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Abstract. Energy consumption of hybrid systems is an actual problem
of modern high-performance computing. The trade-off between power
consumption and performance becomes more and more prominent. In
this paper, we discuss the energy and power efficiency of two mod-
ern hybrid minicomputers Jetson TK1 and TX1. We use the Empirical
Roofline Tool to obtain peak performance data and the molecular dynam-
ics package LAMMPS as an example of a real-world benchmark. Using
the precise wattmeter, we measure Jetsons power consumption profiles.
The effectiveness of DVFS is examined as well. We determine the optimal
GPU and DRAM frequencies that give the minimum energy-to-solution
value.
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1 Introduction

The method of molecular dynamics (MD) is a modern and powerful method of
computer simulations allowing to calculate the behavior of millions of atoms.
Based on the integration of classical Newton’s equation of motion, this method
allows one to estimate the evolution of systems consisted of particles that obey
the laws of classical mechanics. With the increase in available computation power
the size and complexity of models increase as well. Usually, it leads to significant
improvements in the accuracy of results. However, the growth of the compu-
tational demands has led to a situation when MD simulations are considered
among the main tasks for parallel computing.

The technological progress in the development of graphical accelerators
makes them quite powerful computation devices with relatively low price. GPUs
outperform the conventional processors in the constantly increasing number of
computational tasks in the price-to-performance ratio. This trend leads to the
situation when the use of graphical accelerators for MD computation has become
a common practice [1–9].

However, the increase of power consumption and heat generation of com-
puting platforms is also a very significant problem, especially in connection
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with the development of exascale systems. Measurement and presentation of
the results of performance tests of parallel computer systems become more and
more often evidence-based [10], including the measurement of energy consump-
tion [11], which is crucial for the development of exascale supercomputers [12].

The purpose of this work is to evaluate the efficiency of MD algorithms in
terms of power consumption on Nvidia Tegra K1 and X1 systems-on-chip (SoCs).

2 Related Work

The power and energy consumption have been under consideration for a long
time. For example, we could mention the work [13] that showed the way of low-
ering the energy consumption of processors by reducing the number of switching
operations. Joseph and Martonosi [14] investigated the problem of energy con-
sumption in its relationship with code optimization for 32-bit embedded RISC
processors. Russel and Jacome [15] discussed a more complex model of evalua-
tion of power consumption in real-time. The work [16] showed the evaluation of
energy consumption at the OS level.

The development of portable devices gave additional impulse to this filed
(e.g. see Zhang et al. [17]).

An important aspect of GPGPU technologies that makes them beneficial is
the energy efficiency. A lot of efforts have been invested into the low-level models
for modeling the energy consumption of GPUs. In recent review [18], the key
aspects of accelerator-based systems performance modeling have been discussed.
The McPAT model (Multicore Power, Area and Timing) [19] is considered as one
of the cornerstone ideas in this area. Another approach called GPUWattch [20]
is aimed at the prediction of energy consumption and its optimization through
careful tuning on the basis of series of microtests. These approaches make pos-
sible to accurately predict the power consumption of CPU and/or GPU with
accuracy of the order of 5–10%. However, the use of a specific model of energy
consumption (like McPAT or GPUWattch) for new types of hardware and soft-
ware is a very significant effort to be undertaken. Therefore, direct experimental
measurements of power consumption and energy usage are instructive.

The work of Calore et al. [21] discloses some aspects of relations between
power consumption and performance for Tegra K1 device running the Lattice
Boltzmann method algorithms. Our preliminary results on energy consumption
for minicomputers running MD benchmarks have been published previously for
Odroid C1 [22] and Nvidia Jetson TK1 and TX1 [23]. In the work of Gallardo
et al. [24] one can find the performance analysis and comparison of Nvidia Kepler
and Maxwell and Intel Xeon Phi accelerators for the hydrodynamic benchmark
LULESH. An energy-aware task management mechanism for the MPDATA algo-
rithms on multicore CPUs was proposed by Rojek et al. [25].

The method of determining the power consumption of large computer sys-
tems are constantly improving [12]. The work of Rajovic et al. [26] shows the pos-
sible way of designing HPC systems from modern commodity SoCs and presents
the energy consumption analysis of the prototype cluster created.
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3 Software and Algorithms

3.1 A Peak Load Benchmark: Empirical Roofline Toolkit

The performance of heterogeneous systems can be evaluated in different ways.
The consideration of only the theoretical peak performance can be instructive
(e.g. see [27,28]) but is not sensitive to details of algorithms. This approach is
justified for compute-bound algorithms only. For memory-bound algorithms, the
memory bandwidth is to be addressed.

This idea has led to the creation of the Roofline model [29]. The model
introduces a special characteristic called “arithmetic intensity”. It quantifies the
ratio of the number of arithmetic operations to the amount of data transferred.
Obviously, the limiting factor for algorithms with large arithmetic intensity is
the peak performance of a processor, while the memory bandwidth limits the
performance of algorithms with intensive data transfers.

The main outcome of the Roofline model is a graph of performance restric-
tions for algorithms with different arithmetic intensities. One can estimate the
performance of a system under consideration for a particular algorithm from
such a roofline plot. For example, the typical arithmetic intensity for Lattice
Boltzmann methods is less than one Flops/byte, whether for particle methods
this parameter is usually around ten Flops/byte.

One can use the Empirical Roofline Toolkit (ERT) [30] for evaluation of
memory bandwidth and peak computing power taking into account memory
hierarchy of today’s complex heterogeneous computing systems. The core idea of
the ERT algorithm consists in performing cycles of simple arithmetic operations
on the elements of an array of specified length. The algorithm varies the size
of the array and the number of operations on the same element of the array
(ERT FLOPS) in nested loops (Fig. 1). The change of the data array size helps

f o r ( i n t i =0; i<n ; ++i ){
i f (ERT FLOPS==1){

b1 = a [ i ] + alpha ;
}
i f (ERT FLOPS==2){

b1 = a [ i ]∗ b1 + alpha ;
}
i f (ERT FLOPS==4){

b1 = a [ i ]∗ b1 + alpha ;
b2 = a [ i ]∗ b2 + alpha ;

}
. . .
} ;

Fig. 1. An illustration for the ERT FLOPS parameter
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to detect the presence of caches. The change of operations number on one element
of array helps to identify automatic vectorization effects.

3.2 Classical Molecular Dynamics: LAMMPS

The LAMMPS package [31] is used in this work as an example of a real-life appli-
cation. It is a flexible tool for building models of classical MD in materials science,
chemistry and biology. LAMMPS is not the only MD package that is ported
to the hybrid architecture (for example HOOMD [32] was originally designed
with the perspective to run it on GPU accelerators). Two GPU MD algorithms
implemented in LAMMPS are considered in this work: USER-CUDA [33] and
GPU [34,35].

To evaluate the performance of the hardware available, we use the Lennard-
Jones fluid model (108,000 atoms, the density 0.8442σ−3, the cut-off radius 2.5σ,
NVE-ensemble, 250 timesteps).

4 Hardware

4.1 Tested Platforms

We consider two different generation of Nvidia Tegra SoCs installed in Jetson
TK1 and TX1 platforms. These SoCs consist of several ARM-cores and GPU on
a single chip. These platforms are designed for embedded applications (robots,
drones) and optimized for minimum power consumption with relatively high
performance.

These devices are aimed to be energy effective and usually operate in the
dynamic voltage and frequency scaling (DVFS) mode. In this mode, the GPU
memory and core frequencies change during the runtime that allows to reduce the
power consumption of hardware significantly. In the measurements, we disable
the DVFS mode by setting manually the GPU and DRAM frequencies. However,
we make several measurements with the DVFS mode enabled.

Nvidia Jetson TK1. Nvidia Jetson TK1 is a developer board based on the
32-bit Tegra K1 SoC with LPDDR3 (930 MHz). Tegra K1 CPU complex includes
4 Cortex-A15 cores running at 2.3 GHz, the 5-th low power companion Cortex
core designed to replace the basic cores in the low load mode to reduce power
consumption and heat generation. The chip includes one GPU Kepler streaming
multiprocessor (SM) running at 852 MHz (128 CUDA cores). Each Cortex-A15
core has 32 KB L1 instruction and 32 KB L1 data caches. 4-core cluster has 2 MB
of shared L2 cache.

The program environment of the device consists of Linux Ubuntu 14.04.1 LTS
(GNU/Linux 3.10.40-gdacac96 armv7l). The toolchain includes GCC ver. 4.8.4
and CUDA Toolkit 6.5.
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Nvidia Jetson TX1. Jetson TX1 is based on the 64-bit Tegra X1 SoC with
LPDDR4 memory (1600 MHz). Tegra X1 includes 4 Cortex-A57 cores running
at 1.9 GHz, 4 slower Cortex-A53 in big.LITTLE configuration and two GPU
Maxwell SMs running at 998 MHz (256 CUDA cores). Each Cortex-A57 core
has 48 KB L1 instruction cache, 32 KB L1 data cache and 2 MB of shared L2
cache.

The operation system is Linux Ubuntu 14.01.1 LTS with 64-bit core built
for aarch64. Nevertheless we use the 32-bit toolchain and software environment
(same as for Nvidia Jetson TK1), except for the newer CUDA Toolkit 7.0.

In summer 2016, the 64-bit userspace and toolchain have been released. Pre-
liminary tests show that the new 64-bit software can be noticeably faster in some
rare cases only.

4.2 Energy Consumption Measurement Technique

We use the SmartPower digital wattmeters with the integrated DC source to
measure the energy consumption of the Jetson boards. The wattmeter provides
voltage in the range from 3 to 5.25 V and measures the current and power con-
sumption every 0.2 s with a nominal error of less than 0.01 V. The wattmeter
shows the data on the display in real time and allows to transfer the data via
USB to the PC for further analysis.

Because both Jetson platforms have nominal voltage values higher than
5.25 V, we connect several SmartPower wattmeters in a sequential way to achieve
higher voltage (see Fig. 2). To confirm the accuracy of the achieved output volt-
age, we use the precise Tektronix TDS2014C oscilloscope. In this way we show
that the average error in the power consumption measurements are about 1%.

The nominal voltages are 12 V for Jetson TK1 and 19 V for Jetson TX1.
However, we discover that both devices can operate at much lower voltages:
down to 6 V for TK1 and 8 V for TX1.

Fig. 2. The Jetson TX1 and TK1 boards with the ODROID-C1 in the center (left
photo). The sequentially connected SmartPower wattmeters with the oscilloscope (right
photo)
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The measurement of energy consumption in a particular test consists in the
simultaneous execution of the logging program on the PC as well as the necessary
tests on the Jetson. The Jetson boards do not have any connected peripherals
except for the LAN cable.

We should note that other methods of measuring power consumption exist
as well. For example, built-in hardware counters can be used that allow a user to
accurately determine the chip power consumption. However, we are not aware
of the similar counters in Tegra SoCs and therefore measure directly the power
consumption of the entire development board.

5 Measurements Results

5.1 Energy Consumption for the ERT Benchmark

We use the results of the ERT launches to determine the ratio of the peak per-
formance (in GFlops) to the average power consumption during the benchmark.

On Fig. 3 one can see an example of the power consumption profiles for both
Jetson boards. Using the measured value of energy consumed for the bench-
mark launch and the peak performance obtained, one can determine the energy
efficiency of systems considered.

Since the first 10 s of the ERT benchmark are spent on rebuilding the binary,
this part of the log is not included in consideration.

The total energy consumption for the GPU single precision ERT benchmark
for TK1 is 5.9 W, with the maximum achieved performance in single precision
of 209.9 GFlops. This gives us the ratio of 35.5 GFlops/W. For TX1, the energy
consumption is 6.28 W, which is slightly above TK1. However, the newer device is
significantly superior in terms of achieved maximum performance (485.1 GFlops)
that gives a higher performance of 77.2 GFlops/W in single precision.

Fig. 3. An example of Jetsons power consumption profiles during ERT launches
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Both Jetson minicomputers demonstrate not very impressive results in dou-
ble precision: 2.1 GFlops/W for TK1 and 2.7 GFlops/W for TX1. The reason
for this is the significantly lower double precision performance with the energy
consumption level comparable to the single precision case.

On the other hand, the ERT launches on the ARM cores of TX1 show that the
Cortex-A57 core has much lower efficiency: 0.8 GFlops/W for double precision
and 4 GFlops/W for single precision.

5.2 Energy Consumption for the LAMMPS Benchmark

On Fig. 4, one can see typical power consumption profiles during LAMMPS
launches. The area under the graph represents the amount of energy spent for
the calculation.

Fig. 4. Power consumption profiles for the launches of LAMMPS with USER-CUDA
for TX1 in the maximum frequency mode and in the DVFS mode

As noted above, both Jetson systems support the DVFS energy optimization
mode. Therefore, we consider how the results change in the case of the activated
DVFS mode. Thus, for each launch of the standard Lennard-Jones benchmark
in the fixed maximum frequency mode, we have performed the same launch but
with the DVFS mode enabled.

Figure 4 shows the comparison of the LAMMPS energy consumption in DVFS
and fixed maximum frequencies modes. One can see that the DVFS-enabled
launch takes more time with clearly lower power consumption level.

To answer the question whether or not DVFS is beneficial, we calculate the
consumed energy per one LAMMPS launch with and without DFVS.

The results presented on Fig. 5 show that the total energy consumption values
for the LAMMPS calculations with the DVFS mode enabled are roughly equal
or higher than the corresponding values in the case of the DVFS mode disabled.
However, the times-to-solution with DVFS are much higher than in the case
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Fig. 5. Time-to-solution and the corresponding energy consumption values for the CPU
MD algorithm, GPU and USER-CUDA variants in the maximum frequency mode and
in the DVFS mode (single and double precision)

of the fixed maximum frequency. Therefore, the usage of DVFS in the cases
considered does not improve energy efficiency.

6 GPU and DRAM Frequencies Variation Effect

We use the USER-CUDA accelerated LAMMPS variant as a benchmark that
shows the effect of GPU and DRAM frequencies variation on the execution time
and the total energy consumption. The frequency of the GPU are changed from
one launch to another and the DRAM frequency is fixed for the whole group of
launches. For each group of experiments, we set the Jetson TK1 GPU frequency
to the following values (in MHz): 72, 108, 180, 252, 324, 396, 468, 540, 612, 648,
684, 708, 756, 804 and 852. The DRAM frequencies are fixed for each group at
the values of 924, 396, 204 and 102 MHz. For each launch, the power consumption
is measured.
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One can find the measurement results in Fig. 6. Initially, the increase of GPU
frequency is accompanied by the decrease in times-to-solution. In terms of energy
consumption, the situation is different. With the increase of GPU frequency,
the TK1 energy consumption decreases down to a certain limit and reaches its
minimum. After that, any increase of the GPU frequency leads to the increase
of energy consumption.

This minimum of power consumption is associated with the transition of
the LAMMPS USER-CUDA algorithm from the compute-bound mode to the
memory-bound mode. The GPU computational speed limits the total perfor-
mance of the system at low GPU frequencies. This situation corresponds to the
compute-bound mode. On the other hand, the DRAM memory bandwidth limits
the total performance at high GPU frequencies. This situation corresponds to
the memory-bound mode. An increased energy consumption in the latter case is

Fig. 6. LAMMPS power consumption on different TK1 memory frequencies with
USER-CUDA (upper plot) and GPU (lower plot) packages.
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not a desirable effect because this growth of consumption is not associated with
any significant speedup of the calculation.

Also, we notice that lowering the DRAM memory frequency shifts the point
of minimum consumed energy to lower GPU frequencies, as it might be expected.

7 Summary

We have described the energy consumption of the minicomputers Nvidia Jetson
TK1 and TX1 based on the hybrid systems-on-chip Nvidia Tegra K1 and X1.

The peak load benchmarks have been performed with the Empirical Roofline
Toolkit (with the CPU and GPU versions). The CPU version has shown 4
GFlops/W for single precision and 0.8 GFlops/W for double precision for one
Cortex-A57 core of Jetson TX1. The GPU version for Kepler TK1 and Maxwell
TX1 has shown 35.5 GFlops/W and 77.2 GFlops/W respectively for single pre-
cision and 2.1 GFlops/W and 2.7 GFlops/W for double precision.

Two CUDA-accelerated MD algorithms implemented in LAMMPS have
been used for energy consumption benchmarks (in single and double precision).
DVFS has been found inefficient for energy efficiency improvement in the cases
considered.

By changing GPU and DRAM frequencies on TK1, we have shown the tran-
sition of the both CUDA-based MD algorithms from the compute-bound to
memory-bound mode. We have located the minima of the energy-to solution
with respect to the set of GPU and DRAM frequencies considered.

In the future, we plan to conduct a similar analysis for systems with desktop
or server GPU accelerators. In addition, we are going to consider the case of
more complex molecular dynamics models, e.g. with the Coulomb interaction.

Acknowledgments. HSE and MIPT provided funds for purchasing the hardware
used in this study. The work was supported by the grant No. 14-50-00124 of the Russian
Science Foundation.
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