries, then uses them to predict the emotions of given comments.

3. In RPWM, or Reader Perspective Weighted Model [12], comments are not
treated equally and influence the prediction at different levels.

4. Standard CNN [11] and LSTM [8] are also implemented as baseline methods
which are state-of-the-art technologies for semantics and sentiment analysis.
Note that we used three convolutional filters with widths of 3, 4 and 5 for
standard CNN as the same as our proposed HSNN.

5. Content-based Model (CM) [29] builds a supervised fixed combination clas-
sification model and uses traditional machine learning methods to predict
emotions for the comments.

6. Finally, HSNN is our proposed model.

4.4 Comparison to Baselines

The first set of experiments in this section is conducted to evaluate the per-
formance of our proposed HSNN in comparison to the baseline methods using
only the content of comments. Experimental results are shown in Table 2.

We can see that the SVM classifiers are very strong, which are almost the
strongest among all baselines even though they nearly don’t catch any linguistic
information when the value of n is small. But with the increase of n, the bag-of-n-
grams features become more and more sparse especially the comments part, since
there are too few words in the comments. For example, the feature dimensions of
unigrams, bigrams and trigrams on QQ dataset are 12,574, 90,687 and 158,741.

132 C. Wang et al.

Table 2. Performances of emotion tagging using single information source.

Sina dataset QQ dateset

MRR Accu@1 Accu@2 Accu@3 MRR Accu@1 Accu@2 Accu@3

SVM+unigrams 0.6298 0.4455 0.6308 0.7615 0.6153 0.4256 0.6130 0.7549

SVM+bigrams 0.5901 0.4057 0.5734 0.6990 0.6028 0.4081 0.6094 0.7331

SVM+trigrams 0.5497 0.3528 0.5237 0.6627 0.5477 0.3084 0.5913 0.7118

WE 0.5687 0.3650 0.5587 0.7052 0.5340 0.3365 0.5077 0.6395

RPWM 0.5347 0.3356 0.4973 0.6512 0.5438 0.3638 0.5156 0.6206

Standard CNN 0.6166 0.4225 0.6668 0.7642 0.6326 0.4400 0.6172 0.7797

Standard LSTM 0.6414 0.4384 0.6856 0.7909 0.6833 0.4455 0.6317 0.8082

CM 0.6577 0.4838 0.6716 0.7810 0.6558 0.4907 0.6535 0.7636

HSNN {CC} 0.6841 0.5293 0.7478 0.8232 0.7046 0.4967 0.7077 0.8525

This is also the reason why the performance of SVM with trigrams is the worst
among three SVMs. We try to reduce the dimensions of features by only picking
up emotion terms, but the performance shows no noticeable improvement.

WE is effective since it uses emotional dictionaries to predict the emotions
of given comments. However, it only models comments as bag of words and
doesn’t take the semantic information of comments into account. RPWM is an
improvement of WE, since it (1) jointly models emotions and topics by LDA,
(2) calculates emotional entropy as document weights to reduce the impact of
the noisy comments on the prediction. However, the results show no obvious
improvement, we assume this is due to the fact that there is no significant dif-
ference between comments in the datasets used in this paper.

CM utilizes emotions terms5 in the comments as features, and feeds them
into a L2 regularization model. Since CM only takes considerations of the terms
which are more likely to convey the emotions, it has a obviously better per-
formance than the aforementioned baselines. From the comparison between CM
and WE/RPWM, we also can tell that discriminative models usually have better
performances and accuracies than generative models, which is proved in [9,13].

Standard CNN and LSTM outperform the vast majority of baseline methods
significantly since they model the local semantics within the comment, from
which we can tell that compositionality is important to understand the semantics
and sentiment. However, there is still some room for improvement as long as the
complex semantics, like the relations between sentences, are not captured well.

HSNN {CC}, which is our proposed model with single information source of
content of comments, has an outstanding performance over all baseline methods,
since it models not only the semantics within each sentence with modified CNN
but also the relations between sentences with Avg LSTM. This gives HSNN the
capability to model the complex semantics in documents. In addition, compar-
ing HSNN {CC} with Standard CNN and LSTM, we can tell that the logical

5 Emotion terms can be extracted by several lexical resources developed for these
tasks, such as NTU Sentiment Dictionary and Hownet.

Hierarchical Semantic Representations of Online News Comments 133

Table 3. Performances of HSNN with different information sources.

Sina dataset QQ dateset

MRR Accu@1 Accu@2 Accu@3 MRR Accu@1 Accu@2 Accu@3

HSNN {CC} 0.6841 0.5293 0.7478 0.8232 0.7046 0.4967 0.7077 0.8525

HSNN {CN} 0.6013 0.3732 0.4766 0.6725 0.5997 0.3575 0.4538 0.6732

HSNN {UEV} 0.6019 0.3969 0.5299 0.6836 0.5995 0.3596 0.5077 0.7089

HSNN {CC+CN} 0.6831 0.5232 0.7499 0.8357 0.7017 0.4986 0.7218 0.8557

HSNN {CC+UEV} 0.7290 0.5859 0.8049 0.8713 0.7537 0.5403 0.7252 0.8947

HSNN {CN+UEV} 0.6791 0.5105 0.7277 0.8515 0.6823 0.4860 0.6916 0.8291

HSNN {CC+CN+UEV} 0.7505 0.5905 0.8066 0.8904 0.7639 0.5605 0.7443 0.9049

relations between sentences do help understanding the sentiment and semantics
of the whole comment positively.

Statistical significance tests have been conducted. HSNN {CC} outperforms
other methods with a confidence level of 0.95 on all datasets.

4.5 Effect of Multiple Information Sources

The second set of experiments is conducted to (1) find out whether every informa-
tion source would be helpful for emotion tagging for comments, and (2) evaluate
the performance of HSNN with different information sources.

HSNN {CC}, HSNN {CN} and HSNN {UEV} are our proposed models with
single information source, either of the comments, the news article or the user-
generated emotion votes. HSNN {CC+CN}, HSNN {CC+UEV} and HSNN
{CN+UEV} are models with two information sources. HSNN {CC+CN+UEV}
is our integrated proposed model with all three information sources. Finally, from
Table 3, we can see that HSNN {CC} achieves the best performance compared
to the other two single information source HSNN, which indicates the comments
is more reliable and effective to predict the emotion of comments, since the com-
ment is our object for emotion tagging obviously. HSNN {UEV} is the second
best, which means that the user-generated emotion votes are more useful than
the news articles. This may be because the user emotion votes convey users’
sentiments after reading the news articles more directly.

It can also be seen that HSNNs with multiple information sources generally
outperform HSNNs with single information source, which shows that combining
different information sources is more effective than using only one specific source
of information. Furthermore, every information source is more or less helpful to
understand the semantics and sentiment of comments.

Finally, HSNN {CC+CN+UEV} yields the best performances, which clearly
demonstrates that utilizing all three information sources is more effective than
using only one or two specific sources of information. We can tell that each
source of information provides a different perspective on emotion tagging, and
respectively helps the model to achieve better prediction accuracy.

Statistical significance tests have been conducted. HSNN {CC+CN+UEV}
outperforms all other methods with a confidence level of 0.95 on all datasets.

134 C. Wang et al.

4.6 Effect of Dropout

The final set of experiments is conducted to explore the effect of dropout.
Since a common value of dropout rate is p = 0.5 in practice [20], we designate

it as our baseline, and effects of different dropout rates are measured by changes
in Acc@1 compared with 0.5. Experimental data show that changes in MRR and
Accu@2,3 have the same trend and a similar curve as Accu@1, so we only show
the changes in Acc@1, which are shown in Fig. 5.

Fig. 5. Effect of dropout rate.

From Fig. 5 we can see that non-zero dropout rates can improve the perfor-
mance of emotion tagging at a range from 0.1 to 0.7, depending on datasets,
which is consistent with the conclusions of previous research work [27]. In this
paper, we choose p = 0.6 as our dropout rate during the experiment.

5 Conclusions and Future Work

In this paper, we proposed a novel methodology, namely Hierarchical Semantic
Neural Network (HSNN), for emotion tagging for online news comments. Specif-
ically, we developed a novel hierarchical semantic representation model to learn
a semantic representation of a document based on both the semantics within
a sentence and the relations between sentences. We also proposed a novel clas-
sification method utilizing the hierarchical semantic representation of multiple
information sources. In this approach we use the information of not only the
comment but also the accompanied news article and the user-generated votes to
improve the classification accuracy of emotion tagging. The experimental results
show that our approach outperforms the traditional approaches.

For possible future research, there are several assumptions, such as the
improvement of HSNN to reorient the model to cross-domain and cross-language
online news comments emotion tagging problem, or modelling the reading habits
and emotional tendencies of individual users to improve the prediction accuracy.

Acknowledgement. This work is partially supported by National Natural Science
Foundation of China under Grant No. 61402243 and National 863 Program of China
under Grant No. 2015AA015401. This work is also partially supported by Tianjin
Municipal Science and Technology Commission under Grant No. 16JCQNJC00500 and
No. 15JCTPJC62100.

Hierarchical Semantic Representations of Online News Comments 135

References

1. Bao, S., Xu, S., Zhang, L., Yan, R., Su, Z., Han, D., Yu, Y.: Joint emotion-topic
modeling for social affective text mining. In: 2009 Ninth IEEE International Con-
ference on Data Mining, pp. 699–704. IEEE (2009)

2. Bao, S., Xu, S., Zhang, L., Yan, R., Su, Z., Han, D., Yu, Y.: Mining social emotions
from affective text. IEEE Trans. Knowl. Data Eng. 24(9), 1658–1670 (2012)

3. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

4. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

5. Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78–87 (2012)

6. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library
for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

7. Frege, G.: Sense and reference. Philos. Rev. 57(3), 209–230 (1948)
8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)
9. Jordan, A.: On discriminative vs. generative classifiers: a comparison of logistic

regression and naive Bayes. Adv. Neural Inf. Process. Syst. 14, 841 (2002)
10. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network

for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)
11. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882 (2014)
12. Li, X., Rao, Y., Chen, Y., Liu, X., Huang, H.: Social emotion classification via

reader perspective weighted model. In: Proceedings of the 30th AAAI Conference
on Artificial Intelligence (2016)

13. Liang, P., Jordan, M.I.: An asymptotic analysis of generative, discriminative, and
pseudolikelihood estimators. In: Proceedings of the 25th International Conference
on Machine Learning, pp. 584–591. ACM (2008)

14. Liu, B.: Opinion mining and sentiment analysis. In: Web Data Mining, pp. 459–526.
Springer, Heidelberg (2011)

15. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies,
vol. 1, pp. 142–150. Association for Computational Linguistics (2011)

16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

17. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf.
Retrieval 2(1–2), 1–135 (2008)

18. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using
machine learning techniques. In: Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computa-
tional Linguistics (2002)

19. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word rep-
resentation. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, vol. 14, pp. 1532–1543 (2014)

http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1408.5882

136 C. Wang et al.

20. Pham, V., Bluche, T., Kermorvant, C., Louradour, J.: Dropout improves recurrent
neural networks for handwriting recognition. In: Proceedings of the 14th Inter-
national Conference on Frontiers in Handwriting Recognition, pp. 285–290. IEEE
(2014)

21. Rao, Y., Lei, J., Wenyin, L., Li, Q., Chen, M.: Building emotional dictionary for
sentiment analysis of online news. World Wide Web 17(4), 723–742 (2014)

22. Sindhwani, V., Melville, P.: Document-word co-regularization for semi-supervised
sentiment analysis. In: 2008 Eighth IEEE International Conference on Data Min-
ing, pp. 1025–1030. IEEE (2008)

23. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts,
C.: Recursive deep models for semantic compositionality over a sentiment treebank.
In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642. Association for Computational Linguistics, October
2013

24. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural net-
work for sentiment classification. In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pp. 1422–1432 (2015)

25. Tang, D., Qin, B., Liu, T.: Learning semantic representations of users and products
for document level sentiment classification. In: Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing, pp. 1014–1023 (2015)

26. Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsu-
pervised classification of reviews. In: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pp. 417–424. Association for Compu-
tational Linguistics (2002)

27. Wu, H., Gu, X.: Towards dropout training for convolutional neural networks.
Neural Netw. 71, 1–10 (2015)

28. Zhang, K., Xie, Y., Yang, Y., Sun, A., Liu, H., Choudhary, A.: Incorporating
conditional random fields and active learning to improve sentiment identification.
Neural Netw. 58, 60–67 (2014)

29. Zhang, Y., Fang, Y., Quan, X., Dai, L., Si, L., Yuan, X.: Emotion tagging for com-
ments of online news by meta classification with heterogeneous information sources.
In: Proceedings of the 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 1059–1060. ACM (2012)

30. Zhang, Y., Zhang, N., Si, L., Lu, Y., Wang, Q., Yuan, X.: Cross-domain and
cross-category emotion tagging for comments of online news. In: Proceedings of
the 37th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 627–636. ACM (2014)

Towards a Query-Less News Search Framework
on Twitter

Xiaotian Hao(B), Ji Cheng, Jan Vosecky, and Wilfred Ng

Department of Computer Science and Engineering,
Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong
{xhao,jchengac,jvosecky,wilfred}@cse.ust.hk

Abstract. Twitter enables users to browse and access the latest news-
related content. However, given user’s interest in a particular news-
related tweet, searching for related content may be a tedious process.
Formulating an effective search query is not a trivial task. And due to the
often small size of smart phone screens, instead of typing, users always
prefer click-based operations to retrieve related content. To address these
issues, we introduce a new paradigm for news-related Twitter search
called Search by Tweet(SbT). In this paradigm, a user submits a partic-
ular tweet which triggers a search task to retrieve further related tweets.
In this paper, we formalize the SbT problem and propose an effective and
efficient framework implementing such a functionality. At the core, we
model the public Twitter stream as a dynamic graph-of-words, reflect-
ing the importance of both words and word correlations. Given an input
tweet, our framework utilizes the graph model to generate an implicit
query. Our techniques demonstrate high efficiency and effectiveness as
evaluated using a large-scale Twitter dataset and a user study.

1 Introduction

Twitter has already become a popular platform to browse recent news updates
all around the world. However, the way Twitter users interact with content that
interests them is still fairly limited.

Given that users have seen an interested news-related tweet (e.g., outbreak
of the Ebola epidemic), they may wish to find more content related to the topic
(e.g., potential spread of Ebola in the US). The user has the option to identify
related Twitter accounts (e.g., BBC News) and browse to find relevant tweets,
which is a tedious process. Alternatively, the user may perform a Twitter search
which results in another set of problems.

First, it may be difficult to identify an effective search query that retrieves
relevant content. A general query may yield low precision while a long and
specific query may yield few or no search results.

Second, we observe that smart phone users always prefer click-based interac-
tions instead of typing due to the small screen size of the device.

To solve those problems, our goal in this work is therefore to allow a user to
search for information about a specific news-related tweet without formulating an
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 137–152, 2017.
DOI: 10.1007/978-3-319-55699-4 9

138 X. Hao et al.

Streaming Graph

Pre-processor

Graph updater

Cluster updater

Crawler

Twitter Stream

mini-batch

Implicit query
generation

Tweetcluster

Queries

Cluster Matcher

User

Search results

Twitter
Search Engine

Fig. 1. A conceptual perspective of the SbT framework

explicit search query. In this new paradigm, called Search by Tweet(SbT), users
are enabled to select a particular news-related tweet and provided automatically
retrieved tweets related to such news topic. The conceptual perspective of the
SbT framework is illustrated in Fig. 1.

We model Twitter content as a dynamic graph of words. The graph is con-
tinuously updated by monitoring the Twitter public stream [1]. Given an input
user selected tweet, we map it onto the graph. We use weights of individual
words and correlations among words to select a set of keywords as the implicit
query. We also detect word clusters in the graph, which correspond to popular
topics discussed in Twitter. For input tweets that correspond to a cluster, we
generate an implicit query based on both the tweet’s words and related words in
the cluster. Finally, the generated implicit query is utilized to perform a search
task using a Twitter search engine.

The main contributions of this paper are as follows:

– We develop a novel dynamic graph model to capture words and word correla-
tions in Twitter streams.

– We develop a new streaming graph clustering method, which efficiently discov-
ers dense clusters in the graph-of-words. Each cluster corresponds to a popular
topic in Twitter.

– We propose a novel technique to match an input tweet to a word cluster.

2 Related Work

Microblog search. Prior work on traditional query-driven Twitter search incor-
porates tweet-query relevance, query expansion [15] and temporal aspects of
tweets [6,16]. However, such traditional approaches are insufficient in many real-
life scenarios.

Query expansion and suggestion. Recent approaches on query expansion
include random walks on a word graph [8] and entity queries produced using
auxiliary knowledge bases [5]. For long query documents, frequency-based models
may be used to produce query suggestions [10]. However, these techniques are
not readily applicable to the Search by Tweet problem, which aims at eliminating
the need of an explicit query.

Towards a Query-Less News Search Framework on Twitter 139

Topic detection from document streams. Detection of hot topics from
social media collections has been an active research area in recent years [13,14,
18,19]. We mention two important approaches to topic detection in recent years:
burstiness analysis and streaming graph clustering.

Burstiness. Burstiness of a term is commonly used for detecting “hot” or “trend-
ing” topics [11,13,18]. Apart from detecting emerging and hot topics, burstiness
is also employed in news clustering [9] and IR [13].

Streaming graph clustering. To model the semantics in document streams, a
graph-based representation is commonly adopted [2–4,14,19]. Streaming graph
clustering may then be applied to detect hot topics in the graph. Some exist-
ing approaches to streaming graph clustering may be adapted to our scenario,
however they suffer from various drawbacks. Aggarwal et al. [3] do not consider
edge deletions, which are common in our setting. [4] assumes a complete graph,
which is not a reasonable assumption for social media streams.

In summary, we are not aware of any previous work on the Search by Tweet
problem proposed in this paper. Our work is inspired by the advances in the
mentioned areas and we develop a framework that integrates a streaming graph
model, burstiness-aware weighting and implicit query generation.

3 Search by Tweet(SbT) Framework

3.1 Preliminaries

Definition 1 (Implicit Query). An implicit query iQ is a search query automat-
ically generated from an input tweet T . The implicit query concisely represents
the tweet’s topic for the purpose of performing a search task. Formally, iQ is
represented as a set of words {w1, . . . , wn}.
Definition 2 (Search by Tweet(SbT)). Given an input tweet T , the goal of SbT
is to produce an implicit query iQ based on the most recent semantics extracted
from the Twitter platform.

An important assumption in the SbT paradigm is that microblog users are inter-
ested in recent content. The techniques in this paper are tailored towards search
tasks focusing on recent data (cf. Sect. 3.3, a time decay function is utilized to
promote recency).

3.2 Graph Model of Twitter Content

The first step in our framework is to construct a dynamic graph-of-words,
referred to as a base graph. This graph is then utilized to generate implicit
queries based on an input tweet. The main requirement of the base graph BG
is to capture important keywords occurring in Twitter and correlations among
them.

140 X. Hao et al.

Formally, let BG = (V,E) denote a weighted graph, where each node v ∈ V
corresponds to a word and an edge e(u, v) ∈ E represents correlation of node
u with node v. Let further w(v) and w(u, v) = w(e) denote the weight of node
v and edge e(u, v), respectively. w(·) can also be viewed as a k-dimensional
weight vector, thus associating k weights with each node or edge. The details of
weighting functions are presented in Sect. 3.3.

Dynamic Updating. A graph update involves the processing of words (i.e.,
nodes) and word-pairs (i.e., edges) in the arriving tweets. To tackle the large
volume and fast rates of tweets, the following techniques are employed to achieve
efficient updates.

Mini-batches. To alleviate overhead caused by the fast arrival of tweets, we per-
form tweet caching. When the cache C reaches its capacity |C|, we send its
contents as a mini-batch to update BG.

Lazy updates. When updating BG at time τi, only nodes and edges occurring in
C are added or updated. A similar approach is used to update edges.

Probation buffers. The amount of unique words in the Twitter stream grows
rapidly. This would result in an ever-increasing size of BG and seriously affect
efficiency. To manage this issue, we adopt a probation buffer approach.

When processing a mini-batch, we initialize an empty word buffer Bw and
edge buffer Be with thresholds θw and θe. When a mini-batch is processed, only
words with Bw(w) > θw and edges with Be(u, v) > θe will enter the graph.

Graph Maintenance. To remove out-of-date content from the graph, we
employ a maintenance procedure at regular time intervals. Let δ be the length
of the time intervals. For each node and edge in BG, we maintain its latest
update time τupd. For the maintenance, first, we remove all nodes and edges,
for which the difference of τupd from the current time τi exceeds δ. Second, the
frequency weight of each node w ∈ V decays over time, as discussed in Sect. 3.3.
For all remaining nodes in BG, we check the node weight at current time τi and
remove all nodes with a weight below θw. Additionally, every 24 h we calculate
the average daily frequency of each word in BG.

3.3 Weights of Nodes and Edges

Node Weights. In traditional long documents, word importance is typically
based on term frequency or inverse document frequency. But tweets are short
and the number of them is rapidly growing. This inspires new metrics of word
importance, such as burstiness and node correlations.

Self-based Weights

Frequency. Frequency weight fr(v) is based on the occurrences of v in a mini-
batch. After a mini-batch is processed at time τ , the new frequency of word v

Towards a Query-Less News Search Framework on Twitter 141

is interpolated with the value lastly stored in BG at time τupd(v), i.e., fr(v)′ =
λfr(v)(τupd) + (1 − λ)fr(v)(τi).

To promote recency, we adjust the word frequency using an exponential
time decay function, i.e. λ = e−ρ·|τi−τupd|. At query time τi, we may obtain
the adjusted frequency of v using τupd(v): fr(v, τi) = fr(v) ∗ e−ρ·|τi−τupd|.

Long-term average daily frequency. For each node v in BG, we monitor its long-
term average daily frequency, represented as a Gaussian (μv, σv). We perform
lazy counting of node frequencies, only processing nodes that occurred in a mini-
batch. The average daily frequency is only calculated on-demand by keeping
track of updates during the current day. In 24-hour intervals, we examine the
last update time and use the current day frequency to update (μv, σv).

Burstiness. To reflect the “trending” behaviour of a word, we calculate a bursti-
ness score based on its average daily frequency (μv, σv). We adopt the z-score
as the measure of burstiness, bu(v) = df(v)−μv

σv
, where df(v) is the frequency

of v in the current day. As the daily frequency of each word is only updated in
24-hour intervals, we provide the most recent estimate of the current day fre-
quency df(v). The estimated current day frequency is calculated as dfestim(v) =
αdfcurr(v) ∗ ω + (1 − α)dfprev(v), where t ∈ [0, 1] is relative time since midnight,
ω = 1

t and α = t. After substituting α, ω into the above equation, we obtain

dfestim(v) = dfcurr(v) + (1 − t)dfprev(v). (1)

Connectivity-based weights. For a node v, the following connectivity-based
weights are calculated based on its incident edges e ∈ E(v):
(i) Degree (deg(v)), (ii) Sum of edge correlations (sumCo(v)), (iii) Sum of fre-
quencies of incident edges (log) (sumFr(v)) and (iv) Adjusted avg. edge corre-
lation adjCo(v) = 1

|E(v)|
∑

e∈E(v)
co(e) ∗ fr(e).

Edge Weights. (i) Frequency. Calculation and updates of edge frequency
fr(u, v) proceed similarly to node frequency (cf. Sect. 3.3). (ii) Correlation. Cor-
relation is defined as co(u, v) = P (u|v) = P (u,v)

P (v) .

3.4 Implicit Query Generation

Given an input tweet T , we generate implicit queries from BG as follows. First,
we map words in T onto BG. Second, we extract a set of candidate queries at
various query lengths. Third, candidate queries are ranked based on node and
edge weights. Finally, we select the k highest-ranked queries as the final implicit
queries. In this section, we describe ranking of queries of different lengths.

1-Word Query Ranking. To rank individual words from tweet T , we directly use
their node weights in BG (cf. Sect. 3.3).

2-Word Query Ranking. Given tweet T , we extract all word pairs (u, v), for which
we find a matching edge in BG. We utilize edge weights (cf. Sect. 3.3) and their
linear combination to rank candidate 2-word queries.

142 X. Hao et al.

3 or More Words Query Ranking. We first generate all 3 (or more) words com-
binations w1, w2...wi from T , such that each wi ∈ V and each (wi, wj) ∈ E. The
following weighting functions (or linear combinations thereof) may be used to
rank 3 (or more) words queries.

– Definition: E.fr =
∑

fr(wi, wj), Definition: E.co =
∑

co(wi, wj).
– Definition: N.fr =

∑
fr(wi), Definition: N.co =

∑
avgCo(wi).

Global Query Ranking. To produce an overall ranking of queries across different
lengths, we propose a heuristic function that considers both the query length
and the weights of nodes and edges. Given a candidate query Q, we assign a
Global Query Score GQS as follows.

GQS(Q) =
(
1 +

α
∑

(u,v)∈Q w(u,v)

1+|{(u,v)∈Q}|
) ∑

v∈Q w(v)

|{v∈Q}| , (2)

where w(v) is node weight and w(u, v) is edge weight. Parameter α controls
the importance of edge weights, thus influencing the query length preference. A
higher value of α results in queries with more edges to be promoted.

3.5 Clustering for Implicit Query Generation

In this section, we detect dense clusters in the graph and utilize such clusters to
obtain queries with context knowledge that not included in the input tweet. In
SbT framework, popular topics in Twitter are exhibited as dense clusters in BG.
Our clustering approach is tailored towards the dynamic nature of BG. First,
we select high-weight nodes and edges from BG into a core graph CG. Second,
we use triangles in CG as the building blocks of clusters. The approach is shown
to be highly effective (Sect. 4).

Core Graph from Base Graph. The core graph CG is an undirected sub-
graph constructed from the base graph BG by selecting a subset of core nodes. A
core node should exhibit two properties: (1) strong correlation with other nodes,
indicating a strong semantic relationship, and (2) frequent co-occurrance with
other nodes, indicating a high popularity. We collectively refer to these properties
as node importance, defined as ϕ(v) =

∑
e∈Ein(v)

co(e) ∗ 1
|Ein(v)|

∑
e∈Ein(v)

co(e).
where Ein(v) is the set of incoming edges to v.

We may now form core graph CG by inserting all core nodes and all edges
between them. CG = (VC , EC), where VC = {v|v ∈ BG ∧ ϕ(v) > ϑw},
EC = {(u, v)|u ∈ VC ∧ v ∈ VC ∧ ϕ(u, v) > ϑe} , where ϕ(u, v) = co(u, v)fr(u, v)
and ϑw is a threshold.

Finally, we prune all core nodes, which have less than 2 neighbours in CG.
The pruning operation will be further explained in Sect. 3.5.

Towards a Query-Less News Search Framework on Twitter 143

Streaming Cluster Detection. As a core concept for efficient cluster detec-
tion, we exploit the triangle property in CG. We define a cluster as follows.

Definition 3. A cluster C is a subgraph of CG that satisfies the following con-
ditions: (i) C consists of one or more triangles Δ(u, v, w), (ii) All triangles in
C must have an edge in common, (iii) Any clusters Ci, Cj with a common edge
will be merged.

To account for the dynamic nature of the graph, our culstering algorithm
should support the following maintenance operations:

Core Node Addition. The operation AddCoreNode(v) proceeds as follows:

– Add v to CG and for each neighbour u ∈ NCG(v): AddCoreEdge(u, v)

Core Edge Addition. Each time an edge is added, we apply procedure
AddCoreEdge(u, v). Assuming that u and v are already in CG, it proceeds
as follows:

– For each w ∈ NCG(u) ∩ NCG(v): FoundTriangle(u, v, w)

Each time a triangle is found, it will either become the basis of a new cluster,
or existing clusters will be merged.

Core Node Deletion. Operation RemoveCoreNode(v) proceeds as follows:

– For each edge (v, w) adjacent to v: RemoveCoreEdge(v,w)
– Remove v from CG

Core Edge Deletion. The removal of an edge from CG requires additional
checks related to the triangle property of clusters. Figure 2 illustrates an example
of the cases. In case 1, the removal of the edge (u, v) results in the splitting of a
cluster. But in case 2, the additional edge enables the cluster to hold even after
the removal of edge (u, v).

Tweet-to-Cluster Matching. Given an input tweet T , we may consult CG
and identify one or more clusters related to T . We propose a matching algorithm
to determine a correct cluster assignment.

First, we identify a candidate cluster C if the number of matching words in T
and C exceeds a minimum threshold (set to 2 in our work). Second, we extract
a number of features from each matching word and construct a feature vector
f(T,C) = 〈f1, ..., fn〉. Third, we pass f(T,C) to a classifier to determine the
matching result.

To train the classifier, we build a training dataset of tweet-cluster pairs and
manually assign a relevance score to each pair. Although our method initially
requires human input, we note that the obtained classifier is applicable to any
new tweets or clusters. The following features are used.

Features of matching nodes (44 features). We compute the following
features for each matching word and aggregate using {max,min, sum, avg}:

144 X. Hao et al.

v

u
x

z

t y

v

u
x

z

y

art. point

(a) Case 1

v

u
x

z

y

v

u
x

z

yt

(b) Case 2

Fig. 2. Cases after removing edge (u, v)

(i) No. of matching nodes, (ii) Self-based properties (cf. Sect. 3.3), (iii) Connec-
tivity based properties on BG (cf. Sect. 3.3), (iv) Connectivity based properties
on matched cluster C.

Features of edges among matching nodes (8 features). The follow-
ing features are aggregated using {max,min, sum, avg}: Edge frequency (log)
(Edge.fr), correlation (Edge.co).

Approximate matching (2 features). Apart from analyzing words from T
that exactly match C, we may utilize the remaining words in T as additional
contextual evidence. We denote all tweet’s words except already matched words
as Ta and calculate the following features: (i) Average edge correlation of words
in Ta and C, (ii) Average edge frequency (log) of all Ta and C.

Implicit Query from Cluster. After matching input tweet T to cluster C, we
can generate implicit queries from C. However, query generated from relatively
large clusters may contain words not related to T . To address this issue, we
propose two approaches.

1. Tweet-independent cluster query. All words in C are considered.
2. Tweet-dependent cluster query. In this approach, the choice of words from

cluster C is influenced by input tweet T . Specifically,
(a) We consider nodes in C that have an edge to words in T , denoted as C1

T .
(b) For each node v ∈ C1

T , we obtain its tweet-dependent weight based on
its correlation to words u ∈ T , wC,T (v) = max(u,v){corr(u, v)}. Weight
wC,T (v) is then used in conjunction with any node weighting function.

Both approaches above lead to the selection of a set of candidate queries from
cluster C. Selection and ranking of candidate queries proceeds in the same man-
ner as described in Sect. 3.4.

4 Experiments

4.1 Datasets

Background Twitter Dataset. We collect a Twitter dataset by monitoring
the Twitter Streaming API [1] between March 1 and October 10, 2014. In total,
our dataset contains over 307 million English tweets.

We utilize data between March 1-September 30 2014 to measure long-term
daily average words frequency (cf. Sect. 3.3). The remainder (October 1–10) is
used for constructing our graph model and cluster detection.

Towards a Query-Less News Search Framework on Twitter 145

News-Related Tweet Pools. We first gather a list of 100 most influential
news accounts in Twitter1. For each account, we then crawl all tweets published
from October 1-10-2014 using the Twitter REST API [1]. The reason we use
those tweets to build the experiment pool is that the “quality” of them are com-
paratively higher (with less typos and oral English expression etc.) This makes
it more convenient for users to finish the user study and give more reasonable
results. Note that the proposed SbT framework will not just gather information
from a fix set of users but the whole twitter stream.

Pool-R: Random News Tweets. For each day in our 10-day period, we ran-
domly sample 2 tweets from each news account. In total, we obtain 200 tweets
per day and 2,000 tweets in total.

Pool-P: News Tweets from Popular Topics. The popularity of news stories
varies dramatically, from large-scale news (e.g., “Ebola”) to small-scale stories.
For Pool-P we select tweets that refer to popular topics. In our framework,
popular topics are identified using our cluster detection algorithm (cf. Sect. 3.5).
As a result, 200 tweets are identified to construct Pool-P.

4.2 Graph Model Construction

Our graph model is built over a 10-day period of our background Twitter
dataset2 (cf. Sect. 4.1). We use the following parameter settings in our exper-
iments: δ = 1 day, ρ = 0.3, θw = 5, θe = 5, ϑw = 10, ϑe = 10. We test different
thresholds in preliminary experiments. Based on the experiment result, we set
threshold here not high as we just want to filter out rare words and edges. Unless
otherwise stated, we set mini-batch size to 100,000 tweets.

Baseline Graph Model. As a baseline for comparison with our graph model
and clustering techniques, we implement a streaming graph model by Agarwal
et al. [2]. The model constructs a dynamic, undirected and unweighted graph
of words from a document stream and discovers density-based clusters. Cluster-
ing is performed by selecting an “active graph” of highly important nodes and
detecting short-cycles as the basis of clusters. We utilize this model as a baseline
both in our scalability evaluation and when evaluating implicit query generation.

Scalability. We evaluate the running time of our graph updating and clustering
algorithms (cf. Sects. 3.2 and 3.5). First, we vary the size of the mini-batch (cf.
Sect. 3.2) between 2,000 and 100,000 tweets and run our model on 500,000 tweets.
Within intervals of 100,000 tweets, we calculate the average time to process 1,000
tweets. Figure 3(a) presents the timing results. We detect around 1,000 English
tweets per minute arriving via the Twitter Streaming API [1] and that is about

1 http://memeburn.com/2010/09/the-100-most-influential-news-media-twitter-
accounts/.

2 As pre-processing steps, we remove reply-tweets, user names and stopwords. All
hashtags are retained and no stemming is applied.

http://memeburn.com/2010/09/the-100-most-influential-news-media-twitter-accounts/
http://memeburn.com/2010/09/the-100-most-influential-news-media-twitter-accounts/

146 X. Hao et al.

Fig. 3. Scalability evaluation

Fig. 4. Example clusters

one percent of the total volume of Twitter Stream. The timing results thus
demonstrate that our framework is able to process the real-time public stream
while the news-related content is only a part of it.

To compare the scalability of our framework against the baseline [2], we apply
both methods to a dataset of 2 million tweets. We follow the parameterization of
the baseline as presented in [2] and set the mini-batch size in our framework to
10,000. Figure 3(b) presents the timing results. The results show that the running
time of the baseline increases as more data is processed. By our analysis, this is
caused by the node deletion and edge maintenance strategy in [2]. In summary,
our experiments show that our framework is suitable for handling streaming
datasets of a large scale.

Cluster Detection. Using our background dataset, we process a 10-day period
of tweets. After each day, we store a snapshot of all discovered clusters. Figure 4
presents examples of clusters discovered using our method.

We now present an example to illustrate how a cluster is leveraged to gen-
erate an implicit query from an input tweet. As input tweet, we select the fol-
lowing tweet from Pool-P : “Modi will pick up a broom and sweep the streets
for nationwide “Clean India” campaign [URL]”. Using our base graph BG, we
may generate implicit queries from the words in the tweet. However, the tweet
can also be matched to the “Clean India” cluster in Fig. 4(b). Using the cluster,
we generate the following queries: #mycleanindia and swachh bharat (i.e., the
indian name for the “Clean India” campaign).

Towards a Query-Less News Search Framework on Twitter 147

4.3 Tweet-to-Cluster Matching

In this section, we evaluate our proposed method for assignment of tweets to
clusters (cf. Sect. 3.5). We use simple word matching to generate 1000 candidate
“tweet-cluster” pairs, based on a 2 matching words threshold. Then we invite
four independent language experts to manually label each “tweet-cluster” pair
as true or false. A “true” label is only applied if the tweet directly corresponds
to the cluster’s topic.

For the classification task, we use logistic regression. As evaluation metrics,
we use precision, recall and F-measure. Table 1 reports the average classification
results using 10-fold cross-validation. Note that the “optimal” feature set is gen-
erated by a wrapper feature selector [12]. The selected set contains 5 features3.
This optimal feature set is then employed in our tweet-to-cluster matching task.

Table 1. Tweet to cluster classification

Features Prec Recall F

NumMatches >= 2 0.539 1.000 0.700

NumMatches >= 3 0.871 0.467 0.608

Node-based 0.817 0.816 0.816

Connectivity-graph 0.721 0.720 0.720

Connectivity-cluster 0.750 0.746 0.747

Edges among matching nodes 0.756 0.739 0.738

Approximate matching 0.629 0.626 0.626

Optimal (5 features) 0.896 0.828 0.861

All (52 features) 0.840 0.838 0.839

4.4 Implicit Query Evaluation

Implicit Query Ratings. In order to evaluate implicit queries generated by
our framework, we aim to collect user ratings for each query generated from an
input tweet T . The maximum query length here is restricted to 3 words. The
reason for setting the restriction is the number of queries generated without any
restriction is too large for user evaluation. Shown by a small-scale pre-processing
experiment, queries with length longer than 3 performs worse than shorter ones.
Longer queries always provide just a few or even no new information.

The experiment result is reasonable based on the following arguments:
(i) The average length of Tweets tends to be short after pre-processing. Hence
it is easy for long queries to cause over-fitting problem; (ii) According to [17],
most queries in microblogs tend to be short.

Then we start the evaluation by generating a set of queries with maximum
length 3-word for each tweet. For each tweet, we generate queries up to 3 words

3
Features: burst sum, graphAvgCorr min, clustDeg min, clustRelDeg sum, clustSumCorr max.

148 X. Hao et al.

Table 2. Query rating dataset statistics

Raters 103 Avg Med

Ratings 16,829 Queries per tweet 12.5 13

Rated tweets 416 Ratings per tweet 3.2 3

. . . from Pool-R 214 Tweets per rater 12.9 16

. . . from Pool-P 202

Tweet-query pairs 5,142

with 3 queries of each length. Similarly, we generate queries from a cluster
matching the tweet, with max. 2 queries of each length from the cluster. As
mentioned in Sect. 3.5, we generate two types of queries from a cluster (i.e.,
tweet-dependent and independent). We also match the tweet against baseline
clusters (cf. Sect. 4.2) and obtain 2 queries at each length of {1, 2, 3} words.

Additional Baselines. To compare our methods with other applicable tech-
niques, we extract hashtags and named entities identified by a NE tagger [7].

We conduct a user study with 103 university students from various disci-
plines. The user needs to choose tweets from the web-based interface and then
rates each query as 2 (“matches the tweet’s topic”), 1 (“somewhat matches”) or
0 (“does not match”). In total, each user may rate queries from 20 tweets (10
from each pool). The statistics of the obtained ratings are shown in Table 2. After
this step, we have 68% of queries with rating < 1 and 32% with rating ∈ [1, 2].

Evaluation Methodology. We formulate implicit query generation as a rank-
ing task: given an input tweet, the most relevant queries should be ranked at
the top positions. For each tweet, we compare ranked queries by a method M
against the human ratings. For precision calculation, we consider queries with
avgRating ≥ 1 as ‘relevant’4. The evaluation scores across all tweets are then
averaged using a weighted average. As the number of raters who chose each
tweet varies, we assign a higher weight (i.e., higher confidence) to tweets chosen
by more raters.

We employ 3 metrics for ranking evaluation: (1) Precision@k : we calcu-
late precision at k = {1, 2, 3}. (2) Mean Average Precision (MAP): this metric
provides an overall score across all ranking positions, considering all ‘relevant’
queries in the ground truth. Thus, MAP can be interpreted as both precision and
recall of method M. (3) Normalized Discounted Cumulative Gain (NDCG)@k :
we calculate NDCG at k = {1, 2, 3}.

Results. Overall ranking results are presented in Fig. 5 using tweets from Pool-
P. We present (a) results using all rated tweets, (b) results using only tweets

4
Thus, 96.4% of tweets have at least one ‘relevant’ query. Among these tweets, on average 4.1 out
of 12.5 queries are ‘relevant’.

Towards a Query-Less News Search Framework on Twitter 149

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7 Prec@1 Prec@3 NDCG@3 MAP

(a) Pool-P : All tweets

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 Prec@1 Prec@3 NDCG@3 MAP

(b) Pool-P : Covered tweets

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Prec@1 Prec@3 NDCG@3 MAP

(c) Cluster queries

Fig. 5. Implicit query ranking evaluation

covered by the respective method. A method is regarded as covering tweet T if
it produced at least 1 query from T . Due to space limitations, we only present
the best result of each method and the used weights.

For Pool-P, the highest precision among all tweets is achieved by 3-word
queries from our framework, followed by 3-word queries from our clusters (pre-
fixed “C-3W”). Among the top-3 positions, 2-word queries perform the best by
NDCG. When considering the retrieval of all queries, GQS has the highest MAP
score, while maintaining a high NDCG@3. This indicates that our global query
ranking effectively ranks queries of different lengths. Baseline methods do not
perform as well on our datasets. Hashtags only cover around 16% of tweets.
Named entities cover over 90% of tweets, however they retrieve a small portion
of relevant queries, as shown by MAP. Baseline clusters (prefixed “B”) fail to
cover many tweets (cf. Sect. 4.1).

Regarding Pool-R, we note that our clusters only cover 2.5% of the rated
tweets and baseline clusters cover 0%, thus we omit these results.

As the last step, we study implicit query generation from clusters (cf.
Sect. 3.5) in Pool-P. Figure 5(c) shows the results of both tweet-dependent
and tweet-independent queries at each query length. The results suggest that
(1) longer cluster-based queries are more effective, and (2) tweet-dependent
queries outperform queries independently selected from a cluster.

4.5 Twitter Search Results Evaluation

Twitter Search Results Ratings. We also set an experiment to collect user
rating for each search result from the implicit queries. Regarding the previous

150 X. Hao et al.

Table 3. Twitter search results rating dataset statistics

Raters 21 Avg Med

Ratings 1303 Queries per tweet 8.54 9

Rated tweets 139 Ratings per tweet 1.1 1.03

Tweet-query pairs 1,191 Tweets per rater 7.3 8.67

evaluation result, we use the set of queries generated from each tweet in Pool-P.
Other settings are the same to that of the implicit query evaluation experiment
but only 2 queries are generated for each type and length.

Additional Baselines. We extract one additional type of phrases from each
tweet as baseline: Twitter-LDA (LDA) which is proposed by [20] to address
the short and informal nature of tweets. We use the program implemented by
the authors of [20], with parameters: Numberoftopics = 50, alphag = 0.5,
betaword = 0.01, betab = 0.01, gamma = 20 and Maximumiterations = 100.

We conduct a user study with 21 university students from various disciplines
in this experiment. The user needs to choose tweets from the web-based inter-
face and then rates each set of search results as 2 (“matches the tweet’s topic
and provide new information”), 1 (“somewhat matches or provides limited new
information”) or 0 (“does not match or provides no new information”).

The statistics of the obtained ratings are shown in Table 3. For each tweet-
query pair, we combine all ratings by different reviewers as the average. After this
step, we have 39.7% of queries with rating < 1 and 60.3% with rating ∈ [1, 2].

Evaluation Methodology. For the purpose of this evaluation, we formulate
Twitter search by implicit query as a ranking task: given an input tweet, the
best search result set should be ranked at the top positions. For each tweet, we
therefore compare ranked search result sets by a method M against the human
ratings. The other settings, including the calculation of evaluation score and
ranking metrics, are exactly the same to the former experiment in Sect. 4.4.

Results. Overall ranking results are presented in Fig. 6 using tweets from Pool-
P which are covered by the respective method. Among the top-3 positions, 2-
word queries perform the best according to NDCG@2. When considering the
retrieval of all queries, GQS has the highest MAP score, while maintaining a
high NDCG@3. This indicates that our global query ranking effectively ranks
queries of different lengths.

Baseline methods do not perform well on our datasets. Hashtag still suffers
from low coverage problem. LDA is a commonly recognized effective text mining
tool, but the Twitter-LDA only out performs our framework in precision@1 with
small advantage, and our framework outperforms Twitter-LDA in all the other
metrics. Besides, Twitter-LDA does not support real-time update operations.
Thus, although Twitter-LDA is powerful, it is not suitable for the streaming
application scenario required by SbT.

Towards a Query-Less News Search Framework on Twitter 151

Fig. 6. Twitter search results ranking evaluation

5 Conclusion

In this paper, we propose a novel paradigm for Twitter search, referred to as
Search by Tweet(SbT). Rather than formulating a search query, a user may
trigger a search task by a single click to select a news-related tweet. The presented
framework is both efficient and effective in generating implicit queries from input
tweets, as demonstrated in our experiments. Moreover, our work opens up new
directions to further refine the techniques supporting SbT. For example, we may
study how to automatically generate the best amount of queries, in order to
cover all aspects of the input tweet.

References

1. Twitter API (2016). https://dev.twitter.com/docs
2. Agarwal, M.K., Ramamritham, K., Bhide, M.: Real time discovery of dense clus-

ters in highly dynamic graphs: identifying real world events in highly dynamic
environments. In: VLDB (2012)

3. Aggarwal, C.C., Zhao, Y., Yu, P.S.: On clustering graph streams. In: SIAM, pp.
478–489 (2010)

4. Angel, A., Sarkas, N., Koudas, N., Srivastava, D.: Dense subgraph maintenance
under streaming edge weight updates for real-time story identification. In: VLDB
(2012)

5. Dalton, J., Dietz, L., Allan, J.: Entity query feature expansion using knowledge
base links. In: SIGIR (2014)

6. Efron, M., Golovchinsky, G.: Estimation methods for ranking recent information.
In: SIGIR (2011)

7. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by Gibbs sampling. In: ACL (2005)

8. Gao, J., Xu, G., Xu, J.: Query expansion using path-constrained random walks.
In: SIGIR (2013)

9. He, Q., Chang, K., Lim, E.P.: Using burstiness to improve clustering of topics in
news streams. In: ICDM (2007)

10. Kim, Y., Croft, W.B.: Diversifying query suggestions based on query documents.
In: SIGIR (2014)

https://dev.twitter.com/docs

152 X. Hao et al.

11. Kleinberg, J.: Bursty and hierarchical structure in streams. In: KDD (2002)
12. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–

2), 273–324 (1997)
13. Lappas, T., Arai, B., Platakis, M., Kotsakos, D., Gunopulos, D.: On burstiness-

aware search for document sequences. In: KDD, p. 477 (2009)
14. Lee, P., Lakshmanan, L.V., Milios, E.E.: Incremental cluster evolution tracking

from highly dynamic network data. In: ICDE (2014)
15. Massoudi, K., Tsagkias, M., Rijke, M., Weerkamp, W.: Incorporating query expan-

sion and quality indicators in searching microblog posts. In: Clough, P., Foley,
C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR
2011. LNCS, vol. 6611, pp. 362–367. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20161-5 36

16. Miyanishi, T., Seki, K., Uehara, K.: Improving pseudo-relevance feedback via tweet
selection. In: CIKM (2013)

17. Teevan, J., Ramage, D., Morris, M.R.: #TwitterSearch: a comparison of microblog
search and web search. In: WSDM (2011)

18. Wang, C., Zhang, M., Ru, L., Ma, S.: Automatic online news topic ranking using
media focus and user attention based on aging theory. In: CIKM, October 2008

19. Yuan, M., Wu, K.-L., Jacques-Silva, G., Lu, Y.: Efficient processing of streaming
graphs for evolution-aware clustering categories and subject descriptors. In: CIKM
(2013)

20. Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., Li, X.: Comparing
twitter and traditional media using topic models. In: Clough, P., Foley, C., Gurrin,
C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol.
6611, pp. 338–349. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20161-5 34

http://dx.doi.org/10.1007/978-3-642-20161-5_36
http://dx.doi.org/10.1007/978-3-642-20161-5_36
http://dx.doi.org/10.1007/978-3-642-20161-5_34

Semantic Definition Ranking

Zehui Hao1, Zhongyuan Wang2, Xiaofeng Meng1(B), Jun Yan2,
and Qiuyue Wang1

1 School of Information, Renmin University of China, Beijing, China
{jane0331,xfmeng,qiuyuew}@ruc.edu.cn
2 Microsoft Research Asia, Beijing, China
wzhy@outlook.com, junyan@microsoft.com

Abstract. Question answering has been a focus of much attention from
academia and industry. Search engines have already tried to provide
direct answers for question-like queries. Among these queries, “What” is
one of the biggest segments. Since results excerpted from Wikipedia often
have a coverage problem, some models begin to rank definitions that are
extracted from web documents, including Ranking SVM and Maximum
Entropy Context Model. But they only adopt syntactic features and
cannot understand definitions semantically. In this paper, we propose
a language model incorporating knowledge bases to learn the regulari-
ties behind good definitions. It combines recurrent neural network based
language model with a process of mapping words to context-appropriate
concepts. Using the knowledge learnt from neural networks, we define
two semantic features to evaluate definitions, one of which is confirmed
to be effective by experiments. Results show that our model improves
precision a lot. Our approach has been applied in production.

Keywords: Definition ranking · Question answering · Recurrent neural
network · Conceptualization

1 Introduction

Question Answering (QA), which provides direct answers instead of ten blue
links for users’ queries, has become a hot trend in web searching. Definition
questions, like “What is bandy?”, occupy more than 20% of query logs in QA
systems [4]. In this paper, we focus on this type of queries.

Figure 1 shows that search engines have already offered definitions for some
definienda (the terms being defined). However, these answers are a little coarse
and narrow in coverage. Some are just excerpted from Wikipedia.

This research was partially supported by the grants from the National Key Research
and Development Program of China (No. 2016YFB1000603, 2016YFB1000602); the
Natural Science Foundation of China (No. 61532010, 61379050, 91646203, 61532016);
Specialized Research Fund for the Doctoral Program of Higher Education (No.
20130004130001), and the Fundamental Research Funds for the Central Universi-
ties, the Research Funds of Renmin University (No. 11XNL010).

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 153–168, 2017.
DOI: 10.1007/978-3-319-55699-4 10

154 Z. Hao et al.

Fig. 1. Definitions excerpted from Wikipedia

To break the bottleneck of Wikipedia, some approaches begin to extract
answers from unstructured texts in the web. A general pipeline consists of two
steps. First, use human-defined rules to collect definition candidates automati-
cally from web documents. Then, rank the candidates through a scoring system.
Typically, the second step is based on co-occurrence frequency [8,23], scores
learnt from Support Vector Machine (SVM) or Language Models (LMs) [4,24],
and discriminant functions of Maximum Entropy Model [5]. These methods, even
if some simple LMs, cannot analyze sentences thoroughly in semantics. The can-
didates they prefer are the ones that look like definitions, but may not give a
precise description. For the second step here, which we call “definition ranking”,
unsatisfying results mainly come from the following challenges:

– Semantic analysis: The semantics in unstructured texts are complicated. It
is hard to define semantic features for machines to tell good definitions from
bad ones like human beings.

– Language polysemy: Most words denote more than one sense in natural
language. Different senses often result in misunderstanding and increase the
difficulty of ranking.

– Text particularity: Definitions are a special kind of texts. Traditional lan-
guage models cannot be applied directly to analyze them.

With the effective practice of neural networks, recent studies on text under-
standing and information retrieval have begun to take advantage of implicit
knowledge representation models. Based on the co-occurrence relation, the most
successful method [9] maps words to real-number vectors in a low dimensional
space. But these models pay little attention to other relations, such as the is-a
relation, which plays an important role when defining a term.

To make up for above drawbacks, we take an explicit knowledge represen-
tation model [6,18,21] into consideration. It infers the most likely concept of a
word in a specific context. In other words, it understands texts with the help of
the is-a relation among words. Because each concept is a clear category name
shared by a group of hyponyms in KBs, this model captures explicit semantics.

Good definitions usually contain the notion and major attributes of
definienda. In general, the concepts of these words are quite related to the con-
cepts of definienda, while the concepts of irrelevant words or trivial matters are

Semantic Definition Ranking 155

not. Our starting point is that good definitions should be sentences
not only full of related words with definienda, but keeping the con-
cepts of these words coherent. Take the following definition candidates of
“emphysema” as an example:

Candidate1. Emphysema is a disease associated with smoking, and usually
manifests itself in patients after 50 years of age, affecting about two million
Americans each year.

Candidate2. Emphysema is a progressive lung disease that primarily affects
smokers and causes shortness of breath and difficulty breathing.

Candidate1 does not mention any symptom of “emphysema”. Impacts, like
“affecting about two million Americans each year”, are less important when
defining a disease. Candidate2 contains the notion and major symptoms with-
out too much trivial details.

If we only rely on syntactic features or word-vector similarity, Candidate1
can still rank high. It has a definition format and seems longer than Candidate2.
Moreover, “emphysema” is indeed related to some words in it, and is likely
to appear with “Americans” frequently in web documents. But looking at a
concept level, we will find that the concepts of some words in Candidate1 (like
〈Americans, nation〉1) do not relate to the concept of “emphysema” (disease) as
closely as Candidate2. Section 5.4 explains how our model analyzes at a concept
level in details.

In this paper, we propose a combined model to rank answers semantically
for definition questions. Our contributions are in two aspects:

– We combine the neural network with the is-a relation through conceptual-
ization and make them complement each other, so that our model is more
suitable to handle definition sentences.

– We provide a semantic feature to judge definitions, which is learnt from both
unstructured texts and KBs.

The rest of this paper is organized as follows. Section 2 introduces related
works, including definition ranking and conceptualization. Section 3 gives some
preliminaries about Recurrent Neural Network based Language Model and ana-
lyzes its drawbacks. Section 4 describes our model and defines semantic features.
Section 5 explains the experiment framework and shows the results. We conclude
the paper in Sect. 6.

2 Related Work

Many approaches have been proposed to rank definition candidates collected
from the web. Xu, Licuanan, and Weischedel [23] learn the centroid vector (i.e.,
vector of word frequency) from Wikipedia. Definitions are ranked according to

1 The angle brackets mean a word and its concept.

156 Z. Hao et al.

how closely the distribution of their descriptive words correlates with the cen-
troid vector of definienda. Kaisser, Scheible, and Webber [8] employ a similar
approach and use the frequency of descriptive words as their weights. These
statistical methods only grasp the shallow co-occurrence relation among words.
The performance falls into decrease for definienda not covered by Wikipedia.

Xu et al. [24] rank definitions through Ranking SVM [7,20]. The features they
adopt are syntactic. In practice, sentence length often dominates the preference
and reduces accuracy.

Language models are also used for definition ranking. Chen, Zhou, and
Wang [4] compare the influence of three kinds of features, including unigrams,
bigrams and biterms. However, these LMs ignore the problem of language poly-
semy. Only one representation for one word may lead to misunderstanding.

Figueroa and Atkinson [5] propose a Maximum Entropy Context (MEC)
Model which performs better than centroid vector models and biterm LMs. It
accounts for regularities across both positive and negative examples. Although
some context indicators are merged to classify definienda, they still only adopt
syntactic features finally.

A related work introduces an unsupervised reasoning process which deter-
mines context-appropriate concepts for words, called conceptualization [18,21].
For example, seeing “product of apple”, we know that “apple” is a company or
brand rather than food or fruit. Under the hypothesis that concepts of adjacent
words should be coherent, Hua et al. [6] develop an efficient framework to per-
form human-like conceptualization. Given a word in a sentence, it first obtains
a concept set {c1, . . . , cn} from the is-a relation among words. Then, it uses a
weighted-vote algorithm to pick out the most appropriate concepts based on
the co-occurrence relation among concepts. The two kinds of relation both come
from KBs. Probabilistic knowledge in KBs enables probabilistic reasoning and
helps understand sentences precisely. However, compared to the is-a relation, the
offline co-occurrence relation is so large that the whole framework becomes too
heavy.

3 Preliminary

Recurrent Neural Network based Language Model (RNNLM) [12] is a robust
model in natural language processing. Although humans can use long contexts
to understand sentences, classic N-gram models barely rely on several preceding
words to predict the next word. To break the limitation, RNNLM maintains the
hidden layer to make contextual information loop inside the network. It has an
advantage of learning arbitrary-length history itself over other LMs.

Considering the task of definition ranking, our target is to let the LM learn the
regularities behind good definitions. Despite semantic coherence, words in good
definitions are usually organized in a regular way (which syntactic features also
try to learn). A LM ignoring the order of words is not competent to handle this
special kind of texts. Fortunately, RNNLM often shows an outstanding ability
to comprehend sequential data [10,11,19]. This is why we choose it instead of

Semantic Definition Ranking 157

U

W

R

s(t-1)

w(t)

s(t)

y(t)

(a) Original RNNLM

R

y(t)

p(t)

Q

U

W

s(t-1)

w(t)

s(t)

(b) CRNNLM

Fig. 2. Model structure of RNNLM

other LMs which perform better on training word vectors or computing word
similarity.

The structure of original RNNLM is shown in Fig. 2(a). The input vector
w(t) and the output vector y(t) are both V -dimensional, where V is the vocab-
ulary size. w(t) represents the input word in time t and uses 1-of-V coding. y(t)
represents probability distribution over all the words. Its each dimension corre-
sponds to the probability of a word to appear next, namely P (wi|w(t), s(t− 1)),
where wi is a word in vocabulary. The other vector in the input layer, s(t − 1),
which represents contextual information, is copied from the hidden layer of last
iteration. Vector s(t) and y(t) are computed as follows:

s(t) = F (Uw(t) + Ws(t − 1)) (1)
y(t) = G(Rs(t)) (2)

where U , W and R on arrows are transition matrices. F (z) is sigmoid activation
function, and G(zm) is softmax function:

F (z) =
1

1 + e−z
, G(zm) =

ezm∑
k e

zk

The objective of training RNNLM is to maximize the probability of words in the
training corpus:

T∑

t=1

logP (w(t + 1)|w(t), s(t − 1)) (3)

Despite its outstanding performance, RNNLM is often criticized for high com-
putational complexity, especially the calculation between s(t) and y(t). One way
to speedup is to factorize y(t) as shown in Fig. 2(b), called CRNNLM (RNNLM

158 Z. Hao et al.

with classes) [13]. Words in vocabulary are classified in advance according to
their frequency. Vector p(t) is probability distribution over all the classes, and
is computed similarly to Eq. 2:

p(t) = G(Qs(t)) (4)

where Q is also a transition matrix. Probability estimation and backpropagation
are done only on part of y(t), that is the words sharing the same class with
w(t + 1) (the real next word in the corpus). Other words are put aside for the
moment. Therefore, computational complexity between the hidden and output
layer is reduced. Word probability turns to:

P (wi|w(t), s(t − 1)) = P (wi|pi, s(t))P (pi|s(t)) (5)

where wi is a word which must belong to the same class pi with w(t + 1).
We illustrate the training process of CRNNLM through the sentence “She is

eating apple pies”. We hypothesizes that “eating” is the current input word, and
is the 100th word in the vocabulary. Hence, the 100th dimension of w(t) is 1,
and other dimensions are 0. Vector s(t−1) is copied from the hidden layer of last
iteration, namely when “is” is the input word. Vector s(t) and p(t) are obtained
according to Eqs. 1 and 4. Since the next word is “apple”, we check which words
belong to the same class with it. Only the corresponding dimensions of these
words, including “apple” itself, in y(t) are computed. Each dimension of p(t)
is the probability of a class to appear next, namely P (pi|s(t)) in Eq. 5. Each
dimension of y(t) is the conditional probability of a word, namely P (wi|pi, s(t)).
After that, we do backpropagation based on the objective Function 3 to update
the parameters in all transition matrices, namely U , W , R and Q. After reading
all the sentences in the corpus, the training of these matrices is finished. Then,
we can use the whole network to predict other sentences.

4 RNNLM Combined with Knowledge Bases

Despite the effectiveness of CRNNLM, there are some drawbacks in its structure.
For the output layer, whether a word to be considered or not just depends on its
frequency proximity to w(t + 1). The factorization method is a little arbitrary,
making RNNLM lose much semantics.

For the input layer, since vector w(t) uses 1-of-V coding, every column in
matrix U is actually the implicit representation of a word in the vector space.
Uw(t) in Eq. 1 is adding the vector of the input word to the context. But words
are polysemous. For sentences “product of apple” and “eating apple pie”, the
same vector of two “apple” is used. Different senses may disturb the training
and predicting process.

Therefore, we propose two variants complementing CRNNLM with the is-
a relation among words, making RNNLM adapt to the definition-ranking task
naturally. Since the is-a relation comes from KBs, we call our model KRNNLM.
Both of our variants conduct a reasonable method to factorize the output layer

Semantic Definition Ranking 159

and implement learning-based conceptualization in the input layer. On the basis
of KRNNLM-1, KRNNLM-2 adds a direct connection between the input and
output layer, which strengthens the effect of conceptualization.

4.1 The First Variant (KRNNLM-1)

Factorization Based on Is-A Relation. As shown in Fig. 3(a), KRNNLM-1
replaces the class vector p(t) with a concept vector cout(t). Its each dimension
equals to the probability of a concept given the context, namely P (coutj |s(t)),
where coutj is a concept in KBs. In the output layer, we estimate probability
distribution first over all concepts (cout(t)), and then over the words sharing
the same concepts with the next word (part of y(t)). Vector cout(t) is obtained
similarly to Eq. 2:

cout(t) = G(Qs(t)) (6)

Word probability turns to:

P (wi|w(t), s(t − 1)) = P (wi|Cwi
, s(t))P (Cwi

|s(t))
= P (wi|Cwi

, s(t))
∑

j∈Cwi

P (coutj |s(t)) (7)

where Cwi
denotes the concept set of wi in KBs.

Vector cout(t) here seems like p(t) in CRNNLM. The difference between them
does not lie in themselves, but how they influence the factorization of y(t). In
CRNNLM, words are classified according to frequency. When we update the
network, it makes no sense to discard those words just because their frequency
is not proximate to the next word.

In KRNNLM, words are classified according to the is-a relation in KBs. We
think that words are more likely to appear in the next position if they belong to
the same concepts with w(t+ 1). These words are what we are really interested
in when time = t. Besides, words can belong to more than one concept in KBs
because of polysemy, so there is a summation in Eq. 7.

To understand our factorization method more clearly, we take “apple” as the
next word w(t + 1) for example, and go through the computation process from
the hidden layer to the output layer. It consists of two parts. For the concept part
cout(t), we use Eq. 6 to get the probability distribution of all concepts, including
the concepts of “apple”. For the word part y(t), according to KBs, “apple” have
four concepts, namely company, brand, food and fruit. Therefore, we only select
words belonging to the four concepts to update (like “microsoft” and “orange”)
and discard others. This is how our model combines KBs to reduce computational
complexity of original RNNLM without losing too much semantics.

Conceptualization in the Input Layer. In Fig. 3(a), KRNNLM-1 also adds
a concept vector cin(t) to the input layer. The objective function turns to:

T∑

t=1

logP (w(t + 1)|w(t), cin(t), s(t − 1)) (8)

160 Z. Hao et al.

Fig. 3. Structure of KRNNLM (The bold arrow means that there exists a conceptual-
ization process.)

The hidden layer is computed as:

s(t) = F (Uw(t) + Jcin(t) + Ws(t − 1)) (9)

Similar to vector cout(t), each dimension of cin(t) equals to the probability
of a concept given the context, namely P (cinj |s(t − 1)). Note that the context
here is not s(t) but s(t − 1). In fact, this value has already been estimated in
the output layer when time = t− 1, so we obtain cin(t) from cout(t− 1) in last
iteration. This operation is similar to the loop of s(t). In Fig. 3(a), the dashed
arrow means copying the concept vector in the output layer to the input layer
of next iteration.

In practice, we do not directly copy cin(t−1) to cout(t). In order to decrease
noise, we only retain concepts of the input word. The values of other concepts
in cin(t) are set to zero. In this way, cin(t) represents the context-specified
probability of linking the input word to each of its concepts. Specifically, each
dimension of cin(t) is computed as follows:

P (cinj |s(t − 1)) =

{
P (coutj |s(t−1))∑

k∈Cw
P (coutk|s(t−1)) , j ∈ Cw

0, else

where cinj is the j-th concept in cint(t), and coutj corresponds to the same
dimension in cout(t − 1). Cw denotes the concept set of the input word.

Vector cin(t) here is intended to distinguish different senses of the input
word in given contexts. Take “apple” as the input word w(t) in sentence “eat-
ing apple pies” for example. Through Eq. 9, concept food and fruit are added
to the hidden layer with larger probability than concept company and brand.

Semantic Definition Ranking 161

Uw(t)+Jcin(t) represents not only the word “apple”, but an “apple” with spe-
cific semantics. We do not assign a vector to each sense of a word like [3,16], but
achieve disambiguation through incorporating concepts to the vector space.

The process of determining cin(t) is doing human-like conceptualization.
Since concepts are added to the hidden layer with different probability, the whole
model is embedded with semantics from a concept level. Meanwhile, compared
to [6], we acquire the co-occurrence relation among concepts from the vector
space rather than large offline data. That is why we call it learning-based con-
ceptualization.

4.2 The Second Variant (KRNNLM-2)

The second variant is based on KRNNLM-1. As shown in Fig. 3(b), we connect
cin(t) to both the concept and word parts of the output layer. Even if the
context vector s(t) loses some information about concepts, the direct connection
between cin(t) and the output layer can compensate for it. Thus, the output
layer becomes:

y(t) = G(Rs(t) + Mcin(t))
cout(t) = G(Qs(t) + Ncin(t))

4.3 Backpropagation Through Time

To ensure that the neural network can learn what information to store in the
hidden layer itself, RNNLM usually conducts a different backpropagation, called
Backpropagation Through Time (BPTT) [1,17]. As illustrated in Fig. 3(c), our
two variants both implement BPTT between the input and hidden layer. The
concept vector cin(t) is recorded together with w(t). Thus, the is-a relation from
KBs loops with historical information in the neural network.

Through Sects. 4.2 and 4.3, our conceptualization in Sect. 4.1 strengthens its
influence on the whole neural network.

4.4 Semantic Features

Here, we define two semantic features: the vector similarity between definienda
and definitions (f-sim); the log-probability sum of words in definitions (f-obj).
They can be derived from any variant of RNNLM, including CRNNLM and
KRNNLM. We obtain the two features from trained models and compare their
effects in Sect. 5.3.

f-sim. As analyzed in Sect. 3, every column in matrix U can be regarded as the
vector of a word. Given a definiendum, we use its corresponding column u in U
to represent it. Every definition is also represented by a vector s. We construct
it through the traditional bag-of-words (BOW) approach, namely adding up the
vectors of all the words in the sentence. After that, f-sim could be computed
through any vector similarity between u and s. We use cosine similarity in the
experiments.

162 Z. Hao et al.

f-obj. The log-probability sum of words is exactly the objective function of
RNNLM, namely Function 3 for CRNNLM and Function 8 for KRNNLM. It
tells how likely a series of words is to be a sentence. Moreover, since sentences in
our corpus are all positive examples, our f-obj measures how much regularities of
good definitions a given sentence correlates with. The larger f-obj is, the better
a definition is.

4.5 Complexity

The complexity of a neural network is measured by its multiplications between
transition matrices and vectors from each layer to the next one. For original
RNNLM, the complexity of calculation from s(t− 1) to s(t), namely Ws(t− 1),
is H×H. Similarly, the complexity of calculation from s(t) to y(t), namely Rs(t),
is H × V . Because w(t) uses 1-of-V coding, the complexity of from w(t) to s(t),
namely Uw(t), is O(1). Hence, the complexity of original RNNLM is:

T (n) ∝ O(H × H + H × V) ∝ O(H × V)

where H is the predefined dimensionality of s(t) usually within 1000. As the
vocabulary size, V is also the dimensionality of y(t), which can reach several
hundreds of thousands. Therefore, the complexity of RNNLM is dominated by
the calculation from the hidden layer to the output layer. For CRNNLM:

T (n) ∝ O(H × P + H × V ′)

where P is the predefined class size, and also the dimensionality of p(t), usually
within 1000. V ′ is the number of words sharing the same class with the next
word. The value of V ′ depends on V and P , but often ranges from tens to tens
of thousands. For both KRNNLM-1 and KRNNLM-2:

T (n) ∝ O(H × C + H × V ′′)

where C is the concept size, and V ′′ is the number of words sharing the same
concepts with the next word. The values of C and V ′′ are much smaller than V ,
although they depend on the knowledge bases and may be little larger than P
and V ′. Thus, our model also reduces the complexity of original RNNLM.

5 Experiments and Results

5.1 Framework

Our experiments consist of three steps in general:

Extract. The experiments are evaluated on a set of open-domain definienda
randomly selected from Freebase [2]. Since our work focuses on ranking, we
simply send these definienda to a search engine and extract their definition
candidates from top three web documents according to the patterns: . . . 〈term〉
is a|is the|is one of|is known as|stands for|, called|means . . .

Semantic Definition Ranking 163

Label. All the candidates are annotated by three annotators with bad, indif-
ferent, or good2. Bad means definitions do not refer to any general notion or
attribute of definienda. Good means definitions contain the notion and major
attributes of definienda. Indifferent means definitions mention some notions or
attributes, but contain trivial matters. Definienda with less than five definitions
are removed. As a result, we obtain 2,936 definienda with 417 definitions (bad:
1,386, indifferent: 927, good: 623). Note that these definitions are labeled for
testing, not for training LMs. As an unsupervised model, RNNLM trains over
corpus without any annotation, so do CRNNLM and KRNNLM.

Evaluate. The baseline method is [24] which only adopts syntactic features in
Ranking SVM [7]. Besides, our model is compared with CRNNLM [13], MEC [5]
and Skip-gram [9] model. MEC is designed for the definition-ranking task, while
the other two are not. Skip-gram is a state-of-the-art LM to train word vectors
and compute word similarity. We directly use the Word2Vec toolkit3 to imple-
ment Skip-gram, and extend the RNNLM toolkit4 to implement KRNNLM-1
and KRNNLM-2. We also add our two variants to the baseline method as a
feature respectively. Table 1 explains our evaluation metrics.

Table 1. Evaluation metrics for definition ranking

Metrics Explanation

Error
rate

The ratio of mistaken ranked definitions. A definition is regarded as mistaken
ranked when there is another definition with better label ranked behind it

Recall The average ratio of good definitions in top-K candidates. K varies with each
term, as it is the real number of good definitions

P@N The ratio of definienda whose top-N candidates contain good definitions

5.2 Training Language Models

The corpus for training LMs (namely CRNNLM, Skip-gram, and our model)
is composed of good definitions. In Wikipedia, the first sentence in every
document is often a concise and accurate definition. We collect these sen-
tences from Wikipedia Dumps5 and filter out those obeying the patterns in
Sect. 5.1. Finally, we construct a corpus having 1,343,249 good definitions (11M
words, 237K vocabulary, words appearing less than 3 times is removed from
vocabulary).

Any knowledge base providing the is-a relation among words can be adopted
in our model. We use an open-domain KB, called Probase6 [22], and aggregate
2 If there is a contradiction among annotators, they will be asked to re-annotate the

definition. If different opinions still exist, another two annotators will take part, and
we will adopt the label given by most annotators.

3 https://code.google.com/archive/p/word2vec/.
4 http://www.rnnlm.org.
5 https://dumps.wikimedia.org/.
6 Probase data is available at http://probase.msra.cn/dataset.aspx.

https://code.google.com/archive/p/word2vec/
http://www.rnnlm.org
https://dumps.wikimedia.org/
http://probase.msra.cn/dataset.aspx

164 Z. Hao et al.

all the concepts into 500 clusters. Besides, the size of the hidden layer in the four
LMs is all set to 200. The BPTT step for CRNNLM and our model is 4.

5.3 Results

First, we examine whether f-sim and f-obj are capable to evaluate definitions. For
the testing definitions in Sect. 5.1, we rank them according to their two features
from trained CRNNLM and Skip-gram respectively. As a state-of-the-art model
to train word vectors, Skip-gram has a similar matrix to matrix U of RNNLM.
It can also provide f-sim for each definition. CRNNLM(f-sim), Skip-gram(f-sim)
and CRNNLM(f-obj) in Table 2 show the results.

It is obvious that f-obj is more effective than f-sim, no matter f-sim from
CRNNLM or Skip-gram. f-sim indeed measures the relevance between definienda
and definitions, but does not reflect word sequence. Even if Skip-gram often per-
forms best on finding related words or documents [9,14,15], it cannot be applied
to the definition-ranking task directly. f-obj is derived from the whole neural
network and thus takes advantage of the characteristic of RNNLM. It picks out
definitions which not only contain relevant words but organize them as how
positive examples in the training corpus do. The results confirm that defini-
tion ranking is not a task only requiring to find semantically related sentences.
Therefore, for our two variants, we merely use them to calculate f-obj.

Table 2. Definition ranking results(%)

Error rate Recall P@1 P@3

SVM 35.7 48.3 49.9 88.2

CRNNLM(f-sim) 55.1 31.5 30.4 75.0

Skip-gram(f-sim) 50.4 41.6 41.4 79.6

CRNNLM(f-obj) 33.8 53.3 51.8 89.8

MEC 32.7 58.1 54.7 92.2

KRNNLM-1(f-obj) 28.5 68.3 66.0 92.5

KRNNLM-2(f-obj) 26.2 70.9 68.1 92.5

KRNNLM-1(f-obj)+SVM 17.9 74.6 73.4 92.8

KRNNLM-2(f-obj)+SVM 16.6 74.2 75.8 93.1

We can see that only relying on one feature f-obj, CRNNLM and our two
variants all perform better than the baseline method on P@1. Our model is also
more accurate than MEC. After adding f-obj to the baseline method (KRNNLM-
1(obj)+SVM and KRNNLM-2(obj)+SVM in Table 2), we get the best results.
It indicates that no matter how many syntactic features the baseline method
and MEC adopt, semantic analysis is the key to improve the precession. For
MEC, the semantics complemented by context indicators are still not thorough
enough. In contrast, our model provides more sufficient semantics for ranking.

Semantic Definition Ranking 165

In general, KRNNLM-1 and KRNNLM-2 surpass all compared models. Both
CRNNLM and Skip-gram sidestep the problem of language polysemy. Since they
do not distinguish different word senses, their training and prediction process
is disturbed. To reduce this kind of disturbance, our model figures out word
senses though determining their context-appropriate concepts with the help of
the is-a relation from Probase. The coherence of these concepts meanwhile is
used by our model to evaluate definitions, which exactly achieves our starting
point described in the introduction.

Moreover, in KRNNLM-2, the direct connection between the input and out-
put layer consolidates the effect of conceptualization and helps it get higher
precision than KRNNLM-1. Though, KRNNLM-1 has less transition matrices,
namely less parameters, than KRNNLM-2. For a neural network, less parame-
ters mean smaller training corpus to reach a well-trained convergence. If there
is not enough corpus, KRNNLM-1 can be a better choice.

Additionally, it is reasonable that the differences among all models are not
that much on P@3. It is a quite loose standard compared to P@1. For terms
having five definition candidates, a model can easily achieve 100% on P@3, as
long as it puts one good definition in the top three. For real QA systems, P@1
is the most important metric since they usually offer only one answer to users.

Fig. 4. P@1 with different coverage of the KB

In the above experiments of KRNNLM-1 and KRNNLM-2, about 50% words
can find their concepts from Probase. To examine the influence of the KB, we
change its coverage. Figure 4 shows that the larger the coverage is, the higher
precision our model achieves. When only 5% words have concepts, P@1 on our
two variants is very close to CRNNLM. Besides, we can see that the superiority
of KRNNLM-2 becomes obvious with the increasing coverage.

5.4 Case Studies

We take “emphysema” in Sect. 1 for example to explain how our model analyzes
definitions at a concept level. When we put Candidate1 into trained KRNNLM,
four words can find their most appropriate concepts: 〈disease, disease〉, 〈patients,
patient〉, 〈Americans, nation〉 and 〈year, time〉. These words, including “Amer-
icans” and “year”, are likely to appear frequently with “emphysema” in corpus.

166 Z. Hao et al.

But concept nation and time are not coherent to the concept of “emphysema”
(disease) as highly as the concepts of Candidate2, including 〈lung disease, dis-
ease〉, 〈smokers, patient〉 and 〈breath, physiological process〉.

Even though words are close to “emphysema” in the vector space, their
context-appropriate concepts may not locate near disease. If users search for
relevant sentences or relevant titles of web pages, Candidate1 is good enough.
However, according to the analysis of our starting point in the introduction,
Candidate2 should rank higher. Our model achieves this from a concept level.

Table 3 gives some other examples that KRNNLM-2 makes right judgements
but CRNNLM does not. Inside one model, higher scores mean better definitions.
Scores from different models are not comparable.

For the first term “bandy”, Candidate1 has more relevant concepts (〈team,
activity〉, 〈sport, activity〉, 〈skaters, athlete〉, 〈sticks, device〉, 〈ball, device〉, 〈goal,
device〉) with it than Candidate2 (〈sport, activity〉, 〈athletes, athlete〉), even if
the words themselves of Candidate1 may not appear as frequently as the words
of Candidate2 in corpus. In other words, Candidate1 has more concepts close to
the concepts of “bandy” (sport) in the vector space. Definition candidates of the
other two terms in Table 3 are in a similar situation.

Table 3. Examples

Term Definition CRNNLM
(f-obj)

KRNNLM-2
(f-obj)

Bandy 1. Bandy is a team winter sport played on ice, in which
skaters use sticks to direct a ball into the opposing team’s
goal

0.3182 0.1214

2. Bandy is the second most popular winter sport in the
world based on the number of participating athletes

0.4938 0.0759

Honey 1. Honey is a sweet food made by bees foraging nectar
from flowers

−0.1985 −0.1293

2. Honey is adulterated if it has the addition of other
sugars, syrups or compounds, making it cheaper to
produce, or has many fructose contents in order to stave
off

−0.3266 −0.1082

Diving 1. Diving is the sport of jumping or falling into water
from a platform or springboard

0.0304 0.1182

2. Diving is a separate sport in Olympic 0.3097 −0.0836

6 Conclusion

In this paper, we introduce a language model to do semantic definition ranking. It
combines RNNLM with learning-based conceptualization and captures semantics
from both unstructured texts and the is-a relation in knowledge bases. We define
two semantic features derived from neural networks and confirm that the log-
probability sum can evaluate definitions effectively. We compare our model with

Semantic Definition Ranking 167

other approaches which only adopt syntactic features or sidestep the problem of
language polysemy. Results indicate that semantic analysis is the key to improve
the precision, and the incorporated knowledge base makes our model suit for the
definition-ranking task better. Our approach has been applied in production.

References

1. Boden, M.: A guide to recurrent neural networks and backpropagation. Dallas
Project Sics Technical report T Sics (2001)

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, pp.
1247–1250. ACM (2008)

3. Chen, X., Liu, Z., Sun, M.: A unified model for word sense representation and
disambiguation. In: EMNLP, pp. 1025–1035. Citeseer (2014)

4. Chen, Y., Zhou, M., Wang, S.: Reranking answers for definitional QA using lan-
guage modeling. In: Proceedings of the 21st International Conference on Com-
putational Linguistics and the 44th Annual Meeting of the Association for Com-
putational Linguistics, pp. 1081–1088. Association for Computational Linguistics
(2006)

5. Figueroa, A., Atkinson, J.: Maximum entropy context models for ranking biograph-
ical answers to open-domain definition questions. In: AAAI 2011, San Francisco,
California, USA, August (2011)

6. Hua, W., Wang, Z., Wang, H., Zheng, K., Zhou, X.: Short text understanding
through lexical-semantic analysis. In: International Conference on Data Engineer-
ing (ICDE) (2015)

7. Joachims, T.: Training linear SVMS in linear time. In: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 217–226. ACM (2006)

8. Kaisser, M., Scheible, S., Webber, B.L.: Experiments at the University of Edin-
burgh for the TREC 2006 QA track. In: TREC (2006)

9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

10. Mikolov, T., Deoras, A., Kombrink, S., Burget, L., Cernockỳ, J.: Empirical eval-
uation and combination of advanced language modeling techniques. In: INTER-
SPEECH, pp. 605–608, no. s1 (2011)

11. Mikolov, T., Deoras, A., Povey, D., Burget, L., Černockỳ, J.: Strategies for training
large scale neural network language models. In: 2011 IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), pp. 196–201. IEEE (2011)

12. Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., Khudanpur, S.: Recurrent
neural network based language model. In: INTERSPEECH 2010, Makuhari, Chiba,
Japan, 26–30 September 2010, pp. 1045–1048 (2010)

13. Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J.H., Khudanpur, S.: Extensions
of recurrent neural network language model. In: 2011 IEEE International Confer-
ence on ICASSP, pp. 5528–5531. IEEE (2011)

14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

http://arxiv.org/abs/1301.3781

168 Z. Hao et al.

15. Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word
representations. In: HLT-NAACL, vol. 13, pp. 746–751 (2013)

16. Neelakantan, A., Shankar, J., Passos, A., McCallum, A.: Efficient non-parametric
estimation of multiple embeddings per word in vector space. arXiv preprint
arXiv:1504.06654 (2015)

17. Rumelhart, D.E.: Leaning internal representations by back-propagating errors.
Nature 323, 318–362 (1986)

18. Song, Y., Wang, H., Wang, Z., Li, H., Chen, W.: Short text conceptualization
using a probabilistic knowledgebase. In: Proceedings of the Twenty-Second IJCAI-
Volume Three, pp. 2330–2336. AAAI Press (2011)

19. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural
networks. In: Proceedings of ICML-11, pp. 1017–1024 (2011)

20. Vapnik, V.: The Nature of Statistical Learning Theory. Springer Science & Business
Media, New York (2013)

21. Wang, Z., Zhao, K., Wang, H., Meng, X., Wen, J.R.: Query understanding through
knowledge-based conceptualization. In: Proceedings of the Twenty-Fourth IJCAI
(2015)

22. Wu, W., Li, H., Wang, H., Zhu, K.Q.: Probase: a probabilistic taxonomy for text
understanding. In: Proceedings of the 2012 ACM SIGMOD International Confer-
ence on Management of Data, pp. 481–492. ACM (2012)

23. Xu, J., Licuanan, A., Weischedel, R.M.: TREC 2003 QA at BBN: answering defi-
nitional questions. In: TREC, pp. 98–106 (2003)

24. Xu, J., Cao, Y., Li, H., Zhao, M.: Ranking definitions with supervised learning
methods. In: Special Interest Tracks and Posters of the 14th International Confer-
ence on World Wide Web, pp. 811–819. ACM (2005)

http://arxiv.org/abs/1504.06654

An Improved Approach for Long Tail
Advertising in Sponsored Search

Amar Budhiraja(B) and P. Krishna Reddy

FC Kohli Center in Intelligent Systems, IIIT-Hyderabad, Hyderabad 500032, India
amar.budhiraja@research.iiit.ac.in, pkreddy@iiit.ac.in

Abstract. Search queries follow a long tail distribution which results in
harder management of ad space for sponsored search. During keyword
auctions, advertisers also tend to target head query keywords, thereby
creating an imbalance in demand for head and tail keywords. This leads
to under-utilization of ad space of tail query keywords. In this paper,
we have explored a mechanism that allows the advertisers to bid on
concepts rather than keywords. The tail query keywords are utilized by
allocating a mix of head and tail keywords related to the concept. In
the literature, an effort has been made to improve sponsored search by
extracting the knowledge of coverage patterns among the keywords of
transactional query logs. In this paper, we propose an improved approach
to allow advertisers to bid on high level concepts instead of keywords in
sponsored search. The proposed approach utilizes the knowledge of level-
wise coverage patterns to allocate incoming search queries to advertisers
in an efficient manner by utilizing the long tail. Experimental results on
AOL search query data set show improvement in ad space utilization
and reach of advertisers.

Keywords: Data mining · Computational advertising · Coverage Pat-
terns · Pattern mining · Sponsored search

1 Introduction

Sponsored search is one of the most dominant mediums to advertise on the web.
In sponsored search, advertisers create ad campaigns and bid on keywords that
they deem relevant to their product. For an incoming search query, advertise-
ments from the ad campaigns containing the query keywords are shown along
with the search results. If multiple advertisers demand to be shown on the same
query’s results page, they are ranked for the allocation of ad space. The ranking
is based on multiple factors including the bid amount of the advertiser on the
query keywords, relevance of ad content to the search query, Click-Through-Rate
(CTR) and budget of the advertiser.

It has been established that search queries follow a long tail distribution of a
small but fat head of frequent queries and a long-thin tail of infrequent queries
[5,8]. Advertising on tail queries is challenging as tail queries are encountered
rarely which makes them harder to interpret for sponsored search. Also, it has
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 169–184, 2017.
DOI: 10.1007/978-3-319-55699-4 11

170 A. Budhiraja and P.K. Reddy

been observed that during keyword auctions, advertisers tend to bid for the head
keywords to reach more users. This creates a high demand for the head query
keywords and little to no demand for the tail query keywords [5]. The long tail
phenomenon also makes it quite difficult to capture the relevant keywords from
the long tail. The above stated factors result in under-utilization of a significant
amount of the ad space provided by tail queries in sponsored search which is
identified as the research issue.

In this paper, we propose an approach to exploit the long tail of the search
query keywords for sponsored search. We propose that instead of bidding on
search query keywords, advertisers should bid upon high level concepts. The
motivation for bidding on concepts is inspired from the trends in advertising on
social media1. In social media advertising, advertisers target concepts beyond
keywords such as photography, reading, travelling, lifestyle, etc. In sponsored
search, bidding on concepts will result in capitalization of ad space of the tail
queries as all the keywords would be considered based on the relevancy rather
than frequency. Bidding on concepts instead of keywords would also ensure that
the advertisers do not have to retrieve all the search keywords from the long tail.

In this paper, we propose an allocation mechanism for sponsored by consid-
ering concepts as bidding units rather than search keywords. We propose that
during ad campaign creation, an advertiser is shown a taxonomy based on the
content of the ad and is asked to select a concept in the shown taxonomy that
seems to be the most relevant to the product. We propose an approximate allo-
cation between the nodes of the taxonomy and the advertisers. To acknowledge
the long tail phenomenon, we extract knowledge from search query logs using
the notion of Coverage Patterns (CPs). In the literature, approaches to extract
CPs have been proposed. Given a database of transactions, a CP is a set of items
such that it covers a certain percentage of transactions having given overlap ratio
[1,4]. By extending the notion of CPs, an effort has been made in the literature
to propose allocation approach to improve the performance of Adwords [3] and
display advertising by assuming that an advertiser requests a set of keywords
[11]. In this paper, taking query logs and taxonomy as input, we propose a new
approach to extract the knowledge of level-wise CPs and use the corresponding
framework to allocate incoming queries to ads based on the high-level concepts
requested by the advertisers. The proposed approach is compared against tradi-
tional sponsored search model. Experiments on the real world data set of AOL
search query logs show the improvement in ad space utilization and reach of
advertisers.

The remainder of this paper is organized as follows: in Sect. 2, we review
the related work in the context of coverage patterns and long tail advertising in
search engines; in Sect. 3 we discuss the background on coverage patterns and
sponsored search; in Sect. 4 we discuss the basic idea followed by the proposed
approach in Sect. 5; experiments are discussed in Sect. 6, followed by conclusions
and a discussion on future work in Sect. 7.

1 ads.twitter.com

https://ads.twitter.com

An Improved Approach for Long Tail Advertising in Sponsored Search 171

2 Related Work

In the literature, challenges of tail queries in sponsored have been primarily
addressed by means of query expansion [5–7]. In [6], the authors formulated a
taxonomy based model to classify search queries, specifically tail queries. Organic
clicks were used as blind feedback mechanism to learn the model. The authors
explored its feasibility on search advertisement relevance. In another study [7],
the authors expand search queries by adding multiple features including category
of retrieved web pages and salient named entities. Furthermore, the authors
propose an approach in [5] to expand tail queries in real time using an inverted
index build from head and torso expanded queries. Using the expanded queries,
the authors show improvement in ad retrieval.

Sponsored search has been also explored from the perspective of revenue
optimization. In [9], it was modelled as an online bipartite matching problem
such that advertisers are one set of disjoint vertices and queries are the other dis-
joint set. They developed an algorithm for advertisement allocation of incoming
queries to optimize the revenue of the search engine. This bipartite approach is a
high level architecture for Adwords, Google’s sponsored search. A more detailed
survey of the related literature [12] explains multiple models of bipartite graph
matching with its context as Adwords, including algorithms from display ads
and welfare maximization.

The model of coverage patterns has been proposed in the literature in the
form of an apriori style approach proposed in [1] followed by a pattern growth
approach in [4]. Coverage Patterns have been employed in improvement of deliv-
ering guaranteed contracts in display advertising [11] and in coverage of more
advertisers in Adwords [3].

In this paper, we propose a framework to capitalize the long tail of search
queries. We extend the bipartite model discussed in [9,12] into an end-to-end
approach. The proposed approach is different from [5] as the authors propose to
capture tail queries using a taxonomy by generalizing a query into a taxonomy
node. However, the taxonomy was not exposed to the advertisers and was only
employed internally whereas in this paper, we propose a mechanism to allow
advertisers to bid on concepts by showing a taxonomy related to their ads. In
[3], the authors used coverage patterns to group similar keywords but the model
to group keywords was employed by abstracting similar keywords only to a
single concept rather than a hierarchical relationship of taxonomy, as proposed
in this paper. It should be noted that the previous approaches [3,5–7] have
emphasized on keyword analysis or query expansion where in this paper we
present an alternative approach of bidding on concepts rather than keywords in
sponsored search.

3 Background: Sponsored Search and Coverage Patterns

In this section, we briefly explain the sponsored search framework and notion of
coverage patterns.

172 A. Budhiraja and P.K. Reddy

3.1 Sponsored Search Background

The standard model for sponsored search is a bipartite model as shown in
Fig. 1(a) such that each incoming query is matched to an advertiser based on
certain constraints. These constraints are defined by multiple parameters includ-
ing relevance score, bid of the advertiser on the query keywords and remaining
budget of the advertiser.

The architecture of sponsored search for advertisement allotment has four
main steps [12] as shown in Fig. 1(b):

1. Analysis of Query: In the first step, the query is analysed to extract impor-
tant parameters such as session information to better serve advertisements.

2. Retrieval of Relevant Advertisers: Based on the query keywords and
other query parameters learnt from Step 1, relevant advertisers are retrieved
from ad campaigns which are to be considered for displaying alongside organic
results.

3. Bidding: Due to competition among advertisers, incoming queries are allot-
ted to advertisers through auctions such that advertisers bid for placing their
ads on the query page. These bids can either be static or can be done in real
time.

4. Ranking of Advertisers: Once the advertisers bid on a query, their bids
are scaled according to a factor called Quality Score. The Quality Score is
computed based on the parameters related to the respective advertisement.
This includes expected Click Through Rate (CTR), display URL’s past CTR,
quality of the landing page, remaining budget and advertisement/search rel-
evance apart from several other parameters.

(b) Architecture

Query Analysis
of Query

Retrieval of
Relevant

Advertisers

Bidding Ranking of
Advertisers

Display
Advertisements

A1

A2

A3

Q1

Q2

Advertisers Queries

(a) Bipartite Model

Ad Campaign
Details

Fig. 1. Sponsored search: model and architecture

3.2 Coverage Patterns

In this section, we briefly explain about the notion of coverage patterns [1,4].
Let W = {w1, w2...wn} be set of web pages and D be a set of transactions such
that each transaction T is a set of web pages T ⊆ W . X is a pattern of web
pages such that X ⊆ W and X = {wp, ...wq, wr} where 1 ≤ p ≤ q ≤ r. Twi

denotes a set of transactions containing the web page wi and its cardinality is
denoted |Twi |.

An Improved Approach for Long Tail Advertising in Sponsored Search 173

The fraction of transactions containing a web page wi is called as the Rel-
ative Frequency of wi and is calculated as RF (wi) = |Twi |

|D| . A web page is
considered frequent if it has a relative frequency greater than the threshold
value, minRF. Coverage Set of a pattern X = {wp, ...wq, wr}, CSet(X) is a
set of all transactions that contain at least one web page from the patterns
i.e. CSet(X) = Twp ∪ ...Twq ∪ Twr such that |Twp | > ... > |Twq | > |Twr |.
Coverage Support, CS(X) is the ratio of size of CSet(X) to size of D i.e.,
CS(X) = |CSet(X)|

|D| . Overlap ratio of a pattern X, OR(X) is the ratio of num-
ber of transactions that are common between X − wr and wr to the number of
transactions in wr i.e., OR(X) = CSet(X−wr)∩CSet(wr)

CSet(wr) .

Table 1. Sample Transactions

TID 1 2 3 4 5 6 7 8 9 10

Pages {a,b,c} {a,c,e} {a,c,e} {a,c,d} {b,d,f} {b,d} {b,d} {b,e} {b,e} {a,b}

A pattern is interesting if it has a high CS and low OR. A high CS value
indicates more number of visitors and a low OR value means less repetitions
amongst the visitors. Hence, a pattern is said to be interesting if CS(X) >
minCS(X), OR(X) < maxOR and RF (wi) > minRF ∀ wi ∈ X.

Example 1: To explain the notion of coverage patterns, we will consider a trans-
actional database |D| shown in Table 1. Let us assume the minRF to be 0.2,
minCS to be 0.3 and maxOR to be 0.5. From Table 1, the number of transac-
tions having a, T a is 5, T b is 7 and f , T f is 1. So, RF for a is 0.5, for b is 0.7 and
for f is 0.1, f will be removed. On the other hand, a and b satisfy the constraint
of minRF and therefore, {b,a} is a candidate set. The order of items in a coverage
pattern is in decreasing order of the relative frequency and hence, the pattern
is {b,a} and not, {a,b}. The Coverage Set for {b,a} is {1,2,3,4,5,6,7,8,9,10} and
|CSet{b, a}| is 10. So, coverage support of {b,a} is 10

10 is 1 which is greater than
minCS. The transactions containing {b,a} together is {1,10} and T a = 5, so
the overlap ratio is 2

5 = 0.4 < maxOR and hence, {b,a} is a coverage pattern.
Thus, coverage patterns helps in extracting multiple sets of mutually exclusive
subsets of items corresponding to coverage support and overlap ratio. In the
literature, it has been demonstrated that coverage patterns can help in covering
more advertisers and improve the diversity of viewers of individual ads [3,11].

4 Basic Idea

The long tail phenomenon of search queries makes them unpredictable for spon-
sored search which is identified as the research issue. Advertisers also tend to
target head query keywords during keyword auctions in order to cover more eye
balls. However, this leads to a high demand for head keywords while little to
no demand for the tail keywords. This imbalance in demand results in under-
utilization of ad space of the tail keywords. Hence, an opportunity has been
identified to capitalize this long tail of search query keywords.

174 A. Budhiraja and P.K. Reddy

We propose that for sponsored search, advertisers should bid upon high level
concepts instead of specific keywords. Bidding on high level concepts will result
in capitalization of the ad space of the tail keywords as the keywords would be
considered to be allocated based on relevancy rather than frequency.

In the proposed approach, we achieve bidding on concepts such that an adver-
tiser would be shown a taxonomy based on his/her advertisement content. The
advertiser is then asked to select a node in the taxonomy which he/she deems the
most relevant for the advertisement. For example, an advertiser like Amazon.com
would be shown at taxonomy of Shopping and based on the advertisement, the
advertiser can select the appropriate node. If the advertisement is of books, the
advertiser would select the node Books in the Shopping taxonomy or if the ad is
related to clothing, the advertiser would choose to bid upon Clothing or Fashion.
Thus, we propose to add a middle layer of concepts through a taxonomy during
the bidding process such that an advertiser would chose a concept which would
ultimately translate to a set of keywords, compared to the present approach
where the advertiser is responsible for selecting all the desired keywords (Fig. 2).

K1

K2

K3

A1

A2

AdvertisersKeywords

K1

K2

K3

A1

A2

AdvertisersKeywords

Taxonomy

(b) Concept Bidding Mechanism(a) Keyword Bidding Mechanism

Fig. 2. Sponsored search bidding: keywords based bidding and concept based bidding

We propose an estimated allocation model based on the concept bidding such
that groups immediate children nodes of bidding node are allocated to advertisers.
Allocation of only children nodes of the bidding node is done to ensure that the
allocation mechanism should consider the amount of generalization requested by
the advertiser. For example, an advertiser who chose to bid upon Shopping should
not be allotted something like {Outwear, Skirts, Shirts} as he would like to show
his ad to a larger audience consisting of Books, Clothing, Electronics, etc.

To create such combinations of children nodes, we employ the notion of Cov-
erage Patterns (CPs) such that CPs are extracted from the query logs and a
matching is performed between the CPs at each node and the corresponding
advertisers. When a query is posed by a user to the search engine, it is classified
into these concepts according to the taxonomy and the advertisers who have
been allocated any of these concepts are eligible to be ranked for the query.

To address the issues of allocation for a multiple level taxonomy, we pro-
pose an approach to extract CPs with respect to the taxonomy followed by an
allocation approach for advertisers using the extracted coverage patterns.

An Improved Approach for Long Tail Advertising in Sponsored Search 175

4.1 T-Cmine: Extraction of Coverage Patterns with Respect
to a Taxonomy

In [2], an approach to extract generalized frequent patterns has been proposed.
Similarly, we propose a methodology to extract coverage patterns involving the
nodes of taxonomy by extending Cmine algorithm [4]. For a given transactional
database D and the taxonomy T which relates the items of D, we modify each
transaction by appending the ancestors of each item in the transaction to the
transaction. If we apply Cmine to this modified dataset several coverage patterns
containing high-level as well as low level items would be extracted. Such patterns
may not be useful for ad allocation. We are interested in the coverage patterns
which contains the items at the same level and satisfy the following property.

CP = {c | c ∈ (I ∪ T) & ∀ c parent(c) = P} (1)

Here, CP is coverage pattern containing items c such that all items belong
to the same parent P . To extract level-wise coverage patterns, we propose the
T-Cmine algorithm which is as follows.

Algorithm 1. T-Cmine: Algorithm to extract Coverage Patterns with respect
to a Taxonomy
Input: D, dataset of transactions; T , Taxonomy defined over items of D;
Compute D∗ from T by appending ancestors to D;
TL1 := {frequent1 itemsets};
NO1 := {frequent1 itemsets};
C2 := NO1 �� NO1;
TL2 := Remove any patterns from C2 which contain items other than sister nodes;
TL2 := Remove any patterns from TLk which do not satisfy minCS, maxOR property;
NO2 := Remove any patterns from TLk which do not satisfy maxOR property;
k := 3
while TLk−1 �= φ do

Ck := NOk−1 �� NOk−1;
TLk := Remove any patterns from TLk which do not satisfy minCS, maxOR
property;
NOk := Remove any patterns from TLk which do not satisfy maxOR property;

end

The proposed algorithm takes the dataset D and a taxonomy T that defines
the relationship between the items of the D. The algorithm first adds ancestors
of each item in a transaction to the transaction. Then, the first set of CPs (TL1)
is calculated by getting the frequent items for which relative frequency is greater
than minRF. The same set (TL1) is also considered as Non-Overlapping Patterns
set (NO1). Using the (NO1), candidate-2 coverage patterns are computed in the
same way as Cmine algorithm. We prune all the patterns which contains other
than sister nodes as stated Eq. 1. From the pruned set, we extract patterns which

176 A. Budhiraja and P.K. Reddy

satisfy both minCS and maxOR property which are the Coverage Patterns of
length 2 (TL2). In the next step, non-overlapping patterns (NO2) are generated
by sorting them in order of CS and removing any CPs which don’t satisfy maxOR
criteria. Note that the pruning step is only required at for k = 2 as once the
patterns containing any non-sister nodes are removed, there will be no non-
overlapping patterns that can be generated that contain non-sister nodes in a
CP. From k = 3, for kth iteration of the algorithm, first candidate CPs, Ck

are generated by joining NOk−1 patterns. From Ck, any patterns which do not
satisfy the minCS or maxOR are not considered to generate CPs of length k,
TLk. From Ck, patterns which do not satisfy the maxOR or contain non-sisters
nodes are removed and the remaining are sorted according to coverage support
to generate non-overlapping sets of items of length k, NOk. It should be noted
that OR follows a ‘sorted’ downward closure property [4], and hence, the item
sets of candidate sets, Ck are sorted to obtain the corresponding non-overlapping
sets NOk. An example of the algorithm is also shown in Fig. 3.

Tid
Items

1 2 3 4 5
(a,e) (a,b) (b,c,d) (c,e) (a,d,e)

X

Y Z

a b c d e

Ancs. (X,Y,Z) (X,Y) (X,Y,Z) (X,Z) (X,Y,Z)

Transaction Set

Taxonomy over leaf items

i RF
X
Y
Z
a

b
c
d
e

1.0
0.8
0.8
0.6
0.4
0.4
0.4
0.6

TL1

i RF
X
Y
Z

1.0
0.8
0.8

i RF
X
Y
Z
a

e
b
c

1.0
0.8
0.8
0.6
0.6
0.4
0.4

NO1

C1

i CS
X,Y
X,Z
X,a
X,e

X,b
X,c
X,d

-
-
-
-
-

Y,e -
Y,b
Y,c

Z,a
Z,e
Z,b

Z,d

-
-

-
-
-
-
-

Z,c

d 0.4

Y,a
Y,b

Y,d

-

-
-

-

-

Y,Z 1.0

C2

OR

-
-
-
-
-
-

-
-
-
-

-
-

-

-

-

-

-
-

0.6

i CS
YZ
a,b
e,c
e,d

0.8
0.8
0.8

1.0

TL2

OR

0.25
0.25
0.25

0.6

i CS
YZ
a,b
e,c
e,d

c,d

0.8
0.8
0.8
0.6

1.0

NO2

OR

0.25
0.25
0.25
0.33

0.6

i CSC3/TL3/NO3
OR

e,c,d 0.8 0.5

i CS OR

a,b 0.8 0.25

i CS OR
a,e
a,c
a,d

e,b

e,c

e,d

b,c

c,d

b,d

-
-
-
-

-

-

0.6

0.8

0.8

-
-
-
-

-

-

0.25

0.25

0.33

-

Parameters

minRF = 0.5

minCS = 0.5

maxOR = 0.7

Fig. 3. Example 2: Example of T-Cmine

5 Proposed Approach

In this section, we discuss the proposed approach. In contrast to the sponsored
search model of keyword based bidding, we proposed to add a middle layer of
concepts during the bidding. Similarly, we also propose to add a middle layer to
the allocation process such that when a user poses a query, it is first classified by
a taxonomy into a set of nodes. For example, a query on Harry Potter would be
classified into nodes Shopping; Books; Fiction. An advertiser who was allocated
any of these concepts would be considered to be displayed on the query of Harry
Potter. As compared to the standard sponsored search model of a bipartite graph
between advertisers and queries as shown in Fig. 1 (a), we add a middle layer of
CPs between search queries and advertisers as shown in Fig. 4 (a).

An Improved Approach for Long Tail Advertising in Sponsored Search 177

The sponsored search architecture has four major steps for query allocation
to advertisers. The proposed architecture also has four major online steps for
allocation of incoming queries to advertisers. But, in the proposed architecture,
we also exploit the knowledge extracted from the query logs in the form of CPs.
We discuss each step of the proposed architecture as follows.

1. Query Analysis: This step is same as the standard sponsored search archi-
tecture. But, we also extract the concepts of each incoming query. For exam-
ple, if the query is Harry Potter which belongs to the taxonomy Shopping
then, it’s concepts would be Shopping; Books; Fiction.

2. Retrieval of Relevant Advertisers: Based on the concepts inferred from
the query in the first step, we retrieve advertisers from the matching of CPs.
(In the next part of this subsection, we show how this matching of CPs and
advertisers is achieved.)

3. Bidding: This step is same as the standard sponsored search architecture.
4. Ranking of Advertisers: This step is same as the standard sponsored

search architecture.

Query Analysis
of Query

Retrieval of
Relevant

Advertisers

Bidding Ranking of
Advertisers

Display
Advertisements

Query
Logs

Taxonomy
T-Cmine Matching

CPs and
Advertisers

Ad Impressions
Information

A1

A3

A4

Q1

Q3

Advertisers Queries

Coverage
Patterns

(a) Proposed Allocation Model (b) Proposed Allocation Architecture

Fig. 4. Proposed sponsored search allocation model and architecture

5.1 Matching CPs and Advertisers

In this section, we explain how the matching between CPs and advertisers is
achieved. It should be noted that while considering this approach we assume
the CPM (Cost Per Mille) payment mechanism, which can be easily extended
to CPC (Cost Per Click) mechanism [3]. The matching process has two main
components:

1. Extraction of CPs using T-Cmine: This step takes input of the query
logs and the taxonomy and extract CPs as explained in Sect. 4.1.

2. Matching CPs and Advertisers: In this step, we take the demands of
the advertisers and the CPs extracted from query logs and perform a match-
ing between the two. An allocation protocol has been proposed such that
specialized requests are processed before generalized. The reason for doing a
specialized-to-generalized allocation is to acknowledge that an advertiser who
bids on a lower level in the taxonomy has less options of allocation compared
to the advertiser who bids on a higher level. For example, an advertiser who

178 A. Budhiraja and P.K. Reddy

bids on the root node can be satisfied by any choice of children nodes. How-
ever, such an allocation poses a challenge where a coverage pattern containing
a parent node has to be allocated given its descendants has been allocated
to advertisers. Allocation at a node should take into account if any of its
descendants have been allocated as coverage of a node is sum of coverage
of its descendants. Hence, impressions of a node should be modified to take
into consideration if any of its descendant nodes have been allocated to the
advertisers. The necessary modification to a CP if any of its descendants have
been allocated advertisers is to subtract the number of impressions allotted
to the advertisers children of nodes contained in the respective CP.
Equation 2 captures the necessary changes required to a CP such for each
node in the CP (denoted by k), count the impressions of allocated advertisers
(denoted by j) of each descendant (denoted by i) and subtract it from total
impressions of the CP. It should be noted that a coverage pattern is allo-
cated to a set of advertisers if and only if it has enough impressions to satisfy
the allocated advertisers. It may happen that advertisers are not allocated
a coverage pattern if supply is greater than demand, and thus the following
equation will never result in a negative value for the number of impressions
of a coverage pattern.

CP.imp = CP.imp −
∑

k

∑

ij

Aij (2)

SHOPPING (2300)

ELECTRONICS (900) CLOTHING (800) BOOKS (600)

Ad ID

A1
A2
A3
A4
A5

Node

Shopping
Clothing
Books
Books
Shopping

Impressions

Extracted CPs

{Books, Clothing}

{Electronics, Clothing}

{Books, Electronics}

Imp Modified Imp

Example Taxonomy

500
200
300
500

800

1400

1700

1500

400

1200

1000

Table1: Impressions provided by CPs
beforeand after allocation at level 3

Table2: Example Impression
Requests by Advertisers

Ad Id CPs

A1

A5

{Books, Electronics}

{Electronics, Clothing}

Table 3: Allocated CPs to
Advertisers at Shopping

Fig. 5. Example allocation

Example 3: In Fig. 5, we show an example allocation. We consider the top two
levels of a taxonomy to show and consider advertisers who bid on the first three
levels. Each advertiser bids on a node and has a demand of certain impressions at
that node. Assuming allocation was done at level two i.e. for Electronics, Clothing
and Books, we will show how it will be done for Shopping. The node Shopping
has three children and CPs pertaining to Shopping are shown in Table 1 of Fig. 5.

An Improved Approach for Long Tail Advertising in Sponsored Search 179

However, as we know that allocations have been done for advertisers who chose
to bid upon Books and Clothing, we need to adjust the impressions provided by
the CPs containing these two nodes. For example, the CP {Book, Clothing} has
1400 initial impressions, but some advertisers were already allocated Books and
Clothing during allocations at lower level(s). Hence, those impressions need to
be subtracted i.e. 1400 − (500 + 200 + 300) = 400. Similarly, for {Electronics,
Clothing}, the modified number of impressions is 1200 i.e. 1700 − 500 and that
of {Books, Electronics} is 100 i.e. 1500 − (200 + 300) = 1000. In the next part of
this section, the matching between CPs is performed considering the proposed
modification.

A matching is performed with advertisers as one side of the bipartite and CPs
as the other side. The matching is done at each node of the taxonomy where
more than one advertisers choose to bid. In order to maximize the revenue,
the matching should be performed in such a way that maximum number of
impressions that can be provided by the coverage patterns should be allocated.
We propose the matching as an optimization problem in the same respect such
that the difference between the CPs and advertisers allocated to them should be
minimal. For example, if an advertiser demands 100 impressions and there are
two CPs with impressions 150 and 200 respectively, then we chose to allocate
the CP with 150 impressions. A similar case can be made when the supply of
CPs is 50 and 75 impressions and demand by the advertisers is 100 impressions,
then the CP with 75 impressions is chosen. We frame the objective function
of the matching on the same notion which is as follows. Equation 3a aims at
minimizing the difference between the allocated advertising and the CPs. The
objective function is such that for each advertiser Adij who has been allocated
the CP, CPj the difference between the two is minimal. Equation 3b lays out
the constraint such that the sum of impressions of allocated advertisers does
not exceed the impression provided by the CP to avoid the objective from going
negative.

MinZ =
∑0

level=d(
∑

j |CPj .Impressions − ∑n
i (Adij .Impressions)|) (3a)

s.t CPj .Impressions >=
∑n

i=1(Adij .Impressions) (3b)

Continuing Example 3 from Fig. 5. From the last step, we have CPs whose
impressions have been updated according to allocations at their descendants. We
show how the allocation is to be done for the node Shopping. Two advertisers
A1 and A5 chose to bid on the node Shopping. In the proposed approach, we
decide to serve the advertisers on a first-come-first-serve basis. For ad A1, we
select the CP {Books, Electronics} because it has the lesser difference com-
pared to the other node. It should be noted that now the number of impressions
covered by CP {Books, Electronics} has been reduced to 200 as A1 has been
allotted to it. Next, we look at ad A5 and we see that out of the three CPs, only
{Electronics, Clothing} has enough impressions to satisfy the advertiser and
after this allocation, the number of impressions covered by {Electronics, Cloth-
ing} reduces to 500. Through the example, we wanted to demonstrate how the
proposed specialized-to-generalized allocation would work for advertisers who

180 A. Budhiraja and P.K. Reddy

bid on Shopping considering a set of advertisers bid on children of Shopping and
hence, the results for only A1 and A5 are shown. It should be noted that the
matching between CPs and advertisers will be one-to-many as the number of
impressions that can be covered by a CP is much large compared to demands of
a single advertiser.

Considering the allocation done for Example 3, let us say a query related
to the taxonomy is fired say, Harry Potter. As shown in Fig. 4, it will be first
classified according to the taxonomy as Shopping; Books; Fiction. Advertisers
who have been allotted a CP containing any of these nodes are considered for
being displayed on this query’s results page i.e. A1, A3, A4 and A5 would be
considered to be displayed. The decision on who out these four would be shown
and in which order will be decided by the ranking mechanism which includes
their bids, remaining budget etc. (As stated earlier, ranking and bidding are
independent of the proposed approach.)

6 Experiments

6.1 Dataset

For the experiments, we used the CABS120k08 [10] dataset which is a collection
of search queries from the AOL500k dataset along with the documents clicked,
document rank, timestamps and user id. The dataset models the web document
as a unit. The data set also contains the classification of the clicked document
according to a concept taxonomy of four levels. From the dataset, we extracted
all the queries in the form: < query, user−id, timestamp, concept taxonomy >.
Concept taxonomy present in the data is a four level taxonomy including the
root node. Without loss of generality, we assumed that the search queries related
to the documents also have the same category as the web document. The case
where the same document had multiple categories, the first one was arbitrarily
selected. After extracting queries, we extracted sessions of four most popular
taxonomies – Arts, Health, Society and Shopping from the dataset that had
more than a single query with at least two sub-concepts of the same concept in
the same session. Each session is used a transaction to extract coverage patterns
by T-Cmine as sessions form the logical boundary of searching. Table 2 shows
the statistics of the extracted dataset.

6.2 Implementation Methodology

The standard sponsored search approach mentioned in [9] is compared with the
concept based bidding approach. We simulate advertising demands randomly in
terms of impressions for five sets of advertisers having 10, 20, 30, 40 and 50
advertisers. For the standard keyword bidding, a keyword is selected as the seed
for each advertiser such that the probability of selection of a keyword as the
seed is proportional to its frequency in the dataset, in order to mimic the adver-
tising demand. Followed by selection of a seed keyword, all keywords from the
dataset are selected to be in the advertiser’s campaign for which the Wu-Palmer

An Improved Approach for Long Tail Advertising in Sponsored Search 181

Table 2. Search query dataset statistics

Taxonomy Number of nodes Sessions Queries

Arts 48 7, 107 15,317

Health 59 9, 181 26,385

Society 68 6, 471 13,223

Shopping 79 14, 819 40,463

Total 254 37, 578 95,388

similarity is more than 0.8. The number of requested impressions is randomly
chosen between 100 and 1000. To simulate bid for each keyword, we consider
the minimum bid as $1.00, the maximum bid as $10.00 and the actual bid for
each keyword is considered as the function of its relative frequency between the
minimum and maximum value. For the experimental setup, we assume the bid
to be paid per hundred impressions instead of per 1000 impressions as in CPM
model to analyse more number of requests. The bid amount here indicated how
much the advertiser is willing to pay for 100 impressions. For the concept based
bidding approach, bid of an advertiser on the concept is average of bids on all
the keywords in his/her campaign.

6.2.1 Performance Metrics
Two performance metrics have been employed to compare the keywords based
approach [9] and the proposed concept-based bidding approach.

To evaluate the utilization of ad space, we calculate the average number of
unique Advertisements per Session (AS). It is calculated as the ratio of Sum
of Unique Advertisements of all Sessions (SUAS) and Number of Sessions with
Advertisements (NSA). High value of AS indicates more utilization of a session,
which in turn indicates covering of more advertisers.

AS =
SU AS

NSA
(4)

We also measure the reach of each advertisement. Reach is defined as the
number of users that view the ad. In this experiment, we consider reach of
the ad with respect to the sessions instead of users as sessions define a logical
boundary of tasks in search engines. To measure the reach, the value of Sessions
per Advertisement (SA) is calculated which is the ratio of Number of Unique
Sessions for each Ad (NUSA) to Number of Advertisements (NA). A higher value
of the metric implies the more number of unique eye balls and thus, increasing
the chances of the advertisement being viewed by diverse users.

SA =
N AS

NA
(5)

182 A. Budhiraja and P.K. Reddy

6.2.2 Results
Figure 6 reports the results with respect to ad space utilization. A fair improve-
ment is observed in concept based bidding mechanism. Average improvement
is 19.81% across all four taxonomies and all sets of advertisers. For individual
taxonomies, average improvement for Arts is 18.33%, Health is 13.74%, Society
is 17.29% Shopping is 29.86%. The improvement for Shopping show the highest
improvement by a significant margin compared to the other three taxonomies.
This is because for Shopping taxonomy average length of a session as well as dis-
tribution of nodes was higher compared to the other three taxonomies. Hence,
it was possible to extract more interesting coverage patterns in the category of
Shopping. These results align in the same way for the next performance metric
as well.

 0

 0.5

 1

 1.5

Nu
mb

er
 of

 A
ds

 pe
r S

es
sio

n

Number of Advertisers
10 20 30 40 50

Keywords based Approach
Concepts based Approach

(a) Taxonomy - Arts

 0

 0.5

 1

 1.5

 2
Nu

m
be

r o
f A

ds
 p

er
 S

es
sio

n

Number of Advertisers
10 20 30 40 50

Keywords based Approach
Concepts based Approach

(b) Taxonomy-Health

 0

 0.5

 1

 1.5

 2

Nu
mb

er
 of

 A
ds

 pe
r S

es
sio

n

Number of Advertisers
10 20 30 40 50

Keywords based Approach
Concepts based Approach

(c) Taxonomy-Shopping

 0

 0.5

 1

 1.5

10 20 30 40 50

Keywords based Approach
Concepts based Approach

Nu
mb

er
 of

 A
ds

 pe
r S

es
sio

n

Number of Advertisers

(d) Taxonomy-Society

Fig. 6. Performance with respect to utilization of ad space

Figure 7 shows the performance of two approaches with respect to reach of
advertisements. An average improvement of 18% was observed. For individual
taxonomies, improvement for Arts is 13.41%, Health is 14.83%, Society is 16.05%
Shopping is 27.70%. The results for Shopping show significant improvements
again because of the same reason as stated above.

An Improved Approach for Long Tail Advertising in Sponsored Search 183

 0

 0.5

 1

 1.5

Nu
mb

er
 of

 A
ds

 pe
r S

es
sio

n

Number of Advertisers
10 20 30 40 50

Keywords based Approach
Concepts based Approach

(a) Taxonomy - Arts

 0

 0.5

 1

 1.5

 2

Nu
m

be
r o

f A
ds

 p
er

 S
es

sio
n

Number of Advertisers
10 20 30 40 50

Keywords based Approach
Concepts based Approach

(b) Taxonomy-Health

 0

 0.5

 1

 1.5

 2

Nu
mb

er
 of

 A
ds

 pe
r S

es
sio

n

Number of Advertisers
10 20 30 40 50

Keywords based Approach
Concepts based Approach

(c) Taxonomy-Shopping

 0

 0.5

 1

 1.5

10 20 30 40 50

Keywords based Approach
Concepts based Approach

Nu
mb

er
 of

 A
ds

 pe
r S

es
sio

n

Number of Advertisers

(d) Taxonomy-Society

Fig. 7. Performance with respect to reach of advertisers

7 Conclusions and Future Work

In this paper, we address the issue of advertising on long tail search queries in
search engines. We propose that advertisers should bid upon high level concepts
represented by a taxonomy instead of search keywords during ad space auctions.
To address the issues of inter-dependency of concepts on each other, we exploit
search query logs and a taxonomy to extract level-wise coverage patterns. The
corresponding architecture is used to perform allocation of incoming queries to
advertisers for sponsored search. Experiments on a real world dataset of AOL
search query logs show improvement in performance with respect to ad space
utilization and reach of the advertisements.

As a part of future work, we plan to analyse what is the trade-off between
relevance and bidding on concepts in terms of targeted advertising. Also, in this
paper, we assumed that a taxonomy exists over search query logs. We plan to
investigate how different taxonomies would suit the problem and if it is possible
to build a taxonomy to suit sponsored search so to avoid the long tail phenom-
enon amongst the nodes of the taxonomy. We also intend to look at truthful
auctions for concept-based bidding as the advertisers are targeting same key-
words but using different concepts.

184 A. Budhiraja and P.K. Reddy

References

1. Srinivas, P.G., Reddy, P.K., Bhargav, S., Kiran, R.U., Kumar, D.S.: Discovering
coverage patterns for banner advertisement placement. In: Tan, P.-N., Chawla, S.,
Ho, C.K., Bailey, J. (eds.) Advances in Knowledge Discovery and Data Mining.
LNCS, vol. 7302, pp. 133–144. Springer, Heidelberg (2012)

2. Srikant, R., Agrawal, R.: Mining generalized association rules. Future Gener. Com-
put. Syst. 13, 161–180 (1997)

3. Budhiraja, A., Reddy, P.K.: An approach to cover more advertisers in adwords. In:
IEEE International Conference on Data Science and Advanced Analytics (DSAA
2015), 36678 2015, pp. 1–10 (2015)

4. Srinivas, P.G., Reddy, P.K., Trinath, A.V., Bhargav, S., Kiran, R.U.: Mining cov-
erage patterns from transactional databases. J. Intell. Inf. Syst. 45, 423–439 (2015)

5. Broder, A., Ciccolo, P., Gabrilovich, E., Josifovski, V., Metzler, D., Riedel, L.,
Yuan, J.: Online expansion of rare queries for sponsored search. In: International
Conference on World Wide Web (2009)

6. Broder, A.Z., Fontoura, M., Gabrilovich, E., Joshi, A., Josifovski, V., Zhang, T.:
Robust classification of rare queries using web knowledge. In: International ACM
SIGIR Conference on Research and Development in Information Retrieval (2007)

7. Broder, A.Z., Ciccolo, P., Fontoura, M., Gabrilovich, E., Josifovski, V., Riedel, L.:
Search advertising using web relevance feedback. In: Proceedings of the 17th ACM
conference on Information and Knowledge management (2008)

8. Skiera, B., Eckert, J., Hinz, O.: An analysis of the importance of the long tail in
search engine marketing. Electron. Commer. Res. Appl. 9, 488–494 (2010)

9. Mehta, A., Amin, S., Umesh, V., Vijay, V.: Adwords and generalized online match-
ing. J. ACM (JACM) 54, 22 (2007)

10. Noll, M.G., Meinel, C.: The metadata triumvirate: Social annotations, anchor texts
and search queries. In: IEEE/WIC/ACM International Conference on Web Intelli-
gence and Intelligent Agent Technology, WI-IAT 2008, vol. 1, pp. 640–647 (2008)

11. Kavya, V.N.S., Reddy, P.K.: Coverage patterns-based approach to allocate adver-
tisement slots for display advertising. In: Bozzon, A., Cudre-Maroux, P., Pautasso,
C. (eds.) Web Engineering. LNCS, vol. 9671, pp. 152–169. Springer, Heidelberg
(2016)

12. Mehta, A.: Online matching and ad allocation. Theor. Comput. Sci. 8, 265–368
(2012)

String and Sequence Processing

Locating Longest Common Subsequences
with Limited Penalty

Bin Wang(B), Xiaochun Yang, and Jinxu Li

School of Computer Science and Engineering, Northeastern University,
Shenyang 110169, Liaoning, China

{binwang,yangxc}@mail.neu.edu.cn, lijinxu92@gmail.com

Abstract. Locating longest common subsequences is a typical and
important problem. The original version of locating longest common sub-
sequences stretches a longer alignment between a query and a database
sequence finds all alignments corresponding to the maximal length of
common subsequences. However, the original version produces a lot of
results, some of which are meaningless in practical applications and rise
to a lot of time overhead. In this paper, we firstly define longest com-
mon subsequences with limited penalty to compute the longest common
subsequences whose penalty values are not larger than a threshold τ .
This helps us to find answers with good locality. We focus on the effi-
ciency of this problem. We propose a basic approach for finding longest
common subsequences with limited penalty. We further analyze features
of longest common subsequences with limited penalty, and based on it
we propose a filter-refine approach to reduce number of candidates. We
also adopt suffix array to efficiently generate common substrings, which
helps calculating the problem. Experimental results on three real data
sets show the effectiveness and efficiency of our algorithms.

Keywords: Longest common subsequence · Penalty score · Common
substring

1 Introduction

The longest common subsequence (LCS) problem is a classic and well studied
problem in computer science with extensive applications in diverse areas ranging
from spelling error corrections to molecular biology. Especially in bioinformatics,
LCS is the most important metric in all of local alignments, which are used
for comparing primary biological sequence information, such as the amino-acid
sequences of proteins or the nucleotides of DNA sequences. Locating LCS enables
a researcher to compare a query sequence with a library or database of sequences,
and identify library sequences that resemble the query sequence. The longest

This work is partially supported by the NSF of China for Outstanding Young Schol-
ars under grant No. 61322208, the NSF of China under grant Nos. 61272178 and
61572122.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 187–201, 2017.
DOI: 10.1007/978-3-319-55699-4 12

188 B. Wang et al.

common subsequence problem for two strings, is to find a common subsequence
in both strings, having maximum possible length, where a subsequence of a string
is obtained by deleting zero or more symbols of that string. In this paper, we
require to get their matching regions for the strings.

The original version of LCS stretches a longer alignment between the query
and the database sequence in the left and right directions, from the position
where the exact match occurred. The extension does not stop until the accu-
mulated threshold. However, in practice, the original LCS produces too many
alignments, some of which are meaningless. For example, bio-scientists prefer to
find matches of bio-sequences locally (i.e. within a small region). To tackle this
problem, in this paper we propose a new version of LCS, called longest com-
mon subsequences with limited penalty, denoted LCSp. LCSp adopts a penalty
threshold to maintain the same level of sensitivity for detecting sequence simi-
larity.

The main challenges and contributions of this paper are listed as follows:

– In order to satisfy the requirement of real applications, we propose a new
version of longest common subsequences with limited penalty score in Sect. 3.
In order to be consistent with the alignment problem in bio-sequences, we
adopt the flexible scoring scheme in bio-applications to quantify penalties in
the LCS.

– Obviously, generating LCSs using dynamic programing and checking every
generated LCS under the penalty threshold are time consuming. We propose
an approach by concatenating common substrings to avoid the dynamic pro-
gramming in Sect. 4. Furthermore, this could be help to generate small number
of LCSs for checking using the penalty threshold. This algorithm can retrieve
all correct results, and is thus an exact algorithm.

– The number of concatenated common substrings could be large, especially
when the given strings are long. In order to reduce this number, we propose
a filter-refine approach to further improve our algorithm, which can avoid
useless concatenated common substrings and early terminate calculations in
Sect. 5. We also in Sect. 6 to show how to efficiently find common substrings
by constructing suffix array index structure.

– We conduct experimental evaluations on three real data sets with different
alphabets, lengths, and distributions to test and analyze our algorithms in
Sect. 7. The results demonstrate the effectiveness and efficiency of our proposed
algorithms.

2 Related Work

A lot of research efforts have been made to design algorithms for string alignment,
such as Needleman-Wunsch [14], Smith-Waterman [18], and their correspond-
ing improvements OASIS [14], BWT-SW [11] and ALAE [21], all of which are
based on dynamic programming. When conducting sequence comparison, these
algorithms consider exact matching, as well as insertion, deletion and substitu-
tion, and assign a score scheme to these transformation operations. The goal

Locating Longest Common Subsequences with Limited Penalty 189

of sequence matching is to find out the optimal matching, i.e. maximizing the
number of matches and minimizing the number of spaces and mismatches. These
algorithms usually suffer large space consumption, requiring a space complexity
of O(mn) [17], where m and n are the lengths of the two strings.

Although improvements have been made to reduce space complexity and
enhance running efficiency using suffix array, they might return unsatisfactory
results, which is caused by inappropriate score setting. Such a result typically
acquires a decent score in their forepart, but confronts a score drop in the mid-
part because of mismatches, and gets a relatively high score in the last part.
As a consequence, these results usually end up with high overall scores, but are
still unsatisfactory since their mismatched mid-parts are inconsistent with users’
actual demands. Edit distance based approaches [8] retrieve dissimilar parts of
the two strings, and restore them to the original strings, based on which the
string similarity is evaluated. Other algorithms like BLAST [10] firstly acquire
exact matched part of the two strings, then expand it to left/right, and form
high-score matched sequences. In spite of their higher efficiency compared to
dynamic programming based algorithms, they cannot guarantee retrieving all
high-score segments without omission.

The classic dynamic programming solution to LCS problem, invented by
Wagner and Fischer [19], has O(mn) worst case running time. To reduce the
space complexity, Hirschberg [4] provide an algorithm with O(n) worst space
cost, using a divide-and-conquer approach. The fastest known algorithm by
Masek and Paterson [13] runs in O(n2/ log n) time. However, faster algorithms
exist with complexities depending on special cases, such as when the input con-
sists of permutations or when the output is known to be very long or very short.
For example, Myers in [15] and Nakatsu et al. in [16] presented an O(nB) algo-
rithm, where the parameter B is the simple Levenshtein distance between the
two given strings [12]. Hunt and Szymanski [3] studied the complexity of the
LCS problem in terms of matching index pairs, i.e., they defined t to be the
number of index-pairs (i, j) with ai = bj (such a pair is called a match) and
designed an algorithm that finds the LCS of two sequences in O(t log n) time.
For a survey on the LCS problem see [2].

The rest of this paper is structured as follows: Sect. 3 elaborates the prelim-
inaries of this paper and the problem definition; Sect. 4 proposes a basic app-
roach for finding longest common subsequences with limited penalty. In Sect. 5,
we analyze features of longest common subsequences with limited penalty, and
based on it we propose a filter-refine approach to reduce number of candidates.
And in Sect. 6 we adopt suffix array to efficiently generate common substrings,
which helps calculating the problem. In Sect. 7 we present experimental results
on real data sets to demonstrate the accuracy and time efficiency of the proposed
technique. Then finally in Sect. 8, we conclude the paper.

3 Preliminaries and Problem Definition

Let Σ be an alphabet. For a string X of the characters in Σ, we use |X| to denote
the length of X, X[i] to denote the i-th character of X (starting from 1), and
X[i . . . j] to denote the substring from its i-th character to its j-th character.

190 B. Wang et al.

A subsequence of a string is obtained by deleting zero or more symbols of
that string. The longest common subsequence problem for two strings, is to find
a common subsequence in both strings, having maximum possible length.

Definition 1. Longest common subsequence (LCS). Given two strings X =
X[1]X[2] . . . X[m] and Y = Y [1]Y [2] . . . Y [n]. A subsequence X[i1]X[i2] . . . X[ir]
of X (0 < i1 < i2 < . . . < ir ≤ m) is obtained by deleting m − r symbols
from X. A common subsequence of two strings X and Y , denoted cs(X,Y), is a
subsequence common to both X and Y . The longest common subsequence of X
and Y , denoted lcs(X,Y) or LCS(X,Y), is a common subsequence of maximum
length. We denote the length of lcs(X,Y) by |lcs(X,Y)|.

For example, for the two strings X = traobcybgsfd and Y = tracycy
raogsfdy, lcs(X,Y) = tracygsfd. Based on the alignment of longest common
subsequence, there exist three common substrings tra, cy, and gsfd along the
alignment of lcs(X,Y). We use (Xa, Y b, l) to represent that X[a . . . a+l−1] and
Y [b . . . b+l−1] share a common substring, where a and b are start positions of
the matching substring in X and Y , respectively. In between every two adja-
cent common substrings, there is an uncommon substring pair 〈Xi, Yi〉. We use
penalty to evaluate the difference between all uncommon substrings in a longest
common subsequence.

Definition 2. Penalty of an LCS. Given two strings X and Y , let
〈X1, Y1〉, . . . , 〈Xk, Yk〉 be the pairs of uncommon substrings in lcs(X,Y). The
penalty of lcs(X,Y) is defined as:

p(lcs(X,Y)) =
k∑

i=1

α · M(Xi, Yi) + β · S(Xi, Yi), (1)

where M(Xi, Yi) and spaces S(Xi, Yi) represent the number of mismatches and
spaces between Xi and Yi, and (α, β) is the scoring scheme where α and β are
penalty scores of a mismatch and a space, respectively.1

For ease of presentation, we use Fig. 1 to show the penalties of different LCSs.
From this figure, we can easily see that there are two alignments corresponding to
the same LCS subsequence lcs(X,Y) = tracygsfd. The first alignment consists
of common strings tra with (X1, Y 1, 3), cy with (X6, Y 4, 2), and gsfd with
(X9, Y 11, 4), and its penalty is 2β + (α + 4β). The second alignment consists of
tra with (X1, Y 1, 3), cy with (X6, Y 6, 2), and gsfd with (X9, Y 11, 4), and its
penalty is 2α+(α+2β). When both α and β equals 1, these two alignment have
different penalties 7 and 5.

1 Notice that, the definition of penalty score of LCS is different from edit distance
even when α = β = 1. The edit distance between two strings represents the minimal
number of edit operations transforming from one string to another string, which
does not guarantee to find an alignment with longest common subsequences as LCS
does.

Locating Longest Common Subsequences with Limited Penalty 191

Fig. 1. Common substrings of X = traobcybgsfd and Y = tracycyraogsfdy.

Problem Definition. The problem of longest common subsequence with lim-
ited penalty (a.k.a. LCSp) is to locate positions of every exact matching sub-
strings along the longest common subsequences whose penalty is not greater than
τ given two strings X and Y , and a penalty threshold τ , denoted lcsp(X,Y, τ).

4 A Basic Approach Based on Common Substrings

A straightforward approach of locating LCSp includes the following three steps:
(i) calculate LCS using dynamic programming in O(mn) time, where m and
n are string lengths of the two given strings X and Y ; (ii) get all possible
alignments along the alignment of lcs(X,Y) in O(n log n) (assuming m ≤ n);
and (iii) keep alignments whose penalty is not greater than the given penalty
threshold. Therefore, the total cost is O(mn).

Obviously, generating all LCSs firstly and then checking their penalties are
time consuming. Now we propose our approach based on common substrings
(We discuss how to get common substrings of X and Y in O(n) time in Sect. 6).
The basic idea of our approach is to start from the common substrings of X
and Y since the final results must contain certain substring pair in the set of
common substrings of X and Y . Then we concatenate the common substrings to
get longer substring pairs of X and Y (lines 4–9), and verify each concatenated
substring pair by calculating its penalty (lines 10–12). We call this baseline
approach BasicLCSp (see Algorithm 1).

Reexamine the two strings X = traobcybgsfd and Y = tracycyraogsfdy
and their common substrings tra with (X1, Y 1, 3), rao with (X2, Y 8, 3),
cy with (X6, Y 4, 2) and (X6, Y 6, 2), y with (X7, Y 15, 1), and gsfd with
(X9, Y 11, 4). The algorithm BasicLCSp firstly puts these common substrings
in a candidate set Cset. Secondly, it gets 10 concatenated substring pairs from
the above common substrings, which are 〈X[1 . . . 7], Y [1 . . . 5]〉, 〈X[1 . . . 7], Y [1
. . . 7]〉, 〈X[1 . . . 4], Y [1 . . . 10]〉, 〈X[1 . . . 7], Y [1 . . . 15]〉, 〈X[1 . . . 12], Y [1 . . . 14]〉,
〈X[6 . . . 12], Y [4 . . . 14]〉, 〈X[6 . . . 7], Y [4 . . . 15]〉, 〈X[6 . . . 7], Y [6 . . . 15]〉,

192 B. Wang et al.

Algorithm 1. BasicLCSp

Input: X and Y : Two strings; C: A set of common substrings; τ : A given
penalty threshold

Output: lcsp(X, Y, τ)

1 Common substrings Cset ← CalComStr(X, Y);
2 Rank strings in Cset in the order of their start positions in ascending order;
3 k ← number of common substrings in Cset;
4 for i = 1; i < k; i + + do

5 strc ← the i-th common substring (Xa, Y b, li) in Cset;
6 for j = i + 1; j ≤ k; j + + do

7 Let the j-th common substring be (Xc, Y d, lj);
8 if a < c && b < d then
9 Generate a candidate substring X ′ start from strc and end at the

j-th common string in Cset;
10 if penalty of X ′ ≤ τ then
11 Can ← X ′;
12 strc ← X ′;

13 return the longest string in Can;

〈X[2 . . . 7], Y [8 . . . 15]〉, and 〈X[2 . . . 12], Y [8 . . . 14]〉. The algorithm keeps the
concatenated substring as a candidate if its penalty ≤ τ . Finally it returns the
longest candidate as lcsp(X,Y, τ).

The algorithm BasicLCSp is correct. Any LCS of two strings X and Y must
contain their common substrings and it must start from one common substring
and end at another common substring. The time complexity of BasicLCSp is
O(k2), where k is the number of common substrings of X and Y .

5 Reducing Number of Concatenated Common
Substrings

The algorithm BasicLCSp enumerates all possible concatenated common sub-
strings. Some of them will not generate the LCSp. To locate LCSp efficiently,
we propose a filter-refine approach, called ImprovedLCSp. We first analyze the
feature of LCSp, based on which we carefully prune those common substrings
that could not generate LCSp. We propose one filtering in Sects. 5.1 and an
early termination approach to avoid useless calculations in Sect. 5.2.

5.1 Avoiding Useless Concatenation of Common Substrings

property 1. Let A be an alignment of an LCSp of X and Y under the penalty
threshold τ . For any two common substrings C1 with (Xa, Y b, l1) and C2 with
(Xc, Y d, l2) in A (a < c, b < d). The penalty of the concatenated substring pair
〈X[a, c+l2−1], Y [b, d+l2−1]〉 must satisfy p(X[a, c+l2−1], Y [b, d+l2−1]) ≤ τ .

Locating Longest Common Subsequences with Limited Penalty 193

Lower Bound of Penalty. Let C1 with (Xa, Y b, l1) and C2 with (Xc, Y d, l2) be
two common substrings of strings X and Y , if there does not exist any common
substring C with (Xe, Y f , l3) (a < e < c, b < f < d), the lower bound of penalty
of concatenating C1 and C2 is

LB(C1, C2) = min(α, β) · max(c − a − l1, d − b − l1). (2)

Theorem 1. Two common substrings C1 with (Xa, Y b, l1) and C2 with (Xc,
Y d, l2) cannot belong to the same alignment of an LCSp if there does not
exist any common substring C with (Xe, Y f , l3) (a < e < c, b < f < d) and
LB(C1, C2) > τ

Proof. Assume C1 and C2 belong to the same alignment when Eq. 2 holds. Since
there does not exist any common substring C with (Xe, Y f , l3) (a < e < c, b <
f < d), we let 〈Xi, Yi〉 be the uncommon substring pair in between C1 and
C2, then according to Eq. 1, we know α · M(Xi, Yi) + β · S(Xi, Yi) ≤ τ . Since
min(α, β)max(|Xi|, |Yi|) ≤ M(Xi, Yi) + β · S(Xi, Yi), and |Xi| = c − a − l1,
|Yi| = d − b − l1, we can see the above assumption does not hold.

Based on Theorem 1, we can prune concatenated substrings that satisfy Eq. 2.
For example, let α = 1, β = 1. Given τ = 5, it is useless to concatenate the
two common substrings with (X6, Y 4, 2) and (X7, Y 15, 1) since min(α = 1,
β = 1) · max(7 − 6 − 2, 15 − 4 − 2) = 9 > τ . The same reason, we do not
concatenate (X1, Y 1, 3) with (X7, Y 15, 1), and (X6, Y 6, 2) with (X7, Y 15, 1).

5.2 Early Termination of Calculations

Since we want to find the longest common subsequences with limited penalty, we
prefer to check two common substrings with longest position distance. Therefore,
instead of storing common substrings in an ordered set, we store them in a lattice
such that we can use it to easily prune useless concatenation and early terminate
the calculation of LCSp.

A Lattice Structure. We use a lattice to store all common substrings of
X and Y . Each node in the lattice represents a common substring. Consider
any two common substrings with (Xa, Y b, l1) and (Xc, Y d, l2). If a < c and
b < d, we call (Xa, Y b, l1) dominates (Xc, Y d, l2). Furthermore, if there does
not exist any other common substring with (Xe, Y f , l3) such that a < e < c,
b < f < d, then there is an edge from (Xa, Y b, l1) to (Xc, Y d, l2), we call
(Xa, Y b, l1) strictly dominates (Xc, Y d, l2). We label the edge between any two
common substrings with strictly dominate relationship using the penalty of its
corresponding uncommon substring.

Figure 2 shows an example of the lattice for our running example. There is
an edge in between (X1, Y 1, 3) and (X6, Y 4, 2), and the edge is labelled 2 since
the penalty of concatenating these two common substrings is 2. Therefore, the
penalty of concatenating strings along the path (X1, Y 1, 3), (X6, Y 4, 2), and
(X7, Y 15, 1) is 2 + 7 = 9.

194 B. Wang et al.

(X1, Y 1, 3)

(X6, Y 6, 2)(X6, Y 4, ()2 X2, Y 8, 3)

(X9, Y 11, 4) (X7, Y 15, 1)

2 2 4

5
3 7

4
9 4

Fig. 2. A lattice of common substrings of X = traobcybgsfd and Y = tracycyraogsfdy

when α = 1 and β = 1.

Pruning Useless Concatenation Using the Lattice for Common Sub-
strings. From the above example, we can see that the lattice structure can
easily identify the strict dominate relationship between any two common sub-
string pairs. When the summation of labels in a path is greater than τ , we do
not need to concatenate common substrings along the path.

Algorithm 2 shows a pruning algorithm based on depth-first-search (DFS).
For every search step, it adjusts the permitted penalty score so that we could
avoid traversing those paths that could not generate LCSp.

Algorithm 2. Prune(L, τ)
Input: A lattice L for common substrings of X and Y , penalty threshold τ ;
Output: A pruned lattice;

// start from the root of L and traverse L using DFS

1 if L is a single node then
2 return L;

3 foreach node v pointed by the root r of L do
4 if edge(r, v) > τ then
5 remove the edge from r to v in L;

6 Prune(L, τ − edge(r, v));

Choosing a Good Calculation Order. In fact, we are only interested in the
longest common subsequences whose penalty is not greater than τ , therefore, it
is no need to calculate those common subsequences with shorter lengths.

Aiming at this target, we reorganize children of each node in the lattice by
ranking their lengths in descending order. Then by using the DFS, the path
with longest untraversed common strings will take precedence. When the first
lcsp(X,Y, τ) is found, we are safe to early terminate all calculations since the
later calculations can only generate a common subsequence with shorter length.

6 Efficiently Constructing Common Substrings

We can use dynamic programming to get all common substrings of X and Y in
O(mn) time. In order to accelerate this process, we can also use the suffix tree [20]

Locating Longest Common Subsequences with Limited Penalty 195

Fig. 3. An example of SA array.

or suffix array [5]. Compared with the suffix tree, suffix array can be configured
in linear time [9] and small space cost [7], so we consider the establishment of
suffix array index structure.

Given a string X, its suffix array SA records the start positions of all the
suffixes of one string. Since the suffixes are sorted lexicographically, SA[i] is the
start position of the i-th suffix based on the lexicographical order. The suffix
array of string T , denoted as SA, is actually an array with integer from 1 to
n, revealing the dictionary order of n suffixes. TSA[i] denotes the SA[i]th suffix
T [i . . . n]. The inverse SA−1 of suffix array is also an integer array, satisfying
SA−1[SA[i]] = i (1 ≤ i ≤ n). Obviously, the inverse of suffix array can also be
constructed in linear time.

LCP array is used for maintaining the length of the longest common prefix
of two adjacent suffix in SA. Suppose we use lcp(u, v) to denote the length
of the longest common prefix of u and v, then LCP [1] = 0 and LCP [i] =
lcp(TSA[i−1], TSA[i]) where 2 ≤ i ≤ n. Based on the suffix array and its inverse,
this LCP array can be constructed in linear time [6].

Given two strings X and Y , we add #1 and #2 to their ends, respectively,
forming a new string T = X#1Y #2. Suppose #1 < #2, and all characters in the
string collection are larger than these separators according to dictionary order.
We define the suffix array of the new string T and the related LCP array as the
generalized augmented suffix array [1], which is consistent with the suffix arrays
of X and Y . This approach can be done in O(m + n) time.

For example, let X = abfab and Y = abeab, then T = abfab#1abeab#2, with
their index starting from 0 as shown in Fig. 3(a). The SA array, SA−1 array and
LCP array of T are all shown in Fig. 3. The position and length of the common
substring in the outer matrix can be figured out according to the LCP array,

196 B. Wang et al.

which reduce the computation of mismatch in outer matrix. We can compute four
common substrings ab with (X0, Y 6, 2), (X0, Y 9, 2), (X3, Y 6, 2), and (X3, Y 9, 2)
in linear time, with the help of LCP array and the dynamic programming pro-
gramming for common substrings of X and Y .

7 Experiments

In this section, we evaluated the effect of the different factors on the performance
and used the following three data sets in the experiments.

– Genome data set. This data set contains human’s first genome data, from
which we randomly selected 1000 strings of various lengths as data strings. The
query strings were generated similarly from mice genome data. We generated
a query workload with 50 query strings.

– DBLP data set. We generated this data set from DBLP. It includes 1,632,442
papers, and each paper contains some of the properties of paper, such as
title, author, abstract, and etc. We randomly selected 1000 strings of various
lengths as data strings and randomly picked up 50 strings to construct a query
workload.

– AOL query log data set. It contains the web pages from a large number
of users Query records sorted by anonymous user IDs. Each record includes
anonymous user ID, the contents of the query, and query time. The length of
the records are from 20 and 100. We randomly chose 50 contents of queries to
construct its query workload.

Our experimental results were run on Ubuntu (Linux) 13.10 with Interl (R)
Core (TM) i7 CPU 870@2.93 GHZ 8 GB RAM. All the algorithms were imple-
mented using GNU C++.

7.1 Evaluation of Effectiveness

We define Locality Degree LD to evaluate the effectiveness of LCSp as follows.

LD =
avg(

∑
l(lcsp))

avg(
∑

l(lcs) − ∑
l(lcsp))

,

where l(lcsp) represents the length of matching substrings generated by using
LCSp, l(lcs) represents the length of matching substrings generated by using
LCS, and avg(·) is the average value. Notice that, we require that both LCSp
and LCS generate the same longest common subsequences under the given
penalty threshold.

Figure 4 shows the Locality Degree when increasing the penalty threshold
ratio, which is the percentage of average data string length. We can see when
getting the same longest common subsequence, LCSp prefers to find meaningful
matching substrings with shorter lengths. Figure 4(a) shows the locality degree
LD was very low, only less than 0.1 on DNA data set, which means that LCS

Locating Longest Common Subsequences with Limited Penalty 197

 0

 0.05

 0.1

 0.15

 0.2

1 2 3 4 5

Lo
ca

lit
y

D
eg

re
e

Penalty Threshold Ratio(%)

n=100
n=200
n=250

(a) DNA.

 0

 0.2

 0.4

 0.6

1 2 3 4 5

Lo
ca

lit
y

D
eg

re
e

Penalty Threshold Ratio(%)

n=40
n=120
n=200

(b) DBLP.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 3 4 5

Lo
ca

lit
y

D
eg

re
e

Penalty Threshold Ratio(%)

n=100
n=200
n=250

(c) AOL query log.

Fig. 4. Effectiveness of LCSp.

generates much more meaningless results compared with LCSp. The locality
degree on DBLP data set was less than 0.5, which was higher than it on DNA
data set, since the selectivity of DBLP data was much less than the selectivity of
DNA data. As the penalty threshold ratio increased, the locality degree on three
data sets decreased since the smaller penalty threshold was, the more locality
was required.

7.2 Comparison with Other Algorithms

We chose two state-of-the-art LCS algorithms DPA [2] and LIS [1], and modified
them to support LCSp as discussed in Sect. 4. We call these modified LCS-based
algorithms DPALCSp and LISLCSp. We compared the running time of our two
algorithms (i.e. BasicLCSp and ImprovedLCSp) with these two LCS-based
algorithms.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 3 4 5

R
un

ni
ng

 ti
m

e
(1

00
Se

c)

Penalty threshold Ratio(%)

BasicLCSp
ImprovedLCSp
DPALCSp
LISLCSp

(a) DNA.

 0

 40

 80

 120

 160

 1 2 3 4 5

R
un

ni
ng

 ti
m

e
(1

00
Se

c)

Penalty threshold Ratio(%)

BasicLCSp
ImprovedLCSp
DPALCSp
LISLCSp

(b) DBLP.

 0
 5

 10
 15
 20
 25
 30
 35

 1 2 3 4 5

R
un

ni
ng

 ti
m

e
(1

00
Se

c)

Penalty threshold Ratio(%)

BasicLCSp
ImprovedLCSp
DPALCSp
LISLCSp

(c) AOL query log.

Fig. 5. Comparison of different algorithms.

Figure 5 shows the comparison results of the four algorithms. We can see
that the algorithm DPALCSp was the slowest algorithm. Both BasicLCSp
and ImprovedLCSp algorithms ran much faster than LCS-based algorithms.
When increasing the penalty threshold ratio, the running time increased. This
is consistent with our expectation since more concatenated common substrings
would be generated when the penalty threshold increases, incurring larger time
cost for calculation. The running time of our algorithms kept more stable than
both DPALCSp and LISLCSp since our algorithms can generate the longest

198 B. Wang et al.

common subsequences directly based on common substrings, whereas the LCS-
based algorithms had to back chasing all possible alignments to calculate results,
which were costly.

7.3 Evaluation of LCSP

In order to compare the effects of the query filtering among different algorithms,
we define Filtered Ratio (FR) and Early Terminate Ratio (ETR) as follows.
Filtered Ratio (FR) is the proportion that a number of pruned concatenated
common substrings to the whole number of concatenated common substrings.
Early Terminate Ratio (ETR) is the proportion that traversed nodes to the
nodes in the lattice.

To measure the performance of algorithms, we take filtered ratio, early ter-
minate ratio, and running time as the three metrics to evaluate pruning power,
effect of early termination, and efficiency of our algorithms, respectively. It is
obvious that a favored algorithm with high efficiency should have large filtered
area ratio, larger early terminate ratio, and small running time. We use the
scoring scheme α = 1 and β = 1. We got similar results when varying α and β.

Pruning Power. We conducted experiments on strings with different lengths.
The lengths of query string and data string were comparable. The detailed fil-
tering ratios for three data sets are shown in Fig. 6. In Fig. 6(a), when the length
of one string is fixed to 20× 106, and the length of another string increases from
5 × 106 to 25 × 106, the filtering ratio is significant, increasing from 36.9% to
42.7%. Also, by comparing results on three different data sets in Fig. 6, we can
see that the filtering ratios raise when increasing the lengths of strings.

 0

 20

 40

 60

 80

 100

5 10 15 20 25

Fi
lte

rin
g

R
at

io
 (%

)

Length of S (x106)

n=10(x106)
n=20(x106)
n=25(x106)

(a) DNA.

 0

 20

 40

 60

40 80 120 160 200

Fi
lte

rin
g

R
at

io
 (%

)

Length of S

n=40
n=120
n=200

(b) DBLP.

 0

 10

 20

 30

 40

 50

20 40 60 80 100

Fi
lte

rin
g

R
at

io
 (%

)

Length of S

n=20
n=60

n=100

(c) AOL.

Fig. 6. Pruning power.

Effect of Early Termination. The effect of early termination is related to
string length, as well as the penalty threshold. Therefore we evaluated the impact
of these two factors in this section.

Figure 7 shows how early terminate ratio would be affected with increasing
string lengths. From Fig. 7, we can see that when the lengths of strings are gen-
erally comparable, the early terminate ratio increases with the increase of string

Locating Longest Common Subsequences with Limited Penalty 199

length. The reason is that, for both strings, longer strings generally indicate
larger probabilities of more common substrings.

Figure 8 shows the impact of the variance of penalty threshold ratios on the
early termination. To be more specific, seen from Fig. 8, when string length is
fixed, the larger the penalty threshold, the greater the early terminate ratio,
especially for DBLP and ALO query log data sets (see Fig. 8(b) and (c)). It is
because the larger the penalty threshold, the more the candidate starting from
the same common substring, leading to a large number concatenated substrings,
thus a larger early terminate ratio. Notice that, the early terminate ratio did not
increase significantly when increasing the penalty threshold ratio since the distri-
bution of frequencies for different substrings were similar, therefore, the number
of concatenated substrings kept stable when increasing the penalty threshold
ratio.

 0

 10

 20

 30

 40

 50

5 10 15 20 25

Ea
rly

 te
rm

in
at

e
ra

tio
 (%

)

Length of a string (x106)

n=10x106

n=20x106

n=25x106

(a) DNA.

 0

 10

 20

 30

 40

 50

40 80 120 160 200

Ea
rly

 te
rm

in
at

e
ra

tio
 (%

)

Length of a string

n=40
n=120
n=200

(b) DBLP.

 0

 10

 20

 30

 40

 50

20 40 60 80 100
Ea

rly
 te

rm
in

at
e

ra
tio

 (%
)

Length of a string

n=20
n=60

n=100

(c) AOL query log.

Fig. 7. Effect of early termination with different string lengths.

 0

 4

 8

 12

 16

1 2 3 4 5

Ea
rly

 T
er

m
in

at
e

R
at

io
 (%

)

Penalty Threshold Ratio(%)

n=100
n=200
n=250

(a) DNA.

 0

 3

 6

 9

 12

1 2 3 4 5

Ea
rly

 T
er

m
in

at
e

R
at

io
 (%

)

Penalty Threshold Ratio(%)

n=40
n=120
n=200

(b) DBLP.

 0

 3

 6

 9

 12

1 2 3 4 5

Ea
rly

 T
er

m
in

at
e

R
at

io
 (%

)

Penalty Threshold Ratio(%)

n=100
n=200
n=250

(c) AOL query log.

Fig. 8. Effect of early termination with different penalty threshold.

Running Time. We also test the efficiency of our algorithms when varying
the lengths of strings. Figure 9 reports the running time of ImprovedLCSp
for different lengths of strings on DNA sequences when the penalty threshold
τ = 2,6,10, respectively. The results on DBLP and AOL query log data sets are
similar.

200 B. Wang et al.

 0
 3

 6
 9

 12

 15
 18

 5 10 15 20 25

R
un

ni
ng

 ti
m

e
(1

00
Se

c)

Length of a string (x106)

n=25(x106)
n=15(x106)
n=5(x106)

(a) τ = 2%|s|.

 0
 3

 6
 9

 12

 15
 18

 5 10 15 20 25

R
un

ni
ng

 ti
m

e
(1

00
Se

c)

Length of a string (x106)

n=25(x106)
n=15(x106)
n=5(x106)

(b) τ = 6%|s|.

 0
 3

 6
 9

 12

 15
 18

 5 10 15 20 25

R
un

ni
ng

 ti
m

e
(1

00
Se

c)

Length of a string (x106)

n=25(x106)
n=15(x106)
n=5(x106)

(c) τ = 10%|s|.

Fig. 9. The performance of ImprovedLCSp on DNA data set.

Figure 9(a) shows when τ = 2% of string length, with the increase of the
lengths of strings, the running time also increased from 259 s to 676 s. As can be
seen in Fig. 9(b), when τ = 6% of string length, with the increase of the lengths
of strings, the running time increased from 380 s to 814 s. In Fig. 9(c), it can
be seen that when τ = 10% of string length, the running time increased from
722 s to 1,183 s. In a word, when τ is fixed, the running time of the algorithm
ImprovedLCSp is linear to the lengths of strings.

8 Conclusion

In this paper, we propose a new problem, the longest common subsequence
with limited penalty to get LCSs with good locality. We show that the existing
LCS-based algorithms are not efficient since they have to back chasing align-
ments to do verifications. In order to avoid checking each generated LCS using
the penalty threshold, we propose an approach based on common substrings.
By improving the basic algorithm, we propose a filter-refine approach that can
reduce the number of concatenated common substrings. It can efficiently prune
useless concatenations of common substrings and early terminate calculations.
Our experimental study demonstrate its effectiveness and efficiency.

References

1. Arnold, M., Ohlebusch, E.: Linear time algorithms for generalizations of the longest
common substring problem. Algorithmica 60(4), 806–818 (2011)

2. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence
algorithms. In: Seventh International Symposium on String Processing and Infor-
mation Retrieval, SPIRE 2000, A Coruña, Spain, pp. 39–48, 27–29 September 2000

3. Brodal, G.S., Kaligosi, K., Katriel, I., Kutz, M.: Faster algorithms for comput-
ing longest common increasing subsequences. In: Proceedings of the 17th Annual
Symposium on Combinatorial Pattern Matching, CPM 2006, Barcelona, Spain, pp.
330–341, 5–7 July 2006

4. Hirschberg, D.S.: A linear space algorithm for computing maximal common sub-
sequences. Commun. ACM 18(6), 341–343 (1975)

Locating Longest Common Subsequences with Limited Penalty 201

5. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003). doi:10.1007/
3-540-45061-0 73

6. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Proceedings
of the 12th Annual Symposium on Combinatorial Pattern Matching, CPM 2001,
Jerusalem, Israel, pp. 181–192, 1–4 July 2001

7. Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction of suffix arrays.
In: Proceedings of the 14th Annual Symposium on Combinatorial Pattern Match-
ing, CPM 2003, Morelia, Michocán, Mexico, pp. 186–199, 25–27 June 2003

8. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

9. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. J. Discrete
Algorithms 3(2–4), 143–156 (2005)

10. Korf, I., Yandell, M., Bedell, J.A.: BLAST - An Essential Guide to the Basic Local
Alignment Search Tool. O’Reilly, Sebastopol (2003)

11. Lam, T.W., Sung, W., Tam, S., Wong, C., Yiu, S.: Compressed indexing and local
alignment of DNA. Bioinformatics 24(6), 791–797 (2008)

12. Levenshtein, V.I.: Binary codes capable of correcting spurious insertions and dele-
tions of ones. Probl. Inf. Transm. 1(1), 817 (1965)

13. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J.
Comput. Syst. Sci. 20(1), 18–31 (1980)

14. Meek, C., Patel, J.M., Kasetty, S.: OASIS: an online and accurate technique for
local-alignment searches on biological sequences. In: VLDB, pp. 910–921 (2003)

15. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(2),
251–266 (1986)

16. Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algo-
rithm suitable for similar text strings. Acta Inf. 18, 171–179 (1982)

17. Overill, R.E.: Book review: “time warps, string edits, and macromolecules: the
theory and practice of sequence comparison” by David Sankoff and Joseph Kruskal.
J. Log. Comput. 11(2), 356 (2001)

18. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147(1), 195–197 (1981)

19. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM
21(1), 168–173 (1974)

20. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on
Switching and Automata Theory, Iowa City, Iowa, USA, pp. 1–11, 15–17 October
1973

21. Yang, X., Liu, H., Wang, B.: ALAE: accelerating local alignment with affine gap
exactly in biosequence databases. PVLDB 5(11), 1507–1518 (2012)

http://dx.doi.org/10.1007/3-540-45061-0_73
http://dx.doi.org/10.1007/3-540-45061-0_73

Top-k String Auto-Completion with Synonyms

Pengfei Xu(B) and Jiaheng Lu

Department of Computer Science, University of Helsinki, Helsinki, Finland
{pengfei.xu,jiaheng.lu}@helsinki.fi

Abstract. Auto-completion is one of the most prominent features of
modern information systems. The existing solutions of auto-completion
provide the suggestions based on the beginning of the currently input
character sequence (i.e. prefix). However, in many real applications, one
entity often has synonyms or abbreviations. For example, “DBMS” is
an abbreviation of “Database Management Systems”. In this paper, we
study a novel type of auto-completion by using synonyms and abbrevi-
ations. We propose three trie-based algorithms to solve the top-k auto-
completion with synonyms; each one with different space and time com-
plexity trade-offs. Experiments on large-scale datasets show that it is
possible to support effective and efficient synonym-based retrieval of
completions of a million strings with thousands of synonyms rules at
about a microsecond per-completion, while taking small space overhead
(i.e. 160–200 bytes per string). The implementation of algorithms is pub-
licly available at http://udbms.cs.helsinki.fi/?projects/autocompletion/
download.

1 Introduction

Keyword searching is a ubiquitous activity performed by millions of users daily.
However, cognitively formulating and physically typing search queries is a time-
consuming and error-prone process [3,6]. In response, keyword search engines
have widely adopted auto-completion as a means of reducing the efforts required
to submit a query. As users enter their query into the search box, auto-completion
suggests possible queries the user may have in mind.

The existing solutions of auto-completion provide the suggestions based on
the beginning of the currently input character sequence (i.e. prefix). Although
this approach provides satisfactory auto-completion in many cases, it is far from
optimal since it fails to take into account the semantic of users’ input characters.
There are many practical applications where syntactically different strings can
represent the same real-world object [10]. For example, “Bill” is a short form of
“William” and “Database Management Systems” can be abbreviated as “DBMS”.
These equivalence information suggests semantically similar strings that may
have been missed by simple prefix based approaches. For instance, based on the
DBLP dataset, when a user enters “Andy Pa” in the search box (see Fig. 1), the
system should suggest “Andrew Palvo”, because there is no record with the prefix
“Andy Pa” and “Andy” is a nickname of “Andrew”. Similarly, on an E-commerce

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 202–218, 2017.
DOI: 10.1007/978-3-319-55699-4 13

http://udbms.cs.helsinki.fi/?projects/autocompletion/download
http://udbms.cs.helsinki.fi/?projects/autocompletion/download

Top-k String Auto-Completion with Synonyms 203

Andy Pa

Andrew Pavlo
Andrew Parker
Andrew Packard

IL2

Interleukin-2
Interleukin-2 biological activity
Interleukin-2 and cancer

Fig. 1. Auto-completion with synonyms.

site, a user may type part of an abbreviation of a product name because she does
not know the full name stored in a database. In a gene/protein database, one of
the major obstacles that hinder the effective use is term variation [13], including
acronym variation (e.g. “IL-2” and “interleukin-2”), and term abbreviation (e.g.
“Ah receptor” and “Ah dioxin receptor”). Therefore, this calls for auto-completion
with synonyms to improve its usability and effectiveness. For brevity we use
“synonym” to describe any kind of equivalent pairs which may include synonym,
acronym, nickname, abbreviation, variation and other equivalent expressions.

Often, when only a few characters of the lookup string have been entered,
there are too many completions for auto completion to be useful. We thus con-
sider a top-k synonym-based auto-completion strategy that provides the sug-
gestion for the only top-k results according to predefined ranking scores and
synonym sets. Given a large set of strings, an auto-completion system needs
to be speedy enough to keep up with the user’s key strokes. Meanwhile, we
would like to fit all strings in the limited main memory. Hence, we need a both
time-efficient and space-efficient data structure that enables us to return top-k
completions without checking all the data in the synonyms set and the string
collection.

In this paper, we propose three data structures to support efficient top-k com-
pletion queries with synonyms for different space and time complexity trade-offs:
(i) Twin tries (TT): Two tries are constructed to present strings and synonym
rules respectively in order to minimize the space occupancy. Each trie is a com-
pact data structure, where the children of each node are ordered by the highest
score among their respective descendants. Applicable synonym rules are indi-
cated by pointers between two tries. An efficient top-k algorithm is developed
to search both tries to find the synonym rules.
(ii) Expansion trie (ET): A fast lookup-optimized solution by integrating syn-
onym rules with the corresponding strings. Unlike TT, ET uses a single expended
trie to represent both synonym and string rules. Therefore, by efficiently travers-
ing this trie, ET is faster than TT to provide top-k completions. Meanwhile ET
often takes larger space overhead than TT, because ET needs to expand the
strings with their applicable rules.
(iii) Hybrid tries (HT): An optimized structure to strike a good balance between
space and time cost for TT and ET. We find a balance between lookup speed
and space cost by judiciously selecting part of synonym rules to expand the
strings. We show that given a predefined space constraint, the optimal selection
of synonym rules is NP-hard, which can be reduced to a 0/1 knapsack problem

204 P. Xu and J. Lu

with item interactions. We provide an empirically efficient heuristic algorithm
by extending the branch and bound algorithm.

Large scale evaluation of search queries on three real datasets demonstrate
the effectiveness of the proposed approaches. For example, on the US postal
address dataset with 1M strings, the twin tries achieve a size of 160 bytes per
string, which requires an average of only 5 ms to compute the top-10 comple-
tion on a simulated workload. In comparison, the expansion trie reduces the
completion time to 0.1 ms, but increases the size to 200 bytes per string. The
hybrid tries have a balanced performance, by achieving 1–2 ms per query, with
the space overhead of 172 bytes per string. The implementation is available at
http://udbms.cs.helsinki.fi/?projects/autocompletion/download.

2 Related Work

There is a plethora of literature on query auto-completion, especially in the field
of information retrieval. We report here the results closest to our work. Readers
may refer to a recent survey [2] for more comprehensive review.

Auto-completion with prefix matching can be easily implemented with a trie.
Therefore, it is straightforward to extend trie to support top-k prefix matching.
Li et al. [9] precompute and materialize the top-k completion of each possible
word prefix and store them with each internal node of a trie. This requires a
predetrmined k. Surajit et al. [3] provided solutions for error-tolerating auto-
completion based on edit distance constraints, which during the lookup, main-
tains an error variable while searching for all possible candidate nodes. The
collection of candidate strings are fetched by gathering strings stored under all
leaf nodes under all candidates nodes. Xiao et al. [14] further extended the app-
roach, by proposing a novel neighborhood generation-based algorithm, which
can achieve up to two orders of magnitude speedup over existing methods for
the error-tolerant query auto-completion problem. These solutions, however, are
based on string similarity, which does not expose the semantic relations between
words. For example, “iPod” and “iPad” have an edit distance only 1, but they
should not be considered as the same word. In contrast, the edit distance between
“DASFAA” and “International Conference on Database Systems for Advanced Appli-
cations” is big, but they refer to the same conference.

In [5], Hyvonen et al. proposed semantic-based auto-completion, which
can include synonym-based, context-based and multilingual auto-completion.
Unfortunately, this paper only mentions the concept of semantic-based auto-
completion, but no algorithms are proposed. In this paper, we make the techni-
cal contribution by proposing space and time efficient algorithms to explore the
synonym relations for top-k auto-completion.

Finally, synonym pairs can be obtained in many ways, such as existing dic-
tionaries and synonyms mining algorithms [12]. Recently, Lu et al. [10] studied
how to use the synonyms to improve the effectiveness of table joins. In this
paper, with different research theme, we strike to use the synonyms to provide
meaningful top-k auto-completion.

http://udbms.cs.helsinki.fi/?projects/autocompletion/download

Top-k String Auto-Completion with Synonyms 205

3 Preliminaries and Problem Description

In this section, we describe some of the data structures and primitives used in
this paper and define our research problem.

Dictionary and synonym rule sets. Dictionary is a scored string set D in
forms of pairs (s, r) where s ∈ Σ∗ is a string drawn from an alphabet Σ and
r is an integer score. A synonym rule set R is a set of synonym pair. Let R

denote a collection of synonym rules, i.e., R = {r : lhs → rhs}. A rule can
be applied to s if lhs is a substring of s; the result of applying the rule is the
string s′ obtained by replacing the substring matching lhs with rhs. Given a
string p, we say a replaced string p′ from p, which is obtained from some non-
overlapping substrings of p by applying the rules to generate new string p′. We
can apply any number of synonym rules one after another. However, a token
that is generated as a result of production application cannot participate in a
subsequent production.

Problem description. Given a dictionary of strings and a collection of syn-
onym rules, the goal is to suggest the top k strings with the highest scores
with considerations of synonym pairs. Formally, we define the problem of top-k
completion with synonyms as follows.

Problem 1 (Top-k completion with synonyms). Given a dictionary string p ∈ Σ∗,
an integer k, and a synonym set R, a top-k completion query in the scored dictionary
string set D returns the k highest-scored pairs in Dp = {s ∈ D | p is a prefix of s, or
there exists a replaced string p’ of p using R, such that p′ is a prefix of s.} ��
Example 1. See Fig. 1. Given three dictionary strings D including “Andrew
Pavlo”, “Andrew Parker” and “Andrew Packard” and one synonym rule
R = {“Andy” → “Andrew”}. If a user enters “Andy Pa”. Then all three strings
are returned as top-3 completions. Note that none of results can be returned
based on the traditional prefix-based auto-completion. ��

4 Twin Tries (TT)

A trie, or radix tree or prefix tree, is a tree data structure that encodes a set
of strings, represented by concatenating the characters of the edges along the
path from the root node to each corresponding leaf. All the descendants of a
node have a common prefix of the string associated with that node, and the
root is associated with the empty string. To encode the score and support top-k
completions, we assign to each leaf node the score of the string it represents,
while each intermediate node holds the maximum score among its descendants.
We employ two tries, named dictionary trie (TD) and rule trie (TR), which
hold all dictionary strings and the synonym rules, respectively. Moreover, we
introduce synonym links, which are edges from TR and pointing to corresponding
nodes in TD. To support top-k lookups, each synonym link is assigned with an
integer offset, denoted by link.delta, which equals to the length of rule.lhs minus

206 P. Xu and J. Lu

length of rule.rhs. An example of the mentioned structure can be found in Fig. 2.
Algorithm 1 gives the method for building TT.

We introduce a heuristic algorithm (see Algorithm2) to find the best com-
pletion results that extends the search string. Specifically, starting from the root
node, we iteratively search in the dictionary trie for any matching prefixes of search
string. For the unmatched part, we look up in the rule trie for any possible syn-
onym rules. If there are multiple link targets in this rule, we select the appropriate
one by comparing the deepest locus node and the node prior to rule.lhs (Line 18 in
Algorithm 2). To support an efficient top-k lookup, we also introduce node.depth,
which is the number of edges from node to the trie’s root node.

Example 2. Consider twin tries in Fig. 2. Assume that the search string is
“abmp” and k = 1. The process for getting completion result with Algorithm 2
can be found in the following table1. “�” and “×” represents a string is found
or not found in corresponding trie: pra in dictionary trie, prr in rule trie. ��

Iter. pra prr Note

1 Pop first element from queue: m = ε (root of TD), pr = abmp

1.1 ε � abmp × ε is found in TD, but abmp is not found in TR

1.2 a � bmp × a is found in TD, but bmp is not found in TR

1.3 ab � mp � mp is found in TR. The target of its links are c and abc.
abc is the correct link target. Push it to queue

1.4 abm × Break loop

2 Pop first element from queue: m = abc, pr = ∅
2.1 abc � ∅ Node abc is a leaf, so add it to result set. prr is empty,

so push all children of abc to queue (but it has no child).

3 The queue is empty. Therefore the final result is “abc”

Fig. 2. TT example

Complexity analyses. The worst-
case time complexity of top-k auto-
completion (Algorithm 2) is O(pm +
p2n2 + klm log(klm) + st), where p is
the length of search string, l is the max-
imum length of dictionary string, m and
n is the maximum number of children
per node in TD and TR respectively, s
is the maximum number of links per
rule and t is the maximum number of
applicable rules per dictionary string.

1 In this table, we use the denotation abc to represent a node with label “c” with
parent node labeled “b”, in path root – a – b – c.

Top-k String Auto-Completion with Synonyms 207

Algorithm 1. Generation of TT
Input: Set of dictionary strings (D) and set of synonym rules (R)
Output: Twin tries 〈TD, TR〉

1 for each of rules in R, add its rhs to TR

2 foreach s ∈ D do
3 add s to TD

4 foreach r ∈ R do
5 if r can be applied onto s then
6 f ← deepest locus node of r in TR

7 foreach lo ∈ all locus points of r on s do
8 l ← node from TD, which represents r.lhs in decendents of lo
9 f .links.add(l, r.lhs.length - r.rhs.length) // (target, delta)

10 recursively set every score of every node in TD to the maximum among its
descendants

11 return 〈TD, TR〉

Specifically, we need to examine up to pm nodes in the dictionary trie to check
whether a substring is from dictionary. We also need to lookup (pn+ · · ·+2p+p)
nodes in the rule trie in order to find possible synonym links. After we find one
result, we need to scan upward l nodes on the way to root, which is totally
O(kl) time corresponding to k completions. As the algorithm inserts all nodes
in corresponding path to the priority queue, we may add up to klm nodes, con-
tributing an additional O(klm log(klm)) term. Finally, O(st) time is required to
determining the correct synonym link.

5 Expansion Trie (ET)

In this section, we describe a compressed trie data structure to combine both
dictionary and synonym strings into one trie, called Expansion Trie (ET).

Fig. 3. ET example

The baseline algorithm is to gener-
ate a set of new strings by applying
permutations of rules onto the dictio-
nary strings, then add them to trie.
The baseline algorithm has two prob-
lems: (i) Dictionary and synonym nodes
are mixed together in the final trie, and
thus it is hard to tell whether a string
is from dictionary; (ii) the algorithm is
extremely slow because the generation
of permutations for all applicable rules
in strings.

To address the above problems, we
propose a new algorithm for generating the ET, which minimizes running time
and memory cost by removing duplicate nodes. We treat every dictionary string

208 P. Xu and J. Lu

Algorithm 2. Top-k completions with TT
Input: Dictionary trie TD, rule trie TR, search string p and k > 0
Output: List of top-k completions C

1 Q ← empty priority queue; C ← empty priority list; Q.push(〈root node of TD,
0〉)

2 while Q �= ∅ do
3 〈m, ipr 〉 ← Q.pop() // (current node, index of remaining p)
4 pr ← p.substring(0, ipr)
5 for i from 0 to pr.length do
6 (pra , prr) ← pr.split(i)
7 l ← deepest locus node of pra in descendants of node m
8 if l is not found then break the for loop
9 else if l is a leaf node then

10 C.add(full string of l)
11 if |C|= k then return C

12 if prr is empty string then
13 foreach c ∈ l.children do Q.push(〈c, ipr + i〉)
14 else
15 ns ← locus points of prr in TR

16 foreach n ∈ ns do
17 foreach lk ∈ n.links do
18 dest ← from lk.target, go up (lk.depth + lk.delta) levels
19 if l and dest is the same node then
20 Q.push(〈lk.target, ipr + i + lk.target.depth〉)
21

22 return C

as a unique path from root to leaf, while all its available synonym rules as
“branches” that attached to it. At the end of each branch, a synonym link points
it back to the dictionary string. Additionally, we set the score of every synonym
node (new nodes introduced by expanding synonym rules on dictionary trie) to
0, because we do not give such suggestion. The pseudo-code of the proposed
algorithm can be found in Algorithm3.

Example 3. Given dictionary strings d1 : (abc, 5) and d2 : (cde, 2) and synonym
rules r1 : bc → mn and r2 : c → mp, the ET generated by Algorithm 3 can be
seen in Fig. 3. ��

We introduce a similar solution to perform top-k suggestions on ET as in
Algorithm 4. Specifically, we find the deepest node in the trie that matches the
search string as much as possible (Line 2 in Algorithm 4) and insert it into a
priority queue. We also insert the target node of its synonym links (if any) to
the queue. Then we iteratively pop the node with highest score as the current
node. We add it to the result if it is a leaf node. Otherwise, if there is still any
other remaining character, we find the corresponding child node and add it to
the queue. When all characters are processed, we add all the children of the

Top-k String Auto-Completion with Synonyms 209

Algorithm 3. Generation of ET
Input: Set of dictionary strings (D), set of synonym rules (R)
Output: Expansion trie T

1 add all strings in D to T
2 foreach s ∈ D do
3 foreach r ∈ R do
4 if r can be applied onto s then
5 foreach f ∈ all locus points of r on s do
6 l ← deepest node of r.lhs in decendents of f
7 p ← f .parent // synonym nodes attach here

8 add each char of r.rhs with score = 0 as descendants of p
9 e ← select the last node just added (i.e. deepest node in

synonym nodes)
10 e.links.add(l)

11 recursively set every score of every node in T to the maximum among its
descendants

12 return T

Algorithm 4. Top-k completions with ET
Input: Expansion trie T , search string p and k > 0
Output: List of top-k completions C

1 Q ← empty priority queue; C ← empty priority list; H ← empty hash table
2 locus ← deepest locus point of p in T
3 if locus is a dictionary character then Q.push(locus)
4 foreach l ← target node of locus.links do Q.push(l)
5 while Q �= ∅ do
6 m ← Q.pop()
7 if m is a leaf node then
8 add full string of m to C with m.score
9 if —C— = k then return C

10 if m is the last node representing p, or there is more chars from p after m
then

11 Q.push(m.links.target)
12 if there is more chars from p after m then
13 Q.push(node holds next character of p after m)
14 else push all non-synonym nodes of m.children to Q

15 return C

current node to the queue (Line 12 to 14 in Algorithm4). This procedure loops
until k completions have been found or the priority queue becomes empty.

Complexity analyses. The worst-case time complexity of top-k on ET is
O(pm+klm log(klm)). According to the proposed algorithm, we need to examine
up to pm nodes in the trie to find the locus node. After reaching one leaf node,
we need to scan upward l nodes on the way to root, which is totally O(kl) time

210 P. Xu and J. Lu

corresponding to k completions. Add up to klm nodes to the binary heap con-
tributes an additional O(klm log(klm)) term. Although we use the same notation
“m” here, one should notice that its value is larger compared to TT because the
expansion of rules introduced more nodes, thus the maximum number of children
is increased.

6 Hybrid Tries (HT)

By comparing the top-k time complexity of TT and ET, it can be seen that the
latter will need more time as it needs to (i) look up the rule trie iteratively for
every sub-string of p, (ii) check all synonym links in order to find the correct one.
Therefore, we propose a solution that selects some synonym rules and expands
them while leaving the remaining ones in rule trie, so that fewer synonym links
need to be checked, which leads to a smaller running time. Note that the more
rules we expand, the more space it takes. Therefore the problem can be defined
as follows:

Problem 2 (Optimal construction of HT). Let STT and SET be the space cost
of TT and ET, given a space threshold S ∈ [STT , SET], D and R, our task is to
build two tries 〈TD, TR〉 to minimize the top-k lookup time while satisfying the
space constraint S.

With endeavors to make the lookup search based on HT more efficient, our
approach is to solve Problem 2 with a combinatorial optimization algorithm
based on the frequency of rules in applicable strings. Therefore, the policy of
selecting rules for expansion turns into maximizing the total number of applica-
ble rules on dictionary strings within space constraints.

Let ri be the item (synonym rule) at index i in R, {v1, v2, ..., v|R|} be the
frequency (time-of-use) of items, {w1, w2, ..., v|R|} be its weight, i.e. space cost
when expanding it to the dictionary trie, {x1, x2, ..., x|R|} be a set of integers
either 0 or 1, it can be seen that the problem is similar with a 0/1 knapsack
problem, which is known NP-hard:

maximize
|R|∑

i=1

vixi subject to
|R|∑

i=1

wixi ≤ S

However, our problem is not such straightforward because the space cost
of a synonym rule may be smaller depends on the presence of other rules in
the trie. Consider dictionary string abcde and two rules r1 : abc → mn and
r2 : abc → mnp. Expanding r1 adds two synonym nodes m and mn. Then when
expanding r2, it uses existing nodes m and mn which are generated by r1 before.
Thus only one new node mnp is created. By considering such interactions, we are
able to formalize Problem 2 more precisely as follows:

Problem 3 (0/1 Knapsack Problem with Item Interactions).

maximize
|R|∑

i=1

vixi subject to
|R|∑

i=1

fi(xi, xj|j ∈ Pi) ≤ S

Top-k String Auto-Completion with Synonyms 211

fi(·) is the weight function that returns the weight of item ri with knowledges
of xi, current items in knapsack (their indexes are stored in C), and Pi as indexes
of all items which have interactions with ri. Specifically, the weight function can
have three types of return values: (i) fi(·) = 0 when xi = 0, i.e. item ri is not
selected. (ii) fi(·) = wi when xi = 1 and �xj = 1|j ∈ (Pi∩C). (iii) fi(·) ∈ (0, wi),
otherwise.

It is possible to adapt the dynamic programming (DP) method to Problem3,
by sorting the items so that all items which ri depends on are located before
ri. This ensures all interacted items are processed before ri itself. However,
in our problem the cyclical cannot be ignored [1]: we can say that the weight
of r1 depends on the presence or absence of r2, but it is also true to say r2
depends on r1, since r2 can also provide the two synonym nodes which reused
by r1. Due to the hardness of the problem, some approximate methods are
proposed, by grouping interacted items as a single knapsack item [8] or cutting
weak interactions [11]. However, all such solutions are not able to give a bound
of the estimation error. In this paper, we present a new solution following a
branch and bound (B&B) fashion by tightening the upper- and lower-bound
with considerations of item interactions, which gives an exact solution subject
to total value.

We now introduce three terms used in our algorithm. All items can be clas-
sified into one of three categories at any specific stage of B&B algorithm [7]:
(i) Included: the item is explicitly included in the solution. According to our
definition, item ri is an included item when xi = 1. (ii) Excluded: the item is
explicitly excluded in the solution, i.e. xi = 0. (iii) Unassigned: the item is not
processed yet. At any given stage, this type of items should only contains further
items that has not been tested in any branch.

Tight upper-bounds. For knapsack with independent items, the method for
obtaining an upper-bound is based on the solution of fractional knapsack prob-
lem, where a part of an item can be take into the knapsack when the space does
not fit it as a whole. A greedy algorithm by Dantzig et al. [4] can be employed to
obtain an optimal result. In our case, we sort items by assuming all interactions
already existed. That is, for item ri, we assume every item ∀j ∈ Pi, xj = 1.
We use wmin,i to indicate this minimum weight. This can guarantee that the
greedy algorithm returns a solution which is the largest one among all feasible
upper-bounds.

Tight lower-bounds. A classic method to obtain the lower-bound is to look
forward down the unassigned items in current solution, and greedy take (in
order) items into knapsack until the weight budget left cannot fit the next item.
We extend this method by assuming every interacted item rj is either excluded
or unassigned, i.e. ∀j ∈ Pi, xj = 0.

Measuring exact weight. We add the exact space consumption for expanding
ri to knapsack in each branch operation. One straightforward solution can be
“scan all items to accumulate any possible savings”. Unfortunately, this method
ignores that fact that most items are not interacted and will be very slow when

212 P. Xu and J. Lu

|R| is large because each scan requires O(|R|) time. As in our solution, we perform
a partition prior to B&B by grouping all items to several parts: ri has interactions
with all other items in the same part, but not with items in other parts. As the
result, saving can only be obtained when ri is included together with items from
the same part, otherwise it has its original weight. The partition allows us to
use a heuristic in each branch operation by scanning though only items in the
same part with ri, instead of all items.

Construction of HT and top-k completions. Our algorithm for solving
Problem 2 is given in Algorithm 5. Specifically, we highlight our three extensions
to B&B algorithm as separate functions.

Algorithm 5. Construction of HT
Input: Set of dictionary strings (D), set of synonym rules (R) and space

threshold (S)
Output: Hybrid tries 〈TD, TR〉

1 P ← partition rules in R

2 sort R by items’ minimum weight (i.e. assume all interactions exist)
3 〈Rin, Rex〉 ← solve knapsack problem with branch and bound, with bound

functions upper bound(ri) and lower bound(ri), ri is the current item in the
decision tree. in each branch, the exact weight of ri is obtained by exact weight
(ri, Pri , Xinc), where Pri is the part ri belongs to, Xinc is the set of included
items at current step

4 TD ← build dictionary trie with D and expand rules in Rin following
Algorithm 3

5 〈TD, TR〉 ← build rules trie with D and Rex following Algorithm 1, while let TD

be the ready-to-use dictionary trie
6 return 〈TD, TR〉
7 Function upper bound (ri)
8 ubi ← ri.weight // take current weight

9 while ubi < S do
10 take ri, add its minimum weight to ubi; i ← i + 1
11 ubi ← ubi + vi

wmin,i
× (S − ubi) // take a fraction of next item using

its minimum weight

12 return ubi

13 Function lower bound (ri)
14 lbi ← ri.weight
15 while lbi < S do
16 take ri, add its original weight to lbi; i ← i + 1
17 return lbi

18 Function exact weight (ri, Pri , Xinc)
19 wreal ← wi

20 foreach r|r �= ri, r ∈ Pri do
21 if ∃r ∈ Xinc then wreal ← min(wreal, fi(xi, r))
22 return wreal

Top-k String Auto-Completion with Synonyms 213

Example 4. Given dictionary strings d1 : (abc, 5) and d2 : (cde, 2) and synonym
rules r1 : bc → mn and r2 : c → mp, the HT generated by expanding r1 according
to Algorithm 5 is illustrated in Fig. 4.

Fig. 4. HT example

We can preform top-k completions
queries on HT by extending Algo-
rithm2: every time when checking pos-
sible synonym rules in pr (before Line
12), we push the target of l.links with
foreach t← target of l.links do
Q.push(t).

Because the top-k completions algo-
rithm on HT is similar with TT, their
worst-time complexity is also the same.
However, the value of s (i.e. maximum
number of links per synonym rule) is smaller since we reduced the number of
synonym links per rule by moving some rules to the dictionary tire.

7 Experimental Analysis

To evaluate the effectiveness of the proposed top-k completion techniques, Twin
Tries (TT), Expansion Trie (ET) and Hybrid Tries (HT), we compare their
effectiveness on the following datasets from different application scenarios on a
Intel i7-4770 3.4 GHz processor with 8 GB of RAM, complied with OpenJDK
1.8.0 on Ubuntu 14.04 LTS.

7.1 Datasets

We use three datasets: conference publications and book titles (DBLP), US
addresses (USPS), and gene/protein data (SPROT). These datasets differ from
each other in terms of rule-number, rule-complexity, data-size and string-length.
Our goal in choosing these diverse sources is to understand the usefulness of
algorithms in different real world environments.

DBLP: We collected 24,810 conference publications and book titles from DBLP
website (http://dblp.uni-trier.de/). We obtained 214 synonym pairs between the
common words and their abbreviations used in computer science field listed on
IEEE website.

USPS: We downloaded common person names, street names, city names and
states from the United States Postal Service website (http://www.usps.com). We
then generated 1,000,000 records as dictionary strings, each of which contains a
person name, a street name, a city name and a state. We also gathered extensive
information about the common nicknames and format of addresses, from which
we obtained 341 synonym pairs. The synonym pairs covers a wide range of
alternate representations of common strings, e.g. Texas→ TX.

http://dblp.uni-trier.de/
http://www.usps.com

214 P. Xu and J. Lu

SPROT: We obtained 1,000,000 gene/protein records from the UniProt website
(http://www.uniprot.org/). Each record contains an entry name, a protein name,
a gene name and its organism. In this dataset, each protein name has 5−22 syn-
onyms. We generated 1,000 synonym rules describing relations between different
names.

Table 1 gives the characteristics of the three datasets. The scores of each
string are randomly generated in this experiment.

Table 1. Characteristics of datasets.

Name of dataset # of
strings

String len
(avg/max)

of synonym
rules

Rules per string
(avg/max)

DBLP 24, 810 60/295 368 2.51/11

USPS 1, 000, 000 25/43 341 2.15/12

SPROT 1, 000, 000 20/28 1, 000 2.11/12

7.2 Data Structure Construction

Space. We evaluate the compactness of the generated data structures by report-
ing in Table 2 the average number of bytes per string (including score and rela-
tions e.g. node.parent). For comparison, we also report the size of the data
structure generated by the baseline method (BL) described in the expansion
trie (see Sect. 5). Across the datasets, the baseline method produce the largest
trie structure, about 4KB per dictionary string for DBLP dataset. For larger
dataset like USPS and SPROT, it crashes because of exponentially increasing
number of new strings. The ET structure takes the second largest space con-
sumption, while TT consistently takes the smallest size, about 58% smaller than
ET on SPROT dataset. Finally, the HT structure (we set the space threshold to
0.5 × (SET − STT)) takes a larger size than TT but smaller than ET.

Table 2. Data structure sizes in bytes per string.

Name of dataset BL TT ET HT

DBLP 4,250.98 528.71 638.76 578.12

USPS Failed 160.49 200.03 172.64

SPROT Failed 128.82 217.55 161.25

To better understand how the space is used, we present in Fig. 5 the storage
breakdown of each of the techniques on SPROT dataset. We break the total
space down to (i) Space taken by dictionary nodes, including labels, scores and
relations like node.parent and node.children, (ii) Expanded synonym nodes: size
of synonym nodes in the dictionary trie and (iii) Unexpanded synonym nodes:

http://www.uniprot.org/

Top-k String Auto-Completion with Synonyms 215

0 50 100 150 200

ET

TT

HT

Size (MB)

Dictionary nodes

Expanded synonym nodes

Unexpanded synonym nodes

Fig. 5. Data structure size breakdown on SPROT dataset

size of synonym nodes in rule trie TR. For ET, the number of synonym nodes
in the trie is about 15 times more than in rule trie (TT) due to the numerous
different locus points. The latter eliminates multiple copies of nodes, but will
incur some sacrifice in top-k speed. For HT, the most frequent rules are expanded
like ET, while half size of less-frequent rules are left in the rule trie. This results
a moderate space consumption between TT and ET.

Time. In addition to the space cost, we also measure their running time on three
dataset and report them in Fig. 6. For small dataset like DBLP, all four methods
finish within a reasonable time, however, the baseline method is nearly 30 times
slower than the other three. It also failed to finish within 300 s on large dataset
USPS and SPROT. For the other three methods, TT is always the fastest on all
datasets, because it does not need to create synonym nodes for each application,
but use the existing ones and add a new synonym link. The HT runs the slowest
due to the additional computation in the B&B method.

Fig. 6. Construction time

7.3 Top-k Efficiency

This set of experiments studies the overall efficiency of our auto-completion. We
generate test queries by randomly applying synonym rules onto the dictionary

216 P. Xu and J. Lu

0 50 100 150

0

0.5

1
T
im

e
(m

s)

0 20 40

0

5

10

Search string length

0 10 20 30

0

5

10 TT

ET

HT

(a) DBLP (b) USPS (c) SPROT

Fig. 7. Top-10 auto-completion lookup time

strings, then we randomly pick a substring of each new string, formed 50,000
query strings for each dataset. We ran every query string based on the TT, ET
and HT structures and plotted the running time in Fig. 7. We observed that for
shorter queries (length 2 to 10), all three algorithms runs very fast, less than
0.5ms for small dataset and 1 ms for large ones. However, the running time of
TT and HT grows as the length of query becomes longer. The primary reason for
this is that they need to lookup every substring of query in the rule trie, which
consumes more time (Lines 4 to 7 in Algorithm 2). Determining the correct link
further slows down the speed. Besides, as HT expanded some synonym rules, its
speed is faster for the reason that less synonym links being checked. In contrast,
ET runs the fastest in all experiments, whose running time is not affected by
the length of search strings.

We observe that running time of HT is more like TT especially on SPROT
dataset. As the space threshold is the key parameter to control the construction
of HT, we preform one more set of experiments to deeply study the effect of
this parameter on the lookup running time. We define a ratio α ∈ [0, 1] where
α = S

SET −STT
. We select several values for α, build HT and then perform top-10

lookup. The speed of top-10 operations corresponding to different αs is illustrated
in Fig. 8. The result shows that when α becomes larger, i.e. larger space threshold
for HT, the top-k lookup becomes faster. When α = 0 and α = 1, the time is
exactly the same with TT and ET, respectively. This experiment shows that if
we select a space threshold between 75% and 100% of SET −STT , we can expect
to have more than 50% performance boost compared with TT while performing
lookup.

7.4 Scalability

To assess the scalability of the data structures, we compare the structure size and
top-10 speed on different subsets of the USPS dataset. We generate these subsets
by taking the top-N items in decreasing score order. Figure 9a shows that the
sizes of all three structures increase linearly, where TT and TT are the smallest
and largest, respectively. In Fig. 9b, the average time per completion for ET does
not increase as the dataset grows, while TT and HT become slower as number

Top-k String Auto-Completion with Synonyms 217

Fig. 8. Top-10 auto-completion lookup time of HT on SPROT dataset, in respect of
different space ratios α

Fig. 9. Data structure size and average top-10 time related to number of dictionary
strings on USPS dataset

of dictionary string becomes larger. This is because the increasing number of
strings brings more synonym links need to be checked. However, compared with
TT, who has a sharp increasing trend (about 3 ms per million strings), the
time of HT grows slowly, only from 0.18 to 0.6 ms while data grows from 0.5 M
to 0.9 M.

8 Conclusion and Future Work

In this paper, we have presented three data structures, i.e. TT, ET and HT,
to address the problem of top-k completion with synonyms, each with differ-
ent space and time complexity trade-offs. Experiments on large-scale datasets
show that our algorithms can support synonym-based retrieval of completions
of strings at about a microsecond per-completion for more than 1 million dictio-
nary strings and thousands of synonym rule while taking small memory space.
As our future work, it would be interesting to work on the problem called “syn-
onym ambiguity”. For instance, “DB” can be either “Database” or “Development
Bank” depending on different contexts. We will explore the context of words to
select appropriate synonym rules for auto-completion.

218 P. Xu and J. Lu

References

1. Burg, J.J., Ainsworth, J.D., Casto, B., Lang, S.: Experiments with the “oregon
trail knapsack problem”. Electron. Notes Discrete Math. 1, 26–35 (1999)

2. Cai, F., Rijke, M.: A survey of query auto completion in information retrieval.
Found. Trends Inf. Retrieval 10(4), 273–363 (2016)

3. Chaudhuri, S., Kaushik, R.: Extending autocompletion to tolerate errors. In: Pro-
ceedings of the 2009 ACM SIGMOD International Conference on Management of
Data, SIGMOD 2009, pp. 707–718. ACM, New York (2009)

4. Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5(2), 266–277
(1957)

5. Hyvönen, E., Mäkelä, E.: Semantic autocompletion. In: Mizoguchi, R., Shi, Z.,
Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 739–751. Springer, Hei-
delberg (2006). doi:10.1007/11836025 72

6. Ji, S., Li, G., Li, C., Feng, J.: Efficient interactive fuzzy keyword search. In: Pro-
ceedings of the 18th International Conference on World Wide Web, WWW 2009,
pp. 371–380. ACM, New York (2009)

7. Kolesar, P.J.: A branch and bound algorithm for the knapsack problem. Manage.
Sci. 13(9), 723–735 (1967)

8. LeFevre, J., Sankaranarayanan, J., Hacigümüs, H., Tatemura, J., Polyzotis, N.,
Carey, M.J.: MISO: souping up big data query processing with a multistore system.
In: SIGMOD Conference, pp. 1591–1602. ACM (2014)

9. Li, G., Ji, S., Li, C., Feng, J.: Efficient type-ahead search on relational data: a
TASTIER approach. In: ACM SIGMOD, pp. 695–706 (2009)

10. Lu, J., Lin, C., Wang, W., Li, C., Xiao, X.: Boosting the quality of approximate
string matching by synonyms. ACM Trans. Database Syst. 40(3), 15 (2015)

11. Schnaitter, K., Polyzotis, N., Getoor, L.: Index interactions in physical design
tuning: modeling, analysis, and applications. PVLDB 2(1), 1234–1245 (2009)

12. Singh, R., Gulwani, S.: Learning semantic string transformations from examples.
PVLDB 5(8), 740–751 (2012)

13. Tsuruoka, Y., McNaught, J., Tsujii, J., Ananiadou, S.: Learning string similar-
ity measures for gene/protein name dictionary look-up using logistic regression.
Bioinformatics 23(20), 2768–2774 (2007)

14. Xiao, C., Qin, J., Wang, W., Ishikawa, Y., Tsuda, K., Sadakane, K.: Efficient
error-tolerant query autocompletion. Proc. VLDB Endow. 6(6), 373–384 (2013)

http://dx.doi.org/10.1007/11836025_72

Efficient Regular Expression Matching
on Compressed Strings

Yutong Han, Bin Wang(B), Xiaochun Yang, and Huaijie Zhu

School of Computer Science and Engineering, Northeastern University,
Shenyang 110169, Liaoning, China

hanytneu@gmail.com, {binwang,yangxc}@mail.neu.edu.cn, zhuhjneu@gmail.com

Abstract. Existing methods for regular expression matching on LZ78
compressed strings do not perform efficiently. Moreover, LZ78 compres-
sion has some shortcomings, such as high compression ratio and slower
decompression speed than LZ77 (a variant of LZ78). In this paper,
we study regular expression matching on LZ77 compressed strings. To
address this problem, we propose an efficient algorithm, namely, RELZ,
utilizing the positive factors, i.e., a prefix and a suffix, and negative fac-
tors (Negative factors are substrings that cannot appear in an answer.)
of the regular expression to prune the candidates. For the sake of quickly
locating these two kinds of factors on the compressed string without
decompression, we design a variant suffix trie index, called SSLZ. In
addition, we construct bitmaps for factors of regular expression to detect
potential region and propose block filtering to reduce candidates. At
last, we conduct a comprehensive performance evaluation using five real
datasets to validate our ideas and the proposed algorithms. The experi-
mental result shows that our RELZ algorithm outperforms the existing
algorithms significantly.

Keywords: Regular expression · LZ77 · String matching · Self-index

1 Introduction

Finding matches of a regular expression (RE) on a string are emerged in many
applications such as text editing, biosequence search, shell commands, and data
repair [5]. In recent years, several solutions are proposed for regular expression
matching on a string (without compression). However, for a very huge and long
string, these solutions are not efficient due to requiring huge storing space. And
a particularly way of saving space when storing the long string in practice is
using compression techniques. Meanwhile, a lot of compression techniques have
been studied over the years, e.g. LZ77 [2], LZ78 [17] and compressed genome [14].
The main idea of LZ compression series is to compress the string using a static

This work is partially supported by the NSF of China for Outstanding Young Schol-
ars under grant No. 61322208, the NSF of China under grant Nos. 61272178 and
61572122, and the NSF of China for Key Program under grant No. 61532021.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 219–234, 2017.
DOI: 10.1007/978-3-319-55699-4 14

220 Y. Han et al.

dictionary. When some substrings appeared repetitively in the preceding string,
they are replaced by a portion of the dictionary. Though papers [1,7] studied
regular expression matching on the LZ78 compressed string, they have two main
issues: (1) LZ78 is with high compression ratio and slower decompression speed
than LZ77; (2) The algorithms in [1,7] do not perform efficiently. So in this
paper, we study regular expression matching on the LZ77 compressed string.

To address this problem, we propose an efficient algorithm, namely, RELZ,
utilizing the positive and negative factors of the regular expression to prune the
candidates. Negative factors [15] are proposed for improving regular expression
matching on strings by pruning false negatives. The basic idea of RELZ is to
obtain these high quality factors using the algorithms [15] first. Then we need
to locate these factors on the compressed string. For the sake of quickly locating
these two kinds of factors on the compressed string without decompression, we
design a variant suffix trie index, called SSLZ, motivated by self-index structures
on LZ77 for exact pattern matching [4]. Once we have located these factors on
the compressed string, we merge several factors to confirm the candidates. For
speeding up factors merging, we construct bitmaps for this. In addition, we pro-
pose blocking filtering to prune candidates. At last, we conduct a comprehensive
performance evaluation using five real datasets to validate our ideas and the
proposed algorithms.

The contributions made in this paper are four-fold:

• To the best of my knowledge, we are the first to study regular expression
matching on the LZ77 compressed string.

• We design a variant suffix trie SSLZ in self-index to locate positive and neg-
ative factors of regular expression on the compressed string efficiently.

• We utilize bitmaps to speed up factor merging and propose block filtering to
reduce a lot of candidates.

• We conduct extensive experiments to evaluate the proposed algorithm. The
experimental result shows that our algorithm significantly outperforms the
existing algorithms on the LZ78 compressed string.

The rest of our paper is organized as follows. Section 2 reviews the related works
of regular expression matching on strings and compressed strings. Section 3 gives
the basic concepts of regular expression, positive and negative factors and LZ77
self-index. Section 4 presents the improved self-index structure in detail. Section 5
describes our algorithm RELZ for regular expression matching on the compressed
string. Section 6 reports the experiments about our algorithm in practice.

2 Related Work

There are two categories concentrating on regular expression matching, including
searching on original strings and compressed strings.

Efficient Regular Expression Matching on Compressed Strings 221

2.1 Regular Expression Matching on Original String

The classical way of regular expression matching is to convert the expression into
automaton. For each position in the original string the automaton checks all the
characters until the end of string reached. Thompson [11] defines the concept
of NFA for searching a regular expression of length m in a string of length n.
They transform the regular expression into NFA with at most 2m states, and the
searching algorithm need O(mn) in the worst case. BPThompson [12] uses bit-
parallel ingeniously to simulate the NFA, which represents states by a computer
word. They provide bit operators instead of inspecting the active states in the
NFA. BPGlushkov [8,9,16] takes the advantage of Glushkov NFA that all the
arrows reach the same state marked by the same character. When searching
regular expression on the large sequence, it is a hard work to inspect every
position in the string. Gnu Grep picks up a collection of substrings as necessary
factors from the regular expression, which must be contained by the occurrence.
Negative factors [13,15] shed a different light on regular expression matching.
Yang carries out the strategy to achieve the core negative factors with excellent
pruning power.

2.2 Regular Expression Matching on the Compressed String

Another alternative way is trying to skip on the compressed string with the
help of the filtering extracted from regular expression. Navarro gives a solution
to answering regular expression on LZ78 compression in [7]. They propose a
variant DFA based on bit-parallelism to search the end position of occurrences
accepted by the regular expression. With the compression scheme of LZ78, the
algorithm processes all the phrases (also called blocks) one by one, update the
state in DFA and report the last position of occurrences in each phrase.

In [1] Philip Bille describes a solution that improves the space by a factor
Θ(m) matching the same time bound of Navarro’s method. They select a subset
of the phrases from LZ78 compression. After computation of the corresponding
active states in the Thompson NFA for every phrase in the subset, these state
sets combine the last math phrase pointers recursively to report the end position
of the occurrences.

3 Preliminaries

In this section, we introduce some background of our research. We give the basic
concepts of regular expression, positive and negative factors, LZ77 compression
and self-index.

3.1 Regular Expression

Regular expression is a language over symbols Σ ∪ {ε, |, ·, ∗, (,)}. E is defined
as regular expression consist of Σ∗, E1 · E2, E1 | E2, and E∗

1 recursively. The
operations in the regular expression are defined as follows:

222 Y. Han et al.

• ε denotes an empty string which does not contain any character.
• E1 denotes an expression themselves.
• E1 · E2 denotes that strings in E1 concatenate strings in E2.
• E1 | E2 denotes a set of strings which be obtained by union of E1 and E2.
• E∗

1 is the Kleene closure of expression E1, which means the expression E1

concatenate for any finite times including zero.

We use |RE| to represent the length of regular expression RE, which is the
total number of characters in RE. lmin denotes the length of shortest string
which can be accepted by RE. In this paper, we illustrate an automaton as
ThompsonNFA to recognize strings.

Example 1. As shown in Fig. 1, consider RE = (b|e)d∗a(c|d) and a string
T = abdacadbedabbedacbdacadc. The first occurrence T [1, 4] passes through
ThompsonNFA starting from position 1. The other two occurrences of RE are
T [13, 16] and T [17, 20].

0

1 2

3

4 5

6 7

8 9

10

13

11

14

15

ε

ε

b

e

εε

ε

ε

ε

ε

ε

c

d

d

a

ε

Fig. 1. ThompsonNFA of RE = (b|e)d∗a(c|d)

3.2 Positive and Negative Factors

Regular expression matching is aimed at recognizing multiple substrings in a
long string. A lot of works focus on the common properties of these multiple
strings. Based on the representation of regular expression, Yang et al. in [13]
introduce positive factor and negative factor.

Definition 1 (Positive factor). Positive factors are certain substrings in regular
expression and must appear in the occurrence. The positive factor contains prefix
and suffix factors. Given a regular expression RE, P is a collection of strings
which are prefixes of RE with the length lmin. fp ∈ P is called a prefix factor
with respect to RE abbreviated as prefix. The definition of suffix factor is similar
to the prefix.

Definition 2 (Negative factor). Given a regular expression RE, N is a collec-
tion of strings which can not appear in a string recognized by RE. fn ∈ N is
called a negative factor of RE abbreviated as n-factor such no string Σ∗fnΣ∗

can be accepted by.

Efficient Regular Expression Matching on Compressed Strings 223

Example 2. Given a regular expression RE = (b|e)d∗a(c|d), the prefix factors of
length lmin = 3 are {bda, bdd, eda, edd} and the suffix factors include {dac,
dad}. We see that a set of strings {aa, ab, bc, de, cc, ccc, . . .} must not happen
in the occurrence of RE. Let F be a factor and F = T [i, j], and T [i, j] be a
matching of factor F .

3.3 LZ77 Compression and Self-index

For a finite alphabet set Σ, each character T [i] in the sequence T belongs to
Σ. Let T [i, j] be the substring of T ranging from the i-th character to the j-th
character.

The LZ77 [4] compression scheme parses a string T [1, n] into a sequence
Z[1, n′] of phrases such that T = Z[1]Z[2]...Z[n′]. Given T [1, i − 1] produced
the sequence Z[1, p − 1], we extract the longest prefix T [i, i′ − 1](i < i′ � n)
appeared in T [1, n], then set Z[p] = T [i, i′] and continue with i = i′ + 1. If
T [j, j′] = T [i, i′ − 1] where 1 � j, j′ � i − 1, we call T [j, j′] is the source of
phrase Z[p]. T [i′] is the trailing character. Absolutely, the dictionary of LZ77 is
a collection of substrings appeared before.

Example 3. An example of LZ77 parsing is shown in Fig. 2. Assume we have a
sequence T = abdacadbedabbedacbdacadc. The identifier is on the top of every
phrase. The prefix of T [2] does not appear in T [1], so we assume ε as the source
of T [2] and parse Z[2] = T [2]. T [4] is the longest prefix appeared in T [1] so that
the 4th phrase is Z[4] = T [4, 5].

a b d ac ad be dab bedac bdacadc
1 2 3 4 5 6 987

Fig. 2. An example for LZ77 parsing

Navarro in [4] designs self-index based on LZ77 compression, which consists
of two tries and a range structure. On the left of Fig. 3 is the reverse trie, which
indexes all the reverse phrases in LZ77. The leaf nodes revid in rectangle denote
the identifier of phrases. Suffix trie is constructed with all the phrases of LZ77
parsing and leaf nodes are denoted as id. The 2-D mesh on the right of Fig. 3
shows the point id = revid + 1 in the range structure which concatenates the
ranks of all the connected phrases in both tries.

3.4 Problem Definition

Given a regular expression RE and a compressed string T of length n, the
occurrence represents the substring in T which can be recognized by RE. The
regular expression matching problem is to find all the occurrences of RE in T .

224 Y. Han et al.

$ a d a

a b c d e

1

2 7 4 8 3 5

6
$ $

4 5 2 6 8 9 3 7
1

2

7

4

8

3

5

6
Reverse Trie

id

diver

Fig. 3. LZ77 self-index for a string T = abdacadbedabbedacbdacadc

4 Data Structure: SSLZ

In Navarro’s self-index [4], suffix trie indexes phrases connected with the prior
phrase. However, they have to check all the sources one by one to infer all the
matchings contained in the phrase. Here we put suffixes of the phrase associate
with suffix trie [4] to locate factors in the compressed string. The improved suffix
trie integrates all the suffixes in the phrases. The number of node ssid denotes
the identifier of suffixes in the phrase. The gray node in the trie marks the phrase
node which demonstrates the entire phrase taken place as a suffix. For simplicity
of expression, we omit some of the duplication points. The structure of improved
suffix trie in SSLZ self-index is shown in Fig. 4. In the bit vector Bz, we have
symbol ‘1’ to mark the end of the phrase. A bitmap SBs marks the phrase
node in the suffix trie by symbol ‘1’. For instance, the suffix of 7-th phrase ab

1 2 5 3

11 4 6 18 21 7 23

5102

9

22

8

13 10

19

14

0

a b c d e

b c d e d a a c d

a c b b c

a

1 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0SBS

1 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1Bz

Fig. 4. The suffix trie of SSLZ for a string T = abdacadbedabbedacbdacadc

Efficient Regular Expression Matching on Compressed Strings 225

is indexed in the leaf node 11. Since it is not a phrase node, SBs[2] = 0 and
Bz[11] = 0. The 4-th phrase ab is also the suffix of itself, therefore the leaf node
4 is a phrase node with SBs[3] = 1 and Bz[4] = 0.

5 Regular Expression Matching on the LZ77 Compressed
String

Considering the regular expression matching algorithm on compressed string, in
this paper, we elaborate positive and negative factors into compressed string. To
locate factors on compressed string quickly, we utilize SSLZ self-index introduced
in previous section. According to the factors definitions in Sect. 3, we merge
positive factors between two n-factors to detect candidates and propose a fast
merging strategy with bitmaps. To prune false negative candidates, we design
block filtering strategy employing active states of ThompsonNFA.

5.1 Locating Factors on SSLZ

We show how to locate factors on the SSLZ. The matching form of factors is
represented as a two-tuple (s, o) for s denotes identifier of phrase that factors
are started from and o denotes the offset of factors in the phrase. Two types of
matchings exist exactly in T . For the matchings across the phrases, we divide
the factor F into two parts Fl and Fr. For the right part, we traverse Fr on
the suffix trie from the root and check the characters on the path. When we
reach the branch node, only the leaf nodes of subtree rooted at the branch node
indicate the phrases with prefix Fr, which must satisfy Fomula 1. Meanwhile,
we also match the reversed Fl on the reverse trie. The range structure splices
ranks of the nodes from two tries if they come from the adjacent phrases in the
LZ77 parsing, where revid = id + 1. So we get s = id and o = |id| − |Fl|, where
|id| denotes the length of id-th phrase and |Fl| denotes the length of left part of
factors.

id =
{

rank1 (SBs, ssidi) access (SBs, ssidi) = 0,
rank1 (SBs, ssidi) − 1 access (SBs, ssidi) = 1. (1)

access (B, i) returns the symbol at position i in B, and rankb (B, i) is the
number of matchings of bit b in B.

We traverse the suffix trie directly to obtain matchings in the phrase. There
is no need trailing matchings from the previous matchings one by one. We imple-
ment reversed suffix trie by binary search [4] to constrain the space consuming
of the improved suffix trie.

Note that the offset of matchings contained in the phrase is computed by
o = select1 (Bz, idi) − ssidi

1.

1 selectb(B, i) is the position of i-th bitbmatchings in B.

226 Y. Han et al.

Example 4. Considering the same regular expression RE = (b|e)d∗a(c|d), dac is
one of the suffix factors. For the first type matchings, S is divided into two parts
Fl = d and Fr = ac. On the left part of Fig. 3, gray nodes in the reverse trie imply
the phrases with suffix d. Fr = presents as the prefix of phrases in interval [3, 4]
with ssid = 4 that id = 4 in Fig. 4. We traverse crossing area between interval
[3, 4] and [6, 7], so we get a matching started from the 3rd phrase for s = 3 and
o = 0.

5.2 Merging Positive Factors

After we find all the matchings of factors in the phrases based on SSLZ, the
matchings of factors are integrated in a list L in ascending order by their (s, o).
We can not decide which one appears first based on the phrase identifier when
factors gather in the same phrase. For this purpose, we use offsets o of factors in
the phrase to distinguish order of factors in the same phrase. According to the
properties of positive factors, we verify all the unions of prefix and suffix factors
to get all the occurrences of RE.

Z a b c d

P N S

Fig. 5. N-factor in phrase

N-factors [15] can help us accelerate merging process and terminate early.
Figure 5 shows the impact of n-factor on candidates in the phrases. Since n-
factors in the context could not be accepted by the regular expression, the
matching list is delimited into the safety margins. We only need inspect the
suffixes which are dominated by the prefix between two continuous n-factors.

Assume the n-factor N , prefix P , suffix S, and N ′ denoting sequent factors
in L. The prefix P dominates the suffix S (P ⇒ S), iff they satisfy the following
conditions:

• Ns < Ps < Ss < N ′
s;

• If Ns = Ps = Ss, then Po > No and Po < So + lmin − 1 < N ′
o + |N |.

Figure 6 illustrates factors of Example 2 in a two-dimensional grid. We utilize
the vertical axis to express the end phrase of the factors. Horizontal axis is the
start phrases of factors. Disc points in the figure indicate prefixes. The prefix
dominates the suffix (P ⇒ S) marked by circle in a triangular area limited by
n-factors. Intuitively, the P ⇒ S in the phrase provides a potential region started
from prefix to suffix. All the P ⇒ S pass through the automaton to achieve the
final positions of the occurrences of RE. Inspired by PNS pattern [15], we propose
an efficient merging strategy based on phrases without decompression.

Efficient Regular Expression Matching on Compressed Strings 227

start

end

12

10

8

6

4

2

2 4 6 8 10 120

prefix factor

n-factor

suffix factor

Fig. 6. Prefix dominating the suffix

5.3 Accelerating Merging Factor Using Bitmaps

Once we achieve all the matchings of factors, our next step is to merge these fac-
tors efficiently. We use bitmaps to track available P ⇒ S. If Li is a phrase where
the prefix started from, then bitmap Bp satisfies access (Bp, i) = 1. Similarly,
bitmaps Bs and Bn are corresponding to suffixes and n-factors in L.

Algorithm 1 shows the pseudocode of merging positive factors using bitmaps.
Before processing factors in L, we append a n-factor at the end of list L in lines
2–3 so as to make the last potential region consistent with the previous ones.
Firstly, we figure out the next n-factor Nn in line 4, we look for the last suffix Sl

in L which meet P ⇒ S appeared before Sn in lines 5–8. Secondly, we traverse
the prefixes between n-factor Nn−1 and Nn to check out whether they dominate
the suffix Sl in lines 9–12. Note that several methods address these operation on
bitmaps in constant time. We execute the solution of Rodrigo Gonzälez in [3].

Example 5. Reexamine the example in Fig. 6. Table 1 shows bitmaps of the fac-
tors lying in the list L. We start at i = 4 in the list, the next n-factor appears
at select1 (Bn, i + 1) = 12. With rank1 (Bs, 12) = 3, three suffixes appear
ahead of L12. We get the position of 3rd suffix in L by select1 (Bs, 3) = 11.
Then we detect all the prefix satisfying P ⇒ Sn. Because select1 (Bn, i) = 7
and rank1 (Bp, 12) − rank1 (Bp, 7) = 4 − 2 = 2, before L12, there are two
prefixes which dominate L11. The prefixes fall in select1 (Bp, 4) = 10 and
select1 (Bp, 3) = 8. We achieve a candidate set Cre = (10, 12, 8, 12).

The positive and negative factors are constructed on regular expression RE
and alphabet set Σ. However, these techniques are out of operation when the
n-factors are non-uniform distribution in the string. If n-factors gather in a small
area, there are still many positive factors to be verified.

228 Y. Han et al.

Algorithm 1. MergingPositiveFactors
Input: The alignment of list L, Bitmap of prefix Bp, Bitmap of suffix Bs,

Bitmap of n-factor Bn;
Output: The candidate set Cre = (P, S);

1 int i = 1, k = 1;
2 if Li is not a n-factor then
3 Add a n-factor at the end of L

4 while select1 (Bn, i + 1) < L.size () do
5 nc = select1 (Bn, i) ; nn = select1 (Bn, i + 1)
6 k = rank1 (Bs, nn) ; sn = select1 (Bs, k)
7 pcount = rank1 (Bp, nn) − rank1 (Bp, nc);
8 //Check the previous prefix in L
9 while pcount! = 0 do

10 int j = rank1 (Bp, nn) pn = select1 (Bp, j) if pn > nc then
11 Cre.push (Lpn, Lsn);

12 return Cre ;

Table 1. Bitmaps of factors in phrases

L 1 2 3 4 5 6 7 8 9 10 11 12

id 1 2 3 4 5 6 7 8 8 9 9 9

o 0 0 0 1 1 1 1 1 2 0 1 3

Bp 0 1 0 0 0 1 0 1 0 1 0 0

Bs 0 0 1 0 0 0 0 0 1 0 1 0

Bn 1 0 0 1 1 0 1 0 0 0 0 1

5.4 Block Filtering

In this section, we describe how to reduce the scale of candidates with block
filtering. Figure 7 show two ultra types of P ⇒ S in the phrases. Figure 7(i)
presents that P ⇒ S crosses through several phrases. P ⇒ S just takes place in
the same phrase in Fig. 7(ii) denote as P �→ S.

For the first type, we utilize block filtering to detect the P ⇒ S which are false
positives. Consider regular expression RE, we maintain a state set πλ for phrase
nodes in the suffix trie and πμ for leaf nodes in the reverse trie. πλ describes the
active states in automaton after reading phrases from the root and πμ denotes
the active states in reverse automaton [6] which accept reverse phrases.

Recall that LZ77 compression scheme parses depending on duplicate sub-
strings. Let Z[p] be the source of phrase Z[p′] in the parsing. Since Z[p′] makes
one character different from Z[p]. If the set of active states Z[p] denote as πp

μ,
and the trailing character is α, the active states of Z[p′] is πp′

μ = δ
(
πp

μ, α
)

where
δ is defined as the transition map.

Efficient Regular Expression Matching on Compressed Strings 229

Z da b c

P S

Z da

P S

(i)P ⇒ S cross the phrases

(ii)P → S in the phrase

Fig. 7. Two types of candidates in LZ77

Lemma 1 (Block Filtering). Given a sequential list L of factors matchings in
the phrases, the active states of r-th phrase πr

μ and reverse active state of (r + 1)-
th phrase πr+1

λ . Supposing πr
μ ∩πr+1

λ = ∅, a candidate P ⇒ S meet the following
inequations that could not be a final occurrence.

Ps +Po < Zr
s < Ss + So (2)

Pe < Zr+1
s Zr+1

e < Se (3)

Zr
s and Zr

e denote the start and end position of phrase Zr. Pe and Se denote
the end position of prefix and suffix factors.

As shown in Fig. 8, Pi is the i-th prefix in L and Sj is the j-th suffix in L. Zr

denotes the r-th phrase in LZ77 parsing. If πr
μ ∩ πr+1

λ = ∅, we called that there
is a break point between phrases Zr and Zr+1. We skip (Pi+2, Sj) and check the
other candidates (Pi+2, Sj) which satisfy P i+2

s + P i+2
o < Zr+1

s < Sj
s + Sj

o .
Note that for the prefix crosses the break point we still have to detect the

consecutive phrases. Because we have no idea the active states of suffixes of
phrases which is actually the prefix of prefix factor. We need to decompress the
gap between prefix and suffix factors for second type P �→ S in the phrase.

Z

Pi SjPi+1 Pi+2

Zr Zr+1

Fig. 8. Block filtering on LZ77 compression

Reexamine in Fig. 6, Table 2 presents the active states of ThompsonNFA πμ

and πλ for every phrase in LZ77 parsing. According to Lemma1, a break point
is between Z[1], Z[2] and Z[4], Z[5], because π1

μ ∩ π2
λ = ∅.

230 Y. Han et al.

Table 2. Active states of phrases in LZ77

id 1 2 3 4 5 6 7 8 9

πμ 9,10,13 2,3,6,8 7,8,14,15 11,15 14,15 φ φ φ φ

πλ 8,7,3,2,5 1 6,3,2,5,13,9 8,7,3,2,5 8,7,3,2,5 φ φ φ φ

6 Experiments

The experiments of our algorithm are put into effect over Intel Core CPU running
at 3.40 GHz with 8 GB memory and 1 TB disk. We execute on GCC version 4.8.2
in Ubuntu 64-bit operating system. Our self-index are constructed offline.

Our experiments are evaluated on real repetitive sources DNA, Chrome, Ein-
stein, Kernel and Leaders which are wildy used in performance measurement of
compressed indexes. Einstein is an English version article provided by Wikipedia.
Kernel is consist of 36 versions of Linux Kernel from 1.0.x to 1.1.x. Leaders cov-
ers the files of CIA World Leaders. The last three datasets can be downloaded
from http://pizzachili.dcc.uchile.cl/repcorpus.html.

Table 3 shows the compression ratio of several methods. We study our index
based on five datasets. Kreft describe two variant Ziv-Lemple compression LZ77
and LZEnd in [4]. RLCSA is another compression scheme proposed by [10].
We maintain the improved suffix trie by binary search in SSLZ-B. As shown
in Table 3, due to appending all the suffixes of phrases into our suffix trie. Our
index SSLZ-B almost costs 3–4 times space more than LZ77 self-index and nearly
twice over LZEnd index size.

Table 3. Ratio between index and the original string

Dataset LZ77 LZEnd SSLZ SSLZ-B RLCSA

DNA 1.602 2.099 10.654 4.021 0.0632

Chrome 1.404 1.8885 11.942 3.885 0.0187

Einstein 0.045 0.065 9.505 2.786 0.928

Kernel 1.857 2.175 10.229 3.975 0.932

Leader 0.438 0.612 10.235 3.099 0.987

6.1 Performance of Locating Factor

Locating factor is the exact matching of multiple patterns on compression. We
give the performance of locating factor on Kernel, Leaders, and Einstein in Fig. 9.
In SSLZ-B we take the advantage of binary search for saving space. However the
locating time of our two indexes very nearly. As shown in Fig. 9(a), there is a peak
in LZEnd and LZ77 respectively when the pattern length is 6. In our method the
lines are relatively smooth. This is because LZ77 and LZEnd are sensitive to the

http://pizzachili.dcc.uchile.cl/repcorpus.html

Efficient Regular Expression Matching on Compressed Strings 231

frequency of queries. They search the string relying on the matching of pattern
in previous. Our improved self-index SSLZ blunts the effect of frequency. For
pattern length of 4 in Leaders Fig. 9(b) it takes 142 ms to get 134760 matchings
and LZ77 cost 874 ms on average. We also see the same trend in Fig. 9(c).

Pattern length

2 4 6 8 10

Q
ue

ry
 T

im
e

(m
s)

0

1e+2

2e+2

3e+2

4e+2
LZ77

LZEnd

SSLZ

SSLZ-B

RLCSA

(a) Kernel

Pattern length

2 4 6 8 10

Q
ue

ry
 T

im
e

(m
s)

0

5e+2

1e+3

2e+3

2e+3

3e+3
LZ77

LZEnd

SSLZ

SSLZ-B

RLCSA

(b) Leaders

Pattern length

2 4 6 8 10

Q
u

e
ry

 T
im

e
 (

m
s)

0

5e+2

1e+3

2e+3

2e+3

3e+3

LZ77

LZEnd

SSLZ

SSLZ-B

RLCSA

(c) Einetein

Fig. 9. Performance of factor extraction

Figure 10 shows the implementation of our algorithm with growing size of
datasets. As dataset Einstein, Leaders and Kernel from 2 MB to 10 MB, the
relationship between the extraction time and dataset scale is proportional. In
Fig. 10(a), we choose six patterns with length from 1 to 6. The shorter the
pattern is, the greater probability it appears in the dataset. Therefore the query
times fall down when query length with m = 5 and m = 6 locates 3740 matchings
of the pattern. SSLZ index spends 44 ms to locate pattern m = 3 in Kernel 6 MB
and 15 ms for m = 3 in Leaders 6 MB as shown in Fig. 10(b).

6.2 Performance of Regular Expression Matching

Pruning Power. We study the pruning power of our algorithm in Fig. 11. Prun-
ing power is the ratio between false positive answers which are separated out
in merging processing and number of candidates. Figure 11(a) carries out that
with length of regular expression |RE| ranging from 5 to 10, our algorithm skips

232 Y. Han et al.

Data Size (MB)
2 4 6 8 10

Qu
er

y T
im

e
(m

s)

0

5e+1

1e+2

2e+2
m=1
m=2
m=3
m=4
m=5
m=6

(a) Kernel

Data Size (MB)
2 4 6 8 10

Qu
er

y T
im

e
(m

s)

0

1e+2

2e+2

3e+2
m=1
m=2
m=3
m=4
m=5
m=6

(b) Leaders

Fig. 10. Performance of factor extraction on different sizes of dataset

nearly 81% candidates in Einstein. We also achieve 85% on average when we
process Leaders of 10 MB in Fig. 11(b) and 83% on Kernel. This is because our
method are embedded positive and negative factors with block filtering which
help us avoid checking the candidates across break point of phrases.

Length of RE
5 6 7 8 9 10Pe

rc
en

ta
ge

 o
f p

ru
ne

d
ca

nd
id

at
es

 (%
)

0

20

40

60

80

100

(a) Einstein

Length of RE
5 6 7 8 9 10Pe

rc
en

ta
ge

 o
f p

ru
ne

d
ca

nd
id

at
es

 (%
)

0

20

40

60

80

100

(b) Leaders

Length of RE
5 6 7 8 9 10Pe

rc
en

ta
ge

 o
f p

ru
ne

d
ca

nd
id

at
es

 (%
)

0

20

40

60

80

100

(c) Kernel

Fig. 11. Pruning power on different datasets

Figure 12 shows the pruning power of growing data size. In Fig. 12(a), we
search regular expression for |RE| = 8, our algorithm prunes 83% candidates in
Einstein. The pruning power for Chrome reaches 90% on average in Fig. 12(c).
With the growth of data size in Fig. 12(b), we get the similar trend in Lead-
ers. The characters are evenly distributed in datasets and the max length of
the phrases in compressed Chrome is 14, therefore block filtering has a good
performance.

Running Time. Fig. 13 shows the running time of our algorithm compared with
the exiting regular expression method. Figure 13(a) presents the regular expres-
sion matching on the original string NR-Grep2 and RE23. We implement these
methods on Einstein for length of regular expression |RE| from 2 to 6. Our algo-
rithm RELZ achieves a better performance than the others. Figure 13(b) shows
2 http://www.dcc.uchile.cl/∼gnavarro/pubcode/.
3 https://github.com/google/re2/.

http://www.dcc.uchile.cl/~gnavarro/pubcode/
https://github.com/google/re2/

Efficient Regular Expression Matching on Compressed Strings 233

Data Size (MB)
2 4 6 8Pe

rc
en

ta
ge

 o
f p

ru
ne

d
ca

nd
ida

te
s (

%
)

0

20

40

60

80

100

(a) Einstein

Data Size (MB)
2 4 6 8Pe

rc
en

ta
ge

 o
f p

ru
ne

d
ca

nd
ida

te
s (

%
)

0

20

40

60

80

100

(b) Leaders

Data Size (MB)
2 4 6 8 10Pe

rc
en

ta
ge

 o
f p

ru
ne

d
ca

nd
ida

te
s (

%
)

0

20

40

60

80

100

(c) Chrome

Fig. 12. Pruning power on different sizes of dataset

the comparison with regular expression matching method RELZ78 on LZ78 com-
pression [1]. We also perform RELZ versus RELZ78 with varying datasize in
Fig. 13(c).

Length of RE
2 3 4 5 6

Q
ue

ry
 T

im
e

(m
s)

0
5e+2
1e+3
2e+3
2e+3
3e+3
3e+3

NR-Grep
RELZ
RE2

(a) Einstein

Length of RE
2 3 4 5 6

Q
ue

ry
 T

im
e

(m
s)

0

2e+3

4e+3

6e+3

8e+3

1e+4

1e+4
RELZ
RELZ78

(b) DNA

Data Size (MB)
4 6 8 10 12

Q
ue

ry
 T

im
e

(m
s)

0
5e+2
1e+3
2e+3
2e+3
3e+3
3e+3

RELZ78
RELZ

(c) Leaders

Fig. 13. Comparison of running time on different datasets

7 Conclusion

In this paper, we propose an efficient solution for regular expression matching
on LZ77 compressed string. The positives and negative factors are implanted
into our methods. We develop a variant self-index SSLZ to extract matchings of
factors on compressed string. We propose a new strategy to speed up merging
factors with bitmaps and propose block filtering to reduce the scale of false posi-
tive candidates to be verified. In practise we implement our algorithm compared
to existing works and show the good performance on several real datasets.

References

1. Bille, P., Fagerberg, R., Gortz, I.L.: Improved approximate string matching and
regular expression matching on Ziv-Lempel compressed texts. In: Proceedings of
the 18th Annual Conference on Combinatorial Pattern Matching, pp. 52–62 (2007)

2. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-
based self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.)
LATIN 2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54423-1 63

http://dx.doi.org/10.1007/978-3-642-54423-1_63
http://dx.doi.org/10.1007/978-3-642-54423-1_63

234 Y. Han et al.

3. Gonzlez, R., Grabowski, S., Mkinen, V., Navarro, G.: Practical implementation of
rank and select queries, pp. 27–38 (2005)

4. Kreft, S., Navarro, G.: Self-indexing based on LZ77. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 41–54. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-21458-5 6

5. Li, Z., Wang, H., Shao, W., Li, J., Gao, H.: Repairing data through regular expres-
sions. Proc. VLDB Endow. 9(5), 432–443 (2016)

6. Navarro, G.: NR-grep: a fast and flexible pattern-matching tool. Softw. Pract. Exp.
31(13), 1265–1312 (2001)

7. Navarro, G.: Regular expression searching on compressed text. J. Discrete Algo-
rithms 1(5–6), 423–443 (2003)

8. Navarro, G., Raffinot, M.: Fast regular expression search. In: Vitter, J.S., Zaroliagis,
C.D. (eds.) WAE 1999. LNCS, vol. 1668, pp. 198–212. Springer, Heidelberg (1999).
doi:10.1007/3-540-48318-7 17

9. Navarro, G., Raffinot, M.: Compact DFA representation for fast regular expres-
sion search. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE
2001. LNCS, vol. 2141, pp. 1–13. Springer, Heidelberg (2001). doi:10.1007/
3-540-44688-5 1

10. Schneeberger, K., Hagmann, J., Ossowski, S., Warthmann, N., Gesing, S.,
Kohlbacher, O., Weigel, D.: Simultaneous alignment of short reads against multiple
genomes. Genome Biol. 10(9), R98 (2009)

11. Thormpson, K.: Regular expression search algorithm. Commun. ACM 11(6), 419–
422 (1968)

12. Wu, S.: Fast text searching: allowing errors. Commun. ACM 35(10), 83–91 (1992)
13. Yang, X., Qiu, T., Wang, B., Zheng, B., Wang, Y., Li, C.: Negative factor: improv-

ing regular-expression matching in strings. ACM Trans. Database Syst. 40(4), 1–46
(2016)

14. Yang, X., Wang, B., Li, C., Wang, J.: Efficient direct search on compressed genomic
data. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE),
pp. 961–972 (2013)

15. Yang, X., Wang, B., Qiu, T., Wang, Y., Li, C.: Improving regular-expression match-
ing on strings using negative factors. In: ACM SIGMOD International Conference
on Management of Data, pp. 361–372 (2013)

16. Zhang, M., Zhang, Y., Hou, C.: Compact representations of automata for regular
expression matching. Inf. Process. Lett. 116(12), 750–756 (2016)

17. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theor. 24(5), 530–536 (1978)

http://dx.doi.org/10.1007/978-3-642-21458-5_6
http://dx.doi.org/10.1007/978-3-642-21458-5_6
http://dx.doi.org/10.1007/3-540-48318-7_17
http://dx.doi.org/10.1007/3-540-44688-5_1
http://dx.doi.org/10.1007/3-540-44688-5_1

Mining Top-k Distinguishing Temporal
Sequential Patterns from Event Sequences

Lei Duan1,2(B), Li Yan1, Guozhu Dong3, Jyrki Nummenmaa4,5, and Hao Yang1

1 School of Computer Science, Sichuan University, Chengdu, China
leiduan@scu.edu.cn, roy18@126.com, hyang.cn@outlook.com

2 West China School of Public Health, Sichuan University, Chengdu, China
3 Department of Computer Science and Engineering,

Wright State University, Dayton, USA
guozhu.dong@wright.edu

4 School of Information Sciences, University of Tampere, Tampere, Finland
jyrki.nummenmaa@uta.fi

5 Sino-Finnish Centre, Tongji University, Shanghai, China

Abstract. Sequential patterns are useful in many areas such as bio-
medical sequence analysis, web browsing log analysis, and historical
banking transaction log analysis. Distinguishing sequential patterns can
help characterize the differences between two or more sets/classes of
sequences, and can be used to understand those sequence sets/classes
and to identify informative features for classification and so on. How-
ever, previous studies have not considered how to mine distinguishing
sequential patterns from event sequences, where each event in a sequence
has an associated timestamp. To fill that gap, this paper considers the
mining of distinguishing temporal event patterns (DTEP) from event
sequences. After discussing the challenges on DTEP mining, we present
DTEP-Miner, a mining method with various pruning techniques, for min-
ing DTEPs with top-k contrast scores. Our empirical study using both
real data and synthetic data demonstrates that DTEP-Miner is effective
and efficient.

Keywords: Contrast mining · Sequential pattern · Temporal event

1 Introduction

Sequential data plays an important role in many aspects of our lives and sequence
data mining has impacted those aspects in a significant way. Mining distinguish-
ing temporal patterns from event sequences can give useful information, which
can help improve the quality of our daily lives and help predict the occurrence
of important events. For example, consider the issue of reducing the risk of

This work was supported in part by NSFC 61572332, the Fundamental Research
Funds for the Central Universities 2016SCU04A22, and the China Postdoctoral Sci-
ence Foundation 2016T90850, 2014M552371.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 235–250, 2017.
DOI: 10.1007/978-3-319-55699-4 15

236 L. Duan et al.

premature delivery of babies. Although the types of daily activities of most
pregnant women are similar, the way, such as the order, when, and how long,
they perform them vary. By comparing the daily activity sequences of pregnant
women whose infants are healthy and delivered at the expected time, against
those sequences of women whose infants suffer premature birth and low birth
weight, harmful daily activity patterns, such as staying up late, too little physical
exercises, or too much physical exercises in short periods of time, can be identi-
fied. Such patterns can guide pregnant women to reduce the risk of premature
delivery.

The above need cannot be adequately addressed using existing sequential
pattern mining [1] or contrast data mining [2] methods, and thus suggests a
novel data mining problem. In two sets of event sequences for this scenario, we
want to find the subsequences that occur frequently within certain time intervals
in one data set but occur infrequently in the other data set. We refer to such
a pair of a subsequence and a time interval as a distinguishing temporal event
pattern (DTEP). DTEP mining is an interesting problem which has many useful
applications. For a second example, we may wish to mine daily activity patterns
of seniors in order to give better care for seniors who need urgent attention.

While there are many existing studies on sequential pattern mining [3–5],
they focus on mining frequent patterns that frequently occur in one given set
of sequences. Moreover, to the best of our knowledge, all previous studies on
distinguishing sequential pattern mining [6–9] do not take the temporal factor
into consideration. The DTEP mining problem addressed here is different from
conventional sequence data mining. Indeed, the gap between two consecutive
positions for non-temporal sequences is a constant (namely 1), whereas the gap
between two consecutive temporal sequence positions can vary a lot. Moreover,
the two kinds of sequences are also different since timestamps offer an extra
means to align temporal sequences. The above imply that the potential applica-
tion and the mining methods of this problem differ significantly from the methods
for sequential pattern mining and distinguishing sequential pattern mining. We
will review the related work and explain the differences systematically in Sect. 3.

To tackle the DTEP mining problem, we need to address several technical
challenges. First, the brute-force method, which enumerates all combinations of
event type sequences and timestamp sequences, is too costly on sequence sets
with a large number of event types and a large number of timestamps. We need
an efficient method to avoid generating clearly useless candidates. Second, for
each candidate event segment, we need to have a concise yet complete way to
investigate all possible time intervals (specified by two timestamps) so that the
number of candidate patterns can be reduced, and the algorithm can be efficient.
Third, we need to devise techniques to efficiently find DTEPs that are ranked
high with respect to an interestingness measure. This further complicates the
issue since we also need to consider time lag constraints and so on.

Contributions: Besides introducing the novel problem of mining top-k DTEPs,
we make several contributions in this paper. (1) Investigation of the differences
among the DTEP and previously studied distinguishing sequential patterns

Mining Top-k Distinguishing Temporal Sequential Patterns 237

(including contrast patterns). (2) Development of algorithmic techniques,
including several pruning rules and a time interval tree, for mining top-k DTEPs
efficiently. (3) Related experimentation on both synthetic and real data sets that
demonstrates the effectiveness, stability, and efficiency of our method.

Road Map: The rest of the paper is organized as follows. We formulate the
problem of mining top-k distinguishing temporal event patterns in Sect. 2, and
review related work in Sect. 3. In Sect. 4, we present the framework of our DTEP-
Miner, and discuss the critical techniques in DTEP-Miner. We report a system-
atic empirical study in Sect. 5, and conclude the paper in Sect. 6.

2 Problem Formulation

We start with some preliminaries. Let E be the set of all possible event types.
Examples of event types include “reading” or “sleeping” etc. We use the symbol
e, possibly with subscripts, to denote event types. We use a series of continuous
non-negative integers starting from 0 to denote the time points; we use T to
denote the maximum time point. Without loss of generality, we assume that the
smaller the value, the earlier the time point, and that the interval between any
two consecutive time points is a constant. We note that not all time points need
to be associated with events.

An event is a pair (e, t) where e ∈ E is an event type and t is the timestamp
of e. An event sequence S is a list of events, ordered by their timestamps, of the
form S = <(e1, t1), (e2, t2), ..., (en, tn)>, where ei ∈ E , ti ∈ [0, T], and ti ≤ tj
(1 ≤ i < j ≤ n). The length of S is the number of events in S, denoted by |S|.
We denote by S[i] the i-th element in S (1 ≤ i ≤ |S|). For S[i], we use S[i].e
to denote the event type, and use S[i].t to denote the timestamp. Taking S1 in
Table 1 as an instance, |S1| = 4, S1[2] = (e3, 32), S1[2].e = e3 and S1[2].t = 32.

Table 1. A toy set of event sequences

ID Event sequence Set

S1 <(e2, 10), (e3, 32), (e2, 36), (e3, 89)> D+

S2 <(e2, 24), (e1, 46), (e2, 56), (e3, 64), (e1, 88)>

S3 <(e4, 10), (e1, 34), (e2, 36), (e3, 38), (e3, 89)>

S4 <(e3, 32), (e2, 36), (e1, 46), (e3, 89)>

S5 <(e1, 31), (e1, 46), (e2, 54), (e3, 64), (e1, 88)>

S6 <(e1, 13), (e2, 34), (e1, 65), (e3, 88), (e4, 95)> D−
S7 <(e2, 19), (e2, 36), (e4, 46), (e2, 56), (e1, 99)>

S8 <(e1, 22), (e4, 46), (e2, 54), (e3, 72)>

S9 <(e4, 10), (e1, 34), (e2, 43), (e1, 46), (e2, 56)>

S10 <(e2, 19), (e2, 36), (e3, 45), (e1, 99)>

238 L. Duan et al.

A time interval w is a sub-interval of [0, T] of the form w = [w.ts, w.te]
satisfying 0 ≤ w.ts < w.te ≤ T . The time span of w, denoted by ||w||, is the
number of time points in w, i.e., ||w|| = w.te −w.ts +1. For time intervals w and
w′, w is a sub-interval of w′, denoted by w ⊂ w′, if w.ts ≥ w′.ts and w.te ≤ w′.te.

An event segment E is an ordered list of event types of the form E =
<e1, e2, ..., en>, where ei ∈ E (1 ≤ i ≤ n). Similarly, we denote by E[i] the
i-th element in E (1 ≤ i ≤ |E|). We say E is a super-sequence of E′, denoted
by E′ � E, if there exist integers 1 ≤ k1 < k2 < ... < k|E′| ≤ |E| such that
E′ = <E[k1], E[k2], ..., E[k|E′|]>. For example, <e2, e4> � <e1, e2, e3, e4>.

A time lag constraint � is specified by two nonnegative integers of the form
� = [�min, �max] satisfying 0 ≤ �min ≤ �max ≤ T . (Time lag constraints are
similar to, but essentially different from, gap constraints for standard sequences.)
Given an event sequence S, we say that event segment E matches S within time
interval w satisfying time lag constraint �, denoted by (E,w) �� S, if there exist
integers 1 ≤ k1 < k2 < ... < k|E| ≤ |S|, such that

(i) S[ki].e = E[i], w.ts ≤ S[ki].t ≤ w.te for all 1 ≤ i ≤ |E|, and
(ii) S[kj + 1].t − S[kj].t ∈ [�min, �max] for all 1 ≤ j ≤ |E| − 1.

We also say that <S[k1], S[k2], ..., S[k|E|]> is an instance of E in S within w.
For a given time lag constraint, E may match S within different time intervals.

Example 1. Let E = <e1, e2>, w = [46, 56], and � = [0, 10]. Consider S2 in
Table 1. As S2[2].e = E[1] = e1, S2[3].e = E[2] = e2, S2[2].t ≥ 46, S2[3].t ≤ 56,
and S2[3].t − S2[2].t ∈ �, it follows that (E,w) �� S2.

The support of an event segment E within time interval w satisfying time
lag constraint � in an event sequence set D, denoted by Sup(D, (E,w)), is

Sup(D, (E,w)) =
|{S ∈ D | (E,w) �� S}|

|D| . (1)

Definition 1. Given two sets of temporal sequences, D+ and D−, the contrast
score of (E,w) targeting D+ against D−, denoted by cScore(E,w), is

cScore(E,w) = Sup(D+, (E,w)) − Sup(D−, (E,w)) (2)

Example 2. Consider Table 1 again. Let E = <e3, e2>, w = [32, 36], � = [0, 10].
Then Sup(D+, (E,w)) = 0.4 ((E,w) matches S1 and S4) and Sup(D−, (E,w)) =
0.0. So, cScore(E,w) = 0.4 − 0.0 = 0.4.

Definition 2. Given two sets of event sequences, D+ and D−, time lag con-
straint �, and event segment E, a tuple (E,w) (w ⊆ [0, T]) is a DTEP targeting
D+, if the following conditions are true:

(i) (positive contrast) cScore(E,w) > 0;
(ii) (distinguishing temporal occurrence) There does not exist w′ such that

(E,w′) satisfies Condition (i), and
– cScore(E,w′) > cScore(E,w), or
– cScore(E,w′) = cScore(E,w) and ||w′|| < ||w||.

Mining Top-k Distinguishing Temporal Sequential Patterns 239

To select top-k DTEPs, we first define a total order on all discovered DTEPs.

Definition 3. Given two DTEPs (E,w) and (E′, w′), (E,w) � (E′, w′) (called
(E,w) precedes (E′, w′) or (E,w) has a higher precedence than (E′, w′)) if:

1. cScore(E,w) > cScore(E′, w′), or
2. cScore(E,w) = cScore(E′, w′), but |E| > |E′|, or
3. cScore(E,w) = cScore(E′, w′) and |E| = |E′|, but ||w|| < ||w′||
4. all of the three parameters are the same, but E[i] is lexically smaller than

E′[i], where i = min{j | E[j] 	= E′[j], 1 ≤ j ≤ |E|}.
Given k and �, the problem of mining top-k distinguishing temporal event

patterns is to find the DTEPs with top-k precedence targeting D+ against D−.
Table 2 lists the top-5 DTEPs discovered from Table 1.

Table 2. List of top-5 DTEPs in Table 1 (� = [0, 10])

Rank DTEP (E, w) cScore(E, w)

1 (<e3>, [32, 64]) 1.0 − 0.2 = 0.8

2 (<e1, e2, e3>, [34, 64]) 0.6 − 0.0 = 0.6

3 (<e1>, [34, 46]) 0.8 − 0.2 = 0.6

4 (<e3, e2>, [32, 36]) 0.4 − 0.0 = 0.4

5 (<e2, e3>, [54, 64]) 0.4 − 0.0 = 0.4

3 Related Work

Our study is related to the existing work on sequential pattern mining and
contrast data mining. We review the related work briefly here.

Sequential pattern mining is a well studied subject in data mining. A compre-
hensive review of the abundant literature on sequential pattern mining is clearly
beyond the capacity of this paper. Previous work of sequential pattern mining
can be categorized by the type of sequences being studied. The first category is
for sequences whose elements do not have explicit timestamps. Most studies of
this category mainly focus on exploring an approach to discover patterns that
frequently occur in a given set of sequences. Typical algorithms include GSP [3],
PrefixSpan [4], and SPAM [5]. The second category is for the sequence consist-
ing of time-point based events. Several studies were devoted to find temporal
dependencies between two events within a specific interval (time lag) [10,11].
Moreover, Tang et al. [11] pointed out that many temporal patterns, such as
mutually dependent pattern [12], partially periodic pattern [13] and frequent
episode pattern [14], can be considered as special cases of temporal dependen-
cies with different lag intervals. The third category is for sequences that consist
of interval-based events. Allen’s temporal logics [15] are widely used to describe
the complex relations among intervals [16,17].

240 L. Duan et al.

Our work belongs to the second category, since we focus on mining DTEPs
from time-point based event sequences. However, we consider two sets of event
sequences, and we discover temporal patterns with significant discriminative-
ness between the two sets, i.e., the patterns occur frequently in one set but
infrequently in the other. Thus, the problem of DTEP mining is fundamentally
different from previous work on sequential pattern mining.

Contrast data mining discovers patterns and models that manifest significant
differences between data sets [2]. One of the best known types of contrast pat-
terns is Distinguishing sequential pattern (DSP) which describes the differences
between two sets of sequences. DSP has many interesting applications, such as
prediction in bioinformatics and computational biology [18].

Several methods have been proposed for DSP mining. Ji et al. [6] designed an
approach to find the minimal subsequences that satisfy gap constraints and occur
frequently in sequences of one class but infrequently in sequences of another class.
Deng et al. [7] proposed a suffix tree-based method for DSP mining, and built a
classifier for sequence data. Wang et al. [8] introduced the density concept into
DSP mining, and proposed a method to find patterns satisfying both frequency
and density thresholds. Yang et al. [9] considered a more general case of DSP
mining where each element in a sequence is a set of items.

Although both DTEP mining and DSP mining try to find patterns whose
supports differ significantly between two sets of sequences, there are two essential
differences between DTEP mining and DSP mining. First, in DTEP mining, each
element in a sequence is associated with a timestamp. Thus, the expression of a
DTEP includes a temporal factor, which is absent in a DSP. Second, the match
relationship between a pattern and a sequence is defined based on the position
in DSP mining, while it is defined based on the time interval in DTEP mining.

4 Design of DTEP-Miner

4.1 Framework

As defined in Definition 2, a DTEP consists of an event segment and a time
interval. In brief, the DTEP-Miner algorithm uses the following main steps in an
iterative manner: (i) generating a candidate event segment E, (ii) for E, finding
the time interval w that maximizes cScore(E,w). In each iteration, DTEP-Miner
keeps the collection of top-k DTEPs discovered so far.

For the sake of efficiency, there are three critical points in the design of DTEP-
Miner. First, how to avoid generating clearly useless candidate event segments
(Sect. 4.2). Second, for each candidate event segment, how to investigate all
possible time intervals efficiently (Sect. 4.3). Third, for a candidate DTEP, how
to calculate its contrast score efficiently (Sect. 4.4).

4.2 Candidate Event Segment Generation

To ensure that DTEP-Miner can find the DTEPs with largest contrast scores,
we will enumerate all possible event segments in a systematic way (and we will

Mining Top-k Distinguishing Temporal Sequential Patterns 241

Fig. 1. An example of an event segment enumeration tree

develop pruning techniques for efficiency). Here, we adopt the set enumeration
tree approach [19], which has been used in many sequential pattern mining meth-
ods. Conceptually, a set enumeration tree takes a set with a total order, the event
types in the context of our problem, and then enumerates all possible combina-
tions systematically. For example, Fig. 1 shows an example of an enumeration
tree that enumerates all event segments over E = {e1, e2, e3}.

DTEP-Miner starts by generating E = {S[i].e | S ∈ D+, 1 ≤ i ≤ |S|}, i.e., the
set of all event types that occur in D+. Then, DTEP-Miner generates candidate
event segments by traversing the enumeration tree in a depth-first manner.

It is time-consuming to traverse all nodes in the event segment enumer-
ation tree. Fortunately, Theorems 1 and 2 demonstrate the monotonicity of
Sup(D, (E,w)) with respect to E and w, respectively.

Theorem 1. Given a set of temporal sequences D and a time lag constraint �,
we have Sup(D, (E,w)) ≤ Sup(D, (E′, w)) for all event segments E and E′ and
time interval w, provided that E is a super-sequence of E′ (E′ � E).

Theorem 2. Given a set of temporal sequences D and a time lag constraint �,
then we have Sup(D, (E,w)) ≤ Sup(D, (E,w′)) for event segment E and time
intervals w and w′ provided that w ⊂ w′.

Let R denote the top-k list of DTEPs discovered targeting D+ against D−
at a given time of the computation. Let cScorek denote the k-th largest contrast
score we found so far, i.e., cScorek = min{cScore(E,w)|(E,w) ∈ R}. Then, we
have following corollary.

Corollary 1. Suppose Sup(D+, (E′, w′)) < cScorek. Then (E,w) cannot be a
top-k DTEP for all event segments E and time intervals w satisfying E′ � E
and w ⊂ w′.

Corollary 1 leads us to a useful pruning rule, which allows us to terminate
the depth-first traversal of an entire branch at the current node. Please recall
that [0, T] is the maximal time interval.

Pruning Rule 1. For event segment E, any super-sequence of E can be pruned,
if Sup(D+, (E, [0, T])) < cScorek.

It makes sense to find DTEPs whose contrast scores are large early, so that
the pruning methods give bigger impact. By this observation, DTEP-Miner first

242 L. Duan et al.

computes the contrast scores of all DTEPs each containing exactly one single
event type in E , and sorts all event types in the descending order of contrast
scores. Similar to Pruning Rule 1, we apply the following rule to prune event
types when none of their super-sequences can be a member of the top-k DTEPs.

Pruning Rule 2. An event type e can be removed from E without loosing any
valid top-k DTEPs, if Sup(D+, (e, [0, T])) < cScorek.

Example 3. Let k = 5. For Table 1, cScore5 = 0.4. As Sup(D+, (e4, [10, 89])) =
0.1 < cScore5, event type e4 can be removed from E in the computation.

4.3 Candidate Time Interval Generation

For each node in the event segment enumeration tree traversed by DTEP-Miner,
an event segment E is generated. To generate all candidate time intervals for
E, a näıve way is to enumerate all sub-intervals of [0, T]; this generates O(T 2)
candidate time intervals for E. Clearly, the time cost is high.

Observation 1. In real datasets the number of distinct timestamps of an event
type is typically much smaller than T .

Based on Observation 1, we design a method to generate candidate time
intervals based on the timestamps of elements of E that occur in the dataset
under consideration. For clarity, we define the following notations.

For an event segment E, we denote by WE the set of candidate time intervals
of E. In addition, we use Ws

E and We
E to denote the sets of timestamps that can

be start time points and end time points of a time interval, respectively.
To find the time intervals from WE that can contribute to the top-k DTEPs

efficiently, we face two challenges: (i) how to efficiently find Ws
E and We

E , and
use them to generate WE (Sect. 4.3); (ii) how to efficiently find the time interval
w ∈ WE such that cScore(E,w) is the maximum (Sect. 4.3).

Please note that WE is computed by algorithms and different WE ’s can be
computed. Our goal is to compute smaller WE ’s (to minimize the amount of
computation) that can guarantee that we can find the correct top-k DTEPs.

Bounds of Candidate Time Intervals

Definition 4. The occurrence of an event type e in a set D of event sequences,
denoted by T (D, e), is the set of timestamps on which e occurs in some sequence
belonging to D. That is, T (D, e) =

⋃
S∈D

{S[i].t | S[i].e = e}.

For Challenge (i), given an event segment E, one näıve way is to set Ws
E =

T (D+, E[1]), We
E = T (D+, E[|E|]), and then get WE by the cartesian product

of Ws
E and We

E

WE = {[ti, tj] | ti ∈ Ws
E , tj ∈ We

E , ti ≤ tj}. (3)

Mining Top-k Distinguishing Temporal Sequential Patterns 243

Example 4. Consider Table 1 again. For event segment E = <e1, e2, e3>, Ws
E =

T (D+, E[1]) = {31, 34, 46, 88}, and We
E = T (D+, E[3]) = {32, 38, 64, 89}. By

Eq. 3, 10 candidate time intervals (Fig. 2) are in WE .

We note that the way of generating WE by Eq. 3 ignores the timestamps of
E[i] (1 < i < |E|), which may reduce the size of WE . Thus, for the sake of
efficiency, DTEP-Miner uses Eq. 3 to generate WE in the case of |E| = 1, i.e.,
E is a single event type. Then, it iteratively expands the event sequences and
computes the sets of candidate time intervals for longer event sequences from
that for shorter event sequences.

As stated in Sect. 4.2, DTEP-Miner generates each candidate event seg-
ment by traversing the event segment enumeration tree in a depth-first man-
ner. Let E′ be the parent node of E in the tree. Then, E is composed by
concatenating E′ with an event type e, denoted by E′ ⊕ e: E = E′ ⊕ e =
<E′[1], E′[2], ..., E′[|E′|]︸ ︷︷ ︸

E′

, e>.

Corollary 2. Suppose |E| > 1 and Sup(D, (E,w)) ≥ cScorek. Then there exist
E′ ⊂ E and w′ ⊆ w such that Sup(D, (E′, w′)) ≥ cScorek.

The above corollary allows us to safely use ŴE′ = {w′ | Sup(D+, (E′, w′)) ≥
cScorek} as the set of candidate time intervals for E′. We note this is a fairly
tight approximation of the optimal WE′ although better approximation may
exist. Now, we define R(t) = min{w′.te | w′ ∈ ŴE′ , w′.ts = t}, i.e., [t, R(t)] is
the one with minimum time span among all time intervals in ŴE′ starting from
t. Then, for E = E′ ⊕ e, we define:

WE = {[ti, tj] | ti ∈ Ws
E , tj ∈ We

E , R(ti) ≤ tj} (4)

where, Ws
E = {w′.ts | w′ ∈ ŴE′},We

E = T (D+, e).
DTEP-Miner uses Eq. 4 to generate WE in the case of |E| > 1, i.e., E is

composed by more than one event type. In summary, for an event segment E, a
candidate time interval w is valid if w satisfies the conditions specified by Eq. 3
(|E| = 1) or Eq. 4 (|E| > 1).

Evaluation with Time Interval Tree. Next, for Challenge (ii), we present
our method to find the best time interval w for an event segment E such that
w = argmax

w′∈WE

cScore(E,w′).

To evaluate all possible time intervals in a systematic and efficient way, we
design a novel data structure, called time interval tree. The first step to build a
time interval tree is sorting timestamps in Ws

E and We
E , respectively, in ascending

order. Here, we use superscripts to refer to the orders. For example, we denote
by Ws

E
[i] the i-th (1 ≤ i ≤ |Ws

E |) smallest timestamp in Ws
E .

Let C be Ws
E or We

E . We say that C[i] is the predecessor of C[i+1], denoted by
Prec(C[i+1], C) = C[i]; C[i+1] is the successor of C[i], denoted by Succ(C[i], C) =
C[i+1]. For example, with C = {31, 34, 46, 88}, we have Prec(C[3], C) = C[2] = 34
and Succ(C[2], C) = C[3] = 46.

244 L. Duan et al.

Fig. 2. A time interval tree

A time interval tree is a binary tree, in which each node is a valid candidate
time interval. The rules for building a time interval tree are as follows:

1. The root is [Ws
E
[1],We

E
[|We

E |]];
2. For each node p = [w.ts, w.te], p’s left child is [Succ(w.ts,Ws

E), w.te], and p’s
right child is [w.ts, P rec(w.te,We

E)].
3. Every node is a valid time interval.

We note that, for any right child node, its left child is the same as another
node’s right child. For the sake of efficiency, all left child nodes whose parents
are right child nodes are ignored by DTEP-Miner. Figure 2 shows an example of
a time interval tree. We use dash lines to represent links to the shared nodes.

For an event segment E, DTEP-Miner evaluates each candidate time interval
of E by traversing the time interval tree in a breadth-first manner. By Theorem 2,
we have the following pruning rule.

Pruning Rule 3. For event segmentE and time intervalw, ifSup(D+, (E,w)) <
cScorek, all sub-intervals of w can be pruned.

Although DTEP-Miner traverses all nodes in the time interval tree in the
worst case, our experiments show that Pruning Rule 3 can improve the effi-
ciency of DTEP-Miner for most cases. Algorithm 1 shows the pseudo-code of
evaluating candidate time intervals using time interval tree. The time complex-
ity of Algorithm 1 is O(n2), where n is the number of distinct timestamps.

4.4 Contrast Score Calculation

Given a DTEP (E,w), to get the contrast score of (E,w), by Eq. 2, we have to
calculate Sup(D+, (E,w)) and Sup(D−, (E,w)) first.

Theorem 3. Given a set of event sequences D and a DTEP (E,w), {S ∈ D |
(E,w) �� S} ⊆ ⋂

1≤i≤|E|
{S ∈ D | (E[i], w) �� S}.

By Theorem 3, to calculate Sup(D, (E,w)), DTEP-Miner only checks
whether (E,w) �� S holds for S ∈ ⋂

1≤i≤|E|
{S ∈ D | (E[i], w) �� S} (instead

of S ∈ D).
Finally, we present the pseudo-code of DTEP-Miner in Algorithm2.

Mining Top-k Distinguishing Temporal Sequential Patterns 245

Algorithm 1. TimeInterval(E,Ws
E ,We

E , cScorek)
Input: E: event segment, Ws

E : the start time points of candidate time intervals, We
E :

the end time points of candidate time intervals, cScorek: the k-th largest contrast
score of DTEPs searched so far

Output: w: the best time interval for E.
1: wE ← null; max ← 0; W ← {[Ws

E
[1], We

E
[|We

E |]]}; // root
2: repeat
3: w ← the first element in W;
4: if Sup(D+, (E, w)) < cScorek then
5: prune all sub-intervals of w; // Pruning Rule 3
6: else
7: if cScore(E, w) > max then
8: wE ← w; max ← cScore(E, w);
9: end if

10: if w is a left child node then
11: W ← W ∪ {[Succ(w.ts, Ws

E), w.te]}; // left child of w
12: end if
13: W ← W ∪ {[w.ts, P rec(w.te, We

E)]}; // right child of w
14: end if
15: W ← W\{w};
16: until W is null
17: return wE ;

Algorithm 2. DTEP-Miner(D+,D−, k, �)
Input: D+ and D−: two sets of event sequences, k: an integer, �: time lag constraint
Output: R: the set of top-k DTEPs
1: initialize cScorek ← 0 and R ← ∅;
2: for each event type e ∈ E do
3: get Ws

e , We
e ; w ← TimeInterval(e, Ws

e , We
e , cScorek);

4: if w is null then
5: remove e from E ; // Pruning Rule 2
6: else
7: update R and cScorek if |{P � (e, w) | P ∈ R}| < k;
8: end if
9: end for

10: sort all event types in their contrast scores descending order;
11: for each event segment E searched by traversing the event segment enumeration

tree in a depth-first way do
12: get Ws

E , We
E ; w ← TimeInterval(E, Ws

E , We
E , cScorek);

13: if w is null then
14: prune all super-sequences of E; // Pruning Rule 1
15: else
16: update R and cScorek if |{P � (E, w) | P ∈ R}| < k;
17: end if
18: end for
19: return R;

246 L. Duan et al.

5 Empirical Evaluation

In this section, we report an empirical study using both real-world and synthetic
data to verify the effectiveness and efficiency of DTEP-Miner. All experiments
were conducted on a PC with an Intel Core i7-4790 3.60 GHz CPU and 16 GB
main memory, running the Windows 7. All algorithms were implemented in Java
and compiled by JDK 7. The unit of a timestamp is minute in our experiments.

5.1 Mining DTEPs on Activities Data Set

We apply DTEP-Miner to the ADLs data set from the UCI repository [20].
This data set records the daily living activities by two users (A and B) in their
own homes ranging over 14 and 21 days, respectively. Table 3 lists all activities
and their abbreviations. As each activity lasts for a certain time period, we use
subscripts, ‘S’ and ‘E’, to refer to the start and the end of each activity. For
example, BRS represents the start of having breakfast.

First, we take user A and user B as the targets in turn, and apply DTEP-
Miner to mine DTEPs. Table 4 lists the top-10 DTEPs targeting user A and
user B, respectively. By examining the discovered DTEPs, some interesting daily
activity patterns characterizing user A and user B can be identified. For example,
user A frequently eats breakfast within 20 min after showering from 9:47 to 12:59
(the top-1 DTEP targeting user A), while user B frequently eats breakfast from
about 9 o’clock to half past 10 (the top-10 DTEP targeting user B). Also, we can
see that user A frequently does toileting before showering from about half past
9 to the noon (the top-2 DTEP targeting user A). Moreover, the top-1 DTEP
targeting user B shows that user B does grooming twice within 20 min during
most of the days.

Table 3. Activities and corresponding abbreviations

Breakfast (BR) Dinner (DI) Grooming (GR) Leaving (LE) Lunch (LU)

Showering (SH) Sleeping (SL) Snack (SN) Spare Time/TV (ST) Toileting (TO)

Table 4. Top-10 DTEPs discovered from ADLs (k = 10, � = [0, 20])

Rank Targeting user A Targeting user B

DTEP cScore DTEP cScore

1 (<SHS,SHE,BRS,BRE>, [09:47,12:59]) 0.929 (<GRS,GRE,GRS,GRE>, [00:51,17:45]) 0.833

2 (<TOS,TOE,SHS,SHE>, [09:28,12:54]) 0.929 (<GRE,GRS,GRE>, [00:54,17:45]) 0.833

3 (<SHE,BRS,BRE>, [09:52,12:59]) 0.929 (<GRS,GRE,GRS>, [00:51,17:44]) 0.833

4 (<SHS,SHE,BRS>, [09:47,12:56]) 0.929 (<GRS,GRS,GRE>, [00:51,17:45]) 0.833

5 (<SHS,BRS,BRE>, [09:47,12:59]) 0.929 (<GRE,GRS>, [00:54,17:44]) 0.833

6 (<TOE,SHS,SHE>, [09:35,12:54]) 0.929 (<GRS,GRS>, [00:51,17:44]) 0.833

7 (<TOS,TOE,SHS>, [09:28,12:50]) 0.929 (<TOS,TOE>, [01:40,10:21]) 0.810

8 (<TOS,SHS,SHE>, [09:28,12:54]) 0.929 (<TOS>, [01:40,10:19]) 0.810

9 (<SHE,BRS>, [09:52,12:56]) 0.929 (<TOE>, [01:41,10:21]) 0.810

10 (<SHS,BRS>, [09:47,12:56]) 0.929 (<BRS,BRE>, [08:56,10:34]) 0.786

Mining Top-k Distinguishing Temporal Sequential Patterns 247

0 2 4 6 8
0

200

400

600

800

1000

1200

||w
||

|E|

(a) ||w|| (user A)

0 2 4 6
0

200

400

600

800

1000

1200

|| w
||

|E|

(b) ||w|| (user B)

2 3 4 5 6 7 8
0

5

10

15

20

25

30

|E|

D

T
E

Ps

(c) # DTEPs (user A)

1 2 3 4 5 6
0

5

10

15

20

25

30

|E|

D

T
E

Ps

(d) # DTEPs (user B)

Fig. 3. ||w|| and the number of DTEPs w.r.t |E| (k = 100, � = [0, 20])

0.4

0.5

0.6

0.7

0.8

0.9

1

[0,10] [0,20] [0,30] [0,40] [0,50]

cS
co
re

(a) cScore (user A)

0.2

0.4

0.6

0.8

1

[0,10] [0,20] [0,30] [0,40] [0,50]

cS
co
re

(b) cScore (user B)

0

0.2

0.4

0.6

0.8

1

[0,10] [10,20] [20,30] [30,40] [40,50]
cS

co
re

(c) cScore (user A)

0

0.2

0.4

0.6

0.8

1

[0,10] [10,20] [20,30] [30,40] [40,50]

cS
co
re

(d) cScore (user B)

In (a) and (b), the right end of increases. In (c) and (d), both ends of increase.

Fig. 4. Contrast score w.r.t. time lag constraint � (k = 100)

We note that many patterns for one given user in Table 4 are similar to each
other. Take DTEPs targeting user A for instance. Intuitively, the top-1 DTEP is
similar to the patterns whose ranks are 3, 4, 5, 9 and 10. The reason is that, as
the initial work addressing DTEP mining, we did not consider the diversity of
discovered DTEPs. It is an open question about how to evaluate the similarity
among DTEPs; this is a future research problem.

Figure 3(a) and (b) present the time span of time interval (||w||) with respect
to the length of event segment (|E|) among the top-100 DTEPs. Figure 3(c) and
(d) present the event segment length distributions of the top-100 DTEPs. We
see that for most DTEPs ||w|| ranges from 100 to 200, and |E| is in the range
of [2, 5]. We also note that there is no clear correlation between ||w|| and |E|.

Figure 4 presents statistics on the contrast scores of top-100 DTEPs with
respect to time lag constraint. In Fig. 4(a) and (b), we increase the right end of the
time lag constraint. Intuitively, more patterns can be found when we use “wider”
time lag constraints. We can see that the contrast scores of DTEPs indeed tend
to increase with wider lag constraints. In Fig. 4(c) and (d), we increase both the
left end and right end of the time lag constraint. In this case, the time span
between two adjacent event types in a pattern is increased. We can see that the
contrast scores of DTEPs tend to decrease.

5.2 Efficiency

Here, we evaluate the efficiency of DTEP-Miner and its variations. (To the best of
our knowledge, there were no previous methods tackling exactly the same mining
problem as the one studied in this paper.) To evaluate the effectiveness of our

248 L. Duan et al.

techniques, we call the algorithm framework with Pruning Rules 1 and 2 Baseline.
Recall that DTEP-Miner uses a time interval tree to speed up the finding of the
best time interval for a given event segment. To evaluate the efficiency of out
methods for candidate time interval generation and evaluation, we implemented
a simplified version DTEP-Miner, denoted by Baseline*, that uses Eq. 3 (instead
of Eq. 4), and does not use Pruning Rule 3. Moreover, we implemented the
full version DTEP-Miner that uses all techniques. In our efficiency test, we set
k = 10, and � = [0, 20] as the default parameter values for DTEP-Miner.

We used randomly generated synthetic event sequence sets for efficiency test.
There are several parameters for synthetic data generation: the size of the target
set (|D+|), the size of the other set (|D−|), the average number of events in event
sequences (denoted by NE), the number of event types (|E|), and the maximal
time point (T). We set |D+| = 100, |D−| = 100, NE = 200, |E| = 40, and
T = 2000 as defaults for the synthetic data generation.

Figure 5 shows the running time of DTEP-Miner with respect to k, �, |D+|,
|D−|, NE, |E|, and T . Logarithmic scale has been used for the runtime to bet-
ter demonstrate the difference in the behavior between DTEP-Miner and the
baseline methods. We see that the runtime of DTEP-Miner and the two baseline
methods increases with the increase of k, �, |D+|, |D−| and NE. Please note that
the average number of events in an event sequence is pre-fixed by parameter NE
in our experiments. Thus, the larger |E|, the smaller the average number of the
occurrences of an individual event type in a sequence. Therefore, the runtime
of DTEP-Miner decreases with larger |E|. As we stated in Sect. 4.3, the com-
plexity of DTEP-Miner for time interval evaluation depends on the number of
timestamps instead of T . The runtime of DTEP-Miner is insensitive to T .

Clearly, DTEP-Miner runs faster than both Baseline and Baseline*, since
DTEP-Miner employs a heuristic strategy to sort all event types in the descend-
ing order of their contrast scores at the beginning, and evaluates candidate time
intervals using time interval tree to minimize useless computation. Baseline* is
faster than Baseline because it uses the heuristic strategy of event type sorting.

10 20 30 40
10

1

10
2

10
3

10
4

k

R
un

tim
e

(s
)

Baseline
Baseline*
DTEP−Miner

[0,10] [0,15] [0,20] [0,25]
10

1

10
2

10
3

R
un

tim
e

(s
)

Baseline
Baseline*
DTEP−Miner

50 100 150 200
10

1

10
2

10
3

10
4

|D+|

R
un

tim
e

(s
)

Baseline
Baseline*
DTEP−Miner

50 100 150 200
10

1

10
2

10
3

|D−|

R
un

tim
e

(s
)

Baseline
Baseline*
DTEP−Miner

100 150 200 250
10

1

10
2

10
3

10
4

NE

R
un

ti m
e

(s
)

Baseline
Baseline*
DTEP−Miner

35 40 45 50
10

1

10
2

10
3

|E|

R
un

tim
e

(s
)

Baseline
Baseline*
DTEP−Miner

1500 2000 2500 3000
10

1

10
2

10
3

T

R
un

tim
e

(s
)

Baseline
Baseline*
DTEP−Miner

Fig. 5. Efficiency test: runtime w.r.t. k, �, |D+|, |D−|, NE, |E|, T

Mining Top-k Distinguishing Temporal Sequential Patterns 249

6 Conclusions

In this paper, we studied the novel and interesting problem of mining DTEPs
from event sequences. We systematically developed a method with various prun-
ing techniques. Using both real and synthetic data sets, we verified that mining
DTEPs is interesting and useful. Moreover, our experiments show that our DTEP
mining method is effective and efficient.

References

1. Dong, G., Pei, J.: Sequence Data Mining. Springer, Heidelberg (2007)
2. Dong, G., Bailey, J. (eds.): Contrast Data Mining: Concepts, Algorithms, and

Applications. CRC Press, Boca Raton (2013)
3. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and per-

formance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.)
EDBT 1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). doi:10.1007/
BFb0014140

4. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Pre-
fixspan: mining sequential patterns by prefix-projected growth. In: Proceedings of
the 17th IEEE International Conference on Data Engineering, ICDE, pp. 215–224
(2001)

5. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation. In: Proceedings of the 8th ACM International Conference
on Knowledge Discovery and Data Mining, KDD, pp. 429–435 (2002)

6. Ji, X., Bailey, J., Dong, G.: Mining minimal distinguishing subsequence patterns
with gap constraints. Knowl. Inf. Syst. 11(3), 259–286 (2007)

7. Deng, K., Zäıane, O.R.: Contrasting sequence groups by emerging sequences.
In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS
(LNAI), vol. 5808, pp. 377–384. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04747-3 29

8. Wang, X., Duan, L., Dong, G., Yu, Z., Tang, C.: Efficient mining of density-aware
distinguishing sequential patterns with gap constraints. In: Bhowmick, S.S., Dyre-
son, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA
2014. LNCS, vol. 8421, pp. 372–387. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-05810-8 25

9. Yang, H., Duan, L., Dong, G., Nummenmaa, J., Tang, C., Li, X.: Mining itemset-
based distinguishing sequential patterns with gap constraint. In: Renz, M., Sha-
habi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA 2015. LNCS, vol. 9049, pp.
39–54. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18120-2 3

10. Li, T., Ma, S.: Mining temporal patterns without predefined time windows. In:
Proceedings of the 4th IEEE International Conference on Data Mining, ICDM.
451–454 (2004)

11. Tang, L., Li, T., Shwartz, L.: Discovering lag intervals for temporal dependencies.
In: Proceedings of the 18th ACM International Conference on Knowledge Discovery
and Data Mining, KDD, pp. 633–641 (2012)

12. Ma, S., Hellerstein, J.L.: Mining mutually dependent patterns. In: Proceedings of
the 1st IEEE International Conference on Data Mining, ICDM, pp. 409–416 (2001)

http://dx.doi.org/10.1007/BFb0014140
http://dx.doi.org/10.1007/BFb0014140
http://dx.doi.org/10.1007/978-3-642-04747-3_29
http://dx.doi.org/10.1007/978-3-642-04747-3_29
http://dx.doi.org/10.1007/978-3-319-05810-8_25
http://dx.doi.org/10.1007/978-3-319-05810-8_25
http://dx.doi.org/10.1007/978-3-319-18120-2_3

250 L. Duan et al.

13. Ma, S., Hellerstein, J.L.: Mining partially periodic event patterns with unknown
periods. In: Proceedings of the 17th IEEE International Conference on Data Engi-
neering, ICDE, 205–214 (2001)

14. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997)

15. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

16. Wu, S., Chen, Y.: Discovering hybrid temporal patterns from sequences consisting
of point- and interval-based events. Data Knowl. Eng. 68(11), 1309–1330 (2009)

17. Mörchen, F., Ultsch, A.: Efficient mining of understandable patterns from multi-
variate interval time series. Data Min. Knowl. Discov. 15(2), 181–215 (2007)

18. Shah, C.C., Zhu, X., Khoshgoftaar, T.M., Beyer, J.: Contrast pattern mining with
gap constraints for peptide folding prediction. In: Proceedings of the 21st Inter-
national Florida Artificial Intelligence Research Society Conference, FLAIRS. pp.
95–100 (2008)

19. Rymon, R.: Search through systematic set enumeration. In: Proceedings of the 3rd
International Conference on Principles of Knowledge Representation and Reason-
ing, KR, pp. 539–550 (1992)

20. Lichman, M.: UCI machine learning repository (2013)

Stream Data Processing

Soft Quorums: A High Availability Solution
for Service Oriented Stream Systems

Chunyao Song1,2(B), Tingjian Ge2, Cindy Chen2, and Jie Wang2

1 Nankai University, Tianjin, China
chunyao.song@nankai.edu.cn

2 University of Massachusetts, Lowell, USA
{csong,ge,cchen,wang}@cs.uml.edu

Abstract. Large-scale information gathering becomes more and more
common with the increasing popularity of smartphones, GPS, social net-
works, and sensor networks. Services based on this real-time data are the
logical next step. Service Oriented Stream Systems (SOSS) have a focus
on one-time ad hoc queries as opposed to continuous queries. High avail-
ability is crucial in these services. However, data replication has inherent
costs, which are particularly burdensome for high rate, often overloaded,
SOSS. To provide high availability and to cope with the problem of
overloading the system, we propose a mechanism called soft quorums.
Soft quorums provide high availability of data, a tradeoff between query
result accuracy and performance, and adaptation to dynamic data/query
stream rates. Finally, we conduct a comprehensive experimental study
using real-world and synthetic datasets.

1 Introduction

With the increasing popularity of smartphones, GPS, WiFi, Web 2.0, social
networks, RFID, and sensor networks, large-scale information gathering becomes
more and more common. As a result, services based on this real-time information
will be the logical next step. There have been many systems that use real-
time data for services, including bus tracking, dynamic traffic routing [5], and
smartphone related social network apps. Let us look at an example in detail.

Example 1. The real-world Cab dataset [7] can be used for online services. It
contains GPS coordinate traces of taxis in San Francisco, USA, and is used by
dispatchers to efficiently reach customers. The data is transmitted from each cab
to a central station in real time, and can answer queries such as: (1) “retrieve
counts of taxis grouped by their areas”, (2) “retrieve the fraction of taxis that
are occupied”, and (3) “retrieve the free taxis that are within 5 miles away
from a customer at location (x, y)”. Mobile app software based on such taxi

Tingjian Ge was supported in part by the NSF, under the grants IIS-1149417, IIS-
1319600, and IIS-1633271.
Jie Wang was supported in part by the NSF under grant CNS-1331632 and by Eola
Solutions Inc. under a research grant.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 253–268, 2017.
DOI: 10.1007/978-3-319-55699-4 16

254 C. Song et al.

data includes Uber [4], Flywheel [2], and Didi [3]. For example, Didi is a mobile
service that collects GPS coordinate traces of all taxi drivers who use this app,
and there are over 150 million users as of 2015. The highest number of requests
per day is over 12.17 million. The data stream rates and query rates fluctuate
significantly throughout a day or on different days [3].

In the big data era, there are increasingly more service oriented stream sys-
tems (SOSS) like this. When financial interests and real-time businesses are
involved, high availability is critical. In SOSS, there is an emphasis on one-
time ad hoc queries, in contrast to the continuous queries studied in most, if
not all, previous work on data streams [9,15]. For instance, all three queries in
Example 1 are one-time ad hoc queries issued by various users of the system on
the real time data in some most recent time interval. The system does not need
to be burdened with continuously answering these queries, especially given that
a large number of service queries may arrive concurrently in Example 1; the users
are in general content with one time answers.

1.1 Related Work

One-time ad hoc queries on data streams are mentioned in previous work
(e.g., [9,15]). In particular, previous work on fault tolerance of data streams
(e.g., [17]; see [11] for a survey) replicates the states of each query operator in
the query execution graph of a continuous query. During recovery, query oper-
ators in a node resume their states before the failure. While this approach is
powerful and ideal for continuous queries, it is too expensive and unnecessary
for one-time ad hoc queries, which can simply be restarted as long as the data is
protected and available. Moreover, the techniques in previous work [17] typically
deal with intermediate data tuple queues at various operators, which does not
apply to one-time queries. By contrast, we have a simple and efficient mechanism
to replicate and protect the input stream data only, which is common to however
many concurrent one-time queries that are issued to the system. A failed query
processing will simply need to be re-executed over the protected data. This is
clearly suitable and scalable for SOSS.

Background on quorums. In distributed computing, quorums are used for
either commit protocols (voting) or data replication control. In this paper,
we extend the quorum concept for the latter only. A quorum system is a collection
of subsets (quorums) of servers, every two of which intersect [20]. This ensures
that if a write operation is performed on a quorum, and later a read is performed
on another quorum, then there is at least one node (i.e., server) that observes
both operations and provides the up-to-date value to the reader. Strict quorums
have been studied (e.g., [20]). Non-strict quorums, called partial quorums in
[10], have been proposed too. In a partial quorum system, two quorums may not
overlap. There are two types of partial quorums, k-quorums [8] and probabilistic
quorums [19]. A k-quorum provides guarantees that it will return values that are

Soft Quorums: A High Availability Solution 255

within k versions of the most recent write. This does not apply to data streams
as typically data stream tuples are insert-only and no updates. A probabilistic
quorum system provides probabilistic guarantees on the intersection of any two
quorums. The partial quorums used in Amazon Dynamo [13], Cassandra [18],
Riak [12], and Voldemort [14] are termed expanding partial quorums [10].

At any time instant t, a node preserves a time interval τ of the most recent
data, i.e., from time t back to time t− τ . Consider all tuples between times t− τ
and t in the stream as a relation Rt, which we call a fresh batch. Clearly, Rt

dynamically changes with t, as old tuples leave and new tuples enter the time
interval. The length τ is application dependent and is limited by memory size.
An ad hoc query can use any portion (or all) of data inside the dynamic relation
Rt; the exact semantics and how the data is used are up to the specific queries,
and are not addressed in this paper. The goal of our work is to protect the
data in Rt, and ensure its high availability and non-interruption even
if a number of servers in the system are down.

Soft quorums. We propose a soft quorum scheme for data streams. The logical
architecture of a soft quorum system is shown in Fig. 1. At a high level, a write
quorum (of size w) is chosen randomly from the n data nodes, and the coordinator
inserts a new data item into these w data nodes. Similarly, a read quorum (of
size r) is chosen randomly from the n data nodes, and the coordinator reads data
from these r nodes to answer a query. A key idea of the soft quorum scheme
is that the choice of w and r is dynamic and adaptive to the stream
data incoming rate and users’ ad hoc query rate. By randomness, we
provide a quantifiable tradeoff between performance and query result accuracy,
while achieving the ultimate goal of high availability of data (in the event of node
crashes). Our adaptive choice of parameters w and r minimizes the overall system
load, and our random scheme achieves load balance. Soft quorums target SOSS,
and can be regarded as a further relaxation of the probabilistic quorums in that
they do not require that any two quorums have a high intersection probability.
Thus, we can use smaller quorum sizes, resulting in higher availability and better
performance. Moreover, we use radically different techniques, and set quorum
sizes w and r adaptively with stream/query rate. Finally, soft quorums have
load balancing and optimize the load.

Our contributions. We propose the soft quorum scheme along with the write
and read quorum algorithms which trade query result accuracy for performance
in Sect. 2. In Sect. 3, we discuss the dynamic selection of write and read quorum
sizes, adaptive to the high data incoming rate and query rate while guaranteeing
query result accuracy. We finally set w and r to minimize system load in Sect. 4.
To provide high availability of data, in Sect. 5, we propose a recovery process
and show the accuracy guarantees. Finally, we perform a systematic evaluation
on two real-world and some synthetic datasets in Sect. 6.

256 C. Song et al.

2 Soft Quorum Scheme

2.1 Preliminaries and Notations

We illustrate the system architecture in Fig. 1. At the base level are data nodes—
computers connected by a network, forming a distributed in-memory store. We
abbreviate the data nodes as nodes, and denote the number of nodes as n. Above
the nodes level is one or more coordinators—computers which take new stream
tuples and insert them into the nodes or take queries and process them after read-
ing data from nodes. The coordinators are simply the query processing nodes in
data stream systems. We only have nodes and coordinators. Typically coordi-
nators process queries using data (from data nodes) in a pipeline manner, and
a number of coordinators distribute the workload. The number of coordinators
or their work assignment is up to the system, and is beyond the scope of this
work. We focus on the soft quorum system S that is at the data nodes. Impor-
tantly, Fig. 1 is a logical architecture because there is no strict physical boundary
between nodes and coordinators. It is possible that the same computer can be
both a node (for storing data) and a coordinator (for processing queries).

Fig. 1. Logical architecture of a soft quorum system

A write (read, resp.) quorum of size w (r, resp.) is a subset of w (r, resp.)
nodes (w,r ≤ n) where a write (read, resp.) operation is performed. Each node
has a finite buffer size b for a data stream; we denote the buffer space of a stream
at each node as a queue Q, reflecting the fact that a stream is a time series. We
say that each element in Q is an item or an observation of a sample, where
the whole Q is a sample of the original stream. Each item has a timestamp
and a weight α (which is initially the same value as the write quorum size used
when writing this item - see Sect. 2.2). The actual length of Q is denoted as
|Q|, and each item as Q[i], (1 ≤ i ≤ |Q|). We use τ to denote the length of
the most recent time interval preserved from stream, i.e., the fresh batch. When
τ approaches infinity, we essentially replicate and sample the whole stream;
but typically SOSS applications are interested in data in some recent history.
Finally, we denote the data incoming rate of a stream (over all coordinators and
nodes) as λ, and the query rate as μ. Table 1 is a summary of notations for easy
reference.

Soft Quorums: A High Availability Solution 257

Table 1. Terminologies and notations used in the paper

Terms, symbols Meaning Symbols Meaning

Node Data node, part of a quorum system w Write quorum size

Coordinator A computer that does query

processing, write (insertion), and read

of data

r Read quorum size

Item/observation A stream tuple in a quorum Q Buffer at a node for a stream

Sample A set of observations |Q| Number of items in Q (i.e., length of Q)

τ Length of the most recent time

interval

b Maximum |Q| (buffer space limit)

λ, μ Stream incoming rate and query rate Q[i] The i’th item in Q (1 ≤ i ≤ b)

n Total number of nodes α Weight of an item in Q

2.2 The Quorum Scheme

The basic scheme is as follows: a write (read, resp.) quorum consists of any
w (r, resp.) nodes chosen uniformly at random from the n nodes. Complexity
arises from choosing the suitable w and r parameters to guarantee that any
read quorum contains a sample that is arbitrarily close to the original stream,
rendering a trade-off among accuracy, performance, and availability. We discuss
the dynamic choices of w and r minimizing the system load in this and the
next two sections. We now present the write and read quorum algorithms and
quantify the effective sampling rate.

As this is essentially a protocol between a coordinator and a set of nodes, we
present the WriteQuorum algorithm from both the coordinator side and the
node side. We have an adaptive flag as input to enable the estimation of current
stream rate and to select new quorum sizes (w, r). This can be done periodi-
cally. Line 2 of the Coordinator side is selection without replacement. In line 4,
each acknowledgement message contains the stream incoming rate estimate from
a node, and the coordinator simply averages the estimates (λ̂) and use λ̂ to get new
quorum sizes (Sect. 3). Lines 4–8 are done asynchronously as the new parameter
setting can be at any time without waiting. The Node side algorithm maintains a
recent interval of size τ (fresh batch). In line 2, the item is added to Q (with an
initial weight w0; the timestamp is in v). In lines 3–7, if Q overflows, it chooses an
item to evict and assigns a new weight to all items. Line 6 is such that Q[i] has
probability pi to be removed. The λ̂ estimate (line 9) is discussed in Sect. 3.

We next look at ReadQuorum, which has a Boolean flag indicating if a uni-
form sample is required. If query processing requires quantifiable estimations, then
this flag is set true. If this flag is false, then more observations may be returned (but
not uniformly random). Line 3 of the Coordinator side in ReadQuorum sends a
read request to the chosen node. In line 4, it receives (αi, Ri) from each node in
the read quorum, as described by the Node side. Each of the r nodes may have a
different αmin; hence the αi’s are sorted in decreasing order as β1, ..., βr (line 7).
While one can again make them uniform by taking the smallest (βr) and removing
more observations, we show in Theorem 1 that they are already a uniform sample
(making the returned sample size as large as possible).

258 C. Song et al.

Algorithm 1. WriteQuorum (v, w0, adaptive)
Input: v: the observation to be written;
w0: the current write quorum size;
adaptive: whether to adapt w to stream rate.
Output: new w, r setting if adaptive is true
/* Coordinator side: */

1 for each i ← 1 to w0 do
2 pick one node uniformly at random without replacement
3 send (v, w0, adaptive) to that node

4 receive ACK(̂λi) from the w0 nodes in lines 2–3
5 if adaptive then

6 ̂λ =
∑w0

i=1 λ̂i

w0

7 get (w, r) with ̂λ (Sect. 3)
8 return (w,r)

/* Node side upon receiving (v, w0, adaptive): */
1 remove observations with age τ or older from Q
2 add (v, w0) to Q //Observation v has initial weight w0

3 if |Q| = b + 1 then //if the queue exceeds bound
4 α ← b∑b+1

i=1
1

αi

, where αi is the weight of Q[i]

5 for each i ← 1 to b + 1 do pi ← 1 − α
αi

randomly remove one item from Q

based on pi’s
6 assign weight α to each remaining item

7 if adaptive then

8 ̂λ ← n
τ

∑|Q|
i=1

1
αi

9 send ACK(̂λ) back to coordinator

Theorem 1. When uniform is true, the sample R returned by ReadQuorum
is a uniformly random sample with rate η = 1−∏r

i=1(1− βi

n−i+1), as also returned
by the algorithm.

Proof. The proof is omitted due to space constraint and can be found in [1].

Note that the weight α of an observation o in Q is initially w0, the write
quorum size (which is dynamic) at the time o enters Q. When Q is full and
WriteQuorum performs an eviction in line 7 of its Node algorithm, all obser-
vations in Q have the same weight (i.e., all αi’s are equal), in which case αmin

αi
= 1

in line 5 of the Node side of ReadQuorum (thus all Q[i]’s are added to R).
However, observations constantly expire too and are removed from Q (line 1
of Node side of WriteQuorum) and new observations will be mixed in with
different initial weights αi (i.e., the write quorum size w0 at the time of joining
Q). Hence, in general, observations in Q have different weights αi’s. Since the
sampling rate at each node is determined by the minimum α value αmin at the
node, we certainly wish to maximize αmin at each node in order to maximize
the uniform sample size.

Theorem 2. The eviction policy in lines 4–7 of Node algorithm of Write-
Quorum maximizes the minimum sampling rate of the items in Q.

Soft Quorums: A High Availability Solution 259

Algorithm 2. ReadQuorum (r, uniform)
Input: r: read quorum size;
uniform: true if a strictly uniform sample is required
Output: R: the sample read from a quorum
η: the effective sample rate (if uniform is true)
/* Coordinator side: */

1 for each i ← 1 to r do
2 pick one node uniformly at random without replacement
3 send (uniform) to that node

4 receive (αi, Ri) from r nodes in line 2
5 R ← ⋃r

i=1 Ri

6 if uniform then
7 (β1, ..., βr)←sort α1, ..., αr in decreasing order

8 η ← 1 −∏r
i=1(1 − βi

n−i+1
)

9 return (R, η)
/* Node side upon receiving (uniform): */

1 αmin ← minimum α value in Q
2 if uniform then
3 R ← ∅
4 for each i ← 1 to |Q| do
5 R ← R ∪ Q[i] with probability αmin

αi

6 else //uniform is false (i.e., not required)
7 R ← Q

8 send (αmin, R) back to the coordinator

Proof. The proof is omitted due to space constraint and can be found in [1].

The ultimate goal of soft quorums is data protection via replication, while
sampling is just a by-product. Note that when the system load is light, strict
quorums can be used; soft quorums may kick in only when the system is over-
loaded. Even then, if there is a high priority query that must require all data,
it can have a read quorum size r = n. Alternatively, we may have a separate
primary node that possesses all data in the fresh batch, which the special query
resorts to. If the primary node fails, it is recovered from the soft quorum system.

3 Adaptation and Read Accuracy

3.1 Adaptation to Dynamic Stream Rates

Consider a node si that receives a write message from one of the coordinators.
The message contains (v, w0), where v is the new tuple and w0 is the current
w value used by the coordinator. Node si use the maximum likelihood estimate
(MLE) [16] to estimate the stream incoming rate from si’s own perspective.

Theorem 3. Line 9 of the Node side of WriteQuorum, i.e., λ̂ ← n
τ

∑|Q|
i=1

1
αi

is an MLE of the stream rate.

Proof. The proof is omitted due to space constraint and can be found in [1].

260 C. Song et al.

Then line 6 of the coordinator side of WriteQuorum is equivalent to the
MLE over items from all w0 queues. Note that λ does not have to be estimated
for every write message; the system can do it periodically. We will discuss how
to determine w and r based on this estimate.

3.2 Read Quorum Accuracy

As in strict quorums, read consistency is a function of quorum sizes (w and
r). We study the choice of w and r based on data consistency requirement, in
addition to the stream rate estimate λ̂ above. We consider three consistency
modes in this section (the detailed algorithm is omitted due to space constraint
and can be found in [1]). Consistency metrics proposed in previous work [10]
are designed for stored data and are not suitable for our setting. For example,
k-staleness [10] requires that the value read is no more than k versions older
than the latest committed version, while we are concerned with tuples in the
most recent interval and stream tuples are continually appended. We explore
soft data consistency through ensuring that the statistical distance between the
sample from a read quorum and the original stream (which we also call sample)
is small enough. Our definition below is based on the Jaccard distance between
two sets [21].

Definition 1 (statistical distance between samples). The statistical dis-
tance between two samples R and S is defined as D(R,S) := 1 − |R∩S|

|R∪S| , where
R and S are deemed sets of items. Here, an item can be multidimensional, con-
taining the set of attributes required by the application.

Intuitively, the statistical distance measures how different the two samples
are. It is a metric, and is always between 0 and 1. It is easy to verify that when R
and S are identical, their statistical distance is 0; when they have no overlap, the
distance is 1. This metric informs us how close the values from a read quorum
are to the original ones. In addition, it provides a means to compare two soft
quorum schemes.

Definition 2 ((Δ, ε)-consistency). We say that a soft quorum system is
(Δ, ε)-consistent if Pr[D(R,S) ≤ Δ] ≥ 1 − ε, where S is the original stream
sample and R is the sample from a read quorum chosen uniformly at random.

Based on the above definitions, we show Lemma 1 below which is used in the
proofs of Theorems 4 and 6.

Lemma 1. Consider a sample S that is a set of observations and a subsample
R that is a subset of S. Then D(R,S) = |S−R|

|S| .

Proof. This is straightforward based on Definition 1, since R ∩ S = R and R ∪
S = S.

Given the stream rate estimate λ̂ and a time interval size τ , there are m = λ̂τ
observations in the original sample. We show the following result which will help
us to select r and w when the consistency mode is 1.

Soft Quorums: A High Availability Solution 261

Theorem 4. We achieve (Δ, ε)-consistency if the quorum sizes satisfy rw ≥
n ln 2

a−√
a2−4Δ2 where a = 2Δ + 3

m ln 1
ε .

Proof. The proof is omitted due to space constraint and can be found in [1].

For example, if we require (0.15, 0.1)-consistency with n = 20 and m = 500,
then from Theorem 4 we have r · w ≥ 44 (e.g., r = 4 and w = 11) is sufficient.
Note that (Δ, ε)-consistency can be a very strong guarantee, which says that,
with probability at least 1-ε, the statistical distance between a read quorum value
and the original data is no more than Δ. We also provide weaker guarantees. We
have two other modes: (mode = 2) expected statistical distance is no more than
Δ, and (mode = 3) the approximate sampling rate is at least some threshold
value ε. For mode = 2, from Lemma 1, and the linearity of expectation, we have:
Δ < e−rw/n, which gives us a lower bound of r · w as n ln 1

Δ . Finally, mode = 3
especially applies to the case when stream rates are high and rw < n. Then the
approximate sampling rate is w · r

n (i.e., r
n is the probability that one of the w

copies of a tuple is in the read quorum); solving w · r
n ≥ ε gives us a lower bound

of r · w as εn. We discuss how to determine r and w based on an r · w budget c
in Sect. 4.

4 Load

In the literature, load is defined as the probability of accessing the busiest node
[20]. Intuitively, one certainly wishes to balance the workloads (including network
traffic) for writing and reading quorums in order to maximize parallel access of
nodes. In soft quorums, however, we have asymmetry between writes and reads.
When we write a quorum of w nodes, we only write one value to each node. When
reading a quorum, by contrast, each of the r nodes contains a set of values. Thus,
we need to generalize the classical load definition to account for the number of
values accessed.

Definition 3 (load). Let Ti (ϕ) denote the expected number of values writ-
ten to or read from node i for a random quorum access with probability ϕ (1-
ϕ, resp.) being a write (read, resp.), where the expectation is taken over the
random choice of write and read quorums. Then the system load is defined as
L:=maxi∈{1,...,n}Ti(ϕ).

Thus, load L is a function of ϕ, the fraction of quorum access that is a write
operation. Ti(ϕ) is the expected number of values accessed at a node, while L
is the maximum over all nodes. Recall that the accuracy requirements in Sect. 3
only requires a lower bound of r·w. We are now ready to show the following result
that finally sets r and w. Note that the query rate μ can be learned from query
statistics or workload information as in the standard database design literature.

Theorem 5. Given a stream incoming rate λ, a read rate μ, and a quorum size

constraint rw ≥ c, the setting w =
√

cbμ
2λ and r =

√
2cλ
bμ minimizes the expected

load E[L], where the expectation is taken over the random configuration of node
queues, each with a maximum size b.

262 C. Song et al.

Proof. The proof is omitted due to space constraint and can be found in [1].

Theorem 5 indicates that when the ratio between read and write increases
(i.e., μ/λ increases), we should increase w and decrease r, which is intuitive as
we read more. The same is true when the buffer size b for each queue increases.

5 Availability

5.1 Failure Probability and Read Accuracy

System failure probability Fp(S), for a quorum system S, is used to measure the
availability under the fail-stop model [20]. Fp(S) is defined as the probability that
at least one node in every quorum has failed, where p is the probability that a
node may fail independently. As such, the smaller Fp(S) is, the more available
S is. In soft quorums, we generalize Fp(S) as the probability that either read or
write cannot proceed due to unavailability of a quorum. We first note that failed
nodes can only affect reads. This is because if f out of n nodes fail, a write
just needs to work with the remaining n − f nodes (effectively a smaller n). For
reading data that exist before the nodes fail, however, we must make sure there
is a quorum that is not hit by the failed nodes. As each stream in the system
may have a different read quorum size, we let the maximum read quorum size be
γ. Then Fp(S) is the probability that any set of γ nodes (a read quorum) has at
least one failed node, which is equal to that at least n − γ + 1 nodes fail. Hence:
Fp(S) =

∑n
i=n−γ+1

(
n
i

)
pi(1 − p)n−i. If we increase the maximum read quorum

size γ, Fp(S) increases, indicating a lower availability.
When f out of n nodes fail (f ≤ n − γ), a read works by choosing r nodes

from n − f nodes (rather than n nodes) uniformly at random. At first glance
it may seem that this would reduce read accuracy. However, read accuracy is
not affected due to the random distribution of observations. In other words, a
restricted subset of sample is still random within the whole sample. In particular,
the equation on Fp(S) and the whole analysis of Sect. 3.2 still hold.

5.2 Reconstructing Failed Nodes

We can recover the lost data (in the fresh batch time interval) in the f failed
nodes based on the remaining n−f nodes. As discussed in Sect. 3, a coordinator
keeps track of an estimate of the current stream rate λ̂ and the w value that
it uses. To recover data in the f failed nodes, we do a RecoveryProcess (the
detailed algorithm is omitted due to space constraint and can be found in [1])
by first counting how many times each observation appears in the surviving
nodes, then adding a number of each observation randomly to the f failed nodes
so that the total count is w. Thus, what cannot be recovered are only those
observations that originally only appear in the f failed nodes. Note λτwf

n is the
expected total count of items that are in the f failed nodes. So if the number of
items sent to the f nodes to reach the w total count is less than this expectation,
then we divide the difference evenly to all observations, and add them to the

Soft Quorums: A High Availability Solution 263

f nodes. The RecoveryProcess is executed by the coordinator, coordinating
with all nodes through messages. Let us now quantify the data quality after the
RecoveryProcess. It is possible that some more nodes fail after a recovery,
we show that the error essentially accumulates.

Theorem 6. The expected statistical distance between the sample in the n nodes
after the RecoveryProcess and the original sample, which we call error ε,
satisfies ε ≤ (f

n)w. After such a recovery, if some nodes fail again, including f2
new nodes that have not failed before, then after the RecoveryProcess, we
have ε ≤ ε1 + (f2

n)w, where ε1 is the error before this recovery.

Proof. The proof is omitted due to space constraint and can be found in [1].

Theorem 6 indicates that a greater w results in a better data quality after
recovery (for a fixed f), giving a smaller error. Thus, it provides a trade-off
between availability (or recoverability) and performance.

6 Experiments

6.1 Datasets and Experiment Setup

We perform a systematic evaluation using two real-world and some synthetic
datasets: (1) Cab data. This dataset contains mobility traces of taxi cabs
in San Francisco Bay Area, USA [7]. (2) RFID data. RFID tracking data
[6] was collected from the seventh HOPE (Hackers On Planet Earth) confer-
ence held in July 18–20, 2008. Conference attendees received RFID badges that
uniquely identify and track them across the conference space. This can be used
to drive social networking features which completely change the conference expe-
rience. (3) Synthetic data. Synthetic datasets are generated based on the real
datasets, but vary parameters such as timestamps that determine the stream
rates.

We implement all the algorithms presented in the paper, and run the exper-
iments over a cluster of 16 computers. Each computer has an Intel Core2 Duo
CPU (2.66 GHz), with a 6 MB cache for each core, and a 1.7 GB memory. The
computers are connected by a 100 MB/sec bandwidth local area network. By
default we use one computer as the Coordinator and 15 computers as Nodes
(i.e., n = 15). All presented results are averages of at least three runs.

6.2 Experimental Results

Data schema and queries. The Cab data has a simple schema [latitude, longi-
tude, occupancy, time], where occupancy shows if a cab has a fare (1 = occupied,
0 = free). The three queries we run are described in Example 1. The main data
stream file in the RFID dataset has a schema [time, tag id, area id, x, y, z],
where tag id identifies a conference participant, area id identifies a particular
conference area. The dataset also indicates a particular person (tag id)’s inter-
ests. We run these two queries which a conference participant may be interested

264 C. Song et al.

2 4 6 8

0.4

0.5

0.6

0.7

0.8

0.9

1

w

S
am

pl
in

g
ra

te

Theoretical rate
Observed rate

0 2 4 6
0.4

0.5

0.6

0.7

0.8

0.9

1

r
S

am
pl

in
g

ra
te

Theoretical rate
Observed rate

Fig. 2. (a) w vs. sampling rate, (b) r
vs. sampling rate in a read quorum

0 2 4 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

Sa
m

pl
in

g
ra

te

Theoretical rate
Observed rate
Non−uniform rate

Fig. 3. Stream rate
vs. sampling rate

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

λ

Sa
m

pl
in

g
ra

te

Our algorithm
Random eviction
Min w cut

Fig. 4. Eviction pol-
icy and alternatives

in: “get the distribution of the locations of people who are interested in network
security”, and “get the talk room that has the most number of people”.

Sampling rates. In the first experiment, we measure the actual sampling rate
in a sample read by the Coordinator from a read quorum under various para-
meter settings. We calculate the theoretic sampling rate based on Theorem 1,
and compare it with what we actually observe in a read quorum. The results are
shown in Fig. 2. In Fig. 2(a) we fix r = 3 but vary w, while in Fig. 2(b) we fix
w = 6 but vary r. The y axis is the sampling rate in a read quorum. The observed
uniform sampling rate closely matches the result from Theorem1, verifying the
high accuracy of our analysis. In addition, as w or r increases, so does the sam-
pling rate, which approaches 1. Next, fixing w = 6 and r = 2, we evaluate how
well the system works with different data rates λ, especially when the buffers at
each node often reach capacity and the eviction algorithm takes effect. We use
b = 100 and τ = 180 s. When λ = 2, the expected number of observations within
a time interval at each Node λτw

n = 144 > b, the eviction algorithm will need to
take effect. Based on the Cab data, we generate random synthetic datasets with
different (expected) stream rates λ from 1 to 6. The result is shown in Fig. 3.
Recall that in ReadQuorum by setting the input parameter uniform to be
false, we get a non-uniform (but larger) sample, whose size ratio is also shown in
Fig. 3. It has a slightly larger size as w values do not vary significantly within Q.

Buffer eviction policy. In Fig. 4, we compare our buffer eviction policy
(WriteQuorum) with an intuitive alternative method (“random eviction”)
which picks an item uniformly at random in Q to evict and multiplies the remain-
ing items’ w values by b

b+1 . We also compare with a variant of the ReadQuorum
algorithm (“Min w cut”) which simply uses the minimum w value among all r
nodes in the read quorum to further filter the sample. Figure 4 shows that our
algorithm achieves the highest uniform sampling rate. Random eviction gets
worse as λ increases, because Q tends to be more dynamic with various w values
within it as λ increases, for which a judicious eviction algorithm shows more
advantage. The result of this experiment is consistent with Theorem 2.

Adaptation and accuracy guarantees. Figure 5 indicates that our algo-
rithm’s estimates of λ̂ are very accurate. Next we study the connection between
quorum sizes and read accuracy, as measured by statistical distance. The result

Soft Quorums: A High Availability Solution 265

0 2 4 6
1

2

3

4

5

6

Data stream rate

E
st

im
at

ed
 d

at
a

st
re

am
 r

at
e

Fig. 5. Data stream
rate estimates

5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

w

S
ta

tis
tic

al
 d

is
ta

nc
e

Cab data
RFID data
Exp. guaranteed
90% guaranteed

Fig. 6. Statistical dis-
tance and guarantees

5 10 15
0.5

1

1.5

2

2.5

3

3.5

w

M
ea

su
re

d
lo

ad

Cab data
RFID data

Fig. 7. w vs. load
for fixed r · w

0 2 4 6
1

2

3

4

5

λ/μ

r

Fig. 8. λ/μ vs. opti-
mal r

is shown in Fig. 6 under various w values while fixing r = 3. We can see from Cab
data and RFID data that the distance decreases as w increases, entailing more
accuracy. Recall that we provide an expected statistical distance or a (Δ, ε)-
consistency guarantee in Sect. 3. We calculate the maximal statistical distances
(in both expectation and 1 − ε confidence where ε = 0.1) that can be guaran-
teed. Figure 6 shows that (Δ, ε)-consistency is a stronger guarantee (verifying
Theorem 4), while both follow the same trend as w increases.

Load. We now examine the load L, with the result in Fig. 7. The Cab data has
λ ∼= 1, and we set the query rate μ = 1 and b = 10. By fixing rw = 20, we study
the relationship between different values of w and the load L. Similarly, using the
same parameters, we repeat the experiment for the RFID data which has much
greater average stream rate (λ ∼= 15). Figure 7 shows that L is minimal when
w = 10 for the Cab dataset and when w = 3 for the RFID dataset, which is con-
sistent with Theorem 5. Then using synthetic datasets with various stable stream
rates λ and fixed query rate μ, we observe the relationship between the write/read
ratio λ/μ and the r selected using Theorem 5 based on an rw = 20 budget. The
result is shown in Fig. 8. The selected read quorum size r gradually increases as
the write/read ratio does. This is because as λ/μ increases, our algorithm will
decrease the write quorum size w and increase the read quorum size r to minimize
the load L while maintaining the same level of accuracy guarantee. In Fig. 9, we
show L as λ increases. Perhaps surprisingly, as λ increases, L slightly decreases.
This is because the load definition is about the number of values accessed “per
quorum access”. When λ increases, a quorum access is more likely to be a write,
which tends to access a smaller number of values than a read.

Access delays and adaptations. Next we put all the pieces together, and
evaluate the performance when queries access read quorums in real time as
the real-world data streams flow in. We also compare the performance with
partial quorums in previous work [10] for stored data (without adaptations)
and simple replications. Periodically (once every five seconds), the soft quorum
system adaptively learns a new w, r setting based on the current stream rate.
We use n = 11, and thus can have up to 5 Coordinator machines. We fix the
query rate μ = 1, but vary the number of coordinators, and distribute the stream
write and query workload evenly among the Coordinators. The result is shown in
Fig. 10. We first run the experiment with Cab data. The query read quorum delay

266 C. Song et al.

1 2 3 4 5
0.8

0.85

0.9

0.95

1

Data stream rate

M
ea

su
re

d
lo

ad

Fig. 9. Stream rate
vs. load

1 2 3 4 5
10

20

30

40

50

60

Number of coordinators

Q
ue

ry
 r

ea
d

de
la

y
(m

s)

Cab
RFID no adap.
RFID

Fig. 10. Read delay
and adaption

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of failed nodes

S
ta

tis
tic

al
 d

is
ta

nc
e

All nodes after recovery

Theoretical bound

Original read quorum

Quorum after recovery

Fig. 11. Accuracy
after recovery

0 2 4 6
0

0.1

0.2

0.3

0.4

Number of newly failed nodes

S
ta

tis
tic

al
 d

is
ta

nc
e

All nodes after 2nd recovery

Theoretical bound

Original read quorum

Quorum after 2nd recovery

Fig. 12. Accuracy
after 2nd recovery

is about 20 ms, and slightly decreases as the number of Coordinators increases.
This is because the network traffic becomes more distributed and less congested
as we distribute queries and stream input handling over multiple Coordinators.

We then immediately switch to the RFID data stream. We test the perfor-
mance with and without adaptively setting w and r values based on the new
stream rate of the RFID dataset. We can see from Fig. 10 that optimal quorum
sizes can dramatically bring down the query’s read-quorum delays. Likewise,
other quorums such as probabilistic quorums [19] cannot select optimal quorum
sizes based on stream rate, and result in longer delays. Expanding partial quo-
rums [10] or other simple replication schemes that send all tuples to all n nodes
have about 17 times longer read delays than the soft quorum with optimal w
and r; they are omitted from the figure for clarity. Moreover, as discussed earlier,
other quorum schemes cannot provide uniformly random sampling and a tuning
knob to trade accuracy for performance and feasibility.

Recovery and data quality. Starting from n = 15 nodes and using w = 5 and
r = 3, we first programmatically fail any f nodes (a variable) by clearing their
Q’s. We then do the RecoveryProcess, and measure the quality of recovered
data. The results of the Cab data are in Fig. 11 (the RFID data gives us a similar
graph which we omit). We first measure the sample statistical distance between
the one collected over all n nodes after recovery and the one before recovery.
We compare it with the theoretical upper bound given by Theorem6. From
Fig. 11, the statistical distance is below 0.03 for f up to 8 (over half of the total
nodes), and obeys the theoretical bound. We then test the statistical distance
between the sample collected from a read quorum after recovery and the original
stream sample before any failure and recovery. We compare this curve with the
corresponding one without any node failure (which is a constant in Fig. 11). The
difference in statistical distance is no more than 0.1 for f ≤ 8, and no more than
0.03 for f ≤ 4. Finally, we evaluate the data quality after additional node failures
and recoveries. We start with an initial failure f = 4 and a recovery. We then
programmatically fail an additional f2 new nodes, followed by another recovery.
We conduct the same set of comparisons as in the previous experiment, and show
the results in Fig. 12, where the comparisons are with the corresponding data
before the first failure. Again, the sample statistical distance over all n nodes is
very small and is close to the values calculated from Theorem6.

Soft Quorums: A High Availability Solution 267

Summary of results. Our experiments verify that soft quorums are suitable for
providing high availability for high-rate dynamic data streams, offering a tradeoff
among availability, accuracy, and performance. Our sampling rate estimate is
highly accurate, and the buffer eviction policy achieves optimal accuracy. Soft
quorums adapt to dynamic stream rates by accurately estimating stream rates,
adjusting r, w parameters, and providing rigorous accuracy guarantees. The
choice of parameters and adaptivity to dynamic streams minimize system load
and achieve superior performance in terms of access delays than previous quorum
and replication schemes not designed for streams. Finally, recovery after node
failures maintains good data quality.

7 Conclusions

In light of the increasing importance of providing high availability for SOSS, we
propose soft quorums for data streams. Soft quorums address the overhead asso-
ciated with replication and cope with overloads. They adapt to dynamic streams
and guarantee query result accuracy. We propose algorithms to choose quorum
sizes based on accuracy requirement and load minimization. Finally, we devise
recovery algorithms for failed nodes and study data accuracy. Our comprehen-
sive experiments on real and synthetic datasets show that soft quorums advance
the state of the art in providing high availability for SOSS and render a delicate
tradeoff among availability, accuracy, and performance.

References

1. https://drive.google.com/file/d/0B9Umiq2eYGoVdWZRMjBKMEpWSDQ/
view?usp=sharing

2. http://flywheel.com/
3. http://net.chinabyte.com/238/13231738.shtml
4. https://www.uber.com/
5. http://www.inrix.com/
6. http://crawdad.cs.dartmouth.edu/hope/amd (2008)
7. http://crawdad.cs.dartmouth.edu/epfl/mobility (2009)
8. Aiyer, A., Alvisi, L., Bazzi, R.A.: On the availability of non-strict quorum sys-

tems. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 48–62. Springer,
Heidelberg (2005). doi:10.1007/11561927 6

9. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: PODS (2002)

10. Bailis, P., Venkataraman, S., Frnaklin, J.M., Joseph, H.M., Stoica, I.: Probabilis-
tically bounded staleness for practical partial quorums. In: VLDB (2012)

11. Balazinska, M., Hwang, J.H., Shah, A.M.: Fault-tolerance and high availability in
data stream management systems. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of
Database Systems, pp. 1109–1115. Springer, Heidelberg (2009)

12. Basho, R.: http://basho.com/products/riak-overview/ (2012)
13. Decandia, G. et al.: Dynamo: Amazon’s highly available key-value store. In: SOSP

(2007)

https://drive.google.com/file/d/0B9Umiq2eYGoVdWZRMjBKMEpWSDQ/view?usp=sharing
https://drive.google.com/file/d/0B9Umiq2eYGoVdWZRMjBKMEpWSDQ/view?usp=sharing
http://flywheel.com/
http://net.chinabyte.com/238/13231738.shtml
https://www.uber.com/
http://www.inrix.com/
http://crawdad.cs.dartmouth.edu/hope/amd
http://crawdad.cs.dartmouth.edu/epfl/mobility
http://dx.doi.org/10.1007/11561927_6
http://basho.com/products/riak-overview/

268 C. Song et al.

14. Feinberg, A.: Project voldemort: reliable distributed storage. In: ICDE (2011)
15. Golab, L., Ozsu, M.T.: Issues in data stream management. In: SIGMOD (2003)
16. Harris, J.W., Stocker, H.: Maximum likelihood method. In: Handbook of Mathe-

matics and Computational Science. Springer, New York (1998)
17. Hwang, J.-H., Xing, Y., Cetintemel, U., Zdonik, S.: A cooperative, self-configuring

high-availability solution for stream processing. In: ICDE (2007)
18. Lakshman, A., Malik, P.: Cassandra - a decentralized structured storage system.

In: LADIS (2008)
19. Malkhi, D., Reiter, M.K., Wool, A., Wright, R.N.: Probabilistic quorum systems.

Inf. Commun. 170(2), 184–206 (2001)
20. Naor, M., Wool, A.: The load, capacity, and availability of quorum systems. SIAM

J. Comput. 27(2), 423–447 (1998)
21. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson,

Upper Saddle River (2005)

StroMAX: Partitioning-Based Scheduler
for Real-Time Stream Processing System

Jiawei Jiang1(B), Zhipeng Zhang1, Bin Cui2, Yunhai Tong1, and Ning Xu1

1 Key Laboratory of High Confidence Software Technologies (MOE),
School of EECS, Peking University, Beijing, China

{blue.jwjiang,zhipengzhang,yhtong,ning.xu}@pku.edu.cn
2 The Shenzhen Key Lab for Cloud Computing Technology and Applications

(SPCCTA), School of Electronics and Computer Engineering (SECE),
Peking University, Shenzhen, China

bin.cui@pku.edu.cn

Abstract. With the increasing availability and scale of data from Web
2.0, the ability to efficiently and timely analyze huge amounts of data is
important for industry success. A number of real-time stream processing
platforms have been developed, such as Storm, S4, and Flume. A fun-
damental problem of these large scale decentralized stream processing
systems is how to deploy the workload to each node so as to fully utilize
the available resources and optimize the overall system performance. In
this paper, we present StroMAX, a graph-partitioning based approach
of workload scheduling for real-time stream processing systems. Stro-
MAX uses two advanced generic schedulers to improve the performance
of stream processing systems by reducing the inter-node communication
cost while keeping the workload of nodes below a certain computational
load threshold. The first scheduler analyzes the workload structure when
a job is committed and uses the graph-partitioning result to determine
the deployment of tasks. The second scheduler analyzes the statistical
information of physical nodes, and dynamically reassigns the tasks dur-
ing runtime to improve the overall performance. Besides, StroMAXcan
be deployed to many other state-of-the-art real-time stream processing
systems easily. We implemented StroMAX on Storm, a representative
real-time stream processing system. Extensive experiments conducted
with real-world workloads and datasets demonstrate the superiority of
our approaches against the existing solutions.

Keywords: Real-time stream processing · Task allocation · Workload
scheduling · Graph partition

1 Introduction

With the unprecedented proliferation of data from web, it is natural to extend
the scope to efficient processing mechanisms and methods that can handle real-
time workloads [19]. For example, Twitter, the popular online social network,

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 269–288, 2017.
DOI: 10.1007/978-3-319-55699-4 17

270 J. Jiang et al.

processes over 500 million tweets every day. It is challenging to process and
analyze such a big data stream in real-time. Traditional distributed processing
frameworks, such as MapReduce, are designed for offline batch processing. They
are ill-suited to process real-time workloads. Real-time stream computing is an
effective way to process big data with low-latency. It is becoming one of the
fastest and most efficient ways to obtain useful knowledge from various kinds of
real-time data. Thus, many real-time stream processing frameworks have been
proposed, such as Storm [21], S4 [14], and Flume [1].

Compared to the batch processing systems, resource allocation and schedul-
ing in real-time stream processing systems are much more difficult and important
due to the dynamic nature of the input data streams. An application or workload
in these systems consists of several processing components. A component can
produce the input of stream or execute the processing logic to generate results. In
this paper, we use Spout and Bolt, borrowed from Storm, to represent the input
component and processing component, respectively. Tuples emitted by a spout
constitute a stream that can be transformed by passing through one or more
bolts that implement the user-defined logic. Therefore, we can use a directed
acyclic graph, called a topology, to denote the stream transformations. When a
topology is submitted, the system schedules the tasks of each spout and each bolt
to a certain physical node of the cluster. Similar to the batch data processing
systems such as Hadoop, the allocation strategy impacts the performance of a
real-time stream processing system. However, most of the above systems apply
a round-robin method as their default scheduler which evenly distributes the
components of a topology to the physical nodes. This basic scheduler is easy to
implement, however, it does not take into account the cost of tuple transmission
between components. Furthermore, the communication cost of tuple transmis-
sion heavily increases the average processing latency and deteriorates the overall
performance of the system.

In this paper, we design and implement StroMAX, which provides two novel
schedulers for the real-time stream processing systems to improve their per-
formance. Different from the default round-robin scheduler, StroMAX aims at
reducing the average processing latency of tuple by minimizing the total inter-
node communication cost and keeping computational load balanced on each
node. These two schedulers use graph-partitioning based algorithms to parti-
tion the topology. The first scheduler, named Bootstrap Scheduler, analyzes the
topology graph and partitions the topology when it is submitted to the sys-
tem. This strategy is simple and is executed before the topology is started, so
neither the cluster workload nor the network traffic is taken into account. The
second scheduler, named Rebalance Scheduler, goes one step further by moni-
toring the runtime statistics of all the topologies and the workload of cluster,
then it rebalances the topologies for overall performance optimization when nec-
essary. Besides, Rebalance Scheduler provides a heuristic to dynamically move
components from the bottleneck nodes to the idle ones based on the statistical
information of the cluster and the topologies.

StroMAX: Partitioning-Based Scheduler 271

To evaluate our schedulers, we implemented StroMAX on Storm. The per-
formance of StroMAX is validated with several real-world workloads. The exper-
imental results show that the proposed graph-partitioning based approaches
significantly outperform the original scheduler and demonstrate superior scal-
ability on both synthetic benchmarks and real-world scenarios.

Our contributions in this paper can be summarized as follows:

1. WeproposeBootstrapSchedulerwhichanalyzes thegraph structureof the input
topology and partitions the topology when it is committed to the system.

2. We design Rebalance Scheduler that generates a global-topology-graph and
partitions all the topologies to the nodes so as to improve the overall per-
formance of the system. In addition, Rebalance Scheduler provides a novel
mechanism to dynamically reassign the components when necessary.

3. We implement StroMAX on Storm, a prevailing open-source real-time stream
processing system. We conduct extensive experimental studies to exhibit the
advantages of our approach.

The remaining of this paper is organized as follows. In Sect. 2, we review
the representative real-time systems and relevant performance issues. In Sect. 3,
we present the Bootstrap Scheduler and Rebalance Scheduler, followed by the
architecture of StroMAX in Sect. 4. Section 5 reports the results of extensive
experimental studies. Finally, we introduce the related work and conclude this
paper in Sects. 6 and 7.

2 Background

In this section, we first introduce Storm on which our prototype system is built.
We next introduce the weakness of the default scheduler and analyze the cost of
inter-node and inner-node communication.

Architecture of Storm. Apache Storm [21] is an open-source distributed real-
time stream computation system. For parallelism, Storm uses two levels of
abstractions: physical and logical.

– Physical: Storm consists of a master node (Nimbus), a number of zookeeper
nodes that serve as a control unit, and a set of slave physical nodes (Supervi-
sors) which process stream workload as shown in Fig. 1a.

– Logical: As shown in Fig. 1b, a Storm workload, called a topology, is a directed
acyclic graph (DAG). Each vertex represents a processing component and each
edge represents data transferred between two components. As mentioned in
Sect. 1, there are two types of components: spout and bolt. The spouts provide
a general mechanism to emit tuples into a topology. The bolts consume tuples
from spouts or other bolts, and process them in the way defined by the user.
Each component consists of a group of tasks communicating with other groups
of tasks connected to it. A task can be considered as an instance of a spout
or bolt.

272 J. Jiang et al.

Nimbus
Supervisor Supervisor

Storm Cluster

Zookeeper Cluster

a. Physical Abstractions.

Spout

Bolt

Bolt Bolt

Bolt

Spout

b. Topology Example.

Fig. 1. Architecture of storm.

When a topology is committed to a Storm cluster, the tasks are assigned
to the physical nodes. Consequently, we need a scheduler to determine the
assignment.

Scheduler in Real-time Stream Processing Systems. The default sched-
uler used in state-of-the-art systems is even scheduler. It enforces a round-robin
strategy to balance the computation cost of each physical node, however, it lacks
the consideration of communication cost. There are two types of communication
among tasks. If two connected tasks are assigned to the same physical node, they
use inner-node communication mechanism; otherwise, they use inter-node com-
munication. Generally speaking, inter-node communication is much slower than
inner-node communication. Therefore, we need to minimize inter-node commu-
nication while keeping computation load balanced on each node.

3 Graph-Partitioning Based Schedulers

In this section, we first introduce the notations and our graph partitioning mod-
els of the scheduling problems. Then we present the graph-partitioning based
schedulers. Table 1 lists the symbols used in this paper.

3.1 Problem Definition

Graph Partitioning. Given a graph G(V,E) where V denotes the set of ver-
tices and E denotes the set of edges, we let P = {P1,...,Pk} be k subsets of V .
P is defined to be a partition of G if: Pi �= ∅, Pi ∩ Pj = ∅, and ∪Pi = V (i, j
= 1,...,k; i �= j). The number k is called the cardinality of the partition. Graph
partitioning problem is to find an optimal partition P based on an objective
function. Here we give a formal definition:

Definition 1. The graph partitioning problem can be defined by a triplet
(S, p, f). S is a discrete set of all the partitions of G. p is a predicate on S
which creates a admissible solution set Sp ∈ S. All the partitions in Sp is admis-
sible for p. The aim is to find a partition P̄ ∈ Sp that minimizes the objective
function f(P):

P̄ = arg min
P∈Sp

f(P) (1)

StroMAX: Partitioning-Based Scheduler 273

Table 1. Notations.

Symbols Description

Gt(Vt, Et) Task graph

Gg(Vg, Eg) Global task graph

ni i-th physical node

�(ni) Maximum processing capability of node ni

ω(ni) Capacity used in node ni

vi, Pi i-th task and i-th set of tasks

|vi|, |Pi| Computation cost of task vi and the set Pi

N(v) Neighbors of vertex v

Edgecut(Pi, Pj) Number of cross edges between two sets Pi, Pj

Comm(Pi, Pj) Communication cost between two sets Pi, Pj

rc(vi, vj) Bandwidth cost between two tasks vi, vj

Γ (vi) Total inter-node communication cost of vi

Graph Partitioning in Real-time Stream Processing System. For real-
time stream processing systems, we can use G(V,E), a directed acyclic graph,
to represent the topology T . The vertex vi ∈ V is the i-th component in the
topology which can be a spout or a bolt. As mentioned above, each processing
component consists of several tasks. Thus, we have vi = {t1i , t

2
i , ..., t

m
i }, where tni

is the n-th task for processing component vi and m is the number of parallelized
tasks of the i-th component. The edge (i, j) ∈ E denotes each task in vi is con-
nected to each task in vj . Then, we can use a directed acyclic graph, Gt(Vt, Et),
to represent the graph of tasks. A vertex vi in Vt represents a task and an edge
(i, j) in Et represents the connection from task vi to vj . The data flow of the
topology is organized as a graph of tasks. Here we give a formal definition of the
scheduling methods based on graph-partitioning in real-time systems.

Definition 2. Given a task graph Gt(Vt, Et), where each vertex represents a
task and each edge denotes the data flows between them, the goal of a graph-
partitioning based scheduling method is to partition Gt into k parts, so that each
part has the same number of tasks and the number of edges between different
parts is minimized. We assume that each part Pi is allocated to the i-th physical
node.

3.2 Bootstrap Scheduler

Motivation. In real-time stream processing systems, the key of the scheduling
algorithm is to balance the computation cost and minimize the communication
cost. The even scheduler achieves balanced computation, while overlooks the
importance of communication cost. Since the processing latency is dominated by
inter-node transfer time, reducing the tuples sent through the network can help

274 J. Jiang et al.

to improve the performance. In this section, we propose Bootstrap Scheduler
that considers both computation cost and communication cost.

Modeling the Node Capability and Tuple Cost. We first formally model
the capability of physical nodes and the cost of tuples. Given a cluster con-
sisting of m physical nodes — N = {n1, ..., nm}, we define that the maximum
processing capability of node ni is �(ni), and the current computation capacity
of ni is denoted as ω(ni). For Bootstrap Scheduler, which is executed before the
topology is actually executed, we cannot measure the computation cost of a task
to process a tuple and the communication cost to transfer a tuple between two
tasks. Therefore, we assume that the communication cost to transfer a tuple is
equal to one and the computation cost to process a tuple is equal to one for
all the tasks. In other words, �(ni) denotes the number of tasks each node can
handle, while ω(ni) denotes that already handled.

Graph Partitioning in Bootstrap Scheduler. The goal for Bootstrap
Scheduler is to partition Gt(Vt, Et) into m parts — P = {P1, ..., Pm}, and then
assign each part Pi to the physical node ni, so that the total inter-node commu-
nication cost is minimized and the processing cost does not exceed each node’s
maximum capacity �(ni). Therefore, we can formalize the objective function for
Bootstrap Scheduler:

f(P) =
∑

i,j∈[1,m],i �=j

(Edgecut(Pi, Pj)) (2)

Sp = {P ∈ S, |Pi| ≤ �(ni), i ∈ [1,m]} (3)

where Edgecut(Pi, Pj) denotes the number of cross edges between Pi and Pj ,
and |Pi| denotes the computation cost of Pi. Then f(P) measures the total
communication cost of graph Gt(Vt, Et) and Sp is the set of admissible solutions.
Based on Eqs. 2 and 3, the aim is to find the partition P̄ ∈ Sp that minimizes f :

P̄ = arg min
P∈Sp

∑

i,j∈[1,m],i �=j

(Edgecut(Pi, Pj)) (4)

This graph partitioning problem is NP-hard by reducing it to Task Allocation
Problem [4]. Bootstrap Scheduler leverages a linear streaming method to solve
the above graph partitioning problem.

If the vertices of the task graph arrive in some order with the set of their
neighbors, and we partition the graph based on the vertex stream, it is called
a streaming graph partitioning, which is fast and easy to implement. Streaming
graph partitioning decides which part to assign the incoming vertex to. Once the
vertex is placed, it will not be removed. This algorithm makes decisions based on
incomplete information; therefore, the order of vertex stream will significantly
affect the performance [20]. In this paper, we use a novel linearization approach
to get the stream order.

Topology Linearization. We linearize the topology based on the property of
DAG using topological sorting. Given Gt(Vt, Et), if a task vi emits tuples into a

StroMAX: Partitioning-Based Scheduler 275

SpoutSpout Bolt1 Bolt2 Bolt3 Bolt4Bolt1

Bolt2

Bolt3

Bolt4

a. Original Topology b Linearization Result

Fig. 2. An example of topology linearization.

stream that is consumed by another task vj , then we have vi < vj , where the <
denotes the partial order between vi and vj . If vi < vj and vj < vk, we have vi
< vk by transitivity of partial order. Since we deal with acyclic graphs, we can
determine a linearization L of the components according to the partial order:
1© If vi < vj holds, then vi appears in L before vj . 2© If neither vi < vj nor vi
> vj holds, vi and vj can appear in L in any order. 3©The first element of L
is a random spout task vk of the topology. Figure 2 showcases an example of a
linearization of a topology with 5 components.

The linearization approach generates a linear order of tasks for the input
stream. Then we study a one-pass method to partition the graph with this order.
There is a streaming loader to successively read vertices (tasks), and send them
to the partition program. Afterwards, the program determines the assignment of
each incoming vertex (task) according to the current partition state and vertex
information.

Intuition for Task Assignment. There are two intuitions the task (vertex)
assignment should consider.

1. The first intuition is that we need to assign a task to the physical node that
has less running tasks, in order to balance the computation cost and prevent
too much computational load on one node.

2. The second intuition is that we need to assign a task to the physical node
that has more neighbors of the task, in order to minimize the inter-node
communication cost.

A Heuristic Solution. Motivated by these two intuitions, we use a novel
streaming heuristic to solve the graph partitioning problem, i.e., to decide which
part to assign the incoming vertex (task) v to.

index = arg max
i∈[1,m]

{|Pi ∩ N(v)|
(

1 − |Pi|
�(ni)

)
} (5)

In the above equation, m is the number of the partitions, �(ni) is the total
capacity of physical node ni, and N(v) is the set of neighbors of vertex v. For
each node ni, the first part |Pi ∩ N(v)| measures the number of neighbors of the
incoming vertex, and the second part (1−|Pi|/�(ni)) measures the computation
idleness. In other words, we make a combinatorial decision considering both
balancing the computation load and minimizing the inter-node communication.

276 J. Jiang et al.

Algorithm 1. Bootstrap Scheduler
Require: # of physical node: m, DAG: Gt(Vt, Et).

Ensure: Partition P = {P1, P2, ..., Pm} for Gt(Vt, Et).

1: L←∅, S←all vertices v with in(v) = 0, Pi←∅

2: for each vertex v in S do

3: S = S − v

4: L = L ∪ v

5: for each vertex u that has edge(v, u) ∈ Et do

6: Et = Et − edge(v, u)

7: if in(u) = 0 then

8: S = S ∪ u

9: end if

10: end for

11: end for

12: if Et �= ∅ then

13: return Error: the graph is not DAG.

14: end if

15: SL = streamingloader(L)

16: for each vertex v in SL do

17: index = arg max{|Pi ∩ N(v)|
(
1 − |Pi|

�(ni)

)
};

18: Insert vertex v into Pindex;

19: end for

20: return P

Algorithm 2. Dynamic-Task-
Reassignment
Input: Partition result: P = {P1, ..., Pm}; θ;

Gg = (Vg, Eg) and rc(vi, vj) vi, vj ∈ Vg .

1: for each Pi in P do

2: if
∑

v∈Pi
|v| > θ then

3: List ← Sort {Γ (v), v ∈ Pi} in non-

descending order

4: while
∑

v∈Pi
|v| > θ do

5: vt = pop(List)

6: j =

arg maxvj∈Pj,i�=j{∑ rc(vt, vj)}
7: Reassign vt to the node j

8: Vi = Vi - vt

9: end while

10: end if

11: end for

Let in(v) denote the incoming degree of vertex v, we summarize Bootstrap
Scheduler in Algorithm 1. The topology linearization is executed in line 1–14.
With the streaming graph-partitioning heuristic, we partition the task graph
Gt(Vt, Et) into m parts (line 15–19). Finally we assign the tasks to m physical
nodes according to the partition result P .

3.3 Rebalance Scheduler

In this section, we propose Rebalance Scheduler which leverages the run-
time statistics to assign all the topologies to improve the overall performance.
Rebalance Scheduler uses two techniques for task reallocation, i.e., global-
topology-graph-partitioning to repartitions all the topologies and dynamic-task-
reassignment to move tasks from skew nodes to idle ones automatically. Follow-
ing, we first discuss the motivation, and then describe these two techniques in
detail.

Motivation. Bootstrap Scheduler produces an initial assignment of the tasks
when it is submitted. The goal of Bootstrap Scheduler is to allocate tasks to phys-
ical nodes so as to satisfy the constraint on the number of running tasks on each
physical node and minimize the inter-node communication cost. Bootstrap Sched-
uler is executed before the topology actually runs and only considers the newly
committed topology. In practice, however, there are other topologies running on
the system before the new topology is committed. Therefore, the scheduler should
allocate tasks based on all the running topologies. Besides, for Bootstrap Sched-
uler, we assume that the communication cost to transfer a tuple equals to one and
the computation cost to process a tuple equals to one for all the tasks. However,
in practice, the computation cost to process a tuple and the communication cost
to transfer a tuple are significantly different for different tasks.

StroMAX: Partitioning-Based Scheduler 277

Traditional database systems use collected historical statistics to estimate the
running time for query optimization. For real-time stream processing systems,
we also study the strategy that collects historical information to estimate the
computation cost and communication cost of each task during the execution.

Metrics of Computation Cost and Communication Cost. To measure
the runtime statistics in terms of the computation cost and communication cost
of each task, we use two metrics as described below.

1. Computation cost of a task is measured by the average computation time
for processing a tuple for a certain task. To measure this metric, we use the
running logs to estimate the computation cost of a certain task during the
execution. In order to deal with the heterogeneity of nodes in the clusters
(different computational abilities such as different CPU frequencies), we need
to consider the CPU speed of the nodes. For example, if a task takes 10 ms on
a 1 GHz CPU, then migrating the task to a node with 2 GHz CPU would gen-
erate about a time cost of 5 ms. For this reason, we measure the computation
cost unit as the multiplication of CPU frequency(GHz) and time(millisecond).
Specially, in the above example, the computation cost for that task to process
one tuple is 10.

2. Communication cost between two tasks is measured by the average size of data
transferred between them. Similar as the measurement of the computation
cost, we log the size of package for the tuple transferred from one task to
the other during the execution. Then we use the average size of package for
transferring one tuple as the average communication cost. We use 1024 Bytes
as the unit. For example, if the average size of a tuple transferred from task
i to task j is 5 KB, then the communication cost between i and j is 5.

Global-Topology-Graph Partitioning. In order to better partition the tasks
of the running topologies, we model the global-topology-graph which contains all
the topologies running on the cluster. The global-topology-graph is represented
as a weighted directed acyclic graph Gg(Vg, Eg), where Vg is the set of all the
tasks in the cluster and Eg is the set of connections between tasks. The weight of
each vertex vi represents the computation cost of task vi, denoted as comp(vi).
The weight of each edge (vi, vj) represents the communication cost between task
vi and vj , denoted as comm(vi, vj). Let Gi

t(V
i
t , Ei

t), i ∈ [1,m] be a single topology
running on the system, we can generate the global-topology-graph Gg:

Gg = (
⋃

i∈[1,m]

V i
t ,

⋃

i∈[1,m]

Ei
t)

The global-topology-graph is the combination of all the topologies run on the
system with the weight of the computation cost and communication cost. With
the global-topology-graph, we can allocate the topologies based on the global
information of all the topologies. Besides, the vertex weight and edge weight
of global-topology-graph provide us the information of the heterogeneity of the
tasks which further improves the accuracy of the partition result.

278 J. Jiang et al.

Given a global-topology-graph Gg(Vg, Eg), our goal is to partition the graph
Gg(Vg, Eg) into m parts — P = {P1, ..., Pm}, and assign each part Pi to a
physical node ni, so that the inter-node communication cost is minimized and
the processing cost on each node does not exceed the maximum capacity �(ni).
We define our objective function f(P) and the admissible solution set Sp as
follows:

f(P) =
∑

i,j∈[1,m],i �=j

(Comm(Pi, Pj)) (6)

Sp = {P ∈ S and |Pi| < �(ni), i ∈ [1,m]} (7)

where Pi denotes the vertex set of the i-th part, and Comm(Pi, Pj) denotes the
sum of communication cost between Pi and Pj which can be computed as:

Comm(Pi, Pj) =
∑

vi∈Pi

∑

vj∈Pj

comm(vi, vj) (8)

This graph partitioning problem aims to find the partition P̄ ∈ Sp that
minimizes:

P̄ = arg min
P∈Sp

∑

i,j∈[1,m],i �=j

Comm(Pi, Pj) (9)

This graph partitioning problem is known as the k-balanced graph partition-
ing problem and has been proved NP-hard [3]. Similar to Bootstrap Scheduler,
we use a streaming graph partitioning heuristic to solve the k-balanced graph
partitioning problem. We first use topological sorting to linearize the global-
topology-graph into a linearized vertex stream L. For a vertex v from L, we use
the following partitioning heuristic to determine which node to assign it to.

index = arg max
i∈[1,m]

{
∑

x∈Pi∩N(v)

|x|
(

1 − |Pi|
�(ni)

)
} (10)

where �(ni) is the maximum computation ability of physical node i, N(v) is
the set of neighbors of vertex v, |x| is the computation cost of task x, and |Pi|
is the sum of computation cost of tasks on physical node Pi. Different from
Bootstrap Scheduler, we take into consideration the real-time computation cost
of all the tasks on each physical node. The basic intuition is quite similar, we
choose a physical node most relevant to task v with most capacity remained
when assigning task v.

Dynamic-Task-Reassignment. During the execution of the system, we fur-
ther use the statistics of log to monitor the running status of each node. If some
nodes become bottlenecks of the whole system, we dynamically reassign the
tasks from these nodes to other nodes with less workload to improve the overall
performance. We use a threshold θ to judge whether a node is skew enough and
needed to reassign its tasks to other nodes. The threshold is defined as follows:

θ = ϑ ∗
∑

i∈[1,m] |Pi|
m

(11)

StroMAX: Partitioning-Based Scheduler 279

Here ϑ is the percentage we will discuss in Sect. 5.3, |Pi| is the total computation
cost of node i and m is the number of the physical nodes. The basic intuition is
that, if the computation cost |Pi| of physical node i is higher than the average
cost among the cluster by θ, then we move some tasks from that node to others.

Here we propose a novel heuristic to move the tasks to an appropriate node.
The movement tries to minimize the inter-node communication cost and rebal-
ance the computation cost of each node in the cluster. For a task vi in the
system, StroMAX logs the bandwidth cost of the communication between two
tasks, denoted by rc(vi, vj). If vi and vj are on the same node, we have rc(vi, vj)
= 0. Let N(v) be the neighbor set of task vi, the total inter-node bandwidth of
vi is denoted as Γ (vi).

Γ (vi) =
∑

vj∈N(v)

rc(vi, vj)

The algorithm of reallocating tasks is illustrated in Algorithm 2. If node i
needs a reassignment, we first choose the tasks with more inter-node communica-
tion according to Γ (vi). Specially, we sort the remote communication bandwidth
of each task in a non-descending order (line 3), and greedily reassign the task
with the max Γ (vi) to the node which communicates with vi most frequently, i.e.,
maximal communication cost (line 5–7). When a task is removed, the estimated
communication cost of the node will be decreased by Γ (vi). The reassignment
stops when the total computation cost is below the threshold.

4 The StroMAX Architecture

System Architecture. Figure 3 shows how StroMAX is integrated into Storm.
Note that our system can be migrated to other real-time stream processing
systems as well. For the Storm cluster, there are three types of nodes — one
master node called the nimbus node, zookeeper nodes, and worker nodes. When
a new topology is submitted, the nimbus allocates the tasks to the workers and
monitors failures. The zookeeper maintains the coordination state of nimbus
and worker nodes. The topologies are executed on the worker nodes where a
supervisor daemon is run on each worker for communication with zookeeper.

The components of StroMAX run on the nimbus node and worker nodes.
There is a schedule manager running on the nimbus node that provides meta data
for partitioning. It stores the meta data of the cluster and log statistics submit-
ted from StroMAX monitors. When a new topology is committed, the schedule
manager analyzes and partitions the topology by Bootstrap Scheduler. Then, it
triggers the global-topology-graph-partitioning and dynamic-task-reassignment
to rebalance the tasks running on the cluster. A schedule monitor runs on each
worker node to record, collect, and report log information to the schedule man-
ager. It also calculates the computation and communication measurements. For
example, we use the Java API to log the CPU time for 1000 tuples and then
calculate the average computation cost.

280 J. Jiang et al.

Nimbus

Zookeeper Server

Physical Node #2

Supervisor

StroMAX

Task

Physical Node #1

Supervisor

Task

Physical Node #3

Supervisor

Task

Physical Node #4

Supervisor

Task

Fig. 3. Architecture of StroMAX.

Implementation of Task Reassignment. To reassign the tasks, we use the
Storm infrastructure, which supports suspending and resuming tasks during run-
time. Storm blocks the spouts, and thus prevents new stream from being propa-
gated to the bolts and forwarded through the topology. Then all of the in-flight
data is propagated through the bolts until all communication queues among
these bolts are empty. Our scheduler then reconfigures the cluster by reassigning
tasks to proper physical nodes.

5 Evaluation

In this section, we conduct extensive experiments to evaluate StroMAX. We first
describe the experimental setup, then present and discuss the performance with
different workload settings.

5.1 Experimental Settings

In this section, we briefly introduce the experimental settings for the evaluation,
including the cluster, workload, and evaluation metrics. All the evaluation results
are measured by average of five executions.

Cluster. All the experiments were conducted on a cluster of 42 nodes. Each
node was equipped with two 2.80 GHz Intel Xeon E5-2680 CPU, 2 GB memory,
and 48 GB SSD disk. All the nodes were connected by 1 GB bandwidth routers.
We used one node for the nimbus, one for the zookeeper, and 40 for the workers.

Workload. Experiments are conducted with six data processing topologies as
illustrated in Fig. 4 and described below — word count (WC), throughput test
(TT), twitter trending topics (TWTT), log processing (LP), twitter stream sen-
timent analysis (TSSA), and synthetic communication (SC). We compared our

StroMAX: Partitioning-Based Scheduler 281

a. Word Count Topology b. Throughput Test Topology c. Twi er Trending Topics Topology

d. Log Processing Topology

e. Twi er Stream Sen ment Analysis Topology f. Synthe c Communica on Topology

Fig. 4. Evaluated topologies.

proposed schedulers against the default scheduler in Storm. To find a proper
tuple input rate for each topology, we first used a low initial rate and increased
it gradually, until the average CPU usage of the cluster is above 50%. Then we
used this rate in the whole evaluation.

1. Word Count (WC): WC is a basic topology shown in Fig. 4a. It has one spout
and two bolts. The Spout reads English words one line at a time from a local
file which is made from 10 thousand random pages crawled from Wikipedia.
The Split Bolt splits each line into words and passes them to the Count Bolt.
The Count Bolt increases the counters based on distinct input word tuples
and produces the results.

2. Throughput Test (TT): TT has one spout and two bolts as shown in Fig. 4b.
The Spout repeatedly generates random 10 KB strings as input tuples. The
Identity Bolt emits the received tuples to the Anchor Bolt without any change.
The Anchor Bolt increases a counter by one and records the processing time.

3. Twitter Trending Topics (TWTT): This topology computes the top-k trend-
ing twitter topics as shown in Fig. 4c. The topology is a pipeline of one spout
and three bolts. The Spout pushes tweets into the topology. Then the Prepare
Bolt updates the counter of each topic, partitions topics alphabetically, and
propagates the topic/count pairs. The Rank Bolt receives the topic/count
pairs and maintains a list of top-k topics. Finally, the Merge Bolt merges all
the lists to produce a single list of the current top-k topics. We used a dataset
with one million English tweets from Twitter4j API.

4. Log Processing (LP): LP presents a real-world case of log processing which
is shown in Fig. 4d. The Spout reads tuples from an open-source log agent,
Log Stash, as the input for the topology. The Log Stash reads log information
from local file which is the kernel logs of Ubuntu server of our lab. The Rules
Bolt performs a rule-based analysis on the log and emits log entry tuples to

282 J. Jiang et al.

the Index Bolt and Counter Bolt. The Index Bolt and Counter Bolt perform
the indexing and counting operations on the log entries respectively.

5. Twitter Stream Sentiment Analysis (TSSA): This topology analyzes senti-
ment of tweets. The Spout, as shown in Fig. 4e, parses the Twitter JSON
data and emits tuples into the topology. The Sensitize Bolt performs the
first-round data sensitization which removes all non-alpha characters. Fol-
lowing, the Clean Bolt performs the next round of data cleaning by removing
stop words to reduce noise for the classifiers. The Positive Bolt and Negative
Bolt are two classifiers for the positive and negative classes. Next, Join Bolt
joins the scores from the two previous classifiers, and the Score Bolt compares
the scores from the classifiers and declares the class accordingly. We used the
same dataset for twitter trending topics from Twitter4j API.

6. Synthetic Communication (SC): This is a synthetic topology as shown in
Fig. 4f. The Spout reads one line at a time from the local file used in the WC
topology. Each Communication Bolt doubles the received words and passes
them to the next bolt. This is a typical communication intensive workload.

Evaluation Metrics. We use two metrics to systematically evaluate the result
of our experiments.

– Tuple Processing Time (TPT): It presents the average elapsed time for a tuple
emitted from spout till its completion. We leveraged the timing mechanism in
Storm to track each tuple’s processing time. We calculated the average TPT
every 30 s for performance evaluation.

– Inter-Node Bandwidth (INB): It indicates the inter-node bandwidth of the
topology during the execution. INB can well characterize the effect of our
graph-partitioning based schedulers because they are designed to reduce the
cost of inter-node communication among physical nodes.

5.2 Effect of Bootstrap Scheduler

Results and Analysis. We first evaluate the performance of Bootstrap Sched-
uler. We used 40 worker nodes, with 10 task slots on each node. Here we present
the results on LP topology and TSSA topology as representatives. The experi-
mental results on the other workloads yield similar improvements.

1. Log Processing (LP): For this topology, we used 10 tasks for the spout, 50
tasks for the log rule bolt, 30 tasks for the index bolt, and 30 tasks for the
counter bolt. Figure 5a shows the TPT of the default scheduler and Bootstrap
Scheduler on this topology. The TPT of Bootstrap Scheduler is reduced by
37% on average compared to the default scheduler during the first 10 min.
This is because Bootstrap Scheduler reduces inter-node communication cost
by considering the structure of the committed topology while the default
scheduler evenly distributes the task to the physical nodes.

StroMAX: Partitioning-Based Scheduler 283

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570

Tu
pl

e
P

ro
ce

ss
in

g
Ti

m
e

(m
s)

50

75

100

125

150

175

200

225

250

275

300

Bootstrap Scheduler
Default Scheduler

Running Time (s)

a. Tuple Processing Time on LP Topology.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570

Tu
pl

e
P

ro
ce

ss
in

g
Ti

m
e

(m
s)

100
125
150
175
200
225
250
275
300
325
350
375
400
425
450
475
500

Bootstrap Scheduler
Default Scheduler

Running Time (s)

b. Tuple Processing Time on TSSA Topology.

Fig. 5. Tuple processing time on two workloads.

2. Twitter Stream Sentiment Analysis (TSSA): For this topology, we used 8
tasks for tuple input, and 20 tasks for each of the other bolts. As shown in
Fig. 5b, the TPT of Bootstrap Scheduler is shorter than that of the default
schduler by 39% on average after the system reaches a stable state. The TPT
of TSSA is higher than that of LP because the graph structure of TSSA is
more complicated, which incurs more inter-node communication, as shown in
Fig. 4d and e.

Summary. When a new topology is committed to the system, Bootstrap Sched-
uler can analyze and assign its tasks to the proper physical nodes. This assign-
ment takes inter-node communication cost into account, thus, Bootstrap Sched-
uler outperforms the default Storm scheduler. The above experiments prove that,
with the help of graph partitioning, Bootstrap Scheduler can significantly reduce
the average tuple processing time on various workloads.

5.3 Effect of Rebalance Scheduler

We next present the performance of Rebalance Scheduler. Rebalance Scheduler
uses two techniques for task reallocation, i.e., global-topology-graph-partitioning
which repartitions all the topologies on the cluster and dynamic-task-reassignment
which moves tasks from overloaded nodes to idle ones automatically.

Effect of Global-Topology-Graph-Partitioning. In this experiment, we ini-
tially committed the WC topology to the cluster, then we committed the TT
topology after 30 s and the TWTT topology after 60 s. These topologies were
allocated by Bootstrap Scheduler when committed. As same as the setting in
Bootstrap Scheduler, we used 40 worker nodes, with 10 task slots on each node.
In addition, we used 5 tasks for each spout and 20 tasks for each bolt. We started
global-topology-graph-partitioning to reassign the tasks of these topologies
at 300 s.

Figure 6 summarizes the TPT of these three topologies in 10 min. Due to
the space constraint, we present the results of WC and TWTT topologies, and
the result of TT topology is similar. As we can see, once global-topology-graph-
partitioning was triggered, it calculated a new assignment for all the topologies

284 J. Jiang et al.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570

Tu
pl

e
P

ro
ce

ss
in

g
Ti

m
e

(m
s)

0

20

40

60

80

100
After Global Topology Graph Partitioning
Before Global Topology Graph Partitioning

Running Time (s)

a. Word Count Topology.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570

Tu
pl

e
P

ro
ce

ss
in

g
Ti

m
e

(m
s)

160

180

200

220

240

260

280

300
After Global Topology Graph Partitioning
Before Global Topology Graph Partitioning

Running Time (s)

b. Twitter Trending Topics Topology.

Fig. 6. Evaluation of global-topology-graph-partitioning.

Spout Sensitize
Bolt

Clean
Bolt

Positive
Bolt

Negative
Bolt

Join
Bolt

Score
Bolt

116.3Mbps 81Mbps
30.7Mbps

35.1Mbps

16.5Mbps

9.2Mbps

0.5Mbps

a. INB before Dynamic-Task-Reassignment.

Spout Sensitize
Bolt

Clean
Bolt

Positive
Bolt

Negative
Bolt

Join
Bolt

Score
Bolt

83.5Mbps 60.2Mbps
21Mbps

27.9Mbps

11Mbps

2.6Mbps

0.5Mbps

b. INB after Dynamic-Task-Reassignment.

Fig. 7. INB between components of twitter stream sentiment analysis topology.

in the cluster, which briefly increased the tuple processing time of these topolo-
gies. Afterwards, the tuple processing time dropped sharply to a normal value
and outperformed the previous result, with a 10.9%–26.5% reduction of TPT on
these workloads. This is because global-topology-graph-partitioning utilizes the
collected runtime statistics to estimate the computation cost and communication
cost of each task during the execution, and then optimizes the task assignment
for all the topologies. In contrast, Bootstrap Scheduler allocates the newly com-
mitted topology via the graph partitioning result of a single topology. Therefore,
when we commit three different topologies to the system, global-topology-graph-
partitioning improves the tuple processing time based on the runtime result of
Bootstrap Scheduler.

Effect of Dynamic-Task-Reassignment. We proceed to evaluate the effect
of the dynamic-task-reassignment. We used 40 worker nodes, with 10 task slots
on each node. We committed all the 6 topologies to the system with Bootstrap
Scheduler. We used 3 tasks for each spout and 10 tasks for each bolt. We reas-
signed the tasks by global-topology-graph-partitioning after the system reached
a stable state. Then we used the dynamic-task-reassignment to monitor and
reallocate the tasks when they were skew enough. We recorded the inter-node
bandwidth (INB) between components of the TSSA topology before and after
executing the dynamic-task-reassignment.

As shown in Fig. 7, most of the inter-node bandwidths were reduced after
the dynamic-task-reassignment. Specially, the communication cost between the
Spout and Sensitive Bolt decreased from 116.3 Mbps to 83.5 Mbps, and the cost
between the Negative Bolt and Join Bolt decreased from 9.2 Mbps to 2.6 Mbps.

StroMAX: Partitioning-Based Scheduler 285

Parameter Tuning of Dynamic-Task-Reassignment. As we mentioned in
Sect. 3.3, we use a parameter ϑ to judge whether a node is skew enough and
needed to reassign its tasks to other nodes. We have conducted a series of exper-
iments to investigate the selection of ϑ. Due to the space limit, we do not show
the details of parameter tunning.

We find that when ϑ is chosen between 10% and 15%, the dynamic-task-
reassignment achieves the best performance for most of the workloads. The rea-
son is that, when ϑ is small (ϑ < 10%), there are too many tasks reallocated
during the execution. When ϑ becomes larger (ϑ > 15%), the reassignment is
hard to be triggered. Thus we use ϑ = 12% for the dynamic-task-reassignment
in our experiments.

Summary. The above experiments indicate that Rebalance Scheduler can effi-
ciently reduce the communication cost among the components of the topologies
by reassigning the tasks based on the global-topology-graph. It leverages the
statistics of log to monitor the running status of each node and dynamically
reallocates bottleneck tasks. Therefore, Rebalance Scheduler can significantly
improve the performance of real-time processing systems.

5.4 Overall Performance and Scalability of StroMAX

Overall Performance. In this part, we investigate the overall performance of
StroMAX. In this experiment, we executed each of the five topologies on the
cluster separately. The process was as follows: we added the topologies onto
the cluster one by one. When a topology finished, we restarted the cluster and
deployed a new topology onto the cluster with the help of Bootstrap Scheduler
and Rebalance Scheduler.

Figure 8a illustrates the TPT of StroMAX and the default Storm scheduler on
five topologies. As we can observe, compared to the default scheduler, the TPT
of most workloads significantly decreases. For instance, the TPT on TT topol-
ogy decreases by 87.3%. These results confirm that StroMAX can significantly
reduce the tuple processing time and inter-node communication cost with the
graph partitioning. Besides, the results also reveal the generality of the proposed
approach that it can be applied to various workloads.

Log Processing Trending Topics Sentiment Analysis

Tu
pl

e
P

ro
ce

ss
in

g
Ti

m
e

(m
s)

0

100

200

300

400
StroMAX
Default Scheduler

Throughput Test Word Count
0

5

10

15

20

25

30

a. Overall Performance.

StroMAX
Ideal

b. Scalability.

Fig. 8. Overall performance and scalability of StroMAX.

286 J. Jiang et al.

Scalability Study. Scalability is an important issue for real-time stream
processing systems. We further evaluate the scalability of StroMAX by increas-
ing the number of worker nodes. We increase the number of worker nodes from
5 to 40, and present the input throughput of the TSSA topology in Fig. 8b. We
use both Bootstrap Scheduler and Rebalance Scheduler to schedule the topol-
ogy. We use an ideal curve to represent the ideal execution time which assumes
that the performance is linear to the number of the workers. As expected, as the
number of workers increases, the throughput performance of StroMAX is close
to the ideal case. This result confirms that StroMAX has a graceful scalability.

6 Related Work

The graph-partitioning based scheduling problem in real-time stream processing
systems discussed in this paper is related to several fields. We briefly review the
most relevant works.

Real-time Stream Processing Systems. System S [2] is a stream processing
system developed by IBM. A query in System S is modeled as an event process-
ing network which consists of a set of event processing agents. S4 [14] is another
stream processing system, developed by Yahoo, where queries are designed as
graphs of processing elements. Recently, Storm [10,11,21], an open-source, dis-
tributed, reliable, and fault-tolerant processing system, was proposed by Twitter
for real-time stream processing. Some works [5] tried to bridge the gap between
stream workload and MapReduce abstraction by proposing a stream version of
the MapReduce approach. In these systems, events flow among the map and
reduce stages without incurring. Wang [23] studied the problem of efficient load
distribution in D-DSMS to minimize end-to-end latency. Besides, Xing [24] stud-
ied operators moving to dynamically change loads in high-performance comput-
ing clusters such as blade computers.

Graph Partitioning. Graph partitioning is a optimization problem which has
been studied for decades [18,25]. The widely used k-balanced graph partitioning
aims to minimize the number of edge-cut between partitions while balancing
the number of vertices. Though the k-balanced graph partitioning problem is
an NP-Complete problem [8], several solutions have been proposed to tackle
this challenge. Andreev et al. [3] presented an approximation algorithm which
guarantees polynomial running time with an approximation ratio of O(logn).
Another solution was proposed by Even et al. [7] who gave an LP method based
on spreading metrics which also gets an O(logn) approximation. Besides approxi-
mated solution, Karypis et al. [13] proposed a parallel multi-level graph partition-
ing algorithm to minimize the bisection on each level. There are some heuristic
implementations like METIS [12], parallel version of METIS [16], and Chaco [9]
which are widely used in many existing systems. Although these heuristics can-
not provide a precise performance guarantee, they are effective.

The aforementioned methods are offline and generally require long processing
time. Recently, Stanton and Kliot [20] proposed a series of online streaming

StroMAX: Partitioning-Based Scheduler 287

partitioning method using heuristics. Fennel [22] extended the Stanton’s work
by proposing a streaming partitioning framework which combines some other
heuristic methods. However, these methods are designed for generally graph
partitioning and lack the consideration of the characteristics of DAG.

Beyond these static graph partitioning technologies, Nicosia [15] theoretically
studied how to adapt to the graph structure changing without the overhead of
reloading or repartitioning the graph. Some of the recent works [6,26] can cope
with the changes in graph structure. However, the cost of these approaches to
handle the changes is quite high. Shang et al. [17] investigated several graph
algorithms and proposed simple, yet effective, policies that can achieve dynamic
workload balance, while this approach uses hashing partitioning as the initial
input.

7 Conclusion

In this paper, we systematically investigated the performance issues of real-time
stream processing systems. We designed a novel system, StroMAX, to allocate
the topology based on two graph partitioning based schedulers. The first sched-
uler, named Bootstrap Scheduler, analyzes the topological graph and partitions
the topology when it is committed to the system. The second scheduler, named
Rebalance Scheduler, goes one step further by monitoring the effectiveness of all
the topologies and the load of cluster during runtime. Rebalance Scheduler then
rebalances the topologies for a performance improvement when necessary. The
experimental results confirmed the improvements of our proposed approaches.

Acknowledgment. This research is supported by the National Natural Science Foun-
dation of China under Grant No. 61572039, Shenzhen Government Research Project
JCYJ20151014093505032, 973 program under No. 2014CB340405, and Tecent Research
Grant (PKU).

References

1. Flume. http://flume.apache.org/
2. Amini, L., Andrade, H., et al.: SPC: a distributed, scalable platform for data

mining. In: DM-SSP, pp. 27–37 (2006)
3. Andreev, K., Racke, H.: Balanced graph partitioning. Theor. Comput. Syst. 39(6),

929–939 (2006)
4. Billionnet, A., Costa, M.C., Sutter, A.: An efficient algorithm for a task allocation

problem. JACM 39(3), 502–518 (1992)
5. Brito, A., Martin, A., Knauth, T., Creutz, S., Becker, D., Weigert, S., Fetzer, C.:

Scalable and low-latency data processing with stream mapreduce. In: CloudCom,
pp. 48–58 (2011)

6. Cheng, R., Hong, J., Kyrola, A., Miao, Y., Weng, X., Wu, M., Yang, F., Zhou, L.,
Zhao, F., Chen, E.: Kineograph: taking the pulse of a fast-changing and connected
world. In: EuroSys, pp. 85–98 (2012)

7. Even, G., Naor, J., Rao, S., Schieber, B.: Fast approximate graph partitioning
algorithms. In: SODA, pp. 639–648 (1997)

http://flume.apache.org/

288 J. Jiang et al.

8. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete prob-
lems. In: STOC, pp. 47–63 (1974)

9. Hendrickson, B., Leland, R.W.: A multi-level algorithm for partitioning graphs.
SC 95, 28 (1995)

10. Huang, Y., Cui, B., Jiang, J., Hong, K., Zhang, W., Xie, Y.: Real-time video
recommendation exploration. In: SIGMOD, pp. 35–46 (2016)

11. Huang, Y., Cui, B., Zhang, W., Jiang, J., Xu, Y.: Tencentrec: real-time stream
recommendation in practice. In: SIGMOD, pp. 227–238 (2015)

12. Karypis, G., Kumar, V.: Multilevel graph partitioning schemes. In: ICPP, pp. 113–
122 (1995)

13. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular
graphs. In: SC (1996)

14. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing
platform. In: ICDM, pp. 170–177 (2010)

15. Nicosia, V., Tang, J., Musolesi, M., Russo, G., Mascolo, C., Latora, V.: Components
in time-varying graphs. Chaos Interdisc. J. Nonlinear Sci. 22(2), 023101 (2012)

16. Schloegel, K., Karypis, G., Kumar, V.: Parallel static and dynamic multi-constraint
graph partitioning. Concurrency Comput. Pract. Exp. 14(3), 219–240 (2002)

17. Shang, Z., Yu, J.X.: Catch the wind: graph workload balancing on cloud. In: ICDE,
pp. 553–564 (2013)

18. Shao, Y., Cui, B., Ma, L.: Page: a partition aware engine for parallel graph com-
putation. TKDE 27(2), 518–530 (2015)

19. Shi, X., Cui, B., Shao, Y., Tong, Y.: Tornado: a system for real-time iterative
analysis over evolving data. In: SIGMOD, pp. 417–430 (2016)

20. Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs.
In: KDD, pp. 1222–1230 (2012)

21. Toshniwal, A., Taneja, S., et al.: Storm@ twitter. In: SIGMOD, pp. 147–156 (2014)
22. Tsourakakis, C.E., Gkantsidis, C., Radunović, B., Vojnović, M.: Fennel: streaming

graph partitioning for massive scale graphs. Technical report, Microsoft (2012)
23. Wang, W., Sharaf, M.A., Guo, S., Özsu, M.T.: Potential-driven load distribution

for distributed data stream processing. In: SSPS, pp. 13–22 (2008)
24. Xing, Y., Zdonik, S., Hwang, J.H.: Dynamic load distribution in the borealis stream

processor. In: ICDE, pp. 791–802 (2005)
25. Xu, N., Cui, B., Chen, L., Huang, Z., Shao, Y.: Heterogeneous environment aware

streaming graph partitioning. TKDE 27(6), 1560–1572 (2015)
26. Yang, S., Yan, X., Zong, B., Khan, A.: Towards effective partition management for

large graphs. In: SIGMOD, pp. 517–528 (2012)

Partition-Based Clustering with Sliding
Windows for Data Streams

Jonghem Youn1(B), Jihun Choi1, Junho Shim2, and Sang-goo Lee1

1 Seoul National University, Seoul, Republic of Korea
{jonghm,jhchoi,sglee}@europa.snu.ac.kr

2 Sookmyung Womens University, Seoul, Republic of Korea
jshim@sookmyung.ac.kr

Abstract. Data stream clustering with sliding windows generates clus-
ters for every window movement. Because repeated clustering on all
changed windows is highly inefficient in terms of memory and compu-
tation time, a clustering algorithm should be designed with considering
only inserted and deleted tuples of windows. In this paper, we address
this problem by sliding window aggregation technique and cluster modi-
fication strategy. We propose a novel data structure for construction and
maintenance of 2-level synopses. This data structure enables to update
synopses efficiently and support precise sliding window operations. We
also suggest a modification strategy to decide whether to append new
synopses to pre-existing clusters or perform clustering on whole syn-
opses according to the difference between probability distributions of the
original and updated clusters. Experimental results show that proposed
method outperforms state-of-the-art methods.

Keywords: Data streams · Clustering · Sliding windows · Approxima-
tion algorithms

1 Introduction

Large scale data streams are generated from a variety of applications such as
sensor networks, transportation monitoring, smart devices, search engines, social
media, and news portals. The data streams are massive, rapid evolving, and
infinitely created. Therefore, clustering algorithm for data streams are designed
with low computation cost and memory limitation.

Early studies assumed that clustering is to be performed over an entire data
stream, and directly applied one-pass clustering algorithms to those data streams
[16]. However, data streams evolve continuously over time. In most data stream
applications, the most recent tuples are considered to be more decisive and influ-
ential. This characteristic makes clustering algorithms with window models to be
developed. Window models widely used by the algorithms include the landmark
window [1,9,14,17] and damped window [6,10,15]. The landmark window model
splits data streams into fixed-size, non-overlapping chunks and contains tuples

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 289–303, 2017.
DOI: 10.1007/978-3-319-55699-4 18

290 J. Youn et al.

that arrived after landmark and usually used when periodic results are needed
(e.g., on a daily or weekly basis). In the damped window model, also known
as the fading window model, tuples are associated with weights that decrease
over time. Algorithms with these window models are based on the insertion-only
model, which assumes tuples received only once are not removed from the win-
dow at a later time, and give newer tuples higher weight values than older ones.

While these two window models are effective in some data stream applica-
tions, they are insufficient for domains requiring the sliding window model. In
this model, the window contains only tuples with timestamps different from the
current timestamp back to a certain timestamp in the past. As time passes, the
window removes tuples whose timestamps have expired. Applications with the
sliding window model regard the exact number of recent tuples as critical and
appropriate, such as topic extraction in news portal and traffic monitoring.

Extensive research on clustering with the landmark or damped window model
has been done, but only a small number of studies exist on clustering with sliding
windows [4,5,7,18]. Clustering with sliding windows should produce results for
every window movement, and a seemingly straightforward approach would be to
perform repeated clustering. However, this is impractical and carries significant
computational costs. Therefore, a clustering algorithm is needed that considers
both deletion and insertion in both synopses and cluster results.

Although data stream clustering algorithms were originally designed with
error tolerance and results are approximate, it is important to keep a precise
range of target tuples for tracking and clustering evolving data streams. We
consider general and expressive sliding window specifications in continuous query
language [3] of data stream management systems (DSMS) for clustering with
accurate sliding window operations. The sliding window is specified by RANGE
for the length of the window and SLIDE for the movement intervals.

In this paper, we present an efficient data stream clustering algorithm with
sliding windows. Main contributions of the algorithm are as follows: (1) Our
algorithm supports general and precise sliding window operations [3] for data
stream clustering. Our algorithm constructs and maintains 2-level synopses for
the cluster features through the use of a sliding window aggregation technique
that reduces space and computation time [11]. For sliding window aggregation,
a window is divided into disjoint chunks, and a synopsis of the window is com-
puted by merging the synopses of chunks. (2) We adopt an index structure for
cluster features based on Locality-Sensitive Hashing (LSH) [8] to search the near-
est cluster feature in synopses efficiently. Previous studies use tree-based index
structure, but insertion and deletion operations occurs with average O(log n)
time complexity whenever data is input. On the other hand, the hash-based
index structure is suitable for the sliding windows because it has average O(1)
time complexity. (3) We propose a modification strategy of pre-exist clusters to
avoid clustering every time data arrive. Clustering operation accesses all data
objects iteratively, making it a very expensive operation. We allow appending
new input tuples to pre-existing clustering if the quality of modified clustering
results is acceptable. We also suggest quality measure of difference between two
sets of clusters.

Partition-Based Clustering with Sliding Windows for Data Streams 291

This paper is organized as follows. In Sect. 2, we explain tasks related to
clustering algorithms for data streams. Section 3 presents background informa-
tion. We show how synopses for clustering are maintained in Sect. 4 and how
clustering is performed in Sect. 5. An analysis of our experimental results is
described in Sect. 6. Finally, we present our concluding remarks in Sect. 7.

2 Related Work

Clustering algorithms for data streams have been extensively studied, and a
detailed survey of these algorithms is presented in [13]. Clustering algorithms are
categorized by grouping concepts which include partition-based [1,2], density-
based [6,10], and message passing-based [14,17] clustering, and are developed
under landmark window [1,14,17], damped window [6,10], and sliding window
[4,5,7,18] models. The majority of these algorithms adopt the landmark window
model, while density-based algorithms are designed according to the damped
window model.

In contrast to landmark or damped window, only a small number of studies
focus on clustering algorithms with sliding windows [4,5,7,18]. Dang et al. pro-
pose a Gaussian mixture models based clustering algorithm for sliding window
[7]. They exploit the Expectation Maximization technique, and develop splitting
and merging operations to remove expired tuple. Babcock et al. present a tech-
nique of maintaining variance and k-median based on exponential histogram(EH)
for sliding window [4]. Zhou et al. focus on the problem of tracking the evolution
of clusters in sliding window, developing SWClustering, a k-means clustering
algorithm based on an extension of EH, exponential histogram of cluster fea-
tures(EHCF) which combines temporal cluster features with EH [18].

In the theory community, Braverman et al. propose a merge-and-reduce
based technique to transform coreset construction in the insertion-only stream-
ing model to the sliding window model [5].

Specifically, algorithms which exploit EH as synopsis data structure support
insertion and deletion [4,18]. EH is defined as a collection of buckets on a set of
tuples, and generates (k

2 +1)((log 2N
k + 1)+1) for k = � 1

ε �. Only the synopsis of
the tuples in each bucket is stored by the appropriate bucket, with the synopsis
containing both cluster features and the most recent timestamp of the tuples in
the bucket. Because of the memory limitations, if the number of buckets exceeds
the user defined number, the buckets are merged, with each merged bucket hold-
ing a number of tuples equal to or double that held in the previous unmerged
buckets. For example, we assume that input tuples are x1, x2, ... (x2 newer than
x1), and the state of the buckets is B1 = {x1, x2}, B2 = {x3}, B3 = {x4}. As
new tuples arrive, the old buckets are merged and a new bucket is created with
the new tuples, i.e., B1 = {x1, x2}, B2 = {x3, x4}, B3 = {x5}. When the sliding
window moves, buckets whose timestamp have expired are removed. However, a
small deviation occurs in the timestamp. If the size of the sliding window is 4 in
the example, it should drop x1 from the window. However, the bucket B1 also
contains x2 which is valid for the window, so it cannot be removed. This case

292 J. Youn et al.

occurs more frequently as the window size increases. Therefore, one of objectives
of our algorithm is clustering on accurate ranges of tuples.

In this paper, we propose an efficient algorithm for partition-based clustering
with sliding windows. The algorithm aims to produce high-quality clustering
results quickly. Unlike other algorithms, novel data structure and procedures of
our algorithm enable to perform clustering on the tuples in exact ranges, and
reduce the computation cost of operations such as insertion, deletion, searching
and clustering.

3 Preliminaries

3.1 Data Streams

A data stream is defined as an infinite sequence of tuples.

S = 〈s1, t1〉, 〈s2, t2〉, ..., 〈sn, tn〉, ... (1)

where si is a tuple, and ti is a timestamp. A tuple si is represented by
multi-dimensional attribute vector. A tuple of d dimensions is denoted by
si = (x1

i , ..., x
d
i). A timestamp ti is non-negative integer value, and t indi-

cates current time. For simplicity, we assume that tuples arrive in chronological
order, i.e. for any i < j, a tuple Si = 〈si, ti〉 arrives earlier than Sj = 〈sj , tj〉.
Timestamp value denotes a sequence number in tuple-based window, and a par-
ticular time instance in time-based window.

3.2 k-means Clustering

For any two tuples s1, s2, we denote the Euclidean distance between s1 and s2

by dist(s1, s2) =
√∑d

i=1(x
i
1 − xi

2)2 = ‖s1 − s2‖, and the squared Euclidean
distance by dist2(s1, s2) = ‖s1 − s2‖2

For a set of tuples {s1, s2, ..., sn}, k-means clustering problem is to par-
tition n tuples into k clusters C = {C1, C2, ..., Ck} such that clustering cri-
terion is optimized. The most widely used clustering criterion is to mini-
mize sum of squared Euclidean distance between each tuple and center of the
assigned cluster. Specifically, the Euclidean k-means clustering problem is to find
arg minC

∑k
i=1

∑
sj∈Ci

‖sj − ci‖2 where ci is the center of cluster Ci.
Because the problem is NP-hard even for k = 2, heuristic algorithms are

proposed. One of the classical heuristic algorithms is Lloyd ‘s algorithm [12].
The Lloyd ‘s algorithm converges to a local optimum, and does not guarantee to
converge to the global optimum.

3.3 Sliding Window

The sliding window contains only tuples whose timestamp is within the range
of the current timestamp and the start timestamp of the window. In continuous

Partition-Based Clustering with Sliding Windows for Data Streams 293

queries in DSMS, sliding window is specified by RANGE for the length of the
window and SLIDE for the movement intervals of the window.

Windows are categorized into tuple-based and time-based sliding windows in
accordance with sliding condition and time unit. The tuple-based sliding window
slides when new tuples arrive. The window contains a fixed number of tuples
and also slides by fixed number of tuples. The example, S [RANGE 1000 TUPLES
SLIDE 100 TUPLES] is a tuple-based window, and the time unit is the number of
tuples. The time-based sliding window slides as time progresses. For example, S
[RANGE 20 MINUTES SLIDE 5 MINUTES] contains tuples from the most recent
20 min and slides every 5 min. Granularity of the window depends on time units
which include HOURS, MINUTES, or SECONDS. In the time-based sliding window,
the number of tuples within the window is not bounded.

For ease of explanation, we only consider tuple-based windows, but the
methodologies can be applied to time-based windows as well.

4 Synopses for Sliding Windows

Clustering consists of two steps in general: (1) Construction and maintenance of
synopses over sliding window (2) Decision on whether to append new synopses
to pre-existing clusters or perform clustering on whole synopses according to the
difference between probability distributions of the original and updated clusters.
In this section, we describe a method for constructing and maintaining synopses
with sliding windows.

4.1 Cluster Features

Cluster Feature(CF) is a data structure for storing statistic summaries of data
streams in Euclidean space. CF consists of linear sum of the tuples LS, square
sum of the tuples SS, the number of the tuples N , and the most recent timestamp
of the tuples T . The tuples are in the range of sliding window. LS and SS
are generated by pairwise summation of tuples, i.e. for d-dimensional n tuples,
LS =

∑n
i=1 si =

∑n
i=1(x

1
i , ..., x

d
i) and SS =

∑n
i=1 s2i =

∑n
i=1((x

1
i)

2, ..., (xd
i)

2).
LS and SS are d-dimensional vectors, and the N and T are numeric values.
The basic components LS, SS, and N are proposed in [16], and the timestamp
component T is appended in [18].

The CFs have incrementality and additivity properties. Incrementality means
that the CF is updated by adding a new tuple sj , while additivity means that
two disjoint CFs can be merged into a new CF by adding their components [16].
These properties enable to modify the synopses in a constant time.

Incrementality

LS = LS1 + sj

SS = SS1 + (sj)2

N = N1 + 1
T = tj

(2)

Additivity

LS = LS1 + LS2

SS = SS1 + SS2

N = N1 + N2

T = max(T1, T2)

(3)

294 J. Youn et al.

Values for clustering such as centroid can be calculated easily by using com-
ponents of the CF, i.e., Centroid = LS/N . In our algorithm, we use only LS,
N , and T .

4.2 Synopses Construction and Maintenance

The CF contains summaries of tuples in sliding window. If synopses maintain
only CF of tuples in sliding window, it is possible to update CF with new arrival
tuples because of incrementality. However, it is impossible to update CF with
expired tuples because synopses have not preserve values of expired tuples to
subtract from the CF. To retain the CF for sliding window, the values to subtract
from the CF should be kept. Because it is inefficient to keep all tuples in sliding
window, we propose a data structure for synopses, pane-based CF (PCF) and
window-based CF (WCF).

Figure 1 shows an overview of the synopses. A window is decomposed into
panes which are non-overlapping sets of tuples. Assume that RANGE is R, SLIDE
is L. The number of panes is �R/L�, and each pane represents at most L tuples.
For example, sliding windows, as defined by S [RANGE 1000 TUPLES SLIDE 100
TUPLES] have ten panes, with each pane containing a summary of 100 tuples. In
S [RANGE 1000 TUPLES SLIDE 99 TUPLES], the window consists of 11 panes,
where ten panes each contain 99 tuples, and one pane contains 10 tuples. For
ease of presentation, we only discuss the case that R is divisible by L.

When the window slides, ΔWexpired is removed and ΔWnew is appended.
New PCF s are generated based on tuples in ΔWnew. Components of the PCF
are the same as for CF, which includes LS, SS, N , and T . The detailed process
of creating PCF is described in Algorithm 1. Given threshold θ, tuples whose
distances are below θ are grouped into the same PCF. If the distance between

t

Window W

Expired New

W newW expired

Pane

PCF11 PCF12 PCF13 PCF14

PCF21 PCF22 PCF24

PCF31 PCF33 PCF34

PCF41 PCF42 PCF43 PCF44

PCF54

PCF65

WCF1

WCF2

WCF3

WCF4

WCF5

WCF6

New
Level-1 Synopsis ML1 Level-2 Synopsis ML2

Expired

PCF12

PCF22

PCF42

Fig. 1. Synopses for clustering

Partition-Based Clustering with Sliding Windows for Data Streams 295

Algorithm 1. CreatePaneCF

Input: A set of tuples B, and threshold θ
Output: A set of PCF s

1: create empty set P
2: for each b ∈ B do
3: if P is empty then
4: create new PCF p based on b
5: P ← P ∪ {p}
6: else
7: p ← nearest PCF in P to b
8: if dist(b, p) < θ or dist(b, p) < radius of p then
9: update p by adding b

10: else
11: create new PCF p based on b
12: P ← P ∪ {p}
13: end if
14: end if
15: end for
16: return P

a tuple and centroid of PCF, dist(b, p) is below θ or radius of PCF, the PCF
absorbs the tuple. Generating operation has O(L × m) time complexity, where
m is the number of generated PCF s.

As shown in Fig. 1, synopses consist of level-1 synopsis and level-2 synopsis.
Level-1 synopsis is a 2-dimensional array of �R/L� width. Each row in level-1
synopsis contains PCF s whose distances are close. Generated PCF s by Algo-
rithm 1 are inserted into the last column of level-1 synopsis. Timestamps T of
the inserted PCF s are in (R − L,R]. When the expired tuples are removed, the
first column of level-1 synopsis whose timestamps are in [t1, t1 +L] is truncated,
where t1 is the earliest timestamp. Removing operation for level-1 synopsis has
O(1) time complexity if an adequate data structure is adopted such as a linked
list queue. The exact number of tuples is R in the level-1 synopsis, and remains
constant.

Window-based CFs WCF s in the level-2 synopsis are built by summing up
PCF s which are in the same row. WCF is equal to the CF of tuples in the row
due to the additivity property in Eq. (3). WCF is represented as

WCFi =
�R/L�∑

j=1

PCFij (2)

The algorithm updates WCF s by adding new PCF s and subtracting expired
PCF s when the window slides. Because level-1 synopsis contains PCF s based
on panes, we specify PCF s to be removed and quantify the values of expired
tuples. The additivity property also guarantees correct WCF s for subtraction.

Algorithm 2 describes a procedure for updating synopses. The algorithm is
performed through batch processing for performance. CreatePaneCF in line

296 J. Youn et al.

Algorithm 2. UpdateSynopses

Input: Stream S, threshold θ, range R, slide L, level-1 synopses ML1, and level-2
synopses ML2

Output: updated ML1 and ML2

1: if exist expired tuples for R in ML1 then
2: E ← expired PCFs in ML1

3: subtract E from ML2

4: truncate the column of E in ML1

5: append new empty column in ML1

6: end if
7: B ← recent tuples of (R − L, R] in S
8: P ← CreatePaneCF(B, θ)
9: for each p ∈ P do

10: WCFi ← nearest WCF to p found by LSH of ML2

11: if dist(p, WCFi) < θ or dist(p, WCFi) < radius of WCFi then
12: WCFi ← WCFi + p
13: append p at ith row and last column in ML1

14: else
15: create new WCF based on p
16: append new WCF to ML2

17: append p at new row and last column in ML1

18: end if
19: update LSH of ML2

20: end for
21: return ML1, ML2

8 creates PCF s of recent tuples whose timestamps are in (R − L,R] from
data streams. The process for removing expired tuples is presented in line 1–6.
dist(p,WCFi) computes distance between centroids of PCF andWCF. WCFi+p
in line 12 means that it updates components in WCFi by adding components in
PCF p, and timestamp T is replaced by timestamp t of p because p is newer than
WCFi.

4.3 Finding Nearest WCF

Updating ML1 and ML2 involves linear time complexity. The most time-
consuming parts in the Algorithm 2 are Create-PaneCF and finding the near-
est WCF to a PCF. CreatePaneCF can be executed within a reasonable time
by adjusting the size of the SLIDE L. However, finding the nearest WCF is a
computationally heavy operation since it scans all ML2 and computes all dis-
tances for each PCF. The operation is well known as the nearest neighbor search
problem. The searching operation is executed NL2 × NP times per the window
slides, where NL2 is the number of WCF s in ML2, and NP is the number of PCF s
in P . To avoid unnecessary computation, we utilize a data structure based on
Locality-Sensitive Hashing (LSH) [8] for indexing WCF s.

Partition-Based Clustering with Sliding Windows for Data Streams 297

The basic concept of LSH is to map similar vectors to hash values which have
higher probability of collision than hash values of dissimilar vectors. In other
words, if two vectors are close to each other, after projection the vectors remain
close. Hash function ha,b(x) : Rd → N is a scalar projection which maps a vector
x to an integer. The hash function is given by ha,b(x) = �(a · x + b)/w	, where
a is a randomly drawn d-dimensional vector, w is the width of the quantization
bin, and b is a random variable in the interval [0, w).

General LSH generates a hash table whose hash keys are computed from hash
functions to decrease the probability that dissimilar vectors fall into the same
quantization bin. A hash key is obtained by concatenating values from the hash
functions, e.g., when we have 2 hash functions, key g(x) is (ha1,b(x), ha2,b(x)).

However, in data streams, the hash table need to be updated continuously
as tuples are inserted and deleted. Updating the hash table and computing hash
key carry with it high computational costs. Therefore, we maintain an adequate
number of hash functions to update and compute distances from a target tuple
to neighbors which are found in the hash table.

Figure 2 shows an example of the hash table for finding the nearest WCF.
We utilize the assumption that if distance x between two vectors A and B is
less than θ, the distance after projection is also less than θ. Therefore, by setting
the width of the quantization bin w of the hash function to θ, each bucket of
hash tables contains vectors whose distances are within θ. To find close vectors
of target vector A, the operation first takes a bucket with the same hash value
g(A), and if there is no other elements except itself, it searches for buckets with
adjacent hash key values from g(A) − (1, ..., 1) to g(A) + (1, ..., 1). Then the
operation computes the real distances to the found vectors. The operation need
to takes the elements in g(A) ± (1, ..., 1) adjacent buckets because the target
vector A can be located near the border of the g(A) bucket.

As the number of hash functions increases, the number of adjacent hash
keys that need to be searched increases exponentially. For m hash functions,
the operation searches for 3m keys. To prevent this, we use a heuristic that the
operation access only buckets with key values that differ by 1 in each component

A

B

C

D

E

()

Fig. 2. LSH for searching nearest WCF

298 J. Youn et al.

Algorithm 3. Clustering

Input: Level-2 synopses ML2, the number of clusters k, and error bound e
Output: Clusters C

1: Cp ← pre-exist clusters
2: if Cp is empty then
3: C ← clusters which are created by k-means clustering using ML2

4: else
5: W ← new and changed WCF s in ML2

6: C ← clusters which are modified by assigning each w ∈ W to its nearest cluster
of Cp

7: α ← KL-divergence between Cp and C
8: if α > e then
9: C ← clusters which are created by k-means clustering using ML2

10: end if
11: end if
12: return C

of g(A), which are 2m. For example, in Fig. 2, for g(B) = (0, 1), the operation
takes elements of (−1, 1), (0, 0), (1, 1), (0, 2) keys.

In Algorithm 2, target vector is the centroid of PCF, and vectors in hash
tables are centroids of WCF s.

5 Clustering with Sliding Windows

In this section, we present the clustering algorithm with sliding windows for
data streams, which performs clustering based on synopses. In order to reduce
the total computation cost of clustering, we add a modification step to the
algorithm, which appends new synopses to pre-existing clusters based on the
probability distributions of those clusters. The detailed process is presented in
Algorithm 3. The algorithm is executed as the window slides.

First, the algorithm uses k-means clustering to produce the clusters based
on their features in ML2. Clustering based on CF has been widely studied. The
basic and most commonly used methodology is to consider the centroid of WCF
as a tuple, and perform clustering on them. Clustering on centroid with weight
is also commonly used, where weight is the number of tuples N in WCF.

If clusters already exist, the algorithm detects new and changed WCF s, and
assigns each of them to its nearest cluster. This produces approximate clusters.
However, it is much faster than performing clustering again.

To preserve clustering quality and decide to perform clustering again, we mea-
sure quality degeneration of original and modified clusters by Kullback-Leibler
divergence (KL-divergence). KL-divergence of probability distributions p(x) and
q(x) is a measure of information gain achieved if p(x) is used instead of q(x).
KL-divergence is defined as

DKL(p(x)||q(x)) =
∑

x

p(x) log
p(x)
q(x)

(3)

Partition-Based Clustering with Sliding Windows for Data Streams 299

When p(x) and q(x) follow the Gaussian distribution, probability density
functions are p(x) = N (σp, μ

2
p) and q(x) = N (σq, μ

2
q). KL-divergence is calcu-

lated from mean and deviation.

DKL(p(x)||q(x)) = log
σq

σp
+

σ2
p + (μp − μq)2

2σ2
q

− 1
2

(4)

When the data distribution does not follow the Gaussian distribution, the
algorithm needs to select the probability distribution that best fits to a dataset
first. Selecting the distribution determines how well the candidate distributions
fit to the dataset using the specific goodness of fit tests such as Kolmogorov-
Smirnov test.

We assume that distances between a centroid of WCF and a center of the
assigned cluster follow the Gaussian distribution. k-Means clustering is designed
to works well and generates high-quality clusters for the data which follow
Gaussian distribution. Therefore, it is a reasonable assumption that data streams
and clusters follow the Gaussian distribution. While performing clustering, clus-
ter statistics information is easy to generate and store. We maintain sum of
distances, sum of squared distances, and the number of WCF s with the cluster,
and averages and deviations can be calculated from these. When a cluster is
modified, the statistics information can be updated in a constant time because
it has additivity property.

In Algorithm 3, the error bound e adjusts how much the algorithm toler-
ates the error. If the e is small, the algorithm performs clustering frequently.
The appropriate value of e depends on datasets, and is tested experimentally.
According to our experimental results, this step does not seriously decrease clus-
tering quality.

6 Experiment

6.1 Experimental Setup

We evaluated efficiency and scalability of our clustering algorithm on different
datasets, which included synthetic datasets and real-world datasets. We com-
pared our algorithm with recent and frequently used clustering algorithms for
data streams, SWClustering [18], StreamKM ++ [1] and ClusTree [10]. We also
measured the performance of basic k-means clustering, which is implemented by
Lloyd ‘s algorithm [12].

All algorithms are implemented by Java. We executed all experiments with
64-Bit OpenJDK 1.8.0 91 on Intel i7-3820 3.60GHz CPU and 32GB main mem-
ory using Linux 4.4.0-43 kernel. Maximum Java heap size (-Xmx option) is set
to 8GB.

Table 1 shows the overview of datasets for experiments. Syn1k30d40 and
syn1k30d80 are synthetic data, and others are real-world data. We generate the
data which follow the Gaussian distribution and have 30 clusters with dimensions
of 40 and 80. Kddcup99 is network data streams to detect network intrusion.

300 J. Youn et al.

Table 1. Datasets

Size Dim.

syn1k30d40 2,000,000 40

syn1k30d80 2,000,000 80

kddcup99 4,898,431 34

covtype 581,012 54

spambase 4,601 57

census1990 2,458,285 68

Kddcup99 contains logs of TCP connection of network at MIT Lincoln Labs
of 2 weeks. This dataset is used to evaluate clustering algorithms in [2]. Cov-
type contains cartographic data from the Roosevelt National Forest of northern
Colorado. Spambase contains email statistics to predict spam emails. Census1990
contains personal records sampled from the 1990 U.S. census data. Covtype and
census1990 are used in StreamKM ++, and a detailed description is presented
in [1].

To evaluate efficiency and scalability, we measure total running time and the
running time of each sliding. To evaluate the quality of clusters, we measure the
sum of squared distance (SSQ) of the clusters. SSQ is defined as

∑‖si − ci‖2,
which means the sum of squared distance between each tuple and the center
of their cluster. The lower SSQ value indicates better quality of clusters. In
sliding windows, the algorithm produces multiple results as the window moves.
Therefore, the quality is evaluated by average SSQ of the results.

6.2 Experimental Results

In each experiment, we set threshold θ as θsyn1k30d40 = 14.1, θsyn1k30d80 = 19,
θkddcup99 = 60, θcovtype = 75, and θcensus1990 = 9, and error bound e = 0.2 for
our algorithm and SWClustering. Clustering quality and speed are in trade-off
relationship with the values. We tested several thresholds and error bounds, and
select the values to generate best clustering quality. We use only two hash func-
tions, and that number is enough to reduce the computation time for the exper-
iment datasets. Because other algorithms except SWClustering do not support
sliding operation, we ran the clustering algorithms repeatedly on tuples which are
within the range of the window.

Figure 3 shows the clustering quality of the algorithm for different values of k.
We fix RANGE = 100,000 and SLIDE = 10,000. The average SSQ is transformed to
log scale for presentation. We observe that our algorithm is usually better than
StreamKM ++ and ClusTree in most datasets. Basic k-means in the experiment
shows the best quality because it performs clustering on whole tuples in the
window without any summarization. The results reveal that StreamKM ++ and
ClusTree are inappropriate for sliding window, which removes tuples from the
window continuously. The performance SWClustering is slightly better than our

Partition-Based Clustering with Sliding Windows for Data Streams 301

 1x107

 1x108

 1x109

20 30 40

av
er

ag
e

S
S

Q
 (l

og
 s

ca
le

)

number of centers, k

Ours
SWClustering

ClusTree
StreamKM++

k-means

(a) syn1k30d40

 1x107

 1x108

 1x109

 1x1010

20 30 40

av
er

ag
e

S
S

Q
 (l

og
 s

ca
le

)

number of centers, k

Ours
SWClustering

ClusTree
StreamKM++

k-means

(b) syn1k30d80

 1x1010

 1x1011

 1x1012

20 30 40

av
er

ag
e

S
S

Q
 (l

og
 s

ca
le

)

number of centers, k

Ours
SWClustering

ClusTree
StreamKM++

k-means

(c) kddcup99

 1x109

 1x1010

20 30 40

av
er

ag
e

S
S

Q
 (l

og
 s

ca
le

)

number of centers, k

Ours
SWClustering

ClusTree
StreamKM++

k-means

(d) covtype

 1x106

 1x107

 1x108

5 10 20

av
er

ag
e

S
S

Q
 (l

og
 s

ca
le

)

number of centers, k

Ours
SWClustering

ClusTree
StreamKM++

k-means

(e) spambase

 1x106

 1x107

 1x108

20 30 40

av
er

ag
e

S
S

Q
 (l

og
 s

ca
le

)

number of centers, k

Ours
SWClustering

ClusTree
StreamKM++

k-means

(f) census1990

Fig. 3. Clustering quality comparison

algorithm. As described in Sect. 2, this happened because SWClustering con-
tained more tuples which are invalid and expired in synopses. SWClustering
contains synopses of 155,485 tuples, not 100,000 at 200,000 timestamp for cen-
sus1990 at k = 40.

In terms of running time, our algorithm shows better scalability than the
others. In Fig. 4, we measure the total running time of the algorithms to process
200,000 tuples for different values of RANGE. We set k = 30, and SLIDE =
10,000. As the size of the window increases, the running time of other algo-
rithms also increases. However, the running time of our algorithm is almost the
same, although RANGE increases.

Figure 5 shows the running times at each timestamp when the window slides.
We set k = 30, RANGE = 100,000, SLIDE = 10,000, and the number of tuples =
200,000. Our algorithm is stable and fastest in terms of running time. ClusTree

 0

 50

 100

 150

 200

 250

 20000 40000 60000 80000 100000

ru
nn

in
g

tim
e(

se
c)

size of window, range

Ours
SWClustering

ClusTree
StreamKM++

k-means

(a) syn1k30d40

 0

 20

 40

 60

 80

 100

 120

 140

 20000 40000 60000 80000 100000

ru
nn

in
g

tim
e(

se
c)

size of window, range

Ours
SWClustering

ClusTree
StreamKM++

k-means

(b) kddcup99

 0

 50

 100

 150

 200

 250

 300

 20000 40000 60000 80000 100000

ru
nn

in
g

tim
e(

se
c)

size of window, range

Ours
SWClustering

ClusTree
StreamKM++

k-means

(c) census1990

Fig. 4. Total running time comparison

302 J. Youn et al.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50000 100000 150000 200000

ru
nn

in
g

tim
e(

se
c)

timestamp

Ours
SWClustering

ClusTree
StreamKM++

k-means

(a) syn1k30d40

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50000 100000 150000 200000

ru
nn

in
g

tim
e(

se
c)

timestamp

Ours
SWClustering

ClusTree
StreamKM++

k-means

(b) kddcup99

 0

 5

 10

 15

 20

 25

 0 50000 100000 150000 200000

ru
nn

in
g

tim
e(

se
c)

timestamp

Ours
SWClustering

ClusTree
StreamKM++

k-means

(c) census1990

Fig. 5. Running time at each timestamp

shows the second best performance, and SWClustering shows lowest performance
in the kddcup99. Because k-means is a randomized algorithm, the running time
is fluctuating with data distribution. However, k-means shows the proper per-
formance. This means that the cost of constructing additional synopses is quite
high for other streaming algorithms.

7 Conclusions

In this paper, we show our development of an efficient partition-based clustering
algorithm with sliding windows for data streams. In the abstraction step, we
exploit the sliding window model, which is divided into disjoint panes, and a
pane-based aggregation technique for maintaining synopses. Synopses consist of
pane-based CFs and window-based CFs to update cluster features efficiently.
The synopses also maintain LSH of window-based CFs to reduce search time of
the nearest neighbors. In the clustering step, the algorithm performs clustering
on window-based CFs. A strategy for modification of clusters is proposed to
avoid unnecessary clustering.

Our approach has an advantage over recent algorithms which perform clus-
tering on whole data streams, as it provides the functionality of tracking changes
in data streams by producing snapshots of every clustering, using less computa-
tional power. In future research efforts, we will extend our techniques to other
clustering algorithms such as density-based clustering.

Acknowledgments. This research was supported by the MSIP (Ministry of Science,
ICT and Future Planning), Korea, under the ITRC (Information Technology Research
Center) support program (IITP-2016-R0992-16-1023) supervised by the IITP(Institute
for Information & communications Technology Promotion).

References

1. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler,
C.: Streamkm++: a clustering algorithm for data streams. J. Exp. Algorithmics
17, 2.4:2.1–2.4:2.30 (2012)

Partition-Based Clustering with Sliding Windows for Data Streams 303

2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: Proceedings of the 29th International Conference on Very Large
Data Bases, vol. 29, pp. 81–92 (2003). VLDB Endowment

3. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121–142 (2006)

4. Babcock, B., Datar, M., Motwani, R., O’Callaghan, L.: Maintaining variance and
k-medians over data stream windows. In: Proceedings of the Twenty-Second ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp.
234–243. ACM (2003)

5. Braverman, V., Lang, H., Levin, K., Monemizadeh, M.: Clustering problems on
sliding windows. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1374–1390. Society for Industrial and Applied
Mathematics (2016)

6. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: 2006 SIAM Conference on Data Mining, pp. 328–339.
SIAM (2006)

7. Dang, X.H., Lee, V., Ng, W.K., Ciptadi, A., Ong, K.L.: An EM-based algorithm
for clustering data streams in sliding windows. In: Zhou, X., Yokota, H., Deng, K.,
Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 230–235. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00887-0 18

8. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, pp. 253–262. ACM (2004)

9. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering
data streams: theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515–528
(2003)

10. Kranen, P., Assent, I., Baldauf, C., Seidl, T.: The clustree: indexing micro-clusters
for anytime stream mining. Knowl. Inf. Syst. 29(2), 249–272 (2011)

11. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: No pane, no gain: efficient
evaluation of sliding-window aggregates over data streams. SIGMOD Rec. 34(1),
39–44 (2005)

12. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

13. Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., de Carvalho André, C.P.L.F.,
Gama, J.: Data stream clustering: a survey. ACM Comput. Surv. 46(1), 13:1–13:31
(2013)

14. Sun, L., Guo, C.: Incremental affinity propagation clustering based on message
passing. IEEE Trans. Knowl. Data Eng. 26(11), 2731–2744 (2014)

15. Wan, L., Ng, W.K., Dang, X.H., Yu, P.S., Zhang, K.: Density-based clustering
of data streams at multiple resolutions. ACM Trans. Knowl. Discov. Data 3(3),
14:1–14:28 (2009)

16. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method
for very large databases. SIGMOD Rec. 25(2), 103–114 (1996)

17. Zhang, X., Furtlehner, C., Germain-Renaud, C., Sebag, M.: Data stream clustering
with affinity propagation. IEEE Trans. Knowl. Data Eng. 26(7), 1644–1656 (2014)

18. Zhou, A., Cao, F., Qian, W., Jin, C.: Tracking clusters in evolving data streams
over sliding windows. Knowl. Inf. Syst. 15(2), 181–214 (2008)

http://dx.doi.org/10.1007/978-3-642-00887-0_18

CBP: A New Parallelization Paradigm
for Massively Distributed Stream Processing

Qingsong Guo1(B) and Yongluan Zhou2

1 North University of China, Taiyuan, China
qingsongg@gmail.com

2 University of Southern Denmark, Odense, Denmark
zhou@imada.sdu.dk

Abstract. Resource efficiency is essential for distributed stream
processing engines (DSPEs), in which a streaming application is modeled
as an operator graph where each operator is parallelized into a number
of instances to meet the low-latency and high-throughput requirements.
The major objectives of optimizing resource efficiency in DSPEs include
minimizing the communication cost by collocating the tasks that trans-
fer a lot of data between each other, and by dynamically configuring the
systems according to the load variations at runtime. In the current liter-
ature, most proposals handle these two optimizations separately, and a
shallow integration of these techniques, such as performing the two opti-
mizations one after another, would result in a suboptimal solution. In this
paper, we present component-based parallelization (CBP), a new para-
digm for optimizing the resource efficiency of DSPEs, which provides a
framework for a deeper integration of the two optimizations. In the CBP
paradigm, the operators are encapsulated into a set of non-overlapping
components, in which operators are parallelized consistently, i.e., using
the same partitioning key, and hence the intra-component communica-
tion is eliminated. According to the changes of workload, each component
can be adaptively partitioned into multiple instances, each of which is
deployed on a computing node. We build a cost model to capture both
the communication cost and adaptation cost of a CBP plan, and then
propose several optimization algorithms. We implement the CBP scheme
and the optimization algorithms on top of Apache Storm, and verify its
efficiency by an extensive experiment study.

1 Introduction

Real-time big data analysis requires processing of continuous queries (CQ) over
fast streaming data with low latency. Usually, distributed stream processing
engines (DSPEs) [1,18,22] organize CQs as an operator graph as shown in
Fig. 1(a). To handle the deluge of data, one can resort to massive paralleliza-
tion that each operator is cloned with a number of instances and its inputs are

The author from North University of China is supported by National Nat-
ural Science Foundation of China (61602427) and Natural Science Foundation of
Shanxi(201601D202037).

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 304–320, 2017.
DOI: 10.1007/978-3-319-55699-4 19

CBP: A New Parallelization Paradigm 305

o4
src sink

o1
o2

o3

o14

src sink

o11
o12

o13

o24o21
o22

o23

(a) Operator Graph

o14

src sink

o11

o12

o13

o24o21 o22

o23
s1

s2

s3

s4

s0 s5

s0, s1, s2:(Ts,Vid,Wid,Dir,Spd,Pos)

s5:(Vid,Dir,Seg,Toll)

s3:(Ts,Vid,Dir,Seg,AvgSpd)
s4:(Ts,Dir,Seg,VehNum)

(b) OBP (c) CBP

Fig. 1. Paradigms for parallelizing operator graph. This is a query that calculates
the tolls of vehicles based on the source stream s0 containing data of vehicles’ speeds
and positions. It consists of four operators: (1) a stateless operator o1 that filters and
partitions input data to the next operators; (2) two operators o2 and o3 calculate the
average speed AvgSpd and the traffic volume respectively; and (3) o4 calculates the toll
of each vehicle, which is a function of AvgSpd and SegNum. The format of streams are
specified in figure (a) and each operator oi is designated with key ki for partitioning
the streams, where k1 = {Ts, Vid, Spd, Dir, Seg, Pos}, k2 = {Vid, Dir, Seg}, k3 = {Dir,
Seg}, and k4 = {Dir, Seg}. We use two ways to parallelize the query: (1) in figure (b),
the input streams of the operators are partitioned with different keys; and (2) in figure
(c), the input streams of the four operators are partitioned consistently with the same
key {Dir, Seg}.

partitioned into disjoint substreams. For the sake of resource efficiency, there are
in general two critical optimizations to be considered:

1. Runtime resource reconfiguration. Load variations caused by the
changes of data distribution and input rate are ubiquitous in the stream-
ing context [22,24,25]. It is essential to provide adaptive data partitioning to
achieve load balancing and to scale the number of parallel instances of each
operator to avoid over-provisioning or under-provisioning.

2. Communication cost minimization. A large amount of data has to be
continuously transmitted among the neighboring operators. Data transfer not
only consumes bandwidth but also incurs significant computation overhead,
including serializing and de-serializing the transmitted data. Optimizing the
allocation of operator instances can to minimize cross-node communication
can significantly reduce the resource consumption in a DSPE.

In existing solutions, the two problems are addressed separately. For example,
M.A. Shah et al. [22] studied how to dynamically partition the input data at
runtime to balance the workload across the parallel instances of an operator,
while Y. Ahmad et al. [4] and P. Pietzuch et al. [19] investigated the operator
placement to minimize the bandwidth usage by implicitly assumed assumption
that operators do not need to be parallelized.

One can simply combine these methods to provide a complete solution. For
example, we can first determine the parallelism for each operator [1], and trans-
form the operator graph into a graph of operator instances. Thereafter, we can
optimize the deployment by applying an operator placement algorithm, such
as [4,19]. Suppose we have two nodes in the cluster, Fig. 1(b) shows a possi-
ble parallelization and task allocation plan for the operator graph in Fig. 1(a).

306 Q. Guo and Y. Zhou

Dynamic reconfigurations, such as re-scaling and load balancing, can be per-
formed on each operator independently. However, such a shallow integration
would provide suboptimal performance. As shown in Fig. 1(b), if the 4 operators
are not parallelized consistently, e.g., partitioning the input on the same key,
then each operator instance may have to transfer data to all its downstream
instances. This limits the opportunity to minimize communication cost by col-
locating the instances that communicate with each other.

On the contrary, if we can parallelize the operators consistently using a com-
mon partitioning key, then we could have a plan as shown in Fig. 1(c), which
minimizes cross-node communication. Although this idea may sound simple, it is
nevertheless challenging to implement in a DSPE supporting runtime reconfigu-
ration. First of all, dynamic data repartitioning makes it difficult or even impos-
sible to achieve consistent parallelization of multiple operators given that the
operators could be reconfigured at runtime independently. Secondly, dynamic
scaling and data repartitioning involve a lot of state movements [22,23]. The
overhead of moving the states around operator instances in order to maintain
the consistency of data partitioning may offset the benefits of collocating their
communicating instances. Therefore we need a new parallelization framework
that can optimize the parallelization of operators such that the total cost is
minimized, including the communication and reconfiguration cost.

To address the challenges, we present component-based parallelization
(CBP)—a new operator parallelization paradigm that considers both dynamic
reconfiguration and resource optimization. In CBP, an operator graph is first
decomposed into non-overlapping components, each being a connected subgraph.
The operators in a component should have partitioning keys “compatible” with
each other, i.e., sharing common attributes, and thus they can be parallelized
using the same key. Each component acts as a singleton that is parallelized into
a set of instances and the parallelism can be adapted at runtime in accordance
with the load variations. This strategy simplifies the optimization of parallel
stream processing and localizes the side-effect of reconfiguration within each
component. In general, in the CBP paradigm, the more operators are grouped
into a component, the less communication cost there would be, with a probable
increase of the component’s reconfiguration cost. This is because every time we
have to re-scale or re-balance one operator within a component, we have to
trigger repartitioning of all the operators within the component. Therefore, a
good trade-off should be found to minimize the total cost of a CBP plan.

We propose a cost-based optimizer to compute an optimized CBP plan for
a given query graph. We develop a novel cost model that integrates the recon-
figuration overhead into the optimization. We formally define the optimization
problem as a Minimum-Cost-Component-Based-Parallelization problem
(MCCBP). We prove that MCCBP is NP-hard, and then present two heuristic
algorithms to solve it. All the techniques have been implemented on top of
Apache Storm [1]. We compare our solutions with the operator placement algo-
rithm by using both synthetic workload and an extension of the Linear Road
Benchmark [6]. The experiments show that our methods can save the network

CBP: A New Parallelization Paradigm 307

communication by up to 40%. Furthermore, our solutions can reduce the average
end-to-end data latency by about 10% to 30%.

2 Background

2.1 Parallel Stream Processing

Continuous queries(CQs) [17] over streaming data are usually organized as
an operator graph [1,13,18] in a distributed stream processing engine (DSPE).
DSPEs like Flux [22] and StreamCloud [14] exploit data parallelism [11] to cope
with the deluge of data, in which an operator is cloned into a set of independent
instances each working on a partition of the input data. The number of parti-
tioning can be determined according the input rates to achieve high throughput.

Operators can be categorized as stateless and stateful. For a stateless opera-
tor, the input tuples can be processed independently by any instance of it. While
the stateful operators, such as join and group-by aggregate, are “context-
sensitive”, so tuples with the same keys should be processed by the same instance
to guarantee correctness. Stream grouping specifies the way how a stream of
tuples is grouped and dispatched to the consumer operator instances. We con-
sider two primitives: (1) shuffle grouping, where the input tuples are randomly
routed to the operator instances; (2) key grouping, in which tuples are parti-
tioned into a number of substreams based on a specified set of keys. Shuffle
grouping is often the optimal choice for stateless operators since the load can be
easily balanced, while key grouping is necessary for stateful operators.

Challenges of load variation. Usually, one can easily observe two kinds of
variations over streaming data: (1) the fluctuation of input rates [22,24], and (2)
change of data value distributions [22,24,25]. If an SPE does not react to the
variations, applications can run into problems:

– Unmatched provision: the over-provisioning or under-provisioning caused
by the fluctuation of the input rates can result in low system utilization, high
operational cost (e.g., using pay-as-you-go cloud services), and system failures.

– Load imbalance: the load distribution is skewed due to the change of data
value distribution. For example some stream grouping keys become more pop-
ular than the others so that some operator instances are over-loaded while the
others are under-loaded. Load imbalance can harm the processing latency and
system throughput if the skewness is not resolved soon.

To handle the above problems, we resort to adaptation techniques including
dynamic scaling [18] and load balancing [25]. CQs use the concept of sliding
windows of tuples over a stream to specify the operational context of an operator.
For instance, to perform a windowed join, we need to buffer the tuples within the
current window(s) as the context of the join operation on the newly incoming
tuples. This kind of context is called as processing state [8]. While processing
an adaptation, the substreams should be reassigned around operator instances,
and the processing states needs to be reallocated accordingly. This process is

308 Q. Guo and Y. Zhou

called state movement. Note that both scaling and load balancing involve state
movements, which consume both significant CPU and network bandwidth and
thus cannot be ignored [22,23].

2.2 System Model

Data model. A data stream s is an unbounded and append-only sequence of
tuples (. . . , ti−1, ti, ti+1, . . .). Each tuple t = (τ, α) has a timestamp τ ∈ T and
a set of attributes α = (a1, . . . , ak). We assume that the attribute set α of every
stream conforms to a relational schema. For simplicity, τ is assumed to be unique.
In practice, if τ is not unique, existing systems usually use a unique sequence
number to identify each tuple.

Operator model. A CQ is composed of a number of operators, each implement-
ing a certain computation logic, such as join, aggregate, filter, or user-defined
functions. An operator o is a 6-tuple, (INo, OUTo, Ko, Fo, Wo, PSo), where INo and
OUTo are the input and output streams respectively. Ko is the key, a subset of
attributes of the input streams INo, which used for partitioning INo. Fo defines
the processing logic, where its operating context, i.e. the processing state PSo, is
specified by the sliding window Wo. For stateless operators like map and filter,
PS = ∅.

We organize CQs as an operator graph G = (O, S), which is a directed acyclic
graph of the operator set O and the stream set S. A stream s ∈ S is represented
as a directed arc (us, ds), us, ds ∈ O, where us and ds are its producer and
consumer respectively. Two special operators, Src and Sink, are responsible for
spouting source streams and collecting the final results respectively. An operator
graph is also referred to as a topology and these two terms are interchangeable
throughout this paper.

Physical execution. The operator graph is executed on a cluster of identical
nodes. The execution graph is a physical realization of the query in which each
operator o is parallelized into multiple instances I = {o1, . . . , oπ}, where π ∈ N

+

is the parallelism. For an input stream s of o, each tuple is a key-value pair <k,v>,
where v is the tuple and k = t.Ko. A partitioning function split the domain of Ko

into p groups, where p � π. Then, the tuples of s, according their key values,
form a number of substreams S = {s1, . . . , sp}. An assignment F : S → I
allocate the processing of each substream to a unique operator instance. The
degree of parallelism π and the assignment F are adapted at runtime to handle
load variations.

3 Component-Based Parallelization

3.1 CBP Abstraction

In essence, CBP decomposes an operator graph into a set of non-overlapping
components, which act as the parallelization unit. In particular, CBP relies on

CBP: A New Parallelization Paradigm 309

two essential properties: compatibility and connectivity. Compatibility concerns
if some operators can be parallelized consistently. A set of operators {o1, . . . , ok}
is compatible iff the intersection of their keys is not empty, i.e., Ko1 ∩· · ·∩Kok

�= ∅.
Note that the compatibility property is not transitive. For example, suppose we
have three operators o1, o2, and o3 with keys K1 = {a1, a2}, K2 = {a2, a3}, and
K3 = {a1, a3} respectively. Even though any pair of them are compatible, they as
a whole are incompatible because K1 ∩ K2 ∩ K3 = ∅. The rationale of assembling
the topology into components is to reduce the communication cost. One can
benefit from placing compatible operators into a node only if they are connected
by streams.

Formally, we can define a component as follow.

Definition 1 (Component). A component C = (OC, SC) is an induced sub-
graph of the operator graph G = (O, S), where C is connected and the operators in
OC are compatible.

Let IN(C) be the set of all input streams of the operators in component C,
then IN(C) = ∪o∈OCINo. Assuming OC = {o1, . . . , o|C|}. The streams of IN(C) can
be grouped by a partition function over the key K = Ko1 ∩ · · · ∩ Ko|C| , which is
the intersection of the keys of all the operators in C. Since K �= ∅, all the streams
of IN(C) can be partitioned uniformly into p substreams. For the convenience
of discussion, we regard the streams in IN(C) as a composite stream cs, which
is partitioned into a set of substreams CS = {cs1, . . . , csp}. In addition, each
component C is parallelized into a number of instances CI = {ci1, . . . , ciπ},
where π is the parallelism of C and each instance has a clone of the computation
logic of each operator in C. The parallel processing of the composite stream CS
is specified by an assignment FC : CS → CI, which is adapted at runtime to
handle load variations.

4 MCCBP

4.1 Metrics

The cost of a CBP plan can be put into three parts: (1) Processing cost PC,
which is the CPU usage of the computation, (2) Communication cost CC, which
is the CPU and network usages of data transmission, and (3) Adaptation cost
AC, which is the CPU and network usages of carrying out adaptations.

In particular, we assume that PC keeps the same regardless of the physical
execution, and thus it can be disregarded in our cost model. In addition, we
categorize data communication into inter-component communication and intra-
component communication. The first one involves three sequential steps: (1) data
serialization, (2) network propagation, and (3) de-serialization. Steps (1) and
(3) consume CPU cycles and step (2) occupies network bandwidth. In contrast,
the intra-component communication is realized via local memory access, whose
overhead is negligible. Therefore, we only take the overhead of inter-component
communication into account.

310 Q. Guo and Y. Zhou

Statistics measurements. The cost calculation relies on the statistics of exe-
cution of the operator graph. In our implementation, the statistics are measured
periodically over a sequence of time intervals of length Δ, which are called as
statistics windows. Suppose the historical data spans m statistics windows that
start at the time instance τ = 0, then the timespan of historical data is [0,mΔ].
The following discussions are confined within the timespan [0,mΔ].

For the input stream s ∈ S of a component that is split into p partitions,
the statistics are represented as a sequence of histograms Y (s) = (Y1, . . . , Ym),
where the histogram Yr = (y1,r, . . . , yp,r)T , r = 1 . . . m, is a vector recording the
data rate of the p partitions over the r-th statistics window. In other words, the
data distribution of s at the r-th window can be approximated with Yr. With
Y , we can derive other statistics on demands. For instance, denote s = (oi, oj),
then the load lij of s during [0,mΔ] is lij =

∑m
r=1

∑p
k=1 ykr.

The adaptation cost is closely related to the adaptation frequency f , where
Δ = 1/f. For simplicity, we assume that SPE performs an adaptation at each win-
dow. Letψr

i be the number of state movements in the r-th adaptation of component
Ci, then AC =

∑|C|
i=1 ψi, where ψi =

∑m
r=1 ψr

i is the adaptation cost of Ci.

4.2 Problem Formulation

Consider an operator graph that is grouped into a set of disjoint components
C = {C1, C2, . . . }, it is called a CBP plan if ∪|C|

i=1OCi = O and OCi ∩ OCj = ∅ for
any two components of C. Let X be the streams interconnecting components in
C. Let w(Ci) be the adaptation cost of Ci and c(s) be the communication cost
incurred by stream s. Since PC is independent on the CBP plan, the cost of a
CBP plan C, denoted as cost(C), is measured by the sum of the communication
cost CC and adaptation cost AC. That is,

cost(C) = CC + AC =
∑

s∈X

c(s) +
∑

Ci∈C
w(Ci) (1)

We introduce a constraint on the adaptation cost, w(Ci) ≤ β, to prevent any
component from being the bottleneck. Consequently, the objective of optimiz-
ing a CBP plan is to minimize cost(C). We denote this problem as Minimum
Cost Component-Based Parallelization (MCCBP), which is a variant of
graph partitioning problem under constraints of connectivity and compatibility.
Formally, it is stated as follow.

Definition 2 (MCCBP). Given an operator graph G = (O, S) and a positive
constant β, the MCCBP problem is to find a CBP plan, which is a partition of
G into a set of disjoint components C = {C1, C2 . . . }, to achieve the following
objective:

minimize cost(C)

subject to ∪|C|
i=1OCi = O

w(Ci) ≤ β

CBP: A New Parallelization Paradigm 311

MCCBP can be proved to be NP-hard by simplifying it to a Minimum-
Capacity-Graph-Partitioning (MCGP) problem, which has been shown to be
NP-hard.

5 Computing CBP Plans

5.1 Greedy Algorithm

A straightforward idea is to obtain an initial CBP plan C0 in advance, and
then make improvement incrementally. The algorithm, as shown in Algorithm 1,
begins with the initial plan C0 (Line 2) and makes improvement step by step
(Line 9–21). The initial plan C0 is generated by a depth-first search (DFS) of
the operator graph. The traversal is tracked by an operator stack OS. In each
iteration, we peek an operator from OS. Let o be the current operator being
visited and C(o) be the component containing o. Then o will be popped out from
OS if it has no unvisited child or is a leaf node. Otherwise we choose an unvisited
child v of o and then check the compatibility between v and C(o). If they are
compatible, v will be added into component C(o); Otherwise, a new component
Ci containing operator v is created.

The essence of Algorithm 1 is to reduce the cost by moving operators around
components. Let move(Ci,Cj ,ok) be the potential movement that attempts to
move ok from Ci to Cj . It is admissible if ok ∈ Ci and the new operator set
Cj ∪ {ok} can form a component. Given a CBP plan C, the execution of the
potential movement move(C1,C2,ok) gives rise to a new plan C′ if it is admissible.
The admissibility of it is checked in Line 8.

The movement results in the following change of costs: (1) the change of
communication cost between C1 and C2, and (2) the change of adaptation costs
of C1 and C2. Hence the profit δ12(ok) of move(C1,C2,ok) consists of two parts:
the changes of the communication cost and adaptation cost, denoted as δ112(ok)
and δ212(ok) respectively. Let ϕ1(ok) be the data rate between ok and C1. Then,
ϕ1(ok) =

∑
(ok,ot)∈S∨(ot,ok)∈S

ot∈C1

lkt. ϕ1(ok) does not contribute to CC if ok ∈ C1,

otherwise it does. After the movement, ϕi(ok) contributes to CC, but ϕj(ok) does
not contribute to CC. Therefore, the gain on communication cost is δ112(ok) =
ϕ2(ok) − ϕ1(ok). Let ψ(ok) be the new adaptation cost of a component, then we
have δ212(ok) = (ψ1 + ψ2) − (ψ1(ok) + ψ2(ok)).

Summing all together, we get the overall profit of the movement, δ12(ok) =
δ112(ok) + δ212(ok). In each run, we choose an admissible movement with the
maximum positive profit to execute. Suppose that δ12(ok) is the best movement
in the current run, then the load and state statistics of C1 and C2 should be
changed after the execution of move(C1,C2,ok) (Line 14). The movement also
causes changes of the profits of any admissible movement involving C1 or C2. To
prepare the next iteration, we should recompute the profits of these admissible
movements (Line 15).

312 Q. Guo and Y. Zhou

Algorithm 1. Greedy Algorithm
Input: Operator graph G = (O, S), load statistics {Y(s1),Y(s2), . . . }, state

statistics {Z(o1),Z(o2), . . . }
Output: CBP plan C

1 C ← InitialPartition(G);
2 compute load statistics Y(Ci), state statistics Z(Ci), and adaptation cost ψi for

each component Ci ∈ C ;
3 δ ← 1.0 ;
4 while δ > 0 do
5 foreach ok ∈ O do
6 Ci ← get the component containing ok ;
7 foreach Cj ∈ |C| and j �= i do
8 if ajk �= −1 and Cj ∪ {ok} is compatible then
9 δ1ij(ok) ← �jk − �ik ;

10 δ2ij(oj) ← (ψi + ψj) − (ψi(ok) + ψj(ok)) ;
11 δij(ok) ← δ1ij(ok) + δ2ij(ok) ;

12 δ ← max{δij(ok)} ;
13 move ok from Ci to Cj ;
14 update the load and state statistics of C1 and C2;
15 recompute the profits for any admissible movement involves Ci or Cj ;

16 return C;

5.2 MWSC

We proceed to consider an alternative that transforms MCCBP into the mini-
mum weighted set cover problem (MWSC). Let Ω = {C1, C2, . . . } be a set con-
taining all the possible components of O. Let N be the cardinality of Ω, i.e.,
N = |Ω|. A CBP plan C = {Ci|Ci ∈ Ω} is a subset of Ω. It is apparent that
the plan C is a set cover of O, since

⋃|C|
i=1 Ci = O and Ci ∩ Cj = ∅ for ∀Ci, Cj ∈ C.

Therefore, MCCBP is equivalent to find a subset C of Ω such that C is a parti-
tion of O. We attempt to optimize this problem by enumerating all the feasible
components and finding the optimal CBP plan from them.

Each component associates with adaptation cost ψi and intra-component
communication cost φi, where φi =

∑
oi,oj∈C lij . For each component Ci ∈ Ω, we

assign a weight wi to it such that wi = ψi + l − φi, where l is the overall load,
l =

∑n
i=1

∑n
j=1 lij . It is obvious that ψi > 0 and l − φi ≥ 0.

Let xi be a decision variable that indicates whether component Ci is chosen
in the set cover S, where xi = 1 if Ci is picked, or xi = 0 otherwise. Then the
MCCBP is transformed to the weighted set cover problem. A set cover S of O
has some redundant operators, for example Ci ∩ Cj = ok. Denote S ′ as the new
set cover by discarding ok. Since ψi > 0 and l−φi ≥ 0, the cost of S ′ is definitely
smaller than that of the former one, i.e., w(S ′) < w(S). Finally, we can get the
minimum set cover of O by removing all the redundant operators.

CBP: A New Parallelization Paradigm 313

Algorithm 2. MWSC
Input: Operator graph G = (O, S) , load statistics {Y(s1),Y(s2), . . . }, state

statistics {Z(o1),Z(o2), . . . }
Output: CBP plan C

1 l ←∑n
i=1

∑n
j=1 lij ; /* overall loads */

2 Ω ← Enumerate(G, k) ;
3 foreach component Ci in Ω do
4 compute the adaptation cost ψi ;
5 φi ←∑oi,oj∈C lij ;

6 wi ← ψi + l − φi ; /* weight of Ci */

7 S ← compute the MWSC of O over Ω ;
8 C ← S ;
9 return C;

Definition 3 (MWSC). Given a universe O and a family Ω of subsets of
O, the minimum weighted set cover of O can be expressed as an integer linear
programming:

minimize w(S) = wTx (2)

subject to

N∑

Ci:o∈Ci

xi ≥ 1 for each operator o ∈ O,

xi ∈ {0, 1}
where w = (w1, . . . , wN) is the weight vector and x = (x1, . . . , xN) is the decision
vector for Ω respectively.

Apparently, a MWSC is a partition of O. Thus,

w(S) =
N∑

i=1

xiψi + |S|l −
N∑

i=1

xiφi =
N∑

i=1

xiψi

︸ ︷︷ ︸
+

[
l −

N∑

i=1

xiφi

]

︸ ︷︷ ︸
+ (|S| − 1)l︸ ︷︷ ︸ (3)

where |S| is the number of edges of G = (O, S).
Comparing to the cost model Eq. (1), we have the first component

∑N
i=1 xiψi

and the second l−∑N
i=1 xiφi of Eq. (3) equal to the adaptation cost AC and com-

munication cost CC respectively. As the third component (|S|−1)l is a constant,
the best solution of MWSC is equivalent to the optimal CBP plan.

The idea is depicted in Algorithm 2. We first enumerate all the possible
components of G (Line 2). Then we compute the adaptation cost ψi and the
load φi of each component Ci, and assign a weight to each component (Line
3–6). Finally, we compute a solution S of MWSC and take it as a CBP plan
by discarding all the redundant operators (Line 7–8). MWSC can be solved
exactly with a MIP solver like Gurobi [2] when N is not too large. But we also
implement a greedy routine to solve MWSC (Line 7) according to the description

314 Q. Guo and Y. Zhou

in [9, Chap. 35]. The greedy routine is a useful option when N is large. Since the
set cover S obtained through the greedy routine might not be a CBP plan, we
have to remove the redundant operators to get the final solution C.

6 Evaluation

6.1 Experimental Setup

Evaluation metrics—We use the following metrics in the evaluation:

– Communication cost counts the number of tuples transmitted through
inter-component communication.

– Adaptation cost counts the number of state movements in an adaptation
process.

– End-to-end latency indicates the time completing the processing of a source
tuple. It includes the time spent on processing, adaptation, and communica-
tion, and thus it is a overall metric to reflect the effectiveness of CBP.

Tested solutions—We implement the sparse-cut algorithm, a graph partition
algorithm used in COLA [15], to compare with our solutions. Note that the
objective of baseline is merely to minimize communication cost. In general, we
evaluated the following three algorithms: (1) greedy algorithm, (2) the MWSC
algorithm, and (3) the baseline algorithm which implements an OBP-based oper-
ator placement algorithm in [15].

We implement our algorithms in Java and integrate them with Apache
Storm [1] by extending it with runtime adaptation. Part of the experiments
are conducted via simulation, while the rest are conducted on Amazon’s EC2
with medium VM instances (m1.medium), where each has 1.7 GB of RAM, mod-
erate IO performance and one EC2 compute unit (approximately equivalent to
a 1.2 GHz 2007 Xeon CPU). While these VMs have low processing capabilities,
they are representatives of public cloud VMs.

6.2 Simulation Result

In the test, we used a randomized topology G = (O, S). In the topology G, each
operator o, except src, maintains computing states and randomly forwards the
received data to downstream operators according to the selectivity δ(o). The
specific setting of G is summarized in Fig. 2. Operator src generates two syn-
thetic streams s1 and s2 to simulate two types of variations, where the key
values of s1 and s2 follow the uniform distribution and Zipf respectively. There-
fore, s1 only results in scaling. In contrast, data distribution of s2 is skewed
and thus the adaptations involve both scaling and load balancing. Each opera-
tor of G randomly chooses two attribute of sch as the partition key. The data
arrivals of s1 and s2 follow a Poisson process X(t) : P [N(t + τ) − N(t) = k] =
(k!)−1e−λτ (λτ)k, where τ is set to 1 s and λ = 10, 000. Both s1 and s2 conform to

CBP: A New Parallelization Paradigm 315

Parameters Settings

Random graph G = (O, S, d)
Number of operators |O| = 100
Average degree d d = {3, 5, 10}
Selectivity δ(o) δ(o) ∼ N(0.5, 1.0)
Size of states |PSo| |PSo| = X(t)

Fig. 2. Setting of parameters

 0

 20

 40

 60

 80

 100

3 5 10

Pe
rc

en
ta

ge
 %

Average degree d

baseline
greedy
mwsc

(a) stream s1

 0

 20

 40

 60

 80

 100

3 5 10

Pe
rc

en
ta

ge
 %

Average degree d

baseline
greedy
mwsc

(b) stream s2

Fig. 3. Comparison of communication costs

the schema: SynStream(ts:Unix timestamp, a1:int, a2:int, a3:int, a4:int), in which
each attribute has 4 Bytes.

We measured the communication cost and state movements by varying the
average degree d and the adaptation frequency f . Let N1 be the number of tuples
processed by all the operators and N2 be the number of tuples in the states of
all the operators at every adaptation. We calculated the percentages, 100nc

N1
and

100na

N2
, of tuples involved in the communication and state movement, where nc

and na are the communication cost and adaptation cost respectively.
Comparison of communication costs—Figure 3a and b show the percent-

ages achieved by three algorithms. We can observe that the baseline algorithm
can save the cost by at most 20%, but the CBP solutions can reduce the cost by
at least 20%. In particular, the greedy algorithm saves about 20% when d = 3,
and it increases to 40% when d = 10. MWSC outperforms the greedy algorithm.
It significantly reduces the communication cost by about 27.8% when d = 3 and
by nearly 60% when d = 10. The baseline algorithm deploys the operator graph
based on a placement plan, which is generated in advance by graph partitioning.
Since the operators are incompatible, the physical topology of the query changes
as adaptation process. The parallelization plan is no longer optimal when the
physical topology has been changed. Therefore, we cannot optimize the commu-
nication cost efficiently with operator placement.

The intra-component communications of a CBP plan are eliminated com-
pletely regardless of the change of physical topology. This is confirmed by Fig. 3.
By comparing Fig. 3a and b, the communication costs of CBP solutions keep
the same regardless of the difference of s1 and s2. However, the costs of base-
line algorithm is slightly different over s1 and s2, where the cost is about 3%
higher over s2 than that over s1. The frequency f shows similar impact to the
algorithms.

Comparison of adaptation costs—Figures 4 and 5 shows the impact of
load variation and the adaptation frequency. In this experiment, the frequency
f is varied by changing the length of adaptation window from 1 min to 10 min,
i.e., 1/f = {1, 2, 5, 10}. Figure 4 plots the adaptation cost of each algorithm when
1/f = 1. It is clear that CBP has larger adaptation costs than the baseline
algorithm. Moreover, the adaptation cost over a skewed stream, s2 in Fig. 4b, is
higher than the uniformly distributed stream, s1 in Fig. 4a. We observe similar

316 Q. Guo and Y. Zhou

 0

 20

 40

 60

 80

 100

3 5 10

Pe
rc

en
ta

ge
 %

Average degree d

baseline
greedy
mwsc

(a) stream s1

 0

 20

 40

 60

 80

 100

3 5 10

Pe
rc

en
ta

ge
 %

Average degree d

baseline
greedy
mwsc

(b) stream s2

Fig. 4. Comparison of adaptation costs

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge
 %

1/f: length of adaptation window

baseline
greedy
mwsc

(a) stream s1

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge
 %

1/f: length of adaptation window

baseline
greedy
mwsc

(b) stream s2

Fig. 5. Adaptation costs with respect
to 1/f

O1

O2

O3

O4

O5src
S0

S1

S2
S3

S4

S6

S5

S8

S7

O6

S9

sink

Schema
(Ts, Vid, XWay, Dir, Seg, Spd, Pos) S1, S2, S3
(Ts, Vid, XWay, Dir, Seg, Acdt) S4
(Ts, Vid, XWay, Dir, Seg, AvgSpd) S5
(Ts, XWay, Dir, Seg, VehNum) S6
(Ts, Vid, XWay, Dir, Seg, Acdt) S7
(Ts, Vid, XWay, Dir, Seg, Toll) S8

ID
{Ts, Vid, XWay, Dir,O1:Forwarder

O3:AvgSpeed {Vid, XWay, Dir, Seg}
O2:AcdDetector {Ts, Vid}

O5:TollCalculator {Xway, Dir, Seg}
O4:SegVolume {Xway, Dir, Seg}

Partition KeyOperator

Seg, Spd, Pos, Type}

Fig. 6. Operator graph for LRB

results when f = {2, 5, 10}. The results also justify an implicit assumption in this
paper that the adaptation cost is normally higher when we assemble operators
into components.

Figure 5 shows the impact of adaptation frequency f . As we can see from the
figure, the cost drops greatly at the beginning when we increase 1/f. The number
of state movements is determined by two factors: (1) the adaptation frequency
f , and (2) the skewness of the data. The skewness usually goes serious if we
increase 1/f, i.e., it always involves more state movements in a single adaptation.
As we expected, the decline of adaptation cost is much gentle when 1/f is larger.

6.3 End-to-End Latency

We proceed to evaluate the end-to-end latency of the tested solutions. In this
experiment, we use the Linear Road Benchmark (LRB) [6]. LRB models a road
toll network, in which tolls depend on the level of congestion. The primitive
LRB gadget only has 7 operators, which is too small to represent a large-scale
computation. So we extend it by connecting a number of LRB gadgets together
with a road network. The road network G = (V, E) is a graph where an edge
e ∈ E stands for an expressway of LRB and a vertex v ∈ V represents the joint
of expressways. This extension has a wide range of applications. If we want to
measure the traffic between two locations or track the route of a vehicle, then an
LRB gadget must dispatch result to its downstream LRB gadgets. Consequently,
we introduce a new operator o6 to calculate the traffic between every pairs of
vertices every 1 min. Figure 6 shows the topology of the extended LRB, where
some new streams (blue dashed arcs), have been added into a LRB gadget to
fulfill the requirement.

CBP: A New Parallelization Paradigm 317

Table 1. Statistics about end-to-end latency (ms)

Mean Median 95% Maximum

1/f 1 2 5 10 1 2 5 10 1 2 5 10 1 2 5 10

Greedy 677 610 566 617 141 121 109 116 1501 1236 1095 1130 2825 2223 1736 2117

MWSC 583 517 534 602 131 120 97 118 1532 1333 1054 1171 3103 2703 1853 1853

Baseline 775 710 673 681 153 137 114 127 1017 928 856 889 2109 1809 1673 1681

G = (V, E) is generated with the random graph presented in Sect. 6.2. In
particular, |V| = 10, |E| = 30, and the average degree d = 3. Therefore, we have
30 LRB gadgets and 180 operators in total excluding srcs and sinks. For each
LRB gadget, the data rate of the source stream is controlled with the Poisson
process used in the previous section. The experiments are conducted on EC2
with 30 VMs and accomplished in two phases: (1) We first deploy it over EC2,
and keep it running for two hours to collect statistics. The length of statistic
window is set to 1 min. (2) With the statistics, we partition the topology into
components or subgraphs with the tested algorithms. Thereafter, we deploy the
partitioned topology on EC2 and run the experiments.

We measure the end-to-end latency at 4 scales of the adaptation frequency
f , i.e., 1/f = {1, 2, 5, 10}. The latency values are given in Table 1, where “95%”
is the 95th percentile of latency. In general, the results follow what we expected.
By comparing the mean, we observe that our algorithms reduce the latencies
by about 10%–25%. It shows that the CBP algorithm can indeed improve the
performance and thus confirms the effectiveness of CBP. We can further iden-
tify the impacts of adaptation process and load imbalance in these values. For
example, the CBP algorithms are more sensitive to adaptation process and load
imbalance comparing to the greedy algorithm. The maximum latency is 3103 ms
for MWSC when 1/f = 1, which is higher than the maximum latency of Baseline.

Tuples with a latency smaller than the median are less affected by the adap-
tation process and load imbalance. In contrast, tuples with latencies larger than
95-th percentiles are greatly affected by the adaptation process and load imbal-
ance. We take the latency when 1/f = 1 as an example, the medians of MWSC
and Greedy are about 75% and 87% of that of Baseline. So the results confirm
that CBP can save communication cost efficiently. In contrast, the 95-th per-
centiles for MWSC and Greedy are about 29% and 26% greater than the baseline
algorithm.

During an adaptation, input tuples are buffered by the upstream operators.
The tuples will be replayed to downstream after the completion of adaptation.
Therefore, adaptation process increases the end-to-end latencies for a portion
of tuples. As we can see from the table, the maximum latency peaks up to
about 3 s.

For each algorithm, each numeral characteristic drops with the increase of
1/f at first and then grow with the increase of 1/f on the contrary. This behavior
is obvious for the 95-th percentile. In terms of the 95-th percentile, it is obvi-
ous MWSC is higher than Greedy and Baseline. This phenomena confirms the

318 Q. Guo and Y. Zhou

impact of adaptation process and load imbalance. The adaptation cost drops
with the increase of 1/f, but load imbalance get worse on the contrary. Thus
we observe that all lines are concave. It means that the adaptation frequency is
very important as it can trade off between impact of adaptation cost and load
imbalance. In this experiment, f = 1/2 is the best choice for MWSC and f = 1/5
is the best choice for Greedy and Baseline.

7 Related Work

Parallel stream processing. Much work has been focused on exploiting par-
allelism in stream processing. The early SPEs aim at providing transparent par-
allelization for distributed stream processing in a shared-nothing environment.
Aurora [7] and Borealis [3] supports intra-query parallelism by organizing a
topology into a set of boxes and conducting parallelization via box-splitting.

Many SPE proposals, e.g., System S [5] and Flux [22], leverage partitioned
parallelism [11] to improve scalability. They propose new “Exchange” operators
between stream producers and consumers to encapsulate the adaptive state par-
titioning and stream routing. In recent years, many efforts have been made to
improve the scalability of parallelization [12,20,21]. The MapReduce model [10]
enables programmer to think in a data-centric fashion and hence provides a prac-
tical implementation for partitioned parallelism. Distributed SPEs like Apache
Storm [1], Yahoo! S4 [18], and StreamCloud [14] are inspired by such a model.

Operator placement. If an application is geographically distributed, the
transmission latency is sensitive to the communication channels. The SAND
project [4] exploits the knowledge of the underlying network characteristics such
as topology and link bandwidths to make intelligent in-network placement of
query graph. In contrast, [19] develops a stream-based overlay network (SBON)
over Borealis, which is a network-aware optimization framework that manages
operator placement within a pool of wide-area overlay nodes in order to make
efficient use of network bandwidth. The placement decisions are made based on
the cost space that encodes multidimensional metrics such as latency and load.

COLA [15] employs graph-partitioning algorithms to compute an optimal
allocation of operators with regard to a cost model that captures the communi-
cation and CPU costs. The operator graph is partitioned into processing elements
(PE) at compile-time, which acts as a deployable unit. COLA aims at balanc-
ing load across the processing nodes and minimizing the communication cost of
the PEs. It only measures the CPU cost incurred by processing and communi-
cating, but ignores the network bandwidth usage. In addition, COLA does not
consider how to parallel the operators. Moreover a partition plan obtained at
compile-time is incapable to handle the load variations at runtime.

The essence of operator placement is to optimize an assignment of operators
to the computing nodes based on an objective function. Unfortunately, the exist-
ing solutions are static and the cost of the state migration cannot be ignored in
the presence of load variations. For more detailed comparisons of the placement
strategies, please refer to a survey paper [16].

CBP: A New Parallelization Paradigm 319

8 Conclusion

We present CBP, a succinct parallelization paradigm for DSPEs that leverages
both the connectivity and compatibility of operators. CBP seamlessly integrates
operator placement with parallelization and thereby provides a framework to
integrate the optimizations of runtime resource reconfiguration and communica-
tion cost minimization. Furthermore, we introduce a cost model that captures
the cost of communication and adaptation. Two algorithms are proposed to opti-
mize the CBP plans for a given computation. The extensive experiments confirm
that an optimized CBP plan can improve the resource efficiency of DSPEs sig-
nificantly.

References

1. Apache Storm. http://storm.apache.org/
2. Gurobi Parallel MIP solver. http://www.gurobi.com/resources/getting-started/

mip-basics
3. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,

J.-H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,
Zdonik, S.: The design of the borealis stream processing engine. In: CIDR 2005,
Asilomar, CA, January 2005

4. Ahmad, Y., Çetintemel, U.: Network-aware query processing for stream-based
applications. In: VLDB 2004, vol. 30, pp. 456–467 (2004)

5. Andrade, H., Gedik, B., Wu, K., Yu, P.S.: Scale-up strategies for processing high-
rate data streams in system S. In: ICDE 2009

6. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A., Ryvkina, E., Stone-
braker, M., Tibbetts, R.: Linear road: a stream data management benchmark. In
VLDB 2004

7. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data man-
agement applications. In: VLDB 2002, pp. 215–226 (2002)

8. Castro Fernandez, R., Migliavacca, M., Kalyvianaki, E., Pietzuch, P.: Integrating
scale out and fault tolerance in stream processing using operator state manage-
ment. In: SIGMOD 2013, pp. 725–736. ACM, New York (2013)

9. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

10. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI 2004, vol. 6. USENIX Association, Berkeley (2004)

11. DeWitt, D., Gray, J.: Parallel database systems: the future of high performance
database systems. Commun. ACM 35(6), 85–98 (1992)

12. Gedik, B., Schneider, S., Hirzel, M., Wu, K.-L.: Elastic scaling for data stream
processing. IEEE Trans. Parallel Distrib. Syst. 25, 1447–1463 (2010)

13. Graefe, G.: Encapsulation of parallelism in the volcano query processing system.
In: SIGMOD 1990, pp. 102–111. ACM (1990)

14. Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Valduriez, P.: StreamCloud:
a large scale data streaming system. In: ICDCS 2010, pp. 126–137 (2010)

15. Khandekar, R., Hildrum, K., Parekh, S., Rajan, D., Wolf, J., Wu, K.-L., Andrade,
H., Gedik, B.: COLA: optimizing stream processing applications via graph parti-
tioning. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896,
pp. 308–327. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10445-9 16

http://storm.apache.org/
http://www.gurobi.com/resources/getting-started/mip-basics
http://www.gurobi.com/resources/getting-started/mip-basics
http://dx.doi.org/10.1007/978-3-642-10445-9_16

320 Q. Guo and Y. Zhou

16. Lakshmanan, G.T., Li, Y., Strom, R.: Placement strategies for internet-scale data
stream systems. IEEE Internet Comput. 12(6), 50–60 (2008)

17. Motwani, R., Widom, J., et al.: Query processing, resource management, and
approximation in a data stream management system. In: CIDR 2003, pp. 245–
256, January 2003

18. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing
platform. In: ICDMW 2010, pp. 170–177. IEEE Computer Society, Washington,
DC (2010)

19. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: ICDE 2006.
IEEE (2006)

20. Schneider, S., Andrade, H., Gedik, B., Biem, A., Wu, K.-L.: Elastic scaling of data
parallel operators in stream processing. In: IPDPS, pp. 1–12 (2009)

21. Schneider, S., Hirzel, M., Gedik, B., Wu, K.-L.: Auto-parallelizing stateful distrib-
uted streaming applications. In: PACT 2012, pp. 53–64. ACM, New York (2012)

22. Shah, M.A., Chandrasekaran, S., Hellerstein, J.M., Franklin, M.J.:. Flux: an adap-
tive partitioning operator for continuous query systems. In: ICDE, pp. 25–36 (2002)

23. Wu, S., Kumar, V., Wu, K.-L., Ooi, B.C.: Parallelizing stateful operators in a
distributed stream processing system: how, should you and how much? In: DEBS
2012, pp. 278–289 (2012)

24. Xing, Y., Hwang, J.-H., Çetintemel, U., Zdonik, S.: Providing resiliency to load
variations in distributed stream processing. In: VLDB 2006, pp. 775–786. VLDB
Endowment (2006)

25. Xing, Y., Zdonik, S., Hwang, J.-H.: Dynamic load distribution in the borealis
stream processor. In: ICDE 2005, pp. 791–802. IEEE Computer Society (2005)

Social Network Analytics (II)

Measuring and Maximizing Influence
via Random Walk in Social Activity Networks

Pengpeng Zhao1, Yongkun Li1,2(B), Hong Xie3, Zhiyong Wu1,
Yinlong Xu1,4, and John C.S. Lui5

1 University of Science and Technology of China, Hefei, China
{roczhau,wzylucky}@mail.ustc.edu.cn, {ykli,ylxu}@ustc.edu.cn
2 Collaborative Innovation Center of High Performance Computing,

National University of Defense Technology, Changsha, China
3 National University of Singapore, Singapore, Singapore

hongx87@gmail.com
4 AnHui Province Key Laboratory of High Performance Computing, Hefei, China

5 The Chinese University of Hong Kong, Hong Kong, China
cslui@cse.cuhk.edu.hk

Abstract. With the popularity of OSNs, finding a set of most influen-
tial users (or nodes) so as to trigger the largest influence cascade is of
significance. For example, companies may take advantage of the “word-
of-mouth” effect to trigger a large cascade of purchases by offering free
samples/discounts to those most influential users. This task is usually
modeled as an influence maximization problem, and it has been widely
studied in the past decade. However, considering that users in OSNs
may participate in various kinds of online activities, e.g., giving ratings
to products, joining discussion groups, etc., influence diffusion through
online activities becomes even more significant.

In this paper, we study the impact of online activities by formulating
the influence maximization problem for social-activity networks (SANs)
containing both users and online activities. To address the computation
challenge, we define an influence centrality via random walks to measure
influence, then use the Monte Carlo framework to efficiently estimate the
centrality in SANs. Furthermore, we develop a greedy-based algorithm
with two novel optimization techniques to find the most influential users.
By conducting extensive experiments with real-world datasets, we show
our approach is more efficient than the state-of-the-art algorithm IMM
[17] when we needs to handle large amount of online activities.

Keywords: OSN · Influence maximization · Random walk

1 Introduction

Due to the popularity of online social networks (OSNs), viral marketing which
exploits the “word-of-mouth” effect is of significance to companies which want
to promote product sales. Therefore, it is of interest to find the best initial set of
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 323–338, 2017.
DOI: 10.1007/978-3-319-55699-4 20

324 P. Zhao et al.

Fig. 1. An example of social-activity network (SAN).

users so as to trigger the largest influence spread. This viral marking problem can
be modeled as an influence maximization problem, which was first formulated
by Kempe et al. [12]. That is, given an OSN and an information diffusion model,
how to select a set of k users, which is called the seed set, so as to trigger the
largest influence spread. This problem is proved to be an NP-hard problem [4,6],
and it has been studied extensively in the past decade [4–6,17,18].

Note that users in today’s OSNs may participate in various kinds of online
activities, e.g., joining a discussion group, and clicking like on Facebook etc.
Hence, users not only can create friendship relationships, which we call user-user
links, but can also form relationships by participating in online activities, which
we call user-activity-user links. For example, if two users in Facebook express
like to the same public page, then they form a user-activity-user link no matter
they are friends or not. We call this kind of networks which contain both user-
user relationships and user-activity-user relationships as social-activity networks
(SANs).

With the consideration of online activities in SANs, influence may also spread
through the user-activity-user links as well as the user-user links. In this paper,
we focus on the online activities which generate positive influence, e.g., click-
ing like on the same public page in Facebook, giving high rating to the same
product in online rating systems, and joining in a community sharing the same
interest in online social networks. Due to the large amount of online activities,
e.g., each pair of users may participate in multiple online activities, influence
diffusion through the user-activity-user links becomes even more significant, and
so only considering OSNs alone may not trigger the largest influence spread.
Existing works on influence maximization usually focus on OSNs only and do
not take the impact of online activities into consideration. This motivates us to
formulate the influence maximization problem for SANs, and to determine the
most influential nodes by taking online activities into consideration.

However, solving the influence maximization problem in SANs with online
activities is challenging. First, influence maximization in OSNs without online
activities was already proved to be NP-hard, and considering online activities
makes this problem even more complicated. Second, the amount of online activ-
ities in a SAN is very large even for small OSNs, this is because online activities

Measuring and Maximizing Influence via Random Walk 325

happen more frequently than friendship formation in OSNs. As a result, the
underlying graph which characterizes users and their relationships may become
extremely dense if we transform the user-activity-user links to user-user links, so
it requires highly efficient algorithms for finding the most influential nodes. To
address the above challenges, in this paper, we make the following contributions.

– We generalize the influence diffusion models for SANs by modeling SANs as
hypergraphs, and approximate the influence of nodes in SANs by defining an
influence centrality based on random walk.

– We employ the Monte Carlo framework to estimate the influence centrality in
SANs, and also develop a greedy-based algorithm with two novel optimization
techniques to solve the influence maximization problem for SANs.

– We conduct experiments with real-world datasets, and results show that our
approach is more efficient while keep almost the same accuracy compared to
the state-of-the-art algorithm.

This paper is organized as follows. In Sect. 2, we formulate the influence
maximization problem for SANs. In Sect. 3, we present our random walk based
methodology. In Sect. 4, we present the Monte Carlo method to estimate the
influence centrality in SANs. In Sect. 5, we present our greedy-based algorithm
and optimization techniques to solve the influence maximization problem. In
Sect. 6, we present the experimental results. Related work is given in Sect. 7 and
Sect. 8 concludes.

2 Problem Formulation

In this section, we first model the SAN with a hypergraph, and then formulate
the influence maximization problem for SANs.

2.1 Model for SANs

We use a hypergraph G(V,E, E1, ..., El) to characterize a SAN, where V denotes
the set of users, E denotes the user-user links, and Ei (i = 1, 2, ..., l) denotes the
set of type i hyperedges in which each hyperedge is a set of users who participated
in the same online activity, and represented as a tuple. Considering Fig. 1, only
activity a is of the first type, so E1 = {(1, 2, 3, 5)}. For ease of presentation,
we denote N(j) as the set of neighbors of user j, i.e., N(j) = {i|(i, j) ∈ E},
Me(j) as the set of users except for user j who connected to the hyperedge e,
i.e., Me(j) = {i|i ∈ e,&i �= j}, and denote Et(j) as the set of type t hyperedges
that are connected to user j, i.e., Et(j) = {e|e ∈ Et&j ∈ e}. Considering Fig. 1,
N(1) = {2}, Me(1) = {2, 3, 5} when e = (1, 2, 3, 5) and E1(1) = {(1, 2, 3, 5)}.

2.2 Influence Maximization in SANs

Before describe the influence diffusion process for SANs, we first recall the inde-
pendent cascade model(IC) which was proposed by Kempe et al. in [12]. Suppose

326 P. Zhao et al.

that each user has two states, either active or inactive. At first, we initialize a set
of users as active. For an active user i, she will activate each of her inactive neigh-
bor j (j ∈ N(i) where N(i) denotes the neighbor set of user i) with probability
qij (0 ≤ qij ≤ 1). One common setting of qij is qij = 1

dj
, e.g., [4,5,12,17,18],

where dj denotes the degree of user j, i.e., dj = |N(j)|. After a neighbor j being
activated, then she will further activate her inactive neighbors in the set N(j),
and this diffusion process continues until no user can change her state. We call
the expected size of the final set of active users the influence spread, and denote
it as σ(S(k)) if the set of k initial active users is S(k).

Now we describe the influence diffusion process for SANs. The key issue is
to define the influence between user i and user j (i.e., gij) after taking online
activities into consideration. Our definition is based on three criteria:

– A user may make a purchase due to her own interest or being influenced
by others through user-user or user-activity-user links, so we define the total
influence probability by one-hop neighbors as c (0 < c < 1), and call it the
decay parameter. As we have l types of online activities, we define αjt (where
0 ≤ αjt ≤ 1 and 0 ≤ ∑l

t=1 αjt ≤ 1) as the proportion of influence to user
j through type t online activities, and call it weight of activities. Clearly,
1 − ∑l

t=1 αjt indicates the proportion of influence from direct neighbors.
– For the influence to user j from direct neighbors, we define the weight of each

neighbor i (i ∈ N(j)) as uij , and assume that 0≤uij ≤1 and
∑

i∈N(j) uij =1.
– For the influence to user j through the type t online activities, we define the

weight of each online activity a as vaj , where 0 ≤ vaj ≤ 1 and
∑

a∈Nt(j)
vaj =

1. Besides, considering that maybe multiple users participated in the same
online activity a, we define the weight of each user i who participated in a as
ua

ij (i ∈ N(a)\{j}), and assume that 0 ≤ ua
ij ≤ 1 and

∑
i∈N(a)\{j} ua

ij = 1.

For simplicity, we let uij = 1/|N(j)| in this paper. Note that this uniform
setting is exactly the same as the IC model in OSNs, which has been widely stud-
ied in [4,5,12,17,18]. Similarly, we also let vaj = 1/|Et(j)| and ua

ij = 1/|Me(j)|
by following the uniform setting. We would like to point out that our random
walk approach in this paper also applies to general settings. Now we can define
the influence of user i to user j, which we denote as gij :

gij =c ×
(
1 −∑l

t=1 αjt

|N(j)| × 1{i∈N(j)} +
∑

t∈[1,l]

∑

e∈Et(j)

αjt

|Et(j)| × 1

|Me(j)| ×1{i∈Me(j)}
)
. (1)

The first part in the right hand side of Eq. (1) denotes the influence diffusion
through user-user links, and the second part represents the influence diffusion
through user-activity-user links.

Now we formulate the influence maximization problem for SANs, which we
denote as IMP(SAN), as follows.

Definition 1. IMP(SAN): Given a SAN G(V,E, E1, ..., El), an influence dif-
fusion model with parameters αjt, find a set of k nodes S(k), where k is an
integer, so as to make the influence spread σ(S(k)) maximized.

Measuring and Maximizing Influence via Random Walk 327

3 Methodology

In this section, we present our methodology to address the (IMP(SAN)) prob-
lem. To reduce the large computation cost, we first develop a random walk
framework on hypergraphs to estimate the influence diffusion process. Then, we
define a centrality measure based on random walk to approximate the influence
of a node set. With this centrality measure, we can approximate the influence
maximization problem by solving a centrality maximization problem.

3.1 Random Walk on Hypergraph

Here, we present our random walk based framework, which is extended from
the classical random walk on a simple unweighted graph G(V,E), which can
be stated as follows. For a random walk at vertex i ∈ V , it uniformly selects
at random a neighbor j (j ∈ N(i)), and then moves to j in the next step.
Mathematically, if we denote Y (t) as the position of the walker at step t, then
{Y (t)} constitutes a Markov chain where the one-step transition probability pij

is defined as pij = 1/|N(i)| if (i, j) ∈ E, and 0 otherwise.
We now define the one-step transition probability pij when performing a

random walk on the hypergraph G(V,E, E1, ..., El). Note that each hyperedge
may contain more than two vertices, so we take the one-step random walk from
user i to user j as a two-step process.
• Step one: Choose a hyperedge associated to user i. Precisely, according to the
influence diffusion models in Sect. 2.2, we set the probability of selecting type t
hyperedges as αit, and choose hyperedges of the same type uniformly at random.
Mathematically, if the walker is currently at user i, then it chooses a hyperedge
e of type t with probability αit

|Et(i)| .
• Step two: Choose a user associated to the hyperedge e selected in step one as
the next stop of the random walk. We consider random walks without backtrace.
In particular, if a walker is currently at node i, then we select the next stop
uniformly from the vertices that are connected to the same hyperedge with user
i. We define the probability of choosing user j as 1/|Me(i)|.

By combing the two steps defined above, we can derive the transition prob-
ability from user i to j as follows, and we can find gji = c × pij .

pij =
1 −∑l

t=1 αit

|N(i)| × 1{j∈N(i)} +
∑

t∈[1,l]

∑

e∈Et(i)

αit

|Et(i)| × 1

|Me(i)| × 1{j∈Me(i)}. (2)

3.2 Influence Centrality Measure

To address the IMP(SAN) problem, one key issue is to measure the influence
of a node set. To achieve this, we define a centrality measure based on random
walks on hypergraphs to approximate the influence of a node set S. We call it
influence centrality, and denote it as I(S), which is defined as follows.

I(S) =
∑

j∈V
h(j, S), (3)

328 P. Zhao et al.

where h(j, S) aims to approximate the influence of S to j, which is called decayed
hitting probability. It is defined as

h(j, S) =

{∑
i∈V cpjih(i, S), j /∈ S,

1, j ∈ S,
(4)

where c is the decay parameter defined in Sect. 2.2, and pji is the one-step
transition probability defined in Eq. (2).

To solve the influence maximization problem of IMP(SAN), we use the
influence centrality measure I(S) to approximate the influence of the node set
S, and our goal is to find a set S of k users so that I(S) is maximized. In
other words, we approximate the influence maximization problem IMP(SAN)
by solving the centrality maximization problem CMP defined as follows.

Definition 2. CMP: Given a hypergraph G(V,E, E1, ..., El) and the correspond-
ing parameters αjt, find a set S of k nodes, where k is an integer, so as to make
the influence centrality of the set S of k nodes I(S) maximized.

4 Centrality Computation

We note that the key challenge of solving the centrality maximization problem
CMP is how to efficiently estimate the influence centrality of a node set I(S),
or the decayed hitting probability h(j, S). We give an efficient framework to
estimate h(j, S) as follows. We first rewrite h(j, S) in a linear expression which
is an infinite converging series, and then truncate the converging series to save
computation time (see Sect. 4.1). To further estimate the truncated series, we
first explain the expression with a random walk approach, and then use a Monte
Carlo framework via random walks to estimate it efficiently (see Sect. 4.2).

4.1 Linear Expression

We first transform h(j, S) defined in Eq. (4) to a linear expression.

Theorem 1. The decayed hitting probability h(j, S) can be rewritten as

h(j, S) = ceT
j Q

′e + c2eT
j QQ′e + c3eT

j Q
2Q′e + · · · . (5)

whereQ is a (|V |− |S|)× (|V |− |S|) dimensional matrix which describes the tran-
sition probabilities between two nodes in the set V − S, Q′ is a (|V | − |S|) × |S|
dimensional matrix which describes the transition probabilities from a node in V −S
to a node in S, I is an identity matrix, e is a column vector with all elements being
1, and finally ej is a column vector with only the element corresponding to node j
being 1 and 0 for all other elements.

Measuring and Maximizing Influence via Random Walk 329

Proof: Please refer to the technical report [21]. �
We only keep the L leading terms of the infinite series, and denote the trun-

cated result as hL(j, S), so we have

hL(j, S) = ceT
j Q

′e + c2eT
j QQ′e + ... + cLeT

j Q
L−1Q′e. (6)

Since c is defined as 0 < c < 1, the series truncation error is bounded as follows.

0 ≤ h(j, S) − hL(j, S) ≤ cL+1/(1 − c). (7)

Based on the above error bound, we can see that hL(j, S) converges to h(j, S)
with rate cL+1. This implies that if we want to compute h(j, S) with a maximum
error ε (0 ≤ ε ≤ 1), we only need to compute hL(j, S) by taking a sufficiently
large enough L, or L ≥ � log(ε−εc)

log c � − 1.

4.2 Monte Carlo Algorithm

In this subsection, we present a Monte Carlo algorithm to efficiently approxi-
mate hL(j, S). Our algorithm is inspired from the random walk interpretation
of Eq. (6), and it can achieve a high accuracy with a small number of walks.

Consider the random walk interpretation of a particular term eT
j Q

t−1Q′e
(t = 1, ..., L) in Eq. (6). Let us consider a L-step random walk starting from
j /∈ S on the hypergraph. At each step, if the walker is currently at node k
(k /∈ S), then it selects a node i and transits to i with probability pki, which is
defined in Eq. (2). As long as the walker hits a node in S, then it stops. Let j(t)

be the t-th step position, and define an indicator X(t) as

X(t) =

{
1, j(t) ∈ S,

0, j(t) /∈ S.

We can see that eT
j Q

t−1Q′e is the probability that a random walk starting
from j hits a node in S at the t-th step. We have

eT
j Q

t−1Q′e = E[X(t)]. (8)

By substituting eT
j Q

t−1Q′e with Eq. (8), we can rewrite hL(j, S) as

hL(j, S) = cE[X(1)] + c2E[X(2)] + · · · + cLE[X(L)]. (9)

Now we estimate hL(j, S) by using a Monte Carlo method with random walks
on the hypergraph based on Eq. (9). Specifically, for each node j where j /∈ S,
we set R independent L-step random walks starting from j. We denote the t-th
step position of the R random walks as j

(t)
1 , j

(t)
2 , ... , j

(t)
R , respectively, and use

Xr(t) to indicate whether j
(t)
r belongs to set S or not. Precisely, we set Xr(t) = 1

if j
(t)
r ∈ S, and 0 otherwise, so ctE[X(t)] can be estimated as

ctE[X(t)] ≈ ct

R

∑R

r=1
Xr(t).

330 P. Zhao et al.

By substituting ctE[X(t)] in Eq. (9), we can approximate hL(j, S), which we
denote as ĥL(j, S), as follows.

ĥL(j, S) =
c

R

∑R

r=1
Xr(1) + · · · +

cL

R

∑R

r=1
Xr(L). (10)

Algorithm 1 presents the process of the Monte Carlo method described above.
We can see that its time complexity is O(RL) as the number of types of online
activities l is usually a small number. In other words, we can estimate hL(j, S) in
O(RL) time and compute I(S) in O(nRL) time as we need to estimate hL(j, S)
for all nodes. The main benefit of this Monte Carlo algorithm is that its running
time is independent of the graph size, so it scales well to large graphs.

Algorithm 1. Monte Carlo Estimation for hL(j, S)
1: function hL(j, S)
2: σ ← 0;
3: for r = 1 to R do
4: i ← j;
5: for t = 1 to L do
6: Generate a random number x ∈ [0, 1];
7: for T = 0 to l do
8: if x ≤ αiT then � α0T = 1 −∑l

T=1 αiT ;
9: E ← ET (i);

10: break;
11: x ← x − αiT ;
12: Select a hyperedge e from E randomly;
13: i← select a user from {k|k∈e, k �= i} randomly;
14: if i ∈ S then
15: σ ← σ + ct/R;
16: break;
17: return σ;
18: end function

Note that ĥL(j, S) computed with Algorithm1 is an approximation of
hL(j, S), and the approximation error depends on the sample size R. To estimate
the number of samples required to compute hL(j, S) accurately, we derive the
error bound by applying Hoeffding inequality [10], and the results are as follows.

Theorem 2. Let the output of Algorithm1 be ĥL(j, S), then we have

P{|ĥL(j, S) − hL(j, S)|>ε}≤2L exp(−2(1 − c)2ε2R). (11)

Proof: Please refer to the technical report [21]. �
Based on Theorem 2, we see that Algorithm 1 can estimate hL(j, S) with a

maximum error ε with least probability 1 − δ (0 < δ, ε < 1) by setting R ≥
log(2L/δ)/(2(1 − c)2ε2).

Measuring and Maximizing Influence via Random Walk 331

Algorithm 2. Baseline Greedy Alg. for Maximizing I(S)
Input: A hypergraph, and a parameter k;
Output: A set S of k nodes for maximizing I(S);
1: S ← ∅, I(S) ← 0;
2: for s = 1 to k do
3: for u ∈ (V − S) do
4: I(S ∪ {u}) ← 0;
5: for j ∈ (V − S ∪ {u}) do
6: I(S ∪ {u}) ← I(S ∪ {u}) + h(j, S ∪ {u});
7: v ← arg maxu∈(V −S) I(S ∪ {u}) − I(S);
8: S ← S ∪ {v};

5 Centrality Maximization

In this section, we develop efficient algorithms to address the centrality max-
imization problem CMP defined in Sect. 3.2. Noted that even though we can
efficiently estimate the decayed hitting probability h(j, S) by using random walks
(see Sect. 4), finding a set S of k nodes in a SAN to maximize its influence central-
ity I(S) is still computationally difficult as it requires to estimate the influence
centrality of all combinations of k nodes. In particular, CMP is NP-hard.

Theorem 3. The centrality maximization problem CMP is NP-hard.

Proof: Please refer to the technical report [21]. �
To solve the centrality maximization problem CMP, we develop greedy-

based approximation algorithms by exploiting the submodularity property of
I(S). Specifically, we first show the submodularity property and present a base-
line greedy algorithm to maximize I(S), and then develop two novel optimization
techniques to accelerate the greedy algorithm.

5.1 Baseline Greedy Algorithm

Before presenting the greedy-based approximation algorithm for maximizing
I(S), we first show that I(S) is a non-decreasing submodular function, and
the result is stated in the following theorem.

Theorem 4. The centrality I(S) is a non-decreasing submodular function.

Proof: Please refer to the technical report [21]. �
Based on the submodularity property, we develop a greedy algorithm for

approximation when maximizing I(S), and we call it the baseline greedy algo-
rithm. Algorithm 2 describes this procedure. To find a set of k nodes to maximize
I(S), the algorithm works for k iterations. In each iteration, it selects the node
which maximizes the increment of I(S).

Recall that the time complexity for estimating the influence of a set S to
a particular node j /∈ S, i.e., h(j, S), is O(RL) (see Sect. 4.2). Thus, the total

332 P. Zhao et al.

time complexity for the baseline greedy algorithm is O(kn2RL) where n denotes
the total number of users in the SAN, because estimating the influence of a set
S∪{u} requires us to sum up its influence to all nodes, and we need to check every
node u so as to select the one which maximizes the increment of I(S). Although
the baseline greedy algorithm gives a polynomial time complexity, it is inefficient
when the number of users becomes large. To further speed up the computation,
we present two novel optimization techniques in the next subsection.

5.2 Optimizations

• Parallel Computation: The key component in the greedy algorithm is to
measure the marginal increment of the influence after adding node u, i.e., Δ(u) =
I(S ∪ {u}) − I(S), which can be derived as follows.

Δ(u) =
[

1 −
∑∞

h=1
chP (u, S, h)

]

×
[

1 +
∑

j∈(V −S∪{u})

∑∞
h=1

chPS(j, {u}, h)

]

.

In the baseline greedy algorithm, Δ(u)’s are computed sequentially, which as a
result incurs a large time overhead. Our main idea to speed up the computation
is to estimate the marginal increment of all nodes, i.e., Δ(u) for every u, in
parallel. Specifically, when performing R random walks from a particular node
j, we measure the contribution of j to the marginal increment of every node.
In other words, we obtain PS(j, u, h) for every u by using only the R random
walks starting from j. As a result, we need only O(nR) random walks to derive
the marginal increment of all nodes, i.e., Δ(u) for every u, instead of O(n2R)
random walks as in the baseline greedy algorithm.
• Walk Reuse: The core idea is that in each iteration of choosing one node
to maximize the marginal increment, we record the total O(nR) random walks
in memory, and apply the updates accordingly after one node is added into the
result set. By doing this, we can reuse the O(nR) random walks to derive the
marginal increment in the next iteration instead of starting new random walks
from each node again.

By incorporating the above optimization techniques, we can reduce the time
complexity to O(nRL), where L denotes the maximum walk length. In other
words, we can use the L leading terms to estimate

∑∞
h=1 chPS(j, {u}, h) and∑∞

h=1 chP (u, S, h) as described in Sect. 4. Thus, we let each walk runs for L
steps at most. Algorithm 3 states the procedure. We use score[u] and P [u] to
record

∑
j∈V −S∪{u}

∑∞
h=1 chPS(j, {u}, h) and

∑∞
h=1 chP (u, S, h) for computing

Δ(u), respectively. Algorithm 3 runs in two phases. The first phase (line 1–13)
is to select the first seed node by running random walks and also record all the
walking information for reuse. The second phase (line 14–18) is to select the
remaining k − 1 nodes based on the stored information which requires to be
updated after selecting each node. We give the update function in Algorithm4.

The update function is to update the walk information stored in score and P .
Every time after we selecting a node v, the random walk in the following iterations
should stop when it encounters v, and the values stored in score and P should
change accordingly. To achieve this, for each random walk that hits v (line 2),

Measuring and Maximizing Influence via Random Walk 333

Algorithm 3. Optimized Greedy Algorithm
Input: A hypergraph and a parameter k;
Output: A set S of k nodes for maximizing I(S);
1: S ← ∅, score[1...n] ← 0, P [1...n] ← 0;
2: for j ∈ V do
3: for r = 1 to R do
4: i ← j, visited ← ∅;
5: for t = 1 to L do
6: visited ← visited ∪ {i};
7: i ← Select a user according to the transition prob.;
8: RW [j][r][t] ← i;
9: if i /∈ visited then

10: index[i].add(item(j, r, t));

11: score[i] ← score[i] + ct

R
;

12: v ← arg maxu∈V score[u];
13: for s = 2 to k do
14: Update (RW, index, P, score, S, v, L), S ← S ∪ {v};
15: v ← arg maxu∈(V −S)(1 − P [u])(1 + score[u]);
16: S ← S ∪ {v};

Algorithm 4. Update Function
1: function Update (RW, index, P, score, S, v, L)
2: for w ∈ index[v] do
3: k ← L;
4: for t = 1 to L do
5: if RW [w.j][w.r][t] ∈ S then
6: k ← t;
7: break;
8: if k == L then
9: P [w.j] ← P [w.j] + ct/R

10: for i = w.t + 1 to k do
11: u ← RW [w.j][w.r][i], score[u] ← score[u] − ct/R;
12: end function

we first check if it has visited any node in S (line 4–7). If not, we increase P [w.j]
after adding v in S (line 8,9). Since the following walks should stop when hitting
v, we update score[u] if node u is visited after v (line 10–12).

6 Experiments

To show the efficiency and effectiveness of our approach, we conduct experi-
ments on real-world datasets. In particular, we first show that incorporating
online activities in seed selection can lead to a significant improvement on the
influence spread, i.e., influence more users with the same seed size. Then we show
that our IM-RW algorithm takes much less running time than the state-of-the-
art influence maximization algorithm, while achieves almost the same influence
spread.

334 P. Zhao et al.

6.1 Datasets

We consider three datasets from social rating systems: Ciao [16], Yelp [1] and
Flixster [11]. Such social rating networks are composed of a social network, where
the links can be interpreted as either friendships (undirected link) or a following
relationship (directed link), and a rating network, where a link represents that
a user assigns a rating (or writes a review) to a product. Assigning a rating
corresponds to an online activity, and multiple users assigning ratings to the
same product means that they participate in the same online activity. In the
rating network, we remove rating edges if the associated rating is less than 3
so as to filter out the users who dislike a product. Through this we guarantee
that all the remaining users who give ratings to the same product have similar
interests, e.g., they all like the product. Since the original Flixster dataset is too
large to run the state-of-the-art influence maximization algorithms, we extract
only a subset of the Flixster dataset for comparison studies. In particular, since
the OSN of Flixster is almost a connected component, we randomly select a user,
and run the breadth-first search algorithm until we get 300,000 users. We state
the statistics of the three datasets in Table 1. All algorithms are run on a server
with two Intel Xeon E5-2650 2.60 GHz CPU and 64 GB memory.

Table 1. Datasets Statistics.

Dataset Users Links in OSN Products Ratings OSN type

Ciao 2,342 57,544 15,783 32,783 directed

Yelp 174,100 2,576,179 56,951 958,415 directed

Flixtser 300,000 6,394,798 28,262 2,195,134 undirected

6.2 The Benefit of Incorporating Activities

We first show that incorporating online activities in seed selection can lead to a
significant improvement on the influence spread. We fix the seed size k as 50. To
show the impact of activities, we use the state-of-the-art influence maximization
algorithm IMM [17] to select the seed set on OSNs and use our IM-RW algorithm
to select the seed set on SANs which take online activities into account. Then
we use simulations to estimate the expected influence spread of the selected
k users on SANs and denote the results as σ(OSN) and σ(SAN), respectively.
Finally, we define the improvement ratio on the expected influence spread as
[σ(SAN) − σ(OSN)]/σ(OSN).

To present the key insights, we consider the simple case in which there is
only one type of users and online activities. Namely, all users have a same value
of α which indicates the weight of activities. We emphasize that our model also
works in the general case of multiple types of users and online activities.

Measuring and Maximizing Influence via Random Walk 335

Weight of Activities: α
0 0.1 0.2 0.3 0.4 0.5

Im
p

ro
ve

m
en

t
R

at
io

0

0.05

0.1

0.15

0.2

0.25

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

Weight of Activities: α
0 0.1 0.2 0.3 0.4 0.5

Im
p

ro
ve

m
en

t
R

at
io

0

0.05

0.1

0.15

0.2

0.25

0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

Weight of Activities: α
0 0.1 0.2 0.3 0.4 0.5

Im
p

ro
ve

m
en

t
R

at
io

0

0.05

0.1

0.15

0.2

0.25

0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

(a) Ciao (b) Yelp (c) Flixster

Fig. 2. Impact of online activities on influence spread.

Figure 2 depicts the improvement of incorporating online activities by varying
the weight of activities α from 0 to 1. The horizontal axis shows the value of α,
and the vertical axis presents the corresponding improvement ratio. From Fig. 2,
one can observe that the improvement ratio is 0 when α = 0. This is because
users are not affected by other users through online activities when α = 0. As
α increases, the improvement ratio also increases. This shows that as users are
more prone to be affected by other users through online activities, incorporating
online activities bring larger benefit. When α = 0.5, the improvement ratio is
around 25% for Ciao dataset. That is, we can influence 25% more users when
incorporating online activities in the seed selection. Similar conclusions can also
be observed for the datasets of Yelp and Flixster. It is interesting to observe that
as α approaches to one, the improvement ratio reaches up to 16 for Flixster,
which implies a more than an order of magnitude improvement. In summary,
incorporating online activities in the seed selection by using IM-RW significantly
improves the selection accuracy.

6.3 Performance Evaluation of IM-RW

In this subsection, we validate the efficiency and effectiveness of IM-RW by com-
paring it with IMM, which is the state-of-the-art algorithm for solving influence
maximization problem in OSNs, from two aspects, the running time and the
influence spread. Note that IMM was originally developed for OSNs without
online activities being considered, so for fair comparison, we transform SANs to
a weighted graph by also taking online activities into account, and then apply
IMM on the weighted graph to derive the most influential nodes.

We first compare the running time of IM-RW and IMM by varying the weight
of activities α and the seed size k, and the results are presented in Figs. 3 and 4.
Specifically, Fig. 3 shows that IMM takes much longer time than IM-RW, espe-
cially when the network is large and online activities become more important
(i.e., with larger α). This is because as α increases, the time cost of IMM depends
more on user-activity-user links than user-user links. Thus, as the amount of user-
activity-user links is much more than that of user-user links in SANs, the time cost
of IMM will increase. On the other hand, when we fix α as 0.8 and vary the seed
size k, Fig. 4 also shows that IMM takes much longer time than IM-RW under all
settings. Therefore, we can conclude that our IM-RW algorithm really improves

336 P. Zhao et al.

Weight of Activities: α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e(
s)

0

0.5

1

1.5

2
IM-RW
IMM

Weight of Activities: α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e(
s)

0

50

100

150
IM-RW
IMM

Weight of Activities: α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e(
s)

0

600

200

300

400

500

600

700
IM-RW
IMM

(a) Ciao (b) Yelp (c) Flixster

Fig. 3. Running time of IM-RW and IMM with different activity weights.

Seed Size: k
10 20 30 40 50 60 70 80 90 100

T
im

e(
s)

0

0.2

0.4

0.6

0.8

1

1.2
IM-RW
IMM

Seed Size: k
10 20 30 40 50 60 70 80 90 100

T
im

e(
s)

0

20

40

60

80

100

120
IM-RW
IMM

Seed Size: k
10 20 30 40 50 60 70 80 90 100

T
im

e(
s)

0

200

400

600

800
IM-RW
IMM

(a) Ciao (b) Yelp (c) Flixster

Fig. 4. Running time of IM-RW and IMM with different seed sizes.

the efficiency of solving the influence maximization problem in SANs with online
activities being considered.

We further show the influence spread of the most influential users selected
by the two algorithms in Fig. 5. The horizontal axis shows the values of α, and
the vertical axis represents the corresponding influence spread. We see that by
taking online activities into consideration, both IMM and IM-RW can achieve
almost the same performance. Because IMM is an influence maximization algo-
rithm with theoretical performance guarantees, we can conclude that our IM-RW
approach also has a good performance to maximize the influence spread.

Summary: Our IM-RW algorithm achieves a good performance in both the
running time and the influence spread by taking online activities into account
in SANs. In particular, comparing to the state-of-the-art algorithm IMM, our
IM-RW algorithm achieves almost the same performance in seed selection, while
it only requires much less running time.

Weight of Activities: α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
fl

u
en

ce
 S

p
re

ad

0

50

100

150

200

250

300

350
IM-RW
IMM

Weight of Activities: α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
fl

u
en

ce
 S

p
re

ad

0

2000

4000

6000

8000 IM-RW
IMM

Weight of Activities: α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
fl

u
en

ce
 S

p
re

ad

0

2000

4000

6000

8000
IM-RW
IMM

(a) Ciao (b) Yelp (c) Flixster

Fig. 5. Influence spread of IM-RW and IMM.

Measuring and Maximizing Influence via Random Walk 337

7 Related Work

Influence maximization problem in OSNs was first formulated by Kempe et al.
[12], and in this seminal work, the authors proposed the IC model and the LT
model. Since then, this problem receives a lot of interests in academia in the
past decade [4–6]. Because of the NP-hardness under both the IC model [4] and
the LT model [6], many of the previous studies focus on how to reduce the time
complexity. Recently, Borgs et al. [3] developed an algorithm which maintains
the performance guarantee while reduces the time complexity significantly, and
Tang et al. [17,18] further improved the method and proposed the IMM algo-
rithm, which is the state-of-the-art solution for influence maximization in OSNs.
Besides reducing the computation overhead, several works improved the influ-
ence models, for example, topic-aware influence model [2], competitive influence
model [14], opinion-based influence model [9] etc.

Centrality measure based approach was also studied, for example, the studies
[5,7,8,19] find the most influential nodes based on degree centrality and closeness
centrality. In terms of random walk, it is widely used to analyze big graphs, e.g.,
PageRank computation [15], graph sampling [20], and SimRank [13] etc.

We would like to emphasize that our work differs from existing studies which
address the traditional influence maximization problem, while we take online
activities into consideration. When we consider these online activities, only
considering user-user links alone may not trigger the largest influence spread.
Although we can also transform the user-activity-user links to user-user links,
the underlying graph may become extremely dense so that traditional methods
may not be efficient.

8 Conclusions

In this paper, we address the influence maximization problem in SANs with a
random walk approach. Specifically, we propose a general framework to measure
the influence of nodes in SANs via random walks on hypergraphs, and develop
a greedy-based algorithm with two novel optimization techniques to find the
top k most influential nodes in SANs by using random walks. Experiments with
real-world datasets show that our approach greatly improves the computation
efficiency, while keeps almost the same performance in seed selection accuracy
compared to IMM, the state-of-the-art algorithm.

Acknowledgements. This work was supported by National Nature Science Founda-
tion of China (61303048 and 61379038), and Anhui Provincial Natural Science Foun-
dation (1508085SQF214).

References

1. Yelp Dataset. https://www.yelp.com/dataset challenge/dataset
2. Barbieri, N., Bonchi, F., Manco, G.: Topic-aware social influence propagation mod-

els. In: Proceedings of ICDM (2012)

https://www.yelp.com/dataset_challenge/dataset

338 P. Zhao et al.

3. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in
nearly optimal time. In: Proceedings of SODA (2014)

4. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: Proceedings of ACM KDD (2010)

5. Chen, W., Wang, Y., Yang, S.: efficient influence maximization in social networks.
In: Proceedings of ACM KDD (2009)

6. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks
under the linear threshold model. In: Proceedings of IEEE ICDM (2010)

7. Everett, M.G., Borgatti, S.P.: The centrality of groups and classes. J. Math. Sociol.
23(3), 181–201 (1999)

8. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw.
1(3), 215–239 (1979)

9. Galhotra, S., Arora, A., Roy, S.: Holistic influence maximization: Combining scal-
ability and efficiency with opinion-aware models. arXiv preprint arXiv:1602.03110
(2016)

10. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

11. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for
recommendation in social networks. In: Proceedings of ACM RecSys (2010)

12. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of ACM KDD (2003)

13. Kusumoto, M., Maehara, T., Kawarabayashi, K.-I.: Scalable similarity search for
SimRank. In: Proceedings of ACM SIGMOD (2014)

14. Lin, Y., Lui, J.C.: Analyzing competitive influence maximization problems with
partial information: an approximation algorithmic framework. Perform. Eval. 91,
187–204 (2015)

15. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to The Web. Technical report (1999)

16. Tang, J., Gao, H., Liu, H.: mTrust: discerning multi-faceted trust in a connected
world. In: Proceedings of ACM WSDM (2012)

17. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martin-
gale approach. In: Proceedings of ACM SIGMOD (2015)

18. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity
meets practical efficiency. In: Proceedings of ACM SIGMOD (2014)

19. Zhao, J., Lui, J., Towsley, D., Guan, X.: Measuring and maximizing group closeness
centrality over disk-resident graphs. In: Proceedings of SIMPLEX (2014)

20. Zhao, J., Lui, J., Towsley, D., Wang, P., Guan, X.: A tale of three graphs: sampling
design on hybrid social-affiliation networks. In: Proceedings of IEEE ICDE (2015)

21. Zhao, P., Li, Y., Xie, H., Wu, Z., Xu, Y., Lui, J.C.S.: Measuring and Maximizing
Influence via Random Walk in Social Activity Networks, Technical report. https://
arxiv.org/abs/1602.03966

http://arxiv.org/abs/1602.03110
https://arxiv.org/abs/1602.03966
https://arxiv.org/abs/1602.03966

Adaptive Overlapping Community Detection
with Bayesian NonNegative Matrix Factorization

Xiaohua Shi1,2(B), Hongtao Lu1, and Guanbo Jia3

1 MOE-Microsoft Laboratory for Intelligent Computing and Intelligent Systems,
Department of Computer Science and Engineering,

Shanghai JiaoTong University, Shanghai, China
xhshi@sjtu.edu.cn

2 Library, Shanghai Jiaotong University, Shanghai, China
3 University of Birmingham, Birmingham, UK

Abstract. Overlapping Community Detection from a real network is
unsupervised, and it is hard to know the exact community number or
quantized strength of every node related to each community. Using Non-
negative Matrix Factorization (NMF) for Community Detection, we can
find two non-negative matrices from whole network adjacent matrix, and
the product of two matrices approximates the original matrix well. With
Bayesian explanation in factorizing process, we can not only catch most
appropriate count of communities in a large network with Shrinkage
method, but also verify good threshold how a node should be assigned
to a community in fuzzy situation.

We apply our approach in some real networks and a synthetic net-
work with benchmark. Experimental results for overlapping community
detection show that our method is effective to find the communities num-
ber and overlapping degree, and achieve better performance than other
existing overlapping community detection methods.

Keywords: Overlapping community detection · Non-negative matrix
factorization · Bayesian inference · Automatic relevance determination

1 Introduction

Overlapping Community Detection is an important approach in complex net-
works to understand and analysis large network character [3,50], such as social
network [30,49], collaborative network [39], and biological network [1]. We can
find most correlated overlapping sub-communities to simplify global structure
to understand the network topology, and keep original network with overlapping
structure especially in density network.

It is a recognition with community detection that nodes in same commu-
nity are densely connected, and nodes in different communities are sparsely
connected. A node can be allocated into different communities in overlapping
situation [55]. We can find overlapping communities with methods as clique
percolation techniques [23], random walk [18], label propagation [12,51], seed
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 339–353, 2017.
DOI: 10.1007/978-3-319-55699-4 21

340 X. Shi et al.

expansion [47], objective function optimization (modularity or other function)
[35], or statistical inference [11,40,48]. Overlapping communities can also be
detected based on the graph partitioning approach, which tries to find underling
clusters from minimize the number of edges between communities [8,43].

Macropol et al. [29] propose a biologically sensitive algorithm based on
repeated random walks (RRW) for discovering functional modules, e.g., com-
plexes or pathways, within large-scale protein networks. RRW considers the ele-
ment of network topology, edge weights, and long range interactions between
proteins. Zhang et al. [53] propose a learning algorithm which can learn a node-
community membership matrix via stochastic gradient descent with bootstrap
sampling. Lee et al. [25] introduce a community assignment algorithm named
Greedy Clique Expansion (GCE). GCE algorithm identifies distinct cliques as
seeds and expands these seeds by greedily optimizing a local fitness function.

In many clustering applications, object data is nonnegative due to their phys-
ical nature, e.g., images are described by pixel intensities and texts are repre-
sented by vectors of word counts. As to a graph-based network, the adjacency
matrix (or weighted adjacency matrix) A as well as the Laplacian matrix com-
pletely represents the structure of network, and A is non-negative naturally.
Meanwhile, Nonnegative Matrix Factorization (NMF) was originally proposed
as a method for dimension reduction and finding matrix factors with parts-of-
whole interpretations [15,27]. Based on the consideration that there is no any
physical meaning to reconstruct a network with negative adjacency matrix, using
NMF to obtain new representations of network with non-negativity constraints
can achieve much productive effect in overlapping community analysis [52,53]. It
is likely an efficient network partition tool to find the communities because of its
powerful interpretability and close relationship with other clustering methods.
Overlapping community detection with NMF can capture the underlying struc-
ture of network in the low dimensional data space with its community-based
representations [41]. Zhang et al. [54] propose a method called bounded nonneg-
ative matrix tri-factorization (BNMTF) with three factors in the factorization,
and explicitly model and learn overlapping community membership of each node
as well as the interaction among communities.

NMF decomposes a given nonnegative data matrix X as X ≈ UVT where
U ≥ 0 and V ≥ 0 (meaning that U and V are component-wise nonnegative).
Tan et al. [45] addresses the estimation of the latent dimensionality in non-
negative matrix factorization (NMF) with the β-divergence, and proposes for
maximum a posteriori (MAP) estimation with majorization-minimization (MM)
algorithms. Psorakis et al. [40] presents a novel approach to community detec-
tion that utilizes the Bayesian non-negative matrix factorization model to extract
overlapping modules from a network.

In this paper, we propose an adaptive Bayesian non-negative matrix factor-
ization (ABNMF) method for overlapping community detection. In a Bayesian
framework, ABNMF assumpts that original matrix X with object matrix U and
V follow a certain probability distribution. In this way, we expect that ABNMF
can obtain a relevant count of communities and quantized strength of each node

Adaptive Overlapping Community Detection with Bayesian NMF 341

related to every community from original network data. To achieve this, we
design a new non-negative matrix factorization objective function by incorpo-
rating Bayesian Detection, and suggest an adaptive node-based threshold for
different communities. Our experiments show that the proposed approach can
validly estimate relevant dimension in lower space, find suitable overlapping com-
munities, and also achieve better performance than the state-of-arts overlapping
methods.

2 Related Works

Let X be a m × n non-negative matrix, and NMF consists in finding an
approximation:

X ≈ UVT (1)

where U and V are m × k and n × k non-negative matrices. The factorization
rank k is often chosen such that k � min(m,n). The objective behind this
choice is to summarize and split the information contained in U into k fac-
tors (the columns of U). Depending on the application field, these factors are
given different names: basis images, metagenes or source signals. In community
detection, we equivalently and alternatively use the terms primary communities
to refer to matrix U, and mixture coefficient matrix or communities assignment
profiles to refer with matrix V. We examine each row of V, and assign node xj to
community c if c = arg max

c
vjc [44] in non-overlapping community detection like

crisp clustering. If we define a proper threshold set δ, a node j can be assigned
into community c if vjc ≥ δc in overlapping situation like fuzzy clustering [37].

The main approach of NMF is to estimate matrices U and V as a local
minimum with a cost function in some distance metric. Generally we use
β-Divergence Dβ(X;UVT) [7]. When β = 0, 1, 2,Dβ(X;UVT) is proportional
to the (negative) log-likelihood of the Itakara-Saito (IS), KL and Euclidean noise
models up to a constant.

Recently, Bayesian inference has been introduced into NMF with a noise E
between X and UVT.

X = UVT + E (2)

Morten et al. [31] demonstrate how a Bayesian framework for model selec-
tion based on Automatic Relevance Determination (ARD) can be adapted to the
Tucker and CandeComp/PARAFAC (CP) models. By assigning priors for the
model parameters and learning the hyperparameters of these priors the method
is able to turn off excess components and simplify the core structure at a compu-
tational cost of fitting the conventional Tucker/CP model. Morten et al. [32] also
formulate a non-parametric Bayesian model for community detection consistent
with an intuitive definition of communities, and present a Markov chain Monte
Carlo procedure for inferring the community structure.

342 X. Shi et al.

Automatic Relevance Determination is a hierarchical Bayesian approach that
widely used for model selection. In ARD, hyperparameters explicitly represent
the relevance of different features by defining the range of variation for these
features, and are usually by modeling the width of a zero-mean prior imposed
on the model parameters. If the width becomes zero, the corresponding feature
cannot have any effect on the prediction. Hence, ARD optimizes these hyperpa-
rameters to discover which features are relevant. While ARD based on Gaussian
or Poisson priors, we can prune excess components by admitting sparse repre-
sentation and retain active components. Applying ARD in some real network
community detection process, we can effectively find the relevant communities
number without knowing in advance.

Jin et al. [17] extend the stochastic model method to detection of overlap-
ping communities with the virtue of autonomous determination of the number
of communities. Their approach hinges upon the idea of ranking node populari-
ties within communities and using a Bayesian method to shrink communities to
optimize an objective function based on the stochastic generative model. Wang
et al. [46] propose a probabilistic model, Dynamic Bayesian Nonnegative Matrix
Factorization, for automatic detection of overlapping communities in temporal
networks. Their model can not only give the overlapping community structure
based on the probabilistic memberships of nodes in each snapshot network but
also automatically determines the number of communities in each snapshot net-
work based on automatic relevance determination.

Schmidt et al. [42] present a Bayesian treatment of NMF based on a Gaussian
likelihood and exponential priors, and approximate the posterior density of the
NMF factors. This model equals to minimize the squares Euclidean distance
D2(X;UVT) for NMF. Cemgil [5] proposes NMF models with a KL-divergence
error measure in a statistical framework with a hierarchical generative model
consisting of an observation and a prior component. We can see that this models
of D1(X;UVT) is equals to NMF model with Poisson noise likelihood:

P (n;λ) =
λn

n!
exp(−λ) (3)

P (X|U, V) =
∏

i

∏

j

[UV T]Xij

ij exp(−[UV T]ij)
Xij !

(4)

We further assume that all entries of X are independent of each other (the
dependency structure is later induced by the matrix product), we can write:

ln(P (X|U, V)) =
∑

i

∑

j

Xij ln[UV T]ij − [UV T]ij − ln(Xij !) (5)

We use Stirling’s formula ln(n!) ≈ nln(n)−n for n >> 1 to get approximated
expression:

ln(P (X|U, V)) ≈
∑

i

∑

j

Xij ln
[UV T]ij

Xij
− [UV T]ij + Xij (6)

Adaptive Overlapping Community Detection with Bayesian NMF 343

3 Overlapping Community Detection with Bayesian
NMF

3.1 Bayesian NMF Model

In this section, we introduce Bayesian inference process of our Adaptive
Bayesian NMF (ABNMF) method. Given a network G consisting of n nodes
a1,a2, · · · ,an, we can represent the network as matrix X transformed from adja-
cency matrix. In our ABNMF processing, the diagonal elements are defined to
be 1 rather than 0 as in usual clustering cases, and X is n × n square matrix
and non-negative.

We consider there lies a relation between original network matrix X and
combination of factorized matrix UVT. The distribution of this relation can
be Gaussian [42] or Poisson [26] model. As Poisson noise model algorithm have
much better performance than Gaussian noise models [19,21] to achieve better
sparse estimation effect, we select Poisson likelihood in our ABNMF method. In
maximum-likelihood solution to find U and V, P(X|UVT) is maximized, or its
energy function −logP(X|UVT) is minimized.

To simplify likelihood with positive error [10,36], we chose the relation of
U,V and X as Xij ∼ Poisson(

∑
k Uik ∗ Vkj). In this Poisson model, the log-

likelihood of X and UVT is:

− ln(P (X|UV T)) = −∑
i

∑
j

{
Xij ln

[UV T]ij
Xij

− [UV T]ij + Xij

}
(7)

= −Xln(UV T) + 1UV T 1T + const(X)

where 1 is an n × n matrix with every elements equal to 1. We use independent
half-normal prior over every column of U and V, where the mean is zero and
precisian is βj :

p(uij |βj) = HN (x|0, β−1
j) (8)

p(vjk|βj) = HN (x|0, β−1
j)

when

HN (x|0, β−1) =

√
2
π

β
1
2 exp(−1

2
βx2) (9)

We define the diagonal matrix B with [β1, ..., βK] and zeros elsewhere, and
the negative log priors of U and V are:

− ln(p(U |β)) =
∑

i

∑

j

1
2
βju

2
ij −

∑

j

N

2
logβj + const (10)

−ln(p(V |β)) =
∑

j

∑

k

1
2
βjv

2
jk −

∑

j

N

2
logβj + const

344 X. Shi et al.

At last, we set the independent prior distribution of βj as a Gamma distrib-
ution with parameters aj and bj :

p(βj |aj , bj) =
b
aj

j

Γ (aj)
β

aj−1
j exp(−βjbj) (11)

The negative log of βj is:

− ln(p(β)) =
∑

j [βjbjk − (aj − 1)lnβj] + const (12)

The MAP(Maximum a Posteriori) of ABNMF is:

U = −lnP (X|UV T)) − lnP (U |β)) − lnP (V |β)) − lnP (β)) (13)

3.2 Iteration Rules of ABNMF

From Eq. (13), we can derive the multiplicative update rules of ABNMF with
Poisson likelihood. Let φij , ψjk be the Lagrange multiplier for constraint uij ≥ 0
and vjk ≥ 0, respectively, and Φ = [φij],Ψ = [ψjk]. The Lagrange function L is

L = U + tr(ΦUT) + tr(ΨVT) (14)

Let the derivatives of L with respect to U or V vanish, we have:

∂L
∂U

= −2 ∗ X

UV T
U + 2 ∗ 1U + 2 ∗ BU + Φ = 0 (15)

∂L
∂V

= −2 ∗ X

UV T
V + 2 ∗ 1V + 2 ∗ BV + Ψ = 0 (16)

Using the KKT conditions φijuij = 0 and ψjkvjk = 0, we get the following
equations for uij , vjk:

uij ←− uij

(
X

UV T

)

ij

(
U

1U + UB

)

ij

(17)

vjk ←− vjk

(
X

UV T

)

jk

(
V

1V + V B

)

jk

(18)

and the βj will be updated below:

βj ←− n + aj − 1
1
2 (

∑
i u2

ij +
∑

k v2
jk) + bj

(19)

We can get an approximate fixed value in convergence for iteration. Suppose
the multiplicative updates stop after t iterations with parameters from Table 1,
the overall computational complexity for ABNMF will be O(tn2c + n2). A rela-
tively small initial c will save running time of the algorithm.

Adaptive Overlapping Community Detection with Bayesian NMF 345

Table 1. Parameters used in complexity analysis

Parameters Description

n Number of network nodes

c Number of initial communities count

βj Paraments of communities number

aj Hyper-hyperparaments a

bj Hyper-hyperparaments b

3.3 Determination of Overlapping Community Number
K and Threshold δ

In regular NMF methods for clustering, the object factorized dimension K should
be given. But in community detection situation, we just know the relation of
nodes without prior information of community number K, and it’s hard to count
out the suitable number. If K is too small, some communities will be very large
and the model can not be fitted well. On contrary, If K is too large, we can
not catch the group character effectively from an entire network and occur into
overfitting. We need to find K with a appropriate solution between network
fineness and overfitting.

To solve this problem, we propose a statistical shrinkage method in a
Bayesian framework to find the number of communities and build a model selec-
tion method based on Automatic Relevance Determination [31,45]. In ABNMF,
we principally iterate out vjk with gradual change, and the prior will try to
promote a shrinkage to zero of vjk with a rate constant proportional to βj . A
large βj represents a belief that the half-normal distribution over vjk has small
variance, and hence vjk is expected to get close to zero. We can see the priors
and the likelihood function (quantifying how well we explain the data) are com-
bined with the effect that columns of V which have little effect in changing how
well we explain the observed data will shrink close to zero. We can effectively
estimate the communities number K by computer the non-zero column number
from V with initial rank c.

In overlapping fuzzy detection, a sparse or dense network may have different
overlapping degree. A dense network may contain more communities overlapped.
Network density p describes the portion of the potential connections in a network
that are actual connections. Every node potentially has a basic probability p to
connect with rest nodes in a network, regardless of whether or not they actually
connect:

p =
2 ∗ |E|

n ∗ (n − 1)
(20)

There is a fact that nodes shared multiple community memberships receive
multiple chances to create a link in overlapping assumption. We may assume each
overlapping sub-community is larger than a potential network, that refer every
vij will large than one fixed threshold in each network. Yang et al. [52] suggest

346 X. Shi et al.

that the threshold value can be δ =
√−log(1 − p) to achieve good performance.

Note that this process adaptively generates an increasing relationship between
edge probability and the number of shared communities.

3.4 Performance Comparisons in Different Networks

We compare our algorithm with other four popular overlapping community
detection methods. Five algorithms are listed below:

1. CFinder tries to find overlapping dense groups of nodes in networks, and is
based on method Clique Percolation Method (CPM) [38].

2. COPRA (Community Overlap PRopagation Algorithm) is based on the label
propagation technique for finding overlapping community structure in large
networks [12].

3. OSLOM (Order Statistics Local Optimization Method) locally optimizes the
statistical significance information of a cluster with respect to random fluc-
tuation with Extreme and Order Statistics [24].

4. LCM (Link Communities Method) organizes community structures spanning
inner-city to regional scales while maintaining pervasive overlap, and builds
blocks that reveal overlap and hierarchical organization in networks [2].

5. ABNMF (Adaptive Bayesian Non-negative Matrix Factorization) with Pois-
son likelihood. Its overlapping threshold is related with network density.

We run OSLOM, LFM and ABNMF in different six network datasets without
groundtruth to evaluate its communities number, overlap fraction and modular-
ity. Then we generate a synthetic network with 5000 nodes in different overlap
fraction [22]. The details of experiments are stated below:

(1). In ABNMF methods, we select 10 different initial communities count c and
apply 10 independent experiments. Every experiment iterates for 500 times.

(2). We test the ABNMF method in Email network [14] to evaluate the perfor-
mance with different initial dimension number of c in Table 1.

(3). We use six different size and different character networks to compare com-
munities number, overlap fraction and Modularity [35]. Football (Ameri-
can College football), Email (Email network of University at Rovira i Vir-
gili in Tarragona, Spain), and PGP (Pretty Good Privacy communication
network) [9,13,14] are social networks. Erdos (Collaboration network with
famous mathematician Erdos) and Cmat (Condensed matter collaborations
2003) [4,34] are collaborative networks. Metabolic (Metabolic Network)
[16] is biological network.

(4). We use Omega Index [6,33] to evaluate overlapping communities detecting
performance with benchmark in a synthetic network.

Modularity has widely used to measure the strength of non-overlapping or
overlapping community structure found by community detection methods. In
Eq. (21), Aij is the adjacency matrix, and ki, kj are node degree of i, j. δ(ci, cj)
is probability of having a link between i and j in the null model are weighted

Adaptive Overlapping Community Detection with Bayesian NMF 347

by the belonging of i and j to the same community, since δ(ci, cj) is equal to 1
only when i and j belong to the same community, and it is 0 otherwise.

Qov =
1
n

∑

i,j∈V

[
Aijδ(ci, cj) − kikj

2n
δ(ci, cj)

]
(21)

The Omega Index can evaluate the extent of two different solutions for over-
lapping communities in which each pair of nodes is estimated to share same
community:

Omega(C1, C2) =

∑min(J,K)
j=0

Aj

N − ∑min(J,K)
j=0

Nj1Nj2
N2

1 − ∑min(J,K)
j=0

Nj1Nj2
N2

(22)

where J and K represent the maximum number of communities in which any pair
of nodes appears together in solution C1 and C2, respectively, Aj is the number
of the pairs agreed by both solutions to be assigned to number of community j,
and N is the number of pairs of nodes. Nj1 is the total number of pairs assigned
to number of communities j in solution C1, and Nj2 is the total number of pairs
assigned to number of communities j in solution C2.

Table 2. Overlapping community number K with different initial c in ABNMF

c K O Qov

1 23 22 0.3600 0.6876

2 30 26 0.3668 0.6887

3 52 30 0.3772 0.6975

4 76 34 0.3768 0.6960

5 114 35 0.3862 0.7058

6 227 36 0.3845 0.7063

7 378 35 0.3846 0.7064

8 567 37 0.3900 0.7133

We run ABNMF method to test the impact of different initial communities
numbers c in Email network. Table 2 lists the different result K, relevant overlap
fraction(O) and Modularity(Qov). ARD is effective well on features extraction
with large initial c, and contractive communities count K is around 30 in Email
network. We can find that different c has weak influence for O and Qov results
when c is set from 567 to 52. In ABNMF, we choose the initial count c from
1/5 to 1/10 of total nodes n to keep the performance of algorithm and keep the
operational efficiency.

3.5 Overlapping Community Detection in Different Network

On American Football Game real network with 115 nodes and 613 edges, we
run ABNMF for case study and the visualization of our found overlapping com-
munity structure is shown in Fig. 1, where same color nodes are allocated into

348 X. Shi et al.

same overlapping community. From Fig. 1, we can see that our proposed method
ABNMF automatically finds 10 strong sense communities which are gathered
by crisp clustering, and most of the football teams are correctly assigned into
their corresponding communities in our found overlapping community struc-
ture. Moreover, it is very interesting to note that our proposed method ABNMF
detects 32 overlapping nodes in different communities in total, in which each
overlapping node has two different colors indicating different communities the
node belongs to. This is because, besides against other football teams in the
same conference, these football teams corresponding to the overlapping nodes
also frequently play many games against football teams in other conferences.
Therefore, we can see that our proposed method ABNMF has a good perfor-
mance in detecting overlapping community structures in this real world social
network.

Fig. 1. Overlapping communities of Football network obtained by ABNMF.

We select 6 popular networks with different size, and compare community
number(K), overlap fraction(O) and overlap modularity(Qov) in OSLOM, LCM
and ABNMF. We can find from Table 3 that, our method ABNMF can effectively
find overlapping community number and is highly close to results of OSLOM
and LFM. ABNMF detects much dense communities in overlap fraction and
achieves high overlapping modularity than other two methods. In ABNMF with

Adaptive Overlapping Community Detection with Bayesian NMF 349

Multiplicative Update Rules [27], we achieve good performance in large PGP
and Cmat networks both of which have more than ten thousands of nodes.
We may also combine with Projected Gradient [28] method or Block Gradient
Descent method [20] to solve Eq. (13) in larger datasets with millions of nodes.

Table 3. Overlapping community detection comparison on different networks

Network Nodes OSLOM LCM ABNMF

K O Qov K O Qov K O Qov

Football 115 9 0.1956 0.6032 11 0.2134 0.5992 10 0.2444 0.6609

Metabolic 453 32 0.4347 0.4212 31 0.4525 0.4678 27 0.5055 0.6919

Email 1133 28 0.2567 0.5796 27 0.2754 0.5821 26 0.3766 0.6982

Erdos 6927 77 0.2765 0.7187 81 0.2897 0.6837 73 0.3098 0.8203

PGP 10680 233 0.4688 0.8782 230 0.478 0.8843 227 0.4944 1

Cmat 27519 486 0.356 0.7216 483 0.4121 0.7255 475 0.534 0.7340

We evaluate the performance of our proposed algorithm on the LFR synthetic
networks with benchmark, and compare with other four overlapping community
detection algorithms. The LFR (Lancichinetti-Fortunato-Radicchi) benchmark
[22] provides a class of artificial networks in which both the degrees of the nodes
and the sizes of the communities follows power laws the same as many real-world
networks. Here, we adopt a LFR benchmark with 5000 nodes respectively from
the benchmark generator source code1 in our experiment:

benchmark -N 5000 -k 10 -maxk 30 -mu 0.1 -minc 10 -maxc 50 -on 50 -om 2
In this LFR benchmark, we set the average degree of nodes davg = 10, the

maximum degree of nodes dmax = 30, the minimum community size minc = 10,
the maximum community size maxc = 50, the exponents of the power law of
the community size distribution t1 = 1, the exponents of the power law of the
community size distribution t2 = 2, the overlapping nodes in the entire network
on = 50, and the number of communities that each overlapping node belongs to
om = 2. Moreover, we define the mixing parameter μ as the average percentage
of edges that connect a node to those in other communities which indicates that
every node shares a fraction (1−μ) edges with other nodes in its community and
a fraction μ edges with nodes outside its community. The network community
structure will be weakened by increasing μ.

Five algorithms are executed on the LFR benchmark network, and the aver-
age Omega Index is used to measure the similarities between the known com-
munity structure and the obtained resultant community structure by these algo-
rithms. The results of different algorithms in the LFR networks are shown in
Table 4.

It can be seen that all these five algorithms perform well and our proposed
ABNMF algorithm has slightly better performance comparing with the other
1 https://sites.google.com/site/santofortunato/inthepress2.

https://sites.google.com/site/santofortunato/inthepress2.

350 X. Shi et al.

Table 4. Omega index comparison on LFR 5000 network

Overlap fraction CPM COPRA OSLOM LPM ABNMF

0.05 0.86 0.86 0.86 0.86 0.89

0.1 0.83 0.855 0.855 0.855 0.88

0.15 0.81 0.85 0.85 0.83 0.86

0.2 0.75 0.84 0.84 0.81 0.86

0.25 0.6 0.82 0.82 0.8 0.85

0.3 0.47 0.82 0.83 0.8 0.84

0.35 0.45 0.79 0.82 0.8 0.83

0.4 0.4 0.77 0.81 0.8 0.83

0.45 0.38 0.74 0.8 0.79 0.82

0.5 0.32 0.71 0.79 0.75 0.81

0.55 0.3 0.64 0.6 0.74 0.8

0.6 0.22 0.62 0.62 0.73 0.77

0.65 0.2 0.1 0.14 0.58 0.7

four algorithms when the value of overlap fraction μ is small on the LFR net-
work. Moreover, as the value of μ increasing, the performance of our proposed
algorithm does not degrade rapidly as shown in Table 4. Therefore, our pro-
posed algorithm has a good ability to detect overlapping community structures
in complex networks no matter whether they have dense or sparse overlapping
structure.

4 Conclusions

In this paper, we solve an overlapping community detection problem using Adap-
tive Bayesian NMF. We propose a model that considerate Bayesian inference
process with Poisson model into NMF, and derive the updating rules and conduct
experiments to valid our model. We also apply Automatic Relevance Determina-
tion method with sparse constrain to learn the community count of a network,
and compare the detection impact of different initial community rank. At last,
we adaptively select a most proper value related to network density as overlap-
ping threshold for mixture coefficient matrix. Our method can be applied in real
network data without any given information, and achieves good performance
than other overlapping community detection methods.

Acknowledgments. This work was supported by NSFC (No. 61272247, 61533012,
61472075), the Basic Research Project of “Innovation Action Plan” (16JC1402800), the
Major Basic Research Program (15JC1400103) of Shanghai Science and Technology
Committee, and the Arts and Science Cross Special Fund (13JCY14) of Shanghai
JiaoTong University.

Adaptive Overlapping Community Detection with Bayesian NMF 351

References

1. Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: Cfinder: locating
cliques and overlapping modules in biological networks. Bioinformatics 22(8),
1021–1023 (2006)

2. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale com-
plexity in networks. Nature 466(7307), 761–764 (2010)

3. Amelio, A., Pizzuti, C.: Overlapping community discovery methods: a survey.
In: Gündüz-Öğüdücü, Ş., Etaner-Uyar, A.Ş. (eds.) Social Networks: Analysis
and Case Studies. LNSN, pp. 105–125. Springer, Vienna (2014). doi:10.1007/
978-3-7091-1797-2 6

4. Batagelj, V., Mrvar, A.: Some analyses of Erdos collaboration graph. Soc. Netw.
22(2), 173–186 (2000)

5. Cemgil, A.T.: Bayesian inference for nonnegative matrix factorisation models.
Comput. Intell. Neurosci. 2009, 1–17 (2009)

6. Collins, L.M., Dent, C.W.: Omega: a general formulation of the rand index of
cluster recovery suitable for non-disjoint solutions. Multivar. Behav. Res. 23(2),
231–242 (1988)

7. Fevotte, C., Idier, J.: Algorithms for nonnegative matrix factorization with the
beta-divergence. Neural Comput. 23(9), 2421–2456 (2011)

8. Gama, F., Segarra, S., Ribeiro, A.: Overlapping clustering of network data using
cut metrics, pp. 6415–6419. IEEE (2016)

9. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

10. Gopalan, P., Ruiz, F.J., Ranganath, R., Blei, D.M.: Bayesian nonparametric Pois-
son factorization for recommendation systems. In: AISTATS, pp. 275–283 (2014)

11. Gopalan, P.K., Gerrish, S., Freedman, M., Blei, D.M., Mimno, D.M.: Scalable infer-
ence of overlapping communities. In: Advances in Neural Information Processing
Systems, pp. 2249–2257 (2012)

12. Gregory, S.: Finding overlapping communities in networks by label propagation.
New J. Phys. 12(10), 103018 (2010)

13. Guardiola, X., Guimera, R., Arenas, A., Diaz-Guilera, A., Streib, D.,
Amaral, L.: Macro-and micro-structure of trust networks. arXiv preprint
arXiv:cond-mat/0206240 (2002)

14. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar com-
munity structure in a network of human interactions. Phys. Rev. E 68(6), 065103
(2003)

15. He, Y.C., Lu, H.T., Huang, L., Shi, X.H.: Non-negative matrix factorization with
pairwise constraints and graph Laplacian. Neural Process. Lett. 42(1), 167–185
(2015)

16. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale
organization of metabolic networks. Nature 407(6804), 651–654 (2000)

17. Jin, D., Wang, H., Dang, J., He, D., Zhang, W.: Detect overlapping communities via
ranking node popularities. In: Thirtieth AAAI Conference on Artificial Intelligence
(2016)

18. Jin, D., Yang, B., Baquero, C., Liu, D., He, D., Liu, J.: A Markov random walk
under constraint for discovering overlapping communities in complex networks. J.
Stat. Mech: Theor. Exp. 2011(05), P05031 (2011)

19. Kaganovsky, Y., Han, S., Degirmenci, S., Politte, D.G., Brady, D.J., O’Sullivan,
J.A., Carin, L.: Alternating minimization algorithm with automatic relevance
determination for transmission tomography under poisson noise. SIAM J. Imaging
Sci. 8(3), 2087–2132 (2015)

http://dx.doi.org/10.1007/978-3-7091-1797-2_6
http://dx.doi.org/10.1007/978-3-7091-1797-2_6
http://arxiv.org/abs/cond-mat/0206240
https://arxiv.org/abs/cond-mat/0206240

352 X. Shi et al.

20. Kim, J., He, Y., Park, H.: Algorithms for nonnegative matrix and tensor factor-
izations: a unified view based on block coordinate descent framework. J. Global
Optim. 58(2), 285–319 (2014)

21. Kucukelbir, A., Ranganath, R., Gelman, A., Blei, D.: Automatic variational infer-
ence in stan. In: Advances in Neural Information Processing Systems, pp. 568–576
(2015)

22. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algo-
rithms on directed and weighted graphs with overlapping communities. Phys. Rev.
E 80(1), 016118 (2009)

23. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hier-
archical community structure in complex networks. New J. Phys. 11(3), 033015
(2009)

24. Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically
significant communities in networks. PloS one 6(4), e18961 (2011)

25. Lee, C., Reid, F., McDaid, A., Hurley, N.: Detecting highly overlapping community
structure by greedy clique expansion. arXiv preprint arXiv:1002.1827 (2010)

26. Lee, D., Seung, H.: Algorithms for non-negative matrix factorization. In: Advances
in Neural Information Processing Systems, vol. 13 (2001)

27. Lee, D., Seung, H., et al.: Learning the parts of objects by non-negative matrix
factorization. Nature 401(6755), 788–791 (1999)

28. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural
Comput. 19(10), 2756–2779 (2007)

29. Macropol, K., Can, T., Singh, A.K.: Rrw: repeated random walks on genome-scale
protein networks for local cluster discovery. BMC Bioinf. 10(1), 1 (2009)

30. Meena, J., Devi, V.S.: Overlapping community detection in social network using
disjoint community detection. In: 2015 IEEE Symposium Series on Computational
Intelligence, pp. 764–771. IEEE (2015)

31. Mørup, M., Hansen, L.K.: Automatic relevance determination for multi-way mod-
els. J. Chemometr. 23(7–8), 352–363 (2009)

32. Mørup, M., Schmidt, M.N.: Bayesian community detection. Neural Comput. 24(9),
2434–2456 (2012)

33. Murray, G., Carenini, G., Ng, R.: Using the omega index for evaluating abstractive
community detection. In: Association for Computational Linguistics, pp. 10–18
(2012)

34. Newman, M.E.: Scientific collaboration networks. i. network construction and fun-
damental results. Phys. Rev. E 64(1) (2001). 016131

35. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of
modularity to directed graphs with overlapping communities. J. Stat. Mech: Theor.
Exp. 2009(03) (2009). P03024

36. Paisley, J., Blei, D., Jordan, M.I.: Bayesian nonnegative matrix factorization with
stochastic variational inference. In: Handbook of Mixed Membership Models and
Their Applications. Chapman and Hall/CRC, Boca Raton (2014)

37. Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy
clusters. Pattern Recogn. 37(3), 487–501 (2004)

38. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature
446(7136), 664–667 (2007)

39. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435(7043), 814–818
(2005)

http://arxiv.org/abs/1002.1827

Adaptive Overlapping Community Detection with Bayesian NMF 353

40. Psorakis, I., Roberts, S., Ebden, M., Sheldon, B.: Overlapping community detec-
tion using bayesian non-negative matrix factorization. Phys. Rev. E 83(6). 066114
(2011)

41. Rabbany, R., Zäıane, O.R.: Generalization of clustering agreements and distances
for overlapping clusters and network communities. Data Min. Knowl. Disc. 29(5),
1458–1485 (2015)

42. Schmidt, M.N., Laurberg, H.: Nonnegative matrix factorization with Gaussian
process priors. Comput. Intell. Neurosci. 2008, 3 (2008)

43. Shankar, D.S., Bhavani, S.D.: Consensus clustering approach for discovering over-
lapping nodes in social networks. In: Proceedings of the 3rd IKDD Conference on
Data Science, p. 21. ACM (2016)

44. Shi, X., Lu, H., He, Y., He, S.: Community detection in social network with pair-
wisely constrained symmetric non-negative matrix factorization. In: Proceedings
of the 2015 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2015, ASONAM 2015, pp. 541–546. ACM, New York (2015)

45. Tan, V.Y.F., Fevotte, C.: Automatic relevance determination in nonnegative
matrix factorization with the beta-divergence. IEEE Trans. Pattern Anal. Mach.
Intell. 35(7), 1592–1605 (2013)

46. Wang, W., Jiao, P., He, D., Jin, D., Pan, L., Gabrys, B.: Autonomous overlap-
ping community detection in temporal networks: a dynamic bayesian nonnegative
matrix factorization approach. Knowl.-Based Syst. 110, 121–134 (2016)

47. Whang, J.J., Gleich, D.F., Dhillon, I.S.: Overlapping community detection using
seed set expansion. In: Proceedings of the 22nd ACM International Conference on
Conference on Information Knowledge Management - CIKM 2013. Association for
Computing Machinery (ACM) (2013)

48. Wu, P., Fu, Q., Tang, F.: Social community detection from photo collections using
Bayesian overlapping subspace clustering. In: Lee, K.-T., Tsai, W.-H., Liao, H.-
Y.M., Chen, T., Hsieh, J.-W., Tseng, C.-C. (eds.) MMM 2011. LNCS, vol. 6524,
pp. 57–64. Springer, Heidelberg (2011). doi:10.1007/978-3-642-17829-0 6

49. Wu, Z.H., Lin, Y.F., Gregory, S., Wan, H.Y., Tian, S.F.: Balanced multi-label
propagation for overlapping community detection in social networks. J. Comput.
Sci. Technol. 27(3), 468–479 (2012)

50. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks:
the state-of-the-art and comparative study. ACM Comput. Surv. 45(4), 43:1–43:35
(2013)

51. Xie, J., Szymanski, B.K.: Towards linear time overlapping community detection
in social networks. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD
2012. LNCS (LNAI), vol. 7302, pp. 25–36. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-30220-6 3

52. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative
matrix factorization approach. In: Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining, pp. 587–596. ACM (2013)

53. Zhang, H., King, I., Lyu, M.R.: Incorporating implicit link preference into over-
lapping community detection. In: AAAI, pp. 396–402 (2015)

54. Zhang, Y., Yeung, D.Y.: Overlapping community detection via bounded nonnega-
tive matrix tri-factorization. In: Proceedings of the 18th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining - KDD 2012. Associ-
ation for Computing Machinery (ACM) (2012)

55. Zhubing, L., Jian, W., Yuzhou, L.: An overview on overlapping community detec-
tion. In: 2012 7th International Conference on Computer Science and Education
(ICCSE), pp. 486–490. IEEE (2012)

http://dx.doi.org/10.1007/978-3-642-17829-0_6
http://dx.doi.org/10.1007/978-3-642-30220-6_3
http://dx.doi.org/10.1007/978-3-642-30220-6_3

A Unified Approach for Learning Expertise
and Authority in Digital Libraries

B. de La Robertie1(B), L. Ermakova2,3, Y. Pitarch1,
A. Takasu4, and O. Teste1

1 Université de Toulouse, IRIT UMR5505, 31071 Toulouse, France
baptiste.robertie@gmail.com, {o.teste,y.pitarch}@irit.fr

2 Université de Lorraine, Nancy, France
liana.ermakova.@irit.fr

3 LISIS, Université de Paris-Est Marne-la-Vallée, Champs-sur-Marne, France
4 National Institute of Informatics, 2-1-2 Hitotsunashi, Chiyoda, Tokyo, Japan

takasu@nii.ac.jp

Abstract. Managing individual expertise is a major concern within any
industrial-wide organization. If previous works have extensively studied
the related expertise and authority profiling issues, they assume a seman-
tic independence of these two key concepts. In digital libraries, state-
of-the-art models generally summarize the researchers’ profile by using
solely textual information. Consequently, authors with a large amount
of publications are mechanically fostered to the detriment of less pro-
lific ones with probably higher expertise. To overcome this drawback
we propose to merge the two representations of expertise and author-
ity and balance the results by capturing a mutual reinforcement princi-
ple between these two notions. Based on a graph representation of the
library, the expert profiling task is formulated as an optimization problem
where latent expertise and authority representations are learned simulta-
neously, unbiasing the expertise scores of individuals with a large amount
of publications. The proposal is instanciated on a public scientific biblio-
graphic dataset where researchers’ publications are considered as a source
of evidence of individuals’ expertise and citation relations as a source of
authoritative signals. Results from our experiments conducted over the
Microsoft Academic Search database demonstrate significant efficiency
improvement in comparison with state-of-the-art models for the expert
retrieval task.

Keywords: Expert finding · Link analysis · Optimization · Digital
libraries

1 Introduction

Keeping track and managing individuals’ expertise in industrial-wide organiza-
tions or public scientific repositories is a major concern. Motivated by expertise
capitalization, skill mining, or knowledge sharing purposes, strong interests on
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 354–368, 2017.
DOI: 10.1007/978-3-319-55699-4 22

A Unified Approach for Learning Expertise and Authority 355

the expert finding task rapidly spawned both private and public researches [25].
For example, the Experscape platform1, by mining the US National Library of
Medicine and the National Institutes of Health databases2, provides search func-
tionalities to seek experts according to 26, 000 topics (e.g., Alzheimer Disease,
Arthritis, Brain Tumor) and geographic features (country, region, city, and insti-
tution). The system AMiner3, resting on DBLP4 and ACM5, also provides search
functionalities for the Computer Science field and capitalizes more than 100 mil-
lion researchers and 200 million publications. Microsoft Academic Search6 and
more recently ResearchGate7 also constitute popular examples exploiting digital
libraries for profiling and discovering goals.

While expert profiling and retrieval attract significant interest by the sci-
entific community, unified approaches that consider both expertise and quality
models receive too little attention. Indeed, state-of-the-art models generally for-
mulate the expert finding problem as a summarization task where text data,
essentially associated to individuals, are used to model knowledge and exper-
tise [1,6,20,22]. Intranet documents, reports, project descriptions, mails, or pub-
lications are used as a source of information whereas tags, key words, or flat
topics are extracted to link knowledge and experts [6]. In fine, candidates are
then ranked according to the probability of being an expert given a particular
topic. The underlying matching process, generally based on standard information
retrieval techniques, ignores quality or authoritative criteria. Therefore, authors
with larger amounts of productions are promoted, biasing the final ranking over
the candidates.

To illustrate this downside, let us consider the following example. Let
R = {r1, r2} and A = {a1, a2, a3, a4, a5} be 2 sets of 2 researchers and 5 articles
respectively. The authoring relation between researchers and articles is given
in Fig. 1. Let θ1 and θ2 be the profiles associated to the researchers r1 and
r2 respectively. We consider a language model formalism for summarization.
Given a query q, researchers are ranked according to the probability p(q|θi) =∏

w∈q p(w|θi). Using Bayes’ rules, it holds p(w|θi) =
∑

aj∈A p(w|aj)p(ri|aj),
making the value of p(w|θi) increasing with the number articles authored by
a researcher ri. For example, given a topic query q = {w1} where the term
probability p(w1|aj) is the same for all articles aj (see Fig. 1), p(q|θ1) = 0.4 <
p(q|θ2) = 0.6. Thus, the researcher r2 is promoted with regard to topic w1. How-
ever, if the articles authored by r1 are much more cited than those authored by
r2, one will probably rank researcher r1 higher than r2. This example motivates
the need of considering quality or authority signal in a profile summarization
task.

1 http://expertscape.com.
2 https://www.ncbi.nlm.nih.gov.
3 https://aminer.org/.
4 http://dblp.uni-trier.de/.
5 http://dl.acm.org/.
6 http://academic.research.microsoft.com/.
7 https://www.researchgate.net.

http://expertscape.com
https://www.ncbi.nlm.nih.gov
https://aminer.org/
http://dblp.uni-trier.de/
http://dl.acm.org/
http://academic.research.microsoft.com/
https://www.researchgate.net

356 B. de La Robertie et al.

r1

a1

a2

p(w1|a1) = 0.2

p(w1|a2) = 0.2

r2

a3

a4

a5

p(w1|a3) = 0.2

p(w1|a4) = 0.2

p(w1|a5) = 0.2

Fig. 1. Illustration of the drawback of state-of-the-art expert profiling methods. With-
out considering any quality or authority signal, researcher r2 will be ranked higher
than researcher r1 for similar topic queries.

In this work, we tackle this drawback by assuming that expertise and author-
ity influence each other. We assume that (1) experts are sources of knowledge
(associated publications contain proofs of expertise), (2) experts are authorita-
tive (associated relations contain proofs of authority) and (3) these two compo-
nents, being two sides of the same coin, should have a common representation.
To capture this mutual reinforcement principle, we formulate the expert profil-
ing task as an optimization problem where both authority and expertise vectors
are unified and simultaneously learned. As confirmed by the experiments, such
a representation for expert profiling significantly improves the expert finding
phase. To summarize, our contributions are as follows:

1. We provide a unified model capturing both individuals’ expertise and author-
ity based on an heterogeneous graph representation of digital libraries;

2. We formulate the expert profiling task as an optimization problem learning
both latent topics and authoritative signals in a single process;

3. We conduct experiments over a representative subset of the Microsoft Acad-
emic Search (MAS) database and show a significant improvement as compared
to state-of-the-art methods.

The rest of the paper is organized as follows: Sect. 2 discusses the related
work. Section 3 formally describes our model. Section 4 discusses the experi-
ments. Finally, concluding remarks are drawn in Sect. 5.

2 Related Work

Our model relates to both expertise and authority fields. We first provide an
overview of these two research topics and then motivate the need of a unified
approach for modelling authority and expertise using a single representation.

Expertise profiling and retrieval models. Historical approaches related to
expert finding manually store individuals’ skills in knowledge bases [7]. The dis-
tinction between the representation of knowledge and data is manually made on
the basis of reports, scientific articles or employee pages but presents consider-
able maintenance costs. Craswell et al. [6] first propose an automatic solution,
assimilating an employe’s profile to the concatenate list of his/her related docu-
ments. Thus, given a topic query, standard information retrieval techniques are

A Unified Approach for Learning Expertise and Authority 357

used to retrieve the top-n experts. State-of-the-art models generally make use of
language or topic models to summarize an individual profile [3]. In this category,
extensive works have been done by Balog et al. [1,2,19] by proposing a genera-
tive probabilistic modeling framework for expert profiling. Standard Information
Retrieval techniques are adapted for that task, estimating a probability of a can-
didate being an expert in a particular topic. For a given topic query q, candidates
are ranked according to the probability p(q|θca) where the representation of a
candidate θca is generally performed using a multinomial probability distribu-
tion over a vocabulary (i.e., p(q|θca) =

∏
t∈q p(t|θca)n(t,q)). In [20], the expert

profiling task is formulated as a tagging problem where features extracted from
various sources are used to model an employee. In particular, authored enterprise
documents, discussion lists, and enterprise search click-through data are used to
learn a tag probability of being a good descriptor for a particular employee.
In [21], the web user profiling problem is tackled on the basis of topic modelling,
without considering authority signal. In all these previous works, only the tex-
tual content is used for expert profiling which constitutes the introduced major
drawback. Yang et al. [24] integrate authoritative features using the PageRank
scores of researchers. Nevertheless pre-computed scores and some other language
model features are aggregated a postiori, feeding a feature vector for training.
The proposition cannot capture any cyclic relation between the two concepts.
Deng et al. [9] construct a weighted language model to take into consideration
not only the relevance between a query and documents but also the importance
of the documents. Only the number of citations of an article is integrated as a
prior probability. Thus, the notions of authority and expertise in the literature
are generally separated and do not influence each other.

Graph-based authoritative models. In organizational networks, graph-based
models, largely based on random walk [23], are widely used to estimate individ-
ual authority. In this field, extensive researches have demonstrated strong cor-
relations between centrality and authority [10,16,26,27]. The famous PageRank
algorithm proposed by L. Page et al. [18] and later the Topic-sensitive Pager-
ank [11] have proven the value of the citation graph for web pages. Campbell
et al. [5] exploit network patterns in email communication graphs to discover
experts and show that a HITS-like algorithm [14] performs better than content-
based approaches for the expert finding task. The co-author graph on Wikipedia
has demonstrated to carry out authority signals and help in identifying authori-
tative users producing high quality content [8]. Jurczyk et al. [13] also make used
of a HITS-based algorithm to estimate the authority of Question and Answer-
ing platforms’ members and confirm the robustness of such approach. Finally,
Takasu et al. [12] employ both co-author and citation graphs to discriminate
researchers’ importance rating. State-of-the-art approaches demonstrate the effi-
ciency of graph-based authority models but also the lack of unified approaches
considering expertise.

Discussion. Propositions considering both expertise and authority signals
have received too little attention. Unified approaches widely compute two

358 B. de La Robertie et al.

representations then aggregate them a posteriori preventing from capturing a
mutual reinforcement principle. Unlike previous well-established methods, we
propose to formulate the expert profiling problem as a summarization task where
both expertise and authority concepts are merged into a single representation.
An individual is considered as an expert not only if he/she authors some articles
in a particular field but also if the authored articles are credited by the commu-
nity. Moreover, the unified representation enables us to strengthen the scores of
poorly represented dimensions of a researcher’s profile who would have authored
few but highly cited articles. Conversely, this unified representation enables to
balance the scores of over-represented dimensions of a researcher’s profile who
would have abundantly written poor quality articles. To the best of our knowl-
edge, our proposition is the first approach connecting the two key concepts for
the expertise retrieval task.

3 Model

A digital library can naturally be represented by an heterogeneous directed
graph, denoted by G, where the sets of nodes U correspond to the different
entities in the library and the sets of edges V to the different relations defined
by the platform. In this work, G encodes the sets of articles, researchers and
words in addition to the authoring and citing relations. Unlike state-of-the-art
models, we assume that individuals’ expertise and authority share a common
representation in R

K , encoding to what extent a researcher is an expert and
he/she is authoritative in a particular field. We suppose that the content of the
articles contains proof of expertise and the relative locations of the articles in
the citation graph constitute proof of quality of the articles. Thus, we propose to
compute the profile of a researcher as an aggregation of the estimated expertise
and quality of the authored articles. Section 3.1 introduces the general notations
for representing a digital library. Section 3.2 details the proposed unified rep-
resentation for capturing the cyclical relation between expertise and authority.
Finally, the objective function to learn expertise and authority simultaneously
is detailed in Sect. 3.3.

3.1 Platform Representation

Let R = {ri}1≤i≤N , A = {aj}1≤j≤M and W = {ws}1≤s≤W be the sets
of researchers, articles and words respectively. We define the heterogeneous
graph G = (U, V) over the set of nodes U = R ∪ A ∪ W and relations
V = VRA ∪ VAA ∪ VAW . In particular, VRA is an authoring relation associat-
ing each researcher to the articles he/she authored. VAA is a citing relation.
Finally, VAW associates each article to the set of words it contains. Corre-
sponding adjency matrices are denoted by XRA, XAA and XAW respectively.
Note that XRA and XAA are binary matrices (i.e., XRA(i, j) = 1 if researcher
ri has authored article aj , 0 otherwise). In this work, XAW contains TF-IDF
weights. Notations are summarized in Fig. 2. Latent representations of expertise
and authority are detailed in the next section.

A Unified Approach for Learning Expertise and Authority 359

WR A
XAW

XRA

XAA

zR zA zW

Fig. 2. Graphical representation of a digital library.

3.2 Encoding Expertise and Authority

We propose to represent both expertise and authority in a single vector in R
K

where the k-th dimension is aimed to estimate both expertise and authority of
a particular entity in G for a latent topic k. Figure 3 illustrates the proposed
formulation for a particular researcher and 4 topics. The mutual reinforcement
principle between the expertise of the researcher and his/her authority in topic
3 figures out by dotted arrows. In order to unbias expertise scores associated
to over-represented or under-represented dimensions, we propose to merge these
two vectors. The proposed unified representation estimates without distinction
both expertise and authority, balancing poor levels of expertise when the corre-
sponding level of authority is high. In the following, we denote by zR ∈ MN,K

the latent unified representation encoding both the expertise and the authority
of the researchers. In particular, zR(i) ∈ R

K is the expertise vector associated to
researcher i and zk

R(i) ∈ R reflects to what extent the researcher have expertise
and is authoritative in topic k. Similarly, zA ∈ MM,K is the latent representation
encoding the expertise and the authority of the articles.

a1R a2R a3R a4R

e1R e2R e3R e4R

Authority

Expertise

z1R z2R z3R z4R Unified representation

Fig. 3. Illustration of the mutual reinforcement principle between the notions of exper-
tise and authority using a toy example with 4 topics (left) and the proposed unified
representation (right).

3.3 Problem Formulation

We capture the cyclic relation between expertise and authority and learn
the introduced unified representation by minimizing the objective function
Lλ(zA,zW) formulated by Eq. (1):

Lλ(zA,zW) = λ||XAW − zAzT
W ||2F + (1 − λ)||XAAzA − zA||2F

s.t. zW > 0,zA > 0 (1)

360 B. de La Robertie et al.

where zW ∈ MW,K is a latent matrix associating to each word a topic distribu-
tion, ||.||F is the Frobenius norm, and λ ∈ [0, 1] is a user-parameter that controls
the sensitivity of both criteria.

The first part of the objective function ||XAW − zAzT
W ||2F corresponds to

a standard matrix factorization loss [15] aimed at learning latent topics from
the articles content while the second part of the function ||XAAzA − zA||2F is a
slight variation of the PageRank formulation [18] applyed on the citation matrix.
Note that both parts share the proposed common unified representation zA. In
particular, for λ = 1, a standard non-negative matrix factorization problem is
tackled over the article/vocabulary matrix. This standard expertise model, here-
after denoted as NMF, summarizes the articles’ content ignoring quality signals.
Conversely, for λ = 0, a PageRank-like algorithm, noted PR, is performed over
the citing matrix and only the relative importance of the articles is estimated.

By gathering both objectives around the common variable zA, we force the
estimated authority (learned with PR) and expertise (learned with NMF) to
influence each other during the optimization. As empirically shown in Sect. 4,
authoritative features can help to improve the expertise retrieval phase, and
conversely, expertise features can help to identify authoritative researchers. This
mutual reinforcement principle between the notions of expertise and authority
is the core of our proposed unified approach.

Finding the latent variables associated to the articles is equivalent to solve
Eq. (2):

(z∗
A,z∗

W) = arg min
zA,zW

Lλ(zA,zW) (2)

Since the Frobenius norm is a convex function, standard gradient descent
approaches can be used. In particular, we have:

∂Lλ

∂zA
= 2

(
(1 − λ)DAA(XAAzA) − λ(XAW − zAzT

W)zW

)

∂Lλ

∂zW
= −2λ(XAW − zAzT

W)T zA

where DAA = diag(XAA1 − 1), or equivalently, DAA(i, i) =
∑

1≤j≤M XAA(i, j).
It should be noted that since the parameters zA and zW have KM and KW
decision variables respectively, the model θ = (zA,zW) defines a metric space in
R

K(M+W). In practice, we solve Eq. (2) using the Limited-Memory BFGS [17]
algorithm (L-BFGS), a quasi-Newton method for non-linear optimizations when
the number of variables is high (more than 100 million in our case).

Finally, we naturally assimilate a researcher’s profile to an aggregation of the
obtained latent representation of his/her articles. By summing over the associ-
ated articles, we have:

z∗
R = XRAz∗

A (3)

Therefore, we consider that the researcher ri is more likely to be an expert in
the topic k than the researcher rj iff z∗k

R (i) > z∗k
R (j).

A Unified Approach for Learning Expertise and Authority 361

4 Experiments

This section is dedicated to the presentation of our results. We evaluate the
proposition along two main lines:

1. How well the proposed algorithm can be used to identify authoritative
researchers in a digital library. In other words, to what extent expertise fea-
tures can bring authoritative information.

2. How well the proposed solution can answer to the expert finding task by
identifying experts in response to a particular topic query. In other words, to
what extent authoritative features can help the expert profiling phase.

We first describe the dataset used for the experiments in Sect. 4.1. Then, Sect. 4.2
presents the protocol for evaluation. Competitors and evaluation metric are
introduced in Sects. 4.3 and 4.4 respectively. Finally, quantitative and qualitative
results are discussed in Sects. 4.5 and 4.6.

4.1 Data

For the evaluation, 3 data sources were merged to construct several labeled exper-
tise graphs. The Microsoft Academic Search database8 (MAS), the AMiner plat-
form9, the Core.edu portal10, and the induced graphs are detailed thereunder.

Raw data. We made use of the digital library Microsoft Academic Search (MAS)
for evaluation. The MAS portal is a semantic network providing a variety of
metrics for the research community in addition to literature search. The portal
has not been updated since 2013 but is still available online and contains valu-
able information about roughly 40 million articles and 9 million authors. For
the evaluation, all articles and corresponding authors associated to the Com-
puter Science community were crawled. Raw data, including articles titles and
abstracts, stored in a relational database represents 4.1 Gb.

Quantitative evaluation. For quantitative evaluation, the AMiner portal was
used. The platform provides a public list of 1, 270 experts in the computer sci-
ence field according to 10 expertise domains from Boosting to Support Vector
Machine. From this expert list, roughly 900 experts were retrieved in the MAS
dataset to constitute a ground truth. For automatic evaluation purpose, a set
of label vectors {yi}i≤N with yi ∈ B

10 is constructed. In particular, yk
i is a

binary label indicating if the researcher ri is an expert in the field k (yk
i = 1) or

not (yk
i = 0). Note that some researchers are considered as experts in different

topics. The 10 considered topics are listed in Table 1.

8 http://academic.research.microsoft.com/.
9 https://aminer.org.

10 http://www.core.edu.au/.

http://www.core.edu.au/
http://academic.research.microsoft.com/
https://aminer.org
http://www.core.edu.au/

362 B. de La Robertie et al.

Qualitative evaluation. For qualitative evaluation, we made use of the
Core.edu portal. The service provides assessments of major conferences in the
Computer Science discipline. Standard labels, from A* for leading venues to C
for conferences meeting minimum standards, are used to label the conferences.
Specifically, 2,158 conferences published by the Core.edu portal were found in
the MAS dataset. We used the associated labels to indirectly measure the arti-
cles quality.

Expertise graphs. To evaluate the capacity of the proposal to identify author-
itative researchers, 10 expertise graphs were constructed using both previous
sources of information. Given a topic k and the associated set of experts, an
expertise graph Gk is constructed by iteratively adding in the set of nodes (a)
the experts, (b) their co-authors, (c) the associated papers, (d) every citing and
cited paper, and (e) each corresponding author. Moreover, to evaluate the capac-
ity of the proposal to identify experts in a particular topic, a complete graph G
merging the 10 previously defined expertise graphs is also constructed. Statistics
of the different graphs used for the evaluation are summarized in Table 1.

Table 1. Statistics of the 11 graphs used for the experiments.

Expertise graph Experts Researchers Articles

G0 - Boosting 43 52 228 94 172

G1 - Data Mining 221 86 786 243 071

G2 - Information Extraction 72 36 880 80 983

G3 - Intelligent Agents 28 36 323 60 246

G4 - Machine Learning 52 37 277 69 025

G5 - Language Processing 36 20 175 36 684

G6 - Ontology Alignments 42 30 216 48 601

G7 - Planning 13 22 809 32 710

G8 - Semantic Web 274 81 039 244 855

G9 - Support Vector Machine 70 33 448 60 319

G - All 851 131 303 1 427 317

4.2 Protocol

Preprocessing. The articles’ content was processed using the Natural Language
Toolkit11 library for Python. Nouns were extracted from the abstracts and the
titles of the articles and those appearing in more than 70% of the articles or in
less than 20 articles were removed. From this preprocessing step, a vocabulary
of roughly 5 000 words was obtained. Note that we voluntary restrained the size
of the vocabulary for efficiency considerations and related sparseness problems.
11 http://www.nltk.org/.

http://www.nltk.org/

A Unified Approach for Learning Expertise and Authority 363

The remaining words were stemmed using the Lancaster Stemmer. We used TF-
IDF weights to model the strength of the relations between words and articles.
Thus, XAV (j, w) is the TF-IDF weight of the word w in the article aj . Finally,
to avoid full zero columns in the adjency matrix of the evaluations graphs, every
researcher without any authored article and all articles that do not cite any
paper were removed.

Optimization. The proposed objective function Lλ(zA,zV) was minimized
using standard optimization packages for Python12. We made used of the
Limited-Memory BFGS [17] algorithm (L-BFGS), a quasi-Newton method for
non-linear optimizations handling many variables. In practice, the optimization
spent roughly three days over the complete graph G. Since L-BFGS approxi-
mates the objective function locally and might return local optimums, several
optimizations were performed in parallel for each value of λ. Moreover, we made
the number k of latent topics vary for each run (from 5 to 100). Only the best
runs according to the evaluation metric are presented.

Evaluation. We conducted two series of evaluations. The first one was associ-
ated to the authority evaluation while the second one focused on the expertise
assessment.

1. We studied the capacity of the proposal to identify authoritative researchers.
We wanted to show that considering textual features from articles content
may help in identifying authoritative researchers. It should be noted that
no reconciliation process between topic query and researchers’ profile was
performed. To this end, we operated as follows. For each latent topic k, the
researchers were ranked by decreasing order of predicted scores z∗k

R and the
model was evaluated, using the set of labels {yk

i }i≤N . We report here the
best performances over the different discovered latent topics.

2. Secondly, we evaluated the capacity of the models to retrieve experts in
response to a particular topic query. The 10 topic queries presented in Table 1
were used for evaluations over the graph G and the set of labels {yk

i }i≤N

was used as groundtruth. For each topic query q, researchers were ranked
according to the vector of scores z∗k

R where k corresponds to the latent topic
maximizing:

k = arg max
k≤K

∏

w∈q

z∗k
W (w)

where we assumed, for simplicity, that zW (w) is the entry line in the matrix
zW of the word w ∈ W.

4.3 Competitors

The proposition, denoted below by UA (Unified Approach), was compared to
the following state-of-the-art models:

12 https://www.scipy.org/.

https://www.scipy.org/

364 B. de La Robertie et al.

– PR. The proposal when λ = 0. It corresponds to a PageRank-like algorithm
capturing the authority of the researchers through the quality of the articles
they authored.

– NMF. The proposal when λ = 1. It is a standard non-negative matrix factor-
ization approach capturing latent topics from the article/vocabulary matrix.

– COS. A standard Information Retrieval model assuming that the expertise
score of a researcher for a topic query q is the cosine similarity between q and
a researcher profile. To align with state-of-the-art approaches, a researcher
profile was built from a concatenation of the authored articles. Both queries
and authors were modeled using bag of words representations and TF-IDF
weights.

– LM. The model proposed by Balog et al. [1] based on language model for-
malism. Given a query q, researchers were ranked according to the probability
p(q|θri

) =
∏

w∈q p(w|θri
), where θri

encodes the profile of the researcher ri.
In particular, p(w|θri

) =
∑

aj∈A p(w|aj)XRA(i, j).
– LMS. A smoothed version of the former, also proposed by Balog et al. [1].

Probabilities were smoothed by the frequencies of the corresponding terms in
the collection. Formally p̃(w|aj) = αp(w|aj) + (1 − α)p(w|A). In our experi-
ments, we set α = 0.5.

4.4 Evaluation Metric

The standard classification metric AUC (Area Under the Curve) [4] was used
to report the performance of the different classifiers. The metric estimates the
probability of ranking a randomly chosen expert higher than a randomly chosen
researcher in the final ranking by reporting the area under the ROC curve.
Therefore, the closer to 1 the AUC, the better the classifier.

4.5 Quantitative Results

Results for the first set of experiments, associating to the evaluation of the
authority, are summarized in Table 2. Results for the expertise assessment are
given in Table 3.

Authority evaluation. We discuss here the results associated to the evalu-
ation of the proposed method for identifying authoritative researchers in the
different expertise graphs. Interestingly, we observe from Table 2 that for most
of the expertise graphs there exists at least one configuration of the proposal that
outperforms the PR method. Over the graph G, PR achieves 0.647 while the pro-
posal reaches 0.661 for λ = 0.1. In general, values of λ around 0.2 improve the
baseline of roughly 2%. Intuitively, these results confirm that experts constitute
hubs in the different expertise graphs, relatively to the articles (they may write
more articles than others) but they also form hubs regarding to the nodes associ-
ated to the vocabulary. In other words, the TF-IDF edge weights between nodes
associated to articles and words, summarized in the discovered latent topics,

A Unified Approach for Learning Expertise and Authority 365

indirectly bring authoritative information. This first important result suggests
that representing the textual content of the articles in an expertise graph, in par-
ticular by considering words as nodes, can reinforce the discriminative process.
It is not surprising that for λ = 1, although some results are not essentially
deceptive, most of them are only slightly better than a random classifier. A sin-
gle NMF approach, at least over the article/vocabulary matrix, does not suit
well for authority modelling.

Table 2. Authority evaluation of the proposal using the AUC metric.

λ PR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 NMF

G0 0.683 0.682 0.693 0.681 0.683 0.683 0.678 0.672 0.671 0.663 0.621

G1 0.666 0.671 0.664 0.666 0.660 0.672 0.665 0.671 0.669 0.668 0.659

G2 0.644 0.643 0.642 0.653 0.653 0.641 0.642 0.636 0.639 0.631 0.558

G3 0.671 0.684 0.676 0.675 0.672 0.669 0.681 0.682 0.674 0.662 0.565

G4 0.674 0.680 0.667 0.673 0.675 0.672 0.671 0.677 0.670 0.667 0.582

G5 0.635 0.636 0.644 0.634 0.641 0.629 0.643 0.644 0.637 0.628 0.548

G6 0.642 0.641 0.651 0.639 0.634 0.643 0.648 0.638 0.631 0.622 0.586

G7 0.688 0.688 0.694 0.692 0.691 0.688 0.690 0.688 0.672 0.664 0.612

G8 0.667 0.648 0.655 0.662 0.656 0.647 0.658 0.641 0.654 0.649 0.593

G9 0.671 0.674 0.673 0.672 0.670 0.663 0.665 0.667 0.663 0.666 0.559

G 0.647 0.661 0.649 0.653 0.659 0.658 0.656 0.649 0.649 0.651 0.553

Expertise evaluation. Here are discussed the results associated to the expert
finding task for the 10 topic queries presented in Table 1 over the graph G.
Results associated to the PR method are not available since textual content is
not taken into account by this approach and, therefore, matching between query
and researchers’ profile is not possible. It should be noted that results of the UA
method were obtained by minimizing the proposed objective function for λ = 0.2,
K = 20 and |V| = 5300. Table 3, by reporting the AUC of the five competitors
for each topic query, shows that on average, the proposal (UA) outperforms all
the competitors (AUC ≈ 0.7), especially the strong baseline LMS (AUC≈ 0.65).
It means that the proposal is more likely to rank the experts higher than the
competitors. Considering the queries individually, we observe quite important
differences between the performances of LMS and UA. For example, UA is very
efficient for retrieving the experts in the Boosting and Planning topic but is
outperformed by LMS for the Intelligent Agents or Information Extraction fields.
Such irregularities in the results might be explained by the quality of the latent
topics and more particularly by the way we have performed the preprocessing
step. Topics Boosting and Planning are relatively more specific than others and
the associated clusters are easier to learn.

366 B. de La Robertie et al.

Table 3. Expertise evaluation of the competitors using the AUC metric.

Topic query NMF COS LM LMS UA

Boosting 0.829 0.703 0.703 0.703 0.842

Data Mining 0.671 0.664 0.635 0.682 0.681

Information Extraction 0.607 0.601 0.676 0.696 0.623

Intelligent Agents 0.628 0.766 0.676 0.771 0.717

Machine Learning 0.745 0.622 0.553 0.635 0.781

Language Processing 0.464 0.488 0.492 0.487 0.567

Ontology Alignments 0.386 0.492 0.499 0.492 0.512

Planning 0.837 0.607 0.617 0.617 0.904

Semantic Web 0.541 0.648 0.550 0.651 0.622

Support Vector Machine 0.723 0.712 0.786 0.779 0.743

Mean 0.643 0.646 0.619 0.651 0.699

4.6 Qualitative Results

In this section, we study the publications of the top-5 researchers returned by
the different models. The repartition of the conferences classes associated to the
publications authored by the different top-5 experts is summarized in Table 4.
Results are straightforward. The top-5 experts retrieved by UA publish more
than 40% of their articles in A* conferences while this number for the researchers
retrieved by other competitors is around 20%. More importantly, only 8% of the
articles authored by the experts retrieved by UA are published in C conferences.
In general, we see that all competitors that do not integrate any authority feature
(i.e., NMF, COS, LM and LMS) lead to similar results in term of class repartition
while the proposal is more sensitive to the two extremes. This important result
puts forward the interest of considering quality signals for profiling since experts
seem to be more concerned by the quality of the productions.

Table 4. Percentage of the publications of the top-5 researchers per conference class.

Model A* A B C

NMF 20.83 41.66 22.91 14.58

COS 21.90 34.28 28.25 15.55

LM/LMS 21.54 31.64 27.60 19.19

UA 40.85 35.10 15.74 8.29

5 Conclusions

Expert profiling and retrieval constitute challenging problematics for the scien-
tific community. Although authority and expertise are widely studied in litera-
ture, these concepts are assumed to be independent biasing expert retrieval to

A Unified Approach for Learning Expertise and Authority 367

authors with a large amount of publications. To overcome this issue, we defined a
unified model based on an heterogeneous graph representation of digital libraries
where authority and expertise vectors are learned simultaneously to capture a
mutual reinforcement principle. The evaluation conducted on the Microsoft Aca-
demic Search data collection showed that capturing both individuals’ expertise
and authority significantly outperforms strong baselines. In perspective we will
study how to integrate new authoritative criteria such as the co-authoring rela-
tion. Temporal and cold-start aspects constitute also challenging questions to
refine the results.

References

1. Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in enter-
prise Corpora. In: Proceedings of the 29th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. SIGIR 2006, pp.
43–50. ACM, New York (2006)

2. Balog, K., de Rijke, M.: Determining expert profiles (with an application to expert
finding). In: IJCAI 2007, Proceedings of the 20th International Joint Confer-
ence on Artifical Intelligence, pp. 2657–2662. Morgan Kaufmann Publishers Inc.,
San Francisco (2007)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

4. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

5. Campbell, C.S., Maglio, P.P., Cozzi, A., Dom, B.: Expertise identification using
email communications. In: Proceedings of the Twelfth International Conference on
Information and Knowledge Management, CIKM 2003, pp. 528–531. ACM, New
York (2003)

6. Craswell, N., Hawking, D., Vercoustre, A.-M., Wilkins, P.: P@noptic expert: search-
ing for experts not just for documents. In: Ausweb, pp. 21–25 (2001)

7. Davenport, T.H., Prusak, L., Prusak, L.: Working Knowledge: How Organizations
Manage What They Know. Harvard Business School Press, Boston (1997)

8. de La Robertie, B., Pitarch, Y., Teste, O.: Measuring article quality in Wikipedia
using the collaboration network. In: Proceedings of the 2015 IEEE/ACM Inter-
national Conference on Advances in Social Networks Analysis and Mining 2015,
ASONAM 2015, pp. 464–471. ACM, New York (2015)

9. Deng, H., King, I., Lyu, M.R.: Formal models for expert finding on DBLP bibli-
ography data. In: Proceedings of the 2008 Eighth IEEE International Conference
on Data Mining, ICDM 2008, pp. 163–172. IEEE Computer Society, Washington,
D.C. (2008)

10. Gollapalli, S.D., Mitra, P., Giles, C.L.: Ranking experts using author-document-
topic graphs. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on
Digital Libraries. JCDL 2013, pp. 87–96. ACM, New York (2013)

11. Haveliwala, T.H.: Topic-sensitive pagerank. In: Proceedings of the 11th Inter-
national Conference on World Wide Web, WWW 2002, pp. 517–526. ACM,
New York (2002)

12. Huynh, T., Takasu, A., Masada, T., Hoang, K.: Collaborator recommendation for
isolated researchers. In: Proceedings of the 2014 28th International Conference on
Advanced Information Networking and Applications Workshops, WAINA 2014, pp.
639–644. IEEE Computer Society, Washington, D.C. (2014)

368 B. de La Robertie et al.

13. Jurczyk, P., Agichtein, E.: Discovering authorities in question answer communities
by using link analysis. In: Proceedings of the Sixteenth ACM Conference on Con-
ference on Information and Knowledge Management, CIKM 2007, pp. 919–922.
ACM, New York (2007)

14. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
46(5), 604–632 (1999)

15. Lee, D., Seung, H.: Algorithms for non-negative matrix factorization. Adv. Neural
Inf. Process. Syst. 1, 556–562 (2001)

16. Li, C.-L., Su, Y.-C., Lin, T.-W., Tsai, C.-H., Chang, W.-C., Huang, K.-H., Kuo, T.-
M., Lin, S.-W., Lin, Y.-S., Lu, Y.-C., Yang, C.-P., Chang, C.-X., Chin, W.-S., Juan,
Y.-C., Tung, H.-Y., Wang, J.-P., Wei, C.-K., Wu, F., Yin, T.-C., Yu, T., Zhuang, Y.,
Lin, S.-D., Lin, H.-T., Lin, C.-J.: Combination of feature engineering and ranking
models for paper-author identification in KDD cup 2013. In: Proceedings of the
2013 KDD Cup 2013 Workshop, KDD Cup 2013, pp. 2:1–2:7. ACM, New York
(2013)

17. Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput.
35(151), 773–782 (1980)

18. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. In: Proceedings of the 7th International World Wide
Web Conference, pp. 161–172 (1998)

19. Rybak, J., Balog, K., Nørv̊ag, K.: Temporal expertise profiling. In: Proceedings of
the 36th European Conference on Advances in Information Retrieval, ECIR 2014,
pp. 540–546 (2014)

20. Serdyukov, P., Taylor, M., Vinay, V., Richardson, M., White, R.W.: Automatic
people tagging for expertise profiling in the enterprise. In: Proceedings of the 33rd
European Conference on Advances in Information Retrieval, ECIR 2011 (2011)

21. Tang, J., Yao, L., Zhang, D., Zhang, J.: A combination approach to web user
profiling. ACM Trans. Knowl. Discov. Data 5(1), 2:1–2:44 (2010)

22. Tang, J., Zhang, J., Jin, R., Yang, Z., Cai, K., Zhang, L., Su, Z.: Topic level
expertise search over heterogeneous networks. Mach. Learn. 82(2), 211–237 (2011)

23. White, S., Smyth, P.: Algorithms for estimating relative importance in networks.
In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD 2003, pp. 266–275. ACM, New York (2003)

24. Yang, Z., Tang, J., Wang, B., Guo, J., Li, J., Chen, S.: Expert2bole: from expert
finding to bole search. In: Knowledge Discovery and Data Mining (2009)

25. Yimam-Seid, D., Kobsa, A.: Expert-finding systems for organizations: problem and
domain analysis and the DEMOIR approach. J. Org. Comput. Electron. Commer.
13(1), 1–24 (2003)

26. Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities:
structure and algorithms. In: Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, pp. 221–230. ACM, New York (2007)

27. Zhou, D., Zhu, S., Yu, K., Song, X., Tseng, B.L., Zha, H., Giles, C.L.: Learn-
ing multiple graphs for document recommendations. In: Proceedings of the 17th
International Conference on World Wide Web, WWW 2008, pp. 141–150. ACM,
New York (2008)

Graph and Network Data Processing

Efficient Local Clustering Coefficient Estimation
in Massive Graphs

Hao Zhang1, Yuanyuan Zhu1(B), Lu Qin2, Hong Cheng3, and Jeffrey Xu Yu3

1 State Key Laboratory of Software Engineering, Computer School,
Wuhan University, Wuhan, China

zhanghaowuda12@gmail.com, yyzhu@whu.edu.cn
2 Centre for Quantum Computation and Intelligent Systems,

University of Technology Sydney, Ultimo, Australia
lu.qin@uts.edu.au

3 The Chinese University of Hong Kong, Hong Kong, China
{hcheng,yu}@se.cuhk.edu.hk

Abstract. Graph is a powerful tool to model interactions in disparate
applications, and how to assess the structure of a graph is an essen-
tial task across all the domains. As a classic measure to characterize the
connectivity of graphs, clustering coefficient and its variants are of partic-
ular interest in graph structural analysis. However, the largest of today’s
graphs may have nodes and edges in billion scale, which makes the simple
task of computing clustering coefficients quite complicated and expen-
sive. Thus, approximate solutions have attracted much attention from
researchers recently. However, they only target global and binned degree-
wise clustering coefficient estimation, and their techniques are not suit-
able for local clustering coefficient estimation that is of great importance
for individual nodes. In this paper, we propose a new sampling scheme
to estimate the local clustering coefficient with error bounded, where
global and binned degree-wise clustering coefficients can be considered
as special cases. Meanwhile, based on our sampling scheme, we propose a
new framework to estimate all the three clustering coefficients in a unified
way. To make it scalable on massive graphs, we further design an efficient
MapReduce algorithm under this framework. Extensive experiments vali-
date the efficiency and effectiveness of our algorithms, which significantly
outperform state-of-the-art exact and approximate algorithms on many
real graph datasets.

Keywords: Clustering coefficient · Massive graph · Sampling ·
MapReduce

1 Introduction

Graph is a powerful tool to model the interactions in a variety of contexts, such as
social network, web graph, co-author network, citation network, and so on. This
popularity has increased interest in analyzing the properties of graphs across all

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 371–386, 2017.
DOI: 10.1007/978-3-319-55699-4 23

372 H. Zhang et al.

the domains. Among the classic indexes for measuring graph structural proper-
ties, clustering coefficient and its variants have received much attention in recent
studies. The global clustering coefficient of a graph is the ratio of the number
of closed wedges (triangles) to the number of wedges (2-hop paths), which is
an important metric to indicate how tightly the communities are connected in
a graph. The binned degree-wise clustering coefficient, which is the average of
the clustering coefficients for nodes of a specified degree group, measures how
tightly the neighbors are connected for nodes with certain degrees. It can be
used to find the relation between degree distribution and clustering coefficients
[27] and assess the quality of generative models [26]. Another important variant
is local clustering coefficient of a node, which is defined as the fraction of wedges
centered at this node that participate in triangles to measure how tightly the
neighbors of a node are connected among themselves. It has a great impact on
network dynamics, such as game theory [17], cascading [16], synchronization [36]
and spreading [31]. Meanwhile, it can also be used to identify fake accounts [37]
and influential nodes [3] in social networks, and detect spam pages [1] and hidden
thematic layers [6] in web mining. An overview of these and other applications
can be referred to [35].

To compute clustering coefficients, we usually need to involve triangle
enumeration, followed by several post-processing steps. In the literature, a
large number of triangle enumeration algorithms have been proposed, includ-
ing in-memory algorithms [13], external algorithms [4,8,19], and parallel algo-
rithms [5,22,23,30]. However, explicitly enumerating all the triangles can be
quite expensive due to the extremely large number of triangles, especially on
large graphs. Therefore, approximate methods are further investigated to com-
pute clustering coefficients without triangle enumeration. Most of them adopt
sampling mechanisms, including edge sampling [33–35] and wedge sampling
[10,27,28]. However, edge sampling suffers from high variances. Although exist-
ing wedge sampling methods [10,27,28] can bound the error of global and binned
degree-wise clustering coefficients with high confidence by sampling a constant
number of wedges, they are not suitable for local clustering coefficient estima-
tion, because sampling a constant number of wedges for each node will result in
enormous total number of sampled wedges.

In this paper, we study the problem of local clustering coefficient estima-
tion and make the contributions as follows: (1) We propose a new wedge sam-
pling scheme for local clustering coefficient estimation, where global and binned
degree-wise clustering coefficients can be considered as special cases. Compared
to existing wedge sampling methods, our method can reduce a large num-
ber of sampled wedges while making the error bounded with high probability.
(2) We develop a unified clustering coefficient estimation (UCCE) framework to
estimate all the three variants of clustering coefficient based on our proposed
sampling scheme. (3) We also devise an efficient MapReduce algorithm under
this framework with several optimization techniques to make it scalable on large
graphs. (4) Finally, we conduct extensive experiments to compare our algorithm
with the state-of-the-art exact and approximate algorithms and validate the
efficiency and effectiveness of our approach.

Efficient Local Clustering Coefficient Estimation in Massive Graphs 373

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 presents problem definition and previous approaches on wedge sam-
pling. In Sect. 4, we introduce our new sampling scheme and unified computa-
tion framework. Section 5 gives our MapReduce algorithm under this framework.
Section 6 gives the experimental analysis and Sect. 7 concludes this paper.

2 Related Work

In this section, we will first review studies on triangle enumeration since it is
involved in the exact computation of clustering coefficients. Then we discuss
approximate methods for estimating triangle number and clustering coefficients.

Existing triangle enumeration algorithms usually adopt the node-iterator or
edge-iterator framework, which examines every triplet to check whether a trian-
gle exists. A large number of in-memory triangle listing algorithms can be found
in an excellent survey [13]. To handle large graphs which cannot fit into mem-
ory, researchers have been dedicated to devising external algorithms [4,8,19].
Recently, parallel algorithms have been also widely investigated to accelerate the
computation [5,22,23,30]. Existing parallel triangle listing algorithms in MapRe-
duce mainly fall into two categories. One is graph partition based approaches
such as GP [30], TTP [22] and CTTP [23], which partition a graph into a series
of subgraphs and enumerate triangles in parallel. The other is NodeIterator algo-
rithms [5,30], which first enumerate all the wedges in a MapReduce round and
then check whether an wedge can form a triangle in another round.

To avoid explicitly enumerating triangles in massive graphs, approximate
methods based on sampling are further proposed to estimate triangle number
and clustering coefficients. Tsourakakis et al. [32–35] proposed several approx-
imate approaches based on graph sparsification, among which the most repre-
sentative approach is Doulion [34]. It sparsifies a graph by sampling each edge
with a certain probability and then conducts estimation on the sparsified graph.
They also developed another sampling approach which invokes both edge and
triple-node sampling [11] and gave a MapReduce implementation in [21]. How-
ever, these sampling methods suffer from high variance. Schank and Wagner [24]
proposed wedge sampling to estimate the total number of triangles with a hard
bound on the variance. Seshadhri et al. [27,28] extended this idea to compute the
triangle-based metrics including global and binned degree-wise clustering coeffi-
cients, and also gave a MapReduce implementation in [10]. However, their wedge
sampling scheme is not suitable for local clustering coefficient estimation, as it
requires to sample a large constant number of wedges for each node. Alternative
sampling mechanisms for triangle counting have been proposed for streaming
and semi-streaming algorithms, and interested readers can refer to most recent
works in [9,15,29] and earlier works surveyed in [18]. Note that although [15,29]
can estimate the local triangle numbers based on edge sampling in streaming
model, they also suffer from high variance.

374 H. Zhang et al.

3 Preliminaries

In this section, we give the problem definition, and briefly introduce previous
approaches based on wedge sampling closely related to our work.

3.1 Problem Definition

In this paper we target an undirected simple graph G = (V,E) with no self loops
and parallel edges, where V is the vertex set and E ⊆ V × V is the edge set.
We use |V | and |E| to denote the number of vertices and the number of edges
respectively. An edge between nodes u and v is represented as (u, v) ∈ E. For a
node v ∈ V , we denote its neighbor set by N(v) = {u ∈ V |(u, v) ∈ E} and its
degree by dv = |N(v)|.

A triangle �(u, v, w) in G, is a set of three nodes {u, v, w} ⊆ V such that
(u, v), (v, w), (u,w) ∈ E. We define the set of local triangles incident to node v
as �(v) = {�(u, v, w)|u,w ∈ N(v)}. A wedge ∨(u, v, w) is a triplet such that
(u, v), (v, w) ∈ E. We define the set of local wedges centered at v as ∨(v) =
{∨(u, v, w)|u,w ∈ N(v)}. Obviously, we have |∨(v)| =

(
dv

2

)
= dv×(dv−1)

2 . We use
Tv = |�(v)| to denote the number of triangles incident to v, and use Wv = |∨(v)|
to denote the number of wedges centered at v. Accordingly, we use T and W to
denote the triangle number and wedge number in the whole graph respectively.

Definition 1 (Local Clustering Coefficient). The local clustering coefficient
(LCC) of node v is the ratio of the number of incident triangles to the number
of wedges centered at v, which is formally defined as

Cv =
Tv(
dv

2

) . (1)

The local clustering coefficient measures how tightly the neighbors of a node
are connected among themselves. At the global level, this property is an indicator
of how tightly the communities are connected in a graph.

Definition 2 (Global Clustering Coefficient). The global clustering coeffi-
cient (GCC) of a graph G is the ratio of number of wedges closed (forming a
triangle) to wedge number in the graph, which can be formally defined as

Cg =
∑

v∈V Tv∑
v∈V

(
dv

2

) =
3T

W
. (2)

Note that, a triangle �(u, v, w) are counted three times, one is in �(v), a
second in �(u), and a third in �(w).

Another variant of clustering coefficient, targeting the nodes of a specified
degree group, are defined below.

Definition 3 (Binned Degree-wise Clustering Coefficient). Let DG =
{i|∃v ∈ V such that dv = i} be the degree set of graph G, and D ⊂ DG be a

Efficient Local Clustering Coefficient Estimation in Massive Graphs 375

subset of degrees (we ignore degree-zero nodes). We define VD = {v|dv ∈ D}. The
binned degree-wise clustering coefficient (DCC) for degree set D is the average
local clustering coefficient on all nodes in VD, which is

CD =

∑
v∈VD

Tv
∑

v∈VD

(
dv

2

) . (3)

3.2 Previous Work Based on Wedge Sampling

In this subsection, we will introduce the method in [27], including theoretical
basis of wedge sampling and algorithms for estimating global and binned degree-
wise clustering coefficients. We also discuss its limitations and explain why it
cannot be directly applied to local clustering coefficient estimation.

The main idea of wedge sampling is to sample a number of wedges from the
whole wedge set and calculate the percentage of sampled wedges closed (forming
a triangle) to estimate the clustering coefficient. The estimation error can be
bounded by the Hoeffding’s inequality given as follows.

Theorem 1 (Hoeffding’s Inequality [7]). Let X1,X2, ...,Xn be indepen-
dent random variables in range [0, 1]. We define their empirical mean by
X̄ = 1

n

∑n
i=1 Xi and the expected value of X̄ as u = E[X̄]. For any positive

t and δ, setting n ≥ 	 1
2 t−2 ln(2/δ)
 yields

Pr{|X̄ − u| ≥ t} ≤ δ (4)

If we randomly sample at least 	 1
2 t−2 ln(2/δ)
 wedges uniformly with replace-

ment from the whole wedge set of a graph, and let Xi = 1 if the i-th selected
wedge form a triangle and Xi = 0 otherwise, we have Pr{|X̄ − Cg| ≥ t} ≤ δ.
By doing so, the estimation error can be bounded by t with confidence at least
1− δ. Note that k, which is determined by t and δ, is independent of graph size.

GCC Estimation Algorithm. The basic premise for GCC estimation is to
select a number of wedges uniformly at random and check whether or not each

is closed. Their strategy is to select vertex v with probability pv = (dv2)
W , and then

select two of its neighbors uniformly at random without replacement. Thus, the
overall probability of selecting a particular wedge is pv × (

dv

2

)
= 1/W .

DCC Estimation Algorithm. The strategy to make above procedure work for
binned degree-wise situation is straightforward. Instead of uniformly selecting a
number of wedges from the whole wedge set, they uniformly choose a number
of wedges from the wedge set in a specific degree bin. Specifically, they select
vertex v with probability pv only from the set of nodes in a specific degree bin
and then select two of its neighbors uniformly at random without replacement.

Discussion. The above wedge sampling method is very effective for global clus-
tering coefficient as only a constant number of wedges need to be sampled to
achieve high accuracy with high probability. However, for binned degree-wise
clustering coefficient, sampling the same constant number of wedges for each

376 H. Zhang et al.

degree bin will lead to a large total number of sampled wedges if the degrees
are binned per degree. More seriously, it become a curse when estimating node
clustering coefficient, because we have to sample a constant number of wedges
for each node, which might be even larger than the number of its local wedges.
Take t = 0.01 and δ = 0.001 for example, we need to sample 38005 wedges for
nodes whose wedge number exceeds such value, and sample all local wedges for
the other nodes. Such enormous sampled wedges will cause costly computation,
and generate huge shuffled data in the MapReduce implementation [10].

4 Our Sampling Scheme and Computation Framework

In this section, we will first present our new sampling scheme for local clustering
coefficient estimation, where global and binned degree-wise clustering coefficients
can be considered as special cases. Then we propose a novel clustering coefficient
estimation framework based on our wedge sampling scheme, in which different
variants of clustering coefficient are computed in a unified way.

4.1 A New Wedge Sampling Scheme

Recall that in Hoeffding’s Inequality, X is assumed to be a random variable
following arbitrary distribution. In fact, we observe that in the case of clustering
coefficient, X follows hypergeometric distribution. It describes the probability
of k successes in n draws without replacement, from a finite population of size
N that contains K successes, wherein each draw is either a success or a failure.

For a node v, suppose we sample n wedges from its local wedge set ∨(v),
and check whether each wedge is closed (forming a triangle) or open. The
probability that k wedges are closed is P (X = k) =

(
K
k

)(
N−K
n−k

)
/
(
N
n

)
, where

N = Wv and K = Tv. Obviously, such probability mass function satisfies the
condition of hypergeometric distribution, i.e., X ∼ Hypergeometric(K,N, n).
Let p = K/N = Tv/Wv be the local clustering coefficient of node v. Then the
estimated value is X/n, whose error can be bounded as follows [7].

Theorem 2. Let X ∼ Hypergeometric(K,N, n) and p = K/N . Then we can
derive the following bound.

Pr[|X
n

− p| ≥ t] ≤ 2 exp(−2t2n). (5)

Note that setting n ≥ 	 1
2 t−2 ln

2
δ

 yields Pr[|Xn −p| ≥ t] ≤ δ. This means that

we need to sample at least 	 1
2 t−2 ln

2
δ

 wedges to make the error is at most t with

confidence at least 1 − δ, which is the same as that in Hoeffding’s Inequality.
Next, we introduce how to improve above bound. As we know, the degrees

of most nodes in real life graphs are not high because real life graphs usually
follow power-law degree distribution. Thus, for a node v, to achieve small error
with high confidence, the number of required sampled wedges n in Eq. 5 can be

Efficient Local Clustering Coefficient Estimation in Massive Graphs 377

even larger than Wv/2. In this case, we can get a tighter bound by inverting the
bound according to the symmetry of hypergeometric distribution as follows [25].

Theorem 3. Let X ∼ Hypergeometric(K,N, n) and p = K/N . For n ≥ N/2,
we can derive the following bound.

Pr[|X
n

− p| ≥ t] ≤ 2 exp(−2t2n n
N−n). (6)

Setting n ≥
⌈

1
4
t−2(

√
ln

2
δ
(ln

2
δ

+ 8Nt2) − ln
2
δ
)
⌉

yeilds Pr[|Xn − p| ≥ t] ≤ δ.

Now the question is which bound should be chosen for a specific node v? We
answer this by giving the following theorem.

Theorem 4. Let X ∼ Hypergeometric(K,N, n) and p = K/N . To achieve the
error bound t with probability 1 − δ, the least possible value of n is:

n = 	1
2
t−2 ln

2
δ

 if N ≥ 	t−2 ln

2
δ

,

n =
⌈

1
4
t−2(

√
ln

2
δ
(ln

2
δ

+ 8Nt2) − ln
2
δ
)
⌉

otherwise.

(7)

Proof: From Theorems 2 and 3, we can know that they achieve the same
error and confidence when they have the same number of sampled wedges,

i.e.,
1
2
t−2 ln

2
δ

=
1
4
t−2(

√
ln

2
δ
(ln

2
δ

+ 8Nt2) − ln
2
δ
). By solving this equation,

we derive N = t−2 ln
2
δ
, which completes the proof.

Based on this theorem, we can know that, given t and δ, for a node v with

Wv ≥ t−2 ln
2
δ
, we can sample a constant number of wedges 	1

2
t−2 ln

2
δ

; other-

wise, we sample
⌈

1
4
t−2(

√
ln

2
δ
(ln

2
δ

+ 8Wvt2) − ln
2
δ
)
⌉

wedges, which is related

to Wv. For example, given t = 0.01 and δ = 0.001, for nodes with Wv ≥ 76010,
we need to sample 38005 wedges, otherwise, the number of sampled wedges is
smaller than 38005. We also give the theoretical numbers of sampled wedges for
different degrees in Fig. 1, where UCCE represents our sampling scheme and WS
represents wedge sampling scheme in [27]. It shows that WS needs to sample all
local wedges for node with degree less than 277, and UCCE only needs to sample
part of local wedges. Thus, we can significantly reduce the number of sampled
wedges than that in [27].

Moreover, our sampling scheme can also be applied to GCC and DCC esti-
mation. For GCC, since the number of total wedges in a real life graph is usu-

ally very large (far larger than t−2 ln
2
δ
), we can sample a constant number

of wedges
1
2
t−2 ln

2
δ
. For DCC, we can also determine the number of sampled

378 H. Zhang et al.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200 250 300 350 400

S
a

m
p

le
d

 W
e

d
g

e
s

Degree

WS
UCCE

Fig. 1. Theoretical number of sampled wedges

wedges based on the total number of wedges in a specific degree bin as local clus-
tering coefficient does. After we obtain the required number of sampled wedges
n for global or binned degree-wise clustering coefficients, we divide it to each
node by nv = nWv/W or nv = nWv/WD.

4.2 A Unified Clustering Coefficient Estimation Framework

To integrate the computation of local, global, and binned degree-wise clustering
coefficients into a unified framework, we first design a general mapping function
F to map graph nodes into different groups. The group numbers are different
for each variant of clustering coefficient. For LCC, we divide the nodes into |V |
groups, where each group contains only one node. For degree set D1,D2,,Dl ⊆
D, we divide nodes into groups VD1 , VD2 ,, VDl

, where group VDi
contains

nodes with degree in Di. For GCC, we can simply consider the nodes as one
single group V .

Equipped with above mapping function, we present our unified framework
UCCE in Algorithm 1. The whole process of clustering coefficient estimation is
divided into three phases: Gathering Information, Sampling and Verification, and
Grouping Results. In the first phase, we will collect the statistical information
about each node and each group, and calculate the number of sampled wedges for
each node. Specifically, we collect the neighbors for each node v to compute the
total number of wedges for each group. Then we obtain the number of sampled
wedges for each group based on Theorem 4, and divide it to obtain the number
of sampled wedges W s

v for each node v. In the second phase, we sample W s
v

wedges for each node v, and check whether each of them can form a triangle.
The number of triangles formed by sampled wedges is denoted as T s

v . Finally,
in the last phase, we group the number of sampled wedges and the number of
sampled triangles for each group to obtain the final result.

Algorithm 1. UCCE Framework
1 Gathering Information
2 Sampling and Verification
3 Grouping Results

Efficient Local Clustering Coefficient Estimation in Massive Graphs 379

5 Our MapReduce Algorithm

In this section, we present a new MapReduce algorithm UCCE under our frame-
work and give its optimization techniques.

5.1 UCCE Algorithm

We will first introduce the algorithms for gathering information and grouping
results, and give the optimized algorithm for sampling and verification later.

Gathering Information. The process of gathering information is shown in
Algorithm 2, which can be completed in one MapReduce round. In map function,
we partition the edges into different groups by applying mapping function F to
node u for each edge (u, v). In reduce function, we use List(u, v) to denote the
list of edges which shares the same key value F (u), and use VF (u) to denote the
set of nodes in the group that u belong to. S(u) is the sample rate of node u
calculated based on List(u, v) by the method discussed in Sect. 4.1.

Grouping Results. We present the process of grouping results in Algorithm 3,
which can also be completed in one MapReduce job. The map function takes
the number of sampled wedges W s

u and number of sampled triangles T s
u for each

node u as input, and maps nodes to group F (u). The reduce function aggregates
sampled wedges and triangles to calculate the clustering coefficient for each
group.

Algorithm 2. Gathering Information
1 map (〈(u, v); ∅〉)
2 begin
3 Emit 〈F (u), (u, v)〉
4 reduce (〈F (u);List(u, v)〉)
5 begin
6 foreach u ∈ VF (u) do
7 Emit 〈u, S(u)〉

Algorithm 3. Grouping Results
1 map (〈u; (W s

u , T
s
u)〉)

2 begin
3 Emit 〈F (u), (W s

u , T
s
u)〉

4 reduce (〈F (u); (W s
u , T

s
u)〉)

5 begin
6 foreach (W s

u , T
s
u) ∈ List(W s

u , T
s
u) do

7 Ts+ = T s
v ; Ws+ = W s

v

8 Emit 〈F (u), Ts/Ws〉

380 H. Zhang et al.

5.2 Optimized Algorithm for Sampling and Verification

The task of sampling and verification in MapReduce can be completed by slightly
modifying triangle enumeration algorithms such as NodeIterator++ [5]. It con-
tains two MapReduce rounds. The first is to sample and output wedges, and
the second is to check whether each wedge is closed or not. Although it is log-
ically simple, a large amount of intermediate data in the form of wedges are
shuffled, which severely hinder the scalability. Therefore, we devise an optimized
algorithm to significantly reduce the intermediate data to speed up.

Reduction of Intermediate Data. We reduce the intermediate data by utiliz-
ing a light weight data structure Bloom filter. It can help check whether a wedge
is closed with high accuracy without outputting sampled wedges. Bloom filter
[2] is a space-efficient probabilistic data structure to test whether an element is
a member of a set. Given the edge set E, we can build a bloom filter B of m bits
by mapping each edge in E to B with k′ hash functions, and query an element
in B with false positives rate pf = (1− ek

′|E|/m)k
′
[20]. Although Bloom filter is

already space-efficient, it can still cost a lot of memory if we want to achieve a
very small false positive rate for extremely large graphs. To utilize Bloom filter

Algorithm 4. Sampling and Verification
1 Distributed Bloom Filter

2 foreach i < L do
3 map (〈u; v〉)
4 begin
5 Emit 〈u, v〉
6 reduce-setup
7 foreach j = 1 to s do
8 if j%L = i then
9 load bloomfilter[j]

10 reduce (〈u;N(u)〉)
11 begin
12 (T s

u ,W
s
u) = SampleWedges(u, S(u), i)

13 Emit 〈u, (T s
u − pfW

s
u ,W

s
u)〉

14 i + +

15 Function SampleWedges(u, S(u), i)
16 randomly sample wedges into Iu with sample rate S(u)
17 foreach ∨(v, u, w) ∈ Iu do
18 if hash(v)%L = i then
19 + + W s

u

20 if Check(v,w) then
21 + + T s

u

22 return (T s
u ,W

s
u);

Efficient Local Clustering Coefficient Estimation in Massive Graphs 381

with limited memory space, we can distributedly generate the Bloom filter and
partially load them in multiple rounds.

Optimized Sampling and Verification. We present our optimized sampling
and verification process in Algorithm4, which includes a preliminary step of
generating distributed Bloom filter. We partially load distributed Bloom filter
into memory in L rounds (line 2), and a small L is usually enough for real life
graphs. Suppose that the Bloom filter are partitioned into s parts. In round i,
we only load bloomfilter[j] such that hash(j)%L = i into the memory for each
reducer (lines 7–9). In the reduce function, we sample the wedges for each node
by function SampleWedges. Note that not all sampled wedges can be verified by
Bloom filter as it is only partially loaded. Therefore, for each sampled wedge
∨(v, u, w), we first obtain the hash value hash(v) and then examine whether
bloomfilter[hash(v)] is loaded (line 18). If yes, the number of sampled wedges
are increased, otherwise we abandon this wedge (lines 17–21). Note that before
we output the numbers of sampled wedges and triangles, we amend the number
of sampled triangles by subtracting the number of false positive triangles caused
by the false positive rate of Bloom filter (line 13).

6 Experiments

In this section, we evaluate the performance of UCCE and compare it with
competing methods. Especially, we will answer the following two questions.

Q1 How accurate is UCCE for local, global, and binned-wise degree clustering
coefficient estimation?

Q2 How efficient is UCCE compared with the state-of-the-art exact and approx-
imate competitors?

6.1 Experimental Setup

Datasets. We use five publicly available real graph datasets which have been
intensively investigated in previous works [10,15,23,30]. These datasets are from
diverse domains such as social networks, hyperlinks in webpages, collaboration
networks, etc. Their meta information is displayed in Table 1. TW is from [12],

Table 1. Summary of the testing graph datasets

Datasets Name |V | |E| |T | |W | Cg

as-Skitter AS 1.7 × 106 1.1 × 107 2.9 × 107 1.6 × 1010 0.0054

com-livejournal LJ 4.0 × 106 3.5 × 107 1.8 × 108 4.2 × 109 0.1253

orkut OK 3.0 × 106 1.2 × 108 6.3 × 109 4.6 × 1010 0.0413

twitter-2010 TW 4.2 × 107 1.2 × 109 3.5 × 1010 1.2 × 1014 0.0008

com-friendster FD 6.5 × 107 1.8 × 109 4.2 × 109 7.2 × 1011 0.0174

382 H. Zhang et al.

and the rest are from SNAP [14]. In our experiments, each dataset is preprocessed
to be a simple undirected graph.

Implementation. We compare our algorithm with state-of-the-art exact and
approximate algorithms. The exact algorithms are two recent triangle enumer-
ation methods NodeIterator++ (NI++ for short) [30] and CTTP [23]. We add
several post-processing steps to compute the clustering coefficients based on
the outputted triangles. The approximate approaches we compare with are the
recent wedge sampling methods for clustering coefficient estimation in MapRe-
duce [10,27] discussed in Sect. 3. Specifically, we denote their method for esti-
mating GCC as WSG, and denote their method for estimating DCC as WSD.
We also further modified their MapReduce algorithm in [10] to adapt the compu-
tation of LCC, denoted as WSL. All the methods are implemented in Java and
running on a cluster of 20 nodes. Each node is equipped with 2 Intel Xeon
E5-2630-v2 cpu (6 core, each core running at 2.6 GHZ) and 4 × 2 TB hard
drives, and connected with each other by 2 × 1 GB Ethernet. We use 240 map-
pers/reducers at the same time, and each one is allocated with 2 GB memory.

6.2 Performance of UCCE

In this subsection, we will answer Q1. To answer it, we fix δ to 0.001 and test
UCCE under different values of t for LCC and GCC. To display the experimental
results for DCC, we fix δ to 0.001 and t to 0.01, and show the exact and estimated
clustering coefficients for each degree bin. For GCC, we measure the accuracy of
algorithms by absolute error between Cg and C ′

g, where Cg is exact clustering
coefficient and C ′

g is the estimated clustering coefficient. For LCC, we measure

the accuracy by average absolute error defined as
∑

v∈V |Cv−C′
v|

|V | , where Cv and
C ′

v are exact and estimated clustering coefficients for node v respectively.
Figure 2 shows the curves of estimation error of UCCE under different t for

LCC and GCC. It can be seen in Fig. 2(a) that as the value of t decreases, the
average error is also decreasing. It is worth noticing that the average error is
always smaller than the theoretical bound t. For example, when t is 0.05, the

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

0.2 0.15 0.1 0.05

A
v
e
ra

g
e
 E

rr
o
r

t

as
lj

ork
tw
fd

(a) LCC

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

0.1 0.05 0.01 0.005

E
rr

o
r

t

as
lj

ork
tw
fd

(b) GCC

Fig. 2. Accuracy for LCC and GCC

Efficient Local Clustering Coefficient Estimation in Massive Graphs 383

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

C
lu

s
te

ri
n

g
 C

o
e

ff
ic

ie
n

t

Degree Bin

Exact
UCCE

(a) AS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

C
lu

s
te

ri
n

g
 C

o
e

ff
ic

ie
n

t

Degree Bin

Exact
UCCE

(b) LJ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

C
lu

s
te

ri
n

g
 C

o
e

ff
ic

ie
n

t

Degree Bin

Exact
UCCE

(c) OK

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

2
0

2
5

2
10

2
15

2
20

2
25

C
lu

s
te

ri
n

g
 C

o
e

ff
ic

ie
n

t

Degree Bin

Exact
UCCE

(d) TW

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

2
0

2
2

2
4

2
6

2
8

2
10

2
12

C
lu

s
te

ri
n

g
 C

o
e

ff
ic

ie
n

t

Degree Bin

Exact
UCCE

(e) FD

Fig. 3. Accuracy for DCC

average error is less than 0.015 for all datasets we tested. The case for GCC in
Fig. 2(b) is similar. Although there is a small fluctuation for t = 0.05 for dataset
AS, the estimation error is still far smaller than the theoretical bound.

Next we show the accuracy of our methods for DCC by plotting the curves of
exact and estimated clustering coefficient for each graph dataset. The results are
shown in Fig. 3. It can be seen that the curves for exact and estimation results
are very close for all datasets.

6.3 Comparison with Competitors

In this subsection, we will answer Q2. We compare the running time between
our method with competitors and show the results in Fig. 4.

For LCC, from Fig. 4(a), we can see that our algorithm is faster than all the
competing algorithms on all testing dataset (t = 0.05 and δ = 0.001). It can be
over an order of magnitude faster than exact algorithms on large graph datasets

10
1

10
2

10
3

10
4

10
5

AS LJ ORK TW FD

Time(sec)

UCCE
WSL

CTTP
NI++

(a) LCC

10
2

10
3

10
4

10
5

AS LJ ORK TW FD

Time(sec)

UCCE
WSD
CTTP
NI++

(b) DCC

10
2

10
3

10
4

10
5

AS LJ ORK TW FD

Time(sec)

UCCE
WSG
CTTP
NI++

(c) GCC

Fig. 4. Running time comparison

384 H. Zhang et al.

such as TW and FD. Previous wedge sampling method WSL is also faster than
exact algorithms, but it consumes more running time than ours due to the large
number of sampled wedges and large size of intermediate data in MapReduce.
The speedup of our algorithm comes from two sides. One is that we sample
smaller number of wedges than previous methods; the other is that we avoid
the output of sampled wedges in our MapReduce algorithm, which can largely
reduce the intermediate data.

For DCC and GCC, Fig. 4(b) and (c) also show the outperformance of our
algorithm over competitors (t = 0.01 and δ = 0.001). The curves are similar as
that in Fig. 4(a).

7 Conclusion

Clustering coefficient is an important metric to characterize graph properties. In
this paper, we propose a new wedge sampling scheme to estimate local cluster-
ing coefficient where the error are well bounded with high probability. Moreover,
we propose a new framework which can estimate the local, global, and binned
degree-wise clustering coefficients in a unified way. Under this framework, we fur-
ther devise a MapReduce algorithm for clustering coefficient estimation, which is
also the first efficient MapReduce algorithm that can estimates local clustering
coefficient. We also give the optimization techniques for reducing the intermedi-
ate data to further accelerate the computation. Extensive experiments validate
the efficiency and effectiveness of our algorithms.

Acknowledgements. This work was partially supported by the grants from the
National Science Foundation of China (61502349), Hubei Provincial Natural Science
Foundation of China (2015CFB339), the Scientific and Technologic Development Pro-
gram of SuZhou (SYG201442), Research Grants Council of the Hong Kong SAR,
China (14209314 and 14221716), Australian Research Council (DE140100999 and
DP160101513), Microsoft Research Asia Collaborative Research Grant and Chinese
University of Hong Kong Direct Grant (4055048). Yuanyuan Zhu is a corresponding
author.

References

1. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient algorithms for large-scale
local triangle counting. TKDD 4(3) (2010). Article no. 13

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. Chen, D.-B., Gao, H., Lü, L., Zhou, T.: Identifying influential nodes in large-scale
directed networks: the role of clustering. PloS one 8(10), e77455 (2013)

4. Chu, S., Cheng, J.: Triangle listing in massive networks and its applications. In:
KDD, pp. 672–680. ACM (2011)

5. Cohen, J.: Graph twiddling in a mapreduce world. Comput. Sci. Eng. 11(4), 29–41
(2009)

6. Eckmann, J.-P., Moses, E.: Curvature of co-links uncovers hidden thematic layers
in the world wide web. PNAS 99(9), 5825–5829 (2002)

Efficient Local Clustering Coefficient Estimation in Massive Graphs 385

7. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

8. Hu, X., Tao, Y., Chung, C.-W.: Massive graph triangulation. In: SIGMOD, pp.
325–336. ACM (2013)

9. Jha, M., Seshadhri, C., Pinar, A.: A space-efficient streaming algorithm for esti-
mating transitivity and triangle counts using the birthday paradox. TKDD 9(3),
15:1–15:21 (2015)

10. Kolda, T.G., Pinar, A., Plantenga, T., Seshadhri, C., Task, C.: Counting triangles
in massive graphs with mapreduce. SISC 36(5), S48–S77 (2014)

11. Kolountzakis, M.N., Miller, G.L., Peng, R., Tsourakakis, C.E.: Efficient triangle
counting in large graphs via degree-based vertex partitioning. Internet Math. 8(1–
2), 161–185 (2012)

12. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a
news media? In: WWW 2010: Proceedings of the 19th International Conference
on World wide web, pp. 591–600. ACM, New York (2010)

13. Latapy, M.: Main-memory triangle computations for very large (sparse (power-
law)) graphs. Theoret. Comput. Sci. 407(1), 458–473 (2008)

14. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection,
June 2014. http://snap.stanford.edu/data

15. Lim, Y., Kang, U.: MASCOT: memory-efficient and accurate sampling for counting
local triangles in graph streams. In: KDD, pp. 685–694 (2015)

16. Lin, Y., Xiong, H., Chen, M., Ding, L., Cao, Y., Wang, G., Liu, M.: Dynamical
model and analysis of cascading failures on the complex power grids. Kybernetes
40(5/6), 814–823 (2011)

17. Masuda, N.: Clustering in large networks does not promote upstream reciprocity.
PloS one 6(10), e25190 (2011)

18. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20
(2014)

19. Menegola, B.: An external memory algorithm for listing triangles (2010)
20. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms

and Probabilistic Analysis. Cambridge University Press, New York (2005)
21. Pagh, R., Tsourakakis, C.E.: Colorful triangle counting and a mapreduce imple-

mentation. Inf. Process. Lett. 112(7), 277–281 (2012)
22. Park, H.-M., Chung, C.-W.: An efficient mapreduce algorithm for counting trian-

gles in a very large graph. In: CIKM, pp. 539–548. ACM (2013)
23. Park, H.-M., Silvestri, F., Kang, U., Pagh, R.: Mapreduce triangle enumeration

with guarantees. In: CIKM, pp. 1739–1748. ACM (2014)
24. Schank, T., Wagner, D.: Approximating clustering coefficient and transitivity. J.

Graph Algorithms Appl. 9(2), 265–275 (2005)
25. Serfling, R.J.: Probability inequalities for the sum in sampling without replacement.

Ann. Stat. 2(1), 39–48 (1974)
26. Seshadhri, C., Kolda, T.G., Pinar, A.: Community structure and scale-free collec-

tions of erdős-rényi graphs. Phys. Rev. E 85(5), 056109 (2012)
27. Seshadhri, C., Pinar, A., Kolda, T.G.: Fast triangle counting through wedge sam-

pling. In: SDM, vol. 4, p. 5. Citeseer (2013)
28. Seshadhri, C., Pinar, A., Kolda, T.G.: Triadic measures on graphs: the power of

wedge sampling. In: SDM, pp. 10–18. SIAM (2013)
29. Stefani, L.D., Epasto, A., Riondato, M., Upfal, E.: Trièst: counting local and global

triangles in fully-dynamic streams with fixed memory size. In: KDD, pp. 825–834
(2016)

http://snap.stanford.edu/data

386 H. Zhang et al.

30. Suri, S., Vassilvitskii, S.: Counting triangles and the curse of the last reducer. In:
WWW, pp. 607–614. ACM (2011)

31. Trpevski, D., Tang, W.K., Kocarev, L.: Model for rumor spreading over networks.
Phys. Rev. E 81(5), 056102 (2010)

32. Tsourakakis, C.E.: Fast counting of triangles in large real networks without count-
ing: algorithms and laws. In: ICDM, pp 608–617 (2008)

33. Tsourakakis, C.E., Drineas, P., Michelakis, E., Koutis, I., Faloutsos, C.: Spectral
counting of triangles via element-wise sparsification and triangle-based link recom-
mendation. Soc. Netw. Anal. Mining 1(2), 75–81 (2011)

34. Tsourakakis, C.E., Kang, U., Miller, G.L., Faloutsos, C.: Doulion: counting trian-
gles in massive graphs with a coin. In: KDD, pp. 837–846. ACM (2009)

35. Tsourakakis, C.E., Kolountzakis, M.N., Miller, G.L.: Triangle sparsifiers. J. Graph
Algorithms Appl. 15(6), 703–726 (2011)

36. Wu, X., Lu, H.: Cluster synchronization in the adaptive complex dynamical net-
works via a novel approach. Phys. Lett. A 375(14), 1559–1565 (2011)

37. Yang, Z., Wilson, C., Wang, X., Gao, T., Zhao, B.Y., Dai, Y.: Uncovering social
network sybils in the wild. TKDD 8(1), 2 (2014)

Efficient Processing of Growing
Temporal Graphs

Huanhuan Wu(B), Yunjian Zhao, James Cheng, and Da Yan

Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong, China

{hhwu,yjzhao,jcheng,yanda}@cse.cuhk.edu.hk

Abstract. Temporal graphs are useful in modeling real-world networks.
For example, in a phone call network, people may communicate with
each other in multiple time periods, which can be modeled as multiple
temporal edges. However, the size of real-world temporal graphs keeps
increasing rapidly (e.g., considering the number of phone calls recorded
each day), which makes it difficult to efficiently store and analyze the
complete temporal graphs. We propose a new model, called equal-weight
damped time window model, to efficiently manage temporal graphs. In
this model, each time window is assigned a unified weight. This model
is flexible as it allows users to control the tradeoff between the required
storage space and the information loss. It also supports efficient main-
tenance of the windows as new data come in. We then discuss applica-
tions that use the model for analyzing temporal graphs. Our experiments
demonstrated that we can handle massive temporal graphs efficiently
with limited space.

1 Introduction

A temporal graph is a graph in which the relationship between vertices is not just
modeled by an edge between them, but the time period when the relationship
happens is also recorded. For example, two persons A and B talked on the
phone in time periods [t1, t2] and [t3, t4] are modeled as two temporal edges,
(A,B, [t1, t2]) and (A,B, [t3, t4]). An example of a temporal graph is shown in
Fig. 1(a).

Graphs are used ubiquitously to model relationships between objects in real
world. However, the graph data in many applications are actually better to be
modeled as temporal graphs. For example, in communication networks, includ-
ing online social networks, messaging networks, phone call networks, etc., people
communicate with each other in different time periods. Temporal graphs col-
lected from these applications carry rich time information, and have been shown
to possess many important time-related patterns that cannot be found from
non-temporal graphs [8–10,13,17,19,25].

However, existing work overlooks one serious problem presented by tempo-
ral graphs in real world applications, that is, the number of temporal edges (or
temporal records) can be extremely huge so that it becomes overly expensive
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 387–403, 2017.
DOI: 10.1007/978-3-319-55699-4 24

388 H. Wu et al.

a

g

cb

f

[1,2] [2,3] [2,3] [4,5]

[5,6] [1,6] [7,8]

a

cb

f

[7,9]

[11,14]

(a) (b)

1 2

3

g

Fig. 1. (a) A temporal graph G, and (b) the weighted graph G[2,5]

to store and process a temporal graph. For example, in a temporal graph that
models phone-call records, a person may talk on the phone many times in dif-
ferent time periods in a day, where each phone call is represented by a temporal
edge with the corresponding time period. The total number of temporal edges
accumulated over time for all persons can easily become overwhelming. Note
that while the number of temporal edges usually increases at a steady rate over
time, the number of vertices, on the other hand, does not increase too much over
time after passing the growth stage.

The problem in the above example is actually a real problem presented to us
by a telecommunications operator, who collects phone-call and messaging records
represented as a temporal graph that becomes too large over time for them to
manage (millions to tens of millions of new temporal edges added each day).
While analyzing only a short recent window of the data is useful, the telecom
operator is also very keen in storing and analyzing the temporal graph over a
long period of time (e.g., in recent years), and possibly the entire history, in an
efficient way. Motivated by this, we propose a new model to efficiently manage
a temporal graph.

Our new model considers the input temporal graph as a continuous stream,
which captures how the temporal graph is collected in real-life applications (e.g.,
new call/message records are accumulated in the order of the calling/sending
time). However, the sheer size of the stream over the entire time history renders
analysis (and even storage) of the original temporal graph too costly. To address
this problem, we consider a damped time window model (also called tilted time
window) [5], where a decay function is applied to depreciate the importance of
records in an older window. However, the windows defined by existing damped
time window models do not have a unified weight and hence the importance of
records in different windows cannot be easily compared. For example, which of
the following patterns is more important: a pattern that A and B communi-
cated 10 times in a recent window (e.g., last week), or a pattern that A and B
communicated 10,000 times in an older window (e.g., last year)?

We design a new damped time window model that gives a unified weight
to each time window, called equal-weight damped time window, and represents
the temporal graph falling into each window (i.e., a time period) as a weighted
graph. The weighted graphs from different time windows can then be compared
and analyzed.

Efficient Processing of Growing Temporal Graphs 389

The main contributions of our work are as follows:

– Our equal-weight damped time window distributes a unified weight to each
time window, which makes it easy to compare different time windows.

– Our model can handle massive temporal graphs with limited space require-
ment, and support efficient graph analysis with little information loss.

– The equal-weight design in our model also leads to natural and efficient update
maintenance of the entire window (within a bounded storage space).

– We present an application that analyzes the connectivity of a temporal graph
with our new model. More applications such as community finding can be
found in [23]. We verified the effectiveness and efficiency of our method by
extensive experiments on large temporal graph datasets.

Outline. Section 2 presents the equal-weight time window model. Section 3
discusses one application based on our model. Section 4 reports experimental
results. Section 5 discusses related work. Section 6 concludes the paper.

2 Equal-Weight Damped Time Window

Different window models have been proposed for processing a data stream. Among
which, the landmark window model [14] considers the entire history of a stream
without distinguishing the importance of recent and old records, while the sliding
window model [6] focuses on the most recent window only. Our work is motivated
by application needs from a telecom operator that requires to analyze historical
data while giving more importance to recent data. For this purpose, the damped
time window model [5] seems to suit the requirement. We introduce our damped
time window model in this section, and discuss its difference with existing ones.

We first define the notations related to a temporal graph. Let G = (V,E) be
a temporal graph, where V is the set of vertices and E is the set of edges in G. An
edge e ∈ E is a quadruple (u, v, [ti, tj]), where u, v ∈ V, and [ti, tj] is the time that
e is active. We focus our discussion on undirected temporal graphs, while we note
that it is not difficult to extend our method to directed temporal graphs.

2.1 The Weight Function

In a damped time window model, a decaying weight function is used to depreciate
the importance of a record over time. In the setting of a temporal graph, we use
such a function to assign weight to temporal edges in the graph. We first present
the weight density function as follows.

Definition 1 (Weight density function). Let tτ be the current time. The
weight density of a record at time t (with respect to tτ) is defined as

f(t) = eλ(t−tτ),

where λ ≥ 0 is a decaying constant.

Note that t ≤ tτ , and t is a time in the past if t < tτ .

390 H. Wu et al.

In Definition 1, f(t) is an exponentially decaying function, which is used
throughout the paper as it has been widely adopted [11,24]. But f(t) can also
be defined differently (e.g., as a linear decaying function) depending on the
application. Based on f(t), we define our weight function as follows.

Definition 2 (Weight function). The weight of a temporal edge (u, v, [t1, t2])
is given as the integral

F (t1, t2) =
∫ t2

t1

f(t)dt.

Let W = [tx, ty] be a given time window. With the weight function, we
represent the part of a temporal graph G = (V,E) that falls into W as a weighted
graph GW defined as follows.

Definition 3 (Weighted graph). The weighted graph of a temporal graph
G = (V,E) within a time window W = [tx, ty] is given by GW = (VW , EW ,ΠW),
where:

– VW = V,
– EW = {(u, v) : (u, v, [ti, tj]) ∈ EW }, where EW = {(u, v, [ti, tj]) ∈ E : [ti, tj] ∩

[tx, ty] �= ∅},
– ΠW is a function that assigns each edge e = (u, v) ∈ EW a weight ΠW (e) =∑

(u,v,[ti,tj])∈EW
F (max(ti, tx),min(tj , ty)).

Example 1. Figure 1(a) shows a temporal graph and Fig. 1(b) shows the corre-
sponding weighted graph G[2,5] within the time window [2, 5]. For simplicity,
we assume that λ = 0 and hence f(t) = 1. Thus, the weight of edge (a, b) is
F (2, 3) = 1, the weight of edge (a, c) is F (2, 3) + F (4, 5) = 2, and the weight of
edge (c, f) is F (2, 5) = 3. The weight of all other edges is 0.

2.2 The Equal-Weight Window Model

Next, we determine the size of each window in a data stream given the weight
function.

Existing damped time window model [5] usually sets the sizes of the windows
in a stream by an exponentially increasing function (e.g., 20T , 21T , 22T , 23T , . . .,
where the windows are disjoint and the most recent window has a size 20T), or by
the lengths of conventional time units (e.g., hour, day, month, year, . . .). These
window size settings may seem to be intuitive, but they are primarily designed
for mining frequent itemsets from a stream and are not suitable for our problem
of handling a temporal graph stream (see more discussion in “Advantages of the
new model” at the end of this subsection). We introduce an equal-weight scheme
as follows.

Let [t0, tτ] be the time period of the entire stream up to the current time tτ .
To limit the space requirement for handling a large temporal graph, we divide
the stream into θ windows for a given constant number θ. We first define the
equal-weight window condition as follows.

Efficient Processing of Growing Temporal Graphs 391

Definition 4 (Equal-weight window condition). Consider that the proba-
bility distribution of any edge being active at any time follows a uniform dis-
tribution. Under this distribution, the equal-weight condition is satisfied if the
stream is divided into θ windows such that the weighted graph of each window is
the same in expectation.

Intuitively, Definition 4 states that if the probability of any edge being active
does not change over time, then the weight of the edge should not change in any
of the θ windows.

Let the time periods of the θ windows be [t0, t1], [t1, t2], . . ., [tθ−1, tτ]. Then,
applying Definition 4, we have

∫ t1

t0

f(t)dt =
∫ t2

t1

f(t)dt = ... =
∫ tτ

tθ−1

f(t)dt =
1
θ

∫ tτ

t0

f(t)dt.

Take f(t) = eλ(t−tτ). We first determine t1 as follows:
∫ t1

t0

f(t)dt =
1
θ

∫ tτ

t0

f(t)dt

⇒ 1
λ

(eλ(t1−tτ) − eλ(t0−tτ)) =
1
θλ

(eλ(tτ −tτ) − eλ(t0−tτ))

⇒ θ(eλt1 − eλt0) = eλtτ − eλt0

⇒ eλt1 =
eλtτ + (θ − 1)eλt0

θ

⇒ t1 =
1
λ

ln
eλtτ + (θ − 1)eλt0

θ
.

Similarly, we obtain ti, where 1 ≤ i ≤ θ − 1, as follows:

ti =
1
λ

ln
i × eλtτ + (θ − i)eλt0

θ
.

Based on the above analysis, we define equal-weight damped time window
model as follows.

Definition 5 (Equal-weight damped window model). Given a stream that
spans the time period [t0, tτ], and an integer θ, equal-weight damped time win-
dow model divides the stream into θ windows spanning time periods [t0, t1],
[t1, t2], . . ., [tθ−1, tτ], where ti = 1

λ ln i×eλtτ +(θ−i)eλt0

θ , for 1 ≤ i ≤ θ − 1.

Based on Definition 5, we obtain θ weighted graphs derived from the temporal
graph that falls into each of the θ windows in the stream. The value of θ is
determined by users, which controls the space requirement and the efficiency
of graph analysis, as well as the degree of information loss (from the original

392 H. Wu et al.

temporal graph to the θ weighted graphs). The larger the value of θ, the finer is
the granularity of the windows and the less is the information loss, but also the
more is the memory space needed.

Advantages of the new model. The equal-weight damped time window model
has the following advantages: (A1) it is a generalization of existing damped time
window models; (A2) it gives equal importance to each window, which makes
it easy to compare the graphs from different windows; and (A3) it provides a
systematical way for update maintenance of the windows.

For (A1), by defining an appropriate weight density function, we can apply
our proposed equal-weight scheme to compute the size of each window for exist-
ing damped time window models. Take the logarithmic tilted-time window model
as an example, where an exponentially increasing function (e.g., 20T , 21T , 22T ,
23T , . . .) is used. Assume that the time span of the entire stream is [0, 2θ − 1],
then the weight density function is defined as follows:

f(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1, 0 ≤ t < 2θ−1

2, 2θ−1 ≤ t < 2θ−1 + 2θ−2

..., ...
2θ−1, 2θ − 2 ≤ t ≤ 2θ − 1

For (A2), if the weights of an edge (u, v) in two different windows W1 and W2

are the same, then it implies that the probability of (u, v) being active remains
the same in W1 and W2. Now if the probability of (u, v) being active is higher in
W1, then apparently the weight of (u, v) in W1 is also higher than that in W2.
This may not be true if existing damped time windows are used unless we define
an appropriate f(t) function for them, and apply our scheme proposed in this
section to determine the window sizes.

For (A3), we show that our model provides a systematical way for update
maintenance of the windows in Sect. 2.3.

2.3 Window Maintenance

As time goes on, new temporal edges are created and the windows need to be
updated. We devise an update scheme for our window model as follows.

Let [t0, t1], [t1, t2], . . ., [tθ−1, tθ] denote the θ existing windows, and [tθ, tθ+1]
denote the new window. As the current time changes from tτ = tθ to t′τ =
tθ+1, the weight density function f(t) changes from f(t) = eλ(t−tθ) to f(t) =
eλ(t−tθ+1). Lemmas 1 and 2 state the change needed.

Due to the space limitation, the proofs for all the lemmas and theorems are
given in the full version of this paper [23].

Lemma 1. If the current time changes from tτ to t′τ , for any temporal edge
whose weight w is last updated at time tτ , the weight should be updated as follows:

w ← w × eλ(tτ −t′
τ).

Efficient Processing of Growing Temporal Graphs 393

Lemma 2. Given a weighted graph G = (V,E,Π) of any window, if the current
time changes from tτ to t′τ , the weight w of each edge in E which is computed
at time tτ should be updated as follows

w ← w × eλ(tτ −t′
τ).

Lemma 2 shows that it is simple to update the weighted graphs of the existing
windows as new windows are created in the stream. However, we still need to
determine at what point a new window, i.e., [tθ, tθ+1], should be created in the
stream, which is to determine tθ+1. Following our discussion in Sect. 2.2, we have

∫ tθ

tθ−1

f(t)dt =
∫ tθ+1

tθ

f(t)dt

⇒ eλtθ − eλtθ−1 = eλtθ+1 − eλtθ

⇒ tθ+1 =
1
λ

ln(2eλtθ − eλtθ−1).

Similarly, we can also compute the windows that are to follow in the stream,
i.e., [tθ+1, tθ+2], However, in this way, the number of windows keeps increas-
ing, and the size of a new window (i.e., the time span of the window) becomes
smaller and smaller. To solve these issues, we propose to merge windows to bound
the number of windows in the stream within the range [θ, 2θ]. Specifically, when
the number of windows reaches 2θ, we merge every two consecutive windows into
one window. In this way, every window in the stream after merging still satisfies
the equal-weight window condition. In fact, we can also merge more than two
windows into a single window if necessary.

3 Window-Based Network Analysis

We now discuss network analysis based on the equal-weight damped time window
model, which we illustrate using an application of connectivity analysis in this
section. We also discuss other applications (e.g., community finding) and give a
list of open problems about analyzing large temporal graphs using our model,
but due to the space limitation we present the details in the full version of this
paper [23].

Let G1, G2, . . ., Gθ denote the θ weighted graphs derived from the θ windows
in the stream.

3.1 Connectivity Analysis

Given a weighted graph G = (V,E,Π) of a window in the stream (defined in
Definition 3, and here the window W is omitted for simplicity), we define a
measure of connectivity between two vertices u and v in G as follows.

394 H. Wu et al.

Algorithm 1. Compute γ(u, v)
Input : A weighted graph G = (V, E, Π), two query vertices u and v
Output: γ(u, v)

1 Initialize c[u] ← ∞, c[x] ← 0 for every vertex x ∈ V \ {u};
2 Let Q be a maximum priority queue, where an element of Q is a pair (x, c[x])

and c[x] being the key;
3 Initialize Q by inserting a single element (u, c[u]);
4 while Q is not empty do
5 (x, c[x]) ← Extract-Max(Q);
6 if x = v then
7 Goto Line 12;

8 foreach neighbor vertex, y, of x do
9 if c[y] < min(c[x], Π(x, y)) then

10 c[y] ← min(c[x], Π(x, y));
11 If y is not in Q, push (y, c[y]) into Q; otherwise, update c[y] in Q;

12 return γ(u, v) = c[v];

Definition 6 (Connectivity). Let P(u, v) = {P (u, v) : P (u, v) is a path from
u to v in G}. The connectivity of a path P (u, v), denoted by γ(P (u, v)), is
defined as the minimum edge weight among the edges on P (u, v). The connectiv-
ity between u and v, denoted by γ(u, v), is defined as γ(u, v) = max{γ(P (u, v)) :
P (u, v) ∈ P(u, v)}.

Since the weight of each edge in a weighted graph indicates the strength of
relationship (or interaction, communication, etc.) between the two end points
in the corresponding temporal graph within the time span of the window, the
value of γ(u, v) reflects the connectivity between u and v within the window, for
example, the amount of information that can be passed between u and v via any
path within the time span.

Given a connectivity query γ(u, v), we can answer it using an algorithm sim-
ilar to Dijkstra’s algorithm, as shown in Algorithm 1. Algorithm 1 uses a max-
imum priority queue Q to keep the current largest connectivity value, c[x], of
a path from u to a visited vertex x ∈ V . The algorithm starts from one of the
query vertices, u, greedily grows the paths by extending to u’s neighbors, and
then further grows to the neighbors’ neighbors until reaching the other query
vertex v. During the greedy process, the c[x] value of a vertex x is updated
whenever a larger connectivity value from u to x is found. At each iteration, the
vertex with maximum c[.] is extracted from Q to update the c[.] values of its
neighbors.

We now show the correctness and complexity (the proof is given in [23]).

Theorem 1. Algorithm 1 correctly computes the connectivity value γ(u, v) in
O((|E| + |V |) log |V |) time.

Efficient Processing of Growing Temporal Graphs 395

The complexity of Algorithm 1, even if Fibonacci heap is used, is too high
to process a connectivity query online. One may pre-compute the connectivity
values for all pairs of vertices. However, the space complexity of this method is
O(|V |2), and the pre-computation requires O((|E| + |V |)|V | log |V |) time, both
of which are impractical for handling a large graph. We propose a more efficient
way to process connectivity queries, with linear index space.

First, we compute a maximum spanning tree, MaxST, of the weighted graph
G. Without loss of generality, we assume G is connected. If not, we can consider
each connected component of G separately. A MaxST has the cut property. A
cut is a partition of the vertex set of a graph into two disjoint subsets. We say
that an edge crosses the cut if it has one endpoint in each subset of the partition.
The cut property states that for any cut C in the graph, if the weight of an edge
e crossing C is larger than the weights of all the other edges crossing C, then e
must be contained in every MaxST.

Given a MaxST, T , there is a unique path connecting any two vertices in
T . Let γT (u, v) denote the connectivity value between u and v in the MaxST
T . Based on the cut property, we have the following lemma (the proof is given
in [23]).

Lemma 3. Given a MaxST T of a weighted graph G, γ(u, v) = γT (u, v), for
any pair of vertices u and v in G.

Based on Lemma 3, a connectivity query γ(u, v) can be answered by first
finding the unique path between u and v in the MaxST T , and then returning
the minimum edge weight on the path. The query time complexity is O(|V |),
which is much better than that of Algorithm 1. Next, we show that we can
further reduce the querying time complexity to O(1) time.

We first introduce the concept of Cartesian tree [18], which is a binary tree
derived from a sequence of numbers. Given an array A of n numbers (A[0] to
A[n−1]), the root of the Cartesian tree is the minimum number among all the n
numbers. Let A[i] be the minimum number, i.e., the root. Then, its left subtree
is computed recursively on the numbers A[0] to A[i − 1], while its right subtree
is computed recursively on the numbers A[i + 1] to A[n − 1].

We construct a Cartesian tree, CT , based on a MaxST T . The root node of
CT is the edge with the minimum weight among all the edges in T . Then, by
removing this edge, T will be partitioned into two subtrees. Following a similar
procedure, we can recursively construct the left and right subtrees of the root
node. When removing an edge (u, v), if u (and/or v) is not an end point of any
remaining edges in T , then we also create a leaf node u (and/or v) as the child
of the node (u, v) in CT . Thus, the set of leaf nodes in the tree CT corresponds
to the set of vertices in T .

Based on the Cartesian tree CT , given a connectivity query γ(u, v), we first
find the lowest common ancestor (LCA) of the two leaves u and v in CT , and then
return the weight of the edge in T that corresponds to the LCA. The following
example demonstrates the concepts of MaxST, Cartesian tree, and how to answer
a connectivity query.

396 H. Wu et al.

a

g

c

86

12

b

f

(b)(a)

4

9 5

8

a

g

c

86

12

b

f

9

Fig. 2. (a) A weighted graph G, and (b) a MaxST T

Fig. 3. The Cartesian tree CT of T in Fig. 2(b)

Example 2. Figure 2(a) shows a weighted graph G and Fig. 2(b) shows a MaxST
T of G. It is easy to verify γ(u, v) = γT (u, v). For example, γ(c, f) = 6 in G and
γT (c, f) = 6 in T . Figure 3 shows the Cartesian tree CT of T . The root node
of CT is the edge (a, b, 6), since this edge is the one with the minimum weight
in T . Removing (a, b, 6) partitions T into two components {a, c} and {b, f, g}.
Following a similar procedure recursively, we obtain CT . The leaves of CT are
the vertices in T . Then, to find the connectivity value between any two vertices,
we find the LCA of these two vertices in CT . For example, given a connectivity
query γ(f, g), we find that the edge (b, g, 9) is the LCA of the leaves f and g
in CT . Thus, we return 9 as the answer for γ(f, g). It is easy to verify that the
answer is correct.

Now, we give the complexity of processing a connectivity query and of con-
structing the index (the proof is given in [23]).

Theorem 2. A connectivity query γ(u, v) can be answered in O(1) time with
an index using O(|V |) space, and the index construction time is O((|E| +
|V |) log |V |).

Given the θ weighted graphs G1, G2, . . ., Gθ from the θ windows in the
stream, we define the connectivity between u and v in the entire θ windows
as Γ (u, v) = min{γ1(u, v), . . . , γθ(u, v)}, where γi(u, v) is the connectivity value
γ(u, v) in the weighted graph Gi, for 1 ≤ i ≤ θ. Since θ is a constant, the
query Γ (u, v) can be answered in constant time with indexes of size linear to the
number of vertices.

Efficient Processing of Growing Temporal Graphs 397

3.2 Queries on a Random Window

Besides the need of analysis on a temporal graph in the whole time window,
users may also be interested in analyzing the graph in any time period. For
example, user A is interested in time window [1, 20], while user B is interested
in time range [10, 40]. To satisfy each user’s need, the naive way is to store the
complete temporal graph and extract the temporal subgraph from the required
time range, which is not practical due to the massive size of the complete graph.
We discuss how to efficiently obtain a weighted graph of any time period based
on the equal-weight damped time window model.

Given a random window W = [tx, ty], we are required to return GW =
(V,EW ,ΠW). Given θ weighted graphs, G1 = (V,E1,Π1), G2 = (V,E2,Π2),
. . ., Gθ = (V,Eθ,Πθ), we return an approximate weighted graph G′

W of GW as
follows.

Let ti < tx ≤ ti+1 and tj ≤ ty < tj+1. First, we return an approximate
weighted graph G′

[tx,ti+1]
of G[tx,ti+1]. G′

[tx,ti+1]
= (V,E′

[tx,ti+1]
,Π ′

[tx,ti+1]
) is com-

puted as follows:

– E′
[tx,ti+1]

= Ei+1,

– Π ′
[tx,ti+1]

(e) = Πi+1(e) ×
∫ ti+1

tx
f(t)dt

∫ ti+1
ti

f(t)dt
, for each e ∈ E′

[tx,ti+1]
.

In other words, G′
[tx,ti+1]

is computed based on Gi+1 = (V,Ei+1, Πi+1) in
expectation. Similarly, we compute an approximate weighted graph G′

[tj ,ty]
of

G[tj ,ty]. Then, we have G′
W = (V,E′

W ,Π ′
W) as follows:

– E′
W = E′

[tx,ti+1]
∪ Ei+2 ∪ . . . ∪ E′

[tj ,ty]
,

– Π ′
W (e) = Π ′

[tx,ti+1]
(e) + Πi+2(e) + . . . + Π ′

[tj ,ty]
(e), for each e ∈ E′

W .

4 Experimental Results

We evaluated the usefulness of our equal-weight window model by showing the
quality of the θ weighted graphs obtained based on the model, and the efficiency
and quality of graph analysis based on these weighted graphs. We also verified
the efficiency of dynamic update maintenance and the scalability of our method,
where the results of them are reported in [23] due to the space limitation. All
the experiments were run on a Linux machine with an Intel 3.3 GHz CPU and
16 GB RAM. All the programs were implemented in C++ and complied using
G++ 4.8.2.

We used 8 real temporal graphs for our experiments, as shown in Table 1,
where we list the number of vertices and edges in each graph G, the average
degree in G (denoted by davg(v,G)), and the number of distinct time instances
in G (denoted by |TG|). The phone graph consists of call records in Ivory
Coast [1], where the call records were collected over a span of 150 days. The other
7 graphs were obtained from the Koblenz Large Network Collection (http://
konect.uni-koblenz.de/), where one large temporal graph was selected from each

http://konect.uni-koblenz.de/
http://konect.uni-koblenz.de/

398 H. Wu et al.

Table 1. Real temporal graphs (K = 103)

Dataset |V| |E| davg(v,G) |TG|
phone 1,237 338,008,540 273,248.62 3,369

arxiv 28,094 9,193,606 327.24 2,337

elec 8,298 214,028 25.79 101,063

enron 87,274 2,282,904 26.16 220,364

facebook 46,953 1,730,624 36.86 867,939

lastfm 174,078 38,254,660 219.76 17,498,009

email 168 164,613 979.84 57,842

conflict 118,101 5,903,522 49.99 312,457

of the following 7 categories: arxiv-HepPh (arxiv) from the arxiv networks;
elec from the network of English Wikipedia; enron from the email networks;
facebook-links (facebook) from the facebook network; lastfm-band (lastfm)
from the music website last.fm; radoslaw-email (email) from the internal email
communication network between employees of a mid-sized manufacturing com-
pany; wikiconflict (conflict) indicating conflicts between users of Wikipedia.

4.1 Results on Weighted Graph Construction

In this experiment, we evaluated the space requirement and the construction
time of the θ weighted graphs for each of the temporal graphs, and then we
measured the quality of the weighted graphs. We tested θ from 10 to 50. We
set the value of λ = 10−x for the weight density function given in Definition 1,
where 10x ≤ |TG| < 10x+1, that is, λ = 10−�log10 |TG|�. For example, for the
phone graph, λ = 10−3.

Space requirement. We first report the space requirement for the θ weighted
graphs, as a percentage of the original temporal graph shown in Fig. 4. As the
value of θ increases, the total size of the θ weighted graphs also increases. But
the rate of increase is slow. For graphs with high average degree, the total size
of the θ weighted graphs is only a small percentage of the original temporal

20

40

60

80

100

phone arxiv elec enron facebook lastfm email conflict

Pe
rc
en

ta
ge

Θ=10 Θ=20 Θ=30 Θ=40 Θ=50

Fig. 4. The total size of the θ weighted graphs compared with the original temporal
graph G

Efficient Processing of Growing Temporal Graphs 399

Table 2. Construction time of θ weighted graphs (in seconds)

Dataset θ = 10 θ = 20 θ = 30 θ = 40 θ = 50

phone 130.3067 137.6559 143.6432 148.6535 153.1762

arxiv 4.0591 4.2070 4.3718 4.4772 4.5788

elec 0.1110 0.1168 0.1229 0.1266 0.1292

enron 0.8419 0.9031 0.9600 1.0041 1.0473

facebook 0.6245 0.6743 0.6996 0.7325 0.7581

lastfm 12.6525 13.2842 14.0147 14.6400 15.5061

email 0.0511 0.0548 0.0575 0.0607 0.0617

conflict 2.8762 2.9693 3.0447 3.1341 3.2189

0.2

0.4

0.6

0.8

1.0

phone arxiv elec enron facebook lastfm email conflict

PC
C

Θ=10 Θ=20 Θ=30 Θ=40 Θ=50

Fig. 5. PCC between G′
W and GW for different θ

graph. For example, for the phone graph, even the total size of 50 weighted
graphs is less than 10% of the original temporal graph. We emphasize that for
temporal graphs, the set of vertices remains relatively stable while the number
of temporal edges grows linearly over time, and thus the result verifies that our
method can handle large temporal graphs as they grow over time, with small
space requirement.

Construction time. Table 2 reports the time taken to read the temporal graphs
from disk and construct the corresponding θ weighted graphs, for different values
of θ. The construction is fast for all graphs as we only need to scan the graphs
once, regardless of the value of θ. The construction time increases as θ increases
because more weighted graphs need to be constructed, but the rate of increase
is slow as scanning the original temporal graph dominates the cost.

Quality of results. Next, we examine the quality of the weighted graphs.
To do this, we constructed a weighted graph, GW , directly from the original
temporal graph within a time window W , as defined in Definition 3. We also
constructed an approximate weighted graph G′

W of GW from the θ weighted
graphs as discussed in Sect. 3.2. Then, we compared GW and G′

W .
We computed GW and G′

W for 100 randomly generated windows, W =
[tx, ty], where we ensured that W is a valid window by ensuring tx < ty. We
use Pearson correlation coefficient (PCC) to measure the degree of linear cor-
relation between G′

W and GW , and report the results in Fig. 5.

400 H. Wu et al.

0.2

0.4

0.6

0.8

1.0

phone arxiv elec enron facebook lastfm email conflict

PC
C

0.6X 0.8X 1.0X 1.2X 1.4X

Fig. 6. PCC between G′
W and GW for different λ (θ = 30)

The result shows that we obtain high PCC values in most of the cases, which
implies that analysis conducted on the approximate graph G′

W shares similar
patterns/trends with that conducted on the exact graph GW (we further verify
this point by applying the application in Sect. 3. The results can be found in [23]
(e.g., Fig. 8 in [23]) which lead to a similar conclusion as Fig. 5. As θ increases
from 10 to 50, the PCC values also increase, verifying that a larger θ leads to
less information loss and hence higher correlation between G′

W and GW . For a
number of graphs, the PCC values are close to 1. The results are particularly
impressive for the phone graph, for which the space requirement is also very
small as shown in Fig. 4.

Next, we tested the effect of different values of λ. In all the other experiments,
we set λ = 10−�log10 |TG|� as default. In this experiment, we tested λ at 0.6, 0.8,
1.0, 1.2, and 1.4 of its default value, and fixed θ = 30. The result, as reported
in Fig. 6, shows that the PCC values are not much affected by the change in λ,
and in all cases the PCC values are high.

Efficiency of graph analysis. We also evaluated the efficiency of using the θ
weighted graphs for connectivity analysis. We varied θ from 10 to 50, and tested
1000 randomly generated connectivity queries. We used the index presented in
Sect. 3.1 to answer the queries, and compared with the online algorithm given in
Algorithm 1. We denote these two methods by Index and Online, respectively.
Table 3 reports the average processing time per query. The result shows that
Index is more than 3 orders of magnitude faster than Online, verifying the
efficiency of our method. The index construction time and the index size are
also small, which are linear to the number of vertices (as shown Table 1).

Due to the space limitation, we report more results in [23], which show that
our method is efficient and effective for core community analysis in temporal
graphs, is fast in dynamic update maintenance, and has good scalability.

5 Related Work

Much of the work on temporal graphs, also called time-varying graphs or
timetable graphs, was related to temporal paths. Temporal paths have been
applied to study the connectivity of a temporal graph [9], the information latency
in a temporal network [10], small-world behavior [17], and to find temporal con-
nected components [16]. Temporal paths have also been used to define metrics for

Efficient Processing of Growing Temporal Graphs 401

Table 3. Average query processing time of connectivity queries (in milliseconds)

θ = 10 θ = 20 θ = 30 θ = 40 θ = 50

Index Online Index Online Index Online Index Online Index Online

phone 0.0041 24.0973 0.0059 42.0291 0.0082 56.7214 0.0095 71.6784 0.0116 85.7897

arxiv 0.0045 21.6051 0.0081 19.8686 0.0127 18.9631 0.0160 18.3361 0.0188 17.8703

elec 0.0029 0.5434 0.0057 0.5460 0.0083 0.6127 0.0108 0.6866 0.0140 0.7909

enron 0.0049 5.6191 0.0103 6.2276 0.0132 6.8081 0.0186 7.7741 0.0230 8.7257

facebook 0.0052 5.7762 0.0095 5.5650 0.0141 5.6486 0.0185 5.9857 0.0231 6.4586

lastfm 0.0062 31.5103 0.0122 34.3018 0.0201 40.0901 0.0249 43.6900 0.0331 46.0317

email 0.0004 0.1239 0.0008 0.1856 0.0016 0.2295 0.0022 0.2649 0.0030 0.3012

conflict 0.0052 15.5628 0.0098 14.3276 0.0149 13.6799 0.0195 14.3760 0.0255 15.2124

temporal network analysis, such as temporal efficiency and temporal clustering
coefficient [15,16], and temporal closeness [13]. Algorithms for computing tem-
poral paths were discussed in [19,20,25]. Indexing method for answering reach-
ability and time-based path queries in a temporal graph was proposed in [22].
Diversified subgraph pattern mining in a temporal graph was introduced in [30].
Core decomposition in a large temporal graph was studied in [21]. Readers can
also refer to more comprehensive surveys on temporal graphs [4,8,12], and more
related work can be found in the full version of this paper [23].

There are also works on storing temporal graphs in a compact way [2,3,7].
In [2], a compressed suffix array strategy was proposed to store temporal graphs.
In [3], two data structures, compact adjacency sequence and compact events
ordered by time, were proposed to represent temporal graphs. However, all these
methods need to store each temporal edge, and their performance is not better
than the gzip compression.

6 Conclusions

We proposed the equal-weight damped time window model for processing massive
growing temporal graphs. Our model allows users to set the number of windows
to trade off between the required space and the information loss. Based on this
model, we presented an application of connectivity analysis to analyze the tem-
poral graph. We conducted comprehensive experiments to verify the usefulness
and efficiency of our method for analyzing large temporal graphs. As for future
work, we plan to explore how to integrate the proposed time window model
into our prior work on distributed graph processing systems [26–29] to analyze
massive dynamic temporal graphs.

Acknowledgements. We thank the reviewers for their valuable comments. The
authors are supported by the Hong Kong GRF 2150851 and 2150895, ITF 6904079,
MSRA grant 6904224, and CUHK Grants 3132964 and 3132821.

402 H. Wu et al.

References

1. Blondel, V.D., Esch, M., Chan, C., Clérot, F., Deville, P., Huens, E., Morlot, F.,
Smoreda, Z., Ziemlicki, C.: Data for development: the D4D challenge on mobile
phone data. CoRR, abs/1210.0137 (2012)

2. Brisaboa, N.R., Caro, D., Fariña, A., Rodŕıguez, M.A.: A compressed suffix-
array strategy for temporal-graph indexing. In: Moura, E., Crochemore, M. (eds.)
SPIRE 2014. LNCS, vol. 8799, pp. 77–88. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11918-2 8

3. Caro, D., Rodŕıguez, M.A., Brisaboa, N.R.: Data structures for temporal graphs
based on compact sequence representations. Inf. Syst. 51, 1–26 (2015)

4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012)

5. Chen, Y., Dong, G., Han, J., Wah, B.W., Wang, J.: Multi-dimensional regression
analysis of time-series data streams. In: VLDB, pp. 323–334 (2002)

6. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. SIAM J. Comput. 31(6), 1794–1813 (2002)

7. Bernardo, G., Brisaboa, N.R., Caro, D., Rodŕıguez, M.A.: Compact data structures
for temporal graphs. In: DCC, p. 477 (2013)

8. Holme, P., Saramäki, J.: Temporal networks. CoRR, abs/1108.1780 (2011)
9. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for

temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)
10. Kossinets, G., Kleinberg, J.M., Watts, D.J.: The structure of information pathways

in a social communication network. In: KDD, pp. 435–443 (2008)
11. Lai, J., Wang, C., Yu, P.S.: Dynamic community detection in weighted graph

streams. In: SDM, pp. 151–161 (2013)
12. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable informa-

tion: models and algorithms. In: Geraets, F., Kroon, L., Schoebel, A., Wagner, D.,
Zaroliagis, C.D. (eds.) Algorithmic Methods for Railway Optimization. LNCS, vol.
4359, pp. 67–90. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74247-0 3

13. Pan, R.K., Saramäki, J.: Path lengths, correlations, and centrality in temporal
networks. Phys. Rev. E 84, 016105 (2011)

14. Perng, C., Wang, H., Zhang, S.R., Jr., D.S.P.: Landmarks: a new model for
similarity-based pattern querying in time series databases. In: ICDE, pp. 33–42
(2000)

15. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal distance metrics for
social network analysis. In: WOSN, pp. 31–36 (2009)

16. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Characterising temporal distance
and reachability in mobile and online social networks. Comput. Commun. Rev.
40(1), 118–124 (2010)

17. Tang, J., Scellato, S., Musolesi, M., Mascolo, C., Latora, V.: Small-world behavior
in time-varying graphs. Phys. Rev. E 81(5), 055101 (2010)

18. Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4), 229–239
(1980)

19. Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path problems in temporal
graphs. PVLDB 7(9), 721–732 (2014)

20. Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., Wu, H.: Efficient algorithms for
temporal path computation. IEEE Trans. Knowl. Data Eng. 28(11), 2927–2942
(2016)

http://dx.doi.org/10.1007/978-3-319-11918-2_8
http://dx.doi.org/10.1007/978-3-319-11918-2_8
http://dx.doi.org/10.1007/978-3-540-74247-0_3

Efficient Processing of Growing Temporal Graphs 403

21. Wu, H., Cheng, J., Lu, Y., Ke, Y., Huang, Y., Yan, D., Wu, H.: Core decomposition
in large temporal graphs. In: IEEE International Conference on Big Data, pp. 649–
658 (2015)

22. Wu, H., Huang, Y., Cheng, J., Li, J., Ke, Y.: Reachability and time-based path
queries in temporal graphs. In: ICDE, pp. 145–156 (2016)

23. Wu, H., Zhao, Y., Cheng, J., Yan, D.: Efficient processing of growing temporal
graphs (2016). http://www.cse.cuhk.edu.hk/%7ejcheng/papers/tm tr.pdf

24. Xie, W., Tian, Y., Sismanis, Y., Balmin, A., Haas, P.J.: Dynamic interaction graphs
with probabilistic edge decay. In: ICDE, pp. 1143–1154 (2015)

25. Xuan, B.-M.B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

26. Yan, D., Cheng, J., Lu, Y., Ng, W.: Blogel: a block-centric framework for distrib-
uted computation on real-world graphs. PVLDB 7(14), 1981–1992 (2014)

27. Yan, D., Cheng, J., Lu, Y., Ng, W.: Effective techniques for message reduction
and load balancing in distributed graph computation. In: WWW, pp. 1307–1317
(2015)

28. Yan, D., Cheng, J., Özsu, M.T., Yang, F., Lu, Y., Lui, J.C.S., Zhang, Q., Ng, W.:
A general-purpose query-centric framework for querying big graphs. PVLDB 9(7),
564–575 (2016)

29. Yang, F., Li, J., Cheng, J.: Husky: towards a more efficient and expressive distrib-
uted computing framework. PVLDB 9(5), 420–431 (2016)

30. Yang, Y., Yan, D., Wu, H., Cheng, J., Zhou, S., Lui, J.C.S.: Diversified temporal
subgraph pattern mining. In: SIGKDD, pp. 1965–1974 (2016)

http://www.cse.cuhk.edu.hk/%7ejcheng/papers/tm_tr.pdf

Effective k-Vertex Connected Component
Detection in Large-Scale Networks

Yuan Li1, Yuhai Zhao1(B), Guoren Wang1, Feida Zhu2,
Yubao Wu3, and Shengle Shi1

1 Northeastern University, Shenyang, China
zhaoyuhai@ise.neu.edu.cn

2 Singapore Management University, Singapore, Singapore
3 Georgia State University, Atlanta, USA

Abstract. Finding components with high connectivity is an important
problem in component detection with a wide range of applications, e.g.,
social network analysis, web-page research and bioinformatics. In par-
ticular, k-edge connected component (k-ECC) has recently been exten-
sively studied to discover disjoint components. Yet many real applications
present needs and challenges for overlapping components. In this paper,
we propose a k-vertex connected component (k-VCC) model, which is
much more cohesive and therefore allows overlapping between compo-
nents. To find k-VCCs, a top-down framework is first developed to find
the exact k-VCCs. To further reduce the high computational cost for
input networks of large sizes, a bottom-up framework is then proposed.
Instead of using the structure of the entire network, it locally identifies
the seed subgraphs, and obtains the heuristic k-VCCs by expanding and
merging these seed subgraphs. Comprehensive experimental results on
large real and synthetic networks demonstrate the efficiency and effec-
tiveness of our approaches.

1 Introduction

Component detection is a fundamental problem [11,19] in the analysis of large-
scale networks. Many real applications can benefit from finding highly connected
components. For example, groups of intimate entities discovered in social net-
works can be exploited to analyze their social behaviors [11]; a set of servers with
common contents in web server networks can be used to construct the network
index [4]; clusters of interactive genetic markers discovered in genetic interaction
networks can be utilized to infer the corresponding cause of diseases [25].

The existing methods of component detection can be roughly divided into two
main categories, i.e. clique-based methods and clique-relaxed methods. Accord-
ing to differently relaxed constraints, clique-relaxed methods can be further
divided into degree-relaxed [3,6,27], distance-relaxed [14,16] and triangulation-
relaxed [22,23] methods. Although succeeding to some extent, these methods
still have respective drawbacks.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 404–421, 2017.
DOI: 10.1007/978-3-319-55699-4 25

Effective k-Vertex Connected Component Detection in Large-Scale Networks 405

Tony

Erik
Alice Anna Bell

Evan

David Albert

JackBob
e

(a)

Tony

Erik Alice

 kcaJ / boB

Anna Bell

Evan

David Albert

(b)

Fig. 1. A toy co-friendship network.

A toy co-friendship network is considered in Fig. 1(a) as an example. Degree-
relaxed and distance-relaxed methods often consider the network as an indi-
visible whole, saying a k-core with k = 3 and a n-club with n = 3, since the
degree of every vertex is no less than 3 and the maximum length of shortest
pathes of all pairs of vertices is no larger than 3, respectively. This contradicts
with the intuition that Fig. 1(a) should be disconnected into two components by
deleting edge e. The reason is that these two methods only concern about the
degree and distance but ignore the connectivity of any pair of vertices. Although
triangulation-relaxed methods can detect these two components, they do not
work when there are no triangles in graph, e.g. bipartite graphs.

Connectivity is measured by the number of disjoint paths between vertices.
Intuitively, high connectivity would contribute to the steadiness and robustness
of the component. A component with high connectivity could still be connected,
even if losing a few relations or entities. Therefore, recently, connectivity-based
methods such as k-edge connected components (k-ECC) have drawn great atten-
tion [1,5,28]. A k-ECC refers to a maximal subgraph, the remaining subgraph of
which is still connected after any k − 1 edges are removed from it. The network
in Fig. 1(a) is a 1-ECC. Since the low edge connectivity, it is naturally divided
into two separate 3-ECCs, {Bob, David, Tony, Erik, Alice} and {Jack, Anna,
Bell, Evan, Albert}.

However, k-ECC still has its own limitation. For example, if Bob is an alias
of Jack, Fig. 1(a) is equivalent to Fig. 1(b). In this case, Fig. 1(b) is identified
as a whole 3-ECC, although there are practically two separate components,
since once we remove the vertex Bob/Jack, the network becomes disconnected.
Thus, high edge connectivity does not necessarily indicate a component of strong
connectivity.

In this paper, we study the k-vertex connected component (k-VCC) detection
problem, which focuses on vertex connectivity instead of edge connectivity, of
networks. Given a graph G, the goal is to find all such induced subgraphs, g′,
of G that g′ is still connected after removing any k − 1 vertices from it and no
supergraph of g′ has the same property. According to this informal definition,
the network in Fig. 1(b) can be identified as two 3-VCCs, {Bob/Jack, David,
Tony, Erik, Alice} and {Bob/Jack, Anna, Bell, Evan, Albert}. Unlike k-ECC,
k-VCCs has three unique advantages: (1) k-VCC captures more connectivity of
networks than k-ECC. According to [8], a component of high vertex connectivity
must be of high edge connectivity, but not vice versa; (2) k-VCC allows overlap

406 Y. Li et al.

among different components, say Bob/Jack in Figure 1(b), which is more natural
and reasonable for real-world networks [18]; (3) k-VCC can prevent the detected
communities from including irrelevant subgraphs, i.e. free rider effect [24].

Unfortunately, the methods for k-ECC [1,5] cannot be directly utilized to
find k-VCCs. Because each vertex only belongs to at most one k-ECC [5], these
methods could obtain k-ECCs by vertex contraction [21]. In our case, however,
each vertex can be in more than one k-VCCs, which makes the former trick not
work. In this paper, we devise two novel frameworks to tackle the k-VCC detec-
tion problem, namely top-down and bottom-up frameworks for k-VCC detection,
respectively. The top-down iteratively divides the networks by finding minimum
vertex cut set, which could find all exact k-VCCs. The bottom-up framework,
instead of using the entire network structure, locally identifies the seed sub-
graphs, and obtains the heuristic k-VCCs by expanding and merging these seed
subgraphs.

Our contributions are summarized as below: (1) a novel k-VCC detec-
tion problem is proposed from the perspective of vertex connectivity; (2) the
top-down and bottom-up frameworks are developed to solve the problem.
Specifically, in the bottom-up framework, a concept of local k-vertex connected
subgraph is proposed to accelerate k-VCC detection, which enables identifying
seed subgraphs locally instead of globally. In addition, several optimization tech-
niques are proposed to further reduce the search space; (3) extensive experiments
on both real and synthetic datasets demonstrate the efficiency and effectiveness
of our frameworks.

The rest of our paper is organized as follows. We give the notions and problem
statement in Sect. 2. In Sects. 3 and 4, we present the top-down and bottom-up
k-VCC detection frameworks, respectively. Extensive experiments are reported
in Sect. 5. The related work is discussed in Sect. 6. Section 7 concludes this work.

2 Notions and Problem Statement

In this paper, we focus on an undirected and unweighted graph G(V,E), where V
is the set of vertices and E is the set of edges. We denote the number of vertices
and the number of edges by n = |V | and m = |E|, respectively. A graph G[S] is
called an induced subgraph of G when S ⊆ V , and E(S) = {(u, v) ∈ E|u, v ∈ S}.
We use nbG(v) to denote the set of neighbors of a vertex v in G, that is,
nbG(v) = {u|(u, v) ∈ E}. We define the degree of v in G as degG(v) = |nb(v)|.
If there is no ambiguity, we denote them as nb(v) and deg(v). In addition, dmax

denotes the maximum vertex degree of G.

Notions. We first give some formal definitions used in this work.

Definition 1 (Vertex connectivity of two vertices). Let u and v be two ver-
tices in graph G. If (u, v) /∈ E, we define the vertex connectivity between u and
v, κ(u, v) as the least number of vertices chosen from V − {u, v}, whose deletion
from G will disconnect u and v (destroy every vertex disjoint path between u and
v), and if (u, v) ∈ E, then set κ(u, v) = n − 1.

Effective k-Vertex Connected Component Detection in Large-Scale Networks 407

Definition 2 (Vertex connectivity of a graph). The vertex connectivity of a
graph G denoted as κ(G) is the least cardinality |S| of a vertex set S ⊆ V
such that G[V \S] is either disconnected or trivial (graph with only one vertex).
Such a vertex set S is called a minimum vertex cut set.

Obviously, κ(G) can be expressed in terms of κ(v, w) as follows: κ(G) =
min{κ(v, w)|unordered pair v, w in G}.

Definition 3 (k-vertex connected graph). A graph G(V,E) is k-vertex connected
if the remaining graph is still connected after the removal of any (k − 1) vertices
from G, in other words, κ(G) ≥ k.

Specially, we define the graph with only one vertex is trivial and the vertex
connectivity of a complete graph Kn is (n − 1). In other words, if a graph G is
k-vertex connected, there are at least (k + 1) vertices in it.

Definition 4 (k-vertex connected component). Given a graph G(V,E), a sub-
graph G[S] (S ⊆ V) of G is a k-vertex connected component (k-VCC) if (1)
G[S] is k-vertex connected, and (2) any supergraph G[S′] (S ⊂ S′ ⊆ V) is not
k-vertex connected.

For example, in Fig. 2, graph G1, G2, G3 and G4 are all 3-vertex connected
subgraphs, while only G3 and G4 are 3-VCCs, because G1 and G2 are contained
in G4.

Problem statement . Here, we give the formal problem statement.

Problem 1 (k-VCC detection problem). Given a graph G(V,E) and an integer k,
we study the problem of efficiently computing all k-VCCs of G.

In theory, the value of k in k-VCC ranges from 1 to n − 1, however, it is
unlikely to reach n−1 in practice, because if k is large enough, the final result of
k-VCCs is probably an empty set. Here, we give the upper bound of parameter k.
It is highly related with k-core, which is the maximal subgraph G[Ck] of G such
that ∀v ∈ Ck, degG[Ck](v) ≥ k. The core number of a vertex v ∈ V , denoted as
ψ(v), is the largest k such that v is in G[Ck]. In other words, ψ(v) = k means
that v ∈ Ck and v /∈ Ck+1.

Lemma 1. All the k-VCCs in graph G are included in the k-core subgraph of G.

Proof. Based on Definition 3, in each k-VCC G[S],∀u ∈ S, degG[S](u) ≥ k. And,
k-core is the maximal subgraph G[Vk] of G such that ∀v ∈ Vk, degG[Vk](v) ≥ k.
Thus, for any vertex in the k-VCC, it must be contained in the corresponding
k-core subgraph. Also, k-VCC and k-core are induced subgraphs, hence all the
edges in k-VCC are contained in the k-core.

Definition 5. (Degeneracy of G). The degeneracy D of G(V,E) is the largest
k for which G has a non-empty k-core, i.e., D = max

v∈V
ψ(v).

408 Y. Li et al.

v1

v2

v3

v4

v12

v5

v7

v6

v11

v8

v9

v10

v13

v14

v16

v15

G1

G2

G3

G4

Graph G

Fig. 2. An example of k-VCCs

s tu

1

1

1

1

 ' u u ''

 tuc - niM

s

Fig. 3. An example of computing minimum
vertex cut

Theorem 1. The value of k in k-VCC is upper bounded by the degeneracy D
of G.

Theorem 1 could be directly induced from Lemma 1. The degeneracy D of
graph G could be calculated efficiently by the algorithm proposed by Batagelj
and Zaversnik [2], which repeatedly remove vertices from G whose degree is less
than k until no more vertices can be removed and use bin-sort to order the
vertices to achieve O(m + n) time complexity. Therefore, once finding out the
given k value is larger than D, we will make sure that the result for k-VCCs in
G is ∅.

3 Top-Down Framework for k-VCCs Detection

In this section, we detail the top-down framework for k-VCCs detection. The
main idea of this framework is to iteratively compute the minimum vertex cut set
Vcut of the current graph G[C], if |Vcut| ≥ k, then G[C] is a k-VCC; otherwise Vcut

and their incident edges are copied to each remaining connected subgraph after
deleting Vcut and their induced edges from G[C] and these newly constructed
subgraphs are saved in a queue structure Q for further consideration. Algorithm1
summarizes this process. First, Lemma 1 enable us to exploit k-core to shrink
the scale of G, which is possible to divide the original big graph G into several
subgraphs of much smaller scale (line 1). In this way, the computation cost of
the minimum vertex cut set Vcut of G is largely reduced.

Another important problem is how to find the minimum vertex cut set (line
9). Unlike the min-cut [21] and GomoryHu tree [12] methods, which can effi-
ciently find the minimum edge cut set in an undirected graph, we have to reduce
the problem of computing κ(G) into a maximum flow problem in directed graph.

For each input G(V,E) and vertices s, t, we construct the directed flow net-
work G′(V ′, E′) as follows.

1. For each v ∈ V (v �= s and v �= t), add two vertices v′, v′′ into V ′, and the
directed edge (v′, v′′) and (v′′, v′) into E′. The edge (v′, v′′) has weight 1 and
(v′′, v′) has weight ∞.

Effective k-Vertex Connected Component Detection in Large-Scale Networks 409

Algorithm 1. Top-down Framework

Input: G(V,E), k
Output: The set of k-VCCs G[R]

1 Find the k-core G[Vk] of G;
2 Initialize queue Q ← ∅;
3 Q.enqueue(all the connected subgraph of G[Vk]);
4 while Q �= ∅ do
5 G[C] ← Q.dequeue();
6 if |G[C]| > k then
7 Find the minimum vertex cut set Vcut of G[C];
8 if |Vcut| < k then
9 Find all the connected subgraphs of G[C�Vcut], denoted as G[Ci];

10 Add Vcut and the induced edges into each G[Ci];
11 Q.enqueue(all G[Ci]);

12 else
13 Put G[C] into G[R];

14 Return G[R];

2. For each edge (s, v) ∈ E, add edge (s, v′) to E′; for each edge (v, t) ∈ E, add
edge (v′′, t) to E′; for each other edge (u, v) ∈ E, add two edges (u′′, v′) and
(v′′, u′) to E′. Each edge has capacity ∞.

3. Assign s as the source vertex and t as the sink vertex.

Even and Tarjan [10] prove that κ(s, t) in an undirected graph G is equivalent
to the maximal value of flow from s to t in the corresponding constructed directed
graph G′. Figure 3 shows an example of the above process. Also, κ(G) can be
calculated in O(n − δ − 1 + δ(δ − 1)/2) calls to maximum flow algorithm where
δ = dmax [9]. Actually, we do not need to find the minimum vertex cut set
every time. For the current subgraph G[C], once we discover a κ(u, v) < k where
u, v ∈ G[C]K, G[C] can not be a k-VCC, we can safely terminate this process
and use the vertex cut set corresponding to u, v to separate G[C]. Theorem 2
guarantees the top-down framework is correct.

Complexity analysis. Computing κ(v, w) on graph G[C] needs O(m′n′2/3)
time where n′ is the average size of C and m′ is the average size of E(G[C]).
In the worst case, it needs to be invoked O(n′ − δ − 1 + δ(δ − 1)/2) times.
Let L represent the total number of G[C] detected in the algorithm. The overall
running time of the top-down framework is O((n′−δ−1+δ(δ−1)/2)· m′n′2/3 · L).

Theorem 2. Given a graph G and a value k, the top-down framework for k-
VCC detection can correctly find all the k-VCCs.

Proof. Suppose a graph G[V0] ∈ G[R] is k-vertex connected subgraph, but not a
k-VCC, which indicates it is not maximal, then there must be a k-VCC G[Vmax]
such that V0 ⊂ Vmax, and there must also exist a vertex cut set in some loop
which separates a vertex or some vertices in Vmax away from V0. However, this
cannot happen because G[Vmax] is supposed to be k-vertex connected. Therefore,
G[V0] is a k-VCC. In addition, Algorithm1 operates until Q is empty, which
means all the subgraphs have been processed. Thus, the theorem is correct.

410 Y. Li et al.

Algorithm 2. Bottom-up Framework for k-VCC Detection

Input: G(V,E), k
Output: The set of k-VCCs, G[R]

1 G[R]←∅; G[S]←∅; G[S′]←∅;
2 Find the k-core G[Vk] of G;
3 G[S]←Seeding(G[Vk], k); //detailed in Subsection 4.1;

4 while G[S′]�=G[S] do
5 G[S′]←G[S];
6 G[S]←Expanding(G[Vk], k, G[S]); //detailed in Subsection 4.2;
7 G[S]←Merging(G[Vk], k, G[S]); //detailed in Subsection 4.2;

8 G[R]←G[R] ∪ G[S];
9 return G[R];

4 Bottom-Up Framework for k-VCCs Detection

The top-down framework highly depends on global structure of graph, which may
not be efficient and practical when graph scale becomes huge. In this section, we
develop a bottom-up framework for k-VCCs detection.

The Bottom-up framework focuses on the microscopic structure when dealing
with large networks and thus is able to find target components with computa-
tional cost proportional to their size. The idea is to locally find seed subgraphs
around the neighborhood of vertices and obtain the k-VCCs heuristically by
expanding and merging these subgraphs. The overall framework is summarized
in Algorithm 2. First, we utilize Seeding() to find local k-vertex connected sub-
graphs around the neighborhood of vertices as seed subgraphs (line 3). Then,
we exploit Expanding() and Merging() to expand and merge these seed subgraphs
(lines 4–7). Although this framework is heuristic, the experiment in Sect. 5.3
shows that the result is comparable to the real.

4.1 Identifying Seed Subgraphs

We propose the local k-vertex connected subgraph as seed subgraph, which
only considers the neighborhood structure of a vertex. Moreover, unlike max-
imal clique, which is adopted as seed subgraph in [15], the local k-vertex con-
nected subgraph is more generalized as seed than clique, whose structure is too
strict [19].

In this section, seeding() is developed to identify such graphs. And there exists
two important problems: (1) how to find the seed subgraph for a given vertex;
(2) how to efficiently identify seed subgraphs for the whole network. Corre-
spondingly, we first give the formal definition of seed subgraph and propose the
LkVCS method for its discovery, and then we devise two optimization strategies
to accelerate the process of identifying seed subgraphs, in which we do not have
to identify seed subgraphs for all the vertices.

Identifying seed subgraph for a given vertex . Here, we study how to
define and find local k-vertex connected subgraph for a given vertex u. We first
give the definition of 2-ego neighborhood. We then exploit 2-ego neighborhood to

Effective k-Vertex Connected Component Detection in Large-Scale Networks 411

add additional constraint on the path length between vertices in the defined local
k-vertex connected subgraph, which makes it possible to find the seed subgraph
within the neighborhood of a vertex.

Definition 6 (2-ego neighborhood). Given a graph G(V,E) and a vertex u in
G, the 2-ego neighborhood of u,N2(u), denotes the set of vertices in G whose
distance to u is no more than 2, i.e., {v|dist(u, v)leq 2}. Specially, u also belongs
to N2(u).

Definition 7 (Local k-vertex connected subgraph). Given a graph G(V,E) and
a vertex u ∈ V , an induced subgraph G[S] is a local k-vertex connected subgraph
if and only if (1) ∀v, w ∈ S, if (v, w) /∈ E(S), |nbG[S](v) ∩ nbG[S](w)| ≥ k; (2)
|S| > k; (3) u ∈ S.

Based on [7], in real networks, community is usually existed in the neigh-
borhood of vertices, hence it is rational to define the local k-vertex connected
subgraph as seed subgraph. Furthermore, a k-VCC is usually composed of many
adjacent local k-vertex connected subgraphs. Thus, if we can obtain these local
subgraphs in advance, we probably retrieve the original k-VCC from them.

Further, we propose the LkVCS method, which can find one of the local k-
vertex connected subgraphs from the induced subgraph G[N2(u)] as the seed
subgraph for u. The main idea of LkVCS is to start with every different subset of
vertices of size k from the neighborhood of u, denoted as R and then continue
bring vertices from P ′\R into R until G[R] is a local k-vertex connected subgraph
or there exists x, y ∈ R and (x, y) /∈ E such that |nbG[P ′](x) ∩ nbG[P ′](y)| < k
where P ′ is the vertex set of k-core of G[N2(u)]. When the combination num-
ber

(|nbG[P ′](u)|
k

)
is larger than a threshold α, γ subsets are randomly tested.

Example 1 illustrates how the LkVCS method works.

Example 1. We apply LkVCS on the graph G in Fig. 2 for u = v1. We set k = 3.
First, we obtain the 3-core of G[N2(v1)] is G4. We arbitrarily select 3 vertices
from nbG4(v1), that is {v2, v3, v4} and R = {v2, v3, v4} ∪ {v1}. Because G[R] is
not a 3-vertex connected subgraph, we continue to add the common neighbor
v5 of v1, v3 and v2, v4 into R. Now, G[R] is a 3-vertex connected subgraph. We
output G[R] as the local 3-vertex connected subgraph of v1.

Identifying seed subgraphs for the whole network . A naive way is to com-
pute the local k-vertex connected subgraph for every vertex in the network by
LkVCS method. However, it is not efficient enough. Here, we devise two optimiza-
tion strategies to further reduce the computational cost.

Optimization 1: Vertex order priority based strategy. In vertex order priority
strategy, we assign the vertices with smaller degree have higher priority than
that with larger degree. We observe that the value of (deg(u)k) is not large for a
vertex u with small degree. Hence, if a vertex u having smaller degree, we can
take less time to detect whether there exists a local k-vertex connected subgraph
for u.

412 Y. Li et al.

Theorem 3. Given a vertex u in graph G(V,E), it can be contained in at most
0 for deg(u) < k and 1 + �deg(u)−k

k−1 for deg(u) ≥ k k-VCCs, simultaneously.

Theorem 3 gives the upper bound of number of k-VCCs, that a vertex could
be contained in at the same time. We can see that the vertices with larger degree
can be contained in more different k-VCCs and even larger amount of k-vertex
connected subgraphs. In particular, for a specific vertex u with deg(u) = k,
it can only be contained in at most 1 k-VCC. Recall that the LkVCS method
will take more computational time for the input vertex u with larger vertex
degree, because it will enumerate much more combinations of vertices than that
of small degree to find the local k-vertex connected subgraphs. To avoid visiting
the vertices with larger degree first, we set the vertices with larger degree having
lower priority.

Optimization 2: Non-redundancy based strategy. We observe that if we find the
seed subgraph for every vertex in the network, we will acquire many duplicate
subgraphs or highly overlapping subgraphs. In order to reduce redundance, we
design the non-redundancy based strategy such that for a given vertex, if it has
already been contained in the discovered seed subgraphs of other vertices, there
is no need to find its own seed subgraph. Note that a vertex can be included in
different seed subgraphs, even if it is not processed.

Together with the vertex order priority strategy, we can find seed subgraphs
for the uncovered vertices with smaller degree as soon as possible. Besides,
based on the long-tail theory, the vertices with larger vertex degree are probably
included in the discovered seed subgraphs, which means we do not need to detect
seed subgraphs for these vertices. Thus, making use of these two strategies, we
can find constraint number of seed subgraphs with higher efficiency.

Example 2. We apply the above two strategies in seeding() procedure on the
graph shown in Fig. 2 to identify the seed subgraphs. We rank all the vertices
in G according to their non-decreasing order of their vertex degree denoted as,
v12(3) � v14(3) � . . . � v9(5) � v13(6) � v4(7). The numbers in the brackets
are their vertex degree. We first find the seed subgraph for v12, which is ∅. Then,
we successively visit the vertex according to the vertex priority. For example,
we find the seed subgraph G3 for v14. As G3 contains {v13, v15, v16}, we do not
need to detect the seed subgraphs for these vertices. At last, we identify three
seed subgraphs including G3 for v14, G1 for v1 and G2 for v6.

4.2 Expanding and Merging Seed Subgraphs

In this section, we focus on solving the problem of detecting k-VCCs from the
discovered seed subgraphs. We observe that the k-VCCs do not satisfy the prop-
erty of downward closeness. That is for a k-VCC denoted as G[S],∃S′ ⊆ S, the
induced subgraph G[S′] is not a k-vertex connected subgraph. Thus, we can-
not simply expand the discovered seed subgraphs by adding a series of vertices
adjacent to their neighborhood to obtain the target k-VCCs.

Effective k-Vertex Connected Component Detection in Large-Scale Networks 413

Menger’s Theorem [8] indicates that a graph is k-vertex connected if and
only if it contains k vertex independent paths between any two vertices. Based
on this relationship between independent path and vertex connectivity, we devise
two algorithmic approaches, Expanding() and Merging(), in which, we could safely
add vertices into the current subgraph and combine different subgraphs to form
a bigger k-vertex connected subgraph, respectively. Next, we detail these two
approaches.

Expanding . We first give some explanations of the notions used here. Given
a graph G(V,E) and a vertex set S ⊆ V, S represents the complement of S in
G, i.e., S = V \S, and δ S denotes the boundary of the induced subgraph G[S],
which means for any vertex v ∈ δ S, there exists a vertex u ∈ nb(v) and u /∈ S.

In Expanding(), we add vertices that are connected to at least k vertices in G[S]
into the current subgraph as shown in Fig. 4. The specific process is as follows.
For each k-vertex connected subgraph G[S] now we have, if there exists vertex
u in δS that is adjacent to at least k vertices in δS, we add every vertex like
this into the current S and update S ∪ u as the new S. We iteratively conduct
this procedure until there is no such vertex in δS that can be added into S.
Expanding() ensures that for each generated subgraph G[S] in the result set G[S],
∀u ∈ V \S,G[S ∪u] is not a k-vertex connected subgraph. Theorem4 guarantees
the correctness of the Expanding() approach.

Theorem 4. Suppose G[S] is a k-vertex connected subgraph. If vertex u is adja-
cent to at least k vertices in δS,G[S ∪ u] is also a k-vertex connected subgraph.

Proof. Theorem 4 can be induced from Menger’s Theorem [8].

Example 3. We use the graph in Fig. 2 as an example to illustrate Expanding().
Assume that we have already obtained the 3-vertex connected subgraph G[S]
where G[S] = G2. We find one of the boundary vertices v11 is adjacent to v4, v6
and v7 in G[S]. Thus, we add v11 into G[S] and G[S ∪ v11] is also a 3-vertex
connected subgraph.

Merging . When the obtained k-vertex connected subgraphs cannot be further
expanded by Expanding(), we expect to combine some of the adjacent subgraphs
together to acquire larger subgraphs with k-vertex connectivity shown in Fig. 5.
Here, we develop Merging() to integrate different k-vertex connected subgraphs
with at least k direct independent paths into a new one.

The process of Merging() is described as bellow. We first detect whether the
input subgraphs in G[S] are k-VCCs. If so, we put these subgraphs into the result
set G[R]. Then, we iteratively merge the subgraphs satisfying the condition in
Theorem 5 that will be detailed later until no subgraphs can be merged. If the
subgraph G[S∪S′] after combined meets the conditions in Corollary 1, we directly
put it into result set G[R], otherwise we put it back the candidate set G[S] for
further processing. In the implementation, we use the disjoint sets structure to
accelerate the merging operation.

414 Y. Li et al.

 xetrev - k
connected
subgraph

...

 1 - k >

Fig. 4. The process of Expanding

 xetrev - k
connected
subgraph

 xetrev - k
connected
subgraph

 1 - k >

...
Fig. 5. The process of Merging

Formally, Theorem 5 provides the sufficient condition to guarantee Merging()

is correct. If the sum of the number of overlapping vertices and length-1 inde-
pendent paths between two k-vertex connected subgraphs is more than or equal
to k, they can be combined together.

Theorem 5. Let G(V,E) be a graph, S ⊆ V, S′ ⊆ V and G[S], G[S′] be two k-
vertex connected subgraphs. If the following condition is satisfied, we say G[S∪S′]
is a k-vertex connected subgraph: |S ∩ S′| + min{|δS ∩ δS′|, |δS ∩ δS′|} ≥ k.

Proof. The idea of this proof is similar to that of Theorem4.

Furthermore, based on Theorems 4 and 5, we obtain Corollary 1. In Merging(),
Corollary 1 can be exploited as an early termination condition. That is once
finding some subgraphs which satisfy the conditions in Corollary 1, we can put
these subgraphs into the result set, because it is impossible to be combined
with any other subgraphs. This can significantly reduce the number of subgraph
combining operations.

Corollary 1. Let G[S] be a k-vertex connected subgraph. If the following two
conditions are satisfied, we say G[S] is a k-VCC:
(1) � ∃v ∈ δ(S), |nb(v) ∩ δS| > k;
(2) min{|δS|, |δS|} < k.

Example 4. A running example of Merging() is given using G in Fig. 2. Suppose
we already have three 3-vertex connected subgraphs G1, G2 and G3. We observe
that G3 satisfies the conditions in Corollary 1. That is, v8, v9 and v10 are only
adjacent to one boundary vertex v13 of G3, and min{|δV (G3)|, |δV (G3)|} =
min{1, 3} = 1 < 3. Thus, G3 is a 3-VCC. For G1 and G2, we have that |V (G1)∩
V (G2)| + min{|δV (G1) ∩ δV (G2)|, |δV (G1) ∩ δV (G2)|} = 1 + min{2, 2} = 3 ≥ 3.
Thus, we can merge G1 and G2 together based on Theorem 5.

5 Experiments

We conduct extensive experiments to evaluate the effectiveness and efficiency
of the proposed methods by using a variety of real and synthetic datasets. All
algorithms are implemented in C++. All the experiments are conducted on a
Linux Server with Intel Xeon 3.2 GHz CPU and 64 GB main memory.

Effective k-Vertex Connected Component Detection in Large-Scale Networks 415

5.1 Datasets and Compared Methods

The statistics of real networks used in the experiments are shown in Table 1.
dmax denotes the maximum vertex degree of G. D is the degeneracy of G in
Definition 5. #C is the number of ground-truth communities. The first Yeast
dataset is a protein-protein interaction network downloaded from BioGRID1.
The other four datasets are networks with ground-truth communities2. We
abbreviate these datasets as YA, AZ, DP, YT and LJ.

Table 1. Statistics of real networks (K = 103 and M = 106)

Network Abbr. |V (G)| |E(G)| dmax D #C

Yeast YA 6.5K 229K 2587 86 –

Amazon AZ 335K 926K 549 6 151K

DBLP DP 317K 1M 343 113 13K

Youtube YT 1.1M 3M 28754 51 8K

LiveJournal LJ 4M 35M 14815 360 287K

We compare our k-VCC with k-CC [2] and k-ECC [5] for effectiveness eval-
uation. Further, we evaluate the following algorithms for efficiency comparison:

– TkVCC: the top-down framework for k-VCC detection shown in Algorithm 1,
discussed in Sect. 3. This is also used as the baseline method.

– BkVCC-Ran: the bottom-up framework for k-VCC detection shown in
Algorithm 2 with random vertex order priority strategy in Sect. 4.1.

– BkVCC-NI: the bottom-up framework for k-VCC detection shown in
Algorithm 2 with non-increasing vertex order priority strategy in Sect. 4.1.

– BkVCC-ND: the bottom-up framework for k-VCC detection shown in
Algorithm 2 with non-decreasing vertex order priority strategy in Sect. 4.1.

5.2 Evaluation on Real Networks

Effectiveness Evaluation. To evaluate the effectiveness of different commu-
nity models, we compare the proposed k-VCC with k-CC [2] and k-ECC [5] on 4
real datasets including AZ, DP, YT and LJ with ground-truth communities [26]
under different types of criteria.

First, we use F -score to measure the accuracy of the detected commu-
nities with regard to the ground-truth communities. Given the discovered
community G[S] and the ground-truth community G[T], F -score is defined as
F (S, T)=2∗ prec(S,T)∗rec(S,T)

prec(S,T)+rec(S,T) where prec(S, T) = |S∩T |
|S| represents the precision

1 thebiogrid.org.
2 http://snap.standford.edu.

https://thebiogrid.org/
http://snap.standford.edu

416 Y. Li et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6

F-
sc

or
e

Value of k

k-CC
k-ECC
k-VCC

(a) AZ

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20

F-
sc

or
e

Value of k

K-CC
K-ECC
K-VCC

(b) DP

 0

 0.2

 0.4

 0.6

 0.8

 1

3 5 7 9

F-
sc

or
e

Value of k

k-CC
k-ECC
k-VCC

(c) YT

 0

 0.2

 0.4

 0.6

 0.8

 1

10 15 20 25

F-
sc

or
e

Value of k

k-CC
k-ECC
k-VCC

(d) LJ

Fig. 6. F -score on different real networks

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6

D
en

si
ty

Value of k

k-CC
k-ECC
k-VCC

(a) AZ

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20

D
en

si
ty

Value of k

k-CC
k-ECC
k-VCC

(b) DP

 0

 0.2

 0.4

 0.6

 0.8

 1

3 5 7 9
D

en
si

ty

Value of k

k-CC
k-ECC
k-VCC

(c) YT

 0

 0.2

 0.4

 0.6

 0.8

 1

10 15 20 25

D
en

si
ty

Value of k

k-CC
k-ECC
k-VCC

(d) LJ

Fig. 7. Density on different real networks

 0

 2

 4

 6

3 4 5 6

D
ia

m
et

er

Value of k

k-CC
k-ECC
k-VCC

(a) AZ

 0

 2

 4

 6

5 10 15 20

D
ia

m
et

er

Value of k

k-CC
k-ECC
k-VCC

(b) DP

 0

 2

 4

 6

3 5 7 9

D
ia

m
et

er

Value of k

k-CC
k-ECC
k-VCC

(c) YT

 0

 2

 4

 6

10 15 20 25

D
ia

m
et

er

Value of k

k-CC
k-ECC
k-VCC

(d) LJ

Fig. 8. Diameter on different real networks

and rec(S, T) = |S∩T |
|T | represents the recall. We can see that higher F -score value

means the detected community is more similar with the ground-truth.
In the experiments, for different input k, we detect the k-VCCs by BkVCC-

ND, the k-CC by the method in [2] and the k-ECCs by the method in [5] as
communities, respectively. For each discovered community Si, we compute the
F -score with every ground-truth community Tj of the dataset and choose the
largest F (Si, Tj) as the final F -score, Fi of Si. Further, we use the average value
of all Fi, denote as F to represent the F -score corresponding to a given dataset.
Figure 6 shows the F -scores of the compared methods for different value of k.
We find that the k-VCCs have the highest F -score on AZ, YT and LJ datasets.
This is because in these datasets, they defined the ground-truth communities
based on common interest or function, which is very cohesive. However, the
ground-truth community in DP is defined based on publication venues. The
authors publishing papers in the same conference or journal may be not densely
connected [26]. Thus, we see k-VCCs have the lowest F -score on DP.

Effective k-Vertex Connected Component Detection in Large-Scale Networks 417

 0
 5

 10
 15
 20
 25
 30

 4 6 8

R
un

tim
e(

 ∗
10

4 s
ec

.)

Value of k (α=1000)

BkVCC-ND
BkVCC-Ran

BkVCC-NI
TkVCC

(a) YA

 0

 2

 4

 6

 8

 10

 5 10 15 20

R
un

tim
e(

 ∗
10

4 s
ec

.)

Value of k (α=1000)

BkVCC-ND
BkVCC-Ran

BkVCC-NI
TkVCC

(b) DP

 0

 2

 4

 6

 8

 10

 10 15 20 25

R
un

tim
e(

 ∗
10

5 s
ec

.)

Value of k (α=1000)

BkVCC-ND
BkVCC-Ran

BkVCC-NI
TkVCC

(c) LJ

Fig. 9. Runtime on different real networks

Then, we use density and diameter to measure the goodness of the detected
communities. Density is defined as the fraction of the edges that appear between
the vertices to that of all possible edges and diameter is defined as the longest
distance among all shortest paths between vertices in G. Given a community
G[S], the density and diameter of G[S] is denoted dens(G[S]) = 2|E(S)|

|S||S−1| and
diam(G[S]), respectively. The communities are more cohesive when they have
larger density and smaller diameter. Figures 7 and 8 show the density and diam-
eter of the detected communities on different networks. It can be seen that with
the increasing of k, the density becomes larger and the diameter become smaller
for all the methods. Moreover, for the same k value, k-VCC has the best per-
formance. It has the highest density and lowest diameter, that is, the results of
k-VCC are more cohesive than that of k-ECC and k-CC.

Efficiency Evaluation. In this section, we conduct experiments to study the
efficiency of different methods to detect k-VCCs on different real networks.
Figure 9 shows the comparison on overall running time of TkVCC, BkVCC-Ran,
BkVCC-NI and BkVCC-ND for varying parameter k. We can see that the TkVCC

method always runs slowest on all the datasets. This is because that it exploits
the structure of the entire graph to find the minimum vertex cut set. When the
scale of the graph getting larger, it will be very time-consuming. Thus, for large
real network such as LJ in Fig. 9(c), it even cannot finish within the required
time.

On the contrary, BkVCC-ND method runs much faster than BkVCC-Ran and
BkVCC-NI over all the datasets. Recall that in BkVCC-ND, we assign vertices
with smaller vertex degree have higher priority, which reduce the combination
number of the neighbors for a given vertex. When we visit vertices with large
vertex degree, they are very probably having been included in the vertices with
small degree, which reduces the running time a lot. On the other hand, along
with the increasing of parameter k, the running time of these methods first
increase. This is because it needs more time to compute minimum vertex cut for
TkVCC and seed subgraphs for the bottom-up based methods. Then, when the k
value reaches a turning point, the running time begin to decrease. The reason is
that with k becoming larger, more and more vertices are pruned by the k-core
component.

418 Y. Li et al.

5.3 Evaluation on Synthetic Networks

We generate a set of synthetic bipartite networks to evaluate the performance of
the selected methods. The number of vertices are balanced in each part of these
bipartite networks. The degree of both parts follow the power-law distribution
with exponent γ and dmax = n/2. We set γ = 2. The vertices in the networks
are linked according to [17].

We evaluate the efficiency and effectiveness of the TkVCC and BkVCC-ND

methods. We set k = 4 for all the situations. Figure 10(a) shows the running
time when varying the number of vertex in the network. We can see that BkVCC-

ND method is much more efficient than TkVCC method, which is consistent with
the results on real datasets. Figure 10(b) shows the F -score of the result of
BkVCC-ND corresponding to that of TkVCC. Since the result of TkVCC are exact
solution, the relative high values of F -score indicates that although the BkVCC-

ND method is heuristic, it could generate results with high quality and hence
proves its effectiveness.

1
101
102
103
105
106

102 103 104 105

R
un

tim
e(

se
c.

)

Varing number of vertex

BkVCC-ND
TkVCC

(a) Runtime

 0

 0.2

 0.4

 0.6

 0.8

 1

102 103 104 105

F-
sc

or
e

Varing number of vertex

BkVCC-ND

(b) F -score

Fig. 10. Results on synthetic network

5.4 Case Study

We construct an author collaboration network on KDD conference extracted
from the raw DBLP dataset3 for case study. A vertex represents an author, and
an edge between two authors indicates they have co-authored. Figure 11 presents
three 4-VCCs containing professor Jiawei Han. Based on the background knowl-
edge, Fig. 11(a) shows the research group when he worked at SFU. Figure 11(b)
shows his cooperation with the group of his colleague Chengxiang Zhai, when
he began to work at UIUC. And, Fig. 11(c) shows his research group at UIUC

and some very famous professors. In particular, we can find that professor Jian

Pei often cooperates with Jiawei Han. However, if we use 4-ECC, we can only
acquire one community containing Jiawei Han. Thus, we say that the communi-
ties detected by k-VCCs are more reasonable and interpretable, which effectively
reduces the free rider effect.

3 http://dblp.uni-trier.de/xml/.

http://dblp.uni-trier.de/xml/

Effective k-Vertex Connected Component Detection in Large-Scale Networks 419

Jiawei Han

Jian Pei Marco
Gruteser

Xuemin Lin

Bin Jiang . W divaD
Cheung

Jingyi Guo

(a)

Jiawei Han

Qiaozhu Mei Dong Xin

Hong Cheng

Xuehua
Shen

Chengxiang
Zhai

(b)

Jiawei HanJian Pei

 uY . S pilihP

Hong Cheng

Chi Wang

Yizhou Sun

Jing Gao

Wei Fan Xifeng YanHaixun Wang

Jeffrey Xu Yu

(c)

Fig. 11. Real examples of 4-VCCs containing Jiawei Han

6 Related Works

Our work relates to two main streams of research, concerning graph connectivity
and component detection, respectively.

Graph connectivity. Graph connectivity has an extricably bound with mini-
mum cut, since the minimum cut contributes to the graph connectivity. A large
number of algorithms have been designed for computing the global minimum con-
nectivity of the whole graphs [9,10,12,21]. Recently, there exists several research
on finding k-edge connected subgraphs, which concern about the local edge con-
nectivity in the subgraphs [1,5,28]. Whereas, in this paper, we focus on the
k-vertex connectivity of subgraphs.

Component detection. The existing component detection methods can be
roughly devided into clique-based [19] and clique-relaxed-based methods. Since
the definition of clique is too strict, the clique-relaxed based methods have
recently drawn a great deal of attentions. It can be classified into the follow-
ing several categories: (1) Distance-based relaxed methods. n-clique is a
maximal subgraph such that the distance of each pair of its vertices is not larger
than n in the whole network [14]. n-clan is an n-clique whose diameter is no
larger than n [16]. n-club is a maximal subgraph whose diameter is no larger
than n [16]. (2) Degree-based relaxed methods. k-plex is defined as a max-
imal subgraph in which each vertex is adjacent to all other vertices except at
most k of them [3]. Similarly, k-core is a maximal subgraph in which each vertex
is adjacent to at least k other vertices of the subgraph. Efficient global search
methods [6,20] and local search method [7] have been developed to discover the
k-core communities or the community k-core containing given entities. Quasi-
clique with a parameter γ is a subgraph with n vertices and γ∗(n2

)
edges [27].

(3) Triangulation-based relaxed methods. DN -graph [23] is a connected
subgraph in which the lower bound of shared neighborhood between any con-
nected vertices is locally maximized. k-truss [13,22] is the largest subgraph in
which every edge is contained in at least (k − 2) triangles within the subgraph.
Based on the limitation of the above methods detailed in Sect. 1, we propose the
k-VCC model, which has high vertex connectivity.

420 Y. Li et al.

7 Conclusion

Component detection is a fundamental problem in network analysis and has
attracted intensive interests. Most existing component detection methods suffer
from the low connectivity issue. In this paper, we propose the k-vertex connected
component model, which focuses on the vertex connectivity of networks. We
study the k-VCC detection problem and develop the top-down and bottom-
up frameworks for k-VCC detection. Extensive experimental results on large
real and synthetic networks demonstrate the effectiveness and efficiency of our
proposed approaches.

Acknowledgments. This research is partially supported by the National NSFC (No.
61272182, 61100028, 61332014, U1401256, 61672144), the Fundamental Research Funds
for the Central Universities (N150402002, N150404008), the National Research Foun-
dation, Prime Ministers Office, Singapore under its International Research Centres in
Singapore Funding Initiative and the Pinnacle lab for Analytics at SMU.

References

1. Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-
connected subgraphs in large networks by random contraction. In: CIKM, pp.
909–918 (2013)

2. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of net-
works. arXiv preprint cs/0310049 (2003)

3. Berlowitz, D., Cohen, S., Kimelfeld, B.: Efficient enumeration of maximal k-plexes.
In: SIGMOD, pp. 431–444 (2015)

4. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Netw. 33(1), 309–
320 (2000)

5. Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing
k-edge connected components via graph decomposition. In: SIGMOD, pp. 205–216
(2013)

6. Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive
networks. In: ICDE, pp. 51–62 (2011)

7. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large
graphs. In: SIGMOD, pp. 991–1002 (2014)

8. Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer, Heidelberg
(2005)

9. Esfahanian, A.H., Louis Hakimi, S.: On computing the connectivities of graphs
and digraphs. Networks 14(2), 355–366 (1984)

10. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM J.
Comput. 4(4), 507–518 (1975)

11. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
12. Hariharan, R., Kavitha, T., Panigrahi, D., Bhalgat, A.: An o(mn) gomory-hu tree

construction algorithm for unweighted graphs. In: ACM Symposium on Theory of
Computing, pp. 605–614 (2007)

13. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community
in large and dynamic graphs. In: SIGMOD, pp. 1311–1322 (2014)

Effective k-Vertex Connected Component Detection in Large-Scale Networks 421

14. Kargar, M., An, A.: Keyword search in graphs: finding r-cliques. PVLDB 4(10),
681–692 (2011)

15. Lee, C., Reid, F., McDaid, A., Hurley, N.: Detecting highly overlapping community
structure by greedy clique expansion. arXiv preprint arXiv:1002.1827 (2010)

16. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)
17. Molloy, M., Reed, B.: The size of the giant component of a random graph with a

given degree sequence. Comb. Probab. Comput. 7(3), 295–305 (1998)
18. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community

structure of complex networks in nature and society. Nature 435(7043), 814–818
(2005)

19. Pattillo, J., Youssef, N., Butenko, S.: On clique relaxation models in network analy-
sis. Eur. J. Oper. Res. 226(1), 9–18 (2013)

20. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful
cocktail party. In: SIGKDD, pp. 939–948 (2010)

21. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM (JACM) 44(4), 585–
591 (1997)

22. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–
823 (2012)

23. Wang, N., Zhang, J., Tan, K.L., Tung, A.K.: On triangulation-based dense neigh-
borhood graph discovery. PVLDB 4(2), 58–68 (2010)

24. Wu, Y., Jin, R., Li, J., Zhang, X.: Robust local community detection: on free rider
effect and its elimination. PVLDB 8(7), 798–809 (2015)

25. Wu, Y., Jin, R., Zhu, X., Zhang, X.: Finding dense and connected subgraphs in
dual networks. In: ICDE, pp. 915–926 (2015)

26. Yang, J., Leskovec, J.: Defining and evaluating network communities based on
ground-truth. In: ICDM, pp. 745–754 (2012)

27. Zeng, Z., Wang, J., Zhou, L., Karypis, G.: Coherent closed quasi-clique discovery
from large dense graph databases. In: KDD, pp. 797–802 (2006)

28. Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-
connected subgraphs from a large graph. In: EDBT, pp. 480–491 (2012)

http://arxiv.org/abs/1002.1827

Spatial Databases

Efficient Landmark-Based Candidate Generation
for kNN Queries on Road Networks

Tenindra Abeywickrama(B) and Muhammad Aamir Cheema

Monash University, Melbourne, Australia
{tenindra.abeywickrama,aamir.cheema}@monash.edu

Abstract. The k nearest neighbor (kNN) query on road networks finds
the k closest points of interest (POIs) by network distance from a query
point. A past study showed that a kNN technique using a simple Euclid-
ean distance heuristic to generate candidate POIs significantly outper-
forms more complex techniques. While Euclidean distance is an effec-
tive lower bound when network distances represent physical distance, its
accuracy degrades greatly for metrics such as travel time. Landmarks
have been used to compute tighter lower bounds in such cases, however
past attempts to use them in kNN querying failed to retrieve candi-
dates efficiently. We present two techniques to address this problem, one
using ordered Object Lists for each landmark and another using a com-
bination of landmarks and Network Voronoi Diagrams (NVDs) to only
compute lower bounds to a small subset of objects that may be kNNs.
Our extensive experimental study shows these techniques (particularly
NVDs) significantly improve on the previous best techniques in terms of
both heuristic and query time performance.

Keywords: Road networks · Nearest neighbor · Landmark Lower
Bounds

1 Introduction

The k nearest neighbor (kNN) query on road networks finds the k closest points
of interest (POIs) by their shortest path distances in the road network from
a query point. Incremental Euclidean Restriction (IER) [10] is a kNN method
that uses a simple Euclidean distance heuristic. IER retrieves Euclidean kNNs
as candidates and computes network distances to each one using a shortest path
algorithm (e.g., Dijkstra). The kth furthest candidate implies an upper bound
network distance to the kth NN. IER then iteratively retrieves further Euclidean
NNs, computes network distances and updates the k candidates if closer POIs
are found. Since Euclidean distance is a lower bound on network distance, IER
terminates when the distance to the next Euclidean NN is larger than the net-
work distance to the kth candidate. In a recent PVLDB experimental study [1],
when IER was combined with a fast shortest path technique (instead of Dijkstra)
it was found to be significantly faster than the state-of-the-art kNN methods.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 425–440, 2017.
DOI: 10.1007/978-3-319-55699-4 26

426 T. Abeywickrama and M.A. Cheema

Inspired by the observation of a simple heuristic being so effective, our study
seeks to improve on this by employing better heuristics.

Euclidean distance is a lower bound on the network distance between vertices
in road network graphs with travel distance edge weights. It can also be adapted
for use when edge weights represent other metrics. For example when they rep-
resent travel time, we can divide the Euclidean distance by the maximum speed
for any edge to obtain the minimum possible travel time. However a lower bound
obtained in this way is looser and IER is likely to retrieve far more candidates
that are not real kNNs (false hits) on travel times. This was evident as IER’s
advantage was smaller in several travel time experiments in [1]. This identifies
the need for improvement by using better heuristics.

A popular alternative lower bounding technique is based on using landmarks,
which Goldberg et al. [4] employed to improve the A* shortest path algorithm.
By using distances to landmark vertices and the triangle inequality, they were
able to compute more accurate lower bounds leading to a significant speed-up
of A* search. Naturally, as the shortest path problem is closely related to the
kNN problem, this raises the question whether these Landmark Lower Bounds
(LLBs) can be used to similarly improve IER’s kNN query performance. Until
our study, the answer to this question has been “no”.

Past attempts to use landmarks [7,8] computed lower bounds for all POIs and
stored them in a sorted list. This is necessary for every query as LLBs depend on
the query vertex. Candidates with the next smallest lower bound are retrieved
iteratively from the list. This approach may be reasonable for small numbers of
POIs as computing lower bounds is a relatively fast operation. However it will not
scale well with increasing numbers of POIs. Some POI sets number in the tens
of thousands e.g., the 25,000 fast food outlets in the US [1]. In such scenarios,
it is desirable to incrementally retrieve POIs in order of their LLBs without
computing LLBs for all POIs. For example, Euclidean NNs can be incrementally
retrieved quite efficiently using an R-tree or similar structure.

Figure 1 demonstrates this problem using the US travel time road network.
In Fig. 1(a) the LLB-based method is orders of magnitude worse on query time
(left y-axis) despite producing fewer false hits (right y-axis). This is due to
there being more POIs in total with increasing density (i.e., ratio of POIs to
vertices), requiring more LLBs to be computed. The query time in Fig. 1(b) is
constant as it is dominated by the computation of LLBs irrespective of k. In
both figures we clearly see that (1) LLB-based methods provide better lower
bounds as evident from the fewer false hits and (2) LLB-based methods perform
very poorly without the ability to retrieve candidates incrementally.

Inspired by the performance of Euclidean heuristics in the PVLDB study
and using the observation that landmark lower bounds appreciably reduce false
hits over Euclidean distance, we investigate how to efficiently employ landmarks
to improve kNN query performance. To summarise our contributions:

– We present two techniques to generate kNN candidates using landmarks. The
first, Object Lists, demonstrates the difficulties in using LLBs and is effi-
cient in several scenarios. We further improve on this and present another

Efficient Landmark-Based Candidate Generation for kNN Queries 427

101

102

103

104

105

106

107

 0.0001 0.001 0.01 0.1 1
 0

 50

 100

 150

 200

 250

 300
Q

ue
ry

 T
im

e

Fa
ls

e
H

its

Density

Euclid Query Time
LLB Query Time
Euclid False Hits

LLB False Hits

(a) Varying Density

101

102

103

104

105

 1 5 10 25 50
 0
 50
 100
 150
 200
 250
 300
 350

Q
ue

ry
 T

im
e

Fa
ls

e
H

its

k

Euclid Query Time
LLB Query Time
Euclid False Hits

LLB False Hits

(b) Varying k

Fig. 1. Euclidean kNN vs. Landmark kNN (US, d= 0.001, k= 10, uniform)

technique which, using a novel combination of Network Voronoi Diagrams
and landmarks, provides significant improvement over existing techniques on
both heuristic and running time performance.

– LLBs are expected to be more accurate than Euclidean distance, especially for
edge weights such as travel times. However, to the best of our knowledge, they
have not been empirically compared for kNN queries. In addition to other
experimental results, we present a detailed study into the number of “false
hits” (i.e., candidates which are not real kNNs). This machine independent
metric is applicable to any experimental setting or shortest path technique,
allowing a better understanding of the usefulness of LLBs.

2 Preliminaries

We consider a road network graph G = (V,E) where V is a vertex set and E is an
edge set. Edge (u, v) ∈ E connects two adjacent vertices with weight w(u, v) ∈
R>0 representing any real positive metric such as distance or travel time. The
shortest path P (u, v) with network distance d(u, v) represents the minimum sum
of weights connecting any two vertices u and v. Similar to almost all existing
studies we consider POIs (objects) and query points located on vertices in V .
So, given a query vertex q and a set of object vertices O, a kNN query retrieves
the k closest objects in O based on their network distances from q in G.

2.1 Landmark Lower Bounds

To compute a Landmark Lower Bound (LLB), firstly a set of m landmark vertices
L = {l1, . . . , lm} ⊆ V is selected. From each landmark li ∈ L we compute the
distances to all vertices in V . Now given a source vertex q and destination vertex
o, we can compute a lower bound LBli on the network distance d(q, o) using the
distances to landmark li and the triangle inequality as defined in (1). We obtain
the “tightest” lower bound (i.e., closest to d(q, o)) by choosing the maximum
lower bound LBmax over all m landmarks as defined in (2).

428 T. Abeywickrama and M.A. Cheema

LBli(q, o) = |d(li, q) − d(li, o)| ≤ d(q, o) (1)

LBmax(q, o) = max
li∈L

(|d(li, q) − d(li, o)|) (2)

First applied to road networks by Goldberg et al. [4], there now exists a
large body of work utilising this concept. Two considerations arising from LLBs
are (a) the vertices to select as landmarks and (b) the number of landmarks.
Intuitively vertices whose shortest path trees cover longer shortest paths (e.g.,
those appearing at fringes of the graph [4]) have a higher probability of giving
tighter lower bounds. A larger number of landmarks similarly increases this
probability, but at the expense of higher space cost and computing more lower
bounds to find the tightest overall. Since our study is concerned with using
LLBs efficiently for kNNs rather than improving them, we refer the reader to
past studies [4,5] for discussion on these choices. Note that (1) and (2) are only
applicable on undirected graphs, but the idea can easily be extended to directed
graphs by computing distances to and from landmarks.

3 Techniques

As detailed in Sect. 1, Incremental Euclidean Restriction (IER) is a kNN tech-
nique that computes network distances to candidate objects retrieved by their
Euclidean distance until the k candidates cannot be improved. This technique
can be generalized to consider any lower bounding technique, such as Land-
mark Lower Bounds (LLBs) discussed earlier. Let us refer to the equivalent kNN
algorithm to IER using LLBs as Incremental Lower Bound Restriction (ILBR).
ILBR works in exactly the same way as IER except we retrieve the candidate
with the smallest LLB. IER can incrementally retrieve candidates by Euclidean
NN search on an R-tree, avoiding computing Euclidean distances to all objects.
But there is no efficient analogous method for LLBs and past studies [7,8] resort
to computing LBmax for all objects which is not practicable. Here we present
two techniques that incrementally retrieve candidates for ILBR.

3.1 ILBR by Landmark Object Lists

By computing LLBs for all objects as in past studies more LLBs are computed
than necessary. We introduce the pre-computed Object List (OL) index that
enables LLBs to be computed more optimistically. The OL approach solves
the same underlying problem, i.e., to find the object p ∈ O with the smallest
LBmax(q, o) as defined by (3). p is then returned to ILBR as a candidate.

p = min
p∈O

(max
li∈L

(|d(li, q) − d(li, p)|)) (3)

Pre-processing: Given object set O, we pre-compute an Object List OLi for
each landmark li ∈ L as shown in Fig. 2. The list OLi contains an element for

Efficient Landmark-Based Candidate Generation for kNN Queries 429

OL1 o1, d(o1, l1) o2, d(o2, l1) . . . o|O|, d(o|O|, l1)
...

OLm o1, d(o1, lm) o2, d(o2, lm) . . . o|O|, d(o|O|, lm)

Fig. 2. Unsorted object lists for m landmarks

OLq o6, 1 o2, 2 o4, 3 o5, 4 o7, 7 o1, 8 o3, 9

Index 0 1 2 3 4 5 6

Fig. 3. Sample query object list OLq

every object o ∈ O, with each element consisting of o and its distance from
the landmark d(li, o). Finally each list is sorted on d(li, o). Since the Object List
index only depends on the object set O, which is known beforehand, it is created
and sorted entirely in the pre-processing stage.

Query Algorithm: Given a query vertex q and its nearest landmark lq, we
use object list OLq of lq to populate a set of potential candidates. The first
potential candidate is the object that will minimise (1) for lq. This object can be
found by binary search on OLq for the object p whose distance d(lq, p) is closest
to d(lq, q). For example Fig. 3 depicts OLq for a set of 7 objects o1, ..., o7 with
distances from lq. Let us say d(lq, q) = 4, then the binary search will find the
element at index 3 (shaded) as closest to 4. Therefore p = o5 minimises (1) with
LBlq (q, o5) = |4 − 4| = 0. Finally p is inserted into a minimum priority queue
Q keyed by LBmax(q, p) computed using the ALT index [4]. For each vertex in
V , ALT contains a list with its distances to each landmark. LBmax(q, p) can be
efficiently computed by iterating over the lists for q and p.

Lemma 1. Given an object p and a landmark lq, any object o with LBlq (q, o) <
LBmax(q, p) may also have LBmax(q, o) < LBmax(q, p).

Lemma 1 is trivially true when LBmax(q, o) = LBlq (q, o). Now object pn with
the next smallest lower bound by lq is immediately to the left or right of p (found
above by binary search in OLq). If LBlq (q, pn) < Top(Q) then by Lemma 1, pn
may have smaller LBmax than any object in Q. While LBlq (q, pn) < Top(Q), we
search left or right from p. When an object satisfies the condition we compute
LBmax and insert it into Q. When neither the next left or right object satisfies
the condition, the algorithm terminates, and the top element in Q is returned as
the object that minimises (3). This is correct as any object further left or right
must have LBlq (q, pn) ≥ Top(Q) and cannot satisfy Lemma 1.

Let us say in our example LBmax(q, o5) = 2 so Top(Q) = 2 after inserting o5.
In Fig. 3, the objects to the left and right of o5 are o4 and o7, with lower bounds
LBlq (q, o4) = |4−3| = 1 and LBlq (q, o7) = |4−7| = 3 respectively. By Lemma 1,

430 T. Abeywickrama and M.A. Cheema

q

l1

o2

l2

10 10

5 12

o1
10

18

Fig. 4. Query landmark choices

o1

o2

o4

o3

Vns(o2)

Vns(o4)

Vns(o3)

Vns(o1)

Fig. 5. Network Voronoi Diagram

o4 may be a better candidate so we compute LBmax(q, o4) and insert it into Q.
Let us say Top(Q) = 2 after inserting o4. For the next element to the left, o2,
we have LBlq (q, o2) = |4 − 2| = 2. In that case neither lower bounds for the
object to the left or right is less than Top(Q) and therefore cannot improve on
the objects in Q and the search terminates. By saving Q and the indices in OLq

of the last left and right elements evaluated, we can continue to incrementally
retrieve the object with the next smallest LBmax.

We choose lq as the landmark closest to query vertex q. This heuristic
increases the probability that objects are found further from lq than q, thus
producing a higher lower bound by (1). For example Fig. 4 shows the landmark
distances for two landmarks, q and two objects. q, o1 and o2 are equally close
to l1, so LBl1(q, o1) = 0 and LBl1(q, o2) = 0 even though o1 is further away.
The closer landmark l2 gives LBl2(q, o1) = 13 and LBl2(q, o2) = 7, correctly
distinguishing the objects. Object Lists produce fewer false hits than IER on all
datasets and is more efficient on low density datasets. However, this problem
still occurs on datasets with higher density as landmarks are sparse, and IER is
faster on these datasets. We now present a further improved technique.

3.2 ILBR by Network Voronoi Diagrams

Our second technique employs a Network Voronoi Diagram (NVD) [9] of the
object set O to improve on Object Lists. Unlike its Euclidean counterpart, NVD
generators are limited to the network and shortest paths represent distances.

We define Vns(oi) as the Voronoi node set by (4), which identifies the vertices
in V for which oi is the nearest neighbor by their network distances to oi.

Vns(oi) = {v|v ∈ V, d(v, oi) ≤ d(v, oj)∀oj ∈ O \ oi} (4)

For any edge (u, v) where u ∈ Vns(oi) and v ∈ Vns(oj), then Vns(oi) and
Vns(oj) are adjacent. The Network Voronoi Diagram for object set O is the
collection of Voronoi node sets for all objects in O. Figure 5 shows an example
NVD for a graph with unit edge weights and four objects. Each Voronoi node
set is surrounded by a dotted container and arrows indicate adjacency.

Efficient Landmark-Based Candidate Generation for kNN Queries 431

Algorithm 1. GetNearestCandidateByNVD(q,cl,NVD,ALT ,Q,H)
Input : q: a query vertex, cl: candidate returned by last call (or 1NN from

NVD if first call), NVD: Network Voronoi Diagram for object set O,
ALT : index to compute maximum lower bounds, Q: priority queue
with potential candidates, H: hash-table containing IDs of all
Voronoi node sets previously evaluated

Output : c: candidate object, LBmax(q, c): lower bound distance to c over L
1 GenerateAdjacentCandidates(q, cl, NV D,ALT,Q,H);
2 (c, LBmax(q, c)) ← Dequeue(Q);
3 return (c, LBmax(q, c));
4

5 Function GenerateAdjacentCandidates(q, cl, NV D,ALT,Q,H)
6 Vns(cl) ← GetV oronoiNodeSet(cl, NV D);
7 for each Vns(p) ∈ AdjacentV oronoiSets(Vns(cl)) do
8 if !H.contains(Vns(p)) then
9 Enqueue(Q, (p,ALT.ComputeLBMax(q, p)));

10 H.insert(Vns(p));

NVDs are not new in the context of kNNs [6,15]. VN3 [6] utilises an NVD
to retrieve candidates using the observation that the next NN is contained in
a Voronoi node set adjacent to the sets of NNs found so far. VN3 also pre-
computes certain network distances. For each Voronoi node set this includes the
distance from each border vertex to every other border and from each border to
every contained vertex in the set. This allows VN3 to also compute the network
distance to retrieved candidates, but entails huge pre-processing and query cost.
We instead relax the original observation to consider candidate NNs rather than
NNs, which allows us to incrementally retrieve candidates for computing cheap
LLBs. Through this novel combination of the standard NVD and landmarks we
are able to consider significantly fewer candidates than Object Lists and avoid
the large pre-processing overhead of VN3.

Pre-processing: An NVD can be computed optimally in O(|V | log |V |) time
with O(|V |) space [3] using simultaneous Dijkstra’s searches from all objects
using a single priority queue. When a vertex vd inserted by the search from oi is
dequeued and vd is not assigned to a Voronoi node set, it is assigned to Vns(oi).
This is correct as vd is the minimum element in the queue and so cannot be closer
to another object. However if vd is assigned to another Voronoi node set Vns(oj),
then Vns(oj) is added to the list of adjacent sets for Vns(oi) (the search from oj
creates the reciprocal entry). The search from oi is pruned at vd, i.e., neighbor
vertices are not inserted into the queue as they cannot belong to Vns(oi).

Query Algorithm: Algorithm 1 describes how to use NVDs to retrieve candi-
dates. By their definition, an NVD can quickly return the 1NN by looking up
the Voronoi node set (and hence the associated object) containing the query
vertex. If k > 1, Algorithm 1 returns the next candidate by first retrieving the

432 T. Abeywickrama and M.A. Cheema

adjacent Voronoi node sets of the last candidate object. Note that in the first call
to Algorithm 1 the last candidate is the 1NN. Each adjacent set generates a new
potential candidate, to which we compute its LBmax by (2) using the ALT index
and insert it into priority queue Q. We use hash-table H to avoid repeated com-
putations for previously evaluated adjacent Voronoi node sets. Once all adjacent
sets are processed in this way, we return the element in Q with the minimum
LBmax as the next candidate.

Figure 6 shows a simplified NVD, assume the dotted containers capture the
Voronoi node sets of each object and when containers share an edge they are
adjacent. So for query vertex q in the figure, we can retrieve the 1NN o1 as q
is contained in Vns(o1). Then the adjacent Voronoi node sets of Vns(o1) (lightly
shaded) are used to retrieve potential candidates, which are inserted into Q by
their LBmax values. Let us say the candidate with the minimum key is now o7,
then o7 would be returned by the algorithm. In the next call to the algorithm,
the Voronoi node sets adjacent to Vns(o7) would be retrieved and, for sets not
already evaluated, new potential candidates inserted into Q.
Recall that ILBR (like IER) terminates when the network distance to the kth
candidate is less than the lower bound distance to the next candidate. We pro-
pose Theorem 1 to show that Algorithm 1 is correct when this occurs.

Theorem 1. When ILBR terminates the following are true (1) priority queue
Q does not contain any objects with distance smaller than the kth candidate (2)
there are no objects outside the Voronoi node sets visited so far (i.e., for objects
in Q or returned as candidates) with distance smaller than the kth candidate.

Proof. Let Dk be the network distance to the kth candidate. We now prove each
case of Theorem 1 individually as follows:

Case 1: When ILBR terminates we have Dk ≤ Top(Q). We also have Top(Q) ≤
d(q, c) for any object c in Q as they are inserted using a lower bound distance
and Q is a minimum priority queue. Thus we also have Dk ≤ d(q, c) and no
object c in Q has a network distance smaller than the kth candidate.

Case 2: Let C ⊆ O be the set of objects inserted into Q and let S = {Vns(o)|o ∈
C} be the set of associated Voronoi node sets. We prove Case 2 by contradiction
in a similar but simpler manner to [6]. Let us assume there exists an object
pk /∈ C such that d(q, pk) < Dk. Algorithm 1 inserts objects into Q from adjacent
Voronoi node sets beginning with the set containing q, thus all Voronoi node sets
in S are adjacent to at least one other set in S. So the shortest path P (q, pk) must
pass through some Voronoi node set Vns(x) ∈ S since pk /∈ C. Thus P (q, pk) must
contain at least one vertex vx ∈ Vns(x), as illustrated in Fig. 6 with x = o2 and
pk = o8. By the definition of an NVD we have d(vx, x) ≤ d(vx, pk) as all vertices
in Vns(x) are closer to x than any other object. Adding d(q, vx) to both sides
results in d(q, vx) + d(vx, x) ≤ d(q, vx) + d(vx, pk). This simplifies to d(q, x) ≤
d(q, pk) as vx is on the shortest path P (q, pk) and d(q, x) ≤ d(q, vx) + d(vx, x).
Since x is in Q, we have Top(Q) ≤ d(q, x), so we must have Dk ≤ d(q, x). This
implies Dk ≤ d(q, pk), contradicting our assumption.

Efficient Landmark-Based Candidate Generation for kNN Queries 433

o1

q

o2

o3

o4

o5 o6

o7

o8
o9

o10Vns(o1)

Vns(o3)

Vns(o4)

Vns(o2)

Vns(o5) Vns(o6)

Vns(o10)
Vns(o7)

Vns(o8)

Vns(o9)

vx

Fig. 6. Network Voronoi Diagram query

o1
q

o2

o7

o8

Vns(o1)

Vns(o2)

Vns(o7)

Vns(o8)

d(q,o2)
UB(o2,o8)

Fig. 7. LB optimisation

NVD Lower Bound Optimisation: When parallel Dijkstra’s searches meet
during NVD construction, we naturally compute an upper bound distance
between objects of adjacent Voronoi node sets. This is an upper bound and
not an exact distance because searches are pruned (e.g., shorter paths may exist
through other adjacent Voronoi node sets). A lower bound distance to an adja-
cent object can be computed by applying the triangle inequality to the network
distance (computed by ILBR) from q to the last candidate object and this upper
bound distance. For example in Fig. 7, let o2 be the last candidate returned with
network distance d(q, o2). While evaluating the adjacent set Vns(o8), we use
the pre-computed upper bound distance UB(o2, o8) between o2 and o8 to com-
pute a lower bound LBnvd(q, o8) = d(q, o2) − UB(o2, o8). Note that it is not an
absolute value due to the upper bound. In Algorithm1, we insert o8 into Q keyed
by LBnvd(q, o8) if LBnvd(q, o8) > LBmax(q, o8). The new lower bound may be
tighter than the one computed using ALT especially when objects are further
away from q and comes at a cheap pre-processing and query time cost.

4 Experiments

4.1 Experimental Setup

Environment: All experiments were run on a 3.2 GHz Intel Core i5-4570 CPU
and 32 GB RAM running 64-bit Linux (kernel 4.2). Code was written in single-
threaded C++ and compiled using g++ 5.2 with the O3 flag. We implemented
ILBR, ALT and the candidate generation techniques ourselves. We obtained
implementations of existing techniques, experimental scripts and datasets from
[1]. All queries were executed in-memory for fast performance.

Datasets: We use 10 travel time road networks as in Table 1 with the largest US
the default. We use a combination of synthetic and real object sets. We choose

434 T. Abeywickrama and M.A. Cheema

Table 1. Road networks

Region |V | |E|
DE 48,812 119,004

VT 95,672 209,288

ME 187,315 412,352

CO 435,666 1,042,400

NW-US 1,089,933 2,545,844

CA 1,890,815 4,630,444

E-US 3,598,623 8,708,058

W-US 6,262,104 15,119,284

C-US 14,081,816 33,866,826

US 23,947,347 57,708,624

Table 2. Real POI sets (US)

Type Size Density

Schools 160,525 0.007

Parks 69,338 0.003

Fast food 25,069 0.0011

Post offices 21,319 0.0009

Hospitals 11,417 0.0005

Hotels 8,742 0.0004

Universities 3,954 0.0002

Courthouses 2,161 0.00009

synthetic objects uniformly at random based on density d where d= |O|/|V |. In
addition we use 8 real POI sets extracted from OSM1 as in Table 2.

Parameters: We vary object set density from 0.0001 to 1 and k from 1 to
50. We use the same default parameters as [1] with default density d = 0.001
and k = 10. We generate 25 uniform object sets and execute methods for 200
randomly selected query vertices, averaging running time over 5000 queries.

Techniques: Like IER, ILBR uses a different road network index to compute
network distances. We combine ILBR with Pruned Highway Labelling (PHL) [2]
as it is one of the fastest techniques. We use an ALT [4] index with 16 random
landmarks to compute lower bounds and construct Object Lists. Finally we
compare our techniques against the current fastest state-of-the-art technique,
IER (similarly using PHL) [1]. For real-world object sets we also compare against
two other techniques G-tree [16] and INE [10] for comparison with [1].

4.2 Index Pre-processing

Table 3 details the index pre-processing time and space. PHL and ALT are the
road network indexes employed by ILBR and IER. While PHL is faster to con-
struct for travel time road networks, G-tree consumes less space making it more
appropriate with limited memory. The index size of ALT is small, but this is
dependent on m the number of landmarks used (16 in our case). It can be
reduced by using fewer landmarks at the expense of looser lower bounds. We
also observe the performance of object indexes used by ILBR (Object Lists and
Network Voronoi Diagrams) and IER (R-trees) for the default density d = 0.001.
Object Lists and R-trees are fast to construct and their index sizes are small.
However since the space cost is a function of object set size we expect it to

1 http://www.openstreetmap.org.

http://www.openstreetmap.org

Efficient Landmark-Based Candidate Generation for kNN Queries 435

Table 3. Index statistics

Road network PHL G-tree ALT
(m = 16)

OL
(d = 0.1%)

NVD
(d = 0.1%)

R-tree
(d = 0.1%)

NW Time 16 s 47 s 2 s 0.8 ms 264 ms 0.2 ms

Space 325MB 104MB 67MB 136 KB 4.2 MB 44 KB

US Time 30m 71 m 60 s 15 ms 12 s 4 ms

Space 15.8 GB 2.9 GB 1.43 GB 1.8 MB 92 MB 0.9 MB

increase with density. NVDs take longer and occupy more space as the time and
space complexity are functions of |V |. But both costs are still significantly smaller
than road network indexes making it feasible to compute an NVD for each object
set. NVDs may also be compressed using the geometric area of Voronoi node sets
to capture vertex containment. For example it may be stored as a polygon in an
R-tree [6] or as merged cells in a Quadtree [12].

4.3 Query Performance

We evaluate query performance of each technique on two metrics, namely run-
ning time and false hits per query. A false hit occurs when a candidate NN is not
a real kNN. The greater the number of false hits, the more unnecessary network
distance computations ILBR must perform. Thus false hits are an indication
of a heuristic’s performance irrespective of the experimental setting (disk based
or main memory) or the network distance technique used. We refer to the two
ILBR methods as NVD-X and OL-X as variants employing Network Voronoi
Diagrams and Object Lists respectively (and X is the road network index used).

Effect of Network Size: Figure 8 shows query performance as the number
of road network vertices |V | increases. In Fig. 8(a), NVD-PHL is consistently
the best performing method and is 2–3× faster than IER-PHL. OL-PHL is

100

101

102

105 106 107

Q
ue

ry
 T

im
e

(µ
s)

Number of Vertices

IER-PHL
OL-PHL

NVD-PHL

(a) Query Time

 0

 20

 40

 60

 80

 100

 120

105 106 107

Fa
ls

e
H

its

Number of Vertices

Euclidean
OL

NVD

(b) False Hits

Fig. 8. Effect of Network Size |V | (d= 0.001, k= 10, uniform)

436 T. Abeywickrama and M.A. Cheema

100

101

102

103

 1 5 10 25 50

Q
ue

ry
 T

im
e

(µ
s)

k

IER-PHL
OL-PHL

NVD-PHL

(a) Query Time

 0
 50

 100
 150
 200
 250
 300
 350

 1 5 10 25 50

Fa
ls

e
H

its

k

Euclidean
OL

NVD

(b) False Hits

Fig. 9. Effect of k (US, d= 0.001, uniform)

comparable to NVD-PHL for the first few datasets after which its advantage
over IER-PHL narrows until being on par with it for the largest dataset. With
increasing |V | the total number of objects increases for the same density causing
Object Lists to become larger. E.g., we expect there to be more fast food outlets
in larger regions. OL is susceptible to objects that appear close when they are
similar distances from the landmark as the query vertex. When |V | increases,
landmarks become more distant from query vertices on average (as the num-
ber of landmarks m is constant), so the probability of such objects appearing
increases. While these are only potential candidates and are not reflected in false
hits, OL must still compute their LBmax values. This is evident in Fig. 8(b) as
the number of false hits for OL is still lower than Euclidean distance.

Effect of k: Figure 9 shows the query performance with increasing k. For k= 1,
NVD-based methods are essentially optimal as only a single look-up operation
is needed. NVD-PHL once again outperforms all other methods, being at least
2–3× faster than IER-PHL over all k, again showing that it is possible to effi-
ciently use landmarks for kNNs. Landmarks display significant improvement on
false hits over Euclidean distance in Fig. 9(b). But earlier trends are also seen
here and OL-PHL’s query time does not improve on IER-PHL.

Effect of Density: We observe query performance with increasing object set
density in Fig. 10. As density increases, the average distance between objects
decreases. This makes kNNs appear closer to the query vertex and they should
be easier to find. IER-PHL is an exception, as objects become closer and more
numerous they become more difficult to differentiate using Euclidean distance.
NVD-PHL shows this problem can be remedied using landmarks as it is an order
of magnitude better than IER-PHL in Fig. 10(a). OL-PHL however degrades
with increasing density to the point that its running time is an order of mag-
nitude worse than IER-PHL. With more objects, more of them will produce
inaccurate lower bounds similar to the scenario depicted in Fig. 4, making dis-
tant objects appear close to the query vertex. NVD-PHL does not suffer from
this as using adjacent Voronoi node sets acts as a filter avoiding objects that

Efficient Landmark-Based Candidate Generation for kNN Queries 437

“seem” close by inaccurate lower bounds. As a result NVD-PHL experiences far
fewer false hits in Fig. 10(b).

101

102

103

104

 0.0001 0.001 0.01 0.1 1

Q
ue

ry
 T

im
e

(µ
s)

Density

IER-PHL
OL-PHL

NVD-PHL

(a) Query Time

 0

 50

 100

 150

 200

 250

 0.0001 0.001 0.01 0.1 1

Fa
ls

e
H

its

Density

Euclidean
OL

NVD

(b) False Hits

Fig. 10. Effect of Density (US, k= 10, uniform)

Lower Bounds Computed: Figure 10(b) showed that with increasing density,
OL experiences fewer false hits than Euclidean distance even at its worst. This
suggests that the poor running time of OL for high densities in Fig. 10(a) is
not caused by ILBR making additional network distance computations due to
false hits. It is actually due to the number of lower bounds computed by OL,
which increases with density, as illustrated in Fig. 11(a). NVD computes very
few lower bounds thanks to its filtering property. The final evidence of this is
the behaviour of OL on the two datasets in Fig. 11. The US road network with 24
million vertices requires more lower bounds to be computed than the smaller NW
dataset with 1 million vertices. The US has more objects for the same density,
resulting in a larger Object List and hence a larger search space to find the best
object. We note however, computing all lower bounds would require significantly
more computations than OL. While OL is a substantial improvement, its utility
is still dependent on the number of objects.

101

102

103

104

105

 0.0001 0.001 0.01 0.1 1

LB
s

C
om

pu
te

d

Density

OL US
NVD US

OL NW
NVD NW

(a) Varying Density

101

102

103

104

 1 5 10 25 50

LB
s

C
om

pu
te

d

k

OL US
NVD US

OL NW
NVD NW

(b) Varying k

Fig. 11. No. of lower bounds computed (US, d= 0.001, k= 10, uniform)

438 T. Abeywickrama and M.A. Cheema

Fig. 12. Real-World POIs

Real-World Object Sets: We verify our observations on real-world POIs in
Fig. 12 with increasing object set sizes from left to right. Trends seen in pre-
vious figures are also observed for real-world POIs. NVD-PHL is the overall
best performing method, while OL-PHL is competitive except on larger object
sets like parks and schools. For small object sets like courts, IER-PHL remains
competitive as there are so few objects that Euclidean distance has a smaller
probability of making a false hit. A more typical object set such as fast food
outlets demonstrates the significant superiority of NVD-PHL.

5 Related Work

A recent experimental study [1] on the kNN problem provided an in-depth review
of the state-of-the-art. The main outcomes of this study were the surprising
performance of IER and the implications this had on heuristics used in kNN.
We refer the reader to this paper for a detailed review of kNN techniques, while
in this section we discuss the work most relevant to our study.

VN3 [6] uses Network Voronoi Diagrams to answer kNN queries as explained
in Sect. 3.2. Landmarks have been used to answer kNN queries by Kriegal et al.
[7,8] based on the multi-step kNN paradigm [13] that we refer to as ILBR. These
studies propose interesting improvements to using landmarks. But in both cases
the kNN algorithms require creating a ranking by computing landmark lower
bounds to all objects. As discussed this approach is not scalable with object set
size and not competitive with existing approaches in practice.

Road Network Embedding (RNE) [14] involves transforming the road network
into higher dimensional space and using Minkowski metrics to estimate network
distance. However the proposed kNN method is approximate. Qiao et al. also pro-
pose an approximate technique [11] using shortest path trees to compute distance
estimates based on tree distance, but their solution applies to the k nearest key-
word problem where objects are not split into sets.

There is a wide body of work on utilising landmarks for shortest path queries.
As previously discussed, ALT [4] was among the first. [8] proposes a hierarchical
landmark scheme to reduce index space cost. Other work [5] has focussed on
improving lower bounds for example through better landmark selection. These
compliment our work, e.g., better lower bounds reduce the number of false hits.

Efficient Landmark-Based Candidate Generation for kNN Queries 439

6 Conclusion

In this paper we present two techniques to efficiently retrieve kNN candidates by
landmark-based lower bounds in an incremental manner for effective integration
with the ILBR framework. We empirically compare the heuristic performance
of landmark lower bounds and Euclidean distance on kNN search for the first
time. We show that both methods significantly improve on the number of false
hits (by up to an order of magnitude) incurred in candidate generation than the
Euclidean distance heuristic used by IER. In our experimental investigation on
travel time road networks, the Object List technique demonstrates the difficulties
in using landmarks but outperforms IER for smaller object sets. The second
technique employing a Network Voronoi Diagram outperforms IER by at least
2–3× on query time across all datasets and parameters. Thus we show that it is
indeed possible to use landmark-based lower bounds to improve kNN search.

Acknowledgements. We sincerely thank the anonymous reviewers for their feedback
which helped improve our work. The research of Muhammad Aamir Cheema is sup-
ported by ARC DE130101002 and DP130103405. Tenindra Abeywickrama is supported
by an Australian Government RTP Scholarship.

References

1. Abeywickrama, T., Cheema, M.A., Taniar, D.: K-nearest neighbors on road net-
works: a journey in experimentation and in-memory implementation. PVLDB 9(6),
492–503 (2016)

2. Akiba, T., Iwata, Y.: Kawarabayashi, K.I., Kawata, Y.: Fast shortest-path distance
queries on road networks by pruned highway labeling. In: ALENEX, pp. 147–154
(2014)

3. Erwig, M., Hagen, F.: The graph voronoi diagram with applications. Networks 36,
156–163 (2000)

4. Goldberg, A.V., Harrelson, C.: Computing the shortest path: a search meets graph
theory. In: SODA, pp. 156–165 (2005)

5. Goldberg, A.V., Werneck, R.F.F.: Computing point-to-point shortest paths from
external memory. In: ALENEX, pp. 26–40 (2005)

6. Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial
network databases. In: VLDB, pp. 840–851 (2004)

7. Kriegel, H.-P., Kröger, P., Kunath, P., Renz, M.: Generalizing the optimality
of multi-step k -nearest neighbor query processing. In: Papadias, D., Zhang, D.,
Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 75–92. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73540-3 5

8. Kriegel, H.-P., Kröger, P., Renz, M., Schmidt, T.: Hierarchical graph embed-
ding for efficient query processing in very large traffic networks. In: Ludäscher,
B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 150–167. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-69497-7 12

9. Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams, 2nd edn. Wiley, Hoboken (2000)

10. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial net-
work databases. In: VLDB, pp. 802–813 (2003)

http://dx.doi.org/10.1007/978-3-540-73540-3_5
http://dx.doi.org/10.1007/978-3-540-69497-7_12

440 T. Abeywickrama and M.A. Cheema

11. Qiao, M., Qin, L., Cheng, H., Yu, J.X., Tian, W.: Top-k nearest keyword search
on large graphs. PVLDB 6(10), 901–912 (2013)

12. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing
in spatial databases. In: SIGMOD, pp. 43–54 (2008)

13. Seidl, T., Kriegel, H.P.: Optimal multi-step k-nearest neighbor search. In: SIG-
MOD, pp. 154–165 (1998)

14. Shahabi, C., Kolahdouzan, M., Sharifzadeh, M.: A road network embedding tech-
nique for k-nearest neighbor search in moving object databases. GeoInformatica
7(3), 255–273 (2003)

15. Zheng, B., Zheng, K., Xiao, X., Su, H., Yin, H., Zhou, X., Li, G.: Keyword-aware
continuous kNN query on road networks. In: ICDE, pp. 871–882 (2016)

16. Zhong, R., Li, G., Tan, K., Zhou, L., Gong, Z.: G-tree: an efficient and scalable
index for spatial search on road networks. TKDE 27(8), 2175–2189 (2015)

MinSum Based Optimal Location Query
in Road Networks

Lv Xu1, Ganglin Mai1, Zitong Chen2, Yubao Liu1(B), and Genan Dai1

1 Sun Yat-sen University, Guangzhou, China
liuyubao@mail.sysu.edu.cn

2 The Chinese University of Hong Kong, Sha Tin, Hong Kong

Abstract. Consider a road network G on which a set C of clients and
a set S of servers are located. Optimal location query (OLQ) in road
networks is to find a location such that when a new server is set up
at this location, a certain objective function computed based on the
clients and the servers serving the clients is optimized. In this paper, we
study the OLQ with the MinSum objective function in road networks,
namely the MinSum query. This problem has been studied before, but
the state-of-the-art is still not efficient enough. We propose an efficient
algorithm based on the two-level pruning technique. We also study the
extension of the MinSum query problem, namely the optimal multiple-
location MinSum query. Since this extension is shown to be NP-hard, we
propose a greedy algorithm. Moreover, we give an approximate guarantee
for our solution. Extensive experiments on the real road networks were
conducted to show the efficiency of our proposed algorithms.

1 Introduction

Given a set C of clients and a set S of servers in a road network G = (V,E)
where V is a vertex set and E is an edge set, an optimal location query (OLQ) is
to find a location such that when a new server is set up at this location, a certain
objective function computed based on the clients and servers (including the new
server) is optimized. This optimal location query is very important since it is
used as a basic operation in many real applications such as location planning,
location based service and profit-based marketing [1–4,10,11,16,23,26].

In OLQ, the new server can be built at any location of the road network
except the locations of existing servers. There are three popular objective func-
tions used to determine the optimal location for the new server, namely Min-
Max function, MaxSum function and MinSum function [23,26]. One kind of
OLQ adopting the MinSum function called the MinSum query was studied in
[23,26]. The chain of fast food restaurants is an example to illustrate this Min-
Sum query. For example, different branches of the fast food restaurants have their
collaborative relationship and deliver fast food together to customers at differ-
ent locations. Minimizing the average distance from customers to their nearest
branches of the restaurants can determine the location of a new branch of the
restaurants. The best-known algorithm for this query/problem was presented
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 441–457, 2017.
DOI: 10.1007/978-3-319-55699-4 27

442 L. Xu et al.

in [23,26]. The major idea is to first augment the road network by creating a
vertex for each client and each server in the road network and then partition the
augmented road network into sub-networks/sub-graphs for solving the problem.

However, the state-of-the-art algorithm in [23,26] has several shortcomings
as follows. First, the algorithm performance heavily depends on the pruning
of the partitions of augmented road network. The pruning effect needs to be
improved since the upper bounds for the partitions are quite coarse. Second,
the algorithm relies on an augmented road network which could be prohibitively
large. Specifically, the augmented road network has the number of its vertices as
large as |V |+|S|+|C| and the number of its edges as large as |E|+|S|+|C|, both
of which become very large when there is a large number of servers or clients.
Third, in practice, we sometimes want to find multiple locations and set up a
server at each of these locations. The algorithm cannot support such query with
multiple locations.

Motivated by the shortcomings of the existing approach in [23,26], in this
paper, we design an efficient algorithm called MinSum-Alg which avoids the
above shortcomings. Specifically, we make the following contributions.

Firstly, we propose an efficient algorithm for the optimal location query (i.e.,
the single-location MinSum query) in road networks. The proposed query algo-
rithm MinSum-Alg is executed on the original road network without generating
any new road network where the number of the vertices to be examined is equal
to |V |. We also present the two-level pruning technique based on the idea of
nearest location component (NLC) of the clients in [3,4], which can dramatically
reduce the algorithm search space. Secondly, we study to find multiple locations
(instead of a single location) for the MinSum query, which has not been studied
in the literature. We show that this problem is NP-hard and propose a greedy
algorithm for this general problem. Moreover, our solution has an approximate
guarantee. Note that the multi-server version of OLQ with the MinMax and
MaxSum objective functions is also shown to be NP-hard [3,4]. However, the
proposed solution has no theoretical guarantee. Thirdly, we conducted exten-
sive experiments to verify the efficiency of our algorithm based on the real road
networks SF (San Francisco) and CA (California). Our empirical studies show
the greedy algorithm has good approximate ratio when compared to the optimal
solutions.

The rest of this paper is organized as follows. Section 2 gives the problem
definition. Section 3 introduces our algorithm MinSum-Alg for the single-location
MinSum query. Section 4 introduces the greedy algorithm GA(MinSum) for the
multiple-location MinSum query. Section 5 gives the empirical study and Sect. 6
reviews the related work. Section 7 concludes the paper.

2 Problem Definition

Let G = (V,E) be a road network, and C (S) be a set of clients (servers) on G.
For any edge e = (vl, vr) of G, vl (vr) is the left (right) vertex of e. We adopt
the network distance metric to define the distance between two locations on the

MinSum Based Optimal Location Query in Road Networks 443

road network, denoted by d(·, ·). Let c be a client in C. We denote c’s closest
server in S by NNS(c). Besides, we denote the distance between c and its closest
server in S by c.dist, i.e., c.dist = d(c,NNS(c)). Each client c ∈ C is associated
with a positive weight, denoted by w(c), which denotes the importance of the
client. For example, if c is a residential estate, then w(c) could be the number
of residents living at c. We define the cost value of c, denoted by Cost(c), to be
w(c) · c.dist.

The purpose of MinSum query is to find a location such that once a new server
is set up at this location, the sum of the cost values of all the clients in C is min-
imized. Formally, this problem is defined in Problem1. For simplicity, we some-
times use a location p on the road network to represent the server located at p.

Problem 1. Given a road network G = (V,E), a set C (S) of clients (servers) on
G, the optimal location query problem is to find a location p which minimizes∑

c∈C w(c) · d(c,NNS∪{p}(c)).

Consider an example of a road network G in Fig. 1(a). In this figure, each
dot corresponds to a vertex or a client or a server in the road network. In this
example, there are 8 vertices, namely v1, v2, ..., v8, 3 servers, namely s1, s2 and
s3, and 5 clients, namely c1, c2, ..., c5. The number near to each line segment in
the figure denotes the distance between the two end-points of the line segment.
Since c1 has the same location as vertex v1 in the network, we write “v1/c1” in
the figure.

(a) G(V,E) (b) A division of G

Fig. 1. A running example

Given two points p1 and p2 on an edge e = (vl, vr), we define a point interval
on e in the form of [p1, p2] and p1 (p2) is said to be the start point (end point)
of this interval. Note that a point interval is a portion (or a whole portion) of
an edge. Suppose that the start point p1 is nearer to the left vertex vl than
the end point p2. In particular, we use l(p1, p2) to denote the length of point
interval [p1, p2] along the edge e. For example, the length of point interval [v7, s1],
l(v7, s1), is equal to 4 in Fig. 1(a). Similar to [3,4], the nearest location component
is defined as follows.

444 L. Xu et al.

Definition 1 (Nearest Location Component). For each client c ∈ C, the
nearest location component of c, denoted by NLC(c), is defined to be a set of
all points on the edges in G such that each of these points has its distance to c
at most c.dist. Formally, NLC(c) = {p|d(c, p) ≤ c.dist and p is a point on the
edges of G}.

Given any point p on an edge in G, if p ∈ NLC(c), then we say that the
client c is attracted by a server to be built at the location p. For simplicity, we
say that c is attracted by p. The solutions of [3,4] based on NLC are proposed
for the OLQ with MinMax and MaxSum objective functions. They cannot be
applied to the MinSum query problem.

Definition 2 (Gain). The gain of any point p on G, is defined to be Gain(p) =∑
c∈C w(c) · (c.dist − d(c, p)) if p ∈ NLC(c) and 0 otherwise.

Intuitively, the gain of p corresponds to the total cost change values when
the new server is build at p. We can derive that a larger gain of p will lead
to a smaller cost value. So, the MinSum query problem can be changed into
finding the optimal location with the largest gain. For the sake of convenience,
we summarize the notations used in the paper in Table 1.

Table 1. Notations

Notation Description

G A road network

V /v The set of vertices/a vertex

E/e The set of edges/an edge

C/c The set of clients/a client

S/s The set of servers/a server

w(c) Importance of client c

p A location on the road network

c.dist The distance between c and its nearest server

Cost(c) The cost value of c

NNS(c) The server in S nearest to client c

[p1, p2] A point interval on a single edge where p1 and p2 are two points on
this edge

l(p1, p2) The length of point interval [p1, p2]

NLC(c) The nearest location component of c

Gain(p) The gain value of p

3 Single-Location MinSum Query Algorithm

In this section, we introduce the best-known algorithm in Sect. 3.1. Then, we
propose the optimization techniques and the MinSum-Alg algorithm in Sect. 3.2.

MinSum Based Optimal Location Query in Road Networks 445

3.1 The Best-Known Algorithm

The best-known algorithm [23,26] needs to generate the augmented network G′

by creating a vertex for each client and each server in the given road network
G. Then, the number of the vertices of G′ is equal to |V | + |C| + |S|. In order
to distinguish from the best-known, we call the vertex and the edge of G′ as
the endpoint and the road segment, respectively. For example, in Fig. 1(a), the
edge (v6, v7) of G corresponds to three segments (v6, c4), (c4, c5), (c5, v7) of G′

in which v6, c4, c5 and v7 are the endpoints.
In essence, the MinSum query is to find the optimal locations with the largest

gain as mentioned in Sect. 2. In particular, the best-known algorithm relies on
the key findings as follows. (1) The gain of any point on a single road segment
is always maximized at one endpoint of this segment. (2) If both endpoints of a
road segment have the same gain value, then there are two cases. Case 1: The
gain of any point on this segment is equal to that of both endpoints. Case 2:
The gain of both endpoints is larger than that of any point on this segment. So,
the best-known algorithm examines at most three points for each road segment,
namely two endpoints and any interior point on the segment. The set of endpoints
correspond to the set S ∪ V ∪ C.

Since the number of road segments of G′ is often large, the best-known algo-
rithm divides G′ into a number of subnetworks/partitions and applies the upper
bounds for the partitions to reduce the number of road segments to be examined.
The algorithm performance heavily depends on the pruning of the partitions.
However, the existing upper bound is relaxed and the pruning effect may be
improved further.

3.2 Optimization

The purpose of optimization technique is to reduce further the algorithm search
space. In this section, we propose the two-level pruning method, namely area
pruning and edge pruning.

Area Pruning. Given an area A. The existing upper bound is defined to be
UPP (A) =

∑
c∈CA

w(c) · c.dist, whereCA is the set of all possible clients attracted
by the new server if it is built at any point in A. The reasons are as follows. Con-
sider any point p in A. According to Definition 2, Gain(p) =

∑
c∈C w(c) · (c.dist−

d(c,NNS∪{p})) =
∑

c∈C−CA
w(c) · (c.dist − d(c,NNS∪{p})) +

∑
c∈CA

w(c) ·
(c.dist − d(c,NNS∪{p})). Since the clients in C − CA cannot be attracted by the
new server at p,

∑
c∈C−CA

w(c) · (c.dist − d(c,NNS∪{p})) = 0. Then, we have
Gain(p) =

∑
c∈CA

w(c) · (c.dist − d(c,NNS∪{p})) ≤ UPP (A). Thus, the upper
bound holds. We observed that the existing upper bound is relaxed. This is because
CA includes lots of clients whose cost values cannot contribute to the gain of the
optimal location.

Let d(c,A) be the shortest distance between the client c in CA and any
point in the area A. For each edge e = (vl, vr) in the area A, d(c,A) =
min{d(c, vl), d(c, vr)}. Both CA and d(c,A) can be computed based on Dijkstra’s
algorithm [5].

446 L. Xu et al.

We divide the clients in CA into CA and C̃A which denote the set of clients in
the area A and outside the area A, respectively. Then, we list the more tightening
upper bounds for the partitions/areas of the road network in Lemma1.

Lemma 1. UPP (A) =
∑

c∈CA
w(c) · c.dist +

∑
c∈C̃A

w(c) · (c.dist − d(c,A)).

Proof. For any point p in A, Gain(p) =
∑

c∈CA
w(c) · (c.dist−d(c,NNS∪{p})) =∑

c∈CA
w(c) · (c.dist − d(c,NNS∪{p})) +

∑
c∈C̃A

w(c) · (c.dist − d(c,NNS∪{p})).

For c ∈ C̃A, d(c,NNS∪{p}) ≥ d(c,A). Then, Gain(p) ≤ ∑
c∈CA

w(c) ·
c.dist +

∑
c∈C̃A

w(c) · (c.dist − d(c,A)). The lemma holds.

Specifically, the area pruning works as follows. Each area is examined in
descending order of their upper bounds. For each examined area, we can identify
the local optimal locations by checking each edge in the area. If the gains of the
local optimal locations found so far are larger than the upper bounds of all
unexamined areas, we terminate the search; Otherwise we move on to the next
area.

Edge Pruning. Next, we try to reduce the number of edges to be examined in
an area. Consider an edge e = (vl, vr) and any point p on e. Let Ce denote the
set of clients on e. We list the upper bound for each edge in Lemma2.

Lemma 2. UPP (e) = max
v∈{vl,vr}

{Gain(v) +
∑

c∈Ce
w(c) · min {l(c, v), c.dist}},

where l(c, v) denotes the length of point interval on the edge e.

Proof. Let C1(p) be the set of clients on the edge e and attracted by the new
server at p, namely C1(p) = {c|c ∈ Ce ∧ p ∈ NLC(c)}. Let C2(p) be the set of
clients not on the edge e and attracted by the new server at p, namely C2(p) =
{c|c /∈ Ce ∧ p ∈ NLC(c)}.There are two cases.

Case 1: Ce = ∅. Since p is an interior point on the edge e = (vl, vr), Gain(p) ≤
max{Gain(vl), Gain(vr)} according to the key findings of the best-known algo-
rithm. Then, this lemma holds.

Case 2: Ce �= ∅. Consider C1(p) �= ∅ and C2(p) �= ∅.For each client c on e,if
l(vl, c) < c.dist, then Gain(p) ≤ Gain(vl) + w(c) · min {l(vl, c), c.dist}. Other-
wise if l(vl, c) ≥ c.dist, then c.dist can be reduced to 0 and Gain(p) may be
equal to w(c) · min {l(vl, c), c.dist}. The case for vr can be handled similarly.
Then, Gain(p) ≤ max

v∈{vl,vr}
{Gain(v) +

∑
c∈Ce

w(c) · min {l(c, v), c.dist}}. Thus,

this lemma holds.

For the edge pruning, each edge is examined in descending order of their
upper bounds. According to the key findings of the best-known algorithm, we
can identify the local optimal location for each edge by computing the gains for
each vertex and client on the edge. Note that we only need to check the optimal
locations among the set V of vertices and the set C of clients. We need not to
check the set S of servers. This is because the new server to be built cannot
overlap with the existing servers.

MinSum Based Optimal Location Query in Road Networks 447

Algorithm 1. The algorithm MinSum-Alg
Input: G = (V,E), S, C and the number of areas m
Output: The set of all optimal locations

1 OL ← ∅ , Max ← 0 ;
2 build NLC(c) for each client c ∈ C ;
3 divide the road network G into m areas ;
4 compute the upper bound UPP (Ai) (1 ≤ i ≤ m) using Lemma 1 and sort these areas by

their upper bounds in descending order ;
5 for each area Ai (1 ≤ i ≤ m) do
6 if UPP (Ai) < Max then
7 break ;
8 compute the upper bound UPP (e) for each edge e of of Ai using Lemma 2 and sort

these edges by their upper bounds in descending order ;
9 for each edge e = (vl, vr) of Ai do

10 if UPP (e) < Max then
11 break ;

12 Max′ ← max{Gain(vl), Gain(vr), Gain(c1), ..., Gain(ci)}, where c1, c2, ..., ci are
the clients on the edge e ;

13 if Max < Max′ then
14 Max ← Max′ ;
15 OL ← the set of vertices and clients with the gain value of Max ;

16 return OL ;

Based on the above two-level pruning, we propose the MinSum-Alg algorithm
which involves two key steps as follows.

– The first step is to divide G into a number m of subnetworks/areas such that
any two areas have not any shared edges. The similar partition process of the
best-known algorithm can be used. Specially, we randomly choose m points
among V ∪ C as the center points of each area. An edge is assigned to an
area if their distance is smaller than the distances between the edge and the
other areas. The distance between an edge (vl, vr) and an area is defined to
be the distance between the edge and the center point p of the area, namely
min{d(p, vl), d(p, vr)}.

– The second step is to apply the above area pruning and edge pruning to reduce
the number of areas and edges to be examined and return the optimal locations
with the largest gain value.

The description for MinSum-Alg is given in Algorithm 1. Next, we take an
example to illustrate the algorithm process. Consider Fig. 1(a). The weight w(c)
for each client c is set to be 1. Let m = 2. We divide the road network G into
two areas, A1 and A2. We randomly choose v4 and v6 as the center points of A2

and A1. Consider the edge e1 = (v7, v8). The distance between e1 and v6 is equal
to d1 = min{d(v6, v7), d(v6, v8)} = 4. The distance between e1 and v4 is equal
to d2 = min{d(v4, v7), d(v4, v8)} = 6.5. Since d1 < d2, the edge e1 is assigned to
A1. Similarly, the other edges are assigned to A1 and A2 as shown in Fig. 1(b).

Next, by Lemma 1, the upper bounds for A1 and A2 are equal to UPP (A1) =
19 and UPP (A2) = 14.5, respectively. Then, A1 is first examined. There are
four edges, namely e1 = (v7, v8), e2 = (v6, v7), e3 = (v2, v6) and e4 = (v6, v8).
Since Gain(v6) = 13 and Gain(v7) = 7, by Lemma 2, the upper bound for e2 is
equal to UPP (e2) = max{13 + 1 × 1 + 1 × 2, 7 + 1 × 4 + 1 × 5} = 16. Similarly,

448 L. Xu et al.

the upper bounds for e1, e3 and e4 are equal to UPP (e1) = 7, UPP (e3) = 15 and
UPP (e4) = 13, respectively. Then, the edge e2 is first examined. The optimal
location on e2 corresponds to the whole point interval [c4, c5]. Similarly, the
optimal location on e3 can be found. The gain of optimal location is equal to 15
which is larger than the upper bounds for e1 and e4. Thus, the two edges are
pruned. Similarly, A2 is pruned.

4 Multiple-Location MinSum Query Algorithm

We give the multiple-location MinSum query problem and the greedy algorithm
for the problem in Sect. 4.1. Then, we propose the approximate guarantee for
the algorithm in Sect. 4.2.

4.1 The Greedy Algorithm

Problem 2. Given a road network G = (V,E), a set C (S) of clients (servers) on
G, a positive integer k ≥ 2, the multiple-location MinSum query problem is to
find k locations for new servers in the road network, namely p1, p2, p3, ..., pk,
which minimize

∑
c∈C w(c) · d(c,NNS∪{p1,p2,...,pk}(c)).

Firstly, we introduce Lemma 3 which is similar to the key findings of single-
location query problem.

Lemma 3. There exist k locations in V ∪C which is a solution to the multiple-
location MinSum query problem.

Proof. Consider a solution {p1, p2, ..., pk} to our problem. Suppose that pj (1 ≤
j ≤ k) is not in V ∪ C. Let pj be on the edge e = (vl, vr) in which the clients,
c1, c2, ..., ci are included. Suppose that we remove the server built at pj . Then,
our multi-location problem is equivalent to the single-location problem with the
set of servers S′ = S ∪{p1, ..., pj−1, pj+1, ..., pk}. By the key findings of the best-
known algorithm, there exists an optimal location p which is in {vl, vr, c1, ..., ci}.
Then, pj can be replaced with p ∈ V ∪C. Similarly, each location of the solution
which is not in V ∪ C can be replaced with a location in V ∪ C. This lemma
holds.

Theorem 1. The multiple-location MinSum query problem is NP-hard.

Proof. If we can solve Problem 2 in polynomial time, then we can solve maximum
coverage problem in polynomial time. Suppose that we have a list of sets vi. Each
vi is a set of clients cj . We want to find k of vi says vij , 1 ≤ j ≤ k to make
|⋃k

j=1 vij | is maximal. We assume that |vi| ≥ 2 (if there exists some |vi| which
is equal to 1, just add a common client to each vi). Now we can form a road
network G(V,E). V includes all clients, all vi, and a server s. There is an edge
between s and each clients with length equal to 3. There is an edge between cj
and vi with length equal to 1 if cj ∈ vi. An example is in Fig. 2. As we know, the

MinSum Based Optimal Location Query in Road Networks 449

Fig. 2. A proof example

k new servers should be located at the vertices or the clients (i.e., Lemma 3). In
our case, the k new servers shouldn’t be located at the clients. Since if there is
one server on a client cj(only cj .dist changes from 3 to 0, the gain is 3), then
it is always better to move the server to any vertex vi where vi contains cj(at
least two clients’ c.dist change from 3 to 1, the gain is 4). It is easy to see that
the solution of Problem 2 is the solution of the maximum coverage problem (the
maximum cover of clients, the maximum number of clients whose c.dist will
decrease to 1). So if we can solve Problem 2 in polynomial time, then we can
solve the maximum coverage problem in polynomial time.

Since this problem is NP-hard, we propose a greedy algorithm GA(MinSum),
a heuristic-based method, which involves three steps. The first step is to execute
MinSum-Alg based on the current set S of servers for finding an optimal location
for a new server. The second step is to insert the new server into S. The third step
is an iterative step which executes the first step and the second step iteratively
until k new servers are found.

4.2 Approximate Ratio

Let |C| = m and |V ∪ C| = n. By Lemma 3, the k new servers should be located
at the vertices or the clients. Consider a cost matrix M with m rows and n
columns. An element Mij denotes the reduction value of Cost(ci) if a new server
is built at the j-th location. It is easy to know that Mij ≥ 0. According to
the description of GA(MinSum), in each iteration, it selects the column of cost
matrix where the sum of the corresponding reduction values for each row is the
largest. After k iterations, the selected k columns correspond to the approximate
solution to our problem.

Consider the i-th (1 ≤ i ≤ k) iteration. We have built i − 1 new servers. The
cost matrix is Mi. Suppose that Oi denotes the reduction of objective value if
the remaining k − i + 1 servers have been built at the exactly optimal locations.
In particular, if i = 1, O1 denotes the reduction of objective value of the exact
solution to our problem. Suppose that the column selected by GA(MinSum) is
the z-th column of Mi. Then, the gain value of the i-th location (i.e., the z-th
column) is Bi =

∑
1≤x≤m Mixz

which is the largest among all columns of Mi.

450 L. Xu et al.

The i-th location obtained by GA(MinSum) may not be the exactly optimal
location. Let Di denote the deviation value, namely Di = Oi − (Bi + Oi+1)
(Di ≥ 0).

Let us take an example to illustrate these notations. Let k = 3 and the cost
matrix is with three rows and five columns as follows.

M1 =

⎡

⎣
5 9 2 3 2
5 3 8 6 3
5 1 1 5 7

⎤

⎦M2 =

⎡

⎣
0 4 0 0 0
0 0 3 1 0
0 0 0 0 2

⎤

⎦ M3 =

⎡

⎣
0 0 0 0 0
0 0 3 1 0
0 0 0 0 2

⎤

⎦ M ′ =

⎡

⎣
5 9 0 3 0
5 0 8 6 0
5 0 0 5 7

⎤

⎦

Consider M1 and the first iteration of GA(MinSum). The exact solution for
3 new servers is {2, 3, 5}, namely the 2nd column, the 3rd column and the 5th
column of M1. O1 = 9+8+7 = 24. The first iteration will select the 1st column
of M1 since the sum of elements of this column is the largest, namely B1 =
5 + 5 + 5 = 15. After a new server has been built at the 1st column, there are 2
remaining servers. Then, M1 is changed to M2 by subtracting the selected column
(i.e., the 1st column). If the difference value for the corresponding element is less
than 0, the corresponding element of M2 is set to be 0. The set of exactly optimal
locations for 2 new servers is {2, 3}, namely the 2nd column and the 3rd column
of M2. O2 = 4+3 = 7. Then, D1 = O1−(B1+O2) = 2. The second iteration will
select the 2nd column of M2 and B2 = 4 + 0 + 0 = 4. After another server has
been built at the 2nd column, there is 1 remaining server. Then, M2 is changed to
M3 by subtracting the 2nd column. Then, O3 = 3 and D2 = O2−(B2+O3) = 0.
Next, we list Lemmas 4 and 5.

Lemma 4. Bi

Oi
≥ 1

k−i+1 .

Proof. By the definition of Bi, Bi = max1≤j≤n{∑
1≤x≤m Mixj

}. Suppose that
the exactly optimal locations for the remaining k−i+1 new servers correspond to
the columns u1, u2, ..., uk−i+1 of Mi. Then, Oi ≤ ∑

1≤j≤k−i+1

∑
1≤x≤m Mixuj

≤
∑

1≤j≤k−i+1 Bi. Thus, Bi

Oi
≥ Bi∑

1≤j≤k−i+1 Bi
≥ 1

k−i+1 .

Lemma 5. Di

Oi
≤ k−i

(k−i+1)2
.

Proof. Suppose that the exactly optimal locations for the remaining k − i + 1
new servers correspond to the columns u1, u2, ..., uk−i+1 of Mi. Suppose that
the column selected by GA(MinSum) in the i-th iteration is u′ of Mi. If u′ is
equal to ux (1 ≤ x ≤ k − i + 1), then Di = 0. This lemma holds.

Otherwise, we can replace one exactly optimal location with u′. Let N(uy) =∑
1≤j≤m Mijuy

·F (j, uy) in which F (j, uy) = 1 if Mijuy
is the largest among these

exactly optimal k− i+1 columns in the j-th row of Mi. Otherwise, F (j, uy) = 0.
Let N ′(uy) =

∑
1≤j≤m Miju′ · F (j, uy).

Intuitively, N(uy) denotes the reduction value contributed by the column uy

if the new server is built at uy. N ′(uy) denotes the reduction value contributed by
the column u′ if uy is replaced with u′. For the above example, M1 is equivalent
to M ′.

MinSum Based Optimal Location Query in Road Networks 451

Since Oi denotes the reduction of objective value for the remaining
k − i + 1 new servers, we have Di ≤ min1≤y≤k−i+1{N(uy) − N ′(uy)} ≤

1
k−i+1 (

∑
1≤y≤k−i+1 N(uy) − ∑

1≤y≤k−i+1 N ′(uy)) = Oi−Bi

k−i+1 .

By Lemma 4, Di

Oi
≤ k−i

(k−i+1)2
. This lemma holds.

Theorem 2. The approximate ratio for our solution is R ≥ k+1
2k .

Proof. By the definition of Oi, the reduction of objective value for our problem
is equal to O1. Let the reduction of objective value obtained by GA(MinSum)
be equal to O′. Then, R = O′

O1
. If k = 1, O′ = O1. This lemma holds.

Suppose that if k = r, R = O′
O1

≥ r+1
2r holds. For k = r+1, O2 = O1−B1−D1.

For O′, since k = r holds, O′ ≥ B1 + O2 · r+1
2r . Then, by Lemmas 4 and 5,

O′
O1

≥ B1+O2· r+1
2r

O1
= B1

O1
+ r+1

2r (1 − B1
O1

− D1
O1

) = B1
O1

(1 − r+1
2r) + r+1

2r (1 − D1
O1

) ≥
1

r+1 (1 − r+1
2r) + r+1

2r (1 − r
(r+1)2

) = (r+1)+1
2(r+1) . Then, this lemma also holds for

k = r + 1.

5 Experiments

In this section, we evaluated the performance of our proposed algorithms. We
ran all experiments on a machine with a 2.10 Ghz Pent. T4300 CPU and 2
GB RAM, running Windows 7 OS. All algorithms were implemented in C++.
We used two real world road networks, SF and CA, for San Francisco and
California, respectively. Both datasets were downloaded from http://www.cs.
utah.edu/∼lifeifei/SpatialDataset.htm. SF contains 174,955 vertices and 223,000
edges, and CA contains 21,047 vertices and 21,692 edges, in which most vertices
involve at most 4 edges each. There is only one vertex adjacent to 8 edges. Both
datasets include the real clients and servers which are generated by the way
similar to [3,4,23,26]. Specially, we obtained a large number of real building
locations in SF (CA) from the OpenStreetMap project. Each building location
was projected on one of the road network edges nearest to this building. Then
we randomly sampled these locations as servers and clients and they were stored
in two separate lists. In both SF and CA, each client is associated with a weight
generated randomly from a Zipf distribution with a skewness parameter α > 1.
By default, α is set to ∞ and this means that the weight of each client is equal
to 1. In the experiments, the default value for |S| for SF (CA) is 1,000 (100)
and the default value for |C| for SF (CA) is 300,000 (30,000). The default value
of m (i.e., the number of partitions) is set to the same value as the best-known
algorithm with the best performance. The default value for k is set to be 4.

5.1 Experiments for the Single-Location MinSum Query

In this set of experiments, we study the effects of |S|, |C|, α and the two-level
pruning.

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

452 L. Xu et al.

(a) time (b) memory

Fig. 3. Effect of |S| on SF for MinSum-Alg and best-known

(a) time (b) memory

Fig. 4. Effect of |S| on CA for MinSum-Alg and best-known

(a) time (b) memory(a) time (b) memory

Fig. 5. Effect of |C| on SF for MinSum-Alg and best-known

Effect of |S|. We study the effect of |S| on the SF dataset in Fig. 3(a) and (b). It
is obvious that the running time of MinSum-Alg is smaller than that of the best-
known algorithm. This is because the proposed two-level pruning method often
reduces the search space of our algorithm. The running time of both algorithm
is reduced with the increased number of servers. This is because the values for
c.dist of each client c are uniformly distributed with more servers. Then, more
clients may be pruned. The memory storage of MinSum-Alg is a little larger than
that of the best-known algorithm. This is because MinSum-Alg needs some extra
space to save the related information for the two-level pruning method, including
the upper bounds and c.dist. But the memory consumption of MinSum-Alg is
still small and acceptable. Similar trend can be found on the CA dataset in
Fig. 4(a) and (b).

Effect of |C|. We study the effect of |S| on the SF dataset in Fig. 5(a) and
(b). Since the search space of our algorithm is smaller, the running time of

MinSum Based Optimal Location Query in Road Networks 453

(a) time (b) memory

Fig. 6. Effect of |C| on CA for MinSum-Alg and best-known

(a) time (b) memory

Fig. 7. Effect of α on SF and CA for MinSum-Alg

Fig. 8. Effect of two-level pruning

MinSum-Alg is smaller than that of the best-known algorithm. With the
increased sizes of |C|, the running time is also increased for both algorithms. This
is because more clients need to be examined for both algorithms. Besides, the
memory consumption are sensitive to the number of clients and increased with
the increased sizes of |C|. The memory consumption of MinSum-Alg is larger
than that of the best-known algorithm. This is because MinSum-Alg needs extra
space for the two-level pruning method. Similar trend can be found on the CA
dataset in Fig. 6(a) and (b).

Effect of α. As shown in Fig. 7, the running time and the memory consumption
of MinSum-Alg are insensitive to α.

Effect of the two-level pruning. As shown in Fig. 8, the two-level pruning method
can dramatically reduce the number of points to be examined. Specially, only
15.96% and 47.47% of points in V ∪C need to be examined for the area pruning
(level1) on SF and CA, respectively. Since less partitions are pruned, there is

454 L. Xu et al.

a larger percentage for the area pruning on CA. Only 6.2% and 2.3% of points
need to be examined for the combination of both area pruning and edge pruning
(level1 + level2) on SF and CA, respectively. The best-known algorithm needs
to check 32.29% and 61.44% of points on SF and CA, respectively.

5.2 Experiments for the Multiple-Location MinSum Query

In this set of experiments, we study the effects of |S|, |C|, k and the approximate
ratio for GA(MinSum). As shown in Table 2, the running time is decreased with
the increased sizes of |S|. The memory consumption is not sensitive to the sizes
of |S|. Similar reasons can be found in Figs. 3 and 4. As shown in Table 3, the
running time and memory consumption are increased with the increased sizes
of |C|. Similar reasons can be found in Figs. 5 and 6. As shown in Table 4, the
running time is increased with the increased sizes of k. This is because there
are more iterations to be executed when the value of k is larger. The memory
consumption is not sensitive to k. For the approximate ratio, we have made 10
experiments. The value of k is varied from 2 to 5 in each experiment. As shown
in Table 5, the approximate ratio is good and larger than 95% in most cases.

Table 2. Effect of |S| on SF and CA for GA(MinSum)

|S| (103) SF |S| (102) CA

Time (s) Memory (MB) Time (s) Memory (MB)

0.25 390.642 13.475 0.25 4.883 1.211

0.5 255.062 13.479 0.5 2.667 1.211

1 159.058 13.487 1 1.342 1.212

2 92.742 13.502 2 1.045 1.214

4 52.743 13.532 4 0.656 1.217

Table 3. Effect of |C| on SF and CA for GA(MinSum)

|C| (105) SF |C| (104) CA

Time (s) Memory (MB) Time (s) Memory (MB)

1 96.409 8.51 1 0.998 0.715

2 127.609 10.991 2 1.404 0.963

3 134.395 13.471 3 2.012 1.212

4 146.079 15.952 4 2.106 1.462

5 169.775 18.432 5 2.652 1.713

MinSum Based Optimal Location Query in Road Networks 455

Table 4. Effect of k on SF and CA for GA(MinSum)

k SF CA

Time (s) Memory (MB) Time (s) Memory (MB)

2 61.933 13.471 0.889 1.21

3 98.64 13.471 1.216 1.21

4 134.395 13.471 1.528 1.21

5 177.389 13.471 1.996 1.21

10 398.271 13.471 3.962 1.21

Table 5. Approximate ratio of GA(MinSum) (%)

k No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 Average

2 100 99.5 100 100 100 100 100 95.8 97.7 100 99.3

3 95.9 99.0 99.9 100 96.9 99.1 98.0 96.0 93.6 100 97.8

4 96.2 99.1 99.7 100 100 99.5 98.3 96.2 97.8 99.2 98.6

5 96.9 98.6 99.5 100 100 99.6 99.6 96.8 97.8 99.7 98.9

6 Related Work

The optimal location query, originating from the facility location problem, also
known as location analysis [1,2,10,16], has been extensively studied in past years.
Recently, researchers in the database community are paying attention to this
problem because of its broad applications. The MaxBRNN problem [1] is to
find an optimal region such that the total number of clients attracted by a new
server to be set up is maximized. A solution with an exponential-time complex-
ity was presented for the MaxBRNN problem in [1]. The first polynomial-time
complexity algorithm for the problem was introduced in [20] and the extensions
of this algorithm were studied in [21]. Moreover, an approximate algorithm was
presented for the MaxBRNN problem in [25]. Recently, an improved algorithm
for the MaxBRNN problem was given in [12]. The problem studied in [28] is
a generalized MaxBRkNN problem in the Lp-norm space. Different from the
MaxBRNN problem, our problem is to find an optimal location instead of an
optimal region. Besides, our problem is based on the road network environment
instead of the Lp-norm space. The algorithm in [6] was proposed to find an opti-
mal location instead of an optimal region for the L1-norm space. The algorithm
in [27] was studied to find a location which minimizes the average distance from
each client to its closest server when a new server is built at this location. The
problem studied in [14,15] was to select a location from a given set of potential
locations for a new server so that the average distance between a client and
its nearest server is minimized. The BRNN problem [7] and the reverse top-k
problem [19] are also related. The spatial matching problem is also with the
non-road network setting [13,17,18,22]. Xiao et al. [23] first studied the OLQ

456 L. Xu et al.

problem with the road network setting and presented an efficient algorithm. An
extension of [23] was given in [26] in which the OLQ problem with dynamic
clients and servers was studied. Recently, a more efficient algorithm for the OLQ
problem was given in [3,4]. The exact solution for the multi-server version of
OLQ with MinMax objective function was first studied in [11]. [9] studied a sta-
tic version and a dynamic version of OLQ with the MaxSum objective function.
However, the MinSum query is not studied in [3,4,9,11]. There is a study about
isochrone queries in a multimodal network [8], which is similar to the OLQ query.
In addition, the problem of proximity queries among sets of moving objects in
road networks was studied in [24].

7 Conclusion

In this paper, we study the OLQ with the MinSum objective function in road net-
works, namely the MinSum query. We propose an improved algorithm MinSum-
Alg with two new pruning technologies, namely area pruning and edge pruning.
We also study the optimal multiple-location MinSum query. Since this problem
is NP-hard, we propose a greedy algorithm based on MinSum-Alg. Moreover,
we give the theoretical guarantee for our solution. We verify the performance
of the proposed algorithms on the real road networks. The MinSum query with
dynamic settings and directed graph is our future work.

Acknowledgements. We are very thankful to the anonymous reviewers for the
very useful comments. This paper is supported by the NSFC (61572537, U1401256,
U1501252) and the Science and Technology Planning Project of Guangdong Province,
China (2014A080802003).

References

1. Cabello, S., Diaz-Banez, J.M., Langerman, S., Seara, C., Ventura, I.: Reverse facil-
ity location problems. In: CCCG (2005)

2. Cardinal, J., Langerman, S.: Min-max-min geometric facility location problems.
In: EWCG (2006)

3. Chen, Z., Liu, Y., Wong, R.C.W., Xiong, J., Mai, G., Long, C.: Efficient algorithms
for optimal location queries in road networks. In: SIGMOD (2014)

4. Chen, Z., Liu, Y., Wong, R.C.W., Xiong, J., Mai, G., Long, C.: Optimal location
queries in road networks. ACM Trans. Database Syst. 40(3), 17 (2015)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

6. Du, Y., Zhang, D., Xia, T.: The optimal-location query. In: Bauzer Medeiros, C.,
Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 163–180.
Springer, Heidelberg (2005). doi:10.1007/11535331 10

7. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor
queries. In: SIGMOD (2000)

8. Gamper, J., Böhlen, M., Innerebner, M.: Scalable computation of isochrones with
network expiration. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol.
7338, pp. 526–543. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31235-9 35

http://dx.doi.org/10.1007/11535331_10
http://dx.doi.org/10.1007/978-3-642-31235-9_35

MinSum Based Optimal Location Query in Road Networks 457

9. Ghaemi, P., Shahabi, K., Wilson, J.P., Kashani, F.B.: A comparative study of
two approaches for supporting optimal network location queries. GeoInformatica
18(2), 229–251 (2014)

10. Krarup, J., Pruzan, P.M.: The simple plant location problem: survey and synthesis.
Eur. J. Oper. Res. 12(1), 36–57 (1983)

11. Liu, R., Fu, A.W.C., Chen, Z., Huang, S., Liu, Y.: Finding multiple new optimal
locations in a road network. In: SIGSPATIAL (2016)

12. Liu, Y., Wong, R.C.W., Wang, K., Li, Z., Chen, C., Chen, Z.: A new approach for
maximizing bichromatic reverse nearest neighbor search. Knowl. Inf. Syst. 36(1),
23–58 (2013)

13. Long, C., Wong, R.C.W., Yu, P.S., Jiang, M.: On optimal worst-case matching. In:
SIGMOD (2013)

14. Qi, J., Zhang, R., Kulik, L., Lin, D., Xue, Y.: The min-dist location selection query.
In: ICDE (2012)

15. Qi, J., Zhang, R., Wang, Y., Xue, A.Y., Yu, G., Kulik, L.: The min-dist loca-
tion selection and facility replacement queries. World Wide Web 17(6), 1261–1293
(2014)

16. Tansel, B.C., Francis, R.L., Lowe, T.J.: Location on networks: a survey. Manage.
Sci. 29(4), 498–511 (1983)

17. Tong, Y., She, J., Ding, B., Chen, L., Wo, T., Xu, K.: Online minimum matching in
real-time spatial data: experiments and analysis. PVLDB 9(12), 1053–1064 (2016)

18. U, L.H., Yiu, M.L., Mouratidis, K., Mamoulis, N.: Capacity constrained assignment
in spatial databases. In: SIGMOD (2008)

19. Vlachou, A., Doulkeridis, C., Kotidis, Y., Norvag, K.: Monochromatic and bichro-
matic reverse top-k queries. IEEE Trans. Knowl. Data Eng. 23(8), 1215–1229
(2011)

20. Wong, R.C.W., Ozsu, M.T., Fu, A.W.C., Yu, P.S., Liu, L.: Efficient method for
maximizing bichromatic reverse nearest neighbor. PVLDB 2(1), 1126–1137 (2009)

21. Wong, R.C.W., Ozsu, M.T., Fu, A.W.C., Yu, P.S., Liu, L., Liu, Y.: Maximizing
bichromatic reverse nearest neighbor for lp-norm in two- and three-dimensional
spaces. VLDB J. 20, 893–919 (2011)

22. Wong, R.C.W., Tao, Y., Fu, A.W.C., Xiao, X.: On efficient spatial matching. In:
VLDB (2007)

23. Xiao, X., Yao, B., Li, F.: Optimal location queries in road network databases. In:
ICDE (2011)

24. Xu, Z., Jacobsen, H.A.: Processing proximity relations in road networks. In: SIG-
MOD (2010)

25. Yan, D., Wong, R.C.W., Ng, W.: Efficient methods for finding influential locations
with adaptive grids. In: CIKM (2011)

26. Yao, B., Xiao, X., Li, F., Wu, Y.: Dynamic monitoring of optimal locations in road
network databases. VLDB J. 23(5), 697–720 (2014)

27. Zhang, D., Du, Y., Xia, T., Tao, Y.: Progressive computation of the min-dist
optimal-location query. In: VLDB (2006)

28. Zhou, Z., Wu, W., Li, X., Lee, M.L., Hsu, W.: MaxFirst for MaxBRkNN. In: ICDE
(2011)

Efficiently Mining High Utility Co-location
Patterns from Spatial Data Sets
with Instance-Specific Utilities

Lizhen Wang, Wanguo Jiang, Hongmei Chen(&), and Yuan Fang

Department of Computer Science and Engineering, School of Information
Science and Engineering, Yunnan University, Kunming 650091, Yunnan, China

hmchen@ynu.edu.cn

Abstract. Traditional spatial co-location pattern mining attempts to find the
subsets of spatial features whose instances are frequently located together in
some regions. Most previous studies take the prevalence of co-locations as the
interestingness measure. However, it is more meaningful to take the utility value
of each instance into account in spatial co-location pattern mining in some cases.
In this paper, we present a new interestingness measure for mining high utility
co-location patterns from spatial data sets with instance-specific utilities. In the
new interestingness measure, we take the intra-utility and inter-utility into
consideration to capture the global influence of each feature in co-locations. We
present a basic algorithm for mining high utility co-locations. In order to reduce
high computational cost, some pruning strategies are given to improve the
efficiency. The experiments on synthetic and real-world data sets show that the
proposed method is effective and the pruning strategies are efficient.

Keywords: Spatial co-location patterns � High utility co-location patterns �
Intra-utility � Inter-utility � Pruning

1 Introduction

In recent years, spatial data are rapidly generated and the size of spatial data sets is
getting huger and huger. For example, NASA Earth Observing System has been
generating more than 1 TB of spatial data per day. With the popularity of mobile
devices, spatial data with location would increase faster and faster. The vast amounts
of spatial data contain potential and valuable information which can help us make
important decisions. There are a lot of researches on spatial data mining, including
spatial association rule analysis, spatial clustering, spatial classification, and so on.

In spatial data, if the distance between two spatial instances is no more than a given
distance threshold, the two instances satisfy the neighbor relationship. Traditional
spatial co-location pattern mining aims at finding the subsets of spatial features whose
instances are frequently located in neighborhoods. A row instance of a co-location
c represents a subset of instances, which includes an instance of each feature in c and
forms a clique under the neighbor relationship. All row instances of a co-location
c make up its table instance denoted as T(c). Similar to the support in Association

© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 458–474, 2017.
DOI: 10.1007/978-3-319-55699-4_28

Rules Mining (ARM), Participation Index (PI) is used to evaluate the prevalence of
co-locations. The PI of a co-location c is defined as PI cð Þ ¼ minfi2c PR c; fið Þf g, where
PR c; fið Þ is the Participation Ratio (PR) of feature fi in a co-location c, that is

PRðc; fiÞ ¼ pfi TðcÞj j
Number of instances of fi

, where p is the relational projection operation

with duplication elimination. Participation ratio is used to evaluate the prevalence of
features, and participation index is used to measure the prevalence of co-locations,
which is the interestingness measure in traditional co-location mining.

Mining co-locations is very significant in the real world. For example, botanists
have found that there are orchids in 80% of the area where the middle-wetness
green-broad-leaf forest grows. A mobile service provider may be interested in mobile
service patterns frequently requested by geographical neighboring users. Other appli-
cations include Earth science, public health, biology, transportation, etc.

In most previous studies, the importance of all features and instances are treated
similarly. However, there exist some difference between features and even instances
belonging to the same feature. For instance, the economic value of the rosewood is
much greater than that of the ordinary pine. What’s more, the value of rosewoods with
different sizes is also different. So, only checking the prevalence of co-locations might
be insufficient for identifying real interesting patterns. Traditional co-location mining
can’t find some low frequency but high interesting patterns [19], and some prevalent
patterns which just reflect the common sense may be worthless to users.

Here, we use an example to illustrate the problem. Figure 1 shows the locations of
instances of six kinds of plants (features), and each instance is denoted by the plant type
and a numeric id, e.g. A.1, and edges among instances indicate neighboring relation-
ships. The superscript of each instance represents its utility value, which can be con-
sidered as its price. Table 1 gives the total utility value of each kind of plant which is
the sum of utility value of all instances belonging to the plant type.

In Fig. 1, according to traditional co-location mining, for the co-location {A, B, C},
PI({A, B, C}) = 1/4. And if the prevalence threshold is 0.3, {A, B, C} would be

A.110 F.21

E.22 C.41

C.11 B.37

C.29 B.48

B.58

A.37

D.19

D.21

A.28

F.12
E.32

B.11

A.43

E.110

B.21

C.31

D.33

F.315

Fig. 1. An example spatial data set

Efficiently Mining High Utility Co-location Patterns 459

regarded as a non-interesting co-location. However, according to T({A, B,
C}) = {{A.110, B.48, C.29}, {A.37, B.58, C.29}}, the utility value of feature A’s
instances in {A, B, C} is 17, which accounts for 17/28 of total utility value of A.
Similarly, the proportion of B is 16/25 and C is 9/12. So the utility of each feature in
{A, B, C} account for a large proportion of its total utility. {A, B, C} may be inter-
esting. However, as to the pattern {E, F}, PI({E, F}) = 2/3, T({E, F}) = {{E.22, F.21},
{E.32, F.12}}. But the proportion of E is 4/14 and F is 3/18. So the utility of each
feature in {E, F} is less than 30%. {E, F} may be non-interesting.

Therefore, the traditional measure may not find interesting co-locations because the
utilities of features and instances are ignored. In this paper, we focus on high utility
co-location mining from spatial data sets with instance-specific utilities.

1.1 Related Work

The problem of mining spatial association rules was first discussed in [1]. The par-
ticipation index for prevalent co-location mining and join-based algorithm was pre-
sented in [2, 3]. Then a lot of existing works about co-location mining are based on the
participation index which satisfies the downward closure property. Join-less algorithm
was introduced in [4], using a novel model to materialize spatial neighbor relationships
and an instance-lookup scheme to reduce the computational cost of identifying table
instances. An efficient algorithm based on iCPI-Tree was proposed in [8]. In order to
mine the co-locations with rare features, a new prevalence measure called the maximal
participation ratio was proposed in [9]. A new general class of interestingness measures
based on the spatial distribution of co-locations and information entropy was proposed
in [5]. Probabilistic prevalent co-location mining was introduced in [6] to find
co-locations in the context of uncertain data. [7] studied co-location rule mining on
interval data and defined new related concepts based on the semantic proximity
neighborhood. An optimal candidate generation method was proposed in [17]. Com-
plex spatial co-location mining which can deal with complex spatial relationships was
introduced in [18].

The research on high utility mining was first discussed in ARM [10]. The utility of
each item consists of internal utility and external utility. The internal utility represents
the quantity of items in transactions and the external utility is the unit profit values of
items. But the utility of itemsets doesn’t satisfy the downward closure property which

Table 1. Total utility value of each plant in Fig. 1

Features Instances Total utility values

A A.110, A.28, A.37, A.43 28
B B.11, B.21, B.37, B.48, B.58 25
C C.11, C.29, C.31, C.41 12
D D.19, D.21, D.33 13
E E.110, E.22, E.32 14
F F.12, F.21, F.315 18

460 L. Wang et al.

can improve the mining efficiency, and a two-phase algorithm for fast mining high
utility itemsets was proposed in [11]. [12] introduced a novel framework to mine the
interesting high utility pattern with a strong frequency affinity. An incremental mining
algorithm for efficiently mining high utility itemsets was proposed to handle the
intermittent data environment in [13]. UP-Growth proposed in [14] enhances the
mining performance through maintaining the information of high utility itemsets by
UP-tree. A novel algorithm named GUIDE and a special data structure named
TMUI-tree were proposed for mining temporal maximal utility itemsets from data
stream environment in [15]. [16] introduced an efficient algorithm named USpan to
mine high utility sequences from large scale data with very low minimum utility.

There are more and more studies on co-location mining and high utility itemsets
mining, but there were rare literatures about high utility co-location mining [19, 20].
Similar to ARM [10], [19] divided the utility of features in a co-location into external
utility and internal utility. The external utility represents the unit profile and the internal
utility represents the quantity of different instances of features in a table instance. The
utility of a feature in a co-location is equal to the product of external and internal
utilities. And a framework for mining high utility co-locations was proposed in [19].
By following the definitions in [19], [20] discussed a problem of updating high utility
co-locations on evolving spatial databases.

In some real-world data, the utilities of features are different from each other and
even instances belonging to the same feature may have an obvious difference in util-
ities. Furthermore, in some cases, the data set can’t map into the model of external and
internal utility. Considering the complexity of real-world data, there exist two major
challenges in high utility co-location mining from spatial data sets with instance-
specific utilities. One is how to define the interestingness measure reasonably to judge
high utility co-locations, and another is how to mine high utility co-locations effi-
ciently. In this paper, we try to tackle these challenges.

1.2 Our Contributions

Different from previous researches, we make the following contributions in this paper:
First, we take the instances with utilities as study objects, and the importance of

features and instances is treated differently.
Second, we propose a new interestingness measure to identify high utility

co-locations in spatial data sets with instance-specific utilities.
Third, we present a basic algorithm to mine high utility co-locations. In order to

reduce the computational cost, some pruning strategies are given.
Finally, the extensive experiments on synthetic and real-world data sets verify that

the proposed method is effective and efficient.
The remainder of the paper is organized as follows: Sect. 2 gives the related

concepts for mining high utility co-locations from spatial data sets with instance-
specific utilities, and a basic algorithm is presented in Sect. 3. In Sect. 4, the pruning
strategies are detailed. Experimental results and evaluation are shown in Sect. 5. The
conclusion and future work are discussed in Sect. 6.

Efficiently Mining High Utility Co-location Patterns 461

2 Related Concepts

In the real world, the importance of each instance may be different. Thus, we take the
instances with utilities as study objects and the utilities reflect their importance. The
related concepts for mining high utility co-locations are given in this section, and
Table 2 summarizes notations frequently used throughout the paper.

Definition 1 (spatial instance with utility value). Given a set of spatial features F
and a set of their instances S. Let spatial instance fi � jv 2 S be the j-th instance of
feature fi 2 F. The utility value of fi � jv is expressed by the superscript v. We denote the
utility of spatial instance fi � jv as u fi � jð Þ ¼ v.

According to Definition 1, every instance may have distinct utility, even if they
belong to the same feature. For example, the feature A represents the rosewood.
A.11000 is a 100-year-old rosewood and worth $1000, i.e., u(A.1) = 1000. A.225 is a
10-year-old rosewood, which is worth $25, and u(A.2) = 25.

The total utility of a feature fi 2 F is the sum of utilities of its instances, denoted as
uðfiÞ ¼

Pm
j¼1 uðfi � jÞ, where m is the number of instances belonging to fi. For example,

the total utility of feature A in Fig. 1 is u(A) = u(A.1) + u(A.2) + u(A.3) +
u(A.4) = 10 + 8+ 7 + 3 = 28.

Definition 2 (utility of feature in co-location). Given a size k co-location c = {f1, f2,
…, fk}, we further define the sum of utilities of instances belonging to feature fi 2 c in
table instance T(c) as the utility of fi in c, denoted as uðfi; cÞ ¼

P
fi�j2pfi ðTðcÞÞ uðfi � jÞ,

where p is the relational projection operation with duplication elimination.

For example, for c = {A, B, C} in Fig. 1, T(c) = {{A.110, B.48, C.29}, {A.37, B.58,
C.29}}. The utility of A in c is u(A, c) = u(A.1) + u(A.3) = 10 + 7 = 17.

Table 2. Summary of notations

Notation Definition Notation Definition

F Set of spatial features u(fi) Utility of feature fi
fi i-th spatial feature u(fi, c) Utility of feature fi in co-location c
S Set of features’ instances IntraUR

(fi, c)
Intra-utility ratio of fi in c

fi � jv j-th instance with utility
v of fi

InterUR
(fi, c)

Inter-utility ratio of fi in c

c A co-location pattern UPR(fi, c) Utility participation ratio of fi in c
k Size of c UPI(c) Utility participation index of c
R A spatial neighbor

relationship
w1 Weighted value of IntraUR in

computing UPR
T(c) Table instance of c w2 Weighted value of InterUR in

computing UPR
u fi � jð Þ Utility of instance fi � j M A UPI threshold

462 L. Wang et al.

Definition 3 (intra-utility ratio). Given a size k co-location c = {f1, f2, …, fk}, the
intra-utility ratio of feature fi in co-location c is defined as the proportion of fi’s utility

in c to its total utility, i.e., IntraURðfi; cÞ ¼ uðfi;cÞ
uðfiÞ .

IntraUR(fi, c) indicates the direct utility of feature fi in co-location c, which can be
regarded as its direct influence on c.

For example, for c = {A, B, C} in Fig. 1, T(c) = {{A.110, B.48, C.29}, {A.37, B.58,
C.29}}. The intra-utility ratio of each feature in c is calculated as

IntraURðA; cÞ ¼ uðA.1Þþ uðA.3Þ
uðAÞ ¼ 17=28; IntraURðB; cÞ ¼ uðB.2Þþ uðB.5Þ

uðBÞ ¼ 16=25;

IntraURðC; cÞ ¼ uðC.2Þ
uðCÞ ¼ 9=12:

Definition 4 (inter-utility ratio). Given a size k co-location c = {f1, f2, …, fk}, the

inter-utility ratio of feature fi in co-location c is defined as InterURðfi; cÞ ¼
P

fj2c; j 6¼i
uðfj;cÞP

fj2c; j 6¼i
uðfjÞ .

The inter-utility ratio is regard as the influence of feature fi on other features in
co-location c, which is an indirect influence of fi on c. In a co-location, some instances
of features often co-occur in neighborhoods. Thus, in a co-location c = {f1, f2, …, fk},
the change of feature fi 2 c probably impact on the utility of other features in c. For
example, there are various services in Location-based Service. In the package service,
the sales of service A might promote the sales of service B. So, we use the inter-utility
ratio to indicate the effect of a feature on other features in a co-location. In Fig. 1, the
effect of feature A in co-location {A, B, C} on other features B and C is compute as

InterURðA; cÞ ¼ uðB; cÞþ uðC; cÞ
uðBÞþ uðCÞ ¼ 25=37:

We divide the influence of feature fi into two parts to evaluate a co-location
c comprehensively and reasonably. One is the influence of its utility in c denoted as
IntraUR(fi, c), and another is the indirect influence of fi on c denoted as InterUR(fi, c).

Definition 5 (Utility Participation Ratio, UPR). Given a size k co-location c = {f1,
f2, …, fk}, the weighted sum of IntraUR(fi, c) and InterUR(fi, c) is defined as the utility
participation ratio of feature fi in co-location c, which is denoted as UPR(fi, c) =
w1 � IntraUR(fi, c) + w2 � InterUR(fi, c), where 0 � w1, w2 � 1 and w1 + w2 = 1,
w1 represents the weighted value of IntraUR(fi, c) and w2 represents that of Inter
UR(fi, c).

The w1 and w2 in Definition 5 can be used to adjust the effect of IntraUR and
InterUR, which are assigned the specified values by users in application. For example,
in sales volume promotion of supermarkets, if we are more care the promoted sale
volume of different goods, w1 � w2 may be reasonable. Usually, w1 and w2 satisfy
w1 � w2.

Efficiently Mining High Utility Co-location Patterns 463

For example, in Fig. 1, if we suppose w1 = 0.7 and w2 = 0.3, then the UPR of each
feature in c = {A, B, C} is computed as

UPR A; cð Þ ¼ 0:7� IntraUR A; cð Þþ 0:3� InterUR A; cð Þ
¼ 0:7� 17=28ð Þþ 0:3� 25=37ð Þ ¼ 0:628:

UPR B; cð Þ ¼ 0:7� IntraUR B; cð Þþ 0:3� InterUR B; cð Þ
¼ 0:7� 16=25ð Þþ 0:3� 26=40ð Þ ¼ 0:643:

UPR C; cð Þ ¼ 0:7� IntraUR C; cð Þþ 0:3� InterUR C; cð Þ
¼ 0:7� 9=12ð Þþ 0:3� 33=53ð Þ ¼ 0:711:

Definition 6 (Utility Participation Index, UPI). Given a size k co-location c = {f1, f2,
…, fk}, We define the minimum utility participation ratio among all features in co-
location c as the utility participation index of c, i.e., UPI cð Þ ¼ minfUPRðfi; cÞ; fi 2 cg.

A co-location pattern c is a high utility co-location pattern if and only if
UPI(c) � M holds, where M is a UPI threshold given by users.

The UPI measure extends the traditional PI measure only based on prevalence. If
the utilities of instances and the influence between features in a co-location are ignored,
UPI is equal to the traditional PI.

The prevalent patterns may not be high utility patterns and the high utility patterns
may not be prevalent as well, which can be proved by patterns {E, F} and {A, B, C} in
Fig. 1. If w1 = w2 = 0.5 and M = 0.3, UPI({E, F}) = 0.226 and PI({E, F}) = 0.667,
while UPI({A, B, C}) = 0.628 and PI({A, B, C}) = 0.25. Because of full consideration
into the difference of each instance, our interestingness measure is more reasonable.
However, different from the traditional interestingness measure, UPI does not satisfy
the downward closure property which is a very efficient pruning strategy for mining
prevalent co-locations. Therefore, finding all high utility patterns directly is
time-consuming. For example, for c = {A, D} in Fig. 1, T(c) = {{A.37, D.19}}. Given
w1 = w2 = 0.5, we can get UPI({A, D}) = 0.471. But the super pattern
c0 ¼ A; C; Df g of c; T c0ð Þ ¼ A:37; C:29; D:19

� �� �
, and UPI({A, C, D}) = 0.485.

So, we have the inequality UPI c0ð Þ[UPIðcÞ.

3 A Basic Algorithm

In this section, we present a basic algorithm for mining the high utility co-locations
defined in Sect. 2. The basic algorithm has three phases. The first one is to materialize
the spatial neighbor relationships. The spatial data set is converted into the star
neighborhood partition model in [4]. The second one is to generate candidate
co-locations and compute their table instances. The third one is to compute the UPI of
each candidate co-location and find high utility co-locations. The second and third
phases are repeated with the increment of co-locations’ size. Algorithm 1 shows the
pseudocode of the basic algorithm.

464 L. Wang et al.

Initialization (Step 1–2): Given a spatial data set and a spatial neighbor rela-
tionship, find all neighboring instance pairs using a geometric method such as mesh
generation or plane sweep [4]. The star neighborhoods can be generated from the
neighbor instance pairs by lexicographical order [4]. After generating the star neigh-
borhood set (SN), we initialize all size 1 co-locations with utility participation index
1.0, which means all size 1 co-locations are high utility co-locations. Then, we add all
size 1 co-locations into H1.

Generating Candidate Co-locations (Step 4): A size k (k � 2) candidate
co-locations in Ck is generated from a size k−1 co-location c in Hk−1 or NonHk−1 and a
new feature fs which is not included in c and greater than all features of c in lexico-
graphical order, i.e., Ck ¼ fc0jc0 ¼ c[ffsg;8c 2 Hk�1 [NonHk�1; fs [8fi 2 cg.

Specially, the size 2 candidate co-locations in C2 can be generated from the star
neighborhood set directly.

Calculating the UPIs of Candidate Co-locations (Step 5–6): The size 2
co-locations’ table instances can be gathered from the star neighborhood set directly.
For size k (k > 2) co-locations, their table instances need to be extended by size k−1
co-locations’ table instances. For example, the table instance of co-location {A, B, C}
can be generated from the table instance of co-location {A, B}. Then, we can compute
the UPI of each candidate co-location according to the Definitions 5 and 6.

Identifying High Utility Co-locations (Step 7–8): We can filter high utility
co-locations by the UPIs of candidate co-locations and the given UPI threshold
M. Then, high utility co-locations are added into Hk and non-high utility co-locations
are added into NonHk.

Efficiently Mining High Utility Co-location Patterns 465

Steps 3–10 are repeated with the increment of size k.
In Fig. 1, if w1 = w2 = 0.5 and M = 0.5, we can get the high utility co-locations

{A, B}, {A, C}, {A, B, C}, {B, C}, {B, D}, {C, D}, and {C, E}. The basic algorithm
tests all possible patterns and computes their UPI accurately. So, it is complete and
correct, but it is inefficient. In the next section, we would give some pruning strategies
to improve the efficiency of the basic algorithm.

4 Pruning Strategies

In this section, we will introduce some pruning strategies to promote the efficiency of
the basic algorithm. Traditional co-location mining based on PI can efficiently find all
prevalent co-locations due to the downward closure property. But there is no a similar
method to find all high utility co-locations due to the non-existence of the downward
closure property. Similar to traditional co-location mining, the most time-consuming
component in mining high utility co-locations is to generate the table instances of
candidate patterns. In order to improve the efficiency of the basic algorithm, we have to
early identify some non-high utility candidate co-locations without generating their
table instances. The following pruning strategies are used to prune the non-high utility
candidate patterns ahead of time.

Lemma 1. For n1 � m1 > 0, n2 � m2 > 0, there exists the following inequality:

m1 þm2

n1 þ n2
�maxfm1

n1
;
m2

n2
g

Proof: Given n1 � m1 > 0, n2 � m2 > 0. If m1
n1

� m2
n2
, then there exists

m1 þm2
n1 þ n2

� m1
n1

¼ m2n1�m1n2
n1ðn1 þ n2Þ � 0. So, m1 þm2

n1 þ n2
� m1

n1
holds. Similarly, if m2

n2
� m1

n1
, then

m1 þm2
n1 þ n2

� m2
n2
. Therefore, m1 þm2

n1 þ n2
�maxfm1

n1
; m2
n2
g holds. □

Corollary 1. For k(k > 1) pairs mi and ni (i = 1, 2, …, k), if ni � mi > 0, there exists

the following inequality:
Pk

i¼1
miPk

i¼1
ni
�maxki¼1fmi

ni
g.

Definition 7 (non-high utility feature set). Given a size k co-location c = {f1, f2, …,
fk}, we call the set of all features in co-location c whose UPR is less than the UPI
threshold M as the non-high utility feature set of c.

For example, for c = {A, B, D} in Fig. 1, if M = 0.4 and w1 = w2 = 0.5, then UPR
(A, c) = 0.257, UPR(B, c) = 0.215 and UPR(C, c) = 0.422. The non-high utility fea-
ture set of c is {A, B}.

Theorem 1. If c1 and c2 are two non-high utility co-locations, and they have and only
have one common feature fi and it is a non-high utility feature, then the pattern
c ¼ c1 [c2 must be a non-high utility pattern, i.e., c ¼ c1 [c2 can be pruned.

Proof: Because fi is a non-high utility feature in c1 and c2, we have:

466 L. Wang et al.

UPRðfi; c1Þ ¼ w1
uðfi; c1Þ
uðfiÞ þw2

m1

n1
\M ð1Þ

where m1 ¼
P

fj2c1;j 6¼i uðfj; c1Þ and n1 ¼
P

fj2c1;j6¼i uðfjÞ. And

UPRðfi; c2Þ ¼ w1
uðfi; c2Þ
uðfiÞ þw2

m2

n2
\M ð2Þ

where m2 ¼
P

fj2c2;j 6¼i uðfj; c2Þ and n2 ¼
P

fj2c2;j6¼i uðfjÞ.
For the co-location c ¼ c1 [c2, the UPR of fi in c satisfies:

UPRðfi; cÞ ¼ w1
uðfi; cÞ
uðfiÞ þw2

m1 þm2

n1 þ n2
ð3Þ

due to fi is the unique common feature in c1 and c2.
According to Definition 2 and the concept of table instance, we have

u f ; cð Þ� u f ; c0ð Þ if f is the common feature in co-locations c and c0, and c0�c.
And according to Lemma 1, m1 þm2

n1 þ n2
�maxfm1

n1
; m2
n2
g.

Therefore, we can infer UPR(fi, c) < M by (1), (2) and (3), which can judge that
c ¼ c1 [c2 is a non-high utility co-location. □

For example, for c1 = {A, B, D} and c2 = {B, E} in Fig. 1, if w1 = w2 = 0.5 and
M = 0.5, T(c1) = {{A.37, B.11, D.19}} and T(c2) = {{B.48, E.32}}. The UPRs of
common feature B in c1 and c2 are UPR(B, c1) = 0.215 < M and UPR(B, c2)
= 0.231 < M respectively, which satisfy the conditions of Theorem 2. So,
c ¼ c1 [c2 = {A, B, C, D} must be a non-high utility co-location and can be pruned.

According to the Theorem 1 and Corollary 1, we can infer the Corollary 2.

Corollary 2. For size 2 non-high utility co-locations c1, c2, …, ck (k > 1), if they have
a common non-high utility feature f, then the pattern c ¼ c1 [c2 [. . .[ck must be a
non-high utility pattern, i.e., c can be pruned.

When the spatial data set is sparser or the UPI thresholdM is higher, there would be
large amounts of size 2 non-high utility co-locations. At that time, we could prune a
large number of higher size non-high utility co-locations by combining those size 2
non-high utility co-locations.

In Fig. 1, if w1 = w2 = 0.5 and M = 0.5, there are size 2 non-high utility
co-locations {A, E}, {B, E}, {D, E} and {E, F}. And E is a non-high utility feature.
The co-locations {A, B, E}, {A, D, E}, {A, E, F}, {B, D, E}, {B, E, F}, {D, E, F}, {A,
B, D, E}, {A, B, E, F}, {A, D, E, F}, {B, D, E, F} and {A, B, D, E, F} can be pruned
by Corollary 2.

According to Definition 2, for a size k co-location c = {f1, f2, …, fk} and fi 2
c; u fi; cð Þ� u fi; c0ð Þ holds, where c0 is an arbitrary size k−1 sub-pattern of c including fi.
So, we call the minimum of utilities of fi in size k−1 sub-patterns of c including fi as the
upper bound utility of fi in c, donated as upbound_u(fi, c).

Efficiently Mining High Utility Co-location Patterns 467

For example, for c = {A, B, C} in Fig. 1, the upper bound utility of feature A in c is
upbound_u(A, c) = min{u(A, {A, C}), u(A, {A, B})} = min{17, 28} = 17.

Lemma 2. Given a size k co-location c = {f1, f2, …, fk} and its size k+1 super-pattern
c0 ¼ c[fkþ 1f g, the upper bound of UPI c0ð Þ is computed as follows:

minfw1
uðfi; cÞ
uðfiÞ þw2

P
fj2c;j6¼i uðfj; cÞþ upbound uðfkþ 1; c0ÞP

fj2c;j 6¼i uðfjÞþ uðfkþ 1Þ ; 1� i� kg

Proof: If c = {f1, f2,…, fk} and c0 ¼ c[fkþ 1f g. As to any feature fi 2 c, the inequality
u fi; c0ð Þ � u fi; cð Þ holds.

So, we have UPRðfi; c0Þ �w1
uðfi;cÞ
uðfiÞ þw2

P
fj2c;j6¼i

uðfj;cÞþ upbound uðfkþ 1;c0ÞP
fj2c;j 6¼i

uðfjÞþ uðfkþ 1Þ .

Based on Definition 6, we can infer that:

UPIðc0Þ �minfw1
uðfi; cÞ
uðfiÞ þw2

P
fj2c;j 6¼i uðfj; cÞþ upbound uðfkþ 1; c0ÞP

fj2c;j 6¼i uðfjÞþ uðfkþ 1Þ ; 1� i� kg: □

Theorem 2. Given a size k non-high utility co-location c = {f1, f2,…, fk} and its size k+1
super-pattern c0 ¼ c[fkþ 1f g, if there is a non-high utility feature fi 2 c which satisfiesP

fj2c;j 6¼i
uðfj;cÞP

fj2c;j 6¼i
uðfjÞ [upbound uðfkþ 1;c0Þ

uðfkþ 1Þ , then c0 is a non-high utility co-location, i.e., c can be

pruned.

Proof: For a non-high utility co-location c = {f1, f2, …, fk} and c0 ¼ c[fkþ 1f g, if fi is
a non-high utility feature in c and M is the UPI threshold, we have

UPRðfi; cÞ ¼ w1
uðfi; cÞ
uðfiÞ þw2

m
n
\M ð4Þ

where m ¼ P
fj2c;j6¼i uðfj; cÞ and n ¼ P

fj2c;j6¼i uðfjÞ.
According to Lemma 2, the UPR of fi in c0 satisfies the following inequality:

UPRðfi; c0Þ �w1
uðfi; cÞ
uðfiÞ þw2

mþ upbound uðfkþ 1; c0Þ
nþ uðfkþ 1Þ

According to Lemma 1, we have

mþ upbound uðfkþ 1; c0Þ
nþ uðfkþ 1Þ �max

m
n
;
upbound uðfkþ 1; c0Þ

uðfkþ 1Þ
� �

If m
n [upbound uðfkþ 1;c0Þ

uðfkþ 1Þ , the following inequality holds.

468 L. Wang et al.

UPRðfi; c0Þ �w1
uðfi; cÞ
uðfiÞ þw2

m
n

Based on the inequality (4), we can infer that UPR fi; c0ð Þ\M. So, c0 must be a
non-high utility co-location. □

For example, for c = {B, C, D} in Fig. 1, if w1 = w2 = 0.5 and M = 0.5, due to T
(c) = {{B.48, C.29, D.21}}, UPR(B, c) = 0.36, UPR(C, c) = 0.493 and UPR(D, c)
= 0.268, c is a non-high utility co-location pattern. For the supper-pattern c0 ¼
B; C; D; Ef g of c; upbound u E; c0ð Þ ¼ minfu E; fB; C;ð EgÞþ u E; fB; D; Egð Þ

þ u E; fC; D; Egð Þg ¼ min 2; 2; 2f g ¼ 2. As to the feature B in {B, C, D}, we have:

uðC; cÞþ uðD; cÞ
uðCÞþ uðDÞ ¼ 9þ 1

12þ 13
[

upbound uðE; c0Þ
uðE) ¼ 2

14

So, based on the computing results of size 3 co-locations, we can infer that the size
4 co-location {B, C, D, E} must be a non-high utility co-location.

Theorem 1, Corollary 2 and Theorem 2 are regarded as three pruning strategies to
identify some non-high utility co-locations ahead of time.

5 Experimental Analysis

This section verifies the effect and efficiency of the basic algorithm and the algorithm
with pruning strategies on synthetic and real data sets through experiments. The
algorithms are implemented in Java 1.7 and run on a windows 8 operating system with
3.10 GHz Intel Core i5 CPU and 4 GB memory.

5.1 Data Sets

We conduct the experiments on synthetic data sets and plant data sets of the “Three
Parallel Rivers of Yunnan Protected Areas”. Synthetic data sets are generated using a
spatial data generator similar to [3, 4], and the utilities of instances are assigned
randomly between 0 and 20. In the plant data sets, we compute the utilities of plant
instances according the plant price associated with size and kind of plant. The effi-
ciency of the basic algorithm and the algorithm with pruning strategies are examined on
the synthetic and real data sets.

5.2 The Quality of Mining Results

We aim at finding the high utility co-locations whose instances are frequently located
together in geographic space and which have high utilities. So, we take the criterion
QðcÞ ¼ P

f2c uðf ; cÞ=
P

f2c uðf Þ to evaluate the quality of a mined co-location c.

Efficiently Mining High Utility Co-location Patterns 469

In order to illustrate the interestingness measure UPI proposed in this paper is more
reasonable, we compare the quality of mining results identified by different interest-
ingness measures. They are the traditional participation index measure (PI), the tra-
ditional pattern utility ratio (PUR) proposed in [19] and the UPI proposed in our paper.

In the experiments of Fig. 2, we take the number of spatial features |F| is 15, the total
number of instances |S| is 10000, the neighboring distance threshold d is 30, and
w1 = 0.9, w2 = 0.1. Figure 2(a) shows the sum of quality of top-k interesting
co-locations identified by the measure PI, PUR and UPI respectively. The x-axis refers
to the value k, while y-axis is the sum of quality of top-k interesting patterns. Figure 2(b)
shows the average quality of top-20 interesting patterns identified by the three measures
over different sizes. The x-axis is the sizes of co-locations, while the y-axis is the average
quality of top-20 interesting patterns. The results show that our UPI measure can
identify higher quality co-locations, and it can extract top co-locations with higher
average utility.

5.3 Evaluation of Pruning Strategies

We evaluate the effect of pruning strategies with several workloads, e.g. different
numbers of instances, neighbor distance thresholds, UPI thresholds and pruned rate on
synthetic and real data sets.

5.3.1 Influence of the Number of Instances
We compare the running time of the basic algorithm and the algorithm with pruning
strategies on synthetic and real data sets. We set |F| = 20, d = 20, M = 0.3, w1 =
w2 = 0.5, the running time of two algorithms by increasing the number of instances is
shown in Fig. 3. The x-axis represents the number of total instances and the y-axis is
the running time. As a result, the performance of the algorithm with pruning strategies
is better than the basic algorithm both in synthetic and real data sets. Compared with
synthetic data sets, the neighbor relationships of real data sets are relatively fewer,

100

150

200

250

300

350

300 600 900 1200 1500 1800

S
u

m
 Q

(c
)

of
 T

op
-k

 p
at

te
rn

s

k in Top-k patterns

PI PUR UPI

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 3 4 5 6 7 8A
ve

ra
ge

 Q
(c

)
of

 t
op

-2
0

pa
tt

er
ns

w

it
h

di
ff

er
en

t
si

ze

Size of patterns

PI PUR UPI

(a) (b)

Fig. 2. Testing the quality of mining results, where (a) the sum of quality of top-k interesting
patterns; (b) the average of quality of top-20 interesting patterns with different sizes.

470 L. Wang et al.

which results in less row instances to be computed. So, in our experiments, the runtime
of the algorithms on real data sets is less than that on synthetic data sets.

5.3.2 Influence of the Distance Threshold d
In Fig. 4, we set |F| = 20, |S| = 10000, M = 0.3, w1 = w2 = 0.5. We compare the
running time of two algorithms by changing the distance threshold d, where the x-axis
denotes the distances threshold d and the y-axis represents the running time in different
data sets. From Fig. 4, we can see that the algorithm with pruning strategies is still
faster than the basic algorithm. However, both algorithms have a huge time-cost with
the increase of d. This is because with increasing d, there are more cliques formed,
which results in huge row instances to be computed and more time consumption.

5.3.3 Influence of the UPI Threshold M
The parameters are set |F| = 20, |S| = 10000, d = 15, w1 = w2 = 0.5 in this experiment.
The running time of two algorithms by changing the UPI threshold M is shown in
Fig. 5. The x-axis denotes the value of the UPI threshold M and the y-axis is the
running time. With the increase of M, the more non-high utility co-locations are pruned
ahead of time, which improve the efficiency of the algorithm with pruning strategies.

5.3.4 Pruned Rate
In order to examine efficiency of the three pruning strategies (Theorem 1, Corollary 2,
and Theorem 2), we count the number of candidates pruned by each pruning strategy
respectively. In the experiment, we set |F| = 15, |S| = 4000, d = 20, M = 0.3, w1 =
w2 = 0.5, and we randomly generate 5 different data sets whose size is similar to each
other. We independently run the algorithm with pruning strategies on 5 different data
sets and compute the average proportion of the candidates pruned by each strategy. The
statistic result is shown in Fig. 6.

The result shows that the pruning strategies are very efficient. However, the effi-
ciency of pruning strategies doesn’t be improved in the same degree. There are two
reasons. First, the process of pruning candidates would cost some time. Second, some
pruned co-locations may be used to generate the table instances of super co-locations,

0

500

1000

1500

1 2 3 4 5

R
u

n
n

in
g

ti
m

e(
s)

Number of total instances (104)

basci algorithm on synthetic data

algorithm with the pruning strategies
on synthetic data
basci algorithm on real data

algorithm with pruning strategies on
real data

Fig. 3. The influence of the number of
instances over synthetic and real data sets

0

500

1000

1500

2000

15 20 25 30 35 40

R
u

n
n

in
g

ti
m

e(
s)

Distance threshold d

basic algorithm on synthetic data

algorithm with pruning strategies on
synthetic data

basic algorithm on real data

algorithm with pruning strategies on
real data

Fig. 4. The influence of the distance thresh-
olds over synthetic and real data sets

Efficiently Mining High Utility Co-location Patterns 471

so we might have to generate the table instances of pruned co-locations, which has a
negative effect on the algorithm. Fortunately, it rarely occurs in the experiments. Thus,
the average efficiency of pruning strategies is obvious.

In addition, the basic algorithm and the algorithm with pruning strategies presented
in this paper convert spatial data sets into the star neighborhood partition model in [4].
Algorithms in both papers store spatial neighbor relationships and table instances of
current candidates. Therefore, the memory cost of our algorithms is similar to the
join-less algorithm in [4]. Due to the non-existence of the downward closure property,
the scalability of the basic algorithm requires improvement. From Figs. 3, 4, 5 and 6,
we can see that the pruning strategies significantly reduce the overall runtime of the
basic algorithm, while in some extreme cases less so. Further improvement of scala-
bility is left for future work.

6 Conclusion and Future Work

Different from the previous researches, in this paper we take the instances with utilities
as study objects which are near to real world and a new interesting measure is pro-
posed. We combine the intra-utility ratio and the inter-utility ratio into the utility
participation index for identifying high utility co-locations, which is comprehensive
and reasonable. Because the utility participation index does not satisfy the downward
closure property, we propose the effective pruning strategies to improve the efficiency
of finding high utility co-locations. The experiments on synthetic and real data sets
show that the pruning strategies significantly reduce the overall runtime of the basic
algorithm. Although the algorithm with pruning strategies is better than the basic
algorithm, it also shows less improvement in some extreme case. Our future work
focuses on designing algorithms for bigger data sets and better pruning strategies.

0

20

40

60

80

0.1 0.2 0.3 0.4 0.5 0.6

R
u

n
n

in
g

ti
m

e(
s)

High utility threshold M

basic algorithm on synthetic
data
algorithm with pruning
strategies on synthetic data
basic algorithm on real data

algorithm with pruning
strategies on real data

Fig. 5. The influence of the UPI threshold
M over synthetic and real data sets

candidates
pruned by
stategy 1

candidates
pruned by
stategy 2

candidates
pruned by
stategy 3

unpruned
candidates

candidates pruned
by stategy 1

candidates pruned
by stategy 2

candidates pruned
by stategy 3

unpruned candidates

Fig. 6. The proportion of candidates pruned by
each strategy

472 L. Wang et al.

Acknowledgments. This work is supported by the National Natural Science Foundation of
China (61472346, 61662086), the Natural Science Foundation of Yunnan Province (2015FB114,
2016FA026), the Spectrum Sensing and borderlands Security Key Laboratory of Universities in
Yunnan (C6165903), and the Program for Young and Middle-aged Skeleton Teachers of Yunnan
University.

References

1. Koperski, K., Han, J.: Discovery of spatial association rules in geographic information
databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 47–66.
Springer, Heidelberg (1995). doi:10.1007/3-540-60159-7_4

2. Shekhar, S., Huang, Y.: Co-location rules mining: a summary of results. In: Spatio-Temporal
Symposium on Databases (2001)

3. Huang, Y., Shekhar, S., Xiong, H.: Discovering co-location patterns from spatial data sets: a
general approach. IEEE Trans. Knowl. Data Eng. 16(12), 1472–1485 (2004)

4. Yoo, J.S., Shekhar, S.: A joinless approach for mining spatial co-location patterns. IEEE
Trans. Knowl. Data Eng. 18(10), 1323–1337 (2006)

5. Sengstock, C., Gertz, M., Tran Van, C.: Spatial interestingness measures for co-location
pattern mining. In: SSTDM (ICDM Workshop 2012), pp. 821–826. IEEE Press, New York
(2012)

6. Wang, L., Wu, P., Chen, H.: Finding probabilistic prevalent colocations in spatially
uncertain data sets. IEEE Trans. Knowl. Data Eng. 25(4), 790–804 (2013)

7. Wang, L., Chen, H., Zhao, L., Zhou, L.: Efficiently mining co-location rules on interval data.
In: Cao, L., Feng, Y., Zhong, J. (eds.) ADMA 2010. LNCS (LNAI), vol. 6440, pp. 477–488.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17316-5_45

8. Wang, L., Bao, Y., Lu, Z.: Efficient discovery of spatial co-location patterns using the
iCPI-tree. Open Inf. Syst. J. 3(2), 69–80 (2009)

9. Huang, Y., Pei, J., Xiong, H.: Mining co-location patterns with rare events from spatial data
sets. Geoinformatica 10(3), 239–260 (2006)

10. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from
databases. In: 4th SIAM International Conference on Data Mining, pp. 482–486 (2004)

11. Liu, Y., Liao, W.-K., Choudhary, A.: A two-phase algorithm for fast discovery of high utility
itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518,
pp. 689–695. Springer, Heidelberg (2005). doi:10.1007/11430919_79

12. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., et al.: A framework for mining interesting high
utility patterns with a strong frequency affinity. Inf. Sci. 181(21), 4878–4894 (2011)

13. Hong, T.P., Lee, C.H., Wang, S.L.: An incremental mining algorithm for high average-utility
itemsets. Expert Syst. Appl. 39(8), 7173–7180 (2012)

14. Tseng, V.S., Wu, C.W., Shie, B.E., et al.: UP-Growth: an efficient algorithm for high utility
itemset mining. In: 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 253–262. ACM, New York (2010)

15. Shie, B.E., Tseng, V.S., Yu, P.S.: Online mining of temporal maximal utility itemsets from
data streams. In: ACM Symposium on Applied Computing, pp. 1622–1626. ACM,
New York (2010)

16. Yin, J., Zheng, Z., Cao, L.: USpan: an efficient algorithm for mining high utility sequential
patterns. In: 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 660–668. ACM, New York (2012)

Efficiently Mining High Utility Co-location Patterns 473

http://dx.doi.org/10.1007/3-540-60159-7_4
http://dx.doi.org/10.1007/978-3-642-17316-5_45
http://dx.doi.org/10.1007/11430919_79

17. Lin, Z., Lim, S.: Optimal candidate generation in spatial co-location mining. In: ACM
Symposium on Applied Computing, pp. 1441–1445. ACM, New York (2009)

18. Verhein, F., Al-Naymat, G.: Fast mining of complex spatial co-location patterns using
GLIMIT. In: SSTDM (ICDM Workshop 2007), pp. 679–984. IEEE Press, New York (2007)

19. Yang, S., Wang, L., Bao, X., Lu, J.: A framework for mining spatial high utility co-location
patterns. In: 12th International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD 2015), pp. 595–601. IEEE Press, New York (2015)

20. Wang, X., Wang, L., Lu, J., Zhou, L.: Effectively updating high utility co-location patterns
in evolving spatial databases. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds.) WAIM
2016. LNCS, vol. 9658, pp. 67–81. Springer, Heidelberg (2016). doi:10.1007/978-3-319-
39937-9_6

474 L. Wang et al.

http://dx.doi.org/10.1007/978-3-319-39937-9_6
http://dx.doi.org/10.1007/978-3-319-39937-9_6

Real Time Data Processing

Supporting Real-Time Analytic Queries in Big
and Fast Data Environments

Guangjun Wu1(B), Xiaochun Yun1, Chao Li2(B), Shupeng Wang1,
Yipeng Wang1, Xiaoyu Zhang1, Siyu Jia1, and Guangyan Zhang3

1 Institute of Information Engineering, CAS, Beijing 100029, China
wuguangjun@gmail.com

2 National Computer Network and Information Security Administration Center,
Beijing 100031, China
lc lichao@126.com

3 Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

Abstract. Recently there has been a significant interest to perform real-
time analytical queries in systems that can handle both “big data” and
“fast data”. In this paper, we propose an approximate answering app-
roach, called ROSE, which can manage the big and fast data streams and
support complex analytical queries against the data streams. To achieve
this goal, we start with an analysis of existing query processing tech-
niques in big data systems to understand the requirements of building
a distributed analytic sketch. We then propose a sampling-based sketch
that can extract multi-faced samples from asynchronous data streams,
and augment its usability with accuracy-lossless distributed sketch con-
struction operations, such as splitting, merging and union. The exper-
imental results with real-world data sets indicate that compared with
state-of-the-art approximate answering engine BlinkDB, our techniques
can obtain more accurate estimates and improve 2 times of system
throughput. When compared with distributed memory-computing sys-
tem Spark, our system can achieve 2 orders of magnitude improvement
on query response time.

Keywords: Approximate answering · Big data · Data streams ·
Distributed computing · Sampling

1 Introduction

In recent years, many applications produce large-volume and continuous data
streams. It is necessary to perform real-time query processing in the streams to
detect anomalies and explore their development trends “on the fly”, e.g., data
flow analysis [1,2], real-time data mining [3] and financial indicator trackers [4].
As a result, we have seen a flurry of activities in the area of building big data
systems to handle not only “big data” but also “fast data” for analytics. Here
“fast data” refers to high-speed real-time and near real-time data streams.
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 477–493, 2017.
DOI: 10.1007/978-3-319-55699-4 29

478 G. Wu et al.

To meet the low-latency requirements of analytical queries, a number of
data streams processing systems have been developed to handle the big and
fast data, including Spark [5], StreamMapReduce [6], StreamCloud [7], Incre-
mental Hadoop [8], and academic prototypes [9,10]. Despite various differences
in implementations, these systems share some common features to boost the
performance of analytics: (1) They employ complex resource planning and fine-
granularity jobs scheduling in a cluster to maximize the throughput of a system.
(2) They increase data parallelism, which is to partition a large dataset into
smaller subsets, by scaling the number of nodes of a cluster.

However, it is not easy for common users to deploy the complex planning and
scheduling techniques in their production environments or to scale their systems
to hundreds or even thousands of nodes in a cluster. Meanwhile, many emergent
applications tolerate some error for analytical queries. For example, in streams of
stock market data, a service application may need to track the moving tendency
of the price hourly over all observations efficiently. In intrusion detection and
prevention systems, it is useful to obtain real-time statistics of network traffic,
such as packages counting, bytes summarization, and the Top-k flows searching,
to detect network-level anomalies.

Methods for approximate query processing (AQP) are essential for dealing
with massive datasets and improving the performance of emergent queries via
running the query of interest against a sketch rather than the entire dataset [11].
The challenging problem of building a general sketch of AQP is the requirements
of solving high-speed asynchronous data streams in distributed environments
and obtaining accurate results for different queries. Although methods for AQP
have been widely studied in data warehouse and commercial databases, effi-
cient approaches against big data have not been studied until recently [12–15].
However, those works mainly focused on OLAP queries over off-line datasets.
Literatures about approximate answering algorithms have also been studied in
the context of data streams, such as VAROPT [16], BSBH [17] and ECM-sketch
[18]. But those algorithms assumed that data streams subject to presumed data
distribution. Practical data streams abound with dynamic and irregular elements
which will increase unpredictable errors for analytical queries.

In this paper, we propose an approach, called ROSE (accuRate Online
Sketch of E stimation), whose aim is to build a general approach of AQP for
analytics. ROSE can solve high-speed asynchronous data streams and provide
the capability of answering real-time analytical queries. Moreover, it is also com-
patible with current distributed query processing framework in big data systems.
ROSE employs three key ideas as follows.

– First, by analyzing the features of data source and properties of query process-
ing in big data systems, we extracts multi-faced samples from data streams via
a combination of sliding-window sampling and probability aggregation sam-
pling. The selected samples are devoted to accuracy-guaranteed estimation for
different analytical queries.

– Second, to solve the problem of shuffling and partition operations for syn-
opsis in distributed systems, we propose accuracy-lossless sketch construction
and maintaining methods, including such operations as sketch splitting, sketch

Supporting Real-Time Analytic Queries in Big and Fast Data Environments 479

merging and sketch union. Those operations can natively support data shuf-
fling and partition between nodes in a distributed query processing framework.

– Third, by leveraging the sampling-based sketch, we demonstrate that ROSE
can support a wide variety of analytical queries, such as aggregation-based
queries (e.g., sum and count) and quantile-based queries (e.g., quantiles,
median and Top-k queries), with a uniform approximation schema using mil-
lion seconds over distributed production environments. The schema can pro-
vide (ξ, δ) accuracy of estimation such that for any given positive ξ < 1 and
δ < 1, the estimate of ROSE is within a relative error ξ of the true value with
probability at least 1 − δ.

We implement ROSE on the Linux platform and carry out a wide variety of
experimental evaluation over synthetic and real-world data sets. When compared
with existing memory-computing system Spark, our approach can achieve 5 times
of throughput improvement and 2 orders of magnitude improvement in query
response time, while the relative error is less than 2%. Compared with existing
approximate answering engines (e.g., BlinkDB, Asy-sketch), our method can
obtain more accurate results using the same space under real-world datasets.

2 Related Work

Obtaining statistics over data streams is a fundamental work for many emerging
applications. It needs to conduct different types of queries over one-pass and
asynchronous data streams. Related problems have been studied in the research
of sliding-window model, approximate answering engines and big data analytic
stacks.

The sliding-window is a well-known streams processing model which focuses
on computing estimates for elements seen so far. Many sliding-window meth-
ods have been explored over the past decades, such as Exponential Histogram
[21], random waves [20] and asynchronous streaming sketch [19] etc. However,
traditional sliding-window models are designed as one sketch for one operator
service schema. For example, Exponential Histogram [21] and random waves [20]
are efficient on answering aggregation queries. The G-K and q-digits algorithms
can provide an ξ-approximation estimate for quantiles queries [22]. Composed
sketches are also proposed by Arasu and Manku within the context of sliding-
window to solve the approximate counts and quantiles in a same structure [23].
The preceding studies provide theory and baseline algorithms for Approximate
Query Processing. We combine the core idea of these techniques to produce
multi-faced samples and improve query accuracy for practical big data analytics.

We have also noticed that there are plentiful researches on data stream
processing [18–21,25]. The traditional approximate engines focus on evaluating
ad-hoc queries over static data sets [12]. Several emerging applications require
answering on dynamic streaming data, which is highly distributed and constantly
updated. The techniques of sketching over dynamic data streams have been pro-
posed in recent years [17,24]. But these work can not solve asynchronous data
streams in distributed systems, which need to split and merge individual sketches
in an accuracy lossless manner.

480 G. Wu et al.

Big data analytic systems, based on Hadoop, have experienced tremendous
growth over past few years. Many approximate answering engines have been
built on top of the Hadoop software stacks, but few of them focused on low-
latency query processing requirements of high-speed data streams. For example,
the Hadoop-based approximate answering engines, such as BlinkDB [13] and
G-OLA tools [14], extract offline samples from HDFS and then support OLAP
queries over the samples with relative complex clauses. The latency of offline
sampling techniques make these approximate answering engines do not meet the
strict low-latency requirement of analytical queries over data streams.

3 System Design

We consider Hadoop-based systems as our prototype to depict the features of
the input dataset and properties of analytical query processing. We first present
preliminaries of our system design in Sect. 3.1, including formulation of input
data source and classification of query processing in big data systems. Based on
the preliminaries, we describe details of our approach, which aim to meet the
requirements of a practical query in a big data processing system. The details
include approach overview, multi-faced sampling, sketching operations in a dis-
tributed system, and approximate answering for different queries, and they are
discussed in Sects. 3.1, 3.2, 3.3 and 3.4 respectively.

3.1 Preliminaries

At a high level, a big data system is first to exact a list of tuples from inputs
at the Map phase, then shuffles tuples between nodes, and finally processes
them with a user-defined function at Reduce phase. The output stream from the
Reduce side is pushed to Web UI, DFS or other downstream MR pairs.

Inputs formulation. The initial Map paradigm encodes dataset D into key-
value tuples and performs user-defined functions among the tuples for analytic
queries.

map(D) → list(k, v)

In a latency-aware data stream processing system, dataset D is encoded into
a list of triples [10], such as <k, v, ts>, where ts is the system time when the
element arrives. The triple can be used for resource planning and latency-aware
scheduling. Like before, a map function is applied to transform input elements
to a list of output triples.

map(D) → list(k, v, ts)

We consider the same triple elements as input data stream. More precisely,
suppose an asynchronous stream D = e1, e2, ..., en, and element ei is a triple
(ki, vi, tsi), where ki is an identifier of ei in D, vi is a numerical data attribute,

Supporting Real-Time Analytic Queries in Big and Fast Data Environments 481

Table 1. Operations classification in big data systems.

Name Description Classification (symbol)

Aggregation Return elements counting or values
summarization

(1) Aggregation-based (ab)

q-quantile Return the element at position of
100q% in a sorted sequence

(2) Quantiles-based (qb)

Median Return the median element in a
sorted sequence

(2) Quantiles-based (qb)

Top-k Return the largest k elements in a
sorted sequence

(2) Quantiles-based (qb)

Range Search statistics within a key range
or temporal range

(3) Range-based (rb)

Shuffling Redistribute and sort elements
based on their keys

(4) Splitting& Merging (s&m)

Partition Partition larger dataset into
multiple smaller subset

(4) Splitting& Merging (s&m)

and tsi is the timestamp of ei. For a real-world data stream, D is usually not
an ordered set (e.g., tsi > tsj and i < j), and D maybe abound with duplicated
elements (e.g., ki = kj and i �= j).

Queries Classification. As for different types of query processing in big data
systems, we enumerate some fundamental queries and operations in Table 1.
More fundamentally, we classify these operations into four types and they are
shown in the last column of Table 1: (1) ab, i.e., achieving the numerical value
of summarization or counting of elements, (2) qb, i.e., returning an element or
k elements from a sorted sequence, (3) rb, i.e., obtaining statistics in a specified
range, such as within a key-range or a temporal-range and (4) s&m, which is
used to shuffle and partition tuples between nodes in a cluster. As for type (3),
we mainly focus on the temporal-range query in the following discussions (a.k.a,
sliding-window queries when considering only one current temporal-range). Some
operations might not be called by regular applications, such as type (4), but
they are prevalent and very important for distributed query processing systems.
Some other operators might not be listed in Table 1, such as AVG, VARIANCE,
STDDEV, and GROUP-BY etc., while they can easily be computed by cur-
rent estimates or introducing specified sampling algorithms into the presented
framework of ROSE.

3.2 Approach Overview

We first state formalized description of our problem. For a query Q over a stream
D with operation Opr, ROSE can deliver an estimate Est(Q) and the statement
is shown in Eq. 1:

Est(Q) = ROSE(ξ,δ)(D,Opr), (1)

482 G. Wu et al.

s&m

Fig. 1. Distributed query processing framework of
ROSE.

Table 2. Different sample
block size.

Query types Block size

Aggregation-based

query (ab)

O(
log(δ−1)

ξ2
)

Quantiles-based

query (qb)

O(
log(ξδ)−1

ξ2
)

where Opr is an operation listed in Table 1, and Est(Q) is an (ξ, δ)-
approximation answer for Q.

We next explain the architectural design of ROSE, combing with skeleton of
data stream processing systems. The outlines of designed framework is shown
in Fig. 1. The input data stream D is dispatched by a distributor I (e.g., map
function or a publish-subscribe messaging system, such as Apache Kafka). Each
node in a cluster receives a subset of D (denoted as Di in Fig. 1), and extracts
multi-faced samples Si from Di by online sampling operator (S) to compact the
data volume significantly, so we can maintain the sketch ski in the memory (M).
To answer a query, a coordinator of the system asks each node to send local
sketch to a reduce side based on a same key. The local sketches can be merged
into a union one by the operator s&m to support analytical queries. Since the
volume of local sketch (ski) is much smaller than data itself (Di) (reducing
two or three orders of magnitude relative to Di), it is more efficient to shuffle
and merge local sketches in distributed environments. The merged sketch can
support analytical queries with a uniform estimation operator P to produce the
final estimate. Some enhancement features in a distributed system, such as fault
tolerance and load balance, can be achieved by existing techniques, and we do
not discuss them in this paper for space limitation.

3.3 Multi-faced Sampling

We start introduce an online multi-faced sampling technique, which conceptually
includes two key points: extended sliding-window sampling (ESS) and probabil-
ity aggregation sampling (PAS). In general, for an input element ei = (ki, vi, tsi),
we generate a multi-faced sample si = (ki, cntuni, cntexp, vuni, vexp, tsi), where
cntuni and cntexp are attributes for element counting, si.cntuni + si.cntexp = 1
(resp. vuni and vexp are attributes for values summarization, si.vuni + si.vexp =
ei.vi). The two-dimensional features for element counting and summarization are

Supporting Real-Time Analytic Queries in Big and Fast Data Environments 483

used to depict the division of a large element in PAS. Also, we assume that the
number of elements is significantly larger than 1

ξ2 . Otherwise, a simple structure
can store all elements and can compute an exact return for Q. Meanwhile, 1

ξ2 is
supposed to be an integer to avoid the floors and ceiling in expressions.

Extended Sliding-Window Sampling. We first consider maintaining tem-
poral properties in our sketch to meet the needs of queries in type (3) (rb). The
temporal properties are often depicted as parameters of window length and time
interval by user-defined APIs in a stream-computing system. Correspondingly,
our sketch maintains consecutive multiple windows, and the length of a window
equals to a predefined time interval tw. Within a window, it conceptually con-
sists of L + 1 “levels”, which are numbered sequentially as 0, 1, ..., L. A “level”
constitutes a number of samples sorted by identifiers, and all levels keep the
same number of samples. At any given point in time, a sample si is inserted into
a temporal window [spi, epi], tsi ∈ [spi, epi], and sketch ski is constructed and
is responsible for types (1) and (2) queries within the window.

More precisely, a sample si is generated from ei and is inserted into Level l of
ski at probability 2−l via PAS, where 0 ≤ l ≤ L, L = log

∑
ei.vi. If the number

of samples in a level reaches to predefined level size, we say that the level of
the sketch is “full” (or the sketch is full for short), and the following inserting
will lead to the oldest sample being discarded from the level. Thus, the level size
reflects the sampling rate at different probability.

To support queries within any temporal range (type (3)), we arrange samples
of a level into two symmetrical sample blocks to sustain bi-directional aggre-
gation queries in a window. One block keeps samples which are close to the
start-point of a window (denoted as Blockmin) and the other block keeps sam-
ples which are close to the end-point of a window (denoted as Blockmax). The
maximum block size is limited to M . If the size of Blockl

min is larger than M ,
0 ≤ l ≤ L, the maximum sample in Blockl

min will be pushed into Blockl
max. If

the size of Blockl
max is larger than M , the minimum sample will be discarded

directly. According to statistical theories, we can achieve (ξ, δ) accuracy guar-
antees for aggregation queries by configuring different sample block size [19].
Table 2 presents some of the configurations, and more details for analysis of M
will be discussed in Sect. 3.5.

Probability Aggregation Sampling. The goal of PAS is to keep the optimal
number of samples in a window while it can support (ξ, δ)-approximation for
queries of types (1) and (2). It is well known that when we keep samples of size
O(1

ξ2 log(ξδ)−1) in a stream, we can achieve an ξ-approximation for quantile
queries with probability at least 1− δ. However, if we keep O(1

ξ2 log(ξδ)−1) sam-
ples in all levels, it will cost too much space for a smaller value of ξ. An optimized
Greewald-Khanna algorithm has been devised in [23] to combat this problem,
which arrives at that a randomized algorithm requires only O(1ξ log(1ξ log(ξδ)−1))

484 G. Wu et al.

Algorithm 1. Inserting(e, sk).

input : (e, sk);
e: an input element;
sk: a sketch for a temporal window.
output: (sk).
1 s.k ← e.k;
2 s.(cntuni, cntexp) ← (1, 0);
3 while (e.v > 2 × sk.avg) do
4 Let z be a random in

[1
2
sk.avg, sk.avg];

5 s.(vuni, vexp) ← (z, 0);
6 PAS(s, sk);
7 s.(cntuni, cntexp) ← (0, 0);
8 e.v ← e.v − z;

9 if (e.v > 0) then
10 s.(vuni, vexp) ← (e.v, 0);
11 PAS(s, sk);

12 return sk.
13 Function PAS(si, ski)
14 l ← f(si);

15 Let skl
i be the l-th level of ski;

16 Insert si into skl
i;

17 si.(cntexp, vexp) ← si.(cntuni, vuni) ;
18 si.(cntuni, vuni) ← (0, 0);
19 for (j = 0 to l − 1) do

20 Insert si into skj
i ;

space parameterized by ξ and δ. Therefore, we keep Max{O(1ξ log(1ξ log(ξδ)−1)),

O(log(δ
−1)

ξ2)} samples in a level of a sketch.
We use a hash function f to boost performance of PAS and keep samples at

Level-l with probability 1/2l, 0 ≤ l ≤ L. The hash function f is computed as
follows: we choose two random numbers x and y independently from space field
2L. The desired level number for si is f(si) = L − �log(x × si.vuni + y)� − 1. We
insert the sample si into all levels whose level number is no bigger than f(si)
respectively to make samples at Level-l work with probability 1/2l in the sketch.
Readers can refer to literature [20] for more details about probability guaranteed
inserting in randomized sampling techniques.

Essentially, the PAS belongs to a type of randomized sampling technique,
and it is error sensitive when large value element occurs [19]. We introduce
subsampling techniques to solve the large elements discounting problem. We
divide a larger value element into multiple smaller value elements on the fly and
subsample them to decrease the error of the larger elements estimation. More
precisely, if the value of an input element e is bigger than two times of current
average of a window, we regard it as a large value element. We divide the large
element e = (k, v) into j smaller elements (k, v1), (k, v2), ..., (k, vj), v =

∑j
i=1 vi,

where vi = ai + Δi, ai is an estimator in the sketch before (k, vi) inserting, and
Δi is the value quantified by error ξ. In the current context, the ai is current
average of samples in the window, and Δi is a random in [1, ai/2]. As shown in
step 3 to step 8 of Algorithm 1, we produce smaller elements from e and insert
them into the sketch sk through PAS correspondingly.

3.4 Sketch Construction

Notice that we need to solve data streams with out-of-order arrival, thus the
disordered elements will lead to sketch splitting and merging between windows
frequently. Moreover, when we shuffle and partition sketches between nodes, we

Supporting Real-Time Analytic Queries in Big and Fast Data Environments 485

also need to reconstruct sketch from individual sketches. These requirements can
be achieved by leveraging accuracy lossless operations such as sketch splitting,
sketch merging and sketch union operations.

Sketch Splitting. The sketch splitting is to move some samples from a full
sketch to its neighboring sketch to balance the amount of samples between
sketches. To satisfy accuracy-lossless splitting in sketch ski, we increase the max-
imum sample size of a block to (1+ρ)M , ρ < 1. As shown in Fig. 2, the samples
blocks of a sketch are divided into two parts: The white parts are used for answer-
ing queries with error-guaranteed accuracy. The gray parts are used for splitting
and merging operations between sketches.

Fig. 2. Sketch splitting of a window.

In general, we insert samples into ski, until the length of Level-0 reaches
to (ρ + 2)M . Within Level-0, we select a label sample s∗

i in Block0
min which

makes M samples larger than s∗
i (resp. we select s∗

j in Block0
max which makes

M samples smaller than s∗
j). We search at all levels to fetch samples which are

smaller than s∗
i and merge them to sketch ski−1. Respectively, we search samples

which are bigger than s∗
j and merge them to sketch ski+1. After splitting, the

Blockl
min and Blockl

max of sketch ski, 0 ≤ l ≤ L, keep sufficient samples to
compute error-guaranteed estimation using the remaining samples in a level.

Sketch Merging. The sketch merging is to merge samples from individual
sketches into a merged one and preserve temporal properties in the merged
sketch. The native operation of sketch merging is to insert samples into the
merged sketch via Inserting() operation intuitively. To boost the performance of
sketches merging, we can conjoin samples level by level. For example, if a sample
is from Level-l of Blockl

min in ski, it will be inserted at Level-l of ski−1 directly,
when we use a same hash function in PAS.

The combination of sketch splitting and merging can be used to optimize
the process of ESS (discussed in Sect. 3.3). For example, a balanced window-
preserving method can be achieved when we split a large sketch (e.g., ski) into

486 G. Wu et al.

smaller parts and merge the split parts into its neighbouring sketch (e.g., ski−1

or ski+1) to balance the number of samples between sketches. We can also use
sketch merging operation to limit the space of our approach. For example, when
we want to control the number of sketches smaller than B (i.e., there are B
windows totally), we can periodically merge two neighbouring sketches together,
which contain the minimal number of samples totally. Readers can refer to recent
literature [18,19] for details of other sketch construction techniques, such as space
limited or variance optimal sketch construction methods.

Sketch Union. A big data system needs to shuffle data between nodes based
on keys and then conducts specified functions at reduce side to obtain analytical
answers. We introduce the operation of sketch union, which is to merge individual
sketches into a union one, i.e., SK =

⋃n
i=1 ski, and we can perform ad-hoc queries

using SK directly.
To build a union sketch, we consider that individual sketches maintain same

boundaries of temporal windows. We first build an empty sketch SK and then
insert samples from individual sketches {ski|1 ≤ i ≤ n} into SK sequentially.
Notice that the level number l is computed by hash function f independently
among sketches (Algorithm 1), so we do not need to rehash the samples when
they are merged into SK. We can conjoin samples from local sketches in a level-
wise manner, and sorted the samples by their identifiers. For error-guaranteed
union of sketches sk1, ..., skn, the space of SK can be described as

∑n
i=1 |ski|,

where |ski| is the space overhead of ski. Since sketches are much smaller than
data streams themselves, it is more resource efficient to deliver and compute a
union sketch SK from individual sketches, and we can conduct the reduce side
functions to obtain estimates for ad-hoc queries from SK directly.

3.5 Query Processing

In this section, we present details of query processing for queries of types (1) and
(2) combining with queries of type (3) to facilitate our discussion, i.e., searching
aggregates or quantiles within a temporal range.

Aggregation-Based Queries. For a query Q, which computes aggregates
within temporal interval rx, we search the sketches which are covered by rx.
If the sketches are fully-covered by rx, we can easily obtain the aggregates from
the covered windows. Therefore, we just describe details of query processing
within a window wi, which is partially covered by a queried range.

Let r∗
x be a temporal range which covers a window wi partially, r∗

x ∈ rx and
r∗
x ∈ wi. If rx > tw, we come to the conclusion that one of the boundaries of wi is

covered by r∗
x, i.e., for a window wi = [sp, ep], sp ∈ r∗

x or ep ∈ r∗
x. Recall that we

arrange samples in a bi-directional aggregation manner in a temporal window,
thus we can support estimation for the two cases using the multi-faced samples
in the corresponding samples blocks. The basic principle for aggregation-based
query processing is to find the minimum level number l∗, which make samples

Supporting Real-Time Analytic Queries in Big and Fast Data Environments 487

in Level l∗ contain the queried range r∗
x, and use included samples in Level l∗

to compute the estimate. For details, if wi.sp ∈ r∗
x, r∗

x ⊂ Blockl∗
min, otherwise

sk.ep ∈ r∗
x, r∗

x ⊂ (Blockl∗
min ∪ Blockl∗

max).
For queries of elements counting, we summarize cntuni and cntexp of the

included samples in Blockl∗
min or Blockl∗

min ∪ Blockl∗
max and enlarge 2l∗ times

to produce the final estimate Est(cnt). The formalized estimator for elements
counting is shown in Eq. 2. For queries of summarization, after we obtain the
minimum level number l∗, we summarize vexp and vuni of samples which are
covered by r∗

x at Level l∗ and enlarge 2l∗ times to get the estimate. The estimator
Est(sum) for queries of summarization is depicted in Eq. 3.

Est(cnt) ← 2l∗ ×
∑

si∈r∗
x

(si.cntuni + si.cntexp), (2)

Est(sum) ← 2l∗ ×
∑

si∈r∗
x

(si.vexp + si.vuni). (3)

Quantile-Based Queries. The quantiles queries are to obtain elements at
desired positions of a sorted sequence. They are often called φ-quantiles searching
in data stream processing systems. For example, when φ=0.5, the 0.5-quantile
query is to search the element of ranking median from data streams. It is well-
known that it costs linear space and requires processing nearly all elements
to obtain an exact answering for quantiles queries, thus we consider computing
(ξ, δ)-approximation estimates for quantiles-based queries which search quantiles
in a sequence sorted by frequency and value of elements.

In probability theory and statistics, it has been proved that if we keep suffi-
cient randomized samples, we can provide error-guaranteed accuracy for quan-
tiles queries. Recall that a sample si is inserted into Level-l with probability
pl, pl = 1/2l. The cntuni is attribute value for elements counting (resp. vuni

is attribute value for elements summarization). Thus cntuni/pl can be consid-
ered as an estimator for the element count over the randomized sampling (resp.
vuni/pl can be considered as an estimator for the element value). We use the
included samples to construct an ordered set and find the approximate quantiles
from the sorted sequence.

More precisely, we first search for the minimum level number l∗, which con-
tains queried range rx, and then use the samples in rx to compute the approx-
imate quantiles in the sorted sequence by samples frequency or samples values.
Equation 4 shows the estimate Est(med) for a median query in elements fre-
quency, and Eq. 5 shows the estimate Est(qf) for φ-quantiles query in elements
value sequence, where qfφ=0.5 and qfφ=q are functions to search a median or a
q-quantile in a sorted sequence.

Est(med) ← 2l∗ × qf
φ=0.5

(rx ∩ si.cntuni), (4)

Est(qua) ← 2l∗ × qf
φ=q

(rx ∩ si.vuni). (5)

488 G. Wu et al.

We notice that ROSE can also be used for other approximate answering
queries, which can be extended from aggregation-based and quantiles-based
queries, such as AVG, VARIANCE, STDDEV, Top-k queries etc., and we do
not discuss them further for space limitation.

4 Experimental Evaluation

We develop ROSE on Linux platform using JDK 1.8 packages with 64-bit
addressing. The evaluation is performed under eleven nodes cluster, which are
connected by 1 Gbit Ethernet switch. One node acts as master and ten nodes
act as slaves nodes. Each server works with 6 × 2.0 GHz processors, 64 GB RAM,
and two 1 TB SATA disks.

4.1 Methodology

Our elementary error metric for query accuracy is the relative error of queries
which is defined for aggregation-based and quantiles-based queries respectively as
follows. For an aggregation query, the estimate Ê obtained from ROSE compared
with the actual value E, the corresponding relative error is ξ = |E − Ê|/E. A
q-quantile query is to find an element at q|S| position in sorted sequence S. The
relative error of approximate q-quantile query is defined as (|rank(Ê)−q|S||)/|S|,
where rank(Ê) is the position of Ê in S.

We implement the research work in ASY-sketch which can support aggrega-
tion queries in a sliding-window [19], and conduct the comparisons between ASY-
sketch and ROSE in a centralized environment to examine the micro features,
such as query accuracy and space consumption, between the two approaches.
We also evaluate performance of ROSE in production environments and com-
pare it with big data analytic systems, such as BlinkDB and Spark. We conduct
different types of queries, such as aggregation queries, median queries, quantiles
queries and Top-k queries in the these big data analytical systems, and examine
query response time and query accuracy against billions of real-word records.

4.2 Datasets

We use real-world page traffic from Wikipedia, nearly 1.4 billion records in a day
(100 GB uncompressed data), as input stream to test system performance such
as throughput and query response time. The page traffic stream is formatted as
a record with four fields, including “language type”, “page label”, “view count”
and “traffic bytes number”. We build online sketch for fields of “language type”,
“view count” and “traffic bytes number” to support such queries as “What is the
number of total page bytes and page view count for English web-pages during
time period 00:00:00 May 1st, 2016 to 09:59:59 May 1st, 2016. To overcome the
limitation of real-world data sets, we generate a high-speed synthetic data stream
to examine the space consumption and query accuracy of our approach. We
generate two types of synthetic data sets, which obey different data distributions,
i.e., the Normal Form distribution N(μ = 1000, σ = 50) and the Zipf distribution
Z(deg = 0.5).

Supporting Real-Time Analytic Queries in Big and Fast Data Environments 489

4.3 Micro Evaluation

We examine micro features of our approach by comparison with ASY-sketch in
a centralized environment. ASY-sketch is a type of randomized sampling sketch,
and it can solve counting and summarization problem against asynchronous data
streams. We configure the same relative error (ξ = 0.25) during the two sketches
construction. We load three types of data streams into the two sketches, (1) 10
million real-world records; (2) synthetic data streams obeying N(μ = 1000, σ =
50); (3) synthetic data streams obeying Z(deg = 0.5). The space consumption
of the two sketches within different data sets has been shown in Figs. 3(a), (b)
and (c). To test queries accuracy, we generate 800 randomized temporal-range
aggregation clauses and the temporal length in a clause is a random length in a
window. The comparisons between query accuracy are shown in Figs. 4(a), (b)
and (c) with the three types of data streams.

ROSE divides large value element into multiple equalized value elements via
PAS, but the smaller elements are inserted into a sketch only once. But in ASY-
sketch, any element will be divided and inserted into a level with probability 2−l,
where l is the level number of a sketch, so an element will be inserted repeatedly
into many levels of a sketch, even if it is much smaller than the average of
the current sketch. ROSE and ASY-sketch keep the same number of samples
in a level, while ROSE can keep more different samples and thus it can achieve
better queries accuracy for aggregation-based queries in the real-world data sets.
We also notice that when data distribution changes from Normal Form or Zipf

(a) real-world data sets. (b) Normal Form distribution. (c) Zipf distribution.

Fig. 3. Space consumption.

(a) real-world data sets. (b) Normal Uniform distribution (c) Zipf distribution.

Fig. 4. Query accuracy.

490 G. Wu et al.

distribution to Uniform distribution, i.e., all elements work with almost same
value, ASY-sketch and ROSE can achieve nearly same query accuracy.

4.4 Macro Evaluation

The macro evaluation is focused on practical performance examination of a big
data system, such as system throughout and query response time, when process-
ing real-world data sets. We select memory-computing system Spark (version
1.4.1) and Hadoop-based approximate answering engine BlinkDB (version 0.2.0)
for our comparisons. Spark is a memory-computing system and it is often used
as a large-scale framework for data streams system. Spark constructs different
memory block, called RDDs, to support ad-hoc queries. We use Spark-SQL to
conduct analytical queries. BlinkDB is a well-known approximate engine on the
Hadoop platform [13]. BlinkDB can obtain estimates for analytical queries with
bounded errors or bounded response times on very large data sets.

We load seven days of the page traffics from Wikipedia into the three sys-
tems. For ROSE and BlinkDB, we configure the same sampling rate (=0.01)
when loading the data streams. i.e., the two approaches keep the same number
of samples in their sketches. We examine capability of high-speed data stream
processing for the three different systems, in Figs. 5(a), 6(a) and 8(a), when load-
ing the real-world data sets. For BlinkDB and Spark, they first load data into
HDFS, and then reload fields of interest into memory, so they produce latency
for data streams processing. Rose processes an element in O(log(1

ξ2 log δ−1))
time, and it can achieve about 2 times improvement on system throughput than
Spark and 1.5 times improvement than BlinkDB in our testing. Moreover, the
throughput of ROSE is unchanged when the volume of data streams increases,
while the throughput of BlinkDB and Spark decreases significantly when the vol-
ume of data streams increases. In seven days page traffic testing, the throughput
decreases from 5.6 million records per second to 4.5 million records per second
in BlinkDB and from 3.9 million records per second to 3.3 million records per
second. Therefore, ROSE costs low latency for data streams processing in big
and fast data applications.

(a) throughput. (b) relative errors. (c) response time.

Fig. 5. Aggregation queries.

Supporting Real-Time Analytic Queries in Big and Fast Data Environments 491

(a) throughput. (b) relative errors. (c) response time.

Fig. 6. Median queries.

(a) relative errors. (b) relative errors. (c) response time.

Fig. 7. Quantiles queries.

(a) throughput. (b) precision. (c) response time.

Fig. 8. Top-k queries.

We also compare the query accuracy and query response time among
the three systems to demonstrate queries performance of our approach. We
test aggregation-based queries and quantiles-based queries respectively. In
aggregation-based queries, we compute the sum of bytes from page traffic within
an randomized temporal range. In quantiles-based queries, we search median,
q-quantiles (q = 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 respectively) and Top-k
(k = 10) over the data streams. The results are shown in Figs. 6(b), 7(a) and (b).

As shown in Figs. 5(c), 6(c), 7(c) and 8(c), Spark and BlinkDB cost about 20 s
and 2 s respectively, to compute results of the same queries. While ROSE uses
about 0.2 s to compute the approximate answers for the queries. ROSE achieves
about 2 orders of magnitude improvement on query response time compared to

492 G. Wu et al.

Spark and 1 order of magnitude improvement compared to BlinkDB. We observe
that BlinkDB achieves better precision in Top-k queries compared to ROSE when
the data size is small. Since BlinkDB introduces stratified sampling in its sketch,
and it can improve query accuracy for “Group-by” operation greatly. When the
volume of data streams increases, ROSE can maintain enough samples for all
groups and can obtain the same accuracy with BlinkDB.

As the results of experimental evaluation, we come to the conclusion that
ROSE can support to perform different analytical queries with a uniform
ξ-approximation schema. Meanwhile, ROSE can perform more efficient on
throughput and query response time compared to current big data analytic sys-
tems (i.e., Spark and BlinkDB).

5 Conclusion and Future Work

Plentiful applications need strict requirement on query response time for ana-
lytics over big and fast data environments. In this paper, we propose an app-
roach called ROSE, which can accept elements with out-of-order data arrival and
obtain statistics over large volume data streams. ROSE can construct its sketch
in an accuracy lossless and compact manner without pori knowledge in distrib-
uted environments. Meanwhile it can accept an input element in O(1

ξ2 log(1/δ))
time and obtain estimates for aggregation-based queries (such as counting, sum-
marization, avg) and quantile-based queries (such as median, quantiles, and
Top-k) in O(1

ξ2 log(1/δ)) time. ROSE enables systems to construct sketches over
dynamic streaming data and support to perform real-time or interactive data
analysis over data streams.

In further, we plan to introduce ROSE into current big data analytic plat-
forms or systems to support real-time OLAP queries with complex query clauses.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their comments and suggestions which have helped to improve the quality of this paper.
This work was supported by the National Key Research and Development Program of
China (2016YFB0801305).

References

1. Katsipoulakis,N.R.,Thoma,C.,Gratta, E.A., Labrinidis,A., Lee,A.J., Chrysanthis,
P.K.: CE-Storm: confidential elastic processing of data streams. In: SIGMOD, pp.
859–864 (2015)

2. Goodstein, M.L., Chen, S., Gibbons, P.B., Kozuch, M.A., Mowry, T.C.: Chrysalis
analysis: incorporating synchronization arcs in dataflow-analysis-based parallel
monitoring. In: PACT, pp. 201–212 (2012)

3. Zhang, Y., Chen, S., Wang, Q., Yu, G.: i2MapReduce: incremental MapReduce for
mining evolving big data. In: KDD, pp. 1906–1919 (2012)

4. Preis, T., Moat, H.S., Stanley, E.H.: Quantifying trading behavior in financial
markets using Google trends. Sci. Rep. 3, 1684 (2013)

5. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: SOSP, pp. 423–438 (2013)

Supporting Real-Time Analytic Queries in Big and Fast Data Environments 493

6. Brito, A., Martin, A., Knauth, T., Creutz, S., Becker, D., Weigert, S., Fetzer, C.:
Scalable and low-latency data processing with stream MapReduce. In: CloudComp,
pp. 48–58 (2011)

7. Li, B., Mazur, E., Diao, Y., McGregor, A., Shenoy, P.: Scalla: a platform for scalable
one-pass analytics using MapReduce. ACM Trans. Database Syst. 37(4), 27:1–
27:43 (2012)

8. Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., Valduriez, P.:
StreamCloud: an elastic and scalable data streaming system. Parallel Distrib. Syst.
23(12), 2351–2365 (2012)

9. Qian, Z., He, Y., Su, C., Wu, Z., Zhu, H., Zhang, T., Zhou, L., Yu, Y., Zhang,
Z.: TimeStream: reliable stream computation in the cloud. In: EuroSys, pp. 1–14
(2013)

10. Li, B., Diao, Y., Shenoy, P.: Supporting scalable analytics with latency constraints.
Proc. VLDB Endow. 8(11), 1166–1177 (2015)

11. Cormode, G., Garofalakis, M., Haas, P.J., Jermaine, C.: Synopses for massive data:
samples, histograms, wavelets, sketches. Found. Trends Databases 4(1–3), 1–294
(2012)

12. Yun, X., Wu, G., Zhang, G., Li, K., Wang, S.: FastRAQ: a fast approach to range-
aggregate queries in big data environments. IEEE Trans. Cloud Comput. 3(2),
206–218 (2014)

13. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB:
queries with bounded errors and bounded response times on very large data. In:
EuroSys, pp. 29–42 (2013)

14. Zeng, K., Agarwal, S., Dave, A., Armbrust, M., Stoica, I.: G-OLA: generalized
on-line aggregation for interactive analysis on big data. In: SIGMOD, pp. 913–918
(2015)

15. Condie,T.,Conway,N.,Alvaro,P.,Hellerstein, J.M.,Gerth, J.,Talbot, J., Elmeleegy,
K., Sears, R.: Online aggregation and continuous query support in MapReduce. In:
SIGMOD, pp. 1115–1118 (2010)

16. Chen, C., Li, F., Ooi, B.C., Wu, S.: TI: an efficient indexing mechanism for real-
time search on tweets. In: SIGMOD, pp. 649–660 (2011)

17. Mousavi, H., Zaniolo, C.: Fast computation of approximate biased histograms on
sliding windows over data streams. In: SSDBM, pp. 13:1–13:12 (2013)

18. Papapetrou, O., Garofalakis, M., Deligiannakis, A.: Sketching distributed sliding-
window data streams. VLDB J. 24(3), 345–368 (2015)

19. Tirthapura, S., Xu, B., Busch, C.: Sketching asynchronous streams over a sliding
window. In: PODC, pp. 82–91 (2006)

20. Gibbons, P.B., Tirthapura, S.: Distributed streams algorithms for sliding windows.
In: SPAA, pp. 63–72 (2002)

21. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. In: SODA, pp. 635–644 (2002)

22. Wang, L., Luo, G., Yi, K., Cormode, G.: Quantiles over data streams: an experi-
mental study. In: SIGMOD, pp. 737–748 (2013)

23. Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows.
In: PODS, pp. 286–296 (2004)

24. Gibbons, P.B., Matias, Y., Poosala, V.: Fast incremental maintenance of approxi-
mate histograms. ACM Trans. Database Syst. 27(3), 261–298 (2002)

25. Sharfman, I., Schuster, A., Keren, D.: A geometric approach to monitoring thresh-
old functions over distributed data streams. ACM Trans. Database Syst. 32(4), 23
(2007)

Boosting Moving Average Reversion
Strategy for Online Portfolio Selection:

A Meta-learning Approach

Xiao Lin1(B), Min Zhang2, Yongfeng Zhang3, Zhaoquan Gu4, Yiqun Liu2,
and Shaoping Ma2

1 Institute of Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China

jackielinxiao@gmail.com
2 Tsinghua National Laboratory for Information Science and Technology,

Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

{z-m,yiqunliu,msp}@tsinghua.edu.cn
3 College of Information and Computer Science,

University of Massachusetts Amherst, Amherst, MA 01003, USA
yongfeng@cs.umass.edu

4 Department of Computer Science, Hong Kong University, Hong Kong, China
demin456@gmail.com

Abstract. In this paper, we study the online portfolio selection prob-
lem from the perspective of meta learning for mean reversion. The
online portfolio selection problem aims to maximize the final accumu-
lated wealth by rebalancing the portfolio at each time period based on
the portfolio prices announced before. Mean Reversion is a typical princi-
ple in portfolio theory and strategies that utilize this principle achieve the
superior empirical performances so far. However there are some impor-
tant limits of existing Mean Reversion strategies: First, the mean rever-
sion strategies have to set a fixed window size, where the optimal win-
dow size can only be chosen in hindsight. Second, most existing mean
reversion techniques ignore the temporal heterogeneity of historical price
relatives from different periods. Moreover, most mean reversion methods
suffer from noises and outliers in the data, which greatly affects the per-
formances. In order to tackle the limits of previous approaches, we exploit
mean reversion principle from a meta learning perspective and propose a
boosting method for price relative prediction. More specifically, we gen-
erate several experts where each expert follows a specific mean reversion
policy and predict the final price relatives with meta learning techniques.
The sampling of multiple experts involves mean reversion strategies with
various window sizes; while the meta learning technique brings temporal
heterogeneity and stronger robustness for prediction. We adopt online
passive-aggressive learning for portfolio optimization with the predicted
price relatives. Extensive experiments have been conducted on real-world
datasets and our approach outperforms the state-of-the-art approaches
significantly.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 494–510, 2017.
DOI: 10.1007/978-3-319-55699-4 30

Boosting Moving Average Reversion Strategy for Online Portfolio Selection 495

1 Introduction

Online portfolio selection problem aims to allocate the wealth among different
assets at different time periods to maximize the long-term wealth. There are
two models describing the problem: the Mean-Variance model [19] and Kelly’s
Capital Growth model [11]. The first model uses a weighted sum of expected
return (mean) and risk (variance of the return) as a trade-off between the two
objectives, and it is suitable for single-period portfolio selection; the second
model sees the problem as a sequential decision problem that aims to maximize
the expected return at the end of multiple time periods. Kelly’s Capital Growth
model has a nature of online decision making, which is widely adopted by the
studies from AI and Machine Learning researchers.

In online portfolio selection problem, each asset is associated with a price
in each period. The ratio of prices between current period and last period is
called price relative, which reflects the return of wealth invested on the assets
after one period. The agent allocates the wealth among different assets based on
their price relatives at different periods. Most portfolio selection strategies follow
a two-phase scheme: price relative prediction phase and portfolio optimization
phase. The first phase aims to predict the price relative at next period based on
historical data; while the second phase aims to compute the optimal portfolio
given the prediction of price relative.

One common methodology for this problem is Mean Reversion, which
assumes the portfolios that perform poorly at current period will perform well
next (and vice versa). The methods include PAMR (Passive Aggressive Mean
Reversion) [17], CWMR (Confidence Weighting Mean Reversion) [15], OLMAR
(OnLine Moving Average Reversion) [14] and RMR (Robust Mean Reversion)
[9], which adopt the mean reversion idea in different ways. They achieve superior
empirical results in experiments compared with other state-of-art methods. This
proves the effectiveness of mean reversion policy.

Although PAMR, CWMR and OLMAR achieve good performances, they still
face some difficulties. All existing mean reversion strategies do not fully con-
sider the noisy data and outliers (RMR is proposed to alleviate the problem),
which often leads to estimation error (see [20]). Furthermore, the assumption
of single-period prediction [15,17] also leads to estimation error, which makes
the performance poor. RMR (Robust Mean Reversion) [9] and OLMAR [14]
uses multi-period prediction, but the algorithm sees each period equally, which
ignores the temporal heterogeneity of historical price relatives and causes inac-
curacy of predictions. We utilize meta learning to exploit the benefit of multi-
period prediction and the periods are assigned with weights according to their
performances. Moreover, this alleviates the impact of noisy data and outliers.
The results show that our strategy outperforms RMR and OLMAR.

More specifically, in order to utilize multi-period historical data, we generate
multiple experts for price relative prediction following typical MAR methods.
Then we adopt the meta learning method for price prediction. Each expert is
assigned a weight that is updated according to their performances and a weighted
aggregation is used as the final prediction. Meanwhile, we choose the typical

496 X. Lin et al.

passive-aggressive learning method for portfolio optimization. This method cap-
tures the recent portfolio performances and the objective of enhancing the wealth
return at each time period.

The contributions of our work are: first, to our knowledge, we are the first to
exploit the Mean Reversion strategy with meta learning in online portfolio selec-
tion problems; second, we make a better use of multiple-period history, which is
robust to the outliers and noises in historical data; third, we conduct extensive
experiments on real-world datasets and achieve superior results compared with
other state-of-the-art approaches.

The remainder of the paper is organized as follows: the next section gives a
brief introduction to the related work; Sect. 3 formally introduces the online
portfolio selection problem while Sect. 4 introduces some preliminary works
about mean reversion theory and some related concepts. Section 5 proposes
BMAR strategy that utilizes meta learning in online portfolio selection problem.
Section 6 presents the results of experiments conducted on real-world datasets
and a thorough comparison with the baselines. The conclusion and the future
work are presented in Sect. 7.

2 Related Work

The study of online portfolio selection problem first concentrates on some bench-
mark algorithms, including Buy and Hold, Best Stock and Constant Rebalanced
Portfolios. The Buy and Hold strategy means the agent invests wealth with an
initial portfolio and holds it to the end without changing the portfolio. The Best
Stock strategy means that one puts all the wealth on the stock whose perfor-
mance is best in hindsight. Constant Rebalanced Portfolios is a strategy that
rebalances the wealth to a fixed portfolio in all periods. The best CRP strategy
which achieves highest accumulated wealth is called BCRP. BCRP is an optimal
strategy if the market is i.i.d. [4]. Successive Constantly Rebalanced Portfolios
(SCRP) [5] and Online Newton Step (ONS) [1] implicitly estimate next price
relative via all historical price relatives with a uniform probability. However,
both Best Stock and BCRP strategies have to be computed in hindsight.

There are two main categories of algorithms: follow-the-winner approach and
follow-the-loser approach. The intuition behind first approach is to track the
stock with best performance in history and raise the weights in the portfo-
lio of these stocks. Most of the Follow-the-Winner approaches aim to imitate
the BCRP strategy: including the universal portfolio selection (UP) [10], Expo-
nential Gradient (EG) [8], follow-the-leader and follow-the-regularized-leader
approaches. However, the prices of assets are unstable, even a good following
of winner assets can not guarantee superior performances.

Follow-the-loser approach utilizes a typical assumption of mean reversion [18],
which means that the good (poor)-performing assets will perform poor (good) in
the following periods. The approaches in this category include Anti-Correlation
(Anticor) [2], Passive-Aggressive Mean Reversion (PAMR) [17], Confidence-
weighted Mean Reversion (CWMR) [15], Online Moving Average Reversion

Boosting Moving Average Reversion Strategy for Online Portfolio Selection 497

(OLMAR) [14] and Robust Mean Reversion (RMR) [9]. CRP [4,5] implicitly
envolves follow-the-loser approach since rebalancing the wealth means to trans-
fer the wealth from winning stocks to losing stocks in some extent.

Another important category of the portfolio selection algorithms is pattern-
matching, which estimates the portfolio price based on sampled similar historical
patterns. Nonparametric kernel based moving window (BK) [7] measures the sim-
ilarity by kernel method. Following the same framework, Nonparametric Nearest
Neighbor (BNN) [12] locates the set of price relatives via nearest neighbor meth-
ods. [16] proposed Correlation-driven Nonparametric learning (CORN), which
measures the similarity via correlation.

Since the mean-reversion technique is widely adopted in financial fields, it
is useful in online learning algorithms as well. Passive Aggressive Mean Rever-
sion (PAMR) [17] and Confidence Weighted Mean Reversion (CWMR) [15] esti-
mate next price relative as the inverse of last price relative, which is in essence
the mean reversion principle. Recently, [14] proposed On-Line Moving Average
Reversion (OLMAR), which predicts the next price relative using moving aver-
ages and explores the multi-period mean reversion. Robust Mean Reversion is
proposed to alleviate the impact of outliers and noises existing in the data. The
empirical experiments indicate that OLMAR and RMR outperforms the other
state-of-the-art algorithms. However, most of the Mean Reversion algorithms
have important limits: first, the mean reversion strategies require to select a
fixed time window for prediction, which can not be easily determined; second,
the strategies treat each time period equally in prediction, which ignores the tem-
poral heterogeneity; third, the strategies do not have strong robustness against
noises and outliers. We utilize mean reversion strategies for its good depiction of
reality and further use meta learning approach to tackle the limits. A detailed
comparison between our strategy and existing Mean Reversion strategies is pre-
sented in Sect. 4.

3 Problem Setting

In this section, we formally introduce the Online Portfolio Selection problem.
Assume that there exist m assets in market, and time is divided into T periods.
Each asset i has a closing price pt,i at period t and pt is denoted as the closing
price vector (column vector for all vectors mentioned): pt = [pt,1, pt,2, ..., pt,m].
xt,i is the price relative that captures the ratio of closing prices between two
consecutive periods: xt,i = pt,i

pt−1,i
and xt = [xt,1, xt,2, ..., xt,m] is the price relative

vector.
In each period, the market reveals the closing prices of assets and the investor

has to assign the capital with a portfolio vector: bt = [bt,1, bt,2, ..., bt,m] where bt,i

represents the proportion of wealth assigned to asset i at time t. We follow the
typical assumption that no margin/short sale is allowed, therefore bt,i ≥ 0,∀t, i
and

∑m
i=1 bt,i = 1,∀t. An investment means to select a portfolio bt from the

simplex: {bt,i ≥ 0,
∑m

i=1 bt,i = 1} at period t. Usually we assume the portfo-
lio is uniformly distributed in the beginning: b0 = [1

m , ..., 1
m]. The sequence of

498 X. Lin et al.

Algorithm 1. Online Portfolio Selection

Input: xn
1 : Historical market price relative sequence

Output: Wt : Final cumulative wealth
Procedure:

1: Initialize the portfolio b1 = 1
m
1, the wealth is initialized as W0 = 1;

2: for t = 1, 2, ..., n do
3: Portfolio manager learns the portfolio bt;
4: Market reveals the market price relative xt;
5: Portfolio incurs period return wt = bT

t xt and updates cumulative return Wt =
Wt−1 × (bT

t xt);
6: Portfolio manager updates the online portfolio selection rules;
7: end for;

portfolios from t1 to t2 is denoted as bt2
t1 . Denote the wealth accumulated at t

as Wt, w.l.g. the initial wealth is assumed to be 1: W0 = 1. Therefore given
the selected portfolio bt at period t, the wealth becomes Wt = Wt−1b

T
t xt =∑m

i=1 bt,ixt,iWt−1 =
∏t

τ=1 bT
τ xτ (T is transpose here).

Given the notations and introduction above, the online portfolio selection
problem refers to a sequential decision making problem with periods from t = 1
to t = n. In each period, the investor has to decide the portfolio based on his-
torical closing prices of assets and the market reveals the newest closing price
of assets, which leads to the change of wealth. The investor needs to strategi-
cally design portfolios bn

1 so that the accumulated wealth Wn at time t = n is
maximized.

We summarize the procedures from the introduction above and formulate
the whole online portfolio selection process in Algorithm 1 as [13].

4 Preliminary

In this section, we briefly introduce the mean reversion principle and how former
works exploit this principle.

4.1 Mean Reversion

In each period, the algorithm tries to estimate the price relatives of assets in
price prediction phase and compute the portfolio with Passive-Aggressive or
Confidence Weighted Learning given the predicted price relatives. The mean
reversion principle is reflected in the first phase by assuming that the poor-
performing assets will have good performances in next periods (and vice versa).
Denote the estimated price relative as x̃t and the estimated closing price as
p̃t. PAMR and CWMR assumes that the assets with high/low price relatives
will have low/high price relatives in next period: x̃t+1 = 1

xt
,∀t, which means

p̃t+1
pt

= pt−1
pt

. Therefore the principle assumes that p̃t+1 = pt−1. Although the
two methods work well, they can not perform consistently on some datasets.

Boosting Moving Average Reversion Strategy for Online Portfolio Selection 499

There are two reasons that lead to this inefficiency: first, the fluctuating prices
may contain noises that affect the precision of mean reversion principle; second,
the single period price reversion effect may not exist widely as expected.

4.2 Online Moving Average Reversion

The OLMAR (online moving average reversion) principle is proposed to model
the mean reversion principle with multiple-period historical data. Denote the time
window of OLMAR as w, the closing price pt at period t is assumed to be: p̃t =
1
w

∑t−1
τ=t−w pτ . The price is therefore considered as the average of prices in a time

window and the price relative becomes: x̃t = pt

pt−1
= 1

w (1+ 1
xt−1

+...+ 1⊗t−1
τ=t−w xτ

).

This Moving Average Reversion strategy with time window is denoted as SMAR.
Usually, it is assumed that the price at current period is closer to the price at

recent periods due to the continuity of price changes. Therefore the price can be
estimated with MAR by adding a decay factor α: p̃t = αpt−1+(1−αp̃t−1), which
results with a price relative: x̃t = α + (1 − α) x̃t−1

xt−1
. Therefore the decay factor

frees the algorithm from choosing a time window and utilizes the prices from
the whole history. This Moving Average Reversion strategy with time window
is denoted as EMAR.

Given the price relative predictions, OLMAR method further utilizes the
online passive aggressive learning policy for portfolio optimization, which is also
adopted by PAMR. Notice that the choice of time window size and decay fac-
tor determines the performance of this method and can not be pre-defined in
hindsight.

4.3 Robust Mean Reversion

RMR uses L1 estimator to estimate the closing prices of assets so that the result-
ing price has a better robustness compared to other methods: with a window
size of historical periods w, RMR estimates the closing at t by minimizing this
objective:

∑t−w
τ=t−1 ‖p̃t − pτ‖2, and the price relative is estimated as p̃t

pt−1
. This

estimation is named as L1 estimator and is relatively more robust to noises.

4.4 Temporal Heterogeneity

The price relatives of different periods are correlated in different extents. Usu-
ally, it is assumed that the price at current period is closer to the price at recent
periods due to the continuity of price changes. Meanwhile, the changes of price
relatives in some time windows are more similar than others (which is the foun-
dation of CORN (CORrelation-driven Nonparametric learning) [16]). Therefore,
when predicting the price relatives in the future, the algorithm should consider
how to make use of the historical time windows differently.

Given these existing algorithms exploiting Mean Reversion principles, we
make a comparison between our approach (Boosting Moving Average Rever-
sion: BMAR) and these algorithms in Table 1. The multi-period column shows

500 X. Lin et al.

Table 1. Comparison between our strategy (BMAR) with existing mean reversion
approaches.

Approaches Mean reversion Multi-period Robustness Temporal heterogenity

PAMR
√ \ \ \

CWMR
√ \ \ \

OLMAR
√ √ \ \

RMR
√ √ √ \

BMAR
√ √ √ √

whether the approaches use multiple-period historical data for prediction; the
Robustness shows whether the approaches are robust to noises and outliers;
the Temporal Heterogenity column shows whether the approaches can utilize
the data from different periods Heterogeneously. The table shows that our strat-
egy (BMAR) preserves all the good properties, which shows the superiority.

5 Proposed Strategy: Boosting Moving Average
Reversion

Like most methods, we solve the problem with two phases: price relative pre-
diction and portfolio optimization. We first generate a set of experts and each
expert is a predictor of the price relative following a mean reversion policy. In
each period, each expert first makes its predictions on the price relatives in
next period; then we compute the cumulated losses induced by each expert from
their historical predictions and the true past price relatives. With the cumulated
losses, we compute the weights assigned to each expert following the boost-
ing methods introduced later and make a final prediction. Then we use Online
Passive-Aggressive learning method to compute an optimized portfolio with the
final prediction of price relatives in next period. When the true price relatives
are revealed, we can update the cumulated losses of each predictor. The process
of BMAR strategy for online portfolio selection is illustrated in Fig. 1.

5.1 Boosting Moving Average Reversion for Price Relative
Prediction

We generate the experts of price relative prediction with different parameters
from OLMAR. Denote the set of experts as E and the SMAR expert with time
window w is denoted as Ew, the EMAR expert with Decaying factor α as Eα.

Uniform Sampling: We generate the experts by sampling the parameters uni-
formly from the range: w ∼ U(wmin, wmax) and α ∼ U(0, 1). We generate
M = wmax −wmin +1 experts from MAR (w = wmin, wmin +1, ..., wmax) and N
experts from EMAR (α = {0.1, 0.2, ..., 0.9} when N = 9). Based on the different
ways of generating experts, we denote the strategy of generating experts with

Boosting Moving Average Reversion Strategy for Online Portfolio Selection 501

Fig. 1. BMAR strategy for online portfolio selection

time window as BMAR-1 and the strategy of generating experts by sampling α
as BMAR-2. With the generated experts, we use weighted aggregation of their
decisions to predict the price relatives at different periods. Each expert repre-
sents an approximation of the price relative in next period with a certain time
window. By utilizing the predictions of these experts with a weighted scheme,
we can induce temporal heterogeneity into our approach and the details will be
introduced later.

As shown in Theorem 1 later, the regret of our strategy is closely related
to the number of experts we generate. We will present the influence of expert
numbers and sampling methods on the performances in the experiment.

We assume a weighted sum of the experts as the estimator of the price
relative:

BMAR − 1 : x̃(t) =

∑i=N
i=1 θi,t−1x̃(t, wi)
∑i=N

i=1 θi,t−1

; BMAR − 2 : x̃(t) =

∑j=M
j=1 θj,t−1x̃(t, αj)
∑j=M

j=1 θj,t−1

(1)

where x̃(t, w) and x̃(t, α) are the predicted price relatives of expert Ew and Eα;
θw,t−1 and θα,t−1 are the weights assigned to these experts given their perfor-
mances until period t − 1.

Denote the loss of expert Ew by period t as l(w, t) and the loss of weighted
expert (BMAR) by period t as l(t). The cumulated losses of expert Ew and
weighted expert by period T are denoted as L(w, T) =

∑t=T
t=1 l(w, t) and L(T) =∑t=T

t=1 l(t) respectively. The difference between the two losses is seen as the regret
of weighted expert with respect to expert Ew: R(w, T) = L(T) − L(w, T).

We introduce the weights assigned to the expert, i.e. exponential weights:

θi,t−1 =
e−ηRi,t−1

∑N
j=1 e−ηRj,t−1

(2)

502 X. Lin et al.

where η is a nonnegative parameter. Notice that R(w, T) = L(T)−L(w, T), the
exponential weights make the predictions simpler:

θi,t−1 =
e−ηLi,t−1

∑N
j=1 e−ηLj,t−1

(3)

It has been proved that this expert learning procedure guarantees a proper upper
bound of regret in prediction, as shown in the theorems from [3]:

Theorem 1. Assume that the loss function is convex in its first argument and
takes values from [0, 1], then the regret of exponentially weighted average predic-
tor satisfies (N is the number of experts, n is the number of periods and η is the
parameter in exponential weights):

L̂n − min
i=1,...,N

Li,n ≤ lnN

η
+

nη

2
(4)

The details of the proofs can be found in [3] and we omit the details here.
Given these theorems, we can design loss functions that satisfy the requirements:

l(p̂, y) =
1

Nε
× ‖p̂ − y‖22 (5)

where ε is the constant that rescales l(p̂, y) into [0, 1]. And it is easy to verify that
the function is convex, which satisfies the requirement of the theorems. Notice
that ε actually works as coefficients of l(p̂, y) with η, we can simply tune the
value of η to adjust the performances, therefore when using this loss function,
we do not explicitly set the value of ε.

Remarks on Robustness: Notice that we do not explicitly model robustness
in our prediction, however the utilization of multiple experts involves robustness:
if the outliers and noises causes degradation of the experts’ prediction accuracy,
the weights assigned to these affected experts are lowered, which prevents the
final predictions suffering from the noises and outliers.

5.2 Portfolio Optimization

Given the predicted price relatives shown in former section, we utilize the pas-
sive aggressive learning procedure to solve an optimal portfolio. The basic idea
of passive aggressive learning is to keep the portfolio the same if the prede-
fined requirement is satisfied, otherwise the portfolio is computed to satisfy the
requirement with a minimal change. More specifically, we formulate the opti-
mization problem as follows:

min. ‖bt − bt−1‖2
s.t. btx̃t ≥ ε, and bt � 0 (6)

where ε is the threshold for the return at each period. Usually ε is a constant
greater than 1 to ensure the return under predicted price relative is increasing.

Boosting Moving Average Reversion Strategy for Online Portfolio Selection 503

The optimum to this problem is the portfolio assigned for period t. Notice that
if we keep the portfolio same with that in last period and the return under pre-
dicted price relatives still exceeds the required value, we will keep the portfolios
unchanged; otherwise, we will try to minimize the change between current port-
folio and that in last period as long as the return can exceed the requirement.
Since this optimization problem is convex, we can derive the portfolio in a closed
form. The solution without considering the nonnegativity constraint is presented
in the following proposition:

bt+1 = bt − αt+1(x̂t+1 − x̄t+1 · 1) (7)

where x̄t+1 = 1
d (1 ˙̂xt+1) denotes the average predicted price relative and αt+1 is

the Lagrangian multiplier calculated as,

αt+1 = min{0,
x̂t+1bt − ε

‖x̂t+1 − x̄t+1 · 1‖2 } (8)

In order to ensure that the portfolio is non-negative, we project the above port-
folio into the simplex domain as [14].

5.3 Transaction Costs

In this section, we will introduce the transaction cost, which is an important
factor in practical scenarios. In practice, each transaction of wealth from one
asset to another is charged with transaction fees. The transaction cost is imposed
by markets, and a portfolios behavior cannot change the properties of transaction
costs, such as commission rates or tax rates. Usually we assume the transaction
fee follows a proportional model, which means rebalancing a portfolio incurs
transaction costs on every buy and sell operation, based upon a transaction cost
rate of γ ∈ (0, 1). Therefore the transaction cost for a rebalancing from b̂t−1 to
bt is computed as:

γ

2
×

m∑

i=1

|bt,i − b̂t−1,i| (9)

Therefore the cumulated wealth after n periods becomes:

W γ
n = W0

n∏

t=1

[(bt · xt) × (1 − γ

2
×

m∑

i=1

|bt,i − b̂t−1,i|)] (10)

Notice that the main intuition of Passive-Aggressive portfolio optimization is to
keep the portfolio unchanged unless the requirement can not be satisfied. This
avoids unnecessary rebalancing of wealth among assets and saves the transaction
costs induced.

6 Experiment

We conduct extensive experiments on several real-world datasets to evaluate
the performances of our strategy and make comparisons with state-of-the-art
approaches.

504 X. Lin et al.

6.1 Experiment Setting

In our experiment, we use the real-world datasets that are frequently used in
related works. There are four datasets that contain price relatives of assets from
US and Global markets. The time frames of these datasets range from decades to
years, which reflect the performances of both long-term and short-term portfolio
selections. The details of the datasets are listed in Table 2. In the experiment, we
use the metrics that are adopted in the literatures for evaluation: i.e. the total
wealth achieved at the final period.

Table 2. Statistics of the real-world datasets for experiment.

Dataset Region Time frame # periods # assets

NYSE(O) US Jul. 3rd 1962–Dec. 31st 1984 5651 36

NYSE(N) US Jan. 1st 1985–Jun. 30th 2010 6431 23

SP500 US Jan. 2nd 1998–Jan. 31st 2003 1276 25

MSCI Global Apr. 1st 2006–Mar. 31st 2010 1043 24

6.2 Comparison Approaches

We select the state-of-art algorithms (most of them have been introduced in the
related works) for comparison, including those Benchmark algorithms (Market,
Best-Stock and BCRP), follow-the-winner algorithms (UP, EG, ONS), pattern-
matching algorithms (Bk, BNN , CORN, Anticor) and all the variants of mean
reversion algorithms (PAMR, CWMR, OLMAR, RMR). For all the algorithms
above, we choose the parameters with best performances as reported in related
works. Notice that we select some algorithms that use information in hindsight
for comparison (which are strong baseline algorithms). For the default setting
of BMAR, we set W = 8 and N = 9 for BMAR-1 and BMAR-2. The other
parameters are chosen as: η = 1, ε = 5 for all datasets.

6.3 Performance Evaluation

We present the cumulative wealth of our strategy and the comparative
approaches in Table 3. As shown in the table, our strategy achieves the best per-
formance on all datasets and outperforms other comparative algorithms signifi-
cantly on long-term portfolio selection problems, i.e. on NYSE(O) and NYSE(N).
Notice that the parameters fit for each dataset can be different, we also list
the best performances of algorithms for comparison. The results show that the
(including best or conventional) performances achieved by BMAR are better
than other comparison algorithms. We also conduct significance test (follow-
ing [6]) on the performances and the results are listed in Table 4. The signifi-
cance tests shown above indicate that the performance of our strategy is signif-
icantly better on all datasets, which is not the consequence of luck. Notice that

Boosting Moving Average Reversion Strategy for Online Portfolio Selection 505

Table 3. Cumulative Wealth on four datasets.

Categories Approaches NYSE(O) NYSE(N) SP500 MSCI

Baselines Market 14.5 18.06 1.34 0.91

Best Stock 54.14 83.51 3.78 1.50

BCRP 250.60 120.32 4.07 1.51

Follow the winner UP 26.68 31.49 1.62 0.92

EG 27.09 31.00 1.63 0.93

ONS 109.19 21.59 3.34 0.86

Pattern matching BK 1.08E+09 4.64E+03 2.24 2.64

BNN 3.35E+11 6.80E+04 3.07 13.47

CORN 1.48E+13 5.37E+05 6.35 26.10

Anticor 2.41E+08 6.21E+06 5.89 3.22

Mean reversion PAMR 5.14E+15 1.25E+06 5.09 15.23

CWMR 6.49E+15 1.41E+06 5.90 17.28

OLMAR-1 3.68E+16 2.54E+08 5.83 16.39

OLMAR-1(max) 1.62E+17 3.95E+08 20.91 25.49

OLMAR-2 1.09E+18 5.10E+08 8.63 21.21

OLMAR-2(max) 2.19E+18 2.84E+09 14.63 27.05

RMR 1.64E+17 3.25E+08 8.28 16.76

RMR(max) 2.81E+17 4.73E+08 17.05 19.07

Our Strategy BMAR-1 2.02E+18 8.95E+08 9.99 23.01

BMAR-1(max) 4.59E+18 5.04E+09 16.02 30.98

BMAR-2 8.11E+18 1.16E+09 10.11 22.93

BMAR-2(max) 8.33E+18 6.64E+09 26.45 30.04

Table 4. Significance Test of the Performances on experimental datasets. MER means
Mean Excess Return; All the statistics are preferred to be higher; p-value is expected
to be low.

Metrics NYSE(O) NYSE(N) SP500 MSCI

Size 5651 6431 1276 1043

MER (BMAR-1) 0.0081 0.0038 0.0024 0.0033

MER (Market) 0.0005 0.0005 0.0003 0.0000

Winning ratio 0.5735 0.5400 0.5306 0.5916

α 0.0075 0.0032 0.0020 0.0033

β 1.2884 1.1166 1.2852 1.2085

t-statistics 16.7284 8.1011 2.5402 6.3251

p-value 0.0000 0.0000 0.0056 0.0000

506 X. Lin et al.

our approach outperforms other baselines significantly, especially on datasets
NYSE(O)and NYSE(N). The reason is that the NYSE datasets contain rela-
tively long time periods, and the wealth accumulated has a “Matthew Effect”
(the accumulated wealth will be increased with time passing by, the longer it
goes, the more wealth will be accumulated).

6.4 Parameter Sensitivity

Notice that our strategy has several parameters: W (which is the maximum
window size of experts generated from moving mean reversion) and η for strategy
BMAR-1; α and η for strategy BMAR-2. The threshold for portfolio optimization
ε is also a key parameter. We conduct experiments on all datasets with different
values of the parameters.

Impact of η. Notice that we use P2 norm of the difference between prediction
and true price relative as loss function, the value of η therefore has two effects:
first, it scales the loss function into [0, 1]; second, it evaluates the weights assigned
to each expert considering their performances. Therefore we conduct experiments
with different values of η on the datasets to show their impact in Figs. 2 and 3.
Notice that the two strategies are different according to their ways of estimating
the price relatives at each period. The impact of η also varies with the two
strategies. Generally, choosing η = 1 guarantees relative good performances on
all the datasets, which is adopted in the experiments shown in Table.3.

Fig. 2. Parameter sensitivity of η with ε = 5, W = 8 in BMAR-1

Boosting Moving Average Reversion Strategy for Online Portfolio Selection 507

Fig. 3. Parameter sensitivity of η with ε = 5, N = 9 in BMAR-2

Fig. 4. Parameter sensitivity of W with ε = 5, η = 1 in BMAR-1

Impact of W. BMAR-1 generates experts with different window sizes w ∈
[2,W], each expert estimates the asset price as the mean of prices in most recent
w periods. We choose different values of W to generate experts, where each W
means W − 1 experts with window sizes are generated. The results are shown
in Fig. 4. Notice that the impacts of W are different on the datasets, this is due
to the fact that the optimal window sizes for the experts to work on different
datasets are also different: the optimal window size for MSCI can be relatively
low compared with other datasets. We find that the strategy can achieve consis-
tently good performances when W ∈ [8, 10] and set it as a conventional value.

508 X. Lin et al.

Fig. 5. Parameter sensitivity of ε with η = 1, w = 8 in BMAR-1 and η = 1, N = 9 in
BMAR-2

Impact of ε. The passive-aggressive portfolio optimization technique is applied
in our scheme, which tends to keep the portfolios same unless they fail to reach
the requirement of return from each period. Therefore, we conduct experiments
with different values of ε to show the impact. The impact of ε on our strate-
gies are similar. As shown in Fig. 5, both BMAR-1 and BMAR-2 achieve good
performances on all datasets when ε ∈ [5, 10]. Similarly, we choose ε = 5 as a
conventional setting.

6.5 Performance Under Transaction Costs

We also conduct experiments with different transaction cost ratio since it is an
unavoidable issue in practice. We alter the transaction cost ratio from 0% to
1% and compute the cumulative wealth of different strategies. The results are
presented in Fig. 6.

Judging from the results, the transaction costs has a significant impact on the
wealth return. When the transaction cost ratio is greater than 0.005, the wealth
achieved on most datasets is close to 0. Since our algorithms can still outperform
the baselines, they have good scalability for transaction costs. Notice that the
real transaction cost ratio is usually below 0.005, our algorithm can work well
in practice.

Boosting Moving Average Reversion Strategy for Online Portfolio Selection 509

Fig. 6. Performance with different transaction cost ratios

7 Conclusion

In this paper, we consider the online portfolio selection problem from the per-
spective of mean reversion and meta learning. So far, mean reversion strate-
gies have achieved best empirical results, however they face limits of unknown
window size and ignores the temporal heterogeneity of different periods. Mean-
while they are easily affected by outliers and noises in the data. We utilize meta
learning to tackle the limits and propose Boosting Moving Average Reversion
(BMAR) strategies. The experiments on real-world datasets show that BMAR
outperforms state-of-the-art strategies. We believe more accurate prediction of
price relatives can further improve the performances and we will consider this
as future works.

Acknowledgement. This work was supported by the Natural Science Founda-
tion (61532011, 61672311) of China and the National Key Basic Research Program
(2015CB358700). The third author was supported by the Center for Intelligent Infor-
mation Retrieval and NSF grant under number IIS-1160894 and IIS-1419693.

References

1. Agarwal, A., Hazan, E., Kale, S., Schapire, R.E.: Algorithms for portfolio man-
agement based on the newton method, ICML 2006, pp. 9–16. ACM, New York
(2006)

2. Borodin, A., Elyaniv, R., Gogan, V.: Can we learn to beat the best stock. J. Artif.
Intell. Res. 21(1), 579–594 (2004)

3. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, New York (2006)

510 X. Lin et al.

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York
(2012)

5. Gaivoronski, A.A., Stella, F.: Stochastic nonstationary optimization for finding
universal portfolios. Ann. Oper. Res. 100(1), 165–188 (2000)

6. Grinold, R., Kahn, R.: Active Portfolio Management: A Quantitative Approach
for Producing Superior Returns and Controlling Risk. McGraw-Hill Education,
New York (1999)

7. Gyorfi, L., Lugosi, G., Udina, F.: Nonparametric kernel-based sequential invest-
ment strategies. Math. Financ. 16(2), 337–357 (2006)

8. Helmbold, D.P., Schapire, R.E., Singer, Y., Warmuth, M.K.: On line portfolio
selection using multiplicative updates. Math. Financ. 8(4), 325–347 (1998)

9. Huang, D.J., Zhou, J., Li, B., Hoi, S., Zhou, S.: Robust median reversion strategy
for online portfolio selection. IEEE Trans. Knowl. Data Eng. 28(9), 2480–2493
(2016)

10. Kalai, A., Vempala, S.: Efficient algorithms for universal portfolios. J. Mach. Learn.
Res. 3(3), 423–440 (2003)

11. Kelly, J.L.: A new interpretation of information rate. Bell Syst. Tech. J. 35(4),
917–926 (1956)

12. Laszlo, G., Frederic, U., Harro, W.: Nonparametric nearest neighbor based empir-
ical portfolio selection strategies. Stat. Decis. 26(2), 145–157 (2008)

13. Li, B., Hoi, S.C.H.: Online portfolio selection: a survey. ACM Comput. Surv. 46(3),
1–36 (2014)

14. Li, B., Hoi, S.C.H., Sahoo, D., Liu, Z.: Moving average reversion strategy for on-line
portfolio selection. Artif. Intell. 222, 104–123 (2015)

15. Li, B., Hoi, S.C.H., Zhao, P., Gopalkrishnan, V.: Confidence weighted mean rever-
sion strategy for online portfolio selection. ACM Trans. Knowl. Disc. Data 7(1),
1–38 (2013)

16. Li, B., Hoi, S.C., Gopalkrishnan, V.: CORN: correlation-driven nonparametric
learning approach for portfolio selection. ACM Trans. Intell. Syst. Technol. 2(3),
1–29 (2011)

17. Li, B., Zhao, P., Hoi, S.C.H., Gopalkrishnan, V.: PAMR: passive aggressive mean
reversion strategy for portfolio selection. Mach. Learn. 87(2), 221–258 (2012)

18. Lo, A.W., Mackinlay, A.C.: When are contrarian profits due to stock market over-
reaction. Rev. Financ. Stud. 3(2), 175–205 (1989)

19. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)
20. Merton, R.C.: On estimating the expected return on the market: an exploratory

investigation. J. Financ. Econ. 8(4), 323–361 (1980)

Continuous Summarization
over Microblog Threads

Liangjun Song1, Ping Zhang3, Zhifeng Bao1(B), and Timos Sellis2

1 School of Science, RMIT, Melbourne, Australia
{liangjun.song,zhifeng.bao}@rmit.edu.au

2 Swinburne University of Technology, Melbourne, Australia
tsellis@swin.edu.au

3 Wuhan University, Wuhan, China
pingzhang@whu.edu.cn

Abstract. With the dramatic growth of social media users, microblogs
are created and shared at an unprecedented rate. The high velocity and
large volumes of short text posts (microblogs) bring redundancies and
noise, making it hard for users and analysts to elicit useful information.
In this paper, we formalize the problem from a summarization angle –
Continuous Summarization over Microblog Threads (CSMT), which con-
siders three facets: information gain of the microblog dialogue, diversity,
and temporal information. This summarization problem is different from
the classic ones in two aspects: (i) It is considered over a large-scale,
dynamic data with high updating frequency; (ii) the context between
microblogs are taken into account. We first prove that the CSMT prob-
lem is NP-hard. Then we propose a greedy algorithm with (1 − 1/e)
performance guarantee. Finally we extend the greedy algorithm on the
sliding window to continuously summarize microblogs for threads. Our
experimental results on large-scale datasets show that our method is
more superior than other two baselines in terms of summary diversity
and information gain, with a close time cost to the best performed base-
line.

1 Introduction

Twitter is an online social networking service that enables users to send and read
short 140-character messages called “microblogs”. This service rapidly gained
worldwide popularity, with more than 300 million users posting approximately
500 million tweets a day in 2015. People are thus overwhelmed by a large amount
of data and gradually get lost in details without a clear sight of the big picture.
However, the big picture is crucial in the decision making process, from marketing
plans to political decisions. Therefore, how to summarize tweets and help people
get a clear view of the big picture is one of the most important problems in this
area, which has already absorbed much attention.

Many tweet summarization approaches have been introduced in recent years
[1,3–6,10,12,14,18]. In summary, most of them treat tweets as a set of indepen-
dent documents and aim to model a topic by extracting list of relevant words or
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 511–526, 2017.
DOI: 10.1007/978-3-319-55699-4 31

512 L. Song et al.

sentences. However, microblogs are very short may only provide limited infor-
mation. These natures actually hinder the existing approaches to extract com-
prehensible summarizations. Consider an example as follows:

Example 1. As shown in Fig. 1(a), NBA official account posted a tweet T “Lakers
vs Celtics 100:115”, user A replied to T “lets go celtics, well played team”, and
user B replied to T “well played team lakers”. B got a lot of replies from D,
“our guard is such a great player, he carried the whole team” and A got replied
from C, “our guard is so good, he activated the whole team”, E replied to A:“our
coach is such a treasure”.

Fig. 1. Examples of microblog thread and sliding window

Traditional summarization methods treat this structure (both the original
and interactive tweets) as a bag of microblogs, which will cluster the posts of
A and B together because both of them describes NBA teams. Descriptions
about guards in different teams may also be clustered and represented as one.
However, this process is counter-intuitive, because players belong to different
teams and NBA covers the topic “team”, and combining them together loses
the “parent-child” relationships among topics. Ideally, the summary microblog
should contain each individual discussion under the original NBA post, for users
who wants to know more under this topic. Thus, we propose to utilize the con-
textual information in our processing of summarizing microblogs.

Recall the example, the sub-topics are built from the replies and forwards.
Together, all the replies and forwards could form contextual links for a whole
information unit, which we refer to as a thread. Due to the fact that one thread
may contain a huge amount of replies, it may be hard for traditional methods
because of the efficiency. Moreover, the high updating frequency of social media
makes the problem of summarizing the microblog thread (MT) even challenging.
In this paper, we focus on extracting microblogs with broad coverage of the
microblogs and minimum amount of repetitions from microblog threads of the
microblog stream efficiently.

Continuous Summarization over Microblog Threads 513

We hereby formally define the problem as continuous summarization over
microblog threads (CSMT), which aims at representing a summary of microblogs
that appear in the MT from the stream of microblogs.

Although CSMT shares the same spirit of text summarization, the intrin-
sic characteristics of social media make it different from the classic summa-
rization problem in several aspects: (1) Efficiency. In order to support a lot
of users simultaneously requesting summary over a same MT, the efficiency is
important, since a high latency may lead to a loss of users in real applications.
(2) Continuousness. The MT changes over time as the new microblogs come,
summary should update as well in a continuous manner. Thus, users may request
a continuous summarization of MT, which brings challenges for traditional static
summarization methods. (3) Contexts. The user replies indicate the conversa-
tions in a chronological order, which may help users to understand the summary
and sub-topics, and thus should be retained. However, the primary social prop-
erty of microblogs has been largely ignored in the literature. The works closest
to this problem are Sumblr [18] and Lex-rank [8].

They have studied continuous tweet summarization problem thoroughly.
Their key findings and proposed criteria can also help in solving the scenario
of streaming microblogs. However, lex-rank cannot fit the problem on the con-
tinuousness aspect very well. Even it could be adopted by using sliding window,
the time cost is quite high due to its calculation of the page rank algorithm.
Sumblr could fit the continuousness, but it does not consider any contextual
aspect of the microblogs.

Contributions of our work are as following:

(1) We first introduce the Continuous Summarization over Microblog Thread
(CSMT) problem and prove it is NP-hard.

(2) After proving the submodularity of objective function of CSMT problem,
we propose a greedy algorithm that significantly speeds up the calculations
providing (1 − 1/e)-approximation.

(3) We made experiments to test the performance of the methods proposed in
this paper. Experimental results show the information gain, diversity and
efficiency of our methods.

The remainder of this paper is organized as follows: Sect. 2 gives a com-
prehensive review of the related literatures. Section 3 presents the definition of
CSMT problem and shows that it is NP-hard. Section 4 first proves the submod-
ularity of CSMT problem function, and then proposes a greedy algorithm with
(1 − 1/e)-approximation to solve CSMT problem efficiently. Section 5 proposes
update of the dialogue coverage and diversity for greedy algorithm. Section 6
presents experimental results and performance studies. At last, Sect. 7 concludes
and discusses future work.

2 Related Works

There have been extensive studies on summarizing over microblogs. Broadly
speaking, those works fall into three categorise based on different types of features

514 L. Song et al.

used in the summarization process: (i) Textual summarization, which measures the
relatedness of two microblogs based textual similarity. (ii) Temporal summariza-
tion, which mainly considers the temporal factor in the summarization process,
and mostly aims at generating the storyline. (iii) Contextual summarization, which
often employs external resources as a reference and gives a succinct yet highly accu-
rate summarization. We will discuss them shortly.

2.1 Textual Summarization

Summarizing microblogs based only on the text information mostly depend on
the semantic information, so the majority of approaches falling in this cate-
gory use Natural Language Processing (NLP) techniques. Those NLP based
approaches extract important sentences and then perform summarization based
on the terms co-occurrence in microblogs [6,19]. One state-of-the-art NLP
method, Lex-rank [8], also benefits from the network structure, which is con-
structed based on the sentence similarity. The core idea of Lex-rank is to select
important sentence as the component of final summarization. In order to iden-
tify important sentences, firstly, Erkan and Radev define the sentence salience
and then apply random walk in order to score those sentence based on PageR-
ank mechanism. Finally, top ranked sentences are output and organized as the
summarization of the set of considered microblogs.

Intuitively, due to the limited length of a microblog, summarizing over
microblogs based only on textual information may suffer from the problem of
insufficient context, and thus fails to represent the full story of considered set of
microblogs. As there are rich features in microblogs, many researchers consider
the problem of summarizing over microblogs beyond the textual feature only.

2.2 Temporal Summarization

One natural feature of microblogs is the temporal information. For example, a
popular topic may only appear within some certain period of time. Instead of
summarizing over the entire set of microblogs, it is more feasible to perform sum-
marization within this time duration, obtaining the summary of this particular
topic, and compensating existing summary established so far.

The idea of summarizing emerging microblogs and update to current sum-
mary is close to the task of Twitter Timeline Generation (TTG) [11,13,15]
started in TREC 2014 [14]. The task is designed with the aim of performing
real-time extraction from Twitter API. The key to accomplishing this task is to
model the emerging topics when new tweets appear. There are a few works done
based on this idea. For example, Ren et al. [17] proposed probabilistic models
in order to describe how topic shifts as time goes by. However, the sophisti-
cated models consume so many computational resources so that the method can
hardly be applied to a large-scale size of data. Zhao et al. [20] argued that except
textual and temporal information, other features such as social attention should
also be considered as one of the most effective that helps in timeline generating
task. Their empirical studies show that it is possible to incorporate the classic

Continuous Summarization over Microblog Threads 515

features used in traditional text mining in order to achieve a better effectiveness.
To this end, more researchers started to use more features, such as web link [15],
or to perform topic expansion [11] for generating the final timeline.

Although TTG task is close to the problem we are going to study in this
paper, most works are done in an off-line style, regarding the set of microblogs
as a set of static document collection. This static assumption makes most of the
algorithms in this category difficult to be adapted to a dynamic environment. The
only work that is apt to the dynamic settings is Sumblr, which is done by Shou
et al. [18]. In order to give a high quality summarization, they use a multi-stage
strategy, including online clustering, statistics gathering and topic modeling.
Although maintaining all useful statistics of all time points may enable Sumblr
effectively and efficiently identify summarization over the streamed tweets, the
growing size of statistics may become a bottleneck in practice.

2.3 Contextual Summarization

Other important characteristics such as the interactive information among users
also attract lots of intention. Because of the short-text problem of social media,
single microblogs can only provide limited information.

That contextual information can provide extra evidence for adjusting the
results output from machine learning approaches. For example, the contextual
information used by Gao et al. [10] is from the news media, providing the ref-
erence for topic modeling, which gives reliable summarization. Different from
directly using contextual information, Chakrabarti et al. [3] defined sub-events
as context and used Hidden Markov Model (HMM) to generate the summary.
Similar learning models have also been explored in [1,2,5]. They all benefit from
making use of various types of contextual features and improved effectiveness to
some extent, based on publicly available TREC1 datasets.

The work closest to us is done by Wang et al. [19], which utilizes the
relationships among users. Those relationships are similar to the interactions
we considered in microblogs. Their summarization approaches score individual
microblogs based on the linear combination of social and textual metrics. The set
of microblogs can maximize the influence will be the summary as results. How-
ever, it is known that learning techniques require more time in order to achieve
excellent performance for the accuracy of learning patterns, which is infeasible
to be applied over a large amount of microblogs.

3 Problem Formulation

In this section, we formally define the Summarization over Microblog Thread
(SMT) problem and the Continuous Summarization over Microblog Thread
(CSMT) problem. Notice that, SMT is a static version of CSMT, which is very
helpful for us to understand CSMT problem. For these purposes, we first give
the basic concept of Microblog Thread as preliminaries.
1 http://trec.nist.gov/.

http://trec.nist.gov/

516 L. Song et al.

3.1 Representation of the Microblogs

Definition 1 Microblog Thread. A Microblog Thread (MT) is represented
as a tree structure mt = (N,E, root), where N is the set of microblogs
{mb1,mb2, ...,mb|N |}, E is the set of edges representing the interactions between
microblogs (e.g., reply, forward) and root is the original microblog. The edges
connect those microblogs together as a whole information unit.

Definition 2 Microblog Dialogue. Microblog Dialogue is a path md = {mb1,
...,mbP} in mt, where mb1 is the root, and mbP is a leaf node in mt.

Thread Dialogue

Fig. 2. Types of microblogs

Figure 2 gives two example to illustrate MT and MD respectively. A path
from leaf to root corresponding to an MD, and it can be viewed as a storyline in
MT. Therefore, if a set of microblogs can best represent their current dialogues,
they should be a good summary for the whole microblog thread. From this point
of view, we define the SMT problem as follows:

Problem 1 Summarization over Microblog Thread (SMT). Given a MT
which contains a set of microblogs N = {m0, ...,mn−1}, a k which is the desire
size of summarization. SMT problem aims to return a set of k most representa-
tive microblogs.

S = arg max S∈NG(S), (1)

where S is the summary set and G is the objective function that used to quantify
the representativeness.

The core of SMT problem is how to evaluate the representativeness. Clearly,
an ideal summary of microblog thread should cover the most information for all
dialogues and meanwhile, maintain high diversity. However, quantitative analysis
of the information coverage in our problem is challenged, as it is hard to integrate
the contextual and textual information into one metric. To overcome this issue,
we simplify each dialogue in the same thread as a cluster, and assume that the
importance of any dialogue is equal. The coverage of summary can be defined
as follows:

Continuous Summarization over Microblog Threads 517

Coverage of summary. Let Dl ∈ D be a dialogue in MT and VS (or Vl) be
the set of keywords that extract from the summary set S (or Dl), the coverage
of summary in CSMT is

DCl =
|Vl ∩ VS | + 1

|Vl| + 1
, Vl ∈ Dl (2)

CC(S) =
∑|D|

l=1 DCl

|D| (3)

Diversity of summary. Diversity of summary metric is to minimize the redun-
dancy of selected microblogs.

Div(S) =

∑
j∈S arg mini∈S,i�=j(1 − Jaccard(mbi,mbj))

|S| (4)

So Diversity of any microblog in the current summary set is the dissimilarity
with the most similar microblog in the set. Jaccard is the Jaccard similarity of
the keywords in two microblogs.

Objective Function. We consider one possible realization of our optimization
goal. Because the targeted summarization is obtained by considering both Con-
tent Coverage (CC) and Diversity (Div), so a straightforward form is to linearly
combine both, which is:

G(S) = α × Div(S) + (1 − α) × CC(S), s.t.|S| ≤ k, (5)

in which CC(S) and Div(S) denote the content coverage and diversity, respec-
tively. α is a user-defined parameter, balancing between the content coverage
CC(S) and diversity Div(S). When a large value of α is used, our model favors
more diversified results, while a smaller α tends to have higher content coverage.

Definition 3 Microblog Stream. A microblog stream comprises a sequence of
microblogs, each denoted by a triple ms = 〈mt,mb, t〉, where mt and mb represent
microblog thread and microblog respectively, t denotes the post time of mb.

Intuitively, given a microblog stream about a certain microblog thread, our
goal is to continuously select a small number of microblogs from the stream that
can best represent this thread. Before we introduce the CSMT, we first introduce
the concept of sliding window.

Definition 4 Count Based Sliding Window over Microblog Stream.
Given W, τ , and microblog stream M = 〈mb0,mb1, ...〉, a sliding window is a
window that capture W microblogs in this range on the stream, each time shift
τ microblogs in the chronological order.

518 L. Song et al.

For example, it starts at win0 = {mb0, ...mbW−1}, and the next one is after
τ, win1 = {mbτ , ...mbW−1+τ}. It could also be time based, but we use count
based sliding window for instance.

Problem 2 Continuous Summarization over Microblog Thread
(CSMT). Let M = 〈mb0,mb1, ...〉 be an infinite sequence of microblogs that
belongs to an MT in order of arrival time, a sliding window wini, CSMT aims
to continuously feed the users k microblogs that ranked most representative in
the sliding window wini.

Even though microblogs in the thread come in sequence, each one of them
must have a reply or forward relationship with one of the previous microblog.
These relationships form the dialogues of the microblog thread. For example, in
Fig. 1(b), if W = 8 and τ = 4, then win1 = {mb5, ...,mb13}. Moreover, replies
of m10 to m5 and others are utilized in the process of our summarization.

Theorem 1. The Optimization problem of Eq. 5 is NP-hard.

Proof. The coverage equation is known as the NP-hard as in the dense k-subgraph
problem [9]. Moreover, the diversity equation is also proved that it is NP-hard [7].
Thus, the linear combination of both of them must be NP-hard. ��

4 Optimization of Objective Function

The goal of this section is to present algorithmic treatments for CSMT Problem.
Specifically, we first prove that CSMT Problem is the instances of the submod-
ular set function maximization with cardinality constraint problem. Based on
this, we propose a greedy algorithm with 1 − 1/e approximation factor to solve
it effectively.

4.1 Submodularity and Greedy Algorithms

Before we proceed, let us give a definition of the non-decreasing submodular set
function.

Definition 5 (SubModularity). A function f : 2Q → R is submodular if for
every Set A ⊆ B ⊆ Q and element i ∈ Q\B it holds that Δ(i‖A) ≥ Δ(i‖B).
Equivalently, a function f : 2Q → R is submodular if for every A,B ⊆ Q, f(A ∩
B) + f(A ∪ B) ≤ f(A) + f(B).

By the above definition, we show that the objective functions of CSMT Prob-
lem is non-decreasing and submodular.

Theorem 2. The objective function G(S) is monotonically non-decreasing sub-
modular set functions with G(∅) = 0.

Continuous Summarization over Microblog Threads 519

Proof. We first prove (P1). For any T1 ⊂ T2 and any given example x � T2, we
have

E1 = G(T1 ∪ x) − G(T1)
= Div(T1 ∪ x) − Div(T1) + CC(T1 ∪ x) − CC(T1)

= arg min
j∈T1

(1 − Jaccard(mbx,mbj)) + CC(T1) ×
∑

ki∈(DCl\T1)∩x ki∑
kj∈DCl

kj

= ΔDiv(T1) + ΔCC(T1) � 0

(6)

So we can prove that equation is monotonic. We have another: E2 = G(T2 ∪
x) − G(T2)

E2 − E1 = ΔDiv(T2) − ΔDiv(T1) + ΔCC(T2) − ΔCC(T1)
� ΔCC(T2) − ΔCC(T1)

(7)

Because T2 ⊃ T1, (DCl\T2) ≤ (DCl\T1). So we have ΔCC(T2)−ΔCC(T1) �
0. Thus E2 − E1 � 0. This Eq. 5 is submodular.

4.2 Greedy Algorithm

As discussed above, we present our algorithm for solving this problem and analy-
ses its performance with its complexity.

Our greedy algorithm exploits the two properties of the objective func-
tion, monotonicity and submodularity, to have a provably near-optimal solu-
tion. The algorithm iteratively expands the selections of microblogs by adding
the microblog that maximize the objective function. To have k results, our algo-
rithm requires k iterations.

Algorithm 1. Greedy Algorithm
1: procedure Greedy(mt, k)
2: //Find the microblog that has the best objective value each time.
3: |S| ← ∅,
4: while |S| < k do
5: scoremax ← 0, mbt
6: for t ∈ M do
7: scoret ← α × Div(S ∪ t) + (1 − α) × CC(S ∪ t)
8: if scoret > scoremax then
9: scoremax ← scoret, mbt ← t

10: S ← S.mbt
return S

Greedy Algorithm is a (1 − 1/e) approximation. For any monotone, sub-
modular function f with f(∅) = 0 it is known that an iterative procedure which

520 L. Song et al.

selects the element e with the maximal value of f(S ∪ e) − f(S) with S as the
elements selected so far has a performance guarantee of (1 − 1/e) ≈ 0.63 [16].

Complexity. The content coverage could be pre-calculated with a complexity
of O(|N × V |) and online merging with O(|V |), where V is the set of keywords
used in the Microblog Thread The diversity needs to be online calculated with
a complexity of O(|N |2 × V).

5 Continuous Summarization

When the Microblog Threads keep updating, a continuous summarization is
needed. In Sect. 4, we proposed our greedy algorithm based on the monotonic-
ity and submodularity of G(). However, new microblogs mb will come to the
thread and the full set will be changed into M1 = M0 ∪ mb. In order to avoid
re-summarizing over M1, we adapt greedy algorithm to solve the problem of
continuous summarization.

The challenges for continuous summarizations are: (1) The content of the
dialogue may be changed which means the summary coverage should be re-
calculated; and (2) During the calculation of the diversity, the most similar
pair of the summary microblogs may be removed. Thus, the new most similar
pair needs to be located. To solve the challenges, we propose the continuous
calculations of these two metrics.

5.1 Continuous Calculation of Content Coverage

When new microblogs δn come, the earliest microblogs δo will be removed. Let
the full set of MT be N and the summary set be S. If δo ∩ S �= ∅, then ∀mb ∈
S\(S ∩δo)∪δn, we need to re-score and then select the top ranked microblogs as
our candidates. Since the content coverage is calculated from dialogue coverage,
so if δn ∪δo are not belong to any dialogue that has no intersection with S, there
is no re-ranking process needed.

Slices of Dialogues. Since the window moves in a step of τ , we can process
the summary rank in the unit of τ for dialogues. We slice the microblogs that
are in the same τ steps together. For example, in Fig. 2 mb0,mb2 are sliced into
a group, so are mb6,mb8. During the calculations, we store the summary set
with the coverage of each τ for each dialogue. When the old set of δo are out
of the range for sliding window, we just need to reduce the keywords that are
unique in δo during the calculation of dialogue coverage for the S\So. In the
algorithm, we enumerate the slices instead of the whole set of microblogs. The
benefit is when we reduce or add microblogs, the calculation results could be
utilized rather than re-calculate all over again. For example, we set the τ = 4 in
the Fig. 2. Assume that the window size W=8, and k=3. First we calculate the
summary of mb0 to mb8, S = {mb3,mb2,mb5}. When the sliding window moves
to next step, we have mb0,mb1,mb2,mb3 removed and mb10,mb11,mb12,mb13

Continuous Summarization over Microblog Threads 521

added. Since mb3,mb2 are in the removed set, we will need to generate 3 new
summaries. We need to calculate the dialogue coverage of new 4 microblogs.
Based on Algorithm 2, during the calculation of the dialogue coverage for mb10,
we can store the calculation and reuse it when we update the mb5.

Algorithm 2. Update of the Dialogue Coverage
1: procedure Update of the Dialogue Coverage(S, DC,δ,Div)
2: //Update the results when the sliding window moves
3: So ∈ δo,Sr ← S\So, Sn ∈ δn
4: DC is the set of dialogue coverage for each of the summary.
5: for i ∈ δn do
6: DCi = Vi

VSr∪δn
, DCSr =

(VS\VSo∪Vδn)∩(VSr∪Vδn)

VSr∪Vδn
return DC

5.2 Continuous Calculation of Summary Diversity

Recall Eq. 4, it is calculated by the aggregated dissimilarities for each microblog
in summary with the most similar one in the set. When the δo are out of the
window, the most similar one could be removed for the S\δo. Fortunately,
we could solve this problem by storing the most similar pair by slices. For
each microblog in the summary set, we store the most similar pair ps(i) =
{mbslice0 , ...,mbslice|W/τ|} in each slice in arrival order. If the dissimilarity value
of mbslicej

is larger than mbslicej+1 , which means the mbslicej
will never be used.

Then we can just remove this one, until the dissimilarity of mbslicej
is smaller

than mbslicej+1 . When the δn microblogs come, we only update the similar pair
set of each S\So with the δn. For example, let us have ps(mb5) = mb1,mb7, if
the first τ = 4 microblogs are out of the sliding window, then the next most
similar pair for mb5 is mb7. However, if mb7 is more similar to mb5 comparing
to mb1, then the existence of mb1 is useless because it will never be used after
mb7 is out.

6 Experiments

In this section, we evaluate and compare our algorithms against two baselines:
(i) Lex-rank [8] and (ii) Sumblr [18]. All algorithms are implemented using
Python 2.7. Our experiments are performed on a machine equipped with a 3876
GHz CPU, 24 GiB memory, and running Linux OpenSuse 42.1. All experiments
are performed using SNAP Twitter dataset. The dataset is here2.

2 http://ow.ly/Dh5d307HVGj.

http://ow.ly/Dh5d307HVGj

522 L. Song et al.

6.1 Experimental Setup

Baseline methods. As is discussed, we can model MT as a bag of microblogs,
each of which is independent of each other. In this sense, existing summarization
methods can be applied to solve this problem. We consider two state-of-the-art
algorithms as our baseline methods: (i) Lex-rank [8] and (ii) Sumblr [18]. The lex-
rank method constructs a network based on the cluster of sentence similarity. A
random walk method is then applied to the graph, in order to select important
sentences based on the eigenvector centrality. Compared to Lex-rank, Sumblr
can generate summarization for the entire storyline. This is because this several
stage algorithm maintains statistics for all tweets at any arbitrary time point.
Individual summarizations at different time points are then combined using a
topic model proposed by the authors.

Parameter settings. In our experiments, there are three parameters. The first
one is α (in Eq. 5), which is used to balance the weight of dialogue information
gain and diversity of selected microblogs. The second parameter is k, which is
the number of microblogs to be identified. Usually, a larger k value leads to more
iterations in the summarization steps, which may be more time consuming. The
last parameter, n, is the total number of microblogs in one MT. We demonstrate
the sensitivity of our methods relative to the parameter changing by varying the
value listed in Table 1.

Table 1. The Parameter values used, and bolded ones are default values used.

Parameter Values

α 0.1, 0.3, 0.5, 0.7, 0.9

k 5, 10, 20, 40, 80

n 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150

Effectiveness measurement. We evaluate the effectiveness of the summariza-
tion algorithms from both information gain and the summary diversity. Let v
be the keyword, S be the summarization and N be MT, the information gain is
calculated as:

IG(S) =
|VS |
|VN | , (8)

which measures the keyword coverage between the summarization and the entire
MT, freq(v) is the frequency of keyword v. The diversity of the summarization
is calculated using Eq. 4.

6.2 Evaluating MT Summarization

Effect ofMTsize. We measure the effectiveness under the static settings, but the
conclusion can be similarly generated under the dynamic setting. Because the two

Continuous Summarization over Microblog Threads 523

Fig. 3. Effectiveness comparison when k = 5. “Greedy” is our proposed method and
the other two are considered baselines.

baselines merely consider content coverage, ignoring the fact of diversity, so we set
α = 0.0 for a fair comparison. Both diversity and information gain are measured
relative to the changing of MT size. When k = 5, the results are shown in Figure 3.

As is shown in the left of Fig. 3, our model consistently outperforms the two
baselines, regardless of the MT size. However, all three models show only slightly
observable changes in the measured diversity. Not surprisingly, the information
gains of all three methods decrease when the size of MT grows, and when it
reaches 50, which is the maximum size measured in this experiments, our meth-
ods is close to Lex-rank. Method “Sumblr” performs the worst amongst the
three, measured by both diversity and information gain.

Impact of α. As we discussed, the α affects the two measured effectiveness
parts, therefore, we explored how they will be affected when α varies, and the
results are shown in Fig. 4. The results confirm our idea that α is a knob that
trade-offs between information gain and diversity. It is shown in the first of
Fig. 4 that when α becomes larger, the diversity also increases, and, correspond-
ingly, the information gain decreases. However, the diversity is more sensitive to

Fig. 4. The impact of α on the effectiveness, each dot is the measured effectiveness
averaged across the n values listed in Table 1.

524 L. Song et al.

parameter α comparing to the information gain. But when α decreases from 0.7
to 0.9, there is a sharp drop in the information gain.

6.3 Comparing Efficiency and Scalability

Efficiency of summarization. We first consider the time consumption when
varying MT size (N), as shown in the first of Fig. 5. The results indicate that, Lex-
rank is the most expensive one, because of the random walk process is applied to
the entire graph that is constructed from similar sentences. Sumblr is the most
efficient algorithm, which is, not surprisingly, because this algorithm maintains
microblogs statistics at arbitrary time point. Our proposed method is close to
Sumblr and consistently outperforms Lex-rank. However, we don’t maintain all
statistical information which makes our algorithm more practical in coping with
streaming data. Moreover, considering the effectiveness measured in Fig. 3, our
algorithm achieves a better effectiveness with a little sacrifice in the efficiency.

Impact of k. We fix all our other settings to default values in Table 1 and then
proceed to explore the time cost w.r.t. parameter k, as is shown in the RHS of
Fig. 5. Because of k represents the number of desired representative microblogs,
therefore, the time cost should increase as k goes larger, which is confirmed in
our experiments.

Impact of parameters in the continuous setting. As we defined, the sliding
window settings in CSMT problem contain two parameters: step size (τ) and
window size (W). Same as previous, we fixed all of our other parameters to the
default values listed in Table 1. The trend in Fig. 5 still holds in this experiments:
that Lex-rank is the most expensive solution; that the Sumblr performs the best
and our proposed method is close to the best performance.

In the first figure, the τ has a huge impact on Lex-rank while another two
methods are relatively stable to this change. When varying the window size, all
three methods show measurable changes in terms of efficiency. Still, the Lex-rank

Fig. 5. Total time cost of summarization algorithms. The first figure shows the time
cost (millisec) on all MTs, when varying MT sizes (labeled as N). The second figure
shows the impact of parameter k on the time cost.

Continuous Summarization over Microblog Threads 525

Fig. 6. Impact of τ (LHS) and W (RHS) on the efficiency of solutions to continuous
summarization. The time cost is averaged by the total number of MTs.

is the most sensitive one relative to the parameter, while our proposed method
is competitive to the best one, especially when a smaller window size is used
(Fig. 6).

7 Conclusion

This paper proposed techniques to support a user to continuously get the sum-
maries of a microblog thread in the microblog stream. Based on the different sce-
narios, we formally defined two problems: Summarization over Microblog Thread
and Continuous Summarization over Microblog Thread. Both of them are related
to the selection of a subset that could maximum the dialogue coverage and diver-
sity. We showed that both problems are intractable. Hence, we developed greedy
algorithm for the approximation with performance guarantees. Our evaluation
showed that our technique outperforms two baselines Lex-rank and Sumblr on
information gain and diversity, without the lose of much efficiency.

In future work, we plan to explore from two directions: incorporating relation-
ships between the dialogues into more sophisticated models for higher effective-
ness, and we will consider to apply stream based algorithms in order to improve
the efficiency.

Acknowledgement. This work was partially supported by ARC DP170102726,
DP170102231 and National Natural Science Foundation of China (NSFC) 91646204.

References

1. Bian, J., Yang, Y., Chua, T.-S.: Multimedia summarization for trending topics in
microblogs. In: Proceedings of the CIKM, pp. 1807–1812 (2013)

2. Bian, J., Yang, Y., Zhang, H., Chua, T.-S.: Multimedia summarization for social
events in microblog stream. IEEE Trans. Multimedia 17(2), 216 (2015)

3. Chakrabarti, D., Punera, K.: Event summarization using tweets. In: ICWSM, vol.
11, pp. 66–73 (2011)

526 L. Song et al.

4. Chang, Y., Wang, X., Mei, Q., Liu, Y.: Towards twitter context summarization
with user influence models. In: Proceedings of the WSDM, pp. 527–536. ACM
(2013)

5. Chen, Y., Zhang, X., Li, Z., Ng, J.P.: Search engine reinforced semi-supervised
classification and graph-based summarization of microblogs. Neurocomputing 152,
274–286 (2015)

6. Chua, F., Asur, S.: Automatic summarization of events from social media. In:
ICWSM (2013)

7. Drosou, M., Pitoura, E.: Dynamic diversification of continuous data. In: Proceed-
ings of the EDBT, pp. 216–227 (2012)

8. Erkan, G., Radev, D.R.: Lexrank: graph-based lexical centrality as salience in text
summarization. J. Artif. Intell. Res. 22, 457–479 (2004)

9. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica
29(3), 410–421 (2001)

10. Gao, W., Li, P., Darwish, K.: Joint topic modeling for event summarization across
news and social media streams. In: Proceedings of the CIKM, pp. 1173–1182 (2012)

11. Hasanain, M., Elsayed, T.: QU at TREC-2014: online clustering with temporal
and topical expansion for tweet timeline generation. Technical report (2014)

12. Khan, M., Bollegala, D., Liu, G.: Multi-tweet summarization of real-time events.
In: Proceedings of the SocialCom, pp. 128–133 (2013)

13. Li, J., Cardie, C.: Timeline generation: tracking individuals on twitter. In: Pro-
ceedings of the WWW, pp. 643–652 (2014)

14. Lin, J., Efron, M., Wang, Y., Sherman, G.: Overview of the TREC-2014 Microblog
track. In: Proceedings of the TREC (2014)

15. Magdy, W., Gao, W., Elganainy, T., Wei, Z.: QCRI at TREC 2014: applying the
kiss principle for the TTG task in the microblog track. Technical report (2014)

16. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions. Math. Program. 14(1), 265–294 (1978)

17. Ren, Z., Liang, S., Meij, E., de Rijke, M.: Personalized time-aware tweets summa-
rization. In: Proceedings of the SIGIR, pp. 513–522 (2013)

18. Shou, L., Wang, Z., Chen, K., Chen, G.: Sumblr: continuous summarization of
evolving tweet streams. In: Proceedings of the SIGIR, pp. 533–542 (2013)

19. Wang, C., Yu, X., Li, Y., Zhai, C., Han, J.: Content coverage maximization on
word networks for hierarchical topic summarization. In: Proceedings of the CIKM,
pp. 249–258 (2013)

20. Zhao, X.W., Guo, Y., Yan, R., He, Y., Li, X.: Timeline generation with social
attention. In: Proceedings of the SIGIR, pp. 1061–1064 (2013)

Drawing Density Core-Sets from Incomplete
Relational Data

Yongnan Liu(B), Jianzhong Li, and Hong Gao

Harbin Institute of Technology, Harbin, China
{liuyn,lijzh,honggao}@hit.edu.cn

Abstract. Incompleteness is a ubiquitous issue and brings challenges
to answer queries with completeness guaranteed. A density core-set is
a subset of an incomplete dataset, whose completeness is approximate
to the completeness of the entire dataset. Density core-sets are effective
mechanisms to estimate completeness of queries on incomplete datasets.
This paper studies the problems of drawing density core-sets on incom-
plete relational data. To the best of our knowledge, there is no such pro-
posal in the past. (1) We study the problems of drawing density core-sets
in different requirements, and prove the problems are all NP-Complete
whether functional dependencies are given. (2) An efficient approximate
algorithm to draw an approximate density core-set is proposed, where an
approximate Knapsack algorithm and weighted sampling techniques are
employed to select important candidate tuples. (3) Analysis of the pro-
posed approximate algorithm shows the relative error between complete-
ness of the approximate density core-set and that of a density core-set
with same size is within a given relative error bound with high probabil-
ity. (4) Experiments on both real-world and synthetic datasets demon-
strate the effectiveness and efficiency of the algorithm.

Keywords: Data quality · Density core-sets · Incomplete data · Query
completeness estimation

1 Introduction

Incompleteness is a ubiquitous issue [24] on relational datasets, which severely
affects business [26], and brings new challenges to operations over them [4,7,11,
23] as well. Besides time complexity of processing queries on incomplete data,
completeness of query answers [23] is an emerging data quality problem. Low
completeness of query answers leads to biased answers to queries, which may
do harm to follow-up or potential applications [11]. To fix the missing values,
data imputation [25] or data repairing [12] methods are extensively studied. But
usually, such methods are continuous time-consuming tasks, and the number of
missing values can be fixed can not be estimated ahead. Therefore, queries on
incomplete data can not be answered fast with completeness guaranteed using
these methods.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 527–542, 2017.
DOI: 10.1007/978-3-319-55699-4 32

528 Y. Liu et al.

In this paper, small subset, drawn from original dataset, is proposed to esti-
mate the completeness of queries on incomplete data fast. Given queries, such
small subset provides ratio of complete values fast, which is approximate to the
ratio of complete values on the original dataset. Such small subset is called a
density core-set. There may be many density core-sets on the original dataset,
and any of them can give similar completeness information. Density core-sets
are like indexes on datasets, which are drawn for frequently posed queries. With
a density core-set, methods based on bootstrap [20] can estimate completeness
of queries quickly.

Besides the size constraint of density core-sets, there are other challenges to
draw density core-sets. To estimate accurately, a density core-set should contain
various tuples. Moreover, density core-sets should consider real complete values,
since some missing values can be determined by taking advantage of functional
dependencies [5]. Usually, there is only one candidate for a missing value in some
databases, such as scientific databases. And that there are multiple candidates for
one missing value is not considered in this paper. Such number of real complete
values can give a lower bound of number of missing values repaired by rule-based
repairing methods [12]. Therefore, completeness of a density core-set can be used
to estimate completeness of query answers and improvement of query answers
by some repairing methods, which avoids useless queries and data repairing or
imputation methods.

The idea of answering queries based on core-sets stems from [2]. But exist-
ing methods [2,15,19] to draw core-sets only consider numeric attribute val-
ues, which cannot be used in recommendation systems [10] including categoric
attribute values. Moreover, these methods do not consider challenges from miss-
ing values, which cannot be used to estimate completeness of query answers on
incomplete data.

Methods based on sampling [3,8,9,22] can only process aggregate queries on
numeric attribute values. Therefore, these methods lose many features of differ-
ent categories of tuples, which cannot answer queries like group-by. Congressional
sampling [1] can answer group-by queries, but like other sampling-based meth-
ods, does not consider biases from missing values on the samples. Therefore,
some samples cannot provide sufficient information for query answers.

To overcome the drawbacks of existing methods, we propose density core-sets
to approximately show the completeness of tuples of interest. By taking advan-
tage of functional dependencies, a scoring function is designed to measure the
number of real complete values and a cost function is designed to measure the
cost of fixing missing values. When missing values are missing completely at ran-
dom [21], an efficient approximate algorithm is proposed to draw an approximate
density core-set, where approximate equi-depth histograms [6] are constructed
to estimate some real complete values efficiently, and a sampling strategy based
on an approximate knapsack algorithm [16] controls the relative error of com-
pleteness between the approximate density core-set and a density core-set with
the same size. The main contributions of this paper are summarized as follows:

Drawing Density Core-Sets from Incomplete Relational Data 529

1. Density core-sets used to show completeness of tuples of interest are firstly
investigated, where functional dependencies can be employed to accurately
show real completeness of a dataset. The problems of drawing a density core-
set in different requirements are proved to be NP-Complete.

2. An efficient approximate algorithm to draw an approximate density core-set
is proposed, where relative error of completeness between the drawn approx-
imate density core-set and a density core-set with the same size is proved to
be within given error bound with high probability.

3. Experiments over real-world and synthetic datasets demonstrate the proposed
algorithm effective and efficient.

2 Problem Definition and Computational Complexity

In this section, we first introduce a definition of a density core-set, and then
we propose problems of drawing a density core-set under different properties,
followed by theorems giving time complexity of each problem.

To give definitions, we introduce following symbols. The density core-set of
a dataset T is denoted by TCD, and the completeness of the dataset T , denoted
as Cpl (T), is defined as below:

Cpl (T) =

∑
t∈T

∑
A

C (A)

mn

where C(A) denote the completeness of an attribute A: C(A) is 1, if the value
of attribute A on a tuple t is determined as not missing given a functional
dependencies set F , otherwise C(A) is 0. And m is the number of attributes on
the dataset T , where the size of T is n, i.e. |T | = n. The symbol T d denotes the
dataset where another d tuples are inserted into the dataset T .

Definition 1 (Density Core-set-A). Given a relational dataset T , the
attributes A = {Aj}, 1 ≤ j ≤ m, a functional dependencies set F , ε ∈ (0, 1], and
positive integers d and k, a density core-set TCD is a subset of original dataset
with minimum size satisfying:

1. (Property A) the completeness of the density core-set is approximate to that
of the entire dataset, i.e., |Cpl (T) − Cpl (TCD)| ≤ ε,

2. (Property B) there are at least k attributes, on which there is at least one
complete value,

3. (Property C) the completeness of current density core-set can be improved
after d tuples are read, i.e., Cpl

(
T d

CD

) ≥ Cpl (TCD).

In the definition above, the property A is the density property, which con-
tributes to estimation of completeness of query answers on incomplete data, and
property B makes a density core-set contain different categories of tuples, and
property C makes a density core-set can provide more accurate answers if more
time cost is permitted.

530 Y. Liu et al.

Property C seems to increase the hardness of drawing a density core-set, and
sometimes no extra time is provided. Therefore, without property C in the first
definition, a new density core-set can be defined, which is called Density Core-
set-B. Though property C is removed, the hardness of drawing such a density
core-set is proved to be not easier.

Property B seems to only keep one complete value, which may not contain
sufficient information under some applications. Therefore, one may ask for more
fruitful complete values on density core-sets, which gives rise to another new
density core-set, called Density Core-set-C, by only changing property B in Def-
inition 1 into a new property B’ that there are at least k attributes, on which
there are at least h complete values, with an extra input positive integer h.

The problem of drawing a density core-set is to draw a Density Core-set-A,
Density Core-set-B, or Density Core-set-C from original dataset under different
properties. The hardness of the three problems is given below. Due to space
limit, proofs are omitted. The three problems can be reduced from SetCover
problem with tuples constructed from given sets.

Theorem 1. Whether functional dependencies are given or not, drawing a Den-
sity Core-set-A of size N is NP-Complete.

Theorem 2. Whether functional dependencies are given or not, drawing a Den-
sity Core-set-B of size N is NP-Complete.

Theorem 3. Whether functional dependencies are given or not, drawing a Den-
sity Core-set-C of size N is NP-Complete.

3 Drawing an Approximate Density Core-Set

Since the problem of drawing a density core-set under different properties is
NP-Complete, we shall propose an efficient approximate algorithm to draw an
approximate density core-set. With given high probability, the relative error
between completeness of drawn approximate density core-set and a density core-
set with the same size is within the given relative error bound if the assumption
of random missing [21] holds.

Intuitively, though some missing values can be determined by given functional
dependencies (FDs for short), it takes a long time to determine all the missing
values. Though there are strategies, such as blocking or grouping, can cluster
tuples sharing the same values in the left-hand-side of an FD, it’s hard to choose
grouping keys to make the cluster small enough to determine the missing values
fast, due to large size of various values on categoric attributes. To efficiently draw
an approximate density core-set, only some missing values should be determined.
Moreover, it’s necessary to draw sufficient tuples to guarantee that the relative
error is not too large.

Therefore, approximate equi-depth histograms [6] are efficiently constructed
to control the number of missing values determined. And an approximate

Drawing Density Core-Sets from Incomplete Relational Data 531

knapsack algorithm is employed to select sufficient tuples for small relative error
of completeness with a scoring function and a cost function designed based on
given FDs.

In this section, two functions based on given FDs are designed to measure
importance of a tuple, which are used for the approximate knapsack algorithm.
Based on this, an approximate algorithm ADC with approximate histograms
constructed are proposed to draw an approximate density core-set efficiently.
And then, the analysis of the proposed approximate algorithm is shown.

3.1 Measuring Importance of a Tuple

In this subsection, a scoring function and a cost function based on given FDs are
designed to measure the completeness of a tuple, and the time cost of determining
all the missing values.

A Scoring Function. Given FDs, a tuple t can be partitioned into three parts
on attributes. The first part, denoted as A(t), contains the values of attributes
not involved in any FD, where the number of complete values is denoted as
CA(t). And the missing values in this part cannot be determined easily unless
more knowledge is provided. The second part, denoted as Key(t), contains the
values of attributes involved in the left-hand side of an FD, where the number of
complete values is denoted as CKey(t). And if any one of such values is missing,
the tuple cannot find other tuples sharing the same values of left-hand side
attributes on the FD. The third part, denoted as V al(t), contains the values
of attributes involved in the right-hand side of an FD, where the number of
complete values is denoted as CV al(t). And missing values can be determined
by complete values in other tuples sharing the same V al(t). Therefore, a score
of a tuple is a weighted sum of the number of complete values in the three parts.
But due to the analysis of the proposed algorithm shown below, the weight of
the three should be 1 to guarantee that the property A holds. Therefore, given
FDs, a score of a tuple, denoted as V (t), is given by the function below:

V (t) = CA (t) + CKey (t) + CV al(t) (1)

Since some missing values will be determined in the approximate histograms,
the score gives an estimate of real completeness of a tuple, which contributes to
the real completeness of the approximate density core-set.

A Cost Function. Since determining all the missing values by given FDs
takes a long time, only some of them should be determined accurately by the
approximate histograms based on given FDs, which makes many tuples still
contain missing values. To estimate the completeness accurately, tuples with
higher score and fewer missing values should be selected for the approximate
density core-set.

Due to the analysis of the proposed algorithm shown below, the cost of a tuple
should be number of missing attribute values in the tuple plus 1. But to invoke

532 Y. Liu et al.

the approximate knapsack algorithm [16], the cost should be normalized. In [16],
the authors consider an approximate knapsack problem of picking maximum sum
of profits of items with given total weights no more than a constant, where total
weight of input items is normalized to 1.

3.2 An Approximate Algorithm

With the importance of each tuple measured, and some extra parameters used
in the construction of approximate equi-depth histograms, an approximate algo-
rithm ADC is proposed in Algorithm 1. Since not all the missing values are
determined, the real completeness of the entire dataset cannot be known, and a
density core-set has to be drawn based on such incomplete information, which
makes completeness of a density core-set can be below the real completeness of
the entire dataset. But as is shown in the analysis in Subsect. 3.3, with sufficient
tuples, relative error between completeness of the approximate density core-set
and completeness of a density core-set can be small.

Algorithm 1 gives steps to draw an approximate density core-set. Step (1) the
algorithm first constructs an approximate equi-depth histogram for each FD, and
the missing values are contained in such a histogram; Step (2) the missing values
in the first half of each bucket are determined accurately after sorting the values
in the same bucket, since tuples sharing the same value of left-hand side of the
same FD contain the same value of right-hand side of the same FD. The values
that are not determined accurately are called tail values; Step (3) both the scores
and costs are computed by the functions given in Subsect. 3.1. And the scores
and costs are normalized for the approximate knapsack algorithm [16]; Step (4)
given an error bound ε, probability δ, and other information from normalized
costs and scores, the size of tuples for constructing a new Knapsack instance can
be computed. By algorithm Knapsack in [16], the approximate Knapsack algo-
rithm can find better tuples by their scores and costs, where sample size is at least⌈
1000 ε−4 log ε−1

⌉
, given the constraint WeightBound on the total weight. But

to make the relative error small, the sample size in the approximate knapsack

algorithm Knapsack should also be at least
φ2

δ/2

ε2

(
1

inf(hj)
× 1

N × sup(hj)
inf(sj)

− 1
)

as
the analysis shown in Subsect. 3.3, where φδ/2 is the δ/2 fractile of the standard
normal distribution, and inf(hj) and sup(hj) are the minimum and maximum
number of the complete tail values in a tuple respectively, and inf(sj) is the
minimum cost and N is the number of total tuples in D. Then the algorithm
Knapsack returns small size of tuples whose total score is within the given rela-
tive error bound. And such tuples are the approximate density core-set, whose
completeness is within the given relative error bound as the analysis shows in
Subsect. 3.3. The size of approximate density core-set can be very small rela-
tive to the entire dataset as the experimental results show in Sect. 4, since the
algorithm Knapsack reconstructs a new knapsack problem instance.

Note that in Step (1) of Algorithm1, the parameters εh and δh are used to
control the differences between the heights of buckets in an approximate equi-
depth histogram and the heights of buckets in an equi-depth histogram. Since

Drawing Density Core-Sets from Incomplete Relational Data 533

Algorithm 1. ADC
Input : a relational dataset D, where |D| = N , a functional dependencies set

F , real number εh, ε > 0, δh, δ > 0, WeightBound > 0, integer k > 0
Output: An approximate density core-set Sol

1: Sol ← φ;
// Construct approximate histograms for each FD

2: for each tuple t in D do
3: for each FD f in F do
4: Sample enough tuples, as in Theorem 5 in [6], to find separator values

between buckets;
5: Construct an approximate equi-depth histogram H based on the value

of left-hand side of f , with buckets number k, error bound εh and
probability δh;

// Determine some missing values

6: for each histogram H do
7: for each bucket b in first half of all buckets in H do
8: sort the values in b, determine the missing values;
9: for the last bucket, if the next buckets containing the same value of

left-hand side as in the last bucket, determine them as well;

// Measure importance of each tuple

10: for each tuple t in D do
11: compute score and cost of t according to functions in Subsect. 3.1;

12: Normalize the score and cost of each tuple such that both total score and total
cost are 1, and the normalized set is denoted as INor;
// Draw an approximate density core-set

13: As is shown in [16], the Algorithm Knapsack takes as input
(X = (INor, WeightBound), ε), where the sample size |I| in the algorithm
should be changed, which satisfies

N ≥ |I| ≥ max

(

⌈

1000ε−4 log ε−1
⌉

,
φ2

δ/2
ε2

(

1

inf(hj)
× 1

N
× sup(hj)

inf(sj)
− 1

))

, and

returns the approximate solution Sol;
14: return Sol;

the number of tuples to be determined accurately in Line 6 is also an approx-
imate number, the differences are not necessarily very small. For example, in
experiments εh is set to be 0.4 and δh is set to be 0.4. In Step (2) of Algorithm1,
only first half of missing values is accurately determined for efficiency. With more
missing values determined, the density core-set can be better approximate to the
real completeness of the entire dataset, but more time is required, which may
make it impossible to fast estimate the completeness of a query. The constraint
WeightBound on total weight cost controls the costs of tuples, which also pro-
vides a way to control the size of the approximate density core-set. Since hj is
the number of complete tail values in a tuple, inf(hj) is at least 1, and sup(hj)
is at most m.

534 Y. Liu et al.

3.3 Analysis of the Approximate Algorithm

In this subsection, we shall analysis the relative error between the approximate
density core-set and a density core-set with the same size. To show the analysis
result, an assumption of random missing and a definition of (ε, δ) - approximation
are introduced. And based on these, two theorems will be proposed.

An Assumption of Random Missing. If values are randomly missing [21],
then the tail values are randomly missing, so the average number of complete
values in the tail values is approximate to the average number of complete values
in the tail values in a density core-set, which is the case that there are few values
in the tail values, or the tail values are almost complete. The assumption can
be satisfied on some dataset from relative high-completeness database such as
Wikipedia and DBLP.

Therefore, the completeness of an approximate density core-set can be
defined as

Ĉ =
V̂ + |S| × l × L̂

|S| × m
=

V̂

|S| × m
+

l × L̂

m
(2)

where V̂ is the completeness of the values that are not in the tail values as in the
scoring function in Eq. (1), and L̂ is the average number of complete tail values
in a tuple, and l is the average number of tail values contained in a tuple, and
S is the approximate density core-set with m attributes. And the completeness
of a density core-set with the same size is defined as

C =
V + |S| × l × L

|S| × m
(3)

where the variables are the counterpart in a density core-set with the same
size |S|.
Definition 2. ((ε, δ) - approximation) Î is called as an (ε, δ) - approximation
of I if Pr

(∣∣∣ Î−I
I

∣∣∣ ≥ ε
)

≤ δ for any ε ≥ 0 and 0 ≤ δ ≤ 1, where Pr(X) is the
probability of a random event X.

Two Estimators. Since the completeness of the approximate density core-set
can be partitioned into two variables: V and L, and the first variable has an
(ε, 1

3) - approximation [16], we should design an (ε, δ) - approximation estimator
for the second variable. With the assumption of random missing, an estimator
of the second variable is given below:

L̂ =
1

|S| × N
×

|S|∑

j=1

hj

sj

where variables are defined as in Subsect. 3.2. Sufficient tuples should be sampled
to make L̂ is an (ε, δ) - approximation of L. And the size of sampled tuples is
given in Theorem 4.

Drawing Density Core-Sets from Incomplete Relational Data 535

Theorem 4. The estimator L̂ defined as below is an (ε, δ) - approximation of

L, L̂ = 1
|S|×N ×

|S|∑
j=1

hj

sj
, if the size of sampled tuples, denoted as |S|, satisfies:

|S| �
φ2

δ/2

ε2

(
1

inf (hj)
× 1

N
× sup (hj)

inf (sj)
− 1

)

where variables are defined as in Subsect. 3.2.

Combining Two Estimators. By setting proper parameters in the two esti-
mators, an (ε, δ) - approximation of the completeness of a density core-set can
be obtained, as is shown in Theorem 5.

Theorem 5. If V̂ is an (ε, 1
3) - approximation of V , and L̂ is an (ε, δ − 1

3) -
approximation of L, then Ĉ as in Eq. (2) is an (ε, δ) - approximation of C as in
Eq. (3). where

C =
V + |S| × l × L

|S| × m

Theorem 6. Time complexity of algorithm ADC is O(N), where N is the num-
ber of tuples in the dataset.

4 Experimental Results

In this section, we will show the experimental results of the proposed algorithm
ADC on different datasets with different parameters. All the experiments are
implemented on a Microsoft Windows 7 machine with an Intel(R) Core i5-2400
CPU 3.1 GHz and 4 GB main memory. Programs are compiled by Microsoft
Visual Studio 2013 with C++ language. Each program is run 10 times on the
same dataset to show stability, and the time cost given below is the average time
cost. The completeness is defined as in Sect. 2.

4.1 Datasets

DBLP Proceedings. The real-world data set is extracted from DBLP1 dataset
of size 1.72 G. We built a relation Conf consisting of all extracted conference
information and a relation Proc consisting of all extracted proceeding informa-
tion. Based on these two relations without changing any value, we built the
relation DBLP for the experiments. The statistics of relations used in the exper-
iments are shown in Table 1. The DBLP consists of 8 attributes, which shows the
Author and the Title of a paper, the Conf where the paper presented, the Year
when the conference was held, the title of the proceedings (Btitle), the Editor

1 DBLP data from http://dblp.uni-trier.de/xml/. Since DBLP is always updating, the
data set was downloaded on July 30, 2016.

http://dblp.uni-trier.de/xml/

536 Y. Liu et al.

of the proceedings and the press where the proceedings were published(Pub).
And ID is an identifier of each tuple. There are three functional dependencies:
(Conf ,Year) → Btitle, (Conf ,Year) → Pub, (Conf ,Year) → Editor . The com-
pleteness of the relation Conf is 0.948, and the completeness of the relation
Proc is 0.996. The completeness of the relation DBLP is 0.938, while the real
completeness given by taking advantage of FDs is 0.992.

Table 1. Statistics of relations used in the experiments

Relation name # of tuples # of attributes Size (×1 MB)

Conf 30794 5 7.8

Proc 1819273 6 378.1

DBLP 1819273 8 425.1

Cars Information. The relation Cars are crawled from a website2 providing
services on cars. Without changing any value, we built the relation Cars includ-
ing information from dealers selling new cars. The relation Cars consists of 8
attributes of a dealer: name, stock, star-rate, ratings, location, distance from
the main company, phone number, and email. There are 542850 tuples in this
relation, and the size is 162 MB. To investigate performance of our algorithm
without FDs, no FDs are considered in this relation. But to evaluate all parts
of our algorithm, a trivial FD: name → name is used. The completeness of
the relation Cars is 0.843, which is also the real completeness, since there are
actually no FDs.

Synthetic Relations. To evaluate efficiency of our algorithm ADC, we gener-
ate a collection of synthetic relations with size varying from 1310 K to 394 M.
The synthetic datasets are generated in two steps. First, there are 2×104 tuples
with complete attribute values; Second, there are other tuples with incomplete
attribute values, where a value at any attribute is missing with probability
0.2. And there are different numbers of FDs on different attributes on differ-
ent dataset. Detailed information are shown in Subsect. 4.3.

4.2 Experiments on Real Datasets

In this subsection, we shall show the experimental results on the two real
datasets: DBLP and Cars. We shall evaluate our algorithm by three measures:
accuracy, efficiency and size of the approximate density core-set. Accuracy mea-
sures the relative error between the completeness of the approximate density
core-set and the real completeness of the entire dataset, since the completeness of
the approximate density core-set is approximate to the completeness of a density

2 http://www.cars.com.

http://www.cars.com

Drawing Density Core-Sets from Incomplete Relational Data 537

core-set with the same size. Efficiency measures the time cost of our algorithm
ADC, and Size measures the size of the approximate density core-set drawn by
our algorithm ADC, which also measures the possibility that the approximate
density core-set contains various tuples. Since the parameter WeightBound bor-
rowed from the knapsack algorithm controls the efficiency and size, experiments
with different WeightBounds are conducted to observe the impacts of Weight-
Bound on the three measures. Since approximate equi-depth histograms are used
to control approximate number of tuples determined by given FDs, εh is set to
be 0.4, which is f in [6], δh is set to be 0.4, and buckets number k is 10000 in all
the experiments on the two real datasets, which makes the approximate equi-
depth histograms contribute to the three measures equally and efficiently. To
tackle the problems from the incomplete data, a simple method is to remove the
tuples containing missing values, which is the first step of the baseline algorithm
to prepare complete tuples for density core-sets selection. Since there are no
other algorithms to select approximate density core-sets, the baseline algorithm
invokes our algorithm ADC to select approximate density core-sets.

Accuracy. To investigate accuracy of our algorithm given relative error bounds,
we ran a group of experiments, as is shown in Fig. 1(a), where WeightBound is
set to be 1.0 both in DBLP and Cars, and the failure probability δ is set to be
0.41. The required relative error bound shown varies from 0.01 to 0.1, which is
actually from 0.07 to 0.7, since algorithm Knapsack should be invoked by given
ε
7 to obtain a ε error bound with the optimal value [16].

As is depicted in Fig. 1, actual relative errors are all within the required
relative error bound. As the required relative error bounds get bigger, the actual
errors become bigger. Notice that the actual error on Cars is smaller than that
on DBLP, since there are more missing values can be determined by given FDs
on DBLP. The baseline algorithm obtain smaller actual error on both datsets,
but there are two points should be noticed. One is that the actual error trends
of both datasets are not obvious, which makes it hard to estimate the actual
error, and the other is that the actual completeness of DBLP is very close to 1,
which makes it easier to get a smaller actual error.

Fig. 1. Experimental results on DBLP and Cars with required relative error varying

538 Y. Liu et al.

Efficiency. To investigate efficiency of our algorithm, we ran a group of experi-
ments with the same parameters as in Accuracy, and the results are depicted in
Fig. 1(b).

As is depicted in Fig. 1(b), the values of time cost are almost the same on
each dataset. Actually, the Knapsack only constructs a few items for further
computation to draw an approximate density core-set, which takes a little time
compared to the whole time cost. But other steps take too much time, which
makes the time cost vary a little. For example, in Fig. 1(b), when required error
shown is 0.04 on the DBLP dataset, only 600 new items are constructed by
Knapsack, and they are all drawn as an approximate density core-set, which
takes only a little time, i.e., 3.791 s, compared to the total time cost 79.166 s.
Therefore, if the first three steps can be finished offline, then the approximate
density core-set can be drawn online, which makes it possible to estimate the
completeness of a given query fast. The baseline algorithm takes less time since
there are no missing values to determine.

Size. To investigate the sizes of approximate density core-sets drawn by ADC,
we ran a group of experiments with the same parameters as in Accuracy, and
the results are depicted in Fig. 1(c).

As is depicted in Fig. 1(c), the size becomes smaller as the required error
bound grows. Since the larger required error bound makes the items constructed
by Knapsack become smaller [16], there are fewer candidate tuples, which makes
the sizes of approximate density core-sets even smaller. The sizes of approximate
density core-sets obtained by the baseline algorithm are almost the same as our
algorithm, since the two algorithms share the same selection algorithm. Notice
that sometimes the sizes of approximate density core-sets are even smaller than
the size given by Theorem 4. Because the algorithm Knapsack reconstructs a new
knapsack problem instance, whose completeness can be estimated by smaller
tuples.

Impacts of WeightBound. As mentioned above, the parameter WeightBound
controls the sizes of approximate density core-sets as well. To investigate the
impacts of WeightBound on the three measures, we ran a group of experiments

Fig. 2. Experimental results on DBLP and Cars with WeightBound varying

Drawing Density Core-Sets from Incomplete Relational Data 539

on the two real datasets with WeightBound varying from 0.1 to 1.2. ε is set to
be 0.02 and δ is set to be 0.41. The results are depicted in Fig. 2.

As is depicted in Fig. 2(a), the actual error is getting smaller with Weight-
Bound grows, and stays at the same value when WeightBound is too big, which
begins after 1.0. Since bigger WeightBound permits more samples, the actual
error become smaller. And this stops at a large WeightBound, since all the tuples
reconstructed are selected. Since the baseline algorithm actually estimates the
completeness of complete dataset, i.e., 1 actually, the trends of actual error are
not obvious, which makes it hard to give a proper WeightBound.

Figure 2(b) depicts the values of time cost. Though WeightBound can control
the size of an approximate density core-set, the first three steps take most of the
time cost, which makes the time cost almost the same, as is mentioned above.

The sizes of each approximate density core-set are depicted in Fig. 2(c). As
the WeightBound grows bigger, more tuples are permitted into the approximate
density core-set on both datasets. Bigger WeightBound permits more samples,
but this stops at a too large WeightBound, since all the tuples reconstructed are
selected.

4.3 Experiments on Synthetic Relations

In this subsection, we shall show the experimental results on synthetic relations.
There are two groups of datasets. One contains 8 attributes, and the other
contains 10 attributes, denoted as Att-8 and Att-10 respectively. To evaluate
scalability of our algorithm, two groups of dataset were generated with tuples
from 2×104 to 4×106. For all experiments on synthetic datasets, ε is set to
be 0.02, which mean the relative error bound is 0.14, δ is 0.41, WeightBound
is set to be 0.95, εh is set to be 0.4, δh is set to be 0.4, and buckets number
k is 10000. Three FDs are specified between attributes. And the experimental
results of the three measures are depicted in Fig. 3, where the x-axis shows the
logarithmic results of the tuples’ number, and only the y-axis in Fig. 3(b) shows
the logarithmic results of the TimeCost.

As is shown in Fig. 3(a), all the values of actual error are in the required
error bound, i.e., 0.14. The values of actual error slightly change as the number
of tuples grows, since missing values are randomly introduced.

Fig. 3. Experimental results on synthetic datasets

540 Y. Liu et al.

As is shown in Fig. 3(b), the time cost grows slowly, as is observed above.
Since the first three steps take most of the time, and they are all in linear com-
plexity, the time cost grows almost linearly. Since there are two more attributes,
experiments on Att-10 take more time.

The sizes of approximate density core-sets are depicted in Fig. 3(c), the size
almost stays the same as the tuples’ number grows. Because the number of can-
didates for the approximate density core-sets is computed by the required error
bound ε, which is fixed in all the experiments, and WeightBound which controls
the number of size is fixed as well. There are more attributes on the tuples in
Att-10 datasets, which makes the scores and costs are smaller in normalization.
Therefore slightly more tuples are permitted given a fixed WeightBound. At
most 2413 tuples are drawn as the approximate density core-set, which is a very
small number compared to entire tuples’ number, for example 4 × 106.

5 Related Work

Numeric Core-Sets. The idea of answering queries by core-sets is from [2],
and many methods of drawing various core-sets are surveyed in [19]. Merging
two core-sets with coverage preserved is studied in [15]. Drawing dominating
set to answer some queries are studied in [8]. There are two main drawbacks of
methods above. One is that they can only draw numeric core-sets, and the other
is that many values are aggregated, which makes many features described in the
origin dataset removed.

Sampling Methods for Approximate Query Answers. There are many
sampling methods to select small subset of entire dataset to answer queries
approximately, such as [1,3,9,22]. On complete data, sample sizes can be pro-
vided by these researches in that each sample can provide effective information
for approximately answering queries. But on incomplete data, not every sample
contains effective information, which makes it hard to determine sample sizes
for kinds of queries.

Completeness Estimation. Many researchers focus on the completeness
of queries over a database, i.e. they decide whether a query over a given
database can get a complete answer with different kinds of extra knowledge
[13,14,17,18,23]. Their problems can be called query completeness for short.
The computational complexity of query completeness is usually beyond NP-
Complete, which makes it very hard to fast estimate completeness of a given
query on the entire dataset. A density core-set is only a small subset of the
entire dataset, which makes it easier to estimate completeness of a query fast by
methods based on bootstrap.

6 Conclusion

This paper studies the problems of drawing density core-sets on incomplete data.
We analyze the time complexity of the problems and propose an algorithm to

Drawing Density Core-Sets from Incomplete Relational Data 541

draw an approximate density core-set. We prove that the relative error of com-
pleteness between the approximate density core-set and a density core-set with
the same size is within given error bound with high probability. Experimental
results on both real-world and synthetic datasets show effectiveness and scala-
bility of our algorithms. With an approximate density core-set, the completeness
of a given query can be estimated fast.

Acknowledgments. This work is supported in part by the Key Research and
Development Plan of National Ministry of Science and Technology under grant No.
2016YFB1000703, and the Key Program of the National Natural Science Foundation
of China under Grant No. 61190115, 61632010 and U1509216.

References

1. Acharya, S., Gibbons, P.B., Poosala, V.: Congressional samples for approximate
answering of group-by queries. In: ACM SIGMOD Record, vol. 29, pp. 487–498.
ACM (2000)

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures
of points. J. ACM 51(4), 606–635 (2004)

3. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB:
queries with bounded errors and bounded response times on very large data. In:
Proceedings of the 8th ACM European Conference on Computer Systems, pp.
29–42. ACM (2013)

4. Arocena, P.C., Glavic, B., Miller, R.J.: Value invention in data exchange. In: Pro-
ceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, pp. 157–168. ACM (2013)

5. Beskales, G., Ilyas, I.F., Golab, L., Galiullin, A.: Sampling from repairs of condi-
tional functional dependency violations. VLDB J. 23(1), 103–128 (2014)

6. Chaudhuri, S., Motwani, R., Narasayya, V.: Random sampling for histogram con-
struction: how much is enough? ACM SIGMOD Rec. 27, 436–447 (1998). ACM

7. Chen, K., Chen, H., Conway, N., Hellerstein, J.M., Parikh, T.S.: Usher: improving
data quality with dynamic forms. IEEE Trans. Knowl. Data Eng. 23(8), 1138–1153
(2011)

8. Cheng, S., Cai, Z., Li, J., Fang, X.: Drawing dominant dataset from big sensory
data in wireless sensor networks. In: 2015 IEEE Conference on Computer Commu-
nications (INFOCOM), pp. 531–539. IEEE (2015)

9. Cormode, G., Garofalakis, M., Haas, P.J., Jermaine, C.: Synopses for massive data:
samples, histograms, wavelets, sketches. Found. Trends Databases 4(1–3), 1–294
(2012)

10. Deng, T., Fan, W., Geerts, F.: On recommendation problems beyond points of
interest. Inf. Syst. 48, 64–88 (2015)

11. Dong, X.L., Gabrilovich, E., Murphy, K., Dang, V., Horn, W., Lugaresi, C., Sun, S.,
Zhang, W.: Knowledge-based trust: estimating the trustworthiness of web sources.
Proc. VLDB Endow. 8(9), 938–949 (2015)

12. Fan, W.: Dependencies revisited for improving data quality. In: Proceedings of the
Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pp. 159–170. ACM (2008)

542 Y. Liu et al.

13. Fan, W., Geerts, F.: Capturing missing tuples and missing values. In: Proceedings
of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pp. 169–178. ACM, June 2010

14. Fan, W., Geerts, F.: Relative information completeness. ACM Trans. Database
Syst. 35(4), 27 (2010)

15. Indyk, P., Mahabadi, S., Mahdian, M., Mirrokni, V.S.: Composable core-sets for
diversity and coverage maximization. In: Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2014,
pp. 100–108. ACM (2014)

16. Ito, H., Kiyoshima, S., Yoshida, Y.: Constant-time approximation algorithms for
the knapsack problem. In: Theory and Applications of Models of Computation,
pp. 131–142 (2012)

17. Levy, A.Y.: Obtaining complete answers from incomplete databases. In: Proceed-
ings of the 22th International Conference on Very Large Data Bases, pp. 402–412.
Morgan Kaufmann Publishers Inc. (1996)

18. Motro, A.: Integrity = validity + completeness. ACM Trans. Database Syst. 14(4),
480–502 (1989)

19. Phillips, J.M.: Coresets and sketches. http://arxiv.org/abs/1601.00617
20. Pol, A., Jermaine, C.: Relational confidence bounds are easy with the bootstrap. In:

Proceedings of the 2005 ACM SIGMOD International Conference on Management
of Data, pp. 587–598. ACM (2005)

21. Poleto, F.Z., Singer, J.M., Paulino, C.D.: Missing data mechanisms and their impli-
cations on the analysis of categorical data. Stat. Comput. 21(1), 31–43 (2011)

22. Potti, N., Patel, J.M.: DAQ: a new paradigm for approximate query processing.
Proc. VLDB Endow. 8(9), 898–909 (2015)

23. Razniewski, S., Nutt, W.: Completeness of queries over incomplete databases. Proc.
VLDB Endow. 4(11), 749–760 (2011)

24. Saha, B., Srivastava, D.: Data quality: the other face of big data. In: 2014 IEEE
30th International Conference on Data Engineering (ICDE), pp. 1294–1297. IEEE
(2014)

25. Song, S., Zhang, A., Chen, L., Wang, J.: Enriching data imputation with extensive
similarity neighbors. Proc. VLDB Endow. 8(11), 1286–1297 (2015)

26. Wayne, W.: Data quality and the bottom line: achieving business success through
a commitment to high quality data. The Data warehouse Institute (TDWI) report
(2004). www.dw-institute.com

http://arxiv.org/abs/1601.00617
http://www.dw-institute.com

Big Data (Industrial)

Co-training an Improved Recurrent Neural
Network with Probability Statistic Models

for Named Entity Recognition

Yueqing Sun1, Lin Li1(B), Zhongwei Xie1, Qing Xie1, Xin Li2,
and Guandong Xu3

1 School of Computer Science and Technlogy, Wuhan University of Technology,
Wuhan, China

{yqsuan,cathylilin,kevinsnest,felixxq}@whut.edu.cn
2 iFLYTEK Big Data Research Institute, Hefei 230088, China

xinli2@iflytex.com
3 School of Software, University of Technology Sydney, Ultimo 2007, Australia

Guandong.Xu@ust.edu.au

Abstract. Named Entity Recognition (NER) is a subtask of informa-
tion extraction in Natural Language Processing (NLP) field and thus
being wildly studied. Currently Recurrent Neural Network (RNN) has
become a popular way to do NER task, but it needs a lot of train data.
The lack of labeled train data is one of the hard problems and traditional
co-training strategy is a way to alleviate it. In this paper, we consider
this situation and focus on doing NER with co-training using RNN and
two probability statistic models i.e. Hidden Markov Model (HMM) and
Conditional Random Field (CRF). We proposed a modified RNN model
by redefining its activation function. Compared to traditional sigmoid
function, our new function avoids saturation to some degree and makes
its output scope very close to [0, 1], thus improving recognition accu-
racy. Our experiments are conducted ATIS benchmark. First, supervised
learning using those models are compared when using different train data
size. The experimental results show that it is not necessary to use whole
data, even small part of train data can also get good performance. Then,
we compare the results of our modified RNN with original RNN. 0.5%
improvement is obtained. Last, we compare the co-training results. HMM
and CRF get higher improvement than RNN after co-training. Moreover,
using our modified RNN in co-training, their performances are improved
further.

Keywords: Named entity recognition · Co-training · Recurrent neural
network · Probability statistic model · Natural language processing

This research project is supported by the National Social Science Foundation of
China (Grant No:15BGL048), National Natural Science Foundation of China (Grant
No:61602353, 61303029), 863 Program (2015AA015403), Hubei Province Science and
Technology Support Project (2015BAA072).

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 545–555, 2017.
DOI: 10.1007/978-3-319-55699-4 33

546 Y. Sun et al.

1 Introduction

NER is a fundamental step in Natural Language Processing (NLP) which aims
to identify boundaries and type of entities in text. In big data time, plenty of
valuable information lies in disordered raw texts that cannot be directly used for
many tasks. By doing NER we can know which category each word belongs. This
technology is useful in information extraction (IE) field. Hence NER has been
an essential task in several research teams, such as the Message Understanding
Conferences (MUC), the Conferences on Natural Language Learning (CoNLL),
etc. [1]. Also, in industry, google brain and baidu brain are very hot now and
have been used in many specific applications. For example, in college entrance
examination robot plan, a kind of brain-simulation program, NER is a vital
subtask. However, there are some problems that should be noted:

1. The difficulty of feature-design. Most of NER researches commonly based on
traditional machine learning methods. They often rely on the construction
of complex hand-designed features which are derived from various linguistic
analyses and maybe only adapted to specified area [2].

2. The lack of labeled data. Many NLP tasks base on big data and need large
corpus especially labeled data, so is NER. But compared to the oceans of raw
data that is produced every day, data with labels is in urgently lack.

For problem 1, a modified deep learning architecture named RNN is proposed
and compared with two popular probability statistical models i.e. HMM and
CRF. The two statistical models can learn statistical rules from a large number
of training samples, so as to make predictions about the unknown. RNN belongs
to deep learning which is a branch of machine learning and a development of
neural network. It shakes off the requirement of hand-designed features and
frees people from complex templates design. As described in [3], for tasks that
involve sequential inputs, such as speech and language, it is often better to use
RNN. In this paper, we modify the RNN activation function since selection of a
good activation function is an important part to design a neural network. The
experimental results prove that our modification gets a better achievement.

For problem 2, we utilize a co-training strategy, a kind of semi-supervised
learning for the situation when train data is much less than test data. Co-
training, originally proposed by A. Blum and T. Mitchell [4], is a popular strat-
egy in semi-supervised learning. In this paper we cotrain RNN with the above
two statistical models by selecting data with high confidence level to update the
train set. Experimental results show that after co-training, all the models are
improved.

The rest of this paper is organized as follows: Sect. 2 introduces the related
works about NER researches. Section 3 describes our improved RNN and the co-
training strategy. Experiments and result analysis are shown in Sect. 4. Finally,
conclusion and future work are discussed in Sect. 5.

Co-training an Improved Recurrent Neural Network 547

2 Related Work

As described in [5], there are three kind of methods for named entity recognition:
dictionary-based methods, rule-based methods and statistical machine learning
methods which rely on different theories. NER can be solved by machine learning
methods, such as CRF [6,7], Support Vector Machine (SVM) [8], HMM [9] etc.
These methods are commonly used for NER these years in a way of supervised
learning. In addition, semi-supervised methods are also one road to this task
when labeled data is difficulty to obtain.

Recently, while the probability statistical models perform well in many fields,
deep neural networks as a new wave tide in machine learning, have achieved great
performances in many domains such as image classification [10], knowledge dis-
covery [11] and translation [12] etc. Collobert et al. [13] propose a unified neural
network architecture and learning algorithm to do various NLP tasks and also
achieved a better result for NER task. Compared to the well-known Convo-
lutional Neural Network (CNN) which has achieved remarkable performances
in image domain, RNN can exploit the time-connection feedback thus capture
dependencies beyond the input window. Therefore, RNN architecture is more
suitable for NER. Song et al. [14] build a simple and efficient system for bio-NER
based on Recurrent Neural Network (RNN). Jason P.C. Chiu and Eric Nichols
[15] present a novel neural network architecture that can automatically detect
word and character level features using a hybrid bidirectional Long Short-Term
Memory (LSTM) and CNN architecture.

On the other hand, as described in [16], a deep neural network is characterized
by a set of weight matrices, bias vectors, and a nonlinear activation function,
which gives a deep neural network the learning ability of hierarchical nonlinear
mapping. But in model parameter training, weight matrices and bias vectors are
updated using an error back-propagation algorithm whereas activation function
is not. So the change of activation function is important for a neural network,
which can speed up model training [17], enhance stability [18]. In this paper, we
adopt the RNN model and modify its activation function to do NER task.

Another problem for RNN is that it needs plenty of train data. Hence in this
paper we consider a co-training method which is one of useful solutions when
train data is in lack. Co-training, one of the semi-supervised learning methods,
was first proposed in 1998 and also has been used in NER. Tsendsuren et al.
[19] present an Active Co-Training (ACT) algorithm for biomedical named-entity
recognition. Li et al. [20] propose a semi-supervised approach to extract bilingual
named entity and used a bilingual co-training algorithm to improve the named
entity annotation quality. But using RNN to do co-training is a few in NER
researches [21] and most of them are about biomedical domain. In this paper,
we aim to explore the performance when co-training an improved RNN with
probability statistic models for NER task.

548 Y. Sun et al.

3 Methodology

3.1 RNN

RNN has been applied in many fields and got great achievements in recent years.
In this paper, we propose an improved RNN and use it to do co-training for the
NER task. As one of the most successful and well-known neural network, CNN
has made the remarkable achievements in multiple cross domains so it is valuable
to try deep learning method for NER. Contrast to CNN, for text and language
processing, RNN is proved to be good. It is a neural network model whose archi-
tecture can exploit the time-connection feedback [22]. Generally speaking, deep
convolutional nets have brought breakthroughs in processing of image, video and
audio etc., whereas recurrent nets have shone light on sequential data such as
text and speech. A RNN and its unfolding structure in time of the computation
involved in its forward computation is shown in Fig. 1. When unfolded, RNN can
be regarded as a deep feedforward network and each layer shares same weights.

Fig. 1. A RNN and its unfold state

RNNs have many architectures and variants such as Elman-type and Jordan-
type. Mesnil et al. [23] have implemented and compared the above two important
RNN architectures to investigate spoken language understanding. Our RNN is
based on the Elman-type described in [23] in this paper and we amend its activa-
tion function. Actually, as described in [16], many rectifier-type nonlinear func-
tions have been proposed as activation functions, but the best nonlinear functions
for any given task domain remain unknown. A same activation function perfor-
mance may differ dramatically when applying it to different tasks. As for NER,
compared to other well-known activation functions i.e. tanh, ReLu, PReLu, the
sigmoid function, defined as Eq. 1, shows best in our experiments.

F (x) =
1

1 + e−x
(1)

However sigmoid function has the saturation phenomenon (derivative tends
to zero when the argument x approaches infinity) both at its left and right,
which may make the training process harder. Still, sigmoid is most similar to the

Co-training an Improved Recurrent Neural Network 549

Fig. 2. Sigmoid and its linear approximation function

reflex mechanism of biological neuron and its output is always between 0 and 1,
which can represent the label’s prediction probability. The linear approximation
function of sigmoid, expressed by Eq. 2, also performs well in our experiments.
Figure 2 shows the two functions more intuitively.

L(x) = 0.2 × x + 0.5 (2)

Focusing on our NER task, we propose to combine the two above functions as
our new activation function (shown in Eq. 3). Parameters a and b are coefficients
which determined by experimental performances.

A(x) = a× F (x) + b× L(x) (3)

The new activation function ameliorates the sigmoid’s saturation phenom-
enon on the one hand and smooths the linear function on the other hand. Our
co-training results using the new activation function are better than that using
sigmoid or linear sigmoid function.

3.2 Co-training

In this paper, we modify activation function in deep neural network. On the
other hand, we aim to explore the effect when co-training with RNN. As is
known to all, co-training was proposed early years ago and wildly adopted in
many tasks. To our best of knowledge, co-training using RNN is a few in NER
[19,20]. Co-training is a kind of strategy in semi-supervised learning which fits for
the situation when train data is limited. It uses two (or more) learners (model A
and B). Wit the first same input as training data, according to different learning
rules, learners produce labeled data respectively. Then the A’s new labeled k

550 Y. Sun et al.

data with highest confidence levels is selected and added into learner B’s train
set, vice versa. It will do this iteration until unlabeled data are all tagged. The
co-training algorithm used in our paper is described as follows in Table 1.

Table 1. The co-training algorithm

Input:
A small set T of original labeled samples.
A big set U of unlabeled samples.
Test set V .
Classifiers C1 and C2 and their train set s1 and s2.
Number k selected data for each iteration.

Output:
bestC1, bestC2

Initialization:
s1=s2=T
k=300
r1=r2=0 //initialize the test results when testing V by classifiers
do:

modelA=C1.train(s1) //train classifiers with train set and save the model
modelB=C2.train(s2)
tempR1= modelA.test(V)
tempR2= modelB.test(V)
if tempR1 > r1 or tempR2 > r2:

r1= tempR1

r2= tempR2

bestC1=modelA
bestC2=modelB

newLabeledDataA=modelA.predict(U) //tag the unlabeled data
newLabeledDataB=modelB.predict(U)
newTrainA=newLabeledDataA.getTop(k)// select k new labeled data
newTrainB=newLabeledDataB.getTop(k)
s1.add(newTrainA) //update train set
s2.add(newTrainB)
U .remove(newTrainA)
U .remove(newTrainB)

until U .isEmpty()
return bestC1, bestC2

4 Experiments

We conduct two sets of experiments. One is supervised learning and the other
is semi-supervised learning with co-training, to make comparisons and explore
the situation that using RNN to do co-training. The two experiments’ train data
sizes were totally different since semi-supervised learning works in the situation
that training data is much less than testing data.

Co-training an Improved Recurrent Neural Network 551

4.1 Dataset and Evaluation

Both the two sets of experiments are based on standard Airline Travel Infor-
mation Systems (ATIS) benchmark [23] which contains 127 classes and uses the
in/out/begin (IOB) representation. For example, a sentence can be expressed as
in Table 2.

Table 2. Sentences in ATIS

sentence find flight from memphis to tacoma dinner

label O O O B-fromloc.city name O B-toloc.city name B-meal description

sentence cost of limousine service at logan airport

label O O B-transport type O O B-toloc.airport name I-airport name

All the results were evaluated by precision (P), recall (R) and F1-score,
defined by Eqs. 4, 5 and 6 respectively.

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

F1 =
2 × P ×R

P + R
(6)

TP means true positives, FP means false positives and FN means false
negatives.

4.2 Experiment 1: Supervised Learning

In this part we train four NER models as supervised learning by using different
training data size. Based on ATIS original train/test proportion, i.e., train/test
sets were 3983/893 sentences, we randomly select 20%, 40%, 60%, 80% and 100%
of total train data (3983 sentences) as training set to train the HMM, CRF and
RNN (including our modified RNN) models. The results through K-fold cross-
validations are shown in Table 3. K is different based on the different size of
training set. For example, when using 20%, K is five, and when using 40% and
60%, K is three. In Table 3 we can observe that how the three models perform
when training on different data size. Generally speaking, the performances of all
the models in NER are gradually improved when the training data size becomes
larger. However, when the training data size goes larger and larger, the per-
centage of improvement becomes smaller. Actually, when the training data size
increases from 20% to 40%, these models generally get a highest improvement.
After that, increasing data only brings little benefit. This gives the reason that
semi-supervised learning is feasible to achieve good results when train data is
less. From Table 3, it shows that our modified RNN performs better than original
RNN when train data is less than test data.

552 Y. Sun et al.

Table 3. P, R and F1 on different training data size

Training data

size

20% 40% 60% 80% 100%

Models P, R, F P, R, F P, R, F P, R, F P, R, F

HMM 0.6575, 0.6295,

0.6432

0.6776, 0.6588,

0.6680

0.6874, 0.6700,

0.6786

0.6914, 0.6750,

0.6831

0.6959, 0.6806,

0.6882

Improvements - 3.05%, 4.66%,

3.86%

1.45%, 1.7%,

1.59%

0.58%, 0.75%,

0.66%

0.65%, 0.83%,

0.75%

CRF 0.9015, 0.7870,

0.8419

0.9252, 0.8543,

0.8884

0.9264, 0.8697,

0.8972

0.9295, 0.8863,

0.9074

0.9317, 0.8950,

0.9130

Improvements - 2.63%, 8.55%,

5.52%

0.13%, 1.80%,

0.99%

0.33%, 1.91%,

1.14%

0.24%, 0.98%,

0.62%

RNN 0.8965, 0.8871,

0.8917

0.9350, 0.9311,

0.9333

0.9389, 0.9363,

0.9376

0.9475, 0.9415,

0.9445

0.9517, 0.9369,

0.9442

Improvements - 4.30%, 4.96%,

4.67%

0.42%, 0.56%,

0.46%

0.92%, 0.56%,

0.74%

0.44%,

−0.49%,

−0.03%

Our Modified

RNN

0.9030, 0.8992,

0.9011

0.9436, 0.9376,

0.9406

0.9380, 0.9383,

0.9381

0.9426, 0.9376,

0.9401

0.9527, 0.9450,

0.9489

Improvements - 4.50%, 4.27%,

4.38%

−0.59%, 0.07%,

−0.27%

0.49%, −0.07%,

0.21%

1.07%, 0.79%,

0.94%

4.3 Experiment 2: Semi-supervised Learning

To do semi-supervised learning, we assume that the labeled data are further less
than the unlabeled. Thus here we reorganize the whole training data set (4876
sentences) and randomly select 1000 sentences about 20.5% as our new training
set and the left as unlabeled data set to do co-training. In each iteration 300 high
confidence level samples are picked from learner A and B, respectively. Those
selected 300 samples are labeled by learner A or B and will be added into B or A
as training set. Here we have done two group co-training: (A = HMM, B = RNN)
and (A = CRF, B = RNN).

Co-training Using Original RNN with HMM and CRF. First we use
the original RNN to do the above two group co-training. The before/after co-
training performances are shown in Figs. 3 and 4. Since Precision and Recall
show similar changing curve with F1 scores, we only report F1 scores in Figs. 3
and 4. After co-training, generally speaking, both HMM and CRF performs
better and better with increasing iterations. But RNN need less iterations to
achieve highest F1 scores. For example, in Fig. 3, when iterations go to 3, RNN
shows best performance and its F1 score is 0.9129. We can say that RNN, a deep
learning method, is good at NER and much better than traditional HMM and
CRF. In addition, RNN helps them to obtain higher F1 scores by using RNN as
a learner in co-training.

Through co-training, the recognition performances of two probability statistic
models (here is HMM and CRF) are improved. For example, in Fig. 3 before co-
training, the F1 score of HMM is 0.6236. After co-training with RNN, its F1
score rises to 0.6833 with 9.6% improvement. For CRF in Fig. 4, the largest

Co-training an Improved Recurrent Neural Network 553

Fig. 3. Co-training results of HMM and RNN where X axis represents iteration times
and Y axis represents F1 scores.

Fig. 4. Co-training results of CRF and RNN where X axis represents iteration times
and Y axis represents F1 scores.

improvement is 4.14%. (0.8907 VS. 0.9276). In a word, by using co-training we
can achieve better results with less training data, which give a solution when
labeled data is in lack.

Co-training Using Improved RNN with HMM and CRF. In this part
the improved RNN is used to redo the two group co-training. First we did several
check experiments when setting a and b the different values according to their
corresponding function curve trend and the (0.8, 0.2) pair is proved best in our
experiments. Thus we set the new activation function coefficients a = 0.8 and
b = 0.2 here. Compared to the results of co-training with original RNN, HMM
and CRF get a little more improvement when co-training with improved RNN.
The comparison results are reported in Table 4.

From Table 4, we can see that our improved RNN using modified activation
function show better performance than HMM and CRF and the highest improve-
ment is 5.4% compared with original RNN. Although HMM and CRF benefit a
little from modified activation function, improved RNN obtains larger F1 score.

554 Y. Sun et al.

Table 4. Co-training using improved RNN with HMM and CRF

Model HMM with RNN HMM with Improved RNN

F1 0.6786 0.6811

Iteration 5 5

Improvement 0.4%

Model RNN with HMM Improved RNN with HMM

F1 0.8528 0.8987

Iteration 8 8

Improvement 5.4%

Model CRF with RNN CRF with Improved RNN

F1 0.8921 0.8966

Iteration 2 2

Improvement 0.5%

Model RNN with CRF Improved RNN with CRF

F1 0.8983 0.9008

Iteration 7 7

Improvement 0.3%

5 Conclusion and Future Work

In this paper, we consider the situation of less training data, study the influences
that data sizes make on the model performance improvements. Moreover, we
conduct the co-training experiments using original RNN and our modified RNN.
The results of supervised learning indicate that even small train data size can
get pretty good or even better achievement than that when data is bigger. The
results of semi-supervised learning show that using RNN in co-training for NER
task can achieve better performances when training data is less than testing
data. In the future, it is worth to combine the co-training with RNN or other
deep neural networks. In addition, we only change the activation function here
and in the future, we are going to explore the RNN more deeply, for example
improving its architecture to do NER or other related tasks.

References

1. Wahiba, B.A.K.: Named entity recognition using web document corpus. CoRR
abs/1102.5728 (2011)

2. Lishuang, L., Liuke, J., Zhenchao, J., et al.: Biomedical named entity recognition
based on extended Recurrent Neural Networks. In: BIBM, pp. 649–652 (2015)

3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

4. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
In: Eleventh Conference on Computational Learning Theory, pp. 92–100 (1998)

Co-training an Improved Recurrent Neural Network 555

5. Li, L., Fan, W., Huang, D., et al.: Boosting performance of gene mention tagging
system by hybrid methods. J. Biomed. Inform. 45(1), 156–164 (2012)

6. Padmaja, S., Utpal, S., Jugal, K.: Named entity recognition in Assamese using
CRFS and rules. In: IALP, pp. 15–18 (2014)

7. Tang, Z., Lingang, J., Yang, L., et al.: CRFs based parallel biomedical named
entity recognition algorithm employing MapReduce framework. Cluster Comput.
18(2), 493–505 (2015)

8. Ki-Joong, L., Young-Sook, H., Kim, S., et al.: Biomedical named entity recognition
using two-phase model based on SVMs. J. Biomed. Inform. 37(6), 436–447 (2004)

9. Gayen, V., Sarkar, K.: An HMM based named entity recognition system for indian
languages: the JU system at ICON 2013. CoRR abs/1405.7397 (2014)

10. Sladojevic, S., Arsenovic, M., Anderia, A., et al.: Deep neural networks based recog-
nition of plant diseases by leaf image classification. Comp. Int. Neurosc. 2016(6),
1–11 (2016)

11. Janosek, M., Voln, E., Kotyrba, M.: Knowledge discovery in dynamic data using
neural networks. Cluster Comput. 18(4), 1411–1421 (2015)

12. Chollampatt, S., Kaveh, T., Hwee, T.N.: Neural network translation models for
grammatical error correction. In: IJCAI, pp. 2768–2774 (2016)

13. Collobert, R., Weston, J., Bottou, L., et al.: Natural language processing (almost)
from scratch. Mach. Learn. Res. 12, 2493–2537 (2011)

14. Dingxin, S., Lishuang, L., Liuke, J., et al.: Biomedical named entity recogni-
tion based on recurrent neural networks with different extended methods. IJDMB
16(1), 17–31 (2016)

15. Chiu, J.P.C., Nichols, E.: Named entity recognition with bidirectional LSTM-
CNNs. TACL 4, 357–370 (2016)

16. Hoon, C., Sung, J.L., Jeon, G.P.: Deep neural network using trainable activation
functions. In: IJCNN, pp. 348–352 (2016)

17. Anhao, X., Qingwei, Z., Yonghong, Y.: Speeding up deep neural networks in speech
recognition with piecewise quantized sigmoidal activation function. IEICE Trans.
99-D(10), 2558–2561 (2016)

18. Liew, S.S., Khalil-Hani, M., Bakhteri, R.: Bounded activation functions for
enhanced training stability of deep neural networks on visual pattern recognition
problems. Neurocomputing 216, 718–734 (2016)

19. Tsendsuren, M., Meijing, L., Unil, Y., et al.: An active co-training algorithm for
biomedical named-entity recognition. JIPS 8(4), 575–588 (2012)

20. Li, Y., Huang, H., Zhao, X., Shi, S.: Named entity recognition based on bilingual
co-training. In: Liu, P., Su, Q. (eds.) CLSW 2013. LNCS (LNAI), vol. 8229, pp.
480–489. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45185-0 50

21. Qikang, W., Tao, C., Ruifeng, X., et al.: Disease named entity recognition by
combining conditional random fields and bidirectional recurrent neural networks.
In: Database (2016)

22. Mikolov, T., Kara t, M., Burget, L., et al.: Recurrent neural network based lan-
guage model. In: INTERSPEECH, pp. 1045–1048 (2010)

23. Mesnil, G., He, X., Deng, L., et al.: Investigation of recurrent neural network archi-
tectures and learning methods for spoken language understanding. In: INTER-
SPEECH, pp. 3771–3775 (2013)

http://dx.doi.org/10.1007/978-3-642-45185-0_50

EtherQL: A Query Layer for Blockchain System

Yang Li1, Kai Zheng1(B), Ying Yan2, Qi Liu2, and Xiaofang Zhou1,3

1 School of Computer Science and Technology, Soochow University, Suzhou, China
yli6@stu.suda.edu.cn, zhengkai@suda.edu.cn

2 Microsoft Research, Beijing, China
ying.yan@microsoft.com, v-lqii@microsoft.com
3 The University of Queensland, Brisbane, Australia

zxf@itee.uq.edu.au

Abstract. Blockchain - the innovation behind Bitcoin - enables people
to exchange digital money with complete trust, and seems to be com-
pletely transforming the way we think about trust. While blockchain is
designed for secured, immutable funds transfer in trustless and decen-
tralized environment, the underlying storage of blockchain is very simple
with only limited supports for data access. Moreover, blockchain data
are highly compressed before flushing to hard disk, making it harder
to have an insight of these valuable data set. In this work, we develop
EtherQL, an efficient query layer for Ethereum – the most representa-
tive open-source blockchain system. EtherQL provides highly efficient
query primitives for analyzing blockchain data, including range queries
and top-k queries, which can be integrated with other applications with
much flexibility. Moreover, EtherQL is designed to provide different lev-
els of abstraction, which are suitable for data analysts, researchers and
application developers.

1 Introduction

Cryptocurrencies such as Bitcoin and its successors, serve as a new form of dig-
ital currencies, facilitating instant payment to anyone in a decentralized man-
ner [18]. As the underlying technology of cryptocurrencies, blockchain is a dis-
tributed ledger that records all the transactions and states in the entire network.
Blockchain consists of a series of blocks that are chained together by keeping a
reference to the previous block. A block is mainly composed of a block header,
which holds the metadata of the block such as timestamp and the hash code of
the previous block, and a block body containing the corresponding list of trans-
actions recorded in that block [25]. Each full node in the network maintains a
copy of the ledger, and various consensus algorithms such as Proof of Work [6],
Proof of Stake [5] and PBFT [11] are adopted to achieve data consistency.

As a concept of architecture, blockchain can be implemented in various ways.
At current stage, there are two most influential blockchain platforms, Bitcoin [18]
and Ethereum [25]. While Bitcoin gains its popularity for being the first decen-
tralized asset transfer platform, Ethereum, as an extension of Bitcoin, is intended
to implement a Turing-complete computation platform on top of blockchain for
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 556–567, 2017.
DOI: 10.1007/978-3-319-55699-4 34

EtherQL: A Query Layer for Blockchain System 557

decentralized applications. A lot of applications such as asset transfer, Internet
of Thing, clearing & settlement are implemented on Ethereum [10].

Ethereum stores the block data in a simple key/value data store (in most
cases, LevelDB [20] is used). LevelDB is a fast in-process database with excellent
writing performance, which has the ability to process a large amount of data and
eliminates the need to run another database software separately. Block data are
automatically compressed before synchronized to the disk, which makes LevelDB
space-efficient.

Due to the limited query primitives of LevelDB, the native implementation
of the developer interfaces only supports limited queries, most of which are
simply retrieving an item by its hash code. Moreover, Ethereum stores values in
a special tree structure and accessing values associated with hash code requires
random reading from the hundreds of thousands of files scattered all over the
disk, which is time consuming. Therefore, LevelDB’s limitation combined with
the way Ethereum utilizes it make it unsuitable for analytical applications that
normally involve complex queries on the transaction data in a blockchain.

In this paper, we address the problem of efficient querying blockchain data
by adding a query layer for a public blockchain system, where a set of useful
analytical queries are supported, such as the most popular ones like aggregation
and top-k queries. In view of rich Ethereum applications and ecosystem, we use
Ethereum to demonstrate the feasibility of our prototype in this paper, while
the proposed techniques can be applied to other blockchain instances as well.
Our contribution can be summarized as follows:

1. We identify existing problem of efficient querying blockchain data and propose
a query layer to support efficient analytical queries in blockchain system.

2. A range of analytical queries such as range query and top-k query are sup-
ported with flexible interfaces provided so that users can issue the query with
both local API or RESTful service.

3. EtherQL automatically synchronizes new block data in a timely manner and
store them in a dedicated database to ensure the query is both accurate and
efficient.

The remainder of this paper is organized as follows. Section 2 reviews the
recent development on blockchain. Section 3 gives a brief introduction to the con-
cepts and terminologies about Blockchain. Sections 4 and 5 present the overview
and details of the system design respectively. Sections 6 and 7 provide detailed
information of interfaces and report empirical evaluation results for different
queries. Section 8 concludes this paper.

2 Related Work

Blockchain is a distributed ledger that is maintained by all participants. There
are mainly two categories of blockchain systems. The first one is UTXO (Unspent
Transaction Output) systems, such as Bitcoin [18] and Ripple [16]. Those sys-
tems records a UTXO set S. Each UTXO represents a fund that could be spent

558 Y. Li et al.

for future transactions. When a new transaction comes, referenced UTXOs are
removed from S. Those systems will verify the provided signatures of the transac-
tion. If the signatures match the owner, those funds are claimed and transactions
could add new UTXOs into S with funds. Thus, the applications of UTXO sys-
tems are restricted to fund transfer. The other one is account based such as
Ethereum [25]. Each user is associated with an account that records relevant
information such as balance, code and storages. A series of applications have
been built based on blockchain technology, such as payment facility [10], health
care [26], Internet of Thing [7] and file sharing [24]. However, due to limited query
supports from the underlying LevelDB, it is not easy to query the blockchain
data. There are some systems that provide basic query interfaces for blockchain
data. For example, the Blockchain.info [1] wraps the Bitcoin’s block, transaction
and address APIs to provide a RESTful service, which is convenient for devel-
opers to use. Project Toshi [12] implements the Bitcoin protocols and backed
by PostgreSQL, providing RESTful service for basic query operations and lim-
ited paging functionality. Etherscan [13] is an explorer and analysis platform
powered by Ethereum foundation. Etherscan has a modified version of virtual
machine that could be used to extract more information from blockchain, such
as internal transactions. Etherchain [2] extends the Ethereum basic APIs and
provides simple statistics, such as the block time and transaction count. Those
systems could have rich information and provide users with basic interfaces to
explore blocks, transactions and accounts. Nevertheless, more complex queries
for blockchain data are not supported. For example, graph queries and top-K
queries are not supported in those systems. Besides, utilization of these public
APIs is restricted. Taking Etherscan for an example, the request to these API is
limited to 5 requests/sec. In a word, those explorers are helpful for blockchain
participants but not for data-driven applications.

There are a number of analytical tasks carried out by developers. [14] per-
forms graph analysis with Bitcoin transactions. It is proven that Bitcoin is not
a fully anonymous system with graph analysis. Rigorous quantitative analysis of
Bitcoin transactions is carried out in [19]. Authors identify the transaction pat-
terns that users employed to hide their identities. To detect money laundering,
[17] proposes a multi-variant relation model with time series dataset. Besides,
[8] builds a reputation network for blockchain users to reduce transaction risks.
Those systems demonstrate the needs of scalable and efficient technique that
can support data analytical tasks on top of blockchain systems.

3 Preliminary Concept

In this section we briefly introduce the concept of blockchain and how it works
to reach consensus among participants. Our discussion is restricted to the most
popular public blockchain platform, Ethereum, though other blockchain plat-
forms adopt similar concepts and techniques.

EtherQL: A Query Layer for Blockchain System 559

3.1 Blockchain Architecture

There are mainly four layers in most blockchain systems, i.e. consensus layer,
data layer, execution environment and hosted applications. The consensus layer
is responsible for maintaining data consistency among all participants which
tackles the Byzantine Fault Tolerance problem. The data layer contains the data
structures and corresponding operations. The execution layer such as Ethereum
Virtual Machine enables the runtime environment of blockchain applications. At
last, a rich classes of applications are implemented on top of that. The remaining
discussion focuses on the data layer.

3.2 Blockchain Data Structure

Let us look at basic structure of block data. Without loss of generality, we omit
minor details to avoid falling into complicated implementations of Ethereum,
but readers can refer to the Ethereum yellow paper [25] for details. In the block
header, there is a block hash chained with the previous block, a nonce that
represents the proof of work in that block, and tree roots generated based on
the information derived from the block body.

State. Accounts play a central role in Ethereum, which are referenced by the
unique identifiers called addresses. In Ethereum, every account has their storage
spaces, for maintaining the balances and other information. The state of all
accounts is the state of Ethereum network that is updated when a new block
is generated. Different from Bitcoin, Ethereum maintains the current state of
all accounts in the modified version of Merkle tree [22], called Merkle Patricia
tree/Trie [9], which is a mapping between addresses and account states. The
Merkle tree root is stored in the block header as state root.

Transaction. The term ‘transaction’ is used in Ethereum to refer to the signed
data package that stores a message to be sent from an account to another account
in the blockchain network. A transaction mainly contains the following fields:

– Address of the sender and recipient of the transaction.
– Amount of value to transfer from the sender to the recipient.
– An optional data field, which may contain the message sent to the recipient.

The transaction root is the Merkle tree root of all transactions contained in that
block.

Receipt. In order to serve as zero-knowledge proof and indexing for searches,
execution environment concerning a transaction is encoded into a receipt. The
transaction receipt is a tuple of four items comprising the transaction, together
with the post-transaction state, the cumulative gas used in the block as of imme-
diately after the transaction has happened and a set of logs created through exe-
cution of the transaction. Merkle tree root of all receipts in the block is added
to the block header as receipt root.

560 Y. Li et al.

3.3 Storage with Trie

Ethereum adopts LevelDB as the backend data storage to maintain blocks, trans-
actions and accounts’ states. Basically, data structures are stored in Merkle
Patricia tries/Trie. A Trie originates from radix tree, and Ethereum implemen-
tation introduces a few modifications to improve its efficiency. In a normal radix
tree, a key is an actual path taken through the tree to get the corresponding
value. That is, beginning from the root node of the tree, each character in the
key tells you which child node to follow in order to get the corresponding value.
Ethereum keeps the full current state in state Trie, updating accordingly with
the execution of transactions. The key is encrypted utilizing SHA3 to avoid DoS
attack. Note that this actually makes it more difficult to traverse the tree and
enumerate all the values.

4 System Overview

The proposed architecture of the querying layer can be demonstrated in Fig. 1.
We develop a middleware that automatically synchronizes blockchain data from
Ethereum public network in real-time with a built-in Ethereum client, and pro-
vides developers or data analysts with an out-of-the-box data query layer for con-
venient access to the whole blockchain data. The layer consists of four modules:
sync manager, handler chain, persistence framework and developer interface.

Fig. 1. System overview

In order to keep up with the latest block data from other peers, our system
continuously monitors block changes by setting up a blockchain event listener.
Upon receiving a blockchain data, the event listener puts it in the cache to deal
with unintentional forks in blockchain network, details of which can be found in
Sect. 5.1. The handler chain continuously tries to get blockchain data from the
cache and extracts the data into three kinds of data structures: block, transaction
and account, with different data handler. We describe details of handler chain
in Sect. 5.2. With the CRUD repository (short for creation, retrieval, updating
and deletion) defined in Sect. 5.3, data is persisted to a different data storage
that supports SQL queries. Both the data storage and the CRUD repository can

EtherQL: A Query Layer for Blockchain System 561

be configured through the config module. Developer interface is built on top of
the CRUD repository, which hides the complexity and provides easy access to
blockchain data set. We will illustrate the detailed design of developer interface
in Sect. 5.4. While the API module can be used directly to interact with the
underlying data, REST [23] module offers more flexibility from maintenance
and deployment perspective.

5 Design Details

5.1 Sync Manager

Due to the possible delay in the distributed network, more than one miners
may broadcast their version of a new block before ‘hearing’ from others. This
is when an unintentional consensus fork takes place. That means the data syn-
chronized from other peers has the possibility of not being on the main chain.
This problem is minor for Ethereum client because it save the other branch in
case it becomes longer, which make the overhead for switching to the main chain
negligible. However, in relational databases, undoing the operations concerning
blocks, transactions and accounts states will bring about extra overhead and is
also vulnerable to potential bugs. In order to deal with this inconsistent state
without lowering the performance, we maintain a cache for incoming blockchain
data before entering the handler chain. As a result, we can identify a potential
fork in advance and reduce the chance of falling into forks. The number of blocks
to be cached can be configured in the configuration module.

5.2 Handler Chain

The module handler chain can be viewed as a plugin to the Ethereum client,
transforming incoming blockchain data to fit into SQL schemas. In the data
structure in Ethereum, the latest state of all accounts are stored in the Merkle
Patricia trees (Trie). Actually, the Trie structure is not contained in the raw
blockchain data but built on the fly through execution of the transactions in the
blockchain data. Ethereum clients continuously update their local view of the
latest state if the execution result obeys the pre-defined consensus rules. Handler
chain updates another SQL data storage just like Ethereum updates the Trie.
The difference is that handler chain has to firstly extract the corresponding
information from the transactions’ execution results according to the consensus
rules. We divide the logical data structure of Ethereum Trie into three kinds
of entities: block, transaction and account. As shown in Fig. 1, there are three
components in handler chain: block handler that takes the incoming blockchain
data as a whole and create new block entity, transaction handler that tracks the
transaction list contained in current blockchain data and adds corresponding
transaction entities, account handler that updates account entities to reflect the
state changes described in Sect. 3.2. We chain all these handlers together [21],
such that each handler undertakes its responsibility and passes the control to the

562 Y. Li et al.

next one until the blockchain data is properly processed. The main benefit of this
design is that it decouples the blockchain data with the handlers so that we can
dynamically add other handlers later on without affecting the client interfaces.

5.3 Persistence Framework

We intend to build a middleware for blockchain to facilitate efficient queries. To
this end, it is of vital importance to provide a data persistence framework with
the support of custom SQL, such as retrieving blocks with the block number in a
specified range. On the one hand, raw blockchain data must be properly persisted
to ensure scalability. On the other hand, custom queries must be performed effi-
ciently on the storage to support enterprise-level applications. To support data
persistence while maintaining the query flexibility, we adopt MongoDB as the
external data storage to store the output result of handler chain. MongoDB [4]
is an open source cross-platform NoSQL database with the support of flexible
schema and can be easily configured for scalability. We have set up a default con-
nection property for MongoDB instance but the configurations can be overridden
in the configuration module.

We provide a level of abstraction above the diverse implementations of data
storages so that support for other databases can be added in the following
releases. In the center of data persistence framework is the CRUD repository,
which is a bundle of SQL query templates. A query template encapsulates the
data access interfaces exposed by the underlying data storage, and converts the
function calls to real data manipulation operations. For example, the account
template can be used to create an account, validate the existence of an account,
update the balance, and delete an existing account.

5.4 Developer Interface

To meet different requirement of developers, we provide two types of interfaces,
namely API and REST. While API is a native implementation of query inter-
faces, REST is a wrapper that provides RESTful services. The API module
provides query interfaces for Ethereum accounts, transactions and blocks. More
specifically, each module exposes 4 types of query interfaces: (1) Ethereum sup-
ported queries [3], (2) extended queries (eg. retrieving for transactions related
to a specified account), (3) range queries (eg. listing transactions within a given
time window, (4) top K queries (eg. top K accounts regarding the balance).
Application developers can utilize these encapsulated interfaces without know-
ing all the details of underlying storage.

For front-end developers, it is not always feasible to know all the underlying
technologies and learn how to prepare data before developing user interfaces.
Therefore we wrap all the APIs above and build a high level developer interface
in REST-like mode. The main purpose of integrating REST into our developer
interface is that users of our system hold all the blockchain data, thus they can
provide DaaS (Data as a Service) to serve applications on top of blockchain
platform.

EtherQL: A Query Layer for Blockchain System 563

6 Implementation

Joining in the Ethereum blockchain network requires implementation of the
peer discovery protocol and blockchain synchronizing logics just like the
Ethereum clients. In order to avoid re-inventing wheels, our system integrates
EthereumJ [15], a pure-Java implementation of the Ethereum protocols.

Fig. 2. Implementation details of EtherQL

As depicted in Fig. 2, blockchain listener, as the frontier of the system, is
responsible for synchronizing blockchain data from EthereumJ in real time. The
block cache maintains the latest N blocks and detects potential forks in the
blockchain. When a fork takes place, it rebuilds the main branch. Considering
blockchain’s immutability feature and tolerance of time delay, N is set to 5 by
default, similar to the setting of go-ethereum, which is one of the most popular
Ethereum clients.

Handler chain is composed of 3 sequential handlers that deals with a block
from different perspectives. For example, the first block handler stores the basic
block structure in underlying storage. In each handler, there is a query tem-
plate interface that encapsulates a bunch of operations to manipulate the
blockchain data. In the current release, we have implemented MongoDB version
of the query template interface that encapsulates the MongoTemplate, a class
that actually interacts with MongoDB.

The supported APIs are classified into five categories according to their func-
tionality, each of which can be applied to three types of data, namely account,
transaction and block. Table 1 lists the major APIs implemented by our system.
Once developers add our system as a dependency to their application, they are
capable of utilizing these interfaces to query the blockchain data. REST service
is built to serve web applications, for instance, blockchain explorers. More details
about the supported API interfaces have to be omitted due to space limitation
and can instead be found on our project site hosted by GitHub1.

1 https://github.com/LeonSpark/EtherQL.

https://github.com/LeonSpark/EtherQL

564 Y. Li et al.

Table 1. API interface

Functionality Account Transaction Block

Retrieve one by address transaction hash block hash or block
number

Range query by balance transaction value block number

Aggregate by sender or recipient miner

Top K by balance transaction value

Paging (offset & limit) balance transaction value block number or
timestamp

Note that both the query template interface and the API interface provide an
abstraction to decouple our system with the underlying databases. The support
for MySQL is still under development. Developers can realize the two interfaces
to support other databases of their choice as well.

7 Experiment Results

7.1 Experiment Setting

Data Set. The raw blockchain data we use in this experiment is publicly
available over the Ethereum homestead network. The data set contains approx-
imately 2.7 million blocks, 850k accounts and 13 million transactions [13]
since 2013. An account can be viewed as a tuple of <address, balance, nonce,
code, storage>, where nonce is a decimal value indicating the number of trans-
actions sent from this account and storage is where accounts utilize and main-
tain accounts’ inner states. Code stores compiled smart contracts [25], which
is beyond the discussion of this paper. A transaction can be represented
as <hash, sender, receiver, value, gas, gasprice, data, nonce>. Gas in Ethereum
serves as an incentive to charge transaction senders for transaction inclusion, while
the gas price is set by transaction senders to indicate that they are willing to pay at
most gas∗gasprice for the execution of this transaction. The field data is encoded
value of other arguments of this transaction. Nonce is used in order to prevent
relay attacks. The block is a collection of information which can be viewed as
a tuple of<hash, parenthash, number,miner, nonce, timestamp, transactions>
for simplicity. The field nonce is the outcome of mining procedure that indicates
the amount of work of the miner. Detailed structure of the data set can be found
on https://github.com/LeonSpark/EtherQL.

Environments. All the experiments are running on a PC (Intel Core I5 CPU
of 8 cores, 3.2 GHz for each core and 16 GB memory on Ubuntu 14.04 LTS) with
JDK 1.8 installed.

https://github.com/LeonSpark/EtherQL

EtherQL: A Query Layer for Blockchain System 565

7.2 Performance Evaluation

Due to the fact that blockchain data are immutable, the process of synchroniza-
tion is not repeatable unless synchronizing from scratch. Generally speaking,
high-speed network bandwidth and fairly good performance of physical machine
will speed up the synchronization process. Otherwise, it may take days to catch
up with the other peers. Therefore, we will not include evaluation of blockchain
synchronization in this paper. Our evaluation is composed of two parts. First,
we compare the throughput (following the common practice of 1 s time interval)
of our system against native Ethereum clients for supported queries. We adopt
the latest go-ethereum (v1.5.4) clients and compare the throughput on three
queries: (1) get a block by block’s number, (2) get a transaction by transaction’s
hash and (3) get the balance of an account by its address. Please note that
range queries and top-k queries are not tested since they are not supported by
Ethereum client. We perform 10K queries in each thread and gradually increase
the number of loading threads. The throughput in Fig. 3 is the maximum num-
ber of all iterations. Then, we evaluate the performance of our system on query’s
response time and concurrency.

Fig. 3. Throughput comparison between go-ethereum and EtherQL

Throughput. Figure 3 shows that the throughput in EtherQL is almost 2 times
as that in go-ethereum. Ethereum’s lower throughput is partially due to the
fact that only a single process (possibly multi-threads) can access the file at a
particular time in Ethereum’s underlying LevelDB storage. Moreover, Ethereum
uses hash as the key to locate the entity in the Trie, which involves unpredictable
access of files scattered all over the disks. Both systems are capable of processing
over 15K requests/s on account states because of the relatively smaller amount
of accounts.

Response time. We query for a randomly selected list of accounts, transactions
and blocks, and record how long it takes to complete the query. Since a single
query usually completes in milliseconds, the reported time is the average of 1000
independent queries to minimize the impact of random errors.

566 Y. Li et al.

Table 2. Response time (in millisecond) of representative queries

Category Typical queries Number of concurrent threads

1 10 20 40 80

Block Basic
By block number

0.57 2.303 4.264 5.146 9.484

Range Query
By block number (range 100)

6.32 25.28 42.75 67.15 111.71

Account Basic
By address

0.517 1.718 3.744 4.737 7.999

Top K
By balance rank (top 100)

3.84 13.85 28.2 39.5 65.55

Transaction Basic
By hash

0.536 2.077 3.994 6.666 8.253

Top K
By value rank (top 100)

8.7 28.5 39.61 59.83 93.54

Concurrency. We increase the number of concurrent loading threads step by
step and measure the time it takes to complete these queries. Each loading
thread performs random lookups for different category of data and we calculate
the average completion time. Table 2 lists the response time (in millisecond) of
some representative API interfaces with increasing concurrent loading threads.
The basic queries, such as retrieving an account by its address, are blinking fast.
Response time grows with the incremental of concurrent threads but remains at
a reasonable level.

There is at least an order of magnitude gap in performance of retrieving a
range of blocks compared to simply getting a block by its hash. However, con-
sidering a range query will retrieve 100 blocks, the average time cost for a single
block is short. MongoDB’s indexes are used for retrieving top K accounts with
the highest balance and transactions with the highest value, which significantly
improves the performance. Note that MongoDB occupies memory space greedily
if there exists sufficient amount of physical memory. However, if the data can
just fit into the memory, MongoDB runs at high efficiency.

8 Conclusion

Due to the limited query supports of the underlying data storage, blockchain
data have not brought all its potential into full play. In this paper, we pro-
pose EtherQL, the first query layer (to our knowledge) for Ethereum blockchain
data. EtherQL has a built-in java implementation of Ethereum consensus pro-
tocols, thus can be utilized to synchronize data from any Ethereum blockchain
networks. We also provide two levels of developer interfaces that can be used
to retrieve data efficiently from blockchain or serve as a RESTful blockchain
data provider. Experiments show the effectiveness and efficiency of EtherQL in
querying blockchain data.

EtherQL: A Query Layer for Blockchain System 567

Acknowledgment. This work is partially supported by NSFC 61502324, 61532018.

References

1. Blockchain.info. https://blockchain.info/
2. Etherchain. https://etherchain.org/
3. Ethereum main wiki. https://github.com/ethereum/go-ethereum/wiki
4. MongoDB. https://www.mongodb.com/
5. Proof of Stake. https://en.bitcoin.it/wiki/Proof of Stake
6. Proof of Work. https://en.bitcoin.it/wiki/Proof of work
7. Bahga, A., Madisetti, V.K.: Blockchain platform for industrial Internet of Things.

J. Softw. Eng. Appl. 9(10), 533 (2016)
8. Buechler, M., Eerabathini, M., Hockenbrocht, C., Wan, D.: Decentralized reputa-

tion system for transaction networks. Technical report, University of Pennsylvania
(2015)

9. Buterin, V.: Merkling in ethereum. https://blog.ethereum.org/2015/11/15/
merkling-in-ethereum/

10. Buterin, V., et al.: Ethereum white paper (2013)
11. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Symposium on Oper-

ating Systems Design and Implementation, pp. 173–186 (1999)
12. Coinbase: Toshi project. https://github.com/coinbase/toshi
13. EtherScan: EtherScan.io. https://etherscan.io/
14. Fleder, M., Kester, M.S., Pillai, S.: Bitcoin transaction graph analysis. arXiv

preprint arXiv:1502.01657 (2015)
15. Ethereum Foundation: EthereumJ project. https://github.com/ethereum/

ethereumj
16. R Foundation: Ripple project. https://ripple.com/
17. Krishnapriya, G., Prabakaran, M.: An multi-variant relational model for money

laundering identification using time series data set. Int. J. Eng. Sci 3, 43–47 (2014)
18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted (2009)
19. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.

In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39884-1 2

20. Sanjay Ghemawat, J.D.: Leveldb github page. https://github.com/google/leveldb
21. Wikipedia: Chain of responsibility. https://en.wikipedia.org/wiki/

Chain-of-responsibility pattern
22. Wikipedia: Merkle tree. https://en.wikipedia.org/wiki/Merkle tree
23. Wikipedia: Remote procedure call. https://en.wikipedia.org/wiki/Remote

procedure call
24. Wilkinson, S., Boshevski, T., Brandoff, J., Buterin, V.: Storj: a peer-to-peer cloud

storage network (2014)
25. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper (2014)
26. Yue, X., Wang, H., Jin, D., Li, M., Jiang, W.: Healthcare data gateways: found

healthcare intelligence on blockchain with novel privacy risk control. J. Med. Syst.
40(10), 218 (2016)

https://blockchain.info/
https://etherchain.org/
https://github.com/ethereum/go-ethereum/wiki
https://www.mongodb.com/
https://en.bitcoin.it/wiki/Proof_of_Stake
https://en.bitcoin.it/wiki/Proof_of_work
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://github.com/coinbase/toshi
https://etherscan.io/
http://arxiv.org/abs/1502.01657
https://github.com/ethereum/ethereumj
https://github.com/ethereum/ethereumj
https://ripple.com/
http://dx.doi.org/10.1007/978-3-642-39884-1_2
https://github.com/google/leveldb
https://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
https://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Remote_procedure_call

Optimizing Scalar User-Defined Functions
in In-Memory Column-Store Database Systems

Cheol Ryu3, Sunho Lee3, Kihong Kim1, Kunsoo Park3(B), Yongsik Kwon1,
Sang Kyun Cha1,3, Changbin Song1, Emanuel Ziegler2, and Stephan Muench2

1 SAP Labs Korea, Seoul, Korea
{ki.kim,yong.sik.kwon,sang.k.cha,chang.bin.song}@sap.com

2 SAP SE Germany, Walldorf, Germany
{emanuel.ziegler,stephan.muench}@sap.com

3 Seoul National University, Seoul, Korea
{cheol.yoo,sunho.lee,kunsoo.park01}@sap.com

Abstract. User-defined functions such as currency conversion and fac-
tory calendar are important ingredients in many business applications.
Since currency conversion and factory calendar are expensive user-
defined functions, optimizing these functions is essential to high per-
formance business applications. We optimize scalar user-defined func-
tions by caching function call results. In this paper we investigate which
method for function result caching is best in the context of in-memory
column-store database systems. Experiments show that our method,
which implements a function result cache as an array, combined with SAP
HANA in-memory column store provides the high performance required
by real-time global business applications.

Keywords: Scalar user-defined functions · Currency conversion · Func-
tion result caching · In-memory column-store database system

1 Introduction

User-defined functions and stored procedures are commonly used to execute
application logics inside database servers [5,10,19]. They often lead to enormous
performance improvements by executing data-intensive application logics at the
place where data reside and thus minimizing the amount of data transfer between
application servers and database servers [8]. In this paper we focus on scalar
user-defined functions, which receive scalar arguments and return a scalar value.

Suppose that a global company stores its sales records in the SALES table, as
illustrated in Table 1, where a sales amount is given in a local currency. Therefore,
the total sales amount cannot be obtained by a simple aggregation query, but it
requires currency conversion which applies the exchange rate on the sales date.

Assume that we have a scalar currency conversion function, CURR-CONV
(source-currency, target-currency, date), which returns the exchange rate from
‘source-currency’ to ‘target-currency’ on the ‘date’. If such a function is available,

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 568–580, 2017.
DOI: 10.1007/978-3-319-55699-4 35

Optimizing Scalar User-Defined Functions 569

Table 1. Sales table with sales date, amount, local currency, country, etc.

Date Amount Currency Country . . .

2015-01-02 1, 140 USD US

2015-01-03 95, 680 JPY JP

2015-01-03 1, 098 EUR DK

2015-01-06 800 EUR DE

2015-01-07 647 GBP GB

. . .

we can obtain the total revenue of year 2015 directly from an OLTP system [29]
using a query shown in Eq. (1), which calculates the revenue of 2015 in euro.

select sum(Amount * CURR-CONV (Currency, ‘EUR’, Date))
from SALES where Date between ‘2015-01-01’ and ‘2015-12-31’

(1)

Currency conversion in business applications is a complex user-defined func-
tion because each business has its own currency conversion scheme with its own
corner-case handlings [27] (e.g., one of the bid, ask, and middle rates can be
chosen as the exchange rate, and each bank or financial institute has slightly
different exchange rates, etc.). Hence, it cannot be done by a simple lookup of
a table (i.e., precomputing the exchange rate table for all possible application-
specific options and for all possible dates is too costly). An execution plan of
the query in Eq. (1) is to invoke the currency conversion function for every row
of the SALES table. Since each function call requires queries against underlying
exchange rate tables and configuration tables in the SAP ERP implementation
[27], the query will take a prohibitively long time when the SALES table is big.

An alternative is to rewrite the query in Eq. (1) into the following two steps.

1. Compute exchange rates for distinct pairs of Currency and Date by running
“select Currency, Date, CURR-CONV (Currency, ‘EUR’, Date) Rate
from SALES group by Currency, Date”.

2. Join the exchange rate table computed in step 1 with the SALES table.

In this way, we can perform the aggregation without calling the expensive
function for every row of the SALES table. However, this alternative is still
expensive. It scans the big SALES table twice, once for obtaining the distinct
pairs and once more for joining and aggregation.

Factory calendar is another example of expensive user-defined functions,
which is important in manufacturing planning applications. Each factory has
its own work-day calendar, which is stored in a database table. A scalar func-
tion FACTORY-DAYS(date1, date2) returns the number of factory work-days
between two calendar dates ‘date1’ and ‘date2’ by looking up the factory cal-
endar table. Application-managed authorization functions are other examples.
SAP ERP and many other applications do their own authorizations for business
processes. Again, application users, application roles and application privileges

570 C. Ryu et al.

are stored in database tables. An authorization function is invoked to check if a
user has a proper privilege for a given application function/process by accessing
the database tables.

Due to the high performance of SAP HANA in-memory engine, the overhead
of these user-defined functions becomes conspicuous in global business appli-
cations. To meet various requirements from real-time business applications, we
need to support general queries containing user-defined functions in an efficient
way [8].

A natural optimization for expensive user-defined functions is to cache func-
tion call results so that subsequent calls with the same arguments are hit by the
cache. Such a scheme is called function result caching, which has been used in
commercial database systems such as Oracle [23], IBM DB2 [18], and MS SQL
[4] as well as in research investigations [15,25]. The most common method for
function result caching is hashing, even though many methods for caching have
been proposed [15].

In this paper we propose a generic framework to apply function result caching
to any expensive user-defined functions such as currency conversion and factory
calendar, and we also present fast parallel implementations of user-defined func-
tions within the framework. We explore various ways of optimizing function
result caching, especially in the context of SAP HANA in-memory column store
[9]. It is straightforward to implement a function result cache as a hash table,
though in parallel execution we need to decide whether we will use a single hash
table for all threads or multiple hash tables, one per thread. In the column store
with dictionary encoding, however, a function result cache can be implemented
more efficiently as an array. Dictionary encoding transforms each field value into
a small integer. For instance, the local currency column stores value IDs in the
range of 0–29 if there are 30 local currencies in total, and the sales date column
stores value IDs in the range of 0–364 if the table has one year of sales records.
Since the function call in Eq. (1) has at most 30 × 365 combinations of input
arguments, the function result cache can be represented as an array of 30 ×
365 entries. Since this maximum size of the array can be easily calculated from
the column store of SAP HANA, the column store enables us to implement a
function result cache as an array.

In our experiments we compare the performances of four methods for function
result caching: array method, hash table method, Join query in the column store,
and Join query in the row store. Experiments show that the array method and
the Join query which are implemented in the column store outperform the hash
table method and the Join query which are implemented in the row store. In
particular, the array method of currency conversion implemented in the column
store is the fastest, and it takes 2.1 s with 16 CPU cores for a SALES table
with 151 million rows. Hence, the proposed framework combined with HANA
in-memory database provides the high performance required by real-time global
business applications.

Optimizing Scalar User-Defined Functions 571

2 Related Work

Optimizing user-defined functions has been studied in the context of finding an
optimal execution plan of an SQL query [5,16]. That is, when a user-defined
function is expensive and its cost function is given, there are many execution
plans of an SQL query, and techniques to find an optimal execution plan among
them have been studied [5]. These studies are orthogonal to our work, which
investigates methods to speed up user-defined functions themselves.

Hellerstein and Naughton [15] describe three caching methods. The first is
hashing in main memory, and the second is sorting (of all rows of SALES based
on Date and Currency) and maintaining a cache of only the last function result.
Since the first method suffers from lack of enough memory space and the second
from the expensive cost of sorting, they propose a hybrid method that combines
in-memory hashing and disk buffers. It should be noted that the machine used
in the experiments of [15] had 64 MB memory. Since a typical machine for SAP
HANA has enough memory (e.g., 1 TB), we consider only in-memory caching
methods for best performances.

A materialized view is a kind of cache for base tables. There is a large body
of work on how to select and maintain materialized views [22,26]. This is closely
related to finding common subexpressions [20,28]. These works are orthogonal
to ours.

Result caching has been a common technique in other areas such as web
applications and programming languages. In web search engines, caching query
results has been an effective way to boost performance [11,12]. In programming
languages, too, function result caching is used to improve performance [17].

Parallelizing user-defined aggregate and table functions has been studied by
[10,19]. We also consider parallelization but we focus on parallel execution of
function result caching for scalar user-defined functions.

3 Framework

3.1 Framework for Function Result Caching

In SAP HANA, users can define scalar functions in the HANA SQLScript lan-
guage and they can use such functions in SQL queries [3]. Since user-defined
functions usually include operations on database tables, they are very expensive
compared to built-in functions such as arithmetic functions. We implemented a
generic framework for function result caching to optimize such expensive func-
tion calls inside SAP HANA.

For a scalar user-defined function f(a1, a2, . . . , an), HANA internally gener-
ates a wrapper function, fw(sc, fid, a1, a2, . . . , an), to enable the function result
caching, where a1 to an denote function arguments and sc denotes a state-
ment context object, which is initialized before executing a query statement and
cleared after completing the statement. The function result cache is stored in this
statement context object. The value fid is an integer ID, sequentially assigned

572 C. Ryu et al.

to each function when compiling a query. It is used to locate a proper cache
entry for the given function when a query has multiple expensive functions.

In SAP HANA, there are multiple levels of run-time contexts. See Fig. 1.
The execution context is located at the bottom. When a query is executed in
parallel with multiple threads, each thread is given its own execution context,
which thus can be accessed without any latching. The next level is called the
statement context, which is shared by the entire threads that fulfill a statement
either in one server or in multiple distributed servers. And then the transaction
context and the session context follow.

Run-Time Context Scope of Run-Time Context

session context session

transaction context transaction

statement context SQL statement

execution context execution thread

Fig. 1. Scopes of run-time contexts

3.2 Column Store of SAP HANA

Since the column store of SAP HANA is closely related to our methods for
function result caching, we describe characteristics of HANA relevant to this
paper. The heart of SAP HANA consists of a set of in-memory processing engines
[9]. Relational data resides in tables in column or row layout in the combined
column and row engine. The column store of SAP HANA stores relational tables
in a column-wise manner. The column store is optimized for high performance
of read operations, while providing good performance for write operations [1].
Efficient data compression is used in column tables in order to save memory and
to speed up searches and calculations [1]. The row store of SAP HANA [9] is a
row-based in-memory storage. It is optimized for high performance of concurrent
write and read operations and for fast restart.

We now describe the representation of columns in memory and data compres-
sion used in column store tables, which are relevant to function result caching.
For each column, the distinct values appearing in the column are stored in a
sorted dictionary. Each value in the dictionary is identified by its value ID which
is implicitly given by its position in the sorted dictionary. The actual data in
the column is stored as an array of value IDs. See Fig. 2. To store the value ID
array, the value IDs are bit-encoded, which means that the minimum number of
bits is used to store a value ID. If the dictionary contains N values, the required
number of bits is �log2 N�.

Optimizing Scalar User-Defined Functions 573

Fig. 2. Representation of a column in column store

4 Methods for Function Result Caching

We describe our methods for function result caching by using currency conversion
as an example. Currency conversion needs to access an exchange rate table RATE
as shown in Table 2.

Table 2. Rate table with source currency, target currency, reference date, and exchange
rate.

Source-Curr Target-Curr Ref-Date Rate . . .

USD EUR 2015-01-02 1.377

AUD EUR 2015-01-02 1.548

GBP EUR 2015-01-02 0.830

USD EUR 2015-01-03 1.367

JPY EUR 2015-01-03 143.200

. . .

The scalar currency conversion function CURR-CONV(scurr, tcurr, date)
used in our experiments is defined as follows.

1. If there are rows in table RATE such that Source-Curr = scurr, Target-Curr
= tcurr, Ref-Date ≤ date, then take the one among such rows with the largest
Ref-Date, and return Rate.

574 C. Ryu et al.

2. If there are rows in RATE such that Source-Curr = tcurr, Target-Curr =
scurr, Ref-Date ≤ date, then take the one with the largest Ref-Date, and
return 1/Rate.

3. If neither succeeds, return NULL.

4.1 Array Method

In this method we wish to implement a function result cache as an array, i.e., we
create an array A-Rate that stores the exchange rates for all possible pairs of a
source currency and a date in the SALES table when the target currency is EUR.
Creating such an array is not possible in general (because we don’t know the
size of the array) unless we scan all rows of the SALES table and find distinct
pairs of a source currency and a date. But, the column store of SAP HANA
provides the number (say, c) of distinct values in the Currency column of the
SALES table and the number (say, d) of distinct values in the Date column.
Note that c is the size of the dictionary created for column Currency in Fig. 2.
Hence, we create an array A-Rate of size c×d. This array may have pairs of a
source currency and a date which do not exist in the SALES table. However,
since the number of entries in A-Rate is much smaller than the number of rows
of SALES in typical applications and the task of building the A-Rate array is
fast by a batch computation described below, the extra computation in A-Rate
is negligible when compared to the total cost of currency conversion.

Once the A-Rate array is created, a position in the array can be used as a
representation of a pair because source currencies and dates in the SALES table
have value IDs in the column store. For example, if a source currency has value
ID 3 and a date has value ID 5, the position of the pair in the array is 3d + 5.

It would be straightforward to compute the entries of the A-Rate array by
calling the scalar function CURR-CONV for every entry. Since business appli-
cations require more efficiency, however, we compute the entries of A-Rate in a
batch way as follows. This is a custom operation special to currency conversion.
See Fig. 3. Suppose that the rows of the SALES table between 2015-01-02 and
2015-01-07 are as shown in Fig. 3. Then the entries of the A-Rate array with
source currency s are created as in Fig. 3 (where we used actual values rather
than value IDs for exposition purpose). Suppose also that the sorted entries of
the RATE table with source currency s and target currency EUR are as shown
in Fig. 3. Then we get the exchange rate for the pair (s, 2015-01-02) from RATE
and store it into the entries (s, 2015-01-02), (s, 2015-01-04), and (s, 2015-01-
05) of the A-Rate array. And we get the rate for (s, 2015-01-06) from RATE
and store it into (s, 2015-01-06) and (s, 2015-01-07) of A-Rate. This process
can be done by scanning simultaneously the RATE table and the A-Rate array.
The whole process is repeated one more time by reversing sources currencies
and target currencies of the RATE table to perform step 2 in the definition of
CURR-CONV (i.e., to apply 1/Rate). Therefore, the exchange rate computation
for one pair is amortized over many entries of the A-Rate array.

Once the A-Rate array has been computed, we read the rows of the SALES
table one by one. For each of the source currency and the date in a row, we get the

Optimizing Scalar User-Defined Functions 575

Fig. 3. Building the A-Rate array

value ID (from the value ID array in Fig. 2). From the two value IDs we compute
the position of the pair in the A-Rate array, get the exchange rate corresponding
to the pair, and finally multiply the exchange rate and the amount. This task
can be parallelized by many threads, and a block of rows of the SALES table
can be assigned to each thread. Since the A-Rate array is accessed by multiple
threads, it is stored in the statement context in Fig. 1.

The array method of currency conversion was implemented in the engine
level of SAP HANA [9], and the internal parallelization by many CPU cores was
used in our experiments.

4.2 Join

The Join query consists of three tasks: it first finds all distinct pairs of a source
currency and a date from the SALES table (which we call the distinct pairs task),
then it builds the J-Rate table with source currency, date, and rate columns by
invoking currency conversion functions for the distinct pairs (called the build
J-Rate task), and finally it performs a join operation on the SALES table and
the J-Rate table (called the join task).

Both the distinct pairs task and the join task are usually performed with
hash-based algorithms [2]. In dictionary-encoded column tables, the same hash-
based algorithms can be applied to value IDs instead of actual values. This simple
difference results in a big performance boost.

4.3 Hash Table Method

The array method in Sect. 4.1 is possible because the maximum number of entries
in the A-Rate array can be easily computed from the column store representation

576 C. Ryu et al.

of the SALES table. If the SALES table is given as a row store table, computing
the number of entries in A-Rate is expensive and thus a hash table method of
currency conversion is a viable option.

In the hash table method we use a pair of a source currency and a date as the
key of the hash table, and its exchange rate as the value of the hash table. Since
value IDs are not available without dictionaries of the column store, the key
in the hash table method is simply a string concatenation of a source currency
and a date. There are many implementation methods for hash tables [6,21], and
the two basic methods are open addressing and chaining [6], both of which are
considered in our experiments.

In the parallel execution there are two possibilities for the hash table. One
is to maintain a single hash table for all parallel threads, and the other is to
have one hash table for each thread (i.e., multiple hash tables). In the case of
maintaining a single hash table, a locking mechanism should be used in the
hash table. For the locking mechanism, an exclusive lock can be used for a
simple implementation, or a more sophisticated multiple-readers/single-writer
lock [7] may be used, which allows concurrent access for read-only operations
while write operations require exclusive access. We chose the best combination
of these possibilities for our applications by experiments.

5 Experiments

The dataset used in our experiments is a SALES table of a global company con-
sisting of about 151 million rows and numerous columns (including date, amount,
local currency). The total size of the SALES table is 69.1 GB when it is stored as
a row store table. The size of the three columns date, amount, and local currency
is 556 MB when they are stored as a column store table and it is 7.1 GB when
stored as a row store table. We also use a RATE table of 184,000 rows and four
columns (source currency, target currency, reference date, exchange rate). The
size of the RATE table is 8 MB as a column store table. The machine we used in
our experiments is Intel Xeon CPU E7-8890 v3 2.5 GHz with 72 cores, L3 cache
of 45 MB, and memory of 1 TB.

The three columns (date, amount, local currency) of the SALES table can be
given as a column store table or a row store table in SAP HANA and we consider
both cases in our experiments. If the SALES table is given in the row store, we
need to convert the three columns into a column table and build dictionaries for
them, which takes 44.8 s. If the SALES table is given in the column store, this
task is not needed. The RATE table is stored as a column store table in the
experiments.

The näıve implementation for currency conversion in Eq. (1) takes 125.8 s for
100,000 rows of the SALES table, and the execution time increases linearly to
the number of rows. Hence the näıve implementation takes a prohibitively long
time for all 151 million rows of the SALES table.

We will compare the performances of four methods for function result
caching: array method, hash table method, Join query in the column store, and

Optimizing Scalar User-Defined Functions 577

Join query in the row store. Since the array method is an option for the column
store and the hash table method for the row store, we divide the four methods
into two categories: array method and Join in the column store, and hash table
method and Join in the row store.

5.1 Column Store

Table 3 shows the performances of the array method and the Join query in the
column store. The parallel execution of the array method is straightforward:
Building the A-Rate array is executed by a single thread, and the remaining
tasks are executed by multiple threads. Hence the time for building array A-Rate
remains the same even though the number of cores is increasing. The remaining
tasks of the array method are (1) computing the position of a pair in A-Rate from
two value IDs, (2) looking up A-Rate to get the exchange rate corresponding to
the pair, and (3) multiplying the exchange rate and the amount. The speedup
of the array method when the number of cores is 16 is 11.0.

For the Join query, we compute the entries of the J-Rate table by calling
scalar function CURR-CONV for every entry, whereas building A-Rate uses
the custom operation described in Sect. 4.1. This is the reason why building J-
Rate takes much more time than building A-Rate does. The join task includes
multiplications of exchange rates and amounts. The speedup for the build J-
Rate task is less than the speedups for the distinct pairs task and the join task
because there are more variations between parallel threads in computing scalar
functions. Overall, the speedup of the Join query is 11.8 when the number of
cores is 16.

Table 3. Comparison of array and Join methods in column store (in seconds).

Method Number of cores

1 4 8 16

Build A-Rate 0.5 0.5 0.5 0.5

Lookup+multiply 22.6 5.8 3.0 1.6

Array (total) 23.1 6.3 3.5 2.1

Distinct pairs 1.6 0.4 0.2 0.1

Build J-Rate 70.6 23.3 12.2 6.3

Join 23.3 6.0 3.1 1.7

Join (total) 95.5 29.7 15.5 8.1

5.2 Row Store

Link-hash is our own implementation of a hash table with chaining, and it is a
two-layer hash table, i.e., it contains many bins (default number is 211), each
of which has a hash table. We will use one lock for each bin. Google-hash is

578 C. Ryu et al.

the Google dense hash [13] which implements open addressing with quadratic
probing [6]. Google-hash is the best performer in hash table benchmark tests
[14,24]. For the hash table method we first compared Link-hash and Google-
hash.

For the parallel execution of the hash table method, we need to choose one
from a single hash table and multiple hash tables, and one from exclusive lock
and shared-exclusive lock (also known as multiple-readers/single-writer lock)
in the case of a single hash table. Experiments showed that Link-hash with a
single hash table and the shared-exclusive lock is the best combination in our
applications. Therefore, we used it for the hash table method. The single hash
table is stored in the statement context in Fig. 1 because it is accessed by multiple
threads.

Table 4. Comparison of hash table and join methods in row store (in seconds).

Method Number of cores

1 4 8 16

Hash table (total) 144.2 43.7 20.7 11.2

Distinct pairs 55.3 14.8 7.6 3.9

Build J-Rate 70.6 23.3 12.2 6.3

Join 117.0 30.6 17.3 8.9

Join (total) 242.9 68.7 37.1 19.1

Table 4 shows the performances of the hash table method and the Join query
in the row store. The tasks of the hash table method are (1) generating the key of
the hash table (i.e., concatenating a source currency and a date), (2) getting the
exchange rate from the hash table corresponding to the key if it exists, (3) if not,
inserting the rate into the hash table after invoking the scalar function CURR-
CONV, and (4) multiplying the exchange rate and the amount. The speedup of
the hash table method is 12.9 when the number of cores is 16.

For the Join query in the row store, the distinct pairs task and the join task
take more time than those in the column store due to the reason described in
Sect. 4.2. The speedup for the build J-Rate task is again less than the speedups
for other tasks due to variations between parallel threads in computing scalar
functions. Overall, the speedup is 12.7 when the number of cores is 16.

In summary, the array method and the hash table method are faster than
the Join query in their respective contexts. The array method is the fastest, and
it takes 2.1 s with 16 CPU cores for 151 million rows of the SALES table.

Acknowledgments. The work of Ryu, Lee and Park was supported in part by the
National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT
& Future Planning (No. 2012M3A9D1054622).

Optimizing Scalar User-Defined Functions 579

References

1. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores: how dif-
ferent are they really? In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, pp. 967–980 (2008)

2. Balkesen, Ç., Teubner, J., Alonso, G., Özsu, M.T.: Main-memory hash joins on
modern processor architectures. IEEE Trans. Knowl. Data Eng. 27(7), 1754–1766
(2015)

3. Binnig, C., May, N., Mindnich, T.: SQLScript: efficiently analyzing big enterprise
data in SAP HANA. In: Database Systems for Business, Technology, and Web, pp.
363–382 (2013)

4. Books online for SQL server 2016. https://msdn.microsoft.com/en-us/library/
ms191007.aspx

5. Chaudhuri, S., Shim, K.: Optimization of queries with user-defined predicates.
ACM Trans. Database Syst. 24(2), 177–228 (1999)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

7. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with “readers” and
“writers”. Commun. ACM 14(10), 667–668 (1971)

8. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP
HANA database: data management for modern business applications. SIGMOD
Rec. 40(4), 45–51 (2012)

9. Färber, F., May, N., Lehner, W., Große, P., Müller, I., Rauhe, H., Dees, J.: The
SAP HANA database-an architecture overview. IEEE Data Eng. Bull. 35(1), 423–
434 (2012)

10. Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/Mapreduce: a practical approach
to self-describing, polymorphic, and parallelizable user-defined functions. Proc.
VLDB Endow. 2(2), 1402–1413 (2009)

11. Gan, Q., Suel, T.: Improved techniques for result caching in web search engines. In:
Proceedings of the 18th International Conference on WWW, pp. 431–440 (2009)

12. Garrod, C., Manjhi, A., Ailamaki, A., Maggs, B., Mowry, T., Olston, C., Tomasic,
A.: Scalable query result caching for web applications. Proc. VLDB Endow. 1(1),
550–561 (2008)

13. Google sparsehash. http://goog-sparsehash.sourceforge.net/
14. Hash table benchmarks. http://incise.org/hash-table-benchmarks.html
15. Hellerstein, J.M., Naughton, J.F.: Query execution techniques for caching expen-

sive methods. SIGMOD Rec. 25(2), 423–434 (1996)
16. Hellerstein, J.M., Stonebraker, M.: Predicate migration: optimizing queries with

expensive predicates. SIGMOD Rec. 22(2), 267–276 (1993)
17. Heydon, A., Levin, R., Yu, Y.: Caching function calls using precise dependencies.

SIGPLAN Not. 35(5), 311–320 (2000)
18. IBM i version 7.2, database SQL programming. https://www.ibm.com/support/

knowledgecenter/ssw ibm i 72/sqlp/rbafypdf.pdf
19. Jaedicke, M., Mitschang, B.: On parallel processing of aggregate and scalar func-

tions in object-relational DBMS. SIGMOD Rec. 27(2), 379–389 (1998)
20. Jarke, M.: Common subexpression isolation in multiple query optimization. In:

Query Processing in Database Systems, pp. 191–205 (1985)
21. Knuth, D.E.: The Art of Computer Programming, vol. 3: Sorting and Searching,

2nd edn. Addison Wesley Longman Publishing Co., Inc, Boston (1998)

https://msdn.microsoft.com/en-us/library/ms191007.aspx
https://msdn.microsoft.com/en-us/library/ms191007.aspx
http://goog-sparsehash.sourceforge.net/
http://incise.org/hash-table-benchmarks.html
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_72/sqlp/rbafypdf.pdf
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_72/sqlp/rbafypdf.pdf

580 C. Ryu et al.

22. Mistry, H., Roy, P., Sudarshan, S., Ramamritham, K.: Materialized view selection
and maintenance using multi-query optimization. SIGMOD Rec. 30(2), 307–318
(2001)

23. Oracle database performance tuning guide, 12c release 1. https://docs.oracle.com/
database/121/TGDBA/toc.htm

24. Performance notes. http://goog-sparsehash.sourceforge.net/doc/performance.
html

25. Richardson, S.E.: Caching function results: faster arithmetic by avoiding unneces-
sary computation. Technical report, Mountain View, CA, USA (1992)

26. Ross, K.A., Srivastava, D., Sudarshan, S.: Materialized view maintenance and
integrity constraint checking: trading space for time. SIGMOD Rec. 25(2), 447–458
(1996)

27. Sap, ERP 6.0 enhancement package 8. http://help.sap.com/erp2005 ehp 08/
helpdata/en/59/cdc8109ce34bca896115f8ae660a69/content.htm

28. Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Syst. 13(1), 23–52
(1988)

29. Sikka, V., Färber, F., Lehner, W., Cha, S.K., Peh, T., Bornhövd, C.: Efficient trans-
action processing in SAP HANA database: The end of a column store myth. In:
Proceedings of the 2012 ACM SIGMOD International Conference on Management
of Data, pp. 731–742 (2012)

https://docs.oracle.com/database/121/TGDBA/toc.htm
https://docs.oracle.com/database/121/TGDBA/toc.htm
http://goog-sparsehash.sourceforge.net/doc/performance.html
http://goog-sparsehash.sourceforge.net/doc/performance.html
http://help.sap.com/erp2005_ehp_08/helpdata/en/59/cdc8109ce34bca896115f8ae660a69/content.htm
http://help.sap.com/erp2005_ehp_08/helpdata/en/59/cdc8109ce34bca896115f8ae660a69/content.htm

GPS-Simulated Trajectory Detection

Han Su1, Wei Chen1, Rong Liu1, Min Nie2, Bolong Zheng3(B), Zehao Huang1,
and Defu Lian1

1 University of Electronic Science and Technology of China, Chengdu, China
{hansu,weichen,rongliu,dove}@uestc.edu.cn, 1078351005hzh@gmail.com

2 Xundao Inc., Shenzhen, China
minnie@ebigdata.org

3 University of Queensland, Brisbane, Australia
b.zheng@uq.edu.au

Abstract. Due to the prevalence of GPS-enabled devices and wireless
communication technology, spatial trajectories have become the basis of
many location based applications, e.g., Didi. However, trajectory data
suffers low quality problems causing by sensor errors and artificial forg-
eries. Sensor errors are inevitable while forgeries are always constructed
on bad purpose. For example, some Didi drivers use GPS simulators to
generate forgery trajectories and make fake transactions. In this work we
aim to distinguish whether a given trajectory is a GPS simulated trajec-
tory. By formulating this task as the problem of traffic speed extracting
and irregular measuring, we propose a simulated trajectory detection
framework. In traffic speed extracting phase, we first divide time into
time slots and then extract the regular speed of each road during each
time slot. In irregular measuring phase, we propose three methods to
measure the distance between the speed of the given trajectory and the
real traffic speeds. For empirical study, we apply our solution to a real
trajectory dataset and have found that the simulated trajectory detec-
tion framework can detect most forgery trajectories.

1 Introduction

Driven by major advances in sensor technology, GPS-enabled mobile devices
and wireless communications, a large amount of data recording the motion his-
tory of moving objects, known as trajectories, are currently being generated
and managed in scores of application domains. In the past few years, a lot
of research works focused on the trajectory analyzing. Effective index struc-
tures [1,2,17,20,24] are built to manage trajectories and support high perfor-
mance trajectory queries. Data mining methods are applied on trajectories to
detect important points of interest (POI) and find the popular route from a
source to a destination [10,11,13,15]. Attentions are also drawn to semantic rep-
resentation or interpretation of trajectory data by associating or annotating GPS
locations with semantic entities [21,25]. Despite decades of research efforts on

W. Chen—Equal Contribution.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 581–593, 2017.
DOI: 10.1007/978-3-319-55699-4 36

582 H. Su et al.

spatial databases, people are still witnessing data quality issues widely existing
in trajectory data. Specifically, trajectory has been seen to have quality issues at
2 different levels: the data level, which affects the quality of trajectory dataset
itself, and the service level, which affects the qualify of trajectory-based appli-
cations. In this paper, we focus on dealing with data level quality issues.

For data level, trajectory data suffers from GPS errors and artificial forg-
eries quality issues. GPS-error-caused trajectory anomaly is inevitable due to
the inaccuracy of GPS modules. Artificial-forgery-caused trajectory anomaly is
constructed by humans for some purposes.

GPS-error-caused Anomaly. A trajectory contains two dimensions of infor-
mation, i.e., spatial information (latitude and longitude) and temporal informa-
tion (timestamp). The inaccuracy of GPS modules mainly appears in spatial
dimension. A GPS module may record a location which is far from the real loca-
tion of a moving object. This situation results to a spatial-error-based trajectory
anomaly.

Artificial-forgery-caused Anomaly. Different with the inevitable GPS errors,
some people use GPS simulators to construct fake trajectories on purpose. Due
to the difference between hardwares and softwares of GPS simulators, there
are mainly three trajectory simulation strategies, i.e., equal distance simulation,
equal time simulation and direction changing simulation. A GPS simulator with
equal distance simulation strategy generates trajectory sample points that every
two sample points have the equal distance. A GPS simulator with equal time
simulation strategy generates trajectory sample points that every two sample
points have the equal time interval. A GPS simulator with direction changing
simulation strategy generates trajectory sample points every time the simulated
trajectory changes its direction.

Detecting these anomalies is important since trajectory data are widely used
in industry and these anomaly can do a lot of harm to some businesses. Tak-
ing simulated trajectory as an example, there are some people using simulated
trajectories to cheat money. Some Didi drivers use GPS simulators to gener-
ate trajectories without really passing through these roads. With the simulated
trajectories, they can make fake transactions to win bonus awarded by Didi
Inc. Didi Inc. losses a lot of money on these fake transactions. Several works
have focusing on spatial-error-based trajectory anomaly detection, such as the
maximum-range method. Since few methods can detect the simulated trajecto-
ries, we build a system which can detect the them.

The speed of roads is a feature which can detect the simulated trajectories. It
is a commonsense that the traffic condition of different time of different days of a
week is quite different. For example, the traffic of 5 pm should be far more slower
than that of 5 am; also the traffic of weekdays has significant differences with
the traffic of weekends. As for simulated trajectories, almost all GPS simulators
simulate trajectories without considering the real-time traffic. Therefore, it is of
high probability that the speed of a simulated trajectory has a big difference
with real-time traffic. With the observation and awareness of that real speed
feature can distinguish whether a trajectory is simulated or not, an irregular

GPS-Simulated Trajectory Detection 583

measuring process is to measure the speed gap between the given trajectory and
the real traffic speeds.

It is a non-trivial task to perform simulated trajectory detection. First, the
real traffic speed is not easy to get. There are mainly three sources to get real
traffic speeds, i.e., sensor data, real-time trajectory data and historical trajectory
data. Due to private issues, sensor data and real-time trajectory data are not
easy to get. Historical trajectory data needs extraction before it can be used as
real traffic speeds. Besides, historical trajectory data always suffers sparse and
asymmetric distributed problems, that these problems cause the extracted real
traffic speeds of low accuracy. Second, with real traffic speeds, a proper distance
metric is needed to well measure the distance between the speed of the given
trajectory and the real traffic speeds.

In order to address the two problems mentioned above, in this work, we pro-
pose a novel speed extraction method from historical trajectory data and three
distance metrics to measure the distance between the speed of the given trajec-
tory and the real traffic speeds. The speed extraction method divides time into
fix time slots. Then calculate the average speed of each road during each time
slot. For roads or time slots with little historical trajectories, we use probabilistic
matrix factorization to estimate its speed. As for irregular measuring methods,
we design three distance measures, i.e., voting-based detection, integral-based
detection and model-based detection. Voting-based detection utilizes the rated
voting system to decide whether a trajectory is a simulated trajectory. Integral-
based detection measures the aggregate speed variance between the given tra-
jectory and the real traffic speeds. Model-based detection leverages the power of
SVM to classify whether a trajectory is a simulated trajectory or not.

To sum up, we make the following major contributions.

– We make a key observation that the existing of simulated trajectories,
thus calls for a simulated trajectory detection to avoid the bad impact on
trajectory-based applications such as Didi.

– We design a novel speed extraction method from historical trajectory data
and three distance metrics to measure the distance between the speed of the
given trajectory and the real traffic speeds.

– We conduct extensive experiments based on large-scale real trajectory dataset,
which empirically demonstrates that the simulated trajectory detection system
can detect most simulated trajectories.

The remainder of this paper is organized as follows. The preliminary concepts
are shown in Sect. 2. We discuss the speed extraction and irregular measuring
methods in Sects. 3 and 4 respectively. The experimental observations are pre-
sented in Sect. 5, followed by a brief review of related work in Sect. 6. Section 7
concludes the paper and outlines some future work.

2 Preliminary

In this section, we present some preliminary concepts. Table 1 summarizes the
major notations used in the rest of the paper.

584 H. Su et al.

Table 1. Summarize of notations

Notation Definition

T a raw trajectory

T a calibrated trajectory

p a sample point of a trajectory

r a road in a road network

t a timestamp

TSi a trajectory segment connecting pi and pi+1 of T

Sr
t traffic speed of road r at timestamp t

speedr(T) the moving speed of T on road r

Definition 1 (Trajectory). A trajectory T is a finite sequence of locations
sampled from the original route of a moving object and their associated time-
stamps, i.e., T = [(p1, t1), (p2, t2), · · · , (pn, tn)].

A symbolic trajectory T is a sequence of roads and their corresponding time-
stamps, i.e., T = [(r1, t1), (r2, t2), · · · , (rm, tm)]. Utilizing the spatial-tempo map
matching algorithm proposed in [23], we can map T = [(p1, t1), · · · , (pn, tn)] to
the road network and get a symbolic trajectory T = [(r1, t1), · · · , (rm, tm)].

Definition 2 (Simulated Trajectory). A trajectory T is a GPS-simulated if
T is generated by GPS simulators and no moving objects have passing through
the roads of T , the symbolic trajectory of T .

Definition 3 (Trajectory Segment). An segment TSi of a symbolic trajectory
T is a sub-trajectory which connects two consecutive landmarks li and li+1 of T .

Problem: Given a trajectory T and the regular traffic speeds of a road network,
distinguish whether T is a GPS-simulated trajectory.

3 Ground Truth Traffic

As mentioned above, speed feature can well distinguish whether a trajectory is
GPS-simulated or not. In the following section we will introduce three sources
of extracting traffic speeds.

Sensor Data. Speed sensors are very dense along highways in most cities. These
sensors report real-time speeds from time to time. So the advantage of utilizing
sensor data as real-time traffic ground truth is that the reported speed is very
accurate. However, there are few sensors along several artery roads and most
branch roads, so we cannot get all real-time speed of all the roads of a city from
the source of sensors. Besides, the sensor data are private data of governments
that it is hard to get sensor data.

GPS-Simulated Trajectory Detection 585

Real-Time Trajectory Data. Another source of real-time speed data is real-
time trajectory data. For a specific timestamp t and a specific road r, the speed
of a car on r at t can roughly reflect the speed of the real-time traffic of the
road. Similar with sensor data, the real-time trajectory data are hard to get due
to private issues.

Historical Trajectory Data. Historical trajectory data is a rough source of
real-time speed data. Since the traffic speed falls into a periodic pattern, we
can estimate the speed of route at a time stamp based on previous trajectory
data. For example, if the average traffic speed of moving objects on El Camino
Real at 8 am on Monday is 50 km/h, then it is of high probability that the
traffic speed of El Camino Real at 8 am on the up coming Monday is 50 km/h.
The advantage of utilizing historical trajectory data as real-time ground truth
is that several location-based services, e.g., open street map, provide historical
trajectory data (easy to get). However, since the traffic speed changes from
time to time, even a small accident or event may affect the traffic speed, so the
estimated speed of historical trajectory data is less accurate than sensor data
and real-time trajectory data.

Extracting traffic speed from sensor data and real-time trajectory data is
straightforward, so we do not go into details. In the following section, we will
introduce how to extract traffic speed from historical trajectory data. Since the
traffic speeds vary with time and traffic speeds have periodical patterns, so we
divide time into several time slots. In our experiments, we use every hour of a
week as a time slot, thus there are 24 × 7 = 168 time slots in total. For a road
r at a time slot t, we use the following method to calculate traffic speed Sr

t of
road r at time slot t.

Sr
t =

∑

T∈T
r
t

speedr(T)

T
r
t are all the trajectories passing road r during time slot t and speedr(T) is

the speed of T on road r. In a trajectory T = [(p1, t1), · · · , (pn, tn)], we can
easily extract the speed speed(TSi) = d(pi+1,pi)

ti+1−ti
for each trajectory segment

TSi. By utilizing the map matching algorithm [23], we can map a trajectory
to roads. Thus if TSi is mapped to r, then speedr(T) can be roughly equal
to speed(TSi). However, some road in certain time slots may not have enough
historical trajectories which causes the low accuracy of average speeds. So we
set a threshold thressupport to ensure that every average speed Sr

t has at least
thressupport historical trajectories passing r during t; otherwise Sr

t will be set to
0. With all the n roads and 168 time slots in our system, a n×168 matrix M with
mij = Sri

tj is built. If the historical trajectory dataset is small or trajectories are
asymmetric distributed, M can be very sparse. So the next step is to estimate a
proper average speed mij .

The average speed of different pairs of (road, time slot) are determined by
some unweighed or even unobserved factors, which are regarded as some hidden
factors. However, we do not manually specify these factors, as hard-coded factors
are usually limited and biased. Instead, we assume the average speed of each

586 H. Su et al.

road-time-slot pair is a linear combination of two groups of speeds, i.e. (1) how
speeds change on different roads, and (2) how speeds change with time. Then
we employ Probabilistic Matrix Factorization (PMF) [16] to factorize M into
two latent feature matrices, W ∈ Rd×n and Ld×168, which are the latent road
and time slot feature matrices, respectively. Further, we assume there exists
observation uncertainty R, and the uncertain follows a normal distribution. Thus
the distribution of a new road-time-slot familiarity matrix M ′ conditioned on
W and L is defined as follows:

p(M ′|W,L, σ2) =
n∏

i=1

168∏

j=1

[N (Mij |WT
i Lj , σ

2)]
Iij

where N (x|μ, θ2) is the probability density function of the normal distribution
with mean μ and variance θ2, and Iij is a indicator which is equal to 1 if Mij is
not zero, otherwise 0. The prior of W and L are defined as follows:

p(W |σ2
W) =

n∏

i=1

N (Wi|0, σ2
W I) p(L|σ2

L) =
168∏

i=1

N (Li|0, σ2
LI)

where I is identity matrix. The following objective function maximizes the pos-
terior of W and L with regularization terms, which minimizes the prediction dif-
ference between our model and the observed M , and also automatically detects
the appropriate number of factors d through the regularization terms:

n
∑

i=1

168
∑

j=1

Iij(Mij − WT
i Lj)

2
+ λW

n
∑

i=1

‖Wi‖2
F + λL

168
∑

j=1

‖Lj‖2
F

where λW = θ2/θ2W , λL = θ2/θ2L, and ‖·‖2F denotes the Frobenius norm. A local
minimum of the objective function can be found by performing gradient descent
in W and L. Afterwards, more speeds between roads and time slots are inferred
in M .

4 Irregular Measuring

In this section, we discuss in detail about irregular measuring based on traffic
ground truths.Given a ground truth traffic setS and a trajectoryT = [(p1, t′1), · · · ,
(pm, t′m)], our system will tell whether T is simulated or not. We propose three
methods to measure the distance between the speed of the given trajectory and
the real traffic speeds. All of these methods share the same process that they need
to extract two features: ground truth speed and given trajectory speed. The ground
truth speed Sr

t of road r at time t is provided by ground truth traffic set S. Recall
Sect. 3, we extract the given trajectory speed speedr(T) of trajectory T on road r.
Utilizing the spatial-tempo map matching algorithm proposed in [23], we can map
T to the road network and get a symbolic trajectory T = [(r1, t1), · · · , (rn, tn)].
The speed of trajectory T on road ri is denoted by speedri(T). speedriT can be
evaluated as d(pb,pa)

tb−ta
where pa and pb are the starting point and end point of T on

road ri respectively.

GPS-Simulated Trajectory Detection 587

4.1 Voting-Based Detection

In this part we present a voting-based anomaly detection method. The detection
process is quite similar to rated voting system [18], of which the wining option
is chosen according to the voters preferences score of options and the number of
voters preferring the options. In our system, we can treat each road of passing by
roads of T as a voter. Options are ‘anomaly trajectory’ and ‘normal trajectory’
indicating whether the trajectory T is simulated or not. Adopting the idea of
rated voting system, we can measure the road r’s preference of whether T is
simulate by the following two steps:

– measure the variance V(speedr(T),Sr
t) between the given trajectory speed of

road r and the ground truth speed of r at the associating timestamp t;
– if V(speedr(T),Sr

t) is bigger than a user define threshold thresvar, then r
will vote T as an ‘anomaly trajectory’; otherwise r will vote T as a ‘normal
trajectory’.

Then we sum up the preferences of each option voted by roads and road impor-
tances. The importance of each voter/road is associate with the length of the
road. We choose the option with higher adding up preference scores as the result.

4.2 Integral-Based Detection

In this subsection we introduce an integral-based anomaly detection. The main
idea of the integral-based anomaly detection is to measure the aggregate speed
variance between the given trajectory and the ground truth traffic. If the aggre-
gate variance is bigger than a user define threshold thresint, then trajectory T
is regarded as a simulated trajectory. Therefore the aggregate speed variance VT

of symbolical trajectory T = [(r1, t1), · · · , (rn, tn)] is measured as following:

VT =
1

tn − t1

∫ |speedr(T) − Sr
t |

speedr(T)
dt

where 1
tn−t1

is a normalization factor. For ground truth traffic extracted from
historical trajectory data, it cannot provide fine-grained speeds associated with
timestamps. So we use the following equation to measure the aggregate variance
for coarse-grained ground truth traffic.

VT =
∑

r∈T

length(r)
length(T)

· |speedr(T) − Sr
t |

speedr(T)

where length(r) and length(T) are the length of road r and trajectory T
respectively.

588 H. Su et al.

4.3 Model-Based Detection

To further improve the detection performance, we propose a more advanced
model-based anomaly detection approach, which leverages the power of Support
Vector Machine (SVM) to classify whether a trajectory is a simulated trajectory.
The basic idea of the model-based detection algorithm is to describe a trajectory
by its speed features on all the trajectory segments, and build a classifier to
separate abnormal trajectories from the normal ones.

The speed on each trajectory segment could be quite different, e.g., a car
can move much faster on a high way than on local street; the speeds could have
much wider variance on a very busy road. Therefore, we need to normalize all the
speed features. In the model-based method, we follow the standard approaches
in estimating speed, and assume the ground truth speed follows an normal dis-
tribution, i.e., f(x|μ, σ2). The mean μr of the distribution is ground truth speed
Sr
t of road r at timestamp t and the standard variance σ is computed from all

the trajectories on road r at timestamp t. Then we can compute the normal-
ized speed x′ of the given trajectory on road r at timestamp t is measured as
following:

x′ =
speedr(T) − μr

σr

With the normalized speed of all roads of the given trajectory, a vector ns is
built. Notably, the dimension size of the vector is the number of all the roads in
the road network. And the vector only has values on dimensions of its passing
roads. For example, if there are 1000 roads in the road network, then ns is a
1000 × 1 vector. And if trajectory T passes through roads r100, r500 and r1000,
then the normalized vector nsT of T only has value on dimension 100, 500 and
1000; the value of all other dimensions are 0.

The second step is to build a supervised classification model to classify
whether a vector is a simulated trajectory. In our experiment, we utilize the
SVM model. In order to train a best model, we need to minimize the following
objective function:

1
n

∑
max(0, 1 − yr(wxr + b)) + λ||w||2

A global minimum value can be found by performing gradient descent algorithm.

5 Experiment

In this section, we conduct extensive experiments to validate the effectiveness of
our GPS-simulated trajectory detection system. Our system is implemented in
Java. All the experiments are run on a computer with Intel Core i7-2600 CPU
(3.40 GHz) and 16 GB memory.

GPS-Simulated Trajectory Detection 589

5.1 Experiment Setup

Commercial Map: We use the commercial map of a large city—Beijing—
provided by a collaborating company. The commercial map is used to build the
road network and to provide the length of a road.

Trajectory Dataset: We use a real-world trajectory dataset generated by
33,000+ taxis in Beijing over three months. This dataset has more than 100,000
trajectories.

Simulated Trajectory Dataset: We use GPS simulators to generate a sim-
ulated trajectory dataset using three sampling strategies. We set the simulated
speed by varying the traffic speed to several degrees. We decelerate the traffic
speed by 30%, 50%, 70% and 90%, denoted as S30, S50, S70 and S90. Similarly,
we accelerate the traffic speed by 30%, 50%, 70% and 90%, denoted as F30, F50,
F70 and F90.

5.2 Performance Evaluation

We study both the effectiveness and efficiency of our GPS-simulated trajectory
detection system. In all our algorithms, we set the value of threshold thressupport,
thresvar and thresint as 5, 0.4 and 0.4 respectively. To study the effectiveness, we
study the following 2 aspects of the GPS-simulated trajectory detection: (1) the
accuracy rate of distinguishing whether a given trajectory is a GPS-simulated
trajectory; (2) the impact of thresholds thresvar and thresint to our detection
system. As to the efficiency test, we record the time cost for distinguishing a
single trajectory.

Accuracies. In the first set of experiments, we evaluate the accuracy rate of
each irregular measuring method. We randomly select 5000 real trajectories from
the trajectory dataset and 5000 S30 simulated trajectories from the simulated
trajectory dataset to form the S30 test dataset. Repetitive eight times, we con-
struct eight test datasets, i.e., S30, S50, S70, S90, F30, F50, F70 and F90 test
datasets. For every trajectory of every test dataset, we use these three methods
to distinguish whether it is a simulated trajectory. And then we calculate the
accurate rate of each method on each test datasets. Figure 1 shows the results of
accuracies of three methods on eight test datasets. Not surprisingly, accuracies
of all methods gradually increase with the increase of speed variation. And all
accuracy values are over 50%. The model-based method turns to be the best
approach in terms of the capability of distinguishing simulated trajectory, as we
can see that the accuracies of model-based method are always the highest on all
the datasets. However, voting-based method and integral-based method have a
significant drop on S30 dataset and F30 dataset.

590 H. Su et al.

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

S90 S70 S50 S30 F30 F50 F70 F90

A
c
c
u

ra
c
y

Voting-based
Integral-based

Model-based

Fig. 1. User interface of STMaker

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

S90 S70 S50 S30 F30 F50 F70 F90

A
cc

u
ra

cy

0.3
0.4
0.5

(a) Accuracy of voting-based method with dif-
ferent thresholds

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

S90 S70 S50 S30 F30 F50 F70 F90

A
cc

u
ra

cy

0.3
0.4
0.5

(b) Accuracy of integral-based method with
different thresholds

Fig. 2. Impact of threshold

Effect of Thresholds. Next we test how the thresholds thresvar and thresint
used in the voting-based method and integral-based method respectively affect
the simulated trajectory detection. Recall that a higher thresvar and a higher
thresint result in that a trajectory with bigger speed variation will be detected
as a simulated trajectory. In other words, a simulated trajectory has a lower
probability to be treated as a simulated trajectory while a normal trajectory
has a higher probability to be treated as a normal trajectory; In order to work
out a good trade-off to get a high correctness of distinguishing both simulated
trajectory and normal trajectory, we tune the threshold thresvar and thresint
from 0.3 to 0.5 with the step of 0.1. Meanwhile we calculate the accuracies of
voting-based method and integral-based method on eight test datasets. As shown
in Fig. 2, generally all the accuracies increase with the increase of speed variation.
When the threshold is low (0.3), these methods have higher accuracies comparing
to those with higher thresholds on S50, S30, F30 and F50 test datasets; however,
methods with high threshold (0.5) haver higher accuracies comparing to those
with lower thresholds on S90, S70, F70 and F90 test datasets. Based on the
observations of this experiment, we recommend the threshold with the value 0.4
to be appropriate.

GPS-Simulated Trajectory Detection 591

 0.1

 1

 10

 100

S90 S70 S50 S30 F30 F50 F70 F90

T
im

e
 C

o
s
t
(m

s
)

Voting-based
Integral-based

Model-based

Fig. 3. Average time cost for distinguishing one trajectory

Time Cost. We also evaluate the time cost of simulated trajectory detection,
which is especially important for online systems. The average time cost for distin-
guishing a single trajectory is shown in Fig. 3, from which we observe that all the
methods can distinguish a trajectory within tens of milliseconds. Integral-based
method turns out to be the most efficient approach. The voting-based approach
constantly runs faster than the model-based approach, since the model-based
approach involves expensive inference.

6 Related Work

In this section, we review these existing anomaly detection problems. We also
review existing works on trajectory noise and map-matching problem.

Anomaly Detection. Many methods for anomaly detection have previously
been proposed. Paper [3,7] provide extensive surveys of different anomaly detec-
tion methods and application. The paper [8] focuses on the similarity-based
approach to anomaly detection. This approach typically involves transforming
similarities between a test sample and training samples into an anomaly score.
Other related methods for anomaly detection include using the sum of the dis-
tance between a sample and its kth-nearest neighbor as the anomaly score for
the sample [5] and non-parametric adaptive anomaly detection methods using
geometric entropy minimization [22].

Trajectory Noise. Existing approaches rely on point-by-point matching to map
individual GPS points to a road segment. However, GPS data is imprecise due to
noise in GPS signals. GPS coordinates can have errors of several meters so that
direct mapping of individual points is error prone. Paper [14] proposes a radically
different method to overcome inaccuracy in GPS data as every GPS point is
potentially noisy, which considers the set of relevant GPS points in a trajectory
that can be mapped together to a road segment. This algorithm outperforms
state-of-the-art methods in terms of both accuracy and computational cost, even
with even with highly noisy GPS measurements.

Map-matching Problem. There are a host of studies on map-matching prob-
lem. These methods used to be classified into three types: local/incremental app-
roach, global aproach, and statistical approach. The local/incremental method

592 H. Su et al.

try to find a local match of geometried [12]. The incremental methods usetwo sim-
ilarity measures to evaluate the candidate edges, one for distance similarity and
another for orientation similarity. The combined similarity measure is computed
as the sum of individual scores. The time complexity is O(n) once we find adja-
cent edges for each sample, where n is the number of GPS points to be matched.
The method of “adaptive clipping” uses Dijkstra alogrithm to construct shortest
path on local free space graph [4]. The aim of the global methods is matching the
entire trajectory with the road network. An offline snapping method that aims
to find a minimum weight path based on edit distance proposed by paper [9].
Other methods [6] are based on Frchet distance or its variants. Matching GPS
observation also use statistical models. Paper [19] introduce a method for reli-
able matching of position and orientation measurements from a standard GPS
receiver to a digital map.

7 Conclusions

In this paper we have taken an important step towards simulated trajectory
detection. We propose a novel speed extraction method from historical trajectory
data and three distance metrics to measure the distance between the speed of the
given trajectory and the real traffic speeds. We conducted extensive experiments
on a real-life trajectory dataset. The experiment results show that our simulated
trajectory detection methods can detect most simulated trajectories. We expect
this work will attract more attentions on improving the quality of trajectory
data.

Acknowledgments. This research is supported by UESTC (Grant No:
ZYGX2016KYQD135).

References

1. Cai, Y., Ng, R.: Indexing spatio-temporal trajectories with chebyshev polynomials.
In: SIGMOD, pp. 599–610 (2004)

2. Chakka, V., Everspaugh, A., Patel, J.: Indexing large trajectory data sets with
seti. In: CIDR (2003)

3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41(3), 75–79 (2009)

4. Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed: local-
izing global curvematching algorithms. In: Proceedings of the 18th International
Conference on Scientific and Statistical Database Management (2006)

5. Eskin, E., Arnold, A., Prerau, M.: A geometric framework for unsupervised anom-
aly detection: detecting intrusions in unlabeled data. In: Barbará, D., Jajodia,
S. (eds.) Applications of Data Mining in Computer Security. Springer, New York
(2002)

6. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. J. Algorithms 49(2),
262–283 (2003)

7. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell.
Rev. 22(2), 85–126 (2004)

GPS-Simulated Trajectory Detection 593

8. Hsiao, K.-J., Xu, K.S., Calder, J., Hero III, A.O.: Multi-criteria anomaly detection
using pareto depth analysis. Eprint Arxiv, vol. 25, pp. 854–862 (2011)

9. Yin, H., Wolfson, O.: A weight-based map matching method in moving objects
databases. In: International Conference on Scientific and Statistical Database Man-
agement, pp. 437–438 (2004)

10. Jeung, H., Shen, H., Zhou, X.: Convoy queries in spatio-temporal databases. In:
ICDE, pp. 1457–1459 (2008)

11. Jeung, H., Yiu, M., Zhou, X., Jensen, C., Shen, H.: Discovery of convoys in trajec-
tory databases. PVLDB 1, 1068–1080 (2008). VLDB Endowment

12. Greenfeld, J.: Matching GPS observations to locations on a digital map. In: Pro-
ceedings of 81th Annual Meeting of the Transportantion Research Board (2002)

13. Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group frame-
work. In: SIGMOD, pp. 593–604. ACM (2007)

14. Li, H., Kulik, L., Ramamohanarao, K.: Robust inferences of travel paths from GPS
trajectories. Int. J. Geog. Inform. Sci. 29(12), 2194–2222 (2015)

15. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object
clusters. PVLDB 3, 723–734 (2010)

16. Mnih, A., Salakhutdinov, R.: Probabilistic matrix factorization. In: NIPS, pp.
1257–1264 (2007)

17. Ni, J., Ravishankar, C.: Indexing spatio-temporal trajectories with efficient poly-
nomial approximations. TKDE 19(5), 663–678 (2007)

18. Nordmann, L., Pham, H.: Weighted voting systems. IEEE Trans. Reliab. 48(1),
42–49 (1999)

19. Pink, O., Hummel, B.: A statistical approach to map matching using road net-
work geometry, topology and vehicular motion constraints. In: International IEEE
Conference on Intelligent Transportation Systems, pp. 862–867 (2008)

20. Pfoser, D., Jensen, C., Theodoridis, Y.: Novel approaches to the indexing of moving
object trajectories. In: VLDB, pp. 395–406 (2000)

21. Spaccapietra, S., Parent, C., Damiani, M.L., de Macedo, J.A., Porto, F., Vangenot,
C.: A conceptual view on trajectories. Data Knowl. Eng. 65(1), 126–146 (2008)

22. Sricharan, K., Hero III, A.O.: Efficient anomaly detection using bipartite k-NN
graphs. In: Advances in Neural Information Processing Systems, vol. 24, pp. 478–
486 (2011)

23. Su, H., Zheng, K., Huang, J., Wang, H., Zhou, X.: Calibrating trajectory data for
spatio-temporal similarity analysis. VLDB J. 24(1), 93–116 (2015)

24. Wang, H., Zheng, K., Xu, J., Zheng, B., Zhou, X., Sadiq, S.: SharkDB: an in-
memory column-oriented trajectory storage. In Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information and Knowledge Management,
pp. 1409–1418. ACM (2014)

25. Yan, Z., Spaccapietra, S., et al.: Towards semantic trajectory data analysis: a
conceptual and computational approach. In: VLDB Ph.D Workshop (2009)

Social Networks and Graphs
(Industrial)

Predicting Academic Performance
via Semi-supervised Learning

with Constructed Campus Social Network

Huaxiu Yao, Min Nie, Han Su, Hu Xia, and Defu Lian(B)

Big Data Research Center, University of Electronic Science and Technology of China,
Chengdu, China

dove@uestc.edu.cn

Abstract. Wide attention has been recently paid to academic perfor-
mance prediction, due to its potentials of early warning and subsequent
in-time intervention. However, there are few studies to consider the effect
of social influence at predicting academic performance. The major chal-
lenge comes from the difficulty of collecting a precise friend list for stu-
dents. To this end, we first construct students’ social relationship based
on their campus behavior, and then predicts academic performance using
constructed social network by semi-supervised learning. We evaluate the
proposed algorithm on over 5,000 students with more than 14M behavior
records. The evaluation results show the potential value of campus social
network for predicting academic performance and the effectiveness of the
proposed algorithm.

1 Introduction

Higher education management is centered at students, aiming to cultivate them
to become contributors and leaders in every walk of life. One important factor in
higher education management is academic performance prediction, which pro-
vides educators with references of their decisions. For example, if educators know
students’ academic performance in advance, they are able to intervene in time
to provide students with guidance, so that course failure could be high probably
prevented. This is important for educational management since course failure
largely affects students’ graduation, job seeking and even future development.
There have been some methods to predict students’ academic performance based
on the information from different sources, such as self-report of examinees [14],
automatic sensing behavior data obtained from smartphones [13], etc. However,
there are few studies to consider the effect of social influence at predicting aca-
demic performance while such studies could be useful for providing guidance for
educators to develop effective intervention strategies

The most important challenge lies in the difficulty to collect campus social
relationship for students. Nowadays, many colleges and universities have built a
variety of advanced information management and monitor systems to improve
the effectiveness and convenience of students’ life. When students continuously
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 597–609, 2017.
DOI: 10.1007/978-3-319-55699-4 37

598 H. Yao et al.

interact within a cyber-physical space, their activities in and around the campus
are accumulated and collected. As suggested in [2], these behavior data provide
us some potential to construct students’ social relationship from their behavior
data, since they find even a very small number of location co-occurrences can
result in a high empirical likelihood of a social tie. Different from their work,
there is no information of real friendship available, and thus it is impossible to
construct social network in a supervised way. Instead, we leverage a shuffling test
method for evaluating the significance of each detected social tie. In particular,
based on students’ behavior data, we first calculate the number of co-occurrence
at a specific location; and then build a null model by shuffling behavior data
for each student multiple times and re-calculating their respective co-occurrence
frequency. By comparing the co-occurrence frequency between two students in
these two cases, we can identify the significance of each detected social tie. Intu-
itively, significant co-occurrence at different locations could play a different role
in identifying a social tie, so that the co-occurrence frequency at different loca-
tions could not be added together directly. Instead, we describe it as an additive
fusion problem of multiple social networks, where each location implies a social
network and each network is assigned a distinct weight. However, since there is
no ground friendship between students used as training data, it is impossible to
determine the weights of different locations via supervised learning, but these
weights are considered as parameters for following optimization.

Based on the constructed campus social network with identical weights, we
first investigate the significance of social influence for academic performance, and
find that friends (two frequently co-occurring student) tend to have similar aca-
demic performance. Such an observation motivates a semi-supervised algorithm
for academic performance prediction. Therefore, we propose a novel Label Prop-
agation algorithm on Multiple Networks (LPMN) to predict students’ academic
performance, which optimizes the weights of different locations at the same time
of label propagation.

Finally, we evaluate the proposed label propagation on multiple networks
(LPMN) algorithm over around 5,000 students with more than 14M behavior
records. Here, out of privacy concerns, the academic performance is not directly
associated with educational outcomes, such as Grade Point Average(GPA).
Instead, only four performance levels are considered, where each level contains
25% students. In this evaluation, 20% randomly selected students are regarded as
testing users for predicting their academic performance, and among the remain-
ing 80% students, we randomly select a fixed percentage (20%, 40%, 60%, 80%,
100%) of training data to be labeled. The results show the potential value of cam-
pus social network for predicting academic performance and the effectiveness of
the proposed algorithm.

2 Related Work

2.1 Social Tie Inferring

In the community of network mining and complex network, many efforts have
been devoted to inferring social ties from users’ daily activities. For example,

Predicting Academic Performance via Semi-supervised Learning 599

making use of the co-occurrence records in geographical space, Crandall et al.
inferred social ties among Flickr users [2]. They proposed a probabilistic frame-
work to demonstrate that the probability of social tie increases when the fre-
quency of co-occurrence increases. Based on some specific characteristic patterns,
Sadilek et al. exploited a probabilistic model to predict people’s social ties at the
same time of forecasting future locations [9]. Mobile behavior data [3] is used
for mining several patterns. These patterns are leveraged for inferring friendship
and analyzing the satisfaction of everyone. Based on the cellphone network data,
a classification model is built for identifying two types of relation: family and
colleague [15]. A dynamic model was proposed in [12] to understand community
gathering process in Whrrl and Meetup, which is used for social ties prediction
and recommendation. A generative model [5] is exploited for inferring rare links
which seems to occur accidentally. An entropy-based model is proposed in [8]
for inferring social ties and measuring the strength of social ties by analyzing
the spatial information of users. However, there is still little study about infer-
ring interpersonal relation in campus, the complete ecological system, especially
based on large-scale behavior data from many students.

2.2 Academic Performance Prediction

Recently, a variety of machine learning models have been used to predict stu-
dents’ academic performance. For example, a neural network model is used for
predicting performance from their placement test score [4]. Multiple instance
learning is used in [16] to predict students’ performance in an e-learning envi-
ronment. Longitudinal data analysis is leveraged in [10] for predicting whether
a student is at risk of getting poor assessment performance based on previous
test performance and course history. Tensor factorization [11] between students,
skills and tasks is used in predicting student performance based on the log files
of solving problems in the tutoring system. PLSA [1], is used for academic per-
formance prediction based on all available information about the educational
content and users/students in intelligent tutoring systems. A fuzzy cognitive
diagnosis framework is proposed in [14] for discover the latent characteristics of
examinees for predicting the performance on each problem. To the best of our
knowledge, there are few researches about inferring student’s academic perfor-
mance based on their campus friends.

3 Campus Social Network Construction

In modern university, taking advantage of the existing information management
and operating systems, students use campus smartcards and generate spatial-
temporal digital records in the information center during daily activities every
day, such as fetching boiled water in the teaching buildings, entering the library,
paying for meals in canteen, etc. Based on millions of students’ behavior records,
in this section, we design a framework to build the campus social network.

600 H. Yao et al.

3.1 Social Network Construction

As illustrated in Fig. 1, co-occurrence means two students generate records at the
same location within a short time interval, where time interval is empirically set
as one minute. In this example, student A and B co-occur four times in classroom,
library, canteen and campus shuttle, respectively. Thus, in our work, we collect
these co-occurrence records at seven distinct locations, including canteen, library,
classroom, campus shuttle, campus-to-campus bus, supermarket, bathroom.

StudentA

StudentB

Fig. 1. Illustration of co-occurrence between two students

As suggested in [2], with the increase of co-occurrence frequency between two
students, it is more evident that they are close friends. Different from their work,
however, there is no any available information of real friendship information in
our case, so it is impossible for us to construct social network in a supervised
way. To this end, we make use of a shuffling test method to detect significant
social ties among students. In particular, we first construct a null model to
simulate the random case of location co-occurrences by randomly shuffling the
timestamps of activity records, and then get the co-occurrence frequency in the
random case. We conduct 20 rounds of permutations to approximately estimate
the co-occurrence frequency distribution in the random case, and then compute
the mean and standard deviation. The comparison of the co-occurrence fre-
quency between the null model and the real case at three locations are shown in
Fig. 2(a)–(c) respectively. The threshold should be set to keep the co-occurrence
frequency of real case above the mean co-occurrence frequency plus two times of
standard deviation of random case. For example, in canteen, when co-occurrence
frequency of two students more than 110, they are likely to be friends. The
thresholds of these three locations are 110, 17 and 25, respectively. It is worth to
note that the threshold of dining hall is significantly larger than the other two
locations. This is because the temporal distribution of the meal behavior among
students almost aligns with each other so that there is a comparatively large ran-
domly co-occurred probability. Similarly, the threshold of library is the smaller
than others, because the temporal distribution of library entrance is based on
the real friendship. Based on the derived thresholds, we drop those co-occurrence
frequencies below the thresholds at each location since they correspond to the
randomly co-occurring case.

Predicting Academic Performance via Semi-supervised Learning 601

Co-occurrence in Canteen

10
-1

10
0

10
1

10
2

10
3

10
4

P
ro

b
a

b
ili

ty

10
-8

10
-6

10
-4

10
-2

10
0

Real

Null-model

(a)

Co-occurrence in Library

10
-1

10
0

10
1

10
2

10
3

P
ro

b
a

b
ili

ty

10
-8

10
-6

10
-4

10
-2

10
0

Real

Null-model

(b)

Co-occurrence in Supermarket

10
-1

10
0

10
1

10
2

10
3

P
ro

b
a

b
ili

ty

10
-8

10
-6

10
-4

10
-2

10
0

Real

Null-model

(c)

Fig. 2. (a), (b), (c) represent co-occurrence distribution of real/null model at canteen,
library, supermarket respectively.

To finally obtain social ties between students, co-occurrence frequency at
different locations should be combined together. But it is unreasonable to aggre-
gate them directly, since significant co-occurrences at different locations could
make distinct contribution for implying their social ties. Thus, we assume co-
occurrence frequency of a location l is weighted by αl when estimating the
strength of each social tie, and these weights will be learned via the follow-
ing optimization algorithm. In addition, it is intuitive that in our definition, the
strength (weight) of social tie from i to j does not equal to the strength from j
to i because of the bidirectional character of social influence. For example, cam-
pus stars, such as the president of a student union, have extensive social circle.
Benefit from their excellent performance, stars frequently co-occur with different
students and influence their behavior. However, most of students who co-occur
with campus stars are unclubable, they only affect campus stars a little. The
weight of the social tie from student j to student i is represented as:

wij =
L∑

k=1

αkOk
ij

maxj′∈N(i) Ok
ij′

, (1)

where L means the number of locations, N(i) is defined as the set of student i’s
friends at location k and Ok

ij is the frequency of co-occurrence between student
i and j at location k.

4 Social Influence

When two students become friends, they will influence each other with regard
to study and manifest homophily phenomenon [7] in terms of academic perfor-
mance. In other words, each student’s academic performance should be close to
their friends’. Below, we investigate the significance of such a conjecture. But
first of all, we need to make some preprocessing. First, by simply assuming the
weight of each location equals to each other, we construct a campus social net-
work with 5,388 students and 57,994 social ties. This is reasonable to some extent
since there is neither evidence on the importance of co-occurrence at different

602 H. Yao et al.

Normalized Rank
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 R
an

k
of

 F
rie

nd
s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 3. Correlation between students’ performance and the average of their friends’
performance. X axis represents the rank of each student and Y axis represents the
average rank of their friends. Normalized rank close to zero means better performance.

locations nor real friendship information used for training data. Then, out of
protecting privacy, we convert each student’s grade point average (GPA) into
the rank among the students of the same major. For the sake of comparability
of the same rank among different majors, we need to normalize the rank by the
number of students of the corresponding major since the number of students
varies from major to major. The smaller the normalized rank is, the better the
academic performance is.

After preprocessing, we test the significant effect of social influence with
regard to academic performance by comparing the similarity of academic per-
formance between friends with that between non-friends. According to [6], we
first need to define the similarity of academic performance between a students i
and a student group G as follows:

SG(i) =

∑
j∈G sim(i, j)

|G| . (2)

where sim(i, j) = |pi − pj | measures the similarity of academic performance
between student i and student j. For each student i, we calculate two similari-
ties SF (i) and SNF (i). SF (i) is the average similarity between student i and his
friends, and SNF (i) is the average similarity between student i and bootstrap-
sampled students from his non-friend list. A two-sample t-test on the vectors SF

and SNF are conducted in the following. The null hypothesis is H0 : SUF ≥ SF

and the alternative hypothesis is H1 : SUF < SF . In our experiment, the null
hypothesis is rejected at significant level = 0.001 with p-value < 0.0001, indicat-
ing that students with friendship have closer academic performance than those
without. Then, we further illustrate the correlation of academic performance
between students’ and their friends’, and show them in Fig. 3. This figure clearly
confirms the effect of social influence with regard to academic performance.

Predicting Academic Performance via Semi-supervised Learning 603

Average Academic Performance Similarity

0.24 0.26 0.28 0.3 0.32

N
o
rm

a
liz

e
d
 R

a
n
k
 o

f
L
in

k
 W

e
ig

h
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Correlation the strength of social ties and the similarity of academic perfor-
mance. X axis represents the average academic performance similarity and Y axis
represents the normalized rank of social tie strength. The black dots mean the average
academic performance of each level of strength, and the blue line is a fitting curve.
(Color figure online)

Furthermore, intuitively, students’ academic performance should be closer
to their friends with strong tie (more co-occurrences) than to that with weak
tie. Therefore, we analyze the relationship between the similarity of academic
performance and the strength (weight) of social tie. We first rank all social ties
based on their strength and normalize their order by subtracting the number of
social ties. Then, we discretize the rank of link weight to 20 levels, so that the
first level value in 0.00−0.05 means the strongest social ties and the twenty level
value in 0.95−1.00 indicates the weakest social ties. Finally, we calculate the
average similarity of academic performance between students and their friends
in every level, and show its correlation with the strength of social ties in Fig. 4.
The results confirm the intuition on the correlation between the strength of social
ties and the similarity of academic performance.

5 Academic Performance Prediction

In the previous section, we have found that friends tend to have close academic
performance. This phenomenon motivates us to predict academic performance
using social influence based on constructed campus social network. Therefore,
in this section, we introduce a novel label propagation algorithm on multiple
networks to predict students’ performance.

5.1 Label Propagation

To further protect students’ privacy, we discretize the academic performance
rank of each student into four levels (I, II, III, IV), where each level contains

604 H. Yao et al.

25% students. We assume the constructed campus social network is represented
as a N ×N affinity matrix W, where wij means the strength of link from student
j to student i. And denote students’ initial academic level matrix as T of size
N × 4, whose element at the position (i, k) is 1 if student i belongs to the level
k, k ∈ {1, 2, 3, 4}. The rows with all zero entries in this matrix indicate the
unknown academic performance of the corresponding students. Finally, denote
the prediction score matrix as F of the same size as T. Then, the loss function
of label propagation (LP) is represented as follows:

L = λ‖F − T‖2F + (1 − λ)
N∑

i,j=1

wij(fi − fj)2, (3)

where fi and fj represent the predicting academic performance vector of student
i and student j respectively. The first term of this objective function minimizes
the error between the prediction and the given performance, and the second term
is to capture of social influence. The parameter λ controls the balance between
these two terms. Let ∂L

∂F = 0, the optimal value of F is

F = 2λ((1 − λ)(D + DT − W − WT) + 2λI)−1T, (4)

where D is the diagonal matrix with degrees of each vertex in social network, i.e.,
dii =

∑N
j=1 wij . Because the loss function in Eq. (3) is convex, the solution in

Eq. (4) is globally optimal. Then the predicting level pi of academic performance
for the student i can be determined as pi = arg maxk fik, since the entry fik in
the matrix F means the final prediction score of student i belongs to academic
level k.

5.2 Label Propagation on Multiple Networks

We have mentioned that different locations make distinct contribution for infer-
ring social ties between students, and their individual contribution αl can not be
determined via supervised learning. Based on the label propagation algorithm,
we are supposed to learn the location contribution, i.e., the value of vector α.
Since the data are mainly collected from seven locations, we revise affinity matrix
W as Ŵ = [ŵij], where ŵij =

∑L
k=1 αkuijk while uijk = Ok

ij/maxj′∈N(i) Ok
ij′

means the weight of link from student j to student i at location k. Then, the
loss function of this label propagation algorithm is represented as:

L = λ‖F − T‖2F + (1 − λ)
N∑

i,j=1

ŵij(fi − fj)2 + μ‖α‖22,

s.t.,
L∑

k=1

αk = 1, ∀k, αk ≥ 0,

(5)

where D̂ is similar to D, i.e., d̂ii =
∑N

j=1 ŵij . μ is a parameter for regularization.
Since the final network can be regarded as the combination of several networks
corresponding to different locations, we call this algorithm as label propagation
on multiple networks (LPMN).

Predicting Academic Performance via Semi-supervised Learning 605

5.3 Optimization

We use alternative minimization to learn all parameters:

• Optimization of F

When α is fixed, then the value of matrix Ŵ is fixed. The optimization problem
is equivalent to the minimization of the following objective function:

min
F

λ‖F − T‖2F + (1 − λ)
N∑

i,j=1

ŵij(fi − fj)2 (6)

Then, according to the solution of label propagation, we obtain the updating
rule of F as follows:

F = 2λ((1 − λ)(D̂ + D̂T − Ŵ − ŴT) + 2λI)−1T. (7)

• Optimization of α

When F is fixed, the objective function is equivalent to the minimization of the
following one subject to the simplex constraint:

min
α

(1 − λ)
N∑

i,j=1

L∑

k=1

αkuijk(fi − fj)2 + μ‖α‖22. (8)

Because we fix F, the value of
∑N

i,j=1 uijk(fi − fj)2 is a constant. Thus, we define
a new vector β (βk =

∑N
i,j=1 uijk(fi−fj)2), then the objective function equals to

min
α

‖α +
1 − λ

2μ
β‖22

s.t., ∀k, αk ≥ 0,
L∑

k=1

αk = 1.

(9)

This is a projection problem subject to the canonical simplex constraint. The
Lagrange multiplier of equality and inequality constraints are denoted as γ and
ν respectively. Based on the KKT conditions, if λ−1

2μ βi+ γ
2 ≤ 0, αi = 0; otherwise

αi = λ−1
2μ βi + γ

2 . Obviously, as the value of λ−1
2μ βi becomes larger, the probability

that αi equals to λ−1
2μ βi + γ

2 increases. Without loss of generality, we sort the
vector λ−1

2μ β to be Ψ = (ψ1, ..., ψL) in a descending order. Then, the Lagrange
multiplier γ of the equality constraint can be solved as:

γ =
1
φ

(2 − 2
φ∑

i=1

ψi), (10)

where 1 ≤ φ ≤ L is the number of non-zero entries in the vector α. The solution
of α with a specific γ is

α = max{λ − 1
2μ

β +
γ

2
, 0} (11)

We can compute the solution of α with each φ. After plugging each α into
Eq. (9), we get the global solution.

606 H. Yao et al.

• Time Complexity

The time complexity of Eqs. (6) and (9) is O(N3) and O(L2), respectively.
Because L � N , the time complexity of the whole optimization for Eq. (5)
is O(#iterN3), where #iter is the number of iteration.

6 Experiment

6.1 Dataset Description

According to the aforementioned description, we apply the label propagation
algorithm on a constructed campus social network from 5,388 students’ daily
routine. Currently, these behavior records are collected at 7 different locations,
including teaching building, canteen, library, bathroom, campus shuttle, campus-
to-campus bus and supermarket. The records of library entry are contained in the
library entrance dataset, and others are contained in the consumption dataset.
The data statistics are illustrated in Table 1.

Table 1. Dataset statistics

Data type

Num. of students 5,388

Num. of consumption records 13,786,894

Num. of library entrance 927,854

6.2 Performance Evaluation

Since students’ GPAs are converted into the levels of performance ranking, we
evaluate the proposed label propagation algorithm by precision, defined as the
fraction of students whose academic performance are classified correctly. We
randomly divide the students in campus social network into training and test-
ing datasets. The training dataset contains 80% students and the rest 20% are
regarded as testing data. In the training dataset, we randomly select a fixed per-
centage of (20%, 40%, 60%, 80%, 100%) students to be labeled. To minimize the
random error, we repeat the experiment 20 times and then compute the mean
precision.

6.3 Result

Comparison on Single Network. According to our assumption, social ties
constructed from different locations make distinct contribution in implying social
ties, thus playing different parts in predicting academic performance according
to the proposed model. Thus, we test label propagation algorithm on networks
constructed from each location. Each case is denoted as LP-Location, where

Predicting Academic Performance via Semi-supervised Learning 607

Table 2. Comparison of label propagation on single location network.

Cases 20% 40% 60% 80% 100%

LP-Library 0.305 0.314 0.326 0.341 0.349

LP-Campus Shuttle 0.299 0.317 0.321 0.331 0.341

LP-Campus-to-Campus Bus 0.316 0.325 0.342 0.349 0.363

LP-Teaching building 0.341 0.351 0.366 0.369 0.380

LP-Supermarket 0.285 0.319 0.327 0.336 0.351

LP-Canteen 0.280 0.306 0.324 0.346 0.356

LP-Bathroom 0.273 0.297 0.294 0.294 0.306

the term Location is replaced as a specific location, such as teaching building,
canteen, etc. The results are reported in Table 2.

According to the results, by comparing different percentages of labeled train-
ing data, we find the accuracy increases with the growing number of label data.
By comparing the results of label propagation on seven networks, we can see
that their performance is greatly different from each other. The network con-
structed by the records in the teaching building achieves the best performance.
One possible reason is that if two students always attend classes together, they
may have similar learning styles, resulting in the similar performance.

Comparison on Multiple Networks. Previous results show the different
effect of networks constructed from each location. In this part, we evaluate our
LPMN algorithm, which jointly predicts academic performance and optimizes
the weight of each location, and compare it with an aggregation strategy with
equal weights, denoted as LP-All. Since the network constructed from teach-
ing building performs best according to Table 2, so we also show its result for
comparison. All results are listed in Table 3.

Table 3. Comparison of label propagation on network constructed by location
combining.

Cases 20% 40% 60% 80% 100%

LP-Teaching building 0.341 0.351 0.366 0.369 0.380

LP-ALL 0.315 0.331 0.356 0.360 0.365

LPMN 0.355 0.374 0.377 0.380 0.401

According to this table, we see that LPMN performs best among them while
LP-All performs worst, showing the effectiveness of learning the weights for loca-
tions at the same time of predicting academic performance. This also implies that
different locations may manifest different styles of social interaction. In conclu-
sion, the results show the value of campus social network for predicting academic
performance and reflect the effectiveness of LPMN algorithm on academic per-
formance prediction.

608 H. Yao et al.

7 Conclusion

In this paper, we tried to construct campus social networks from more than 14M
behavior records based on the co-occurrences on multiple locations, and validated
the significance of social influence with regard to academic performance, show-
ing that students’ academic performance is close to their friends’. Based on the
support of social influence with regard to academic performance, we proposed
a novel label propagation on multiple networks algorithm to predict academic
performance, and evaluated it on the constructed social networks. The evalua-
tion results revealed the potential value of campus social network for academic
performance prediction and the effectiveness of the proposed algorithm.

Acknowledgement. This work is supported by grants from the Natural Science Foun-
dation of China (61502077, 61631005) and the Fundamental Research Funds for the
Central Universities (ZYGX2014Z012).

References

1. Cetintas, S., Si, L., Xin, Y.P., Tzur, R.: Probabilistic latent class models for pre-
dicting student performance. In: Proceedings of the 22nd ACM international con-
ference on Conference on Information and Knowledge Management, pp. 1513–1516.
ACM (2013)

2. Crandall, D.J., Backstrom, L., Cosley, D., Suri, S., Huttenlocher, D., Kleinberg, J.:
Inferring social ties from geographic coincidences. Proc. Natl. Acad. Sci. 107(52),
22436–22441 (2010)

3. Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by
using mobile phone data. Proc. Natl. Acad. Sci. 106(36), 15274–15278 (2009)

4. Fausett, L., Elwasif, W.: Predicting performance from test scores using backprop-
agation and counterpropagation. In: 1994 IEEE World Congress and IEEE Inter-
national Conference on Computational Intelligence Neural Networks, vol. 5, pp.
3398–3402. IEEE (1994)

5. Friedland, L., Jensen, D., Lavine, M.: Copy or coincidence? A model for detecting
social influence and duplication events. In: Proceedings of The 30th International
Conference on Machine Learning, pp. 1175–1183 (2013)

6. Gao, H., Tang, J., Liu, H.: Exploring social-historical ties on location-based social
networks. In: ICWSM (2012)

7. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in
social networks. Annu. Rev. Sociol. 27, 415–444 (2001)

8. Pham, H., Shahabi, C., Liu, Y.: EBM: an entropy-based model to infer social
strength from spatiotemporal data. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pp. 265–276. ACM (2013)

9. Sadilek, A., Kautz, H., Bigham, J.P.: Finding your friends and following them to
where you are. In: Proceedings of the Fifth ACM International Conference on Web
Search and Data Mining, pp. 723–732. ACM (2012)

10. Tamhane, A., Ikbal, S., Sengupta, B., Duggirala, M., Appleton, J.: Predicting stu-
dent risks through longitudinal analysis. In: Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1544–
1552. ACM (2014)

Predicting Academic Performance via Semi-supervised Learning 609

11. Thai-Nghe, N., Drumond, L., Horváth, T., Schmidt-Thieme, L., et al.: Multi-
relational factorization models for predicting student performance. In: KDD Work-
shop on Knowledge Discovery in Educational Data (KDDinED) (2011)

12. Wang, C., Ye, M., Lee, W.: From face-to-face gathering to social structure. In: Pro-
ceedings of the 21st ACM International Conference on Information and Knowledge
Management, pp. 465–474. ACM (2012)

13. Wang, R., Harari, G., Hao, P., Zhou, X., Campbell, A.T.: SmartGPA: how smart-
phones can assess and predict academic performance of college students. In: Pro-
ceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing (UbiComp). ACM (2015)

14. Wu, R., Liu, Q., Liu, Y., Chen, E., Su, Y., Chen, Z., Hu, G.: Cognitive modelling
for predicting examinee performance. In: Proceedings of the 24th International
Conference on Artificial Intelligence, pp. 1017–1024. AAAI Press (2015)

15. Yu, M., Si, W., Song, G., Li, Z., Yen, J.: Who were you talking to-mining interper-
sonal relationships from cellphone network data. In: 2014 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp.
485–490. IEEE (2014)

16. Zafra, A., Romero, C., Ventura, S.: Multiple instance learning for classifying stu-
dents in learning management systems. Expert Syst. Appl. 38(12), 15020–15031
(2011)

Social User Profiling: A Social-Aware Topic
Modeling Perspective

Chao Ma1,2, Chen Zhu2, Yanjie Fu3, Hengshu Zhu2(B), Guiquan Liu1,
and Enhong Chen1

1 University of Science and Technology of China, Hefei, China
{gqliu,cheneh}@ustc.edu.cn
2 Baidu Inc., Beijing, China

{machao13,zhuchen02,zhuhengshu}@baidu.com
3 Missouri University of Science and Technology, Rolla, USA

fuyan@mst.edu

Abstract. Social user profiling is an analytical process that delivers an
in-depth blueprint of users’ personal characteristics in social networks,
which can enable a wide range of applications, such as personalized rec-
ommendation and targeted marketing. While social user profiling has
attracted a lot of attention in the past few years, it is still very challeng-
ing to collaboratively model both user-centric information and social net-
work structure. To this end, in this paper we develop an analytic frame-
work for solving the social user profiling problem. Specifically, we first
propose a novel social-aware semi-supervised topic model, i.e., User Pro-
filing based Topic Model (UPTM), which can reconcile the observed user
characteristics and social network structure for discovering the latent
reasons behind social connections and further extracting users’ potential
profiles. In addition, to improve the profiling performance, we further
develop a label propagation strategy for refining the profiling results of
UPTM. Finally, we conduct extensive evaluations with a variety of real-
world data, where experimental results demonstrate the effectiveness of
our proposed modeling method.

Keywords: User profiling · Topic model · Social network

1 Introduction

With the rapid development and increasing prevalence of online social networks,
a huge amount of user information has been accumulated. Along this line, a crit-
ical challenge is how to effectively infer the unobserved personal characteristics
of social users, such as affiliation and education background, which is known as
the problem of social user profiling. Indeed, social user profiling is an analytical
process that delivers an in-depth blueprint of users personal characteristics in
social networks, which can enable a wide range of applications, such as person-
alized recommendation and targeted marketing.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 610–622, 2017.
DOI: 10.1007/978-3-319-55699-4 38

Social User Profiling: A Social-Aware Topic Modeling Perspective 611

In the past few years, social user profiling has attracted a lot of attention
from both academia and industry. In the literature, social user profiling is usually
regarded as a label prediction task, where most of studies focus on the explicit
estimation by exploiting a variety of user-centric data, such as blog entries [6],
query logs [11], and tweets [9]. However, there are several limits for inferring
user characteristics from user-centric data: (i) the high cost of collecting anno-
tated data; (ii) the inherent bias of annotation; and (iii) the high dependence
on observed user characteristics with low generalization capability. For instance,
the work in [10] extracts features from network structure and applies traditional
regression algorithm to solve the social user profiling problem, where feature
construction plays the most crucial role. However, these predefined features are
usually effective for one particular dataset, and are insufficient to be generalized
to other datasets. In contrast, some researchers have developed unsupervised and
semi-supervised methods for inferring user characteristics from social network
connections [12,22]. While these methods do not lie in observed user charac-
teristics and have some potential to achieve good generalization, these methods
neglect the user-centric information and thus the profiling performance highly
depends on the definition of similarity between nodes that varies over different
user characteristics.

All the above evidences suggest that it is highly appealing to investigate how
to combine both observed user-centric information and social network structure
for social user profiling, and moreover, to navigate both predictive accuracy and
model generalization in a meaningful way. To this end, in this paper, we develop
an analytic framework for solving the social user profiling problem. Specifically,
we first propose a novel social-aware semi-supervised topic model, named User
Profiling based Topic Model (UPTM), which can reconcile the observed user
characteristics and social network structure for discovering the latent reasons
behind social connections and further extracting users’ potential profiles. In
UPTM, a user in a social network is regarded as a document; neighboring friends
are regarded as tokens; and topic distributions are regarded as the probabilities
of reasons behind users’ social connections. Indeed, UPTM is able to exploit the
latent reasons behind social connections by unobserved characteristics of users,
observed characteristics of users, the network structure of neighboring friends
via the strategic analogies of documents, topics, and words. In particular, we
have identified an interesting observation: the observed user characteristics can
be served as a prior of UPTM for inferring unobserved user characteristics. For
instance, if the observed characteristics show that a user is a New Yorker, this
user is less likely to be associated with non-NYC topics and words. We propose
to incorporate the impacts of observed user characteristics on topics and words
as two regularization terms into UPTM. Meanwhile, we develop a Gibbs sam-
pling based method to solve the optimization problem for parameter estimation.
Thus, we can extract the inferred probabilities of regularized latent topics as
an implicit estimation of user profile. However, UPTM cannot effectively cap-
ture the relationship between connected users who do not have enough common
friends. Therefore, to improve the profiling performance, we further develop a

612 C. Ma et al.

label propagation strategy for refining the profiling results of UPTM. Finally, we
present extensive experimental results with the real-world data collected from
Facebook to demonstrate the effectiveness of our proposed method for social
user profiling.

2 Related Work

In the past few years, social user profiling has attracted much attention as it is
important in many areas like personalized search [21], target advertisement [1],
and urban computing [23]. The task of user profiling is to infer users’ personalized
characteristics, such gender [15], location of interests [8,13], and age [2].

In the literature, social user profiling is usually regarded as a label prediction
task, where most of studies are based on the explicit estimation by exploiting a
variety of user-centric data, such as blog entries [6], query logs [11], social media
posts [5] and other types of user generated data [14]. Indeed, the focus of the
above methods is designing attribute-specific features with off-the-shelf super-
vised classifiers. For example, [20] detected Twitter user attributes by using a
mixture of sociolinguistic features as well as n-gram models. [18] attempted to
classify users by employing a large set of aggregate features including profile fea-
tures, tweeting behavior features, linguistic content features, and social network
features. However, there are several limits for inferring user characteristics from
user-centric data: (i) the high cost of annotated data collection; (ii) the inherent
bias of annotation; and (iii) the high dependence on observed user characteristics
with low generalization capability.

In another aspect, some researchers tried to explore the social information
for user profiling task [10,17,24]. For example, [17] proposed to infer the depart-
ments of university students based on their friendships on Facebook, where the
assumption is that students with the same department are likely to be friends
and form a community. [18] applied heuristics to directly propagate Twitter
users’ interests through all their following connections. [4] designed a probabilis-
tic model to propagate Facebook users’ locations via all their friendships. [10]
used website traffic data to infer Twitter users’ demographics by applying multi
task elastic net on features extracted from original social network structure.
While these methods do not lie in observed user characteristics and have some
potential to achieve good generalization, these methods neglect the user-centric
information and thus the profiling performance highly depends on the definition
of node similarity that varies over different characteristics.

Different from the above work, we propose a novel social-aware semi-
supervised topic model, which can reconcile the observed user characteristics
and social network structure for user profiling. Moreover, we also develop a label
propagation strategy for refining the profiling results.

3 Social User Profiling

In this section, we first describe some preliminaries of social user profile, and
then introduce the technical details of our proposed method.

Social User Profiling: A Social-Aware Topic Modeling Perspective 613

3.1 Preliminary and Overview

When inferring users’ characteristics in a social network, the first problem is
why they have connections between each other. Generally, we think the reasons
behind these connections can be classified into two categories. The first one is
that users with the same interests are more likely to make friends with each
other, since birds of a feather flock together. The second one is that users want
to make a friend with whom they are interested in. Under the second situation,
maybe only little or even no preference similarity exists between users and their
friends (i.e., neighbors in a social network), but the friends of a specific user
are likely to share the some of the same interests or characteristic. For example,
most of followers of Lionel Messi in Twitter may not have professional skills as
Messi has, but only are the fans of Football Club Barcelona. Besides, in a social
community with more than three users who are friends with each others, the first
reason can also be regarded as a special case of the second reason. For example,
all of John, Alice, and Mary like rock music and follow the others in Twitter.
We can explain the reason behind these connections by the same interest of rock
music. But we can also claim that why John and Alice make friends with the
same one Mary, is both of them are interested in rock music. In other words, the
origin assumption about formation of social connection can be simplified as the
second reason in most cases.

Based on the above assumption, to make social user profiling in a general
manner, we first follow the second reason about formation of social connec-
tion to propose a novel semi-supervised topic model, i.e., User Profiling based
Topic Model (UPTM), which combines characteristics of users and social network
structure to unveil the latent reasons behind social connections. With the latent
information extracted from UPTM, we can further infer unobserved users’ char-
acteristics. However, UPTM cannot effectively capture the relationship between
connected users who do not have enough common friends. To this end, we further
propose a label propagation strategy to fit the origin assumption about forma-
tion of connections, and thus can help refine the profiling results of UPTM. An
intuitive description of our approach is shown in Fig. 1.

In this paper, a social network is noted as G = {N, E, T}, in which N is
the set of nodes (i.e., users), E is the set of edges in the network, and T repre-
sents the characteristic set of nodes. For example, a social network contains three
nodes N = {John, Alice, Mary}, two edges E = {(John, Mary), (Alice, Mary)},
and an observed incomplete characteristic set T = {(John, male), (Alice, female),
(Mary, female), (John, student), (Alice, student), (Mary, professor)}. To model
social network by topic models, we treat each node as a document, and its neigh-
bors in this social network as tokens in this document. For example, in the docu-
mented version of the above social network, the document of John contains only
one token, {Mary}.

614 C. Ma et al.

Fig. 1. The overview of our social user profiling framework.

3.2 User Profiling Based Topic Model

UPTM is a semi-supervised topic model, which aims to find latent reasons
behind social connections from observed characteristics. Actually, UPTM can
be regarded as an extension of L-LDA [19], which is a supervised topic model
for labeled document collections. In L-LDA, each topic is related to a label, and
the assigned topics of any tokens in a document must be selected from the related
labels of this document. Here, we follow the ideas in L-LDA for incorporating
observed user characteristics as constraints. Specifically, we treat each user char-
acteristic as a label, and assume the reason behind each social connection can
be attributed to one of user’s characteristics. For example, if Bob is a student at
Stanford, it is possible for him to have a connection with any student or faculty
of Stanford in a social network. Under this situation, we attribute such social
connections to his education background, i.e., Stanford. As mentioned above, in
our model, each user is treated as a document and its neighbors are the cor-
responding tokens. Based on this analogy, in this example, Bob is a document
and his friends in Stanford correspond to a part of tokens in this document.

Fig. 2. Graphical model of User Profiling based Topic Model

Social User Profiling: A Social-Aware Topic Modeling Perspective 615

Table 1. The notations and the corresponding description in UPTM

Notations Description

K Number of topics

wi The i-th token in a document

zi Topic assigned to the i-th token in document d

Nd Number of tokens in document d

D Number of documents

V Length of the vocabulary

Λ′(k) Presence/absence indicators of words in topic k

Φ′
v Prior of word v for Λ′

η Dirichlet prior distribution of topic over words

η′(k) Dirichlet prior distribution of topic k over words

L(k) Matrix representation of Λ′(k) for generating η′(k)

β(k) Multinomial distribution of topic k over words

Λ(d) Presence/absence indicators of topics in document d

Φk Prior of topic k for Λ

α Dirichlet prior distribution of document over topics

α′(d) Dirichlet prior distribution of document d over topics

L(d) Matrix representation of Λ(d) for generating α′

θ(d) Multinomial distribution of document d over topics

Furthermore, the topics of these tokens are the one related to his education
background. In addition, to incorporate the unobserved characteristics, tokens
can also be assigned to topics whose labels do not contradict the observed labels
in UPTM. Next, we will explain UPTM from a technical perspective. Table 1
lists the notations and descriptions in UPTM.

Specifically, we describe UPTM with a document generative process follow-
ing the tradition of topic modeling. Each document is represented by a tuple
consisting of a list of word indices w(d) = (w1, ..., wNd

) and a list of binary
topic presence/absence indicators Λ(d) = (l1, ..., lK) where wi ∈ {1, ..., V } and
lk ∈ {0, 1}. The word assignment of topics are also controlled by a list of binary
topic presence/absence indicators Λ′(w)= (l1,..., lV), where li equals zero means
that the topic is excluded by this node observed labels. In particular, the topics
that can be assigned to users are different. If a user’s location is observed as
New York, we will not assign Seattle to her/him. In contrary, if the user’s loca-
tion is unobserved, any city can be assigned to him according to the probability
learned by UPTM. Therefore, UPTM is a semi-supervised model for social user
profiling.

The detailed generative process is shown in Algorithm 1. There are some
noticeable points in the process. Firstly, the β(k) is defined to only cover the
words that can be assigned to the topic k by Λ′(k). We get Λ′(k) by observed

616 C. Ma et al.

data and domain knowledge. And θ(d) is also restricted by Λ(d) in the same way.
Another point should be explained here is because we can not have a friend twice
at the same time, any word will not repeat in a document of a documented social
network. Thus in our application, when generating the word under the topic we
select, UPTM should not obey the multinomial distribution but a hyper geo-
metric distribution. However, according to [7], when the number of samples is
enough, the hyper geometric distribution will converge in a multinomial dis-
tribution. In other words, in the network with enough nodes, such settings in
fact will not produce too much influence on the performance of UPTM. Here,
we use the collapsed Gibbs sampling algorithm [3] to learn UPTM. Specifically,
the neighbors of a user who is labeled according to the pre-established topics is
represented as

P (d(ui, uj) = z|.) ∝ Nujz + η(uj)

∑|N |
k=1(Nukz + η

(uk)
z)

× Muiz + α
(ui)
z

∑|Z|
k=1(Muizk + α

(ui)
zk)

, (1)

Algorithm 1. Generative process of UPTM
for each topic k ∈ {1, ..., K} do

for each word v ∈ {1, ..., V } do

Generate Λ
′(k)
v ∈ {0, 1} ∼ Bernoulli(.|Φ′

v)

Generate η′(k) = L(k) × η
Generate β(k) = (βl1 , ..., βlNk

)T ∼ Dir(.|η′(k))

for each document d ∈ {1, ..., D} do
for each topic k ∈ {1, ..., K} do

Generate Λ
(d)
k ∈ {0, 1} ∼ Bernoulli(.|Φk)

Generate α′(d) = L(d) × α
Generate θ(d) = (θl1 , ..., θlMd

)T ∼ Dir(.|α′(d))
for each i ∈ {1, ..., Nd} do

Generate zi ∈ (λ
(d)
1 , ..., λ

(d)
Md

) ∼ Multi(.|θ(d))

Generate wi ∈ (1, ..., V) ∼ Multi(.|β(zi))

where d(ui, uj) represents the user uj is a neighbor of user ui; α and β represent
the hyper parameter of Dirichlet distribution of document-topic multinomial
distribution and the hyper parameter of Dirichlet distribution of topic-word
multinomial distribution, respectively. Muiz represents the number of topic z
assigned to neighbors of the user ui, and Nujz represents the number of that the
word corresponds to user ui labeled with topic z.

After the sampling, we can get the probability distribution over topics for
each user, which is also the probability distribution over user characteristics.
Then, we can infer a user’s certain characteristic, e.g., residential location,
according to probability obtained by UPTM. If we have strong confidence

Social User Profiling: A Social-Aware Topic Modeling Perspective 617

to the result that the probability of some labels (e.g., New York, Seattle,
Washington) can be assigned to the user is bigger than a threshold ρ, we will
assign the label with biggest probability to him. Otherwise, we will not make
profile inference on the user with UPTM, and implement label propagation for
further profiling.

3.3 Label Propagation for User Profiling Refinement

Although UPTM is an effective approach for user profiling, it cannot capture
the relationships between connected users who do not have enough common
friends. Meanwhile, the user characteristics inferred with low confidence (proba-
bility) should be further refined. Therefore, here we extend the label propagation
strategy [25] to refine the profiling results from UPTM. Before introducing how
our algorithm works, we first define some new notations. For a label, the set of
observed nodes is No and the set of unobserved nodes is Nu. The total node set
is defined as N = No ∪Nu. We also define the distance between node i and node
j as di,j , which in this paper is the minimum hop between them in the social
network. And T is the probabilistic transition matrix of N , of which the element,
Ti,j , is transition probability from node i to j. The Ti,j can be calculated by

Ti,j =
1/di,j

∑|N |
k=1 1/di,k

. (2)

Algorithm 2. Label Propagation:
input : N , T , τ
output: Y

for Y does not converge do
Propagate Y ← TY
Calculate σ, ε
Clamp nodes by Y ← σY + (1 − σ)ε

Besides, vector Y , whose length is |N |, is used to represent label probability
of nodes. In Y , all of observed nodes and nodes inferred by UPTM are set to 1
first. Unobserved nodes are initialized to 0.

The details of our algorithm is shown in Algorithm 1. Specifically, in each
step, labels are first propagated by the transition matrix T . Then to clamp those
observed nodes and nodes inferred by UPTM, we set Y as σY + (1 − σ)ε, where
σ and ε are selected to meet the following objectives: (i) the L1-norm of Y must
is equal to that of ε, which guarantee the convergence of the algorithm; (ii) each
observed node will be set to 1; (iii) each node inferred by UPTM, Ni, is equal
to (1 − τ)Yi + τ . τ is a hyper-parameter and represents the confidence level in
results of UPTM. Finally, after our algorithm converges, Y is the refined label
prediction result.

618 C. Ma et al.

4 Evaluation

In this section we empirically evaluate the performance of our proposed method
for social user profiling. All experiments were performed on real-world social
network data, collected from Facebook, where three user profile labels (i.e., age,
location, and education), were used for evaluation.

4.1 Experimental Setup

We conducted experiments with a real-world dataset, Facebook Dataset [16], in
which friend relationship is represented by links. In other words, two users are
linked if one is among the friend list of the other. Facebook users are annotated
by a variety of profile labels, including location, education background, gender,
hometown, and language. Table 2 shows the statistics of the availability of these
profile labels.

The Facebook Dataset1 contains 4,039 users and 88,234 links. Each user
has 43 friends on average. Figure 3 shows some basic statistics of the Facebook
dataset. Figure 3(1) illustrates the distribution of users with respect of the num-
ber of their neighbors. From the results we can observe that the distribution
roughly follows power law, which indicates that only a few users have large
number of neighbors while most of users only have limited neighbors. Figure 3(2)
demonstrates the percentage of missing label with respect of the number of their
neighbors.

To improve the quality of training data for effectively evaluating the pro-
posed method, we first filtered out those users that have only few friends and
are associated with limited social activities in Facebook. Here, we selected three
major labels for evaluation, i.e., “Location”, “Education”, and “Age”. In the
experiments, we evaluated the performance of profile label prediction by sev-
eral classic classification metrics, including Precision, Recall, F1 − score, and
Accuracy. What should be noticed is that label prediction in our experiments is

Fig. 3. The statistics of Facebook Dataset. (1) The number of users with respect of
the number of their neighbors; (2) The percentage of missing label with respect of the
number of their neighbors.

1 http://snap.stanford.edu/data/.

http://snap.stanford.edu/data/

Social User Profiling: A Social-Aware Topic Modeling Perspective 619

Table 2. The proportion of labels given in Facebook Dataset

Attribute Number of labeled users Fraction

Gender 606 15.0%

Location 1,659 41.1%

Education 2,696 66.7%

Language 748 18.5%

Age 1,577 39.0%

Work-location 606 15.0%

Hometown 1,066 26.4%

a Multiclass Classification problem. Thus, Precision is the average of those for
all classes. So are Recall and F1 − score.

4.2 Baseline Algorithms

To demonstrate the effectiveness of the proposed method, we compared our
method with the following baseline algorithms.

Community Detection-Based Algorithm: This baseline is developed based
on community detection, which grows a community starting with an induced
subgraph until maximum normalized conductance is achieved, and then infers
user attributes by setting the majority value in the community. This method is
proposed in [17] and have become a seminal study in user profiling problem.

Traditional Classification Algorithms: As mentioned above, the most pop-
ular approach in user profiling is to model it by supervised learning approaches.
Here, we selected two classic classification methods, Naive Bayes and SVM, as
baselines.

L-LDA: The standard L-LDA [19] was also selected as a baseline. L-LDA has
similar settings as UPTM for social user profiling, while it only uses the obser-
vation information as labels. Thus we aim to validate the importance of incor-
porating unobserved nodes by this baseline.

4.3 Results and Discussion

Figure 4 shows the overall performance comparison of our method and baseline
algorithms for predicting location, education and age labels. The X-axis in Fig. 4
is the proportion of training data. We used ten-fold cross validation for obtaining
the results.

It is obvious that our method outperforms all of the baselines in most cases.
Specially, in education prediction task, UPTM outperforms the other baselines
by at least 50%. It strongly supports the effectiveness of our method. Besides,

620 C. Ma et al.

Fig. 4. The performance of UPTM and baselines in “Location”, “Education”, and
“Age” prediction

although increasing the proportion of training data generally improves the per-
formance of all methods, its importance varies from task to task. In “Location”
and “Education” prediction tasks, we can easily observe the trend. But when
predicting “Age”, more training data cannot benefit a lot. And all of UPTM and
baselines did not get good enough performances in “Age” prediction task. We
think it may be attributed to two reasons: (i) “Age” is not an important factor
when users make friends in a social network; (ii) the discretization method used
for “Age” is not appropriate in this task. However, due to the anonymity of the
Facebook Dataset, it is hard to prove our assumptions and we hope for further
study from other researchers. To prove the robustness of the proposed approach,
we will conduct experiments on more datasets in future work.

5 Concluding Remarks

In this paper, we developed an analytic framework for social user profiling.
Specifically, we first proposed a novel social-aware semi-supervised topic model,
i.e., User Profiling based Topic Model (UPTM), which can reconcile the observed

Social User Profiling: A Social-Aware Topic Modeling Perspective 621

user characteristics and social network structure for discovering the latent rea-
sons behind social connections and further extracting users’ potential profiles.
Then, to improve the profiling performance, we further introduced a label prop-
agation strategy for refining the profiling results of UPTM. Finally, we presented
extensive experimental results based on the real-world data collected from Face-
book, which clearly demonstrate the effectiveness of our proposed method for
social user profiling.

Acknowledgments. This research was partially supported by grants from the
National Natural Science Foundation of China (NSFC, Grant No. U1605251), the
National Science Foundation for Distinguished Young Scholars of China (Grant No.
61325010), and the NSFC Major research program (Grant No. 91546103).

References

1. Ahmed, A., Low, Y., Aly, M., Josifovski, V., Smola, A.J.: Scalable distributed
inference of dynamic user interests for behavioral targeting. In: Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 114–122. ACM (2011)

2. Al Zamal, F., Liu, W., Ruths, D.: Homophily and latent attribute inference: infer-
ring latent attributes of twitter users from neighbors. In: ICWSM, vol. 270 (2012)

3. Andrieu, C., Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for
machine learning. Mach. Learn. 50(1–2), 5–43 (2003)

4. Backstrom, L., Sun, E., Marlow, C.: Find me if you can: improving geographical
prediction with social and spatial proximity. In: Proceedings of the 19th Interna-
tional Conference on World Wide Web, pp. 61–70. ACM (2010)

5. Bergsma, S., Van Durme, B.: Using conceptual class attributes to characterize
social media users. In: ACL, no. 1, pp. 710–720 (2013)

6. Burger, J.D., Henderson, J.C.: An exploration of observable features related to
blogger age. In: AAAI Spring Symposium: Computational Approaches to Analyz-
ing Weblogs, pp. 15–20 (2006)

7. Cha, Y., Bi, B., Hsieh, C.C., Cho, J.: Incorporating popularity in topic models
for social network analysis. In: Proceedings of the 36th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 223–232.
ACM (2013)

8. Chen, X., Wang, Y., Agichtein, E., Wang, F.: A comparative study of demographic
attribute inference in twitter. In: Proceedings of ICWSM (2015)

9. Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based app-
roach to geo-locating twitter users. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, pp. 759–768. ACM (2010)

10. Culotta, A., Kumar, N.R., Cutler, J.: Predicting the demographics of twitter users
from website traffic data. In: AAAI, pp. 72–78 (2015)

11. Jones, R., Kumar, R., Pang, B., Tomkins, A.: I know what you did last summer:
query logs and user privacy. In: Proceedings of the Sixteenth ACM Conference
on Conference on Information and Knowledge Management, pp. 909–914. ACM
(2007)

12. Jurgens, D.: That’s what friends are for: inferring location in online social media
platforms based on social relationships. ICWSM 13, 273–282 (2013)

622 C. Ma et al.

13. Li, R., Wang, C., Chang, K.C.C.: User profiling in an ego network: co-profiling
attributes and relationships. In: Proceedings of the 23rd International Conference
on World Wide Web, pp. 819–830. ACM (2014)

14. Lin, H., Zhu, H., Zuo, Y., Zhu, C., Wu, J., Xiong, H.: Collaborative company
profiling: insights from an employee’s perspective. In: AAAI (2017)

15. Liu, W., Ruths, D.: What’s in a name? Using first names as features for gender
inference in twitter. In: AAAI Spring Symposium: Analyzing Microtext, vol. 13,
p. 01 (2013)

16. Mcauley, J., Leskovec, J.: Discovering social circles in ego networks. ACM Trans.
Knowl. Discov. Data (TKDD) 8(1), 4 (2014)

17. Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know:
inferring user profiles in online social networks. In: Proceedings of the Third ACM
International Conference on Web Search and Data Mining, pp. 251–260. ACM
(2010)

18. Pennacchiotti, M., Popescu, A.M.: Democrats, republicans and starbucks afficiona-
dos: user classification in twitter. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 430–438. ACM
(2011)

19. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled lDA: a supervised
topic model for credit attribution in multi-labeled corpora. In: Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing: Volume
1-Volume 1, pp. 248–256. Association for Computational Linguistics (2009)

20. Rao, D., Yarowsky, D., Shreevats, A., Gupta, M.: Classifying latent user attributes
in twitter. In: Proceedings of the 2nd International Workshop on Search and Mining
User-generated Contents, pp. 37–44. ACM (2010)

21. Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized
search. In: Proceedings of the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 155–162. ACM (2008)

22. Xu, T., Zhu, H., Chen, E., Huai, B., Xiong, H., Tian, J.: Learning to annotate via
social interaction analytics. Knowl. Inf. Syst. 41(2), 251–276 (2014)

23. Yuan, N.J., Zhang, F., Lian, D., Zheng, K., Yu, S., Xie, X.: We know how you
live: exploring the spectrum of urban lifestyles. In: Proceedings of the First ACM
Conference on Online Social Networks, pp. 3–14. ACM (2013)

24. Zhu, C., Zhu, H., Ge, Y., Chen, E., Liu, Q.: Tracking the evolution of social emo-
tions: a time-aware topic modeling perspective. In: 2014 IEEE International Con-
ference on Data Mining, pp. 697–706. IEEE (2014)

25. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label
propagation (2002)

Cost-Effective Data Partition for Distributed
Stream Processing System

Xiaotong Wang1,2, Junhua Fang1,2, Yuming Li1,2, Rong Zhang1,2(B),
and Aoying Zhou1,3

1 Shanghai Key Laboratory of Trustworthy Computing, School of Data Science
and Engineering, East China Normal University, Shanghai 200062, China
{xt.wang,jh.fang,ym.li}@ecnu.cn, {rzhang,ayzhou}@sei.ecnu.edu.cn

2 International Joint Lab of Trustworthy Software,
East China Normal University, Shanghai, China

3 School of Data Science and Engineering,
East China Normal University, Shanghai, China

Abstract. Data skew and dynamics greatly affect throughput of stream
processing system. It requires to design a high-efficient partition method
to evenly distribute workload in a distributed and parallel. Previous
research mainly focuses on load balancing adjustment based on key-as-
granularity or tuple-as-granularity, both of which have their own lim-
itations such as clumsy balance activities or expensive network cost.
In this paper, we present a comprehensive cost model for partitioning
method, which makes a synthesis estimation of memory, CPU and net-
work resource utilization. Based on cost model, we propose a novel load
balancing adjustment algorithm, which adopts the idea of “Split keys on
demand and Merge keys as far as possible”, and is adaptive to different
skewed workload. Our evaluation demonstrates that our method outper-
forms the state-of-the-art partitioning schemes while maintaining high
throughput and resource utilization.

1 Introduction

Online real-time analysis on stream data is essential for an increasing number of
applications, such as stock trading aggregating, hot topic detection and network
information monitoring. However the explosive growth of data exposes great
challenges to traditional centralized processing architecture. Then distributed
stream processing systems (DSPSs) have gained much attention. In order to
achieve high efficiency, one of the important topics is to balance the workload
among parallel processing tasks to realize high throughput and low latency.

Generally there are two kinds of load balance strategies, namely operator-
based [3,14,15] and data-based [4,8,10–13]. For operator-based strategy, its basic
load distribution units are operators. Due to the disparity of execution time and
complexity among operations, some execution plans may delegate multiple com-
plicated operations to a single machine, which directly leads to load imbalance.
Data-based strategy uses individual data as the basic load distribution units.
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 623–635, 2017.
DOI: 10.1007/978-3-319-55699-4 39

624 X. Wang et al.

Since operations rely on data status of the same keys and data-based partitions
demonstrate more scalability than operator-based ones. Then it is preferred to
partition workloads via data. According to distribution granularities, the existing
solutions can be divided into the following two types: (1) Key-as-granularity.
During load balancing adjustment, it needs to transmit all the status related
to a key, such as Readj [8]. It can maintain the semantics of key-based opera-
tions well, but limit the flexibility of load balancing adjustment. (2) Tuple-as-
granularity. Random distribution can solve load imbalance problem caused by
data skew. However, it breaks the semantics of key-based operations and leads
to operational limitations. In work [4], they use random method for data dis-
tributions to solve the problem of join. Though they can promise load balance
among task (to some extend), they may meet great data transmission.

But data-based strategies face the following challenges: (1) key-as-granularity
could maintain key-based semantics to the utmost, but may not perform well
for system equilibrium since the skewed distribution of data on keys may break
the balance status among the parallel tasks. (2) tuple-as-granularity is in favor
of system equilibrium, but it pays extra cost for maintaining the correctness of
key-based semantics.

To achieve the goal that both balance and resource consumption should be
optimized, it requires to design a cost model which synthetically analyzes various
factors on system performance. In this paper, we focus on solving load imbalance
problem caused by data skew in DSPSs and propose a cost model for designing a
flexible and adaptive load balancing adjustment strategy. In particular, we make
the following main contributions:

1. We are the first to present a comprehensive cost model for guiding designing
balancing strategies, which considers memory, CPU, and network.

2. We design a novel adaptive load balancing algorithm which consists of a
decision-making function and two types of load adjustment algorithms, based
on the idea of “Split keys on demand and merge keys as far as possible”.

3. We implement our solution over Apache Storm and conduct extensive experi-
ments to demonstrate our advantages by comparing with the stat-of-art other
techniques.

The rest of this paper is organized as follows. In Sect. 2 we introduce the back-
ground knowledge of the paper. Sect. 3 analyzes our cost model. Sect. 4 proposes
our load balancing algorithms and Sect. 5 evaluates performance. At last, Sect. 6
discusses related work and Sect. 7 concludes the paper.

2 Preliminaries

2.1 Key Grouping

Stream is an unbounded sequence of data items (tuples) [9] of the form <k, v, t>
ordered by the timestamp t, where k is the tuple’s key and v is the value. To
improve the effectiveness of stream processing, it trends to partition a stream into

Cost-Effective Data Partition for Distributed Stream Processing System 625

Routing
Operator

Joining
Operator

Merging
Operator

tuple task instance of operator

F(key)

F(key)

Stream of
tuples

(a) Key grouping

Routing
Operator Processing

Operator

hash
function
F(key)

Routing Table

list of destinations
(1,2/3),(2,1/6),(3,1/6)

key

... ...

Stream of
tuples

(b) Hybrid routing policy

Fig. 1. Two different partitioning schemes.

disjoint sub-streams and assign them to parallel task instances. Key Grouping
(KG) has gained much attention and in most cases it maps key domain to tasks
using a global hash function on keys. KG ensures tuples with the same key can
be distributed to the same task and doesn’t need to keep track of distribution
paths of keys. If we have uniform workload distribution among tasks, KG works
well. However, when workloads are skewed on keys, KG may result in high load
imbalance among parallel processing tasks. In Fig. 1(a), we give an example to
illustrate the potential problem of KG. Tuples from data source are distributed
by a Routing Operator to Joining Operator using a hash function F (key) and
join results are collected in Merging Operator. Due to data skew(high frequency
of some keys), the first task instance in Joining Operator is delegated workload
twice more than the others and is overloaded. As a result, the first task instance
in Joining Operator be a procrastinator and Merging Operator may be suspended
to wait for its completion, slowing all the processing down.

2.2 Hybrid Routing Policy

When load imbalance happens, it needs to migrate a certain quantity of workload
from overloaded tasks to underloaded ones. As illustrated in Fig. 1(b), we unload
two tuples from the first task in Joining Operator and migrate them to the
second and third tasks respectively. To ensure the computation correctness, it
is necessary to keep track of keys that have been moved. Hence, we adopt a
hybrid scheme that combines an routing table and a basic hash function. Basic
hash function can be uniform hashing, consistent hashing and so on. Routing
Table is used for keys that have been migrated and each task instance which is
responsible for distributing keys should maintain a routing table.

Different to [8], our routing table has more direction information for those
migrated keys. Specifically, we define routing item in the table as <k, listk :
{(d, quand)}>, where k is key, and listk : {(d, quand)} is a list of entries
(d, quand) which represents that the quantity of tuples with k in task d is
quand. Keys in routing table will not be distributed by the basic hash func-
tion. Figure 1(b) shows the overall operator structure. There are two kinds of
operators: Routing Operator is responsible for distributing and routing tuples,
while Processing Operator is in charge of actual computation. Each task instance

626 X. Wang et al.

of routing operator maintains a routing table. Before Routing Operator distrib-
utes a tuple, it first checks whether the key of tuple exists in routing table. If
it exists, the task that stores this tuple is determined by computing a pseudo-
random hash whose ranges are proportional to the quantity of key; otherwise
basic hash function is applied to get the destination task.

2.3 Definition of Related Terms

If there exists no entry for key k in routing table and it is distributed to task
d = F (k) via basic hash function, then task d is called basic task of key k.
To facilitate the description of load adjustment strategies in the rest of paper,
several operations during load adjustment are defined as following: (1) Migrate
Back. This operation migrates a key which is not stored in its basic task back
to its basic task; (2) Migrate To. This operation migrates a key from one task
to another. Neither these two tasks are its basic task; (3) Migrate Out. This
operation migrates a key from its basic task to some other task.

Among the three operations above, Migrate Back can reduce the number
of mapping entries in routing table, whereas Migrate Out adds new entries to
routing table and increases table size. MT has no influence on routing table size.

During load balancing adjustment, the impacts of these operations on the key
status can be classified into three types: (1) Split. The operation only migrates a
certain quantity of tuples with key k to other tasks; (2) Merge. The operation
makes tuples with the same key that are separately stored in different tasks
assembled into one task; (3) Whole Move. Contrary to Split, the operation
migrates the entire tuples with a key from one task to the other.

3 Cost Model Analysis

Once load imbalance happens, load adjustment will be an inevitable action to
improve system performance. A high-efficient migration strategy need to mini-
mize system cost while guaranteeing load balancing.

3.1 System Resource Usage for Load Balance

System resource generally includes CPU, memory and network. It is discovered
that routing table size(routingtable), migration volume(migration) and broad-
cast volume(broadcast) have great impacts on resource utilization. Here we use
notation Cτ

δ to represent resource usage uniformly, where τ ∈ {routing table,
migration,broadcast} and δ ∈ {CPU, Memory, Network}.

CPU and Memory Cost. To ensure the correctness of processing, each task
of routing operator must maintain the same routing table in memory; for each
tuple distributing to processing operator, routing operator checks if there exists
an entry related to the key of tuple. Obviously, the larger routing table will
require more memory and cost more look-up time. The CPU cost Cr

cpu is defined
as Cr

cpu = T · |RT |, where |RT | is routing table size and equals to
∑

k∈RT |listk|,

Cost-Effective Data Partition for Distributed Stream Processing System 627

i.e.,|listk| is the size of all entries for key k. And the memory consumption Cr
mem

of routing table is defined as Cr
mem = Nr · s · |RT |, where s represents the size

of each entry in listk. Then we get that Cr
cpu ∝ Cr

mem.

Broadcast Cost. The broadcast cost is produced by two phases during system
running, namely (1) subsequent input tuples while process going on and
(2) migration states when load adjustment occurs. Let’s take join processing
for example to show the impact from input tuples. For each key k separately
stored in different tasks, incoming tuples with k must be broadcast to all these
tasks to ensure result completeness. Hence, the broadcast operation puts pres-
sure on network. Then network cost Cb

net for broadcasting can be defined as
Cb

net =
∑

k∈RT Dk · Gk. Without loss of generality, during load adjustment, we
only unload a certain quantity of keys out of overloaded tasks and migrate them
to underloaded ones, not involving move-out operations on underloaded tasks.
Hence, once load imbalance happens, no matter which key to choose for migra-
tion, the total migration volume is the same (based on key split method) and
can be calculated as Cm

net =
∑

d∈UD(L(d) −
∑

d′∈D L(d′)
Nd

).

3.2 Our Idea

Our primarily goal is to improve system performance under workload imbalance,
but minimize resource usages. As described above, we can draw a conclusion
that routing table size and subsequent broadcast volume are two predominant
factors on system resource usages. Without loss of generality, we use throughput
to measure the influence of these two factors on system performance.

To achieve our goal, we propose to estimate the influence of these two factors
on throughput first, which can be achieved by conducting massive experiments
on varying routing table size and broadcast volume. Then we draw mapping
relationships between them and throughput respectively. Based on these two
mapping relationships, we expect to get a fitting function considering both rout-
ing table size and broadcast volume, guiding to select keys to migrate under
current system environment. The details are elaborated in Sect. 5.

4 Load Balancing Adjustment

In this section, we first introduce the overall load balancing adjustment frame-
work. Then we apply a novel decision-making algorithm to select a strategy to
achieve our goal. At last we present two types of adjustment strategies.

4.1 Algorithm Framework

The algorithm of overall load balancing adjustment is described in Algorithm1.
First, average workload BL and maximized non-balance workload UL of down-
stream tasks are calculated in line 1. The parameter τ is the maximized imbal-
ance degree of workload defined as |L(d)−BL|

BL . Once the workload of one task
is more than UL, it is identified to be overloaded and need to unload extra

628 X. Wang et al.

Algorithm 1. Overall Load Balancing Adjustment Framework
input: processing tasks D, broadcast volume

∑

u∈U broadcast, routing table size RTS
output: Migration plan MP and routing table RT

1: BL ←
∑

d∈D L(d)

Nd
; UL ← BL · (1 + τmax)

2: if splitOrWhole(
∑

u∈U broadcast,RTS) equals to Split then
3: foreach each task d in D do
4: if L(d) > UL then splitAtFirstAdjustment(d)

5: else
6: foreach each task d in D do
7: if L(d) > UL then wholeAtFirstAdjustment(d)

8: return MP and RT

workload to underloaded tasks as in line 4 and 7. Then, as described as in line
2, a decision-making algorithm is applied Finally, the corresponding adjustment
strategy will be executed.

As analyzed in Sect. 3, broadcast volume and routing table size are two main
factors influencing system performance. Therefore, decision-making algorithm
combines both factors. It takes a combine function which represents a mapping
relationship between broadcast volume and routing table size. The function takes
the accumulated broadcast volume since last adjustment as input and returns
a corresponding routing table size. If the returned value is bigger than cur-
rent routing table size, it applies split-keys-at-first strategy; otherwise, it applies
whole-move-keys-at-first strategy. The generation of this function will be intro-
duced in Sect. 5.

4.2 Split-keys-at-first Load Balancing Strategy

A migration plan defines how to migrate data among tasks when load imbal-
ance happens, which is formalized as MP = <k, dfrom, dto, qty>. It migrates
tuples with key k from task dfrom to dto with the quantity of qty. Usually the
adjustment procedure can be decomposed into two steps, shown in Algorithm2:

step-1: Data Unload. It first unloads partial data to an temporary storage
buffer C until the load of overloaded task d is lower than average workload
BL as in line 3–10 in Algorithm2. The keys on overloaded tasks are arranged
in decreasing order based on their loads in line 1. When starting unloading, if
the load of key k is lower than difference between task load L(d) and average
load BL, the entire tuple with k will be buffered in C and deleted from task
d. Besides, if <k, (d,#)> entry exists in routing table, it must be deleted as
in line 5; or else, partial tuples with k will be buffered and update the load
of k in task d. Similarly, if <k, (d,#)> entry exists in routing table, it must
be updated; otherwise, a new entry will be added as in line 9.

step-2: Data Load. After unloading operation, it loads the data in C to each
underloaded task instance as in line 11–16. If load of key k in temporary
storage C is lower than difference between load of an underloaded task L(d

′
)

Cost-Effective Data Partition for Distributed Stream Processing System 629

Algorithm 2. splitAtFirstAdjustment()
input: The key load set KL = {(key, load)} of overloaded task d
output: Migration Plan MP and routing table RT
1: Arrange KL in decreasing order on key load; C ← ∅
2: foreach each key load entry (k, l) ∈ KL do
3: if L(d) − BL > l then Add (k, l) to C; Delete (k, l) from KL
4: if < k, (d, #) > exists in RT then // # is the proportion of data for k
5: Delete < k, (d, #) > from RT

6: else
7: δ ← L(d) − BL; Add (k, δ) to C; Replace (k, l) as (k, l − δ) in set KL
8: if <k, (d, #)> exists in RT then Replace <k, (d, l − δ)> in RT
9: else Add <k, (d, l − δ)> to RT

10: break
11: foreach each temporary storage entry (k, l) ∈ C do

12: Choose a task d
′

which is underloaded
13: if BL − L(d

′
) > l then δ ← l; Delete (k, l) from C

14: else δ ← BL − L(d
′
); Replace (k, l) as (k, l − δ) in set C

15: if key k exists in task d
′
then δ ← δ + l

′
// l

′
is the load of k in d

′

16: Add <k, d, d
′
, δ> to MP ; Add <k, (d

′
, δ)> to RT

17: return MP and RT

and average load BL, then it will be whole-moved to task d
′
and deleted from

C as in line 14; otherwise it still needs to split k and move partial tuples with
k in line 16.

4.3 Whole-move-keys-at-first Load Balancing Strategy

As described in Sect. 4.2, frequent key splitting may lead to massive subsequent
network cost (e.g. for join). In this section, we present a whole-move-keys-at-first
strategy which tries to migrate the entire tuples for a key of small granularity.
The algorithm of this strategy is described in Algorithm3 and can be divided
into three steps as following:

step-1: Whole move keys in routing table. As shown in line 2–10, it first
assigns priorities to keys existing in the routing table. IIf the basic task F (k)
of key k exists in the list listk in routing table, and that the basic task F (k)
still has enough storage, then the Migrate Back operation is executed as in line
3. Besides, for current overloaded task d, the routing entry (d,#) is deleted
from listk. If routing table doesn’t contain entry for k, it invokes Migrate Out
operation. If k is stored in more than one tasks, it prefers to merge tuples to
one task containing k with enough free space; otherwise it will be migrated
to one task not containing k.

step-2: Whole move keys not in routing table. If task d is still overloaded
by step − 1, it then cope with keys that are not in routing tables as in line
14–15. For each underloaded task d

′
, it selects a subset of keys and the total

630 X. Wang et al.

Algorithm 3. wholeAtFirstAdjustment()
input: The key load set KL = {(key, load)} of overloaded task d
output: Migration Plan MP and routing table RT
1: Differentiate the key load set KIT = {(key, load)} in which keys exist in the

routing table
2: foreach each key load entry (k, l) ∈ KIT do
3: if <k, (F (k), #)> exists in RT and L(F (k)) < BL then Add < k, d, F (k), l >

to MP ;Delete <k, (d, #)> from RT ; Update <k, (F (k), #)> in RT
4: else if |listk| > 1 then //more than one entry in the list of key k in RT

5: Choose a underloaded task d
′

that contains k
6: Add <k, d, d

′
, l> to MP ; Delete (k, l) from KIT

7: Add <k, (d
′
, l + l

′
)> to RT // l

′
is the load of k in d

′

8: else
9: Choose a underloaded task d

′
that does not contain k

10: Add < k, d, d
′
, l > to MP ; Add <k, (d

′
, l)> to RT ; Delete (k, l) from KIT

11: foreach each underloaded task d
′
do

12: Arrange KL − KIT in decreasing order on key load
13: Choose a subset SubKeys from KL−KIT that

∑

k∈SubKeys loadk ≈ BL−L(d
′
)

14: foreach each key load entry (k, l) ∈ SubKeys do

15: Add <k, d, d
′
, l> to MP ; Add <k, (d

′
, δ)> to RT ; Delete (k, l) from KL −

KIT
16: if L(d) > BL then
17: call splitAtFirstAdjustment() in Algorithm 2

18: return MP and RT

tuples of these keys are equal to the free storage of d
′
. The goal is to minimize

the number of keys in such a subset. We take the approximate solutions for
this problem. Before selecting operation, we arrange keys that don’t exist in
routing table in decreasing order on key loads. Then we use greedy algorithm
to find out such a subset. Once a subset is returned, it needs to add or update
the corresponding entries in the routing table and generate migration plans.

step-3: Split the remaining keys. If necessary, the split operation will be
executed similar to Sect. 4.2 as in line 17.

The whole-move-keys-at-first adjustment strategy focuses on migrate tuples
with the same key as a whole. Though the routing table size may grow rapidly
with more keys of smaller granularity to be migrated, we take the moving back or
merging operations to control the rapid growth of routing table size to a certain
extent.

5 Evaluation

Environment: We implement and run all the approaches on top of Apache
Storm[1]. The Storm system(version 0.10.0) is deployed on a 21-instance HP
blade cluster, each of which has two Intel Xeon E5535 at 2.00 GHz and runs on
CentOS 6.5 operating system.

Cost-Effective Data Partition for Distributed Stream Processing System 631

0 2 4 6 8 10

x 10
6

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Broadcast Volume(tuples)

T
h

ro
u

g
h

p
u

t(
tu

p
le

s
/s

e
c
o

n
d

)

(a) Broadcast Volume

0 1 2 3 4 5

x 10
4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Routing Table Size

T
h

ro
u

g
h

p
u

t(
tu

p
le

s
/s

e
c
o

n
d

)

(b) Routing Table Size

0 2 4 6 8 10

x 10
6

1

2

3

4

5

6
x 10

4

Broadcast Volume(tuples)

R
o

u
ti
n

g
 T

a
b

le
 S

iz
e

(c) Fitting Function

Fig. 2. Effects of broadcast volume, routing table size on throughput.

Data Sets and Workload: We conduct experiments using TPC-H generator
dbgen proposed in [2] to generate data. We adjust parameter z for different skew-
ness, default value is 0.8. We run equi-join query EQ5 from TPC-H benchmark
as our workload.

Baseline Approaches: We compare our method SAM with Dynamic[4],
MFM [5], Bi[10] and Readj [8]. Readj runs full pairing of load-task. Dynamic
and MFM are based on join-matrix model but MFM supports irregular shape
of matrix and eliminates the restriction on task number. Bi organizes tasks as a
complete bipartite graph, inside of which it is still matrix model.

Evaluation Metrics: Throughput is the average number of tuples processed per
second in system; Task Number is the total number of tasks used in Processing
Operator and each task is equipped with a constant quota of memory V ; Migra-
tion Volume is the total number of tuples migrated to other tasks during system
scaling out; Adjustment Plan Time is the average time spent on generating a
new migration plan and routing table during load adjustment; Load Imbalance
Degree is the maximal load imbalance degree among all the tasks of Processing
Operator.

5.1 Decision-Making Analysis

To estimate the influence of broadcast volume on throughput, we continuously
load all the 107 tuples with 104 unique keys into our system while executing
query EQ5 . Once load imbalance happens, decision-making method takes the
accumulated broadcast volume since last adjustment as input and returns an
intermediate routing table size irs. Then we compare irs with current routing
table size since last adjustment. If irs is larger, we choose whole-move-keys-at-
first for the next adjustment; otherwise we choose split-keys-at-first. According
to the experimental results of Fig. 2(a) and (b), we then generate a polynomial
relation between broadcast volume bv and routing table size func(bv) as shown
in Fig. 2(c). In our implementation, we set func() as following:

func(bv) = 2e − 10 · bv2 + 1.7e − 3 · bv + 18331 (1)

632 X. Wang et al.

5.2 Load Balancing Capability (LBC)

LBC measured by the degree of system imbalance, defined as τ = L(d)−BL
BL in [6].

For balanced statues, each task has load lower than UL = (1+τmax)·BL with the
maximum imbalance tolerance τmax. For this experiment, we set τmax = 0.01.

As shown in Fig. 3(a), when using 50 task instances, system imbalance of
Readj increases dramatically when the degree of skewness is higher than 0.5. As
skewness becomes more severe, the load of some key may become so large that
even exceeds the average workload of tasks. No matter how Readj migrates keys
across tasks, it can never get balanced in that Readj doesn’t support splitting
operation. On the contrary, our proposed algorithm SAM can migrate extra data
from overloaded tasks via splitting keys on demand, hence it always can meet
load balancing. MFM, Bi and Dynamic take random distribution as routing
policy regardless of the changing of skewness. However those two methods may
meet with high broadcasting cost for some specific operations, such as join in
Fig. 3(c) and (d). In Fig. 3(b), we expand the task parallelism to 100. What’s
worse, Readj leads to much higher system imbalance [7].

5.3 Scalability

We continue load 12 GB data into Storm system and perform full-history join
on EQ5 . Figure 3(c) and (d) demonstrate the task consumption and migration
volume during system scaling out. The maximum input rate is set by calling
the method setSpoutPending() in Storm to consume all the computing power of
each task.

In Fig. 3(c), it illustrates the changes of task requirements when we increase
the stream volume. As data loading in, Dynamic meets sharp increase in task
number because it has a strict requirement that the number of tasks must be
a power of two and leads to high resource waste. Though MFM eliminates the
limit on the task number, it is based on the join-matrix and consumes more
tasks. Since Bi is designed especially for memory optimization, it is obvious
that Bi uses less quantity of tasks. Contrarily, our algorithms performs best
among all the methods. It applies for resource on real demand and especially
supports to join task one by one. Figure 3(d) illustrates the changes of migration
cost during scheme scaling out. Due to the massive data replication to maintain
matrix structure, Dynamic leads to the highest migration volume than all other
methods. MFM has less migration volume as involving less tasks than Dynamic.
SAM yields low migration volume in that it adopts consistent hashing to do
task deployment. Once a new task is added, only a few quantity of data need to
be migrated owing to the inherit characteristics of consistent hashing.

5.4 Dynamics

In order to verify the dynamics and adaptivity of algorithms under different
degrees of workload skewness, we conduct query EQ5 execution using window-
based model with window size as 3 min. The average input rate is about

Cost-Effective Data Partition for Distributed Stream Processing System 633

0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Different Degree of Skewness

D
e
g
re

e
 o

f
S

y
s
te

m
 I
m

b
a
la

n
c
e

SAM

MFM

Dynamic

Bi

Readj

(a) LBC of 50 tasks

0.2 0.4 0.6 0.8 1
10

−4

10
−2

10
0

10
2

Different Degree of Skewness

D
e
g
re

e
 o

f
S

y
s
te

m
 I
m

b
a
la

n
c
e

SAM

MFM

Dynamic

Bi

Readj

(b) LBC of 100 tasks

2 4 6 8 10 12
0

50

100

150

200

250

300

Volume of Processed Stream(GB)

T
a

s
k
 N

u
m

b
e

r

SAM

MFM

Dynamic

Bi

(c) Task number

2 4 6 8 10 12
0

1

2

3

4

5
x 10

7

Volume of Processed Stream(GB)

M
ig

ra
te

 V
o

lu
m

e

SAM

MFM

Dynamic

Bi

(d) Migration volume

2 4 6 8 10 12
10

0

10
1

10
2

10
3

10
4

10
5

Volume of Processed Stream(GB)

A
v
e

ra
g

e
 G

e
n

e
ra

ti
o

n
 T

im
e

(m
s
)

SAM

MFM

Dynamic

Readj

(e) Adjustment plan time

0

0.5

1

1.5

2
x 10

4

Different Skewness

T
h
ro

u
g
h
p
u
t(

tu
p
le

s
/s

e
c
o
n
d
)

SAM MFM Dynamic Bi Readj

z=0.6 z=0.8 z=1

(f) Average throughput

Fig. 3. The balance capability, scalability and adaptivity of different methods.

1.2 · 104 tuples per second to make full use of CPU resource. We examine the
latency of adjustment plan generation and throughput as shown in Fig. 3(e)
and (f). Readj meets much higher latency than other algorithms because of its
full mapping processing as in Fig. 3(e). Both Dynamic and MFM take random
distribution as routing policy, there is no need for balancing scheduling calcu-
lation. The migration plan generation latency of SAM varies a lot according to
the choice of adjustment strategy. The higher generation latency corresponds to
whole-move-keys-at-first strategy in that the selection of key subsets in step-2
of Algorithm 3 is an NP-hard problem; while the lower generation latency repre-
sents split-keys-at-first strategy because it split keys of large granularity at first,
without complicated key selection. Figure 3(f) draws the throughput of each algo-
rithm under different skewness. Throughput of Readj decreases as the skewness
becomes more severe, because it spends more time generating migration plan.
Bi represents decreasing throughput as well due to data broadcasting among
groups. On the contrary, SAM has the highest throughput as it controls the
growth of broadcast volume and routing table size, and uses a decision-making
strategy to build a check-and-balance relationship between these two factors.
Owing to the random distribution policy, throughputs of MFM and Dynamic
change a little under different skewness.

6 Related Work

There have been two types of data-based strategies, namely tuple-based
and key-based data distribution. Tuple-as-granularity strategies take tuple as

634 X. Wang et al.

distribution granularity to partition workload. Join-matrix model [13] has
recently be adopted in a distributed stream join processing system Squall [4]. It
models a join operation between two input streams as a matrix, where each side
corresponds to one stream. When a tuple arrives, it is randomly distributed to
tasks in the same row or column. This model can support arbitrary join predi-
cates, but it incurs high memory consumption due to redundant storage, and it
also limits the flexibility during system scaling out or down.

Analogously, key-as-granularity strategies partition workload based on the
key of tuple. [8] is the most similar to our proposal in this paper, which con-
sists of a basic hash function and a routing table. However, for load imbalance
adjustment, it trends to keep track of the most frequent keys and always moves
back the keys of small granularity to their original destination by hash function.
When the workload of keys varies dramatically, it may take too long time to
generate a migration.

7 Conclusion

In this paper, we focus on designing an adaptive and cost-effective partition-
ing methods to handle load imbalance problem in distributed stream systems.
Inspired by the idea of “Split keys on demand and Merge keys as far as pos-
sible”, we propose a novel cost model to guide designing of balance schedules.
Based on this cost model, our load balancing adjustment algorithms includes
two type adjustment strategies, with the aim to have high throughput and low
latency while using less resource. In the future, we will continue seeking for a
more comprehensive cost model and more flexible and adaptive load adjustment
strategies to improve system performance.

Acknowledgments. This work is partially supported by National High Technol-
ogy Research and Development Program of China (863 Project) No. 2015AA0 15307,
National Science Foundation of China under grant (No. 61232002, No. 61672233 and
No. 61572194).

References

1. Apache storm. http://storm.apache.org/
2. The TPC-H benchmark. http://www.tpc.org/tpch
3. Abadi, D.J., Ahmad, Y., Balazinska, M., Zdonik, S.B. et al.: The design of the

Borealis stream processing engine. In: CIDR, pp. 277–289 (2005)
4. Elseidy, M., Elguindy, A., Vitorovic, A., Koch, C.: Scalable and adaptive online

joins. VLDB 7(6), 441–452 (2014)
5. Fang, J., Wang, X., Zhang, R., Zhou, A.: Flexible and adaptive stream join algo-

rithm. In: APWEB, pp. 3–16 (2016)
6. Fang, J., Wang, X., Zhang, R., Zhou, A.: High-performance data distribution algo-

rithm on distributed stream systems. J. Softw. 28(3), 563–578 (2017)
7. Fang, J., Zhang, R., Fu, T.Z.J., Zhang, Z., Zhou, A., Zhu, J.: Parallel

stream processing against workload skewness and variance. arXiv preprint,
arXiv:1610.05121 (2016)

http://storm.apache.org/
http://www.tpc.org/tpch
http://arxiv.org/abs/1610.05121

Cost-Effective Data Partition for Distributed Stream Processing System 635

8. Gedik, B.: Partitioning functions for stateful data parallelism in stream processing.
VLDBJ 23(4), 517–539 (2014)

9. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams. In:
External Memory Algorithms, pp. 107–118 (1998)

10. Lin, Q., Ooi, B.C., Wang, Z., Yu, C.: Scalable distributed stream join processing.
In: SIGMOD, pp. 811–825 (2015)

11. Nasir, M.A.U., Gianmarco, D.F.M. et al.: The power of both choices: practical load
balancing for distributed stream processing engines. In: ICDE, pp. 137–148 (2015)

12. Shah, M., Hellerstein, J., Chandrasekaran, S., Franklin, M.: Flux: an adaptive
partitioning operator for continuous query systems. In: ICDE, pp. 25–36 (2003)

13. Stamos, J.W., Young, H.C.: A symmetric and replicate algorithm for distributed
joins. TPDS 4(12), 1345–1354 (1993)

14. Xing, Y., Hwang, J., Çetintemel, U., Zdonik, S.B.: Providing resiliency to load
variations in distributed stream processing. In: VLDB, pp. 775–786 (2006)

15. Xing, Y., Zdonik, S.B., Hwang, J.: Dynamic load distribution in the Borealis stream
processor. In: ICDE, pp. 791–802 (2005)

A Graph-Based Push Service Platform

Huifeng Guo1, Ruiming Tang2, Yunming Ye1(B),
Zhenguo Li2, and Xiuqiang He2

1 Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China
huifengguo@yeah.net, yeyunming@hit.edu.cn

2 Noah’s Ark Lab, Huawei, China
{tangruiming,li.zhenguo,hexiuqiang}@huawei.com

Abstract. Learning users’ preference and making recommendations
is critical in information-exploded environment. There are two typical
modes for recommendation, known as pull and push, which respectively
account for recommendation inside and outside the item market. While
previously most recommender systems adopt only pull-mode, push-mode
becomes popular in today’s mobile environment. This paper presents a
push recommendation platform successfully deployed for Huawei App
Store, which has reached 0.3 billion registered users and 1.2 million Apps
by 2016. Among the various modules in developing this push platform,
we recognized the task of target user group discovery to be most essen-
tial in terms of CTR. We explored various algorithmic choices for min-
ing target user group, and highlighted one based on recent advance in
graph mining, the Partially Absorbing Random Walk [13], which leads
to substantial improvement for our push recommendation, compared to
the state-of-the-art including the popular PageRank. We also covered
our practice in deploying our push platform in both single server and
distributed cluster.

Keywords: Partially Absorbing Random Walk · Push recommendation

1 Introduction

With the rapid development of the Internet and mobile devices, our daily life con-
nects closely to online services, such as online shopping, online news and videos,
online social networks, and many more. In such highly dynamic, information-
exploded environment, it is crucial to learn the preference of users and make
recommendations accordingly.

Recommendation often comes in one of the two modes, the pull-mode and
push-mode. The pull-mode recommends items to users after users enter the item
market. The push-mode pushes items to users proactively before the users enter
the item market. Compared to pull recommendation, push recommendation can
offer two unique advantages: to rebuild connection with users for the service

The work is done when Huifeng Guo works as an intern in Noah’s Ark Lab, Huawei.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 636–648, 2017.
DOI: 10.1007/978-3-319-55699-4 40

A Graph-Based Push Service Platform 637

(a) Push message (b) Book listening (c) Music (d) Photo editor

Fig. 1. Push Services for Huawei App Store

provider and to enhance experience for the users – a user can be informed of
relevant items anytime, without entering the item market. Unlike pull-mode that
selects items for all users who are visiting the item market, the key in push rec-
ommendation is to identify a relatively small set of potential users for a given
set of items. Unfortunately, techniques developed for pull recommendation such
as matrix factorization are no longer suitable for the push-mode scenario, due to
the following “cold-start” challenges: (1) the items to be pushed are usually new,
with limited information available; and (2) “semi-active” and “inactive” users1

rarely interact with the item market, and therefore not much of their informa-
tion is available. While pull recommendation has been studied extensively, push
recommendation is a new research area, especially to the academic community.
In this paper, we present a Push Service Platform for Huawei App Store, one of
the most large-scale and influential App markets in the world.

Figure 1 shows three push activities inHuaweiAppStore, book listening,music,
and photo editor. Through the messages from the notification center (Fig. 1a),
semi-active or inactive users are well informed of potentially relevant Apps without
entering Huawei App Store. They can download their favorite Apps in the display
pages by just clicking on the push message (Figs. 1b, c, d). Behind such convenience
in connecting services to users, what is the key enabling technology?

During our extensive practice in establishing the push service for Huawei App
Store, we found that identifying the right users to target is the most challenging
task because too many unrelated messages could disturb users and degrade the
experience. Another challenge comes from the large scale of the problem. With
the versatility of smart phone and various needs from our daily life, a large
number of Apps are being created by developers and installed by users. In Huawei

1 In Application Market, “active users” refers to the users who visit frequently, “inac-
tive users” are those who do not visit recently, and “semi-active users” are those
who do not visit often recently.

638 H. Guo et al.

App Store, there are 0.3 billion registered users and 1.2 million Apps by 2016.
For a service (App) to be push, how to identify the users of interest from such
a web-scale user pool? Especially, on average based on our statistics, for each
service, there are less than 1% of the population relevant to the service, making
the target user discovery extremely difficult.

In response to these practical challenges, we have established a Push Service
Platform (PSP) for Huawei App Store, which mainly consists of three layers: dis-
tributed storage layer, application layer, and evaluation layer. The contributions
of this paper are summarized as follows:

– We present a Push Service Platform for Huawei App Store. Particularly, we
identify the target user discovery problem as the most significant task for the
push service.

– We carefully compare different choices of algorithms for mining target user
group, and highlight in details one based on recent advance in graph mining,
namely Partially Absorbing Random Walk [13], which has been adopted by our
push service. Particularly, we propose and implement an approximate partially
absorbing random walk algorithm (A-PARW) for both single server and dis-
tributed cluster that can support very large-scale problems and can efficiently
respond to a multitude of push services simultaneously.

– We conduct off-line and on-line experiments in Huawei App Store which shows
that A-PARW leads to more than 27% and 16% improvement in online CTR
and DTR, compared to the predecessor [7], which uses Personalized PageRank2

in discovering target users.

In what follows, we present the full details of Huawei PSP. We first overview
PSP in Sect. 2. Then we give the work flow of the Application Layer and presents
the motivation, principle and implementation of A-PARW in Sect. 3. After that,
we apply our system on several real marketing tasks in Huawei App Store, and
carry out detailed off-line and on-line evaluation in Sect. 4. Finally, we discuss
some related works in Sect. 5 and conclude the paper in Sect. 6.

2 Platform Overview

The architecture of Huawei Push Service Platform (PSP) is shown in Fig. 2, and
includes Distributed Storage Layer, Application Layer, and Evaluation Layer.

The Distributed Storage Layer maintains two database systems for historical
data storage and on-line caching. The HDFS (short for Hadoop Distributed File
System) stores historical data, including users’ download, click, and payment log
data, which is the source data for our User-App bipartite graph (discussed later).
The HBase (short for Hadoop Database) caches on-line data and users’ feedback,
which is critical for on-line monitoring and algorithm evaluation, and updates the
historical data in HDFS periodically. In addition, this layer incorporates a Hadoop
cluster to store large-scale datasets and provides parallel data processing.
2 xRank, proposed in [7], is exactly Personalized PageRank (PPR) and is equivalent to

the D mode of PARW. More details are presented in [3].

A Graph-Based Push Service Platform 639

Fig. 2. PSP Architecture

The Application Layer consist of the major components (i.e., off-line target
users mining and on-line pushing) of the platform. For different demands in
practice, the Application Layer supports different Computing Engines, including
graph engine and distributed computing engine. We will give more details of
the Application Layer in Sect. 3 as it is the most challenging and important
constituent of our platform.

The Evaluation Layer evaluates both off-line and on-line results. Off-line
evaluation compares pre-defined off-line metrics of the results by different algo-
rithms, which helps us to tune the parameters of the algorithms. On-line evalu-
ation, such as A/B test, compares the performance of the algorithms which are
carefully selected by off-line evaluation. The details of evaluation methods and
metrics will be presented in Sect. 4.1.

3 Application Layer

The Application Layer of our PSP can be described as the following work flow:

History Data
Pre−processing−−−−−−−−−−−−−→

Graph Construction
User-APP Graph

Graph Mining−−−−−−−−−−→ Target

User List
User Filtering−−−−−−−−−−→ User List

On−line Pushing−−−−−−−−−−−−→
Observation

User Feedback
Logging−−−−−→

Online Log
Updating pediodly−−−−−−−−−−−−→ Historical Data.

640 H. Guo et al.

The input of PSP is a topic push activity, which is denoted as seed Apps3

under a certain topic, such as music fans, cook lovers, etc. As an initial step,
we provide Data Preprocessing and Graph Construction operation (Sect. 3.1) to
generate User-App graph from users’ download/click/payment historical data,
which is stored in HDFS. Based on this graph, we can mine target user group
through A-PARW (Sect. 3.2). Then, according to some domain knowledge and
rules, User Filtering filters irrelevant users to obtain the final user list (Sect. 3.3)
and the module of Push Service (Sect. 3.4) sends the message to the selected
users. After that, PSP will cache the users’ feedback data and update these
data to History data periodically. We will review various computing engines in
supporting needs in this layer in Sect. 3.5.

In the rest of this section, we introduce the details of Application Layer
according to the work flow briefly described above.

3.1 Data Preprocessing and Modeling

On server log data, the first step in the Application Layer includes two modules,
Data Preprocessing and Graph Construction.

Data Preprocessing: PSP can set a series of rules according to demands, such
as removing pre-installed or very popular Apps from raw data before graph
construction, because installing such Apps will not reflect users’ interests.

Graph Construction: In this module, PSP constructs an undirected graph
G = (U ,A, ξ) based on the preprocessed data, where U denotes the set of users
vertices, A is the set of Apps vertices, and ξ is the set of edges. Since we only
use historical information to record the interaction between users and Apps, the
constructed graph G is a bipartite graph. For instance, in Fig. 3, User vertices are
on the left-hand-side and App vertices are on the right-hand-side. There exists
an edge connecting Ui and Ai if user Ui installs App Ai. For example from Fig. 3,
U1 installs three Apps A1, A2 and A3.

Fig. 3. An example User-App bipartite graph and A-PARW-I vs PPR running case

3 Seed Apps are a small set of manually-labeled Apps.

A Graph-Based Push Service Platform 641

In addition, we assign uniform IDs to vertices in A and U . More specifically,
vertices in U are assigned with IDs from 1 to |U|, and vertices in A are assigned
from |U| + 1 to |U| + |A|. For simplicity, we use vi to denote vertex with ID
i. For example, we use v1 to v3 to denote U1 to U3 and v4 to v8 to denote
A1 to A5 respectively. We denote the adjacency matrix of G as W, let D =
diag(d1, d2, ..., dN) with di =

∑
j wij as the degree of vertex i, and define the

Laplacian of G as L = D − W.
In some push scenarios, such as online news recommendation, the graph has

to be updated frequently as the hot spots are changing at any time. While in
some other scenarios, such as the recommendation in application market like
the one considered in this paper, the graph does not need to be updated so
frequently because the interest of a user is unlikely to vary much from time to
time. Hence, in our application scenario, we re-construct graph weekly with the
most up-to-date information, which usually takes a few hours.

3.2 User Discovery via Graph Mining

After preprocessing, the most significant task for the push service is the problem
of target user discovery. In this subsection, we carefully compare different choices.

As it is expensive to manually label all Apps and the result has no ranking
information, the predecessor of PSP [7] applied PPR to mine target user group
from some seed Apps. However, in our practice, PPR favors active users with high
degree, who will download Apps with high probability no matter receiving push
messages or not, and is likely to ignore the majority of inactive and semi-active
users. Therefore, we need an algorithm that can mine relevant inactive and semi-
active users. Below, we present the approximate Partially Absorbing Random
Walk algorithm, A-PARW, which we found quite effective in mining target users
from the seed Apps and has been adopted in our PSP push platform for Huawei
App Store. (Due to space limit, the details are presented in [3].)

A-PARW: To mine target user group from a small number (e.g., 10) of seed
Apps, we propose A-PARW by extending Partially Absorbing Random Walk
(PARW) [13] for billion scale problems encountered in Huawei App Store. The
formulation of PARW is R� = (In)� · (Λ + L)−1 · Λ, where R is the rank
score vector, Λ = diag(λ1, λ2, ..., λN) is a diagonal matrix with λ1, λ2, ..., λN

being arbitrary non-negative numbers, and In is a vector of In(v) with In(v) =
1/|seedApps| if v ∈ seedApps and 0 otherwise.

In PARW, a random walk is absorbed at state i with probability pi, and is
transferred via a random edge of state i with probability 1−pi. It is proved in [13]
that a random walk starting from a set of low conductance vertices (referred as
SP) is most likely absorbed in SP if Λ = α ·I (PARW-I), I is an identity matrix
and α is a small positive value. One property of PARW-I is that the absorption
probability varies slowly within SP , and drops sharply outside SP . This prop-
erty suggests that PARW-I can effectively capture the underlying community
structure of the graph.

642 H. Guo et al.

Algorithm 1. dry = A-PARW(s, Λ, γ) � approximate algorithm of parw
Input: S: seeds, Λ = {λ1, λ2, ..., λn}: regularization parameter, γ: tolerance threshold
Output: A-PARW vector dry
1: Initialize dry = 0 and run = {(s, 1/|S|)}
2: while run is not empty do

3: pop a queue run element (i, w) and dryi = dryi +
λi

λi+di
· w

4: if w > γ · di then
5: for all links (i, j) ∈ ξ do
6: if pair (j, s) ∈ run then
7: s = s + w

λi+di

8: else
9: add a new pair (j, w

λi+di
) to run

10: end if
11: end for
12: end if
13: end while

As Fig. 3 shows, low degree yet relevant vertex v2 (the user represented by v2
only installs A2 (vertex v5), which means he is more interested in A2) absorbs
higher score than v3, which has high degree but with no deterministic preference,
for A-PARW-I. In contrast, v2 could not get good score for PPR. (Due to space
limit, the details are presented in [3]).

However, to the best of our knowledge, there is no scalable implementation
of PARW. Therefore we propose A-PARW in Algorithm 1 motivated by [1]. Our
algorithm maintains a pair of vectors run and dry, starting with dry = 0 and
run = In (Line 1), then applies a series of push operations which transfer
probabilities from run to dry while keeping no transfer out of dry. At vertex vi,
a push operation transfers λi/(λi + di) fraction of runi to dryi (Line 3), then
evenly distributes the remaining di/(λi + di) fraction of runi to vi’s neighbours
(Line 5–11). We can control the precision through a strategy that A-PARW
performs push operations only when runi ≥ γ · di (Line 4). As a result, we set
γ to be 10−8 and select a limited number of iterations (i.e., 20) as A-PARW-I’s
stop condition. It is demonstrated to be good enough in our scenario.

3.3 Filtering Rule

In practice, the target user list, mined through A-PARW, includes some users
who are not suitable to send push messages. Therefore we can define some prac-
tical filtering rules to filter them out. For instance, we should not select users
who have turned off the function of receiving push messages, or we may not want
to send messages to the users who visit Huawei App Store every day, etc.

3.4 On-Line Pushing

First of all, the module of Push Service will deliver messages as an alert on the
notification center to the selected users’ phone, whose push service is enabled and
which is connected to the Internet. After that, these users will receive messages
in their phone as shown in Fig. 1a, and may choose to neglect it or click on. After

A Graph-Based Push Service Platform 643

clicking this message, users will enter the specific page of Huawei App Store or
even download the Apps contained in this page. For example, when a music fan
receives an alert about music Apps on her phone’s notification center (e.g., as
the second message shown in Fig. 1a), she takes a look at music Apps in the
display page (e.g., as in Fig. 1c), after clicking the alert message. In the end,
we utilize user’s feedback to generate market strategies and filtering rules. For
example, we are more likely to send a message of a music-like activity to a user
who has clicked the music push activity before, and we are less likely to send a
push message to a user who has never clicked any push message before.

3.5 Computing Engine

As presented in Sect. 3.1 to Sect. 3.4, there are two kinds of computing tasks
in the Application Layer, raw data extraction and graph mining. The former
is easy to parallelize while the latter is difficult due to the heavy dependen-
cies between vertices in a graph. Therefore, we choose MapReduce as general
computing engine, but use graph engines, including VENUS [10] and Power-
Graph [2], for graph mining. Specifically, we use a disk-based system–VENUS
when push activity is not so urgent and the memory is limited; and we choose
a memory-based distributed system–PowerGraph when push activity is highly
urgent and resource is enough.

Table 1. Running Time (in seconds) of A-PARW-I on PowerGraph and VENUS

No. of push activities 1 10 100

PowerGraph 6.79 13.19 46.69

VENUS 2307.00 22588.90 N.A

In order to compare the efficiency of VENUS and PowerGraph, we ran exper-
iments on twitter-graph [8], which contains 41,652,230 vertices and 1,468,364,884
edges. To compare fairly, the experiments are conducted on the same machine
and the parameters are set to be the same as stated in the previous section.
As Table 1 presents, PowerGraph needs only 6.79 s to process one push activity,
while VENUS needs around 40 min. For 10 and 100 push tasks, PowerGraph
uses around 13 s and less than 50 s respectively. While VENUS has to run more
than 6 h when pushing 10 tasks. We don’t test the case of pushing 100 tasks
on VENUS as it needs several days to get the precise timing. But it’s easy to
estimate the time since it runs these tasks one by one.

4 Experimental Results

In this section, we first describe the data sets and evaluation metrics that are used
in our experiments. Then, we compare the experimental results of A-PARW-I
and PPR on real data set. Moreover, the details of experimental results on public
data set are presented in [3] due to the space limit.

644 H. Guo et al.

4.1 Data Set Description and Experiment Setting

We evaluated A-PARW algorithms on two data sets, MovieLens 4 and APPData,
where APPData is collected from Huawei App Store. The difference between A-
PARW-I and PPR is verified on both data sets, while evaluation on the real-life
data sets furthermore confirmed the remarkable effectiveness of A-PARW-I.

Real-Life Dataset and Experiment Setting. We performed experiments on
real data set–APPData. It is the complete user downloading log from 2015/03/01
to 2015/08/31 in Huawei App Store, and includes 96,324,654 users, 487,649
Apps, and 1,778,160,959 edges.

We first conducted experiments to evaluate the effectiveness of A-PARW-I,
and then we verify the property of A-PARW-I and PPR. Our experiments on
APPData include both off-line and on-line evaluation.

For off-line evaluation purpose, we collected users’ feedback of nine push
activities from Huawei App Store, for which the selected user lists were gen-
erated by PPR. The nine push activities are: 1:music; 2:camera; 3:instru-
ment; 4:ticket; 5:listen book; 6:travel; 7:goodnight; 8:read; 9:internet.
We referred the users’ feedback as the ground truth to compare the effectiveness
of PPR and A-PARW-I. After receiving a push message of Apps, an interested
user may click on it or even download this Apps. Therefore, we can distinguish
the cases of click (or download) as follows: we refer a sample that the user clicked
(or downloaded) the push message as positive, and the opposite case as negative.
We ran PPR and A-PARW-I on APPData, and got top 1 million users as well
as their ranking scores, respectively. In the off-line experiment, we adopt AUC
as the evaluation metric.

In the on-line evaluation, we sent push messages to the same number of top
users ranked by A-PARW-I and PPR, respectively. Making sure to receive the
feedback from the majority of the users after two days, we compared the number
of users who clicked (or downloaded) the recommended Apps, across the two
sets of users picked by the two algorithms. We use CTR (click-through ratio) [7]
and also DTR (download-through ratio) as the online evaluation metrics, where
CTR = |Users who clicked advertised app|/|Users who received ads| and
DTR = |Users who downloaded advertised apps|/|Users who received ads|.

Public Dataset. As we discussed in Sect. 3, A-PARW-I is able to identify more
semi-active users than PPR because it capitalizes on community structure. In
order to verify this property, we ran PPR, A-PARW-I on MovieLens data set and
compared degree trends of their ranking lists. The results implied PPR favors
high degree vertices and ignores the semi-active users. In contrast, A-PARW-I
can discover semi-active users. Due to space limit, the details are presented in [3].

4 http://grouplens.org/datasets/movielens/.

http://grouplens.org/datasets/movielens/

A Graph-Based Push Service Platform 645

4.2 Evaluation on Real-Life Data Set

Off-Line Evaluation. In off-line experiment, we used AUC to compare the
ranking accuracy of A-PARW-I’s and PPR’s result list (we get top 1 million users
from their result list). Table 2 presents click and download AUC improvement of
A-PARW-I over PPR on the 9 push activities. As we can see, the performance
of A-PARW-I is better than PPR at all the 9 push activities, on both click and
download cases. Moreover, the improvement of A-PARW-I over PPR is more
significant on download case. The improvement of A-PARW-I comes from the
fact that A-PARW-I pays more attention to graph community information while
PPR tends to high degree nodes. It means that A-PARW-I could find more semi-
active user-nodes, which are of low degree but highly relevant to push activities.

Table 2. Off-line improvement of A-PARW-I over PPR in 9 different push activities

1 2 3 4 5 6 7 8 9

Click AUC+ 6.5% 10.9% 4.8% 3.1% 6.0% 37.7% 31.1% 39.9% 11.8%

Download AUC+ 7.6% 10.9% 7.9% 9.2% 3.4% 12.0% 8.3% 12.4% 5.4%

On-Line Evaluation. In this subsection, we performed A-PARW-I and PPR
algorithms on two different on-line push activities through Huawei’s push ser-
vice. Two lists of users are obtained by the two algorithms respectively, and
the activity messages are push to these users 5. Interested users may click the
message to see the details of the Apps or perform further actions.

We calculated CTR and DTR from the log data of user feedbacks. For com-
parison, we define CTR+ and DTR+ as the improvement of A-PARW-I over
PPR. As we can see in Table 3, the performance of A-PARW-I is significantly
higher than PPR for both click and download on the two online push activities.

Table 3. On-line improvement of A-PARW-I over PPR

Ticket Music

CTR+ 27% 82%

DTR+ 16% 85%

Property of PARW. In order to analyse the property of A-PARW-I and PPR,
we study the tendency of CTR/DTR and the degree of the user vertices selected
by the two algorithms and sorted by their scores.

Tendency of CTR/DTR in sorted-steady-distribution. Figure 4a, b, c
and d represent tendency of activity ticket’s (music’s) CTR and DTR. In the
5 Duplicated users in the two lists are only push the message once.

646 H. Guo et al.

(a) CTR tendency of activity ticket (b) CTR tendency of activity music

(c) DTR tendency of activity ticket (d) DTR tendency of activity music

Fig. 4. Tendency of CTR/DTR.

figures, x-axis is the bucket identifier (each bucket includes 100,000 users) and
y-axis is the CTR (respectively DTR) of the buckets. As we see, the curves of
PPR and A-PARW-I have high CTR and DTR value at the beginning. However,
PPR’s curve drops more dramatically than A-PARW-I’s; moreover, PPR’s CTR
and DTR sometimes increase at the tail of the curve. So A-PARW-I, which is
steady and stable, selects the users who are more relevant to the push activity
than PPR.

Change of degree in sorted-steady-distribution. Figure 5a, b presents the
degree’s tendency of A-PARW-I and PPR in the activity of ticket (music), where
x-axis is same as Fig. 4 and y-axis is the total degree of the users in the buckets.
As we see, the tendency of both red and blue curves are similar across the

(a) Ticket (b) Music

Fig. 5. Tendency of users’ degree.

A Graph-Based Push Service Platform 647

two figures. The PPR’s curve is higher than the A-PARW-I’s at first but drops
rapidly and A-PARW-I’s curve is more smooth and steady. It can be concluded
from these two figures that PPR prefers high degree nodes.

5 Related Work

Compared to pull-mode, which gives recommendations to user within item mar-
ket, push-mode pushes specific messages to users according to their characteris-
tics even when users are not in item market. So push recommendation is able to
rebuild or strengthen the connection between item market and users.

The crucial part of push-mode is target user group discovery, which can be
solved by rule-based [5], CF-based [12] and graph-based [7,9] approaches. How-
ever, the rule-based methods can not take advantage of collaborative information
among users, because it needs a set of rules that are defined so that the accuracy
rate is low and not flexible enough. The CF-based methods tend to be ineffective
in real-world scenarios because it requires a great deal of interactions of users and
tags, which is problematic due to the sparsity of data. In graph-based approach,
PageRank [11] is a well-known link analysis algorithm used by Google to rank
websites according to their importance. There are many variants of PageRank,
such as sensitive PageRank [6], xRank [7], and WTF [4]. However, PageRank
based approach is biased to high-degree vertices. The authors of [13] propose
a unified framework of graph mining and a new algorithm PARW-I, which can
capture the community structure to overcome the weakness of PageRank. So we
design approximate PARW, namely A-PARW, in our system.

6 Conclusions and Future Works

In this paper, we introduced Huawei Push Service Platform (PSP) to perform
push recommendation by selecting target user group for a given push message.
PSP includes potential users mining, online pushing, feedback caching and eval-
uation. In addition, we proposed A-PARW for target user group discovery on
large scale data and presented a detail analysis among different choices of algo-
rithms theoretically and empirically. We highlighted that A-PARW-I is able to
discover the most relevant potential users and improve the performance of push
service. As a live system, PSP supports the push recommendation in Huawei
App Store and leads to a significant improvement over PPR.

Acknowledgement. This research was supported in part by NSFC under
Grant No. 61572158 and Shenzhen Science and Technology Program under Grant
No. JCYJ20160330163900579. We thank Dr. Qin Liu, Dr. Junbo Zhang and Chenzi
Zhang for the help in scaling up PARW. We also thank Dr. Zhenhua Dong, Zhirong
Liu and Benwei Gong for the valuable discussion and feedback.

648 H. Guo et al.

References

1. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vec-
tors. In: FOCS (2006)

2. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed
graph-parallel computation on natural graphs. In: OSDI (2012)

3. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: A graph-based push service platform.
https://arXiv.org/abs/1611.09496 (2016)

4. Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: WTF: the who to
follow service at twitter. In: WWW (2013)

5. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(2000)

6. Haveliwala, T.H.: Topic-sensitive pagerank. In: WWW (2002)
7. He, X., Dai, W., Cao, G., Tang, R., Yuan, M., Yang, Q.: Mining target users for

online marketing based on app store data. In: IEEE International Conference on
Big Data (2015)

8. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media? In: WWW (2010)

9. Li, X., Wang, Y.Y., Acero, A.: Learning query intent from regularized click graphs.
In: Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (2008)

10. Liu, Q., Cheng, J., Li, Z., Lui, J.: VENUS: a system for streamlined graph com-
putation on a single PC. TKDE 28, 2230–2245 (2016)

11. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. In: WWW (1999)

12. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv.
Artif. Intell. 2009, 421425:1–421425:19 (2009)

13. Wu, X.M., Li, Z., So, A.M., Wright, J., Chang, S.F.: Learning with partially absorb-
ing random walks. In: NIPS (2012)

https://arXiv.org/abs/1611.09496

Edge Influence Computation in Dynamic Graphs

Yongrui Qin1(B), Quan Z. Sheng2, Simon Parkinson1,
and Nickolas J.G. Falkner3

1 University of Huddersfield, Huddersfield, UK
{y.qin2,s.parkinson}@hud.ac.uk

2 Macquarie University, Sydney, Australia
michael.sheng@mq.edu.au

3 University of Adelaide, Adelaide, Australia
nickolas.falkner@adelaide.edu.au

Abstract. Reachability queries are of great importance in many
research and application areas, including general graph mining, social
network analysis and so on. Many approaches have been proposed to
compute whether there exists one path from one node to another node
in a graph. Most of these approaches focus on static graphs, however in
practice dynamic graphs are more common. In this paper, we focus on
handling graph reachability queries in dynamic graphs. Specifically we
investigate the influence of a given edge in the graph, aiming to study
the overall reachability changes in the graph brought by the possible
failure/deletion of the edge. To this end, we firstly develop an efficient
update algorithm for handling edge deletions. We then define the edge
influence concept and put forward a novel computation algorithm to
accelerate the computation of edge influence. We evaluate our approach
using several real world datasets. The experimental results show that our
approach outperforms traditional approaches significantly.

Keywords: Graph reachability · Dynamic graph · Edge influence

1 Introduction

Nowadays, graph structured data plays a more important role in various fields.
As a foundational operation of a graph, reachability has a wide range of applica-
tions in many areas such as web data mining, biological research, social networks
and computer programming, etc. It is noteworthy that, in these areas, the struc-
ture of graph is large and dynamic. To illustrate, Facebook has 1.79 billion active
users monthly in the third quarter of 2016, increased from 1.55 billion active users
monthly in the same period in 20151. They may have different characters such
as age, gender, hobbies, and may have complicated relationship with existing
users.

1 https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-
users-worldwide/, retrieved December 2016.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 649–660, 2017.
DOI: 10.1007/978-3-319-55699-4 41

https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/

650 Y. Qin et al.

A large body of indexing techniques have been recently proposed to process
reachability queries in graphs [2,3,5,11–13]. Among them, a significant portion
of indexes are based on 2-hop labeling, which is originally proposed by Cohen
et al. [7]. Most of the above mentioned approaches generally make the assump-
tion that graphs are static. Some approaches investigate reachability in dynamic
graphs, but they mainly focus on updating the overall indexes and supporting
reachability queries in dynamic graphs [1,8,9,14].

One important question remains open: How can we evaluate the impact of
an individual edge in a large graph in terms of reachability aspect? To the best
of our knowledge, there is little work available in literature about the analysis
of potential impact caused by changes in a large graph like edge deletions. How
to evaluate the reachability influence of an edge is still an open problem. State-
of-the-art approach TOL proposed in [1], which focuses on handling reachability
queries in large dynamic graphs, does not provide an efficient way to compute
the reachability difference caused by the failure or deletion of an edge. Therefore
it remains challenging to evaluate the impact of the deletion of a given edge
efficiently.

In this work, we firstly develop a decremental maintenance algorithm to effi-
ciently update labeling index for edge deletions. We then define edge influence
to indicate the impact of an edge on the reachability of the whole graph and put
forward a novel computation algorithm to calculate edge influences efficiently.
Experimental results show that our method outperforms state-of-the-art app-
roach TOL in updating indexes on edge deletions and our edge influence compu-
tation algorithm is very efficient and can scale well. Potential applications of our
algorithm include finding the most influencing edges in a given network, looking
to building up some most important connections in an existing network, and so
on.

The remainder of this paper is organized as follows. Section 2 reviews related
work. Section 3 describes the details of our approach. Section 4 presents the
experimental results and analysis. Section 5 concludes the paper and discusses
future work.

2 Related Work

There is a large body of work on handling reachability queries in large graphs.
Tree Cover approach is proposed by Agrawal et al. in [4], which searches a path
based on a tree cover. The principle of this method is to encode each node by mul-
tiple intervals in a graph. However, even though it searches the graph efficiently,
Tree Cover method can only guarantee its efficiency on static graphs. This is
mainly because in order to achieve the optimal tree cover, it has to firstly estab-
lish a spanning tree when a graph changes. Dual-Labeling approach proposed
by Wang et al. in [3] answers reachability queries by a Dual-Labeling encoding
scheme. As a tree encoding method, Dual-Labeling method also encodes each
node as a tree structure. Similar to Tree Cover method, it is suited for handling
static graphs. Chain Cover approach proposed by Jagadish [6] uses a chain cover

Edge Influence Computation in Dynamic Graphs 651

scheme to compute a reachability query. In this method, it divides a graph into
several chains, which forms a chain cover for this graph. If we want to answer a
reachability query, we just search whether there exists a pair in the chain cover.
The disadvantage of this method is that if the graph is dynamic, for each update
operation, there are numerous pairs to be modified, which reduces the efficiency
especially when the graph is large. Path-Tree Cover approach proposed by Jin
et al. [5] answers reachability queries by using a path-tree cover scheme. Its
principle is similar to the Chain Cover method and the Tree Cover method. The
difference is that Path-Tree Cover uses an extra scheme to deal with non-edge
in the tree structure like Dual-Labeling approach.

Meanwhile, a few approaches have been proposed for handling reachability
queries in dynamic graphs [8,9,14]; however, these approaches cannot scale well.
State-of-the-art approach in this direction is TOL, proposed by Zhu et al. [1].
TOL uses a total order labeling scheme to answer reachability queries. It encodes
a level order to each node in a graph. According to this order, TOL can compute a
labeling table. Comparing with other schemes mentioned above, the advantage of
TOL is that it simplifies the process of table construction. TOL has an advantage
in dealing with large dynamic graphs. Surprisingly, it also outperforms most
existing approaches on static graphs [1]. However, the main drawback of TOL is
that it can only handle node deletions but cannot handle edge deletions.

3 Methodology

In this section, we present our approach in detail. Since our approach is inspired
by state-of-the-art approach TOL [1], we firstly introduce TOL index briefly, then
we develop our decremental maintenance algorithm for handling edge deletions.
After that, we further define the concept of edge influence to investigate the
impact of an edge in the overall reachability of a graph. We also put forward an
efficient computation algorithm to compute edge influence on top of the updated
labeling index of the graph.

3.1 TOL Index

The TOL Index [1] of graph G in Fig. 1 is shown in Fig. 2. There are three
columns, n (denoting nodes), Lin and Lout. Note that, TOL labeling is very
similar to the 2-HOP Cover approach proposed by Cohen et al. [7].

Example 1. According to Fig. 2, for node C, Column Lout contains {C}. It means
that node C can reach all nodes that contains C in Column Lin, including nodes
C, D, E, and F . Similarly, for node E, Column Lin contains {C,E}. Hence node
E can be reached by all nodes in Column Lout that contains C or E, including
nodes A, B, C, E, and F .

652 Y. Qin et al.

Fig. 1. Graph G (DAG)

Fig. 2. TOL Index L

3.2 Handling Edge Deletions

Suppose the TOL index of a given graph G is L. Assuming after deleting edge
e from G, we have G′ and its corresponding index L′. Using TOL approach, we
have to compute L′ from scratch for G′. It is obvious that such process is not
efficient. To improve efficiency, we devise a new approach that only calculates
the difference between labeling indexes L and L′, if an edge deletion occurs.

Given a DAG G = (V,E), if deleting edge e = NS → NE ∈ E from it, we
can construct a new graph Gr ∈ G, which includes only nodes that can reach or
be reached by either node NS or node NE . The structure of Gr is presented in
Fig. 3.

It should be noted that, we only need to deal with those nodes whose reacha-
bility status to another node might be changed due to the edge deletion. All such
nodes can be divided into six sets, NtoSO, NtoEO, NfromSO, NfromEO, NtoSE

and NfromSE . Details of these node sets are as follows:

NtoSO contains nodes that can reach node NS but cannot reach node NE , defined
as a special ancestor node set of NS .

NtoEO contains nodes that can reach node NE but cannot reach node NS , defined
as a special ancestor node set of NE .

NfromSO contains nodes that can be reached by node NS but cannot be reached
by node NE , defined as a special descendant node set of NS .

Edge Influence Computation in Dynamic Graphs 653

Fig. 3. Graph Gr

NfromEO contains nodes that can be reached by node NE but cannot be reached
by node NS , defined as a special descendant node set of NE .

NtoSE contains nodes that can reach both node NS and node NE , which form
the common ancestor node set of both NS and NE .

NfromSE contains nodes that can be reached by both node NS and node NE ,
which form the common descendant node set of both NS and NE .

The next process is to classify all relevant nodes into the corresponding sets,
which is described in the following.

1. Find all ancestor and descendant node sets of NS and NE using BFS
(Breadth-First-Search).

2. Compare the ancestor node set of NS with the ancestor node set of NE ; put
all nodes that appear in both ancestor node sets together and form NtoSE .
Then NtoSO is the set containing the rest ancestor nodes of NS and NtoEO is
the set containing the rest ancestor nodes of NE .

3. Following a similar step to the above Step 2, we can construct all the defined
descendant node sets, including NfromSE , NfromSO and NfromEO.

After completing the nodes classification, we can start to handle the edge
deletion process. When deleting edge e = NS → NE ∈ E, changes of each node
in the labeling index can be divided into three situations as shown in Fig. 4.

Situation 1: For node sets NtoEO and NfromSO, no changes are needed in the
original labeling index. As shown in Fig. 3, a path from a node of NtoEO to any
other node of Gr or a path from any node of Gr to a node in NfromSO, will not
contain edge e. In other words, reachability of any node in NtoEO and NfromSO

will not be affected by deletion of edge e.

Situation 2: For node sets NtoSE and NfromSE , although the reachability
related to the nodes in these sets is the same as before, the path of reacha-
bility may be different. This creates impact on the labeling index. We use the
following steps to modify the labeling index to ensure the reachability of these
nodes remains the same as before when computed from the updated labeling
index.

654 Y. Qin et al.

Fig. 4. Edge deletion flow chart

1. Denote node set of Lout column of node NE in the labeling index as NEout.
2. Add NEout to Lout column of each node in NtoSE in the labeling index.
3. Denote node set of Lin column of NS in the labeling index as NSin.
4. Add NSin to Lin column of each node in NfromSE in the labeling index.

For the three node sets that NtoSE can reach (including NfromSO, NfromSE

and NfromEO), the reachability status from set NtoSE to set NfromSO is not
affected by edge e (see Fig. 3). For NfromSE and NfromEO, they are the only
sets that can be reached by node NE . Therefore, we only need to add NEout to
the column of each node of NfromSE and NfromEO in the new labeling index.

Situation 3: For node sets NfromEO and NtoSO, whether edge e is deleted or
not has significant influence on their reachability status. After deleting edge e,
all nodes in NtoSO cannot reach node NE any more. When deleting edge e, the
update of the labeling index can be achieved by deleting node NE in the column
of Lin of each node in NtoSO. It is similar to NtoSO, for NfromEO, we only need
to delete node NS in the column of Lout of each node of NfromEO.

Similar to deleting a node in TOL approach [1], the key step of updating
index in the above situation is to modify the labeling index as follows.

For NtoSO and NS :

1. Check the column Lout of node NS , if there is node NE , delete it.
2. Find out all Lout of child nodes of NS except NE , and denote them as set

SetS . Add all nodes in SetS into Lout of NS except the case that this node
is already in Lout.

3. Find out all nodes in NtoSO, and apply steps similar to Steps 1 to 2.

For NtoEO and NE :

1. Check the column Lin of node NE , if there is node NS , delete it.
2. Find out all Lin of father nodes of NE except NS , and denote them as set

SetE . Add all nodes in SetE into Lin of NE except the case that this node
is already in Lin.

3. Find out all nodes in NtoEO, and apply steps similar to Steps 1 to 2.

Edge Influence Computation in Dynamic Graphs 655

Example 2. Given a DAG G and its corresponding labeling index L as shown in
Fig. 5, if deleting edge e = C → F , the process of edge deletion is as follows.

Fig. 5. Graph G and labeling index L

Firstly, we divide all nodes of G into six sets, where:

NtoSO contains nodes A and B.
NfromEO contains nodes E and D.
NtoEO, NtoSE , NfromSO, NfromSE All are empty sets.

It is obvious that we need to handle NtoSO and NfromEO, which is Situation 3.

1. After checking column Lout of node C, we find that there is no F , so we do
not need to delete anything.

2. We need to find out the child node of C, which is node F . Because F is the
terminus node of edge e, we do not need to add anything to Lout.

3. We deal with the father node of C, which is B. Because F is not in Lout of
B, we just need to check all child nodes of B, E and C. For child node C,
the Lout of C has already been included in Lout of B, which we do not need
deal with. For child node E, the Lout of E is not in Lout of B, so we need to
add E to Lout of B.
The new L′

out of B = Lout of B + Lout of E = {B,E,C}.
4. We handle with the father node of B, which is A. Similar to B, we can

compute the new L′
out of A = {A,B,C,E}. Because A does not have any

father node, the process of dealing with C finishes.
5. Similar to C, after handling F , we can compute the new L′

in of F = {F}.
6. Similar to nodes B and A, we have L′

in of E = {E} and L′
in of D = {D,E}.

Because D does not have any child node, the process of dealing with F fin-
ishes.

656 Y. Qin et al.

Finally we can successfully compute the new L′ of G′ as shown in Fig. 6.

Fig. 6. New graph G′ and new labeling index L

3.3 Edge Influence

Next, we define edge influence and show how to calculate influence of a given
edge efficiently. The influence provides a measure of how important an edge is
to a graph. In other words, without this edge, its influence shows how greatly
the reachability of all pairs of nodes of this graph will change.

Definition 1. When one edge is deleted, the number of pairs of nodes whose
reachability has been changed due to the deletion stands for the absolute influence
of this edge (denoted as Infe).

According to Definition 1, we can calculate the maximum absolute influence of
an edge in a given graph according to the following theorem.

Theorem 1. Whatever the structure of the graph is, provided the amount of
nodes is n, the maximum absolute influence (denoted as Infmax) of any edge in
the graph is:

Infmax =

⎧
⎨

⎩

(
n
2

)2

n is even.
(n−1)

2 · (n+1)
2 n is odd.

(1)

Proof. Given a graph G = (V,E) with n nodes, there must exist an edge e ∈ E
which divides V into three node sets A, B and C. Sets A and B meet two
requirements: First, each node in A can find a path to each node in B; Second,
every such path contains e. Set C contains all other nodes that do not belong to
sets A and B.

If denoting the number of nodes in sets A, B and C as a, b and c, we have
formula (2).

n = a + b + c (2)

If deleting edge e, any path from one node in A to another node in B may
become disconnected. And the amount of these paths are a · b. Then according
to Definition 1, we have formula (3).

Infe = ab (3)

Edge Influence Computation in Dynamic Graphs 657

Combining (2) and (3), we have formula (4) as follows.

Infe = a(n − a − c) (4)

It is obvious that when c increases, the value of Infe decreases. In order to
achieve the maximum value of Infe, c should be 0. Then, we can transform (4)
to (5).

Infe = a(n − a) (5)

Obviously, Infe is maximum when a = n
2 . Since n ∈ Z

+, if n is even, a = n
2 ,

and if n is odd, a = n−1
2 . Combining (2), we arrive at formula (1). This completes

the proof. ��
Once Infmax of a graph is known, the normalized influence of an edge in this

graph can be calculated as follows.

Definition 2. Given a graph G′ = (V,E) with n nodes, the influence of an edge
e ∈ E is denoted as Infe, which can be computed as follows:

Infe =
Infe

Infmax

(6)

Calculation. Given a DAG G, if deleting an edge e = NS → NE , we can apply
the following steps to calculate the influence of edge e.

– According to Theorem 1, we calculate Infmax

– Find out the node set where nodes can be reached by node NE including node
NE itself, denoted as SetE

– Find out nodes that belong to SetE and can be reached by node NS before
deleting edge e, denoted as SetSP

– Find out nodes that belong to SetE and can be reached by node NS after
deleting edge e, denoted as SetSL. And then we can get node set SetS =
SetSP − SetSL. The amount of nodes in SetS equals to the amount of bode
pairs with changed reachability status that is related to node NS after deleting
edge e

– For each ancestor node of NS , we can calculate the corresponding Seti. It
should be noted that during the calculation, once we have Seti = ∅, we can
stop calculating ancestors of node Ni

– Assuming ni is the amount of nodes in Seti, the absolute influence of edge e
is Infe =

∑
ni. Then we can compute the influence of edge e according to

formula (6)

Example 3. Given a DAG G, we can calculate the influence of edge e = C → F
in the following.

– Calculate the maximum absolute influence Infmax of graph G.

Infmax =
(7 − 1)

2
× (7 + 1)

2
= 12

658 Y. Qin et al.

Fig. 7. Graph G

– There are two other nodes that F can reach. Then SetF = {D,E, F}
– SetCP = {D,E, F}
– SetCL = ∅ Then SetC = {D,E, F} − ∅ = {D,E, F}. SetC has three nodes

D, E and F , so nC = 3
– For node C’s ancestor node B, SetB = {D,E, F} − {D,E} = {F}. There is

only one node F in SetB , so nB = 1. For the second ancestor node A of node
C, SetA = {F} − ∅ = {F}, which means nA = 1

– Infe =
∑

ni = nC + nB + nA = 3 + 1 + 1 = 5. Then

Infe =
Infe

Infmax

=
5
12

Therefore, the influence of edge e is
5
12

in graph G in Fig. 7.

4 Experiments

We use the following five real-world datasets in our experiments: p2p-Gnutella08
(Gnu08, 6.3K nodes, 21K edges), p2p-Gnutella06 (Gnu06, 8.7K nodes, 32K
edges), Wiki-Vote (Wiki, 7.1K nodes, 104K edges), p2p-Gnutella31 (Gnu31, 63K
nodes, 148K edges) and soc-Epinions1 (Epi1, 76K nodes, 509K edges) [10]. We
use these datasets to conduct two sets of experiments. The first set is to delete
100 edges generated by the graph transformation module randomly. We com-
pare labeling index method (TOL method) with our method by performing 100
edge deletions and record the average time cost and the average index size (the
changed part). The second set is to validate our edge influence algorithm also by
performing 100 edge deletions and record the average time cost. All experiments
were performed on a PC with 64-bit Windows 7, 8 GB RAM and 2.40 GHZ Intel
i7-3630QM CPU.

It should be noted that these bar charts use log-scale plotting features. From
Fig. 8(a), we can see that our method performs deletion nearly at a speed of an
order of magnitude faster than TOL method among all the datasets. The updated
index size of our method is also much smaller than TOL method (see Fig. 8(b)).
The main reason for these two experimental results is that our method can

Edge Influence Computation in Dynamic Graphs 659

Gnu08 Gnu06 Wiki Gnu31 Epi1

100

101

102

0.
49

0.
49 0.

67

1.
74

1.
69

−
0.

39

−
0.

39

−
0.

38

0.
59 0.
68

T
im

e
(s

)

TOL Our Method

(a) Time for Updating Index

Gnu08 Gnu06 Wiki Gnu31 Epi1

102

103

104

105

106

5.
1

4.
93

4.
59

5.
93

5.
79

2.
73 2.
78

2.
5

3.
46

3.
98

Si
ze

(K
B

)

TOL Our Method

(b) Size of Updated Part of the Index

Fig. 8. Comparison with TOL approach

incrementally compute updated index for edge deletions, while TOL method can
only support node deletions. For edge deletions, TOL method has to recompute
the whole index from scratch. Here, we do not compare indexing time with other
approaches for static graphs, as TOL method has been shown to outperform most
existing approaches for static graphs [1].

Figure 9 shows the average calculation time of edge influences for the 100
deleted edges. Since this is the first attempt on the calculation of edge influence,
we compare our method with a modified BFS & DFS method2. From the figure
we can see that our method can compute edge influences orders of magnitude
faster than the modified BFS & DFS method. For dataset Epi1, the modified
BFS & DFS method cannot complete the calculation within 24 h.

Gnu08 Gnu06 Wiki Gnu31 Epi1
100

101

102

103

104

1.
51 1.

66 1.
94

3.
53

0.
72

0.
7

0.
55

2.
12

3.
13

T
im

e
(s

)

BFS/DFS Our Method

Fig. 9. Calculation time of edge influence

2 BFS & DFS refers to Breadth-First-Search and Depth-First-Search. Both our method
and BFS & DFS were performed on top of the updated labeling index.

660 Y. Qin et al.

5 Conclusion

In this work, we propose a new approach to calculate an updated labeling index
of a graph after edge deletions. Then we define the influence of edges in a graph
based on reachability between nodes affected by the potential deletions of edges,
and provide an approach to calculating the influence of any given edge in the
graph. Our experiments validate the efficiency and scalability of our approach.

Future work includes devising faster algorithms to handle even larger dynamic
graphs (e.g., at the scale of millions of nodes and edges) and design new algorithms
to rank all the edges based on our defined edge influence in large graphs.

Acknowledgments. Authors would like to thank Xiaorong Liang for the implemen-
tation of the algorithms and thank anonymous reviewers for their valuable comments.

References

1. Zhu, A.D., Lin, W., Wang, S., Xiao, X.: Reachability queries on large dynamic
graphs: a total order approach. In: Dyreson, C.E., Li, F., Tamer Özsu, M. (eds.)
SIGMOD Conference 2014, Snowbird, UT, USA, pp. 1323–1334, 22-27 June 2014.
doi:10.1145/2588555.2612181. http://dl.acm.org/citation.cfm?id=2588555

2. Cheng, J., et al.: TF-Label: a topological-folding labeling scheme for reachabil-
ity querying in a large graph. In: Proceedings of the International Conference on
Management of Data. ACM (2013)

3. Wang, H., et al.: Dual labeling: answering graph reachability queries in constant
time. In: Proceedings of the 22nd International Conference on Data Engineering,
ICDE 2006. IEEE (2006)

4. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive rela-
tionships in large data and knowledge bases, vol. 18, no. 2. ACM (1989)

5. Jin, R., et al.: Efficiently answering reachability queries on very large directed
graphs. In: Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data. ACM (2008)

6. Jagadish, H.V.: A compression technique to materialize transitive closure. ACM
Trans. Database Syst. (TODS) 15(4), 558–598 (1990)

7. Cohen, E., et al.: Reachability, distance queries via 2-hop labels. SIAM J. Comput.
32(5), 1338–1355 (2003)

8. Bramandia, R., Choi, B., Ng, W.K.: Incremental maintenance of 2-hop labeling of
large graphs. IEEE Trans. Knowl. Data Eng. 22(5), 682–698 (2010)

9. Yildirim, H., Chaoji, V., Zaki, M.J.: Dagger: a scalable index for reachability
queries in large dynamic graphs. arXiv preprint arXiv:1301.0977 (2013)

10. Leskovec, J.: Stanford large network dataset collection (2014). http://snap.
stanford.edu/data/index.html

11. Yildirim, H., Chaoji, V., Zaki, M.J.: GRAIL: scalable reachability index for large
graphs. PVLDB 3(1), 276–284 (2010)

12. van Schaik, S.J., de Moor, O.: A memory efficient reachability data structure
through bit vector compression. In: SIGMOD, pp. 913–924 (2011)

13. Seufert, S., Anand, A., Bedathur, S.J., Weikum, G.: Ferrari: flexible and efficient
reachability range assignment for graph indexing. In: ICDE, pp. 1009–1020 (2013)

14. Schenkel, R., Theobald, A., Weikum, G.: Efficient creation and incremental main-
tenance of the HOPI index for complex XML document collections. In: ICDE, pp.
360–371 (2005)

http://dx.doi.org/10.1145/2588555.2612181
http://dl.acm.org/citation.cfm?id=2588555
http://arxiv.org/abs/1301.0977
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html

Demos

DKGBuilder: An Architecture for Building
a Domain Knowledge Graph from Scratch

Yan Fan1, Chengyu Wang1, Guomin Zhou2, and Xiaofeng He1(B)

1 Shanghai Key Laboratory of Trustworthy Computing,
School of Computer Science and Software Engineering,

East China Normal University, Shanghai, China
eileen940531@gmail.com, chywang2013@gmail.com, xfhe@sei.ecnu.edu.cn

2 Department of Computer and Information Technology,
Zhejiang Police College, Hangzhou, China

zhouguomin@zjjcxy.cn

Abstract. In recent years, we have witnessed the technical advances in
general knowledge graph construction. However, for a specific domain,
harvesting precise and fine-grained knowledge is still difficult due to the
long-tail property of entities and relations, together with the lack of
high-quality, wide-coverage data sources. In this paper, a domain knowl-
edge graph construction system DKGBuilder is presented. It utilizes a
template-based approach to extract seed knowledge from semi-structured
data. A word embedding based projection model is proposed to extract
relations from text under the framework of distant supervision. We fur-
ther employ an is-a relation classifier to learn a domain taxonomy using
a bottom-up strategy. For demonstration, we construct a Chinese enter-
tainment knowledge graph from Wikipedia to support several knowledge
service functionalities, containing over 0.7M facts with 93.1% accuracy.

Keywords: Knowledge graph · Taxonomy learning · Relation
extraction

1 Introduction

A domain knowledge graph (DKG) is a special type of knowledge graphs that
focuses on modeling relations between entities in a specific domain. It plays an
important role in providing knowledge service for special-purpose applications,
such as medical diagnosis, movie recommendation, etc.

Although abundant research has been conducted on general-purpose knowl-
edge graph construction, entities and relations in a specific domain are still
hard to obtain in a large quantity and a high accuracy. The difficulties mostly
lie in three aspects: (i) knowledge in existing manually-built expert systems
or domain relational databases usually has the low coverage; (ii) it is difficult
to harvest domain facts from semi-structured/unstructured data, especially for
long-tail entities and relations; and (iii) taxonomies of DKGs are often designed
by experts, and constructing them is a tedious and time-consuming process.
c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 663–667, 2017.
DOI: 10.1007/978-3-319-55699-4 42

664 Y. Fan et al.

In this paper, we introduce DKGBuilder, a general framework to construct a
DKG solely from semi-structured and unstructured data sources. In the imple-
mentation, it takes Wikipedia pages related to a specific domain as input and
extracts entities, classes, attributes and relations in a weakly supervised manner.
It first constructs an initial DKG by template-based extractors over Wikipedia
infoboxes and categories. We design an is-a relation classifier to build the domain
taxonomy based on the Wikipedia category system in a bottom-up strategy. In
order to extract long-tail relations from plain texts, a word embedding based
projection model is proposed to identify new relations in the embedding space.

For demonstration, we present a transparent process of constructing a Chinese
entertainment DKG from scratch. The system also supports several online tasks
of knowledge service and analysis. The DKG we constructed consists of over 0.1M
entities and 0.7M facts related to the entertainment industry in China.The average
accuracy of these facts (i.e., attributes and relations) is 93.1%.

2 System Overview and Key Techniques

As Fig. 1 shows, DKGBuilder consists of offline and online parts. The offline
system contains three modules: (i) seed knowledge graph constructor, (ii) tax-
onomy learner and (iii) plain-text relation extractor. The online part supports
entity and class tagging, semantic search and statistical knowledge data analysis.

Fig. 1. Framework of DKGBuilder Fig. 2. Knowledge representation

The seed knowledge graph constructor builds an initial DKG with high
accuracy, which employs template-based methods to extract domain entities,
attributes and relations from Wikipedia infoboxes and categories with minimal
human intervention. The extracted facts are later employed as training data for
the latter two modules. In traditional domain databases, entities are categorized
into a few coarse-grained classes (e.g. patients, diseases, symptoms and medicines
in the medical domain). In DKGBuilder, the taxonomy learner classifies entities
into a large number of fine-grained classes to construct the taxonomy. It employs
several novel features and trains an SVM-based is-a relation classifier based on

Building a Domain Knowledge Graph from Scratch 665

Wikipedia category system. The plain-text relation extractor harvests long-tail
knowledge by learning new relations from unstructured text. Because a limited,
domain-specific corpus is usually sparse in terms of entity contexts, we propose
a word embedding based projection model to learn relation representations and
extract relations from text using the framework of distant supervision.

We now discuss our implementation details coping with several technical
challenges in DKGBuilder.

Seed Knowledge Graph Construction. The first step is to find the most
important entities in a specific domain, which minimizes the risk of extracting
unrelated entities from knowledge sources. In our system, DKGBuilder takes a
couple of human-defined template names from Wikipedia as input and selects
entities whose infobox-template name matches one of the pre-defined names.
After that, it extracts “seed” relations by mapping frequent attribute names to
relations. For each attribute, we design a mapping function which converts an
attribute to one/many relations. Based on the semantics of attributes, we cate-
gorize the mappings into three types: i.e., direct, multiple and indirect, inspired
by the Wikipedia-based ontology YAGO [1]. We additionally use domain-specific
filters to improve the precision of the initial DKG.

Fine-Grained Entity Categorization. The construction of domain taxonomy
can be modeled as the fine-grained entity categorization problem. Because the
template names in Wikipedia are relatively coarse-grained (e.g., actor, movie,
etc.), we extend our prior work [2] to derive the entertainment taxonomy. For
each entity, an SVM classifier is trained to predict whether there is a hyponymy-
hypernym (i.e., “is-a”) relation between the entity and each of its category names
in Wikipedia. For example, “Hong Kong actor” is a hypernym of “Tony Leung
Chiu-wai” while “1962 births” only provides relational facts about the actor.
A set of features are engineered for accurate is-a relation prediction, such as
the number of words in the category name, the POS tag of the head word of
the category name, the common sequence of the entity and category names, the
existence of specific language patterns, etc. Finally, the top-level of the domain
taxonomy is constructed based on the rule mining algorithm proposed in [2].

Representation Learning and Relation Extraction. The limited coverage
in the initial DKG prompts us to identify new relations from plain text to cover
more long-tail facts. In a domain-specific corpus, especially for Chinese, robust
relation extraction is challenging due to the flexibility of language expression
and the text sparsity issue of entity contexts [3]. In DKGBuilder, rather than
applying syntactic and/or lexical pattern matching methods, we learn entity and
relation representations in the embedding space to support relation extraction
in a semantic level. We first crawl a large-scale Chinese text corpus from Baidu
Baike1, consisting of 1.2M articles and 1.088B Chinese words after word seg-
mentation. A skip-gram model [4] is trained over the text corpus to obtain the
100-dimensional embedding vector v(e) for each entity e.

1 http://baike.baidu.com/.

http://baike.baidu.com/

666 Y. Fan et al.

For relation representation, similar to [6], we combine two previous relation
representation approaches (i.e., vector offsets in [4] and linear projection in [5])
together in the embedding space. For an entity pair (ei, ej) that has a certain
relation Rk, we assume there is a projection matrix Mk and an offset vector bk
such that Mk · v(ei) + bk ≈ v(ej). For ease of implementation, we learn relation
representation using the distant supervision framework. We randomly sample
relation instances from initial DKG, then learn the parameters by minimizing the
following objective function via Stochastic Gradient Descent: J(Mk, bk;Rk) =
1
2

∑
(ei,ej)∈Rk

‖Mk · v(ei) + bk − v(ej)‖2.
After obtaining values of parameters, we make a single pass over the corpus.

We first extract entities (ei and ej) that co-occur in the same sentence and
pair those which have close syntax and lexical distances into candidate relation
instances. For each candidate pair (ei, ej) and the relation Rk, the model predicts
(ei, ej) ∈ Rk iff ‖Mk · v(ei) + bk − v(ej)‖ < δ where δ is a pre-defined threshold.

In Fig. 2, we illustrate the two knowledge representations and their connec-
tions. In the graph view, entities and relations are expressed explicitly in the
form of a directed graph. By representation learning, we can map the DKG
into the embedding space. New relations are extracted or inferred from free text
based on entity and relation representations, which are again added to the DKG.

3 Demonstration and Evaluation

We will demonstrate the knowledge graph construction process in DKGBuilder
and showcase its semantic service functionality. Specifically, the Chinese enter-
tainment DKG consists of 13K classes, 100K entities, 250K attribute-value pairs,
46 relation types and 480K relation instances. By random sampling, we analyze
the overall accuracy of facts from all modules, summarized in Table 1.

The online system is developed in Java and uses Tomcat as the Web server.
The knowledge data of DKGBuilder is managed by the Neo4j graph database.
Besides the basic analysis tasks of entertainment knowledge data, the system
supports semantic search of entities and relations, using a search engine-like
interface. It also provides knowledge service for deep reading, which tags key
entities and classes in documents. Screenshots are shown in Figs. 3 and 4.

Table 1. Accuracy Evaluation

Module Accuracy

Seed Constructor 99.6%

Taxonomy Leaner 98.7%

Relation Extractor 71.4%

Overall 93.1%

Fig. 3. Screenshot I Fig. 4. Screenshot II

Acknowledgements. This work is partially supported by the National Key Research
and Development Program of China under Grant No. 2016YFB1000904 and NSFC-
Zhejiang Joint Fund for the Integration of Industrialization and Informatization under
Grant No. U1509219.

Building a Domain Knowledge Graph from Scratch 667

References

1. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
WWW, pp. 697–706 (2007)

2. Li, J., Wang, C., He, X., Zhang, R., Gao, M.: User generated content oriented
Chinese taxonomy construction. In: Cheng, R., Cui, B., Zhang, Z., Cai, R., Xu, J.
(eds.) APWeb 2015. LNCS, vol. 9313, pp. 623–634. Springer, Cham (2015). doi:10.
1007/978-3-319-25255-1 51

3. Wang, C., Gao, M., He, X., Zhang, R.: Challenges in Chinese knowledge graph
construction. In: ICDE Workshops, pp. 59–61 (2015)

4. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781 (2013)

5. Fu, R., Guo, J., Qin, B., Che, W., Wang, H., Liu, T.: Learning semantic hierarchies
via word embeddings. In: ACL, pp. 1199–1209 (2014)

6. Wang, C., He, X.: Chinese hypernym-hyponym extraction from user generated cat-
egories. In: COLING, pp. 1350–1361 (2016)

http://dx.doi.org/10.1007/978-3-319-25255-1_51
http://dx.doi.org/10.1007/978-3-319-25255-1_51

CLTR: Collectively Linking Temporal Records
Across Heterogeneous Sources

Yanyan Zou(B) and Kasun S. Perera

Singapore University of Technology and Design, Singapore, Singapore
yanyan zou@mymail.sutd.edu.sg, baruhupolage@sutd.edu.sg

Abstract. A huge volume of data on the Web are continually made
available, which provides users rich amount of information to learn more
about entities. In addition to attribute values of entities, there is often
additional relational information, such as friendship on social networks,
coauthorship of papers. However, to understand how these facts across
heterogeneous data sources are related is challenging for users due to
entity evolution over time. In this paper, we propose a novel system to
help users find how records are temporally related and understand how
entity profiles evolve over time. Our system is able to Collectively Link
Temporal Records (CLTR) by taking advantage of evidence from both
attribute and relational information on multiple sources. We demonstrate
how CLTR allows users to explore time-varying history of targeted enti-
ties and visualizes multi-type relations among entities.

Keywords: Record linkage · Temporal data · Collective clustering ·
Heterogeneous web sources

1 Introduction

Heterogeneous Web sources provide abundant information to describe entities
from different aspects over a long period of time. In addition to attribute val-
ues of entities, there is often additional relational information on the Web, such
as friendship on social networks, coauthorship of papers. Understanding how
facts across heterogeneous data sources are temporally related is paramount
and inevitable to many applications. It also poses new challenges due to evolving
information of entities where attribute values may vary over time (e.g., location,
age and organization). In order to deal with time-varying property of tempo-
ral records, Li et.al. first presented a time-decay model [1] which learns the
probability that an entity will change its attribute values within a time period.
CHRONOS [4], the closest to our work, is implemented based on this technique.
It collects data only from bibliography domain. This work was then extended by
[2], where a mutation model was proposed to capture how likely an entity will
return to its previous values in a given time period. Another framework, called
MAROON [3], was designed to observe temporal patterns of attribute value

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 668–671, 2017.
DOI: 10.1007/978-3-319-55699-4 43

CLTR: Collectively Linking Temporal Records 669

transitions. None of the models emphasizes relational information among enti-
ties, which actually provides us additional evidence to address temporal linkage
across heterogeneous Web sources.

In this paper, we present a novel framework, CLTR, to help users understand
how facts are temporally related across sources. The major contributions of
CLTR can be summarized as follows:

1. CLTR collects data from multiple Web sources to enrich entity profiles.
2. The system combines evidence from both attribute and relational information

to reconcile entities across heterogeneous web sources. It employs collective
clustering mechanism. The algorithm fully utilizes relations to jointly recon-
cile entities which co-occur on the Web, rather than independently.

3. It enables users to search targeted entities by different domain keywords, such
as name and organization. The tool presents entity history by timelines and
also visualizes entity relation graph to help users further understand how
entities are temporally related across sources over time.

2 Methodology

The architecture of our CLTR system is illustrated in Fig. 1. It takes as input
data crawled from heterogeneous web sources and visualizes history profiles and
relations of entities. The system consists of three key components: input and
data preprocessing, temporal record linkage and interactive interface.

Fig. 1. Architecture of CLTR system

Data Preprocessing takes as input data provided by web sources, e.g.,
Facebook, Linkedin, DBLP, and personal homepages. This component trans-
forms facts about entities into records associated with timestamps, including
name, title, organization, interests, social connections and so on. It stores records
in the data repository.

670 Y. Zou and K.S. Perera

Temporal Record Linkage implements a collective clustering algorithm
to determine related entities jointly. Initially, it discovers reconciled entities as
seeds via linked web sources. Starting with seed entities, the component applies
relations to further reconcile more entities which are related to them. It searches
for potentially mergeable pairs from related records and pushes them into the
clustering algorithm to determine whether they should be merged. Once new
merging decisions are made, profiles of the corresponding entities are further
enriched. On the other hand, these newly-merged records are considered as new
seeds to enlarge seed entity set and to discover more candidates. The clustering
results are stored in the data repository.

Relational information is beneficial to propagate evidence among records. It
can also contribute to making merging decisions. To combine attribute informa-
tion with relational evidence, we define a new metric:

Match(r1, r2) = αΦ(r1, r2) + (1 − α)Ψ(N(r1), N(r2)) (1)

where r1, r2 represent two records, Φ(r1, r2) denotes temporal similarity of
attribute values, Ψ(N(r1), N(r2)) captures evidence from two records’ relations,
N(r) denotes the neighbor of record r via relations, α is a balancing factor to
assign weights for temporal and relational components.

Interactive Interface offers users the explorer to search by different
attribute keywords, such as name, organization, and the timelines to trace the
complete history for each entity.

3 Demonstration Scenario

Using a running example, we demonstrate how users can interact with our system
to search for a specific entity.

Consider a user who would like to find a person named “Meng Jiang”. He
selects keyword domain and searches by name “meng jiang”. Figure 2 depicts

Fig. 2. Entity explorer interface

CLTR: Collectively Linking Temporal Records 671

(a) Entiy timeline and relation graph (b) Entity’s details of the selected time point

Fig. 3. Detailed entity’s history and relations depiction

possible search results for this. Each result is shown with latest profile summary
(i.e. title and affiliation) of fuzzy matched “meng jiang” in our datasets. The
user can select one of them to trace more details.

Suppose the user has selected the second result, then the system switches to
profiling page of this entity. As illustrated in Fig. 3a, it shows various aspects of
this person, such as his most recent affiliation, title, linked websites according
to data sources. The interactive timeline summarizes profiles of the entity over
years, e.g., in 2016, “Meng Jiang” is a postdoctoral researcher at “University of
Illionois at Urbana-Champaign”, and has published 10 papers in 7 conferences.
It is accessible for users to scroll over the timeline to switch time points. If the
user wants to know more details in 2016, he can click the year node, as shown
in Fig. 3b, “Meng Jiang” visited “University of Maryland” this year. Related
entities to the selected one are shown on an interactive graph, depicted next
to entity summary. For example, we show the relation graph of “Meng Jiang”,
related by his coworkers, social friends, etc. The thickness of edges is proportional
to the strength of the relations. The color of edges represents relations from
different sources (e.g., Facebook, DBLP, etc.). Clicking on each edge, user can
observe more information about the entity relationship.

References

1. Li, P., Dong, X.L., Maurino, A., Srivastava, D.: Linking temporal records. Proc.
VLDB Endow. 4(11), 956–967 (2011)

2. Chiang, Y.H., Doan, A.H., Naughton, J.F.: Modeling entity evolution for temporal
record matching. In: Proceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data, pp. 1175–1186. ACM (2014)

3. Li, F., Lee, M.L., Hsu, W., Tan, W.: Linking temporal records for profiling entities.
In: Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 593–605. ACM (2015)

4. Li, P., Tziviskou, C., Wang, H., Dong, X.L., Liu, X., Maurino, A., Srivastava, D.:
Chronos: facilitating history discovery by linking temporal records. Proc. VLDB
Endow. 5(12), 2006–2009 (2015)

PhenomenaAssociater: Linking Multi-domain
Spatio-Temporal Datasets

Prathamesh Walkikar(✉) and Vandana P. Janeja(✉)

University of Maryland Baltimore County, Baltimore, USA
{prath1,vjaneja}@umbc.edu

Abstract. This paper focuses on the demonstration of an analytics dashboard appli‐
cation for analyzing interesting spatio-temporal associations between anomalies
across multiple spatio-temporal datasets, potentially from disparate domains, to find
interesting hidden relationships. The proposed system is intended to analyze spatio-
temporal data across multiple phenomena from disparate domains (for example traffic
and weather) to identify interesting phenomena relationships by linking anomalies
from each of these domain datasets. This web-based dashboard application devel‐
oped in R Shiny [1] provides interactive visualizations to quantify the multi-domain
associations. The application uses a novel framework of algorithms and quantifica‐
tion metrics to associate these anomalies across multiple domains using spatial and
temporal proximity and influence metrics.

1 Introduction

In today’s world, it is not a surprise to find that almost everything in this world is inter-
related particularly nearby things. These relationships also become fundamentally true
across multiple application domains. For example, (a) Weather condition at a location
will impact traffic [2], (b) Oil spills in oceans will adversely impact underlying aquatic
animal population [3], (c) pollution in a location can affect disease spread and many
more [4]. The common link across phenomenon is the underlying geographical space,
which can help associate phenomena in a particular region to link with other inter-related
phenomenon in the same region. This can be in the form of spatio-temporal associations.
This preposition however faces numerous obstacles in the form of tremendous amount
of single domain data and difficulty in combining data across different domains due to
data heterogeneity issues.

These data integration and heterogeneity issues can be avoided by looking at
extracted knowledge from individual phenomena and then look for potential associa‐
tions across the discovered knowledge capturing data for a phenomenon, instead of
looking at raw data form distinct domains. The extracted knowledge in each domain in
our case is the anomalous window comprising of a set of contiguous points in a region
that are unusual with respect to the rest of the points in the region. One example of multi-
domain anomaly detection is discussed in [5] where circle based scan windows from
single domains are linked using traditional spatial associations. In this paper, we propose
a novel dashboard to illustrate the discovery of such multi-domain anomalies through

© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 672–676, 2017.
DOI: 10.1007/978-3-319-55699-4_44

novel influence metrics which quantify the associations between phenomena in both
spatial and spatio-temporal datasets. Our web-based dashboard application discovers
these single domain anomalies across individual domain datasets and associates them
to derive interesting relationships between different domains capturing multiple
phenomena associations.

2 Demonstration

Developed in R, this dashboard application can assist domain experts in deriving poten‐
tial knowledge from multi-domain spatio-temporal datasets and thus, facilitate
researchers studying impact analysis of one phenomena over others in research fields
like epidemiology, traffic accident analysis, impact of wildfires [6] to name a few.
Figure 1 shows a sample of association results in the form of detected anomalous
windows overlayed on a map visualization for a real world spatio-temporal health-
ranking outcome dataset where we discover interesting spatio-temporal associations
using influence indicators between child poverty rates and unemployment rates in the
State of Maryland, USA.

Fig. 1. Multi-domain anomalous association results

In the demo, we will show step by step how PhenomenaAssociater discovers inter‐
esting associations between such multi-domain spatio-temporal datasets.

2.1 Discovering Single Domain Spatio-Temporal Anomalies

Spatio-temporal data handling and management forms an important component in our
analysis process. For handling the temporal elements of our data, we discretize the data
by time and then perform anomaly detection in each of the temporal bins created. Our
application is equipped with three different categories of data discretization techniques
which include - equal frequency binning, equal width binning and hierarchical time

Linking Multi-domain Spatio-Temporal Datasets 673

series clustering based binning strategies. Data Modelling component handles the gener‐
ation of specific input files from individual discretized instances of datasets, which are
inputs for associations, such as specific formats required for SaTScan [7]. Figure 2
depicts this spatio-temporal data modelling and management view of our application.

Fig. 2. Data pre-processing and management component

By using existing anomalous window discovery techniques such as space-time scan
statistics using SatScan, SSLIP [8] and RWSCAN [9], single domain anomalous
windows can be extracted from spatio-temporal datasets for each domain such as child
poverty or unemployment data. Our interface is much more tightly coupled with SatScan
mainly due to its wide use and intuitive findings.

2.2 Anomalous Window Associations

After these single-domain anomalous windows have been extracted, we associate these
windows based on proximity and overlap patterns of these anomalous windows discov‐
ered from the single domain anomaly detection methods. In other words, co-occurrence
of anomalous windows from different domains in the same geographical areas of prox‐
imity over time determines spatio-temporal association. We propose the concept of
influence distance, which quantifies the overlap across the phenomena both in terms of
spatial and non-spatial attributes. We also propose and utilize influence score - a novel
metric for measurement of spatio-temporal associations as well as variations of spatio-
temporal confidence and support and lift measures which quantify these interesting
associations. Due to limited scope of this paper we mainly define influence distance:

Definition 1 (Influence distance). Let v be the given phenomenon, and p and q be two
spatial objects. We define dv

p→q
 as the influence distance from spatial object p to q for

the phenomenon v. dv
p→q

 is the sum of the weights of the constituent edges of the shortest
path from p to q in the network of v.

Hence, if p and q are one spatial object, then dv
p→q = 0. If p and q are not connected,

then we get the influence distance dv
p→q = ∞.

674 P. Walkikar and V.P. Janeja

Here network of phenomena is derived using a spatial neighborhood [10] approach.
Based on influence distance, we calculate the influence score, which quantifies the
proximity and overlap of anomalous windows, where we take the aggregate influence
distance between the spatial nodes present within each of the distinct domain windows.
When a user wants to analyze a set of two distinct inter-related domains, after running
anomalous window discovery methods, the user gets a series of single domain anoma‐
lous windows with respect to time for each distinct domain. To further associate these
anomalies, our application provides the user to choose from a set of distinct approaches
to effectively associate these domain anomalies to find interesting phenomena associa‐
tions. These links are quantified using the distinct set of influence indicators which are
plotted in Fig. 3.

Fig. 3. Influence relationship results

These results can act as a supplementary information for domain experts in order to
obtain useful phenomena linkages to further study rare phenomena relationships.

Acknowledgement. This work is supported in part by the US Army Corps of Engineers,
agreement number: W9132V -15-C-0004.

References

1. Chang, W., Cheng, J., Allaire, J., Xie, Y., McPherson, J.: Shiny: web application framework
for R. (2015)

2. Nookala, L.S.: Weather impact on traffic conditions and travel time prediction. Thesis (2006)
3. Barron, M.: Ecological impacts of the deepwater horizon oil spill: implications for

immunotoxicity. Toxicol. Pathol. 40, 315–320 (2011)
4. Barbara, J.: The impact of climate change on human health. In: Impact of Climate Change on

Water and Health, pp. 75–105 (2012)

Linking Multi-domain Spatio-Temporal Datasets 675

5. Costa, R., Pereira, M., Caramelo, L., Vega Orozco, C., Kanevski, M.: Assessing SaTScan
ability to detect space-time clusters in wildfires. In: EGU General Assembly 2013 (2013)

6. Janeja, V.P., Adam, N., Atluri, V., Vaidya, J.S.: Spatial neighborhood based anomaly
detection in sensor datasets. Data Min. Knowl. Disc. 20(2), 221–258 (2010). Springer, Special
issue on outlier detection

7. Kulldorff M., Information Management Services, Inc.: SaTScanTM v8.0: software for the
spatial and space-time scan statistics (2009). http://www.satscan.org/

8. Shi, L., Janeja, V.P.: Anomalous window discovery through scan statistics for linear
intersecting paths (SSLIP). In: Proceedings of the 15th International Conference on
Knowledge Discovery and Data Mining - KDD 2009 (2009)

9. Janeja, V.P., Atluri, V.: Random walks to identify anomalous free-form spatial scan windows.
IEEE Trans. Knowl. Data Eng. 20(10), 1378–1392 (2008)

10. Janeja, V.P., Palanisamy, R.: Multi domain anomaly detection in spatial datasets. Knowl. Inf.
Syst. J. 36, 749–788 (2012). doi:10.1007/s10115-012-0534-5

676 P. Walkikar and V.P. Janeja

http://www.satscan.org/
http://dx.doi.org/10.1007/s10115-012-0534-5

VisDM–A Data Stream Visualization Platform

Lars Melander(B), Kjell Orsborn, Tore Risch, and Daniel Wedlund

Uppsala Database Laboratory, IT Department, Uppsala University, Uppsala, Sweden
{lars.melander,kjell.orsborn,tore.risch}@it.uu.se,

daniel.wedlund@sandvik.com

Abstract. Visual Data stream Monitor (VisDM) is a new approach
to integrate a visual programming language with a data stream man-
agement system (DSMS) to support the construction, configuration, and
visualization of data stream applications through a set of building blocks,
Visual Data Flow Components (VDFCs). This functionality is provided
by extending the LabVIEW visual programming platform to support
easy declarative specification of continuous visualizations of continuous
query results. With actor-based data flows, visualization of data stream
output becomes more accessible.

Keywords: Data stream management · Data stream visualization ·
Visual data flow programming

1 Visualization of Data Streams

The capability to efficiently handling data streams in industrial processes is
becoming critical for transforming the current manufacturing industry. In an
industrial system, large volumes of sensor data are produced in the form of
continuous data streams from industrial processes and products equipped with
sensor installations. To make the output data streams intelligible by an analyst
they should be visualized in real-time.

As data stream management is becoming increasingly complex, methods that
counter-balance the complexity and make it more accessible are needed. The app-
roach presented in this paper enables easy analysis and visualization of streaming
data, by proposing a flexible visual specification and deployment of visualiza-
tions of data stream analyses produced by a data stream management system
(DSMS) [6], where continuous queries (CQs) filter, transform, and combine data
streams.

Visual data flow programming [3,4] is an increasingly popular way of con-
structing applications, thanks to the rapid and robust prototyping this type of
programming enables. Data stream management is conceptually similar to data
flow programming, and with data flows the step between specification and imple-
mentation is eliminated; the program specification becomes the program. Devel-
opment time decreases, and programming tasks can be moved closer towards the
end user.

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 677–680, 2017.
DOI: 10.1007/978-3-319-55699-4 45

678 L. Melander et al.

Our approach, Visual Data stream Monitor (VisDM), utilizes the existing
state-of-the-art visual programming environment in LabVIEW [8] to enable high-
level visualization for engineering and scientific DSMS applications. LabVIEW
offers a visual programming environment that is comprehensive, yet has a flat
learning curve and a user interface that many find attractive [2,5,10].

A visual data flow is a program specified using graphic building blocks called
function nodes [4,9] where each node consumes one or several input data flows
and produces output data flows or visualizations. The function nodes are implic-
itly driven by the flow of data, rather than by explicit control structures as
in regular programming. The sources of the visualized data flows are function
nodes connected to CQs through a stream-oriented client-server API. It is fairly
straight-forward to design a data flow environment using actors [1,7]; each actor
becomes a function node, and each entity in a data flow becomes a message that
is sent from one actor to another.

The prototype system provides an integrated visualization and scalable data
stream analysis platform, by interfacing LabVIEW with the SVALI (Stream
Validator) DSMS [11].

2 VisDM Data Flow Programming

Data stream processing with DSMSs usually requires custom visualization of
the result from CQs. In VisDM, a library of common controls provides the
basic primitives for building the visualizations, forming the foundation for the
VDFCs. The visualization primitives are highly customizable using a point-and-
click interface and forms, providing the support for continuous visualization of
external data streams that LabVIEW does not have. The VDFCs also provide
the framework for data-flow oriented specifications.

Figure 1 illustrates how VisDM is used for monitoring two machine data
streams, routing data through intermediate Corenet servers.

A simple VisDM data flow specification is shown in Fig. 2. In the example, a
CQ is executed on a SVALI server named “Mill1”. The run query VDFC node
is a producer, a VisDM function node that is the source of a data flow, sending
a CQ to the SVALI server and receiving a stream of tuples that constitutes the
output data flow. The output of run query becomes the input to a VDFC node
labelled “Mill Power” that represents the output diagram. It is a consumer node
that visualizes a stream using a LabVIEW graphical object.

The VisDM data flow specification in Fig. 3 is an extended example that has
another data stream and update functionality added to the specification.

3 Summary

VisDM is a prototype system aimed a making data stream management more
accessible while improving user productivity, by offering a visual data flow pro-
gramming environment and automating programming tasks. It allows users to
create and maintain easy data stream visualization without losing versatility, by

VisDM–A Data Stream Visualization Platform 679

Stream

wrappers

JSON

streams

Updates
Derived

streams

Database

Corenet

drill source

Corenet

mill source

SVALI server

CQs

CQ

processor

Fig. 1. Machining equipment monitoring with VisDM.

Fig. 2. Visual data flow specification.

Fig. 3. Adding update functionality to a program specification with two CQ visualiza-
tions.

680 L. Melander et al.

providing a form-based, visually programmed development environment through
LabVIEW. It makes data stream application programming more user centric, by
raising abstractions and providing intuitive, visual application-oriented develop-
ment.

VisDM applications are built from a set of Visual Data Flow Components
(VDFCs). They are based on a newly developed data flow framework that inter-
connects a DSMS with visualization components, providing easy specification of
continuous visualizations of CQ results.

A unique strength of VisDM is its complete extensibility. To the best of our
knowledge, no other system offers the same capabilities for adapting to such a
vast range of data streaming and visualization tasks. VisDM is currently utilizing
SVALI as the DSMS and LabVIEW as the programming and visualization envi-
ronment. However, the design of VisDM is not restricted to this configuration.
Other DSMSs and visualization environments that provide similar functionality
can also be integrated.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computation in Distributed Sys-
tems, Technical report, DTIC Document (1985)

2. Baroth, E., Hartsough, C.: Experience Report: Visual Programming in the Real
World (1994)

3. Culler, A., Culler, D.E.: Dataflow architectures. Ann. Rev. Comput. Sci. 1, 225–253
(1986)

4. Davis, A.L., Keller, R.M.: Data flow program graphs. Computer 2, 26–41 (1982)
5. Ertugul, N.: Towards virtual laboratories: a survey of LabVIEW-based teach-

ing/learning tools and future trends. Int. J. Eng. Educ. 16, 171–180 (2000)
6. Golab, L., Öszu, M.T.: Data Stream Management. Morgan & Claypool, Williston

(2010)
7. Hewitt, C., Zenil, H.: What is computation? actor model versus Turing’s model. In:

A Computable Universe: Understanding and Exploring Nature as Computation,
pp. 159–185 (2013)

8. National Instruments, White Papers. http://ni.com/white-papers/
9. Sowa, M., Murata, T.: A data flow computer architecture with program and token

memories. IEEE Trans. Comput. 100, 820–824 (1982)
10. Whitley, K.N., Blackwell, A.F.: Visual programming in the wild: a survey of Lab-

VIEW programmers. J. Visual Lang. Comput. 12, 435–472 (2001)
11. Xu, C., Wedlund, D., Helgoson, M., Risch, T.: Model-based validation of stream-

ing data. In: The 7th ACM International Conference on Distributed Event-Based
Systems, pp. 107–114. ACM (2013)

http://ni.com/white-papers/

Author Index

Abeywickrama, Tenindra II-425
Alli, Mostafa I-642
Azzam, Amr I-35

Bao, Zhifeng II-511
Budhiraja, Amar II-169

Cai, Peng I-87
Cai, Zhipeng I-19, II-51
Cao, Jian I-459
Cao, Yu I-343
Cha, Sang Kyun II-568
Cheema, Muhammad Aamir II-425
Chen, Cheng I-507
Chen, Cindy II-253
Chen, Enhong II-85, II-610
Chen, Guihai I-71
Chen, Hongmei II-458
Chen, Jing II-34
Chen, Jun I-19
Chen, Wei I-50, II-581
Chen, Yuxin I-180
Chen, Zitong II-441
Cheng, Hong II-371
Cheng, James II-387
Cheng, Ji II-137
Chi, Jialin I-559
Choi, Jihun II-289
Chung, Haejin I-103
Cui, Bin II-269

Dai, Genan II-441
de La Robertie, B. II-354
Ding, Ye II-3
Ding, Zhiming II-34
Dong, Guozhu II-235
Dou, Danyang I-247
Du, Yang I-3
Du, Zhijuan I-148
Duan, Lei II-235

Endres, Markus I-327
Ermakova, L. II-354

Falkner, Nickolas J.G. I-607, II-649
Fan, Yan II-663
Fang, Junhua II-623
Fang, Yuan II-458
Fang, Zicheng I-215
Feng, Ling I-642
Filatov, Maxim I-682
Fu, Wenjing I-525
Fu, Yanjie II-610

Gao, Hong I-376, II-51, II-65, II-527
Gao, Xiaofeng I-71
Gao, Yang I-423
Gao, Yunjun I-625
Ge, Tingjian II-253
Geng, Ruiying I-423
Gu, Zhaoquan II-494
Guan, Jihong I-592
Guo, Chenghao I-114
Guo, Huifeng II-636
Guo, Junshi I-592
Guo, Qingsong II-304
Guo, Zhongwen I-265

Han, Xixian II-51
Han, Yutong II-219
Hao, Xiaotian II-137
Hao, Zehui I-148, II-153
He, Jing I-459
He, Qinming I-625
He, Xiaofeng II-663
He, Xiuqiang II-636
He, Zhenying I-114
Hong, Cheng I-559
Hong, Xiaoguang I-525
Hosseini, Saeid I-490
Hossny, Ahmad I-35
Hou, Yutai II-65
Hu, Fei I-393
Hu, Junfeng I-295
Huang, Hao I-625
Huang, Heyan I-423
Huang, Jiangping I-439
Huang, Liusheng I-3

Huang, Weijing I-50
Huang, Yongfeng I-309
Huang, Zehao II-581

Janeja, Vandana P. II-672
Ji, Donghong I-439
Jia, Guanbo II-339
Jia, Siyu II-477
Jiang, Jiawei II-269
Jiang, Wanguo II-458
Jie, Wei II-121
Jin, Cheqing I-199, I-343, II-19
Jin, Li I-642

Kantere, Verena I-682
Kim, Kihong II-568
Kitagawa, Hiroyuki II-102
Kwon, Yongsik II-568

Lee, Sang-goo II-289
Lee, Sunho II-568
Li, Chao II-477
Li, Chaozhuo I-131, I-163
Li, Jianzhong I-376, II-51, II-65, II-527
Li, Jinxu II-187
Li, Li I-393
Li, Lin II-545
Li, Qi I-642
Li, Qing I-408
Li, Qiuhong I-247
Li, Wenzhong I-659
Li, Xin II-545
Li, Xue I-607
Li, Yang II-556
Li, Yongkai I-543
Li, Yongkun II-323
Li, Yuan II-404
Li, Yuming II-623
Li, Zhenguo II-636
Li, Zhixu I-576, II-34
Li, Zhoujun I-131, I-163
Lian, Defu II-581, II-597
Lin, Heran I-19
Lin, Xiao II-494
Liu, An I-408, I-576, II-34
Liu, Chengfei II-34
Liu, Chenyang I-459
Liu, Guanfeng I-231, I-576
Liu, Guiquan II-610

Liu, Jiaxi I-71
Liu, Jing I-265
Liu, Mengjun I-543
Liu, Qi II-556
Liu, Qian I-423
Liu, Rong II-581
Liu, Shiyong I-265
Liu, Shubo I-543
Liu, Xiao I-576
Liu, Yimin I-247
Liu, Yiqun II-494
Liu, Yongnan II-527
Liu, Yubao II-441
Lu, Hongtao II-339
Lu, Jiaheng II-202
Lu, Sanglu I-659
Lu, Wei I-625
Lui, John C.S. II-323
Lukasiewicz, Thomas I-507
Luo, Qiong II-3
Luo, Yifeng I-592
Lv, Zhongjian I-231
Lyu, Chen I-439

Ma, Chao II-610
Ma, Jiansong I-343
Ma, Shaoping II-494
Madria, Sanjay K. I-680
Mai, Ganglin II-441
Mao, Jiali I-199, II-19
Melander, Lars II-677
Meng, Qingzhong I-361
Meng, Xiangwu I-507
Meng, Xiaofeng I-148, II-153
Muench, Stephan II-568

Nah, Yunmook I-103
Ng, Wilfred II-137
Ni, Lionel M. II-3
Nie, Min II-581, II-597
Nummenmaa, Jyrki II-235

Orsborn, Kjell II-677

Pang, Jianhui I-408
Park, Kunsoo II-568
Parkinson, Simon II-649
Peng, Zhaohui I-525
Perera, Kasun S. II-668

682 Author Index

Pitarch, Y. II-354
Preisinger, Timotheus I-327

Qian, Weining I-87
Qiao, Shaojie I-199
Qin, Lu II-371
Qin, Yongrui II-649

Rao, Yanghui I-408
Reddy, P. Krishna II-169
Risch, Tore II-677
Ruan, Wenjie I-607
Ryu, Cheol II-568

Sadiq, Shazia I-490
Sauer, Christian II-121
Sellis, Timos II-511
Shaikh, Salman Ahmed II-102
Shen, Binyu I-361
Sheng, Quan Z. I-607, II-649
Shi, Ruoxi II-65
Shi, Shengle II-404
Shi, Xiaohua II-339
Shim, Junho II-289
Song, Changbin II-568
Song, Chunyao II-253
Song, Guangxuan I-343
Song, Liangjun II-511
Song, Tianhang I-525
Su, Han II-581, II-597
Sun, Jizhou I-376
Sun, Yu-E I-3
Sun, Yueqing II-545
Sun, Zhongwei I-265

Takasu, A. II-354
Tan, Haoyu II-3
Tang, Ruiming II-636
Tang, Yiwen II-65
Tazi, Neamat I-35
Teste, O. II-354
Theodoratos, Dimitri I-279
Tian, Zuohui II-85
Tong, Yunhai II-269

Vosecky, Jan II-137

Walkikar, Prathamesh II-672
Wang, Bin II-187, II-219

Wang, Chao II-121
Wang, Chaokun I-19
Wang, Chenguang I-180
Wang, Chengyu II-663
Wang, Fu Lee I-408
Wang, Guoren II-404
Wang, Hongzhi II-65
Wang, Jianmin I-19
Wang, Jie II-253
Wang, Jingyuan I-393
Wang, Jun I-543
Wang, Lizhen II-458
Wang, Peng I-215, I-247
Wang, Qiuyue I-148, II-153
Wang, Renxuan I-71
Wang, Senzhang I-131, I-163, I-525
Wang, Shupeng II-477
Wang, Tao II-19, II-65
Wang, Tengjiao I-50
Wang, Wei I-215, I-247
Wang, Weiping I-19
Wang, X. Sean I-114
Wang, Xiaoling I-343
Wang, Xiaotong II-623
Wang, Xiaqing I-215
Wang, Xupeng I-265
Wang, Yang I-247
Wang, Yazhou I-50
Wang, Yilin I-199
Wang, Yipeng II-477
Wang, Zhongyuan II-153
Wedlund, Daniel II-677
Wei, Xiaochi I-423
Wong, Tak-Lam I-408
Wu, Guangjun II-477
Wu, Haocheng II-85
Wu, Huanhuan II-387
Wu, Jiaye I-247
Wu, Wei II-85
Wu, Xiaoying I-279
Wu, Yubao II-404
Wu, Zhigang I-114
Wu, Zhiyong II-323

Xia, Hu II-597
Xie, Haoran I-408
Xie, Hong II-323
Xie, Qing II-545
Xie, Zhipeng I-295
Xie, Zhongwei II-545

Author Index 683

Xu, Guandong II-545
Xu, Hongli I-3
Xu, Jiajie I-231, II-34
Xu, Lv II-441
Xu, Ning II-269
Xu, Peipei I-607
Xu, Pengfei II-202
Xu, Xiaofei I-393
Xu, Yinlong II-323
Xu, Zhenghua I-507
Xue, Yuanyuan I-642

Yan, Cairong I-309
Yan, Da II-387
Yan, Jun II-153
Yan, Li II-235
Yan, Qian I-625
Yan, Ying II-556
Yang, Dejian I-163
Yang, Donghua II-51
Yang, Hao II-235
Yang, Xiaochun I-71, II-187, II-219
Yang, Yang I-131, I-163
Yang, Zhanbo I-393
Yao, Huaxiu II-597
Yao, Shuxin I-439
Ye, Yunming II-636
Yin, Hongzhi I-490
Youn, Jonghem II-289
Yu, Anxuan I-361
Yu, Jeffrey Xu II-371
Yu, Philip S. I-525
Yuan, Xiaojie II-121
Yun, Xiaochun II-477

Zhang, Guangyan II-477
Zhang, Hao II-371
Zhang, Kaiqi II-51
Zhang, Meihui I-490
Zhang, Min I-559, II-494
Zhang, Ping II-511
Zhang, Qinglong I-309

Zhang, Rong II-623
Zhang, Wei Emma I-607
Zhang, Xiangliang I-576
Zhang, Xiao I-659
Zhang, Xiaoming I-131, I-163
Zhang, Xiaoyu II-477
Zhang, Yansong I-361
Zhang, Ying II-121
Zhang, Yongfeng II-494
Zhang, Zhao I-87
Zhang, Zhenfeng I-559
Zhang, Zhigang I-199
Zhang, Zhipeng II-269
Zhao, Lei I-231, I-576
Zhao, Liang I-642
Zhao, Pengpeng I-231, II-323
Zhao, Xue I-309
Zhao, Yuhai II-404
Zhao, Yunjian II-387
Zheng, Bolong II-581
Zheng, Kai II-556
Zheng, Lin I-475
Zheng, Yu I-677
Zhou, Aoying I-87, I-199, II-623
Zhou, Guomin II-663
Zhou, Jianshe I-131, I-163
Zhou, Shuigeng I-592
Zhou, Xiaofang I-231, I-490, I-576, II-556
Zhou, Xibo II-3
Zhou, Xuan I-361
Zhou, Yongluan II-304
Zhu, Chen II-610
Zhu, Feida II-404
Zhu, Fuxi I-475
Zhu, Hengshu II-610
Zhu, Huaijie II-219
Zhu, Jiaye I-592
Zhu, Ruiyuan I-215
Zhu, Yanchao I-87
Zhu, Yuanyuan II-371
Ziegler, Emanuel II-568
Zou, Yanyan II-668

684 Author Index

	Preface
	Organization
	Contents -- Part II
	Contents -- Part I
	Map Matching and Spatial Keywords
	HIMM: An HMM-Based Interactive Map-Matching System
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Preliminary
	3.2 Framework

	4 Interactive Map-Matching
	4.1 Map-Matching Model
	4.2 Interactive Map-Matching Algorithm

	5 Query Selection Strategy
	5.1 Distance-Based Strategy
	5.2 Confidence-Based Strategy
	5.3 Dynamic Confidence-Based Strategy
	5.4 Stability-Based Strategy

	6 Evaluation
	6.1 Experiment Setup
	6.2 Experiment Results

	7 Conclusion
	References

	HyMU: A Hybrid Map Updating Framework
	1 Introduction
	2 Related Work
	2.1 Map Inference
	2.2 Map Updating

	3 Problem Definition
	4 Framework
	4.1 Candidate Generation
	4.2 Missing Roads Inferring

	5 Experimental Evaluation
	5.1 Evaluation Method
	5.2 Data Sets and Map
	5.3 Effectiveness Evaluation
	5.4 Efficiency Evaluation

	6 Conclusion
	References

	Multi-objective Spatial Keyword Query with Semantics
	1 Introduction
	2 Preliminaries and Problem Definition
	2.1 Probabilistic Topic Model
	2.2 Problem Definition

	3 Baseline Algorithm
	4 Semantic Hashing Based Algorithm
	4.1 Index Structure
	4.2 Search Algorithm

	5 Distance Based Replacement Algorithm
	6 Experiment Study
	6.1 Experiment Settings
	6.2 Performance Evaluation

	7 Related Work
	8 Conclusion and Future Work
	References

	Query Processing and Optimization (II)
	RSkycube: Efficient Skycube Computation by Reusing Principle
	1 Introduction
	2 Preliminaries
	3 Sharing Strategies by Reusing Principle
	3.1 Sharing Strategies on Space Partitioning
	3.2 SkyTree
	3.3 Sharing Strategies by Reusing VSkyTree

	4 Algorithms
	5 Experimental Evaluation
	5.1 Experimental Settings
	5.2 Scalability
	5.3 The Performance on Real Datasets

	6 Conclusion
	References

	Similarity Search Combining Query Relaxation and Diversification
	Abstract
	1 Introduction
	2 Problem Definition
	3 genGreedy
	3.1 Candidate Generation
	3.2 Diversification Filter

	4 genCluster
	4.1 Definitions
	4.2 Description of Cluster

	5 CB2S
	5.1 Data Pretreatment
	5.2 The Searching Process

	6 Experiments
	6.1 Setup
	6.2 Preprocessing Time
	6.3 Impact of Parameters
	6.4 Comparisons

	7 Conclusion
	Acknowledgments
	References

	An Unsupervised Approach for Low-Quality Answer Detection in Community Question-Answering
	1 Introduction
	2 Related Work
	3 Our Method of Low-Quality Answer Detection
	3.1 Problem
	3.2 Assumptions
	3.3 Method
	3.4 Features

	4 Experiment
	4.1 Experimental Setup
	4.2 Main Results
	4.3 Analysis Based on Models
	4.4 Analysis Based on Features
	4.5 Analysis Based on Data Sources
	4.6 Analysis Based on Answer Labels
	4.7 Analysis Based on User Experience

	5 Conclusion
	References

	Approximate OLAP on Sustained Data Streams
	1 Introduction
	2 Essential Concepts
	2.1 Piecewise Linear Approximation (PLA)
	2.2 Online Analytical Processing (OLAP)

	3 Related Work
	3.1 Compact Data Structures and Approximate Querying
	3.2 Stream OLAP and View Maintenance

	4 PLA-Based Sustained Storage
	5 Architecture and Query Processing
	5.1 AOLAP Architecture
	5.2 Query Processing

	6 Querying Error
	7 Optimization Scheme
	7.1 Optimization Problem
	7.2 Greedy Optimization Algorithm

	8 Experiments
	8.1 Experimental Setup
	8.2 Experimental Evaluation

	9 Conclusion and Future Work
	References

	Search and Information Retrieval
	Hierarchical Semantic Representations of Online News Comments for Emotion Tagging Using Multiple Information Sources
	1 Introduction
	2 Related Work
	3 Hierarchical Semantic Neural Network
	3.1 Hierarchical Semantic Representation Model of the Document
	3.2 Hierarchical Semantic Representation Using Multiple Information Sources
	3.3 Sentiment Classification

	4 Experiment
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Baseline Methods
	4.4 Comparison to Baselines
	4.5 Effect of Multiple Information Sources
	4.6 Effect of Dropout

	5 Conclusions and Future Work
	References

	Towards a Query-Less News Search Framework on Twitter
	1 Introduction
	2 Related Work
	3 Search by Tweet(SbT) Framework
	3.1 Preliminaries
	3.2 Graph Model of Twitter Content
	3.3 Weights of Nodes and Edges
	3.4 Implicit Query Generation
	3.5 Clustering for Implicit Query Generation

	4 Experiments
	4.1 Datasets
	4.2 Graph Model Construction
	4.3 Tweet-to-Cluster Matching
	4.4 Implicit Query Evaluation
	4.5 Twitter Search Results Evaluation

	5 Conclusion
	References

	Semantic Definition Ranking
	1 Introduction
	2 Related Work
	3 Preliminary
	4 RNNLM Combined with Knowledge Bases
	4.1 The First Variant (KRNNLM-1)
	4.2 The Second Variant (KRNNLM-2)
	4.3 Backpropagation Through Time
	4.4 Semantic Features
	4.5 Complexity

	5 Experiments and Results
	5.1 Framework
	5.2 Training Language Models
	5.3 Results
	5.4 Case Studies

	6 Conclusion
	References

	An Improved Approach for Long Tail Advertising in Sponsored Search
	1 Introduction
	2 Related Work
	3 Background: Sponsored Search and Coverage Patterns
	3.1 Sponsored Search Background
	3.2 Coverage Patterns

	4 Basic Idea
	4.1 T-Cmine: Extraction of Coverage Patterns with Respect to a Taxonomy

	5 Proposed Approach
	5.1 Matching CPs and Advertisers

	6 Experiments
	6.1 Dataset
	6.2 Implementation Methodology

	7 Conclusions and Future Work
	References

	String and Sequence Processing
	Locating Longest Common Subsequences with Limited Penalty
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Definition
	4 A Basic Approach Based on Common Substrings
	5 Reducing Number of Concatenated Common Substrings
	5.1 Avoiding Useless Concatenation of Common Substrings
	5.2 Early Termination of Calculations

	6 Efficiently Constructing Common Substrings
	7 Experiments
	7.1 Evaluation of Effectiveness
	7.2 Comparison with Other Algorithms
	7.3 Evaluation of LCSP

	8 Conclusion
	References

	Top-k String Auto-Completion with Synonyms
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Description
	4 Twin Tries (TT)
	5 Expansion Trie (ET)
	6 Hybrid Tries (HT)
	7 Experimental Analysis
	7.1 Datasets
	7.2 Data Structure Construction
	7.3 Top-k Efficiency
	7.4 Scalability

	8 Conclusion and Future Work
	References

	Efficient Regular Expression Matching on Compressed Strings
	1 Introduction
	2 Related Work
	2.1 Regular Expression Matching on Original String
	2.2 Regular Expression Matching on the Compressed String

	3 Preliminaries
	3.1 Regular Expression
	3.2 Positive and Negative Factors
	3.3 LZ77 Compression and Self-index
	3.4 Problem Definition

	4 Data Structure: SSLZ
	5 Regular Expression Matching on the LZ77 Compressed String
	5.1 Locating Factors on SSLZ
	5.2 Merging Positive Factors
	5.3 Accelerating Merging Factor Using Bitmaps
	5.4 Block Filtering

	6 Experiments
	6.1 Performance of Locating Factor
	6.2 Performance of Regular Expression Matching

	7 Conclusion
	References

	Mining Top-k Distinguishing Temporal Sequential Patterns from Event Sequences
	1 Introduction
	2 Problem Formulation
	3 Related Work
	4 Design of DTEP-Miner
	4.1 Framework
	4.2 Candidate Event Segment Generation
	4.3 Candidate Time Interval Generation
	4.4 Contrast Score Calculation

	5 Empirical Evaluation
	5.1 Mining DTEPs on Activities Data Set
	5.2 Efficiency

	6 Conclusions
	References

	Stream Data Processing
	Soft Quorums: A High Availability Solution for Service Oriented Stream Systems
	1 Introduction
	1.1 Related Work

	2 Soft Quorum Scheme
	2.1 Preliminaries and Notations
	2.2 The Quorum Scheme

	3 Adaptation and Read Accuracy
	3.1 Adaptation to Dynamic Stream Rates
	3.2 Read Quorum Accuracy

	4 Load
	5 Availability
	5.1 Failure Probability and Read Accuracy
	5.2 Reconstructing Failed Nodes

	6 Experiments
	6.1 Datasets and Experiment Setup
	6.2 Experimental Results

	7 Conclusions
	References

	StroMAX: Partitioning-Based Scheduler for Real-Time Stream Processing System
	1 Introduction
	2 Background
	3 Graph-Partitioning Based Schedulers
	3.1 Problem Definition
	3.2 Bootstrap Scheduler
	3.3 Rebalance Scheduler

	4 The StroMAX Architecture
	5 Evaluation
	5.1 Experimental Settings
	5.2 Effect of Bootstrap Scheduler
	5.3 Effect of Rebalance Scheduler
	5.4 Overall Performance and Scalability of StroMAX

	6 Related Work
	7 Conclusion
	References

	Partition-Based Clustering with Sliding Windows for Data Streams
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Data Streams
	3.2 k-means Clustering
	3.3 Sliding Window

	4 Synopses for Sliding Windows
	4.1 Cluster Features
	4.2 Synopses Construction and Maintenance
	4.3 Finding Nearest WCF

	5 Clustering with Sliding Windows
	6 Experiment
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusions
	References

	CBP: A New Parallelization Paradigm for Massively Distributed Stream Processing
	1 Introduction
	2 Background
	2.1 Parallel Stream Processing
	2.2 System Model

	3 Component-Based Parallelization
	3.1 CBP Abstraction

	4 MCCBP
	4.1 Metrics
	4.2 Problem Formulation

	5 Computing CBP Plans
	5.1 Greedy Algorithm
	5.2 MWSC

	6 Evaluation
	6.1 Experimental Setup
	6.2 Simulation Result
	6.3 End-to-End Latency

	7 Related Work
	8 Conclusion
	References

	Social Network Analytics (II)
	Measuring and Maximizing Influence via Random Walk in Social Activity Networks
	1 Introduction
	2 Problem Formulation
	2.1 Model for SANs
	2.2 Influence Maximization in SANs

	3 Methodology
	3.1 Random Walk on Hypergraph
	3.2 Influence Centrality Measure

	4 Centrality Computation
	4.1 Linear Expression
	4.2 Monte Carlo Algorithm

	5 Centrality Maximization
	5.1 Baseline Greedy Algorithm
	5.2 Optimizations

	6 Experiments
	6.1 Datasets
	6.2 The Benefit of Incorporating Activities
	6.3 Performance Evaluation of IM-RW

	7 Related Work
	8 Conclusions
	References

	Adaptive Overlapping Community Detection with Bayesian NonNegative Matrix Factorization
	1 Introduction
	2 Related Works
	3 Overlapping Community Detection with Bayesian NMF
	3.1 Bayesian NMF Model
	3.2 Iteration Rules of ABNMF
	3.3 Determination of Overlapping Community Number K and Threshold
	3.4 Performance Comparisons in Different Networks
	3.5 Overlapping Community Detection in Different Network

	4 Conclusions
	References

	A Unified Approach for Learning Expertise and Authority in Digital Libraries
	1 Introduction
	2 Related Work
	3 Model
	3.1 Platform Representation
	3.2 Encoding Expertise and Authority
	3.3 Problem Formulation

	4 Experiments
	4.1 Data
	4.2 Protocol
	4.3 Competitors
	4.4 Evaluation Metric
	4.5 Quantitative Results
	4.6 Qualitative Results

	5 Conclusions
	References

	Graph and Network Data Processing
	Efficient Local Clustering Coefficient Estimation in Massive Graphs
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Definition
	3.2 Previous Work Based on Wedge Sampling

	4 Our Sampling Scheme and Computation Framework
	4.1 A New Wedge Sampling Scheme
	4.2 A Unified Clustering Coefficient Estimation Framework

	5 Our MapReduce Algorithm
	5.1 UCCE Algorithm
	5.2 Optimized Algorithm for Sampling and Verification

	6 Experiments
	6.1 Experimental Setup
	6.2 Performance of UCCE
	6.3 Comparison with Competitors

	7 Conclusion
	References

	Efficient Processing of Growing Temporal Graphs
	1 Introduction
	2 Equal-Weight Damped Time Window
	2.1 The Weight Function
	2.2 The Equal-Weight Window Model
	2.3 Window Maintenance

	3 Window-Based Network Analysis
	3.1 Connectivity Analysis
	3.2 Queries on a Random Window

	4 Experimental Results
	4.1 Results on Weighted Graph Construction

	5 Related Work
	6 Conclusions
	References

	Effective k-Vertex Connected Component Detection in Large-Scale Networks
	1 Introduction
	2 Notions and Problem Statement
	3 Top-Down Framework for k-VCCs Detection
	4 Bottom-Up Framework for k-VCCs Detection
	4.1 Identifying Seed Subgraphs
	4.2 Expanding and Merging Seed Subgraphs

	5 Experiments
	5.1 Datasets and Compared Methods
	5.2 Evaluation on Real Networks
	5.3 Evaluation on Synthetic Networks
	5.4 Case Study

	6 Related Works
	7 Conclusion
	References

	Spatial Databases
	Efficient Landmark-Based Candidate Generation for kNN Queries on Road Networks
	1 Introduction
	2 Preliminaries
	2.1 Landmark Lower Bounds

	3 Techniques
	3.1 ILBR by Landmark Object Lists
	3.2 ILBR by Network Voronoi Diagrams

	4 Experiments
	4.1 Experimental Setup
	4.2 Index Pre-processing
	4.3 Query Performance

	5 Related Work
	6 Conclusion
	References

	MinSum Based Optimal Location Query in Road Networks
	1 Introduction
	2 Problem Definition
	3 Single-Location MinSum Query Algorithm
	3.1 The Best-Known Algorithm
	3.2 Optimization

	4 Multiple-Location MinSum Query Algorithm
	4.1 The Greedy Algorithm
	4.2 Approximate Ratio

	5 Experiments
	5.1 Experiments for the Single-Location MinSum Query
	5.2 Experiments for the Multiple-Location MinSum Query

	6 Related Work
	7 Conclusion
	References

	Efficiently Mining High Utility Co-location Patterns from Spatial Data Sets with Instance-Specific Utilities
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Related Concepts
	3 A Basic Algorithm
	4 Pruning Strategies
	5 Experimental Analysis
	5.1 Data Sets
	5.2 The Quality of Mining Results
	5.3 Evaluation of Pruning Strategies
	5.3.1 Influence of the Number of Instances
	5.3.2 Influence of the Distance Threshold d
	5.3.3 Influence of the UPI Threshold M
	5.3.4 Pruned Rate

	6 Conclusion and Future Work
	Acknowledgments
	References

	Real Time Data Processing
	Supporting Real-Time Analytic Queries in Big and Fast Data Environments
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Preliminaries
	3.2 Approach Overview
	3.3 Multi-faced Sampling
	3.4 Sketch Construction
	3.5 Query Processing

	4 Experimental Evaluation
	4.1 Methodology
	4.2 Datasets
	4.3 Micro Evaluation
	4.4 Macro Evaluation

	5 Conclusion and Future Work
	References

	Boosting Moving Average Reversion Strategy for Online Portfolio Selection: A Meta-learning Approach
	1 Introduction
	2 Related Work
	3 Problem Setting
	4 Preliminary
	4.1 Mean Reversion
	4.2 Online Moving Average Reversion
	4.3 Robust Mean Reversion
	4.4 Temporal Heterogeneity

	5 Proposed Strategy: Boosting Moving Average Reversion
	5.1 Boosting Moving Average Reversion for Price Relative Prediction
	5.2 Portfolio Optimization
	5.3 Transaction Costs

	6 Experiment
	6.1 Experiment Setting
	6.2 Comparison Approaches
	6.3 Performance Evaluation
	6.4 Parameter Sensitivity
	6.5 Performance Under Transaction Costs

	7 Conclusion
	References

	Continuous Summarization over Microblog Threads
	1 Introduction
	2 Related Works
	2.1 Textual Summarization
	2.2 Temporal Summarization
	2.3 Contextual Summarization

	3 Problem Formulation
	3.1 Representation of the Microblogs

	4 Optimization of Objective Function
	4.1 Submodularity and Greedy Algorithms
	4.2 Greedy Algorithm

	5 Continuous Summarization
	5.1 Continuous Calculation of Content Coverage
	5.2 Continuous Calculation of Summary Diversity

	6 Experiments
	6.1 Experimental Setup
	6.2 Evaluating MT Summarization
	6.3 Comparing Efficiency and Scalability

	7 Conclusion
	References

	Drawing Density Core-Sets from Incomplete Relational Data
	1 Introduction
	2 Problem Definition and Computational Complexity
	3 Drawing an Approximate Density Core-Set
	3.1 Measuring Importance of a Tuple
	3.2 An Approximate Algorithm
	3.3 Analysis of the Approximate Algorithm

	4 Experimental Results
	4.1 Datasets
	4.2 Experiments on Real Datasets
	4.3 Experiments on Synthetic Relations

	5 Related Work
	6 Conclusion
	References

	Big Data (Industrial)
	Co-training an Improved Recurrent Neural Network with Probability Statistic Models for Named Entity Recognition
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 RNN
	3.2 Co-training

	4 Experiments
	4.1 Dataset and Evaluation
	4.2 Experiment 1: Supervised Learning
	4.3 Experiment 2: Semi-supervised Learning

	5 Conclusion and Future Work
	References

	EtherQL: A Query Layer for Blockchain System
	1 Introduction
	2 Related Work
	3 Preliminary Concept
	3.1 Blockchain Architecture
	3.2 Blockchain Data Structure
	3.3 Storage with Trie

	4 System Overview
	5 Design Details
	5.1 Sync Manager
	5.2 Handler Chain
	5.3 Persistence Framework
	5.4 Developer Interface

	6 Implementation
	7 Experiment Results
	7.1 Experiment Setting
	7.2 Performance Evaluation

	8 Conclusion
	References

	Optimizing Scalar User-Defined Functions in In-Memory Column-Store Database Systems
	1 Introduction
	2 Related Work
	3 Framework
	3.1 Framework for Function Result Caching
	3.2 Column Store of SAP HANA

	4 Methods for Function Result Caching
	4.1 Array Method
	4.2 Join
	4.3 Hash Table Method

	5 Experiments
	5.1 Column Store
	5.2 Row Store

	References

	GPS-Simulated Trajectory Detection
	1 Introduction
	2 Preliminary
	3 Ground Truth Traffic
	4 Irregular Measuring
	4.1 Voting-Based Detection
	4.2 Integral-Based Detection
	4.3 Model-Based Detection

	5 Experiment
	5.1 Experiment Setup
	5.2 Performance Evaluation

	6 Related Work
	7 Conclusions
	References

	Social Networks and Graphs (Industrial)
	Predicting Academic Performance via Semi-supervised Learning with Constructed Campus Social Network
	1 Introduction
	2 Related Work
	2.1 Social Tie Inferring
	2.2 Academic Performance Prediction

	3 Campus Social Network Construction
	3.1 Social Network Construction

	4 Social Influence
	5 Academic Performance Prediction
	5.1 Label Propagation
	5.2 Label Propagation on Multiple Networks
	5.3 Optimization

	6 Experiment
	6.1 Dataset Description
	6.2 Performance Evaluation
	6.3 Result

	7 Conclusion
	References

	Social User Profiling: A Social-Aware Topic Modeling Perspective
	1 Introduction
	2 Related Work
	3 Social User Profiling
	3.1 Preliminary and Overview
	3.2 User Profiling Based Topic Model
	3.3 Label Propagation for User Profiling Refinement

	4 Evaluation
	4.1 Experimental Setup
	4.2 Baseline Algorithms
	4.3 Results and Discussion

	5 Concluding Remarks
	References

	Cost-Effective Data Partition for Distributed Stream Processing System
	1 Introduction
	2 Preliminaries
	2.1 Key Grouping
	2.2 Hybrid Routing Policy
	2.3 Definition of Related Terms

	3 Cost Model Analysis
	3.1 System Resource Usage for Load Balance
	3.2 Our Idea

	4 Load Balancing Adjustment
	4.1 Algorithm Framework
	4.2 Split-keys-at-first Load Balancing Strategy
	4.3 Whole-move-keys-at-first Load Balancing Strategy

	5 Evaluation
	5.1 Decision-Making Analysis
	5.2 Load Balancing Capability (LBC)
	5.3 Scalability
	5.4 Dynamics

	6 Related Work
	7 Conclusion
	References

	A Graph-Based Push Service Platform
	1 Introduction
	2 Platform Overview
	3 Application Layer
	3.1 Data Preprocessing and Modeling
	3.2 User Discovery via Graph Mining
	3.3 Filtering Rule
	3.4 On-Line Pushing
	3.5 Computing Engine

	4 Experimental Results
	4.1 Data Set Description and Experiment Setting
	4.2 Evaluation on Real-Life Data Set

	5 Related Work
	6 Conclusions and Future Works
	References

	Edge Influence Computation in Dynamic Graphs
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 TOL Index
	3.2 Handling Edge Deletions
	3.3 Edge Influence

	4 Experiments
	5 Conclusion
	References

	Demos
	DKGBuilder: An Architecture for Building a Domain Knowledge Graph from Scratch
	1 Introduction
	2 System Overview and Key Techniques
	3 Demonstration and Evaluation
	References

	CLTR: Collectively Linking Temporal Records Across Heterogeneous Sources
	1 Introduction
	2 Methodology
	3 Demonstration Scenario
	References

	PhenomenaAssociater: Linking Multi-domain Spatio-Temporal Datasets
	Abstract
	1 Introduction
	2 Demonstration
	2.1 Discovering Single Domain Spatio-Temporal Anomalies
	2.2 Anomalous Window Associations

	Acknowledgement
	References

	VisDM--A Data Stream Visualization Platform
	1 Visualization of Data Streams
	2 VisDM Data Flow Programming
	3 Summary
	References

	Author Index

